
Enabling Scalable Multicolor Connectomics

Through Expansion Microscopy

by

Jeremy Wohlwend

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c© Jeremy Wohlwend, MMXVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

May 24, 2017

Certified by. .
Edward S. Boyden

Associate Professor
Thesis Supervisor

Accepted by .
Chris J. Terman

Chairman, Department Committee on Graduate Theses

2

Enabling Scalable Multicolor Connectomics Through

Expansion Microscopy

by

Jeremy Wohlwend

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 2017, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Decades of work in computational power and high resolution imaging have made it
possible to observe specific neurons and their connections at a microscopic level. This
level of resolution is known as the connectomic level. While we have been able to
observe the brain at such resolution for some time thanks to electron microscopy
(EM), the analysis of the resulting data has proven to be a very challenging task,
mainly because it relies only on membrane contrast to differentiate cells. Expan-
sion microscopy (ExM) offers an exciting alternative to EM by expanding physical
brain tissue, with the added benefits that regular optical microscopes can be used
for image acquisition. This will enable a faster, cheaper, and multicolor approach
to connectomics, and may have the potential to realistically tackle a nervous system
as large and complex as a mammalian brain. Currently, the study and the devel-
opment of Expansion Microscopy are limited by the rate at which experiments run,
which can take weeks, and sometimes months. In a previous project, we described
a pipeline to create synthetic ExM images (SimExM) and discussed the importance
of ground truth data in experimenting with segmentation algorithms. One of the
main bottlenecks in creating a full connectome is the need for these ground truth
annotations which require a substantial amount of manual work. This work explores
various reconstruction strategies based on ExM. We evaluate their dependency on
manual annotations and their overall performance, and contribute, as such, to the
development of a scalable connectomics pipeline.

Thesis Supervisor: Edward S. Boyden
Title: Associate Professor

3

4

Acknowledgments

Professor Edward Boyden for allowing me to work in a stimulating and exciting

environment, and for asking me the right questions, at the right times. Adam Mar-

blestone, who has been a true mentor to me the past two years. Nicholas Barry,

Daniel Goodwin, Amauche Emenari, Young Gyu Yoon, David Rolnick and the rest

of the Synthetic Neurobiology group, for without their help, this work would not have

been possible. The MIT course 6 department for an amazing 5 years. Finally, my

family, for their everlasting support.

5

6

Contents

1 Introduction 13

1.1 Connectomics . 14

1.2 Expansion Microscopy (ExM) . 14

1.3 A scalable approach? . 15

2 SimExM 17

2.1 Description . 17

2.1.1 Data processing . 17

2.1.2 Labeling . 18

2.1.3 Imaging . 19

2.2 Use cases . 19

2.2.1 Brainbow . 19

2.2.2 Sparse-dense . 21

2.2.3 Rosetta Brain . 22

3 Cell Morphology Reconstruction 25

3.1 Supervised segmentation . 26

3.1.1 Boundary detection . 26

3.1.2 Watershed Segmentation . 27

3.1.3 Flood-filling networks . 28

3.2 Sparse-dense learning . 29

4 Results 31

7

4.1 Segmentation Accuracy . 32

4.2 Baselines . 32

4.2.1 Expansion . 33

4.2.2 Sparsity . 34

4.2.3 Color channels . 35

4.3 Flood-filling . 36

4.3.1 Bar-codes . 36

4.3.2 Sparse-dense . 38

5 Discussion 41

5.1 Expansion . 41

5.2 Sparsity . 43

5.3 Color channels . 44

6 Conclusion 45

6.1 Summary of Contributions . 46

6.2 Future work . 46

A SimExM Parameters 47

8

List of Figures

2-1 Left: Electron Microscopy image with a pixel resolution of 8 nanome-

ters. Right: Manually annotated EM image. Each neuron is labeled

with a different color. The right image is an example of ground truth

data, which is used as the basis for creating synthetic images. Images

taken from the Janelia Group[10]. 18

2-2 Single membrane stain at different expansion levels 20

2-3 Low, medium and high labeling density 20

2-4 One, two and three color stains over the whole volume 20

2-5 Sparse-dense datasets. The first channel (red) is a membrane stain on

all cells. The second channel (green) is a membrane stain for the left

image and a cytosolic stain for the right image, on a few neurons in

the volume (≈ 10%). 21

2-6 Multicolor synapse stain at different levels of expansion. From left to

right: 1x, 2x, 3x, 4x, 5x, 10x, 20x. 22

2-7 Rosetta brain at 1x expansion. Left: 1st base, Right: 2nd base 23

2-8 Rosetta brain at 4x expansion Left: 1st base, Right: 2nd base. 23

3-1 The N4 architecture. Image taken from [15] 27

3-2 Flood-Filling Network architecture. Image taken from [11] 28

3-3 The sparse-dense learning framework. 29

4-1 Segmentation accuracy, at 4x, 10x and 20x expansion. Top: pixel error,

bottom: rand error. 33

9

4-2 Segmentation accuracy, at low, medium and high labeling density. Top:

pixel error, bottom: rand error. 34

4-3 Segmentation accuracy, using 1, 2, and 3 color channels. Top: pixel

error, bottom: rand error. 35

4-4 Segmentation error for the three bar-code initializations. 37

4-5 Left: the raw image. Right: the segmentation produced by the FFN. 37

4-6 Segmentation error on four models: simple watershed, N4 + watershed,

FFN, and sparse-dense FFN. 39

10

List of Tables

A.1 Simulation Parameter List . 47

A.2 Simulation stacks parameters. Bold font highlights the parameters that

were varied in the experiments. 48

11

12

Chapter 1

Introduction

The main focus of connectomics is to make use of bio-engineering techniques and

computer power to acquire and process high resolution brain images in an attempt

to produce a comprehensive map of the brain’s neural circuits [21]. This can only

be accomplished when observing the brain at nanoscale resolution, where it becomes

possible to trace out the 3-dimensional morphology of the neurons present in the

volume [12]. Knowing where the neurons reside in space allows one to learn about their

types, shapes, and ultimately study what composes the brain with nanoscale precision.

Most importantly, these reconstructions can generate maps of neural circuits, which

play a crucial role in understanding the brain’s computations. Mapping the brain

could lead to unprecedented advances in neuroscience, artificial intelligence, and likely

many other fields [23].

This work investigates the effects of different labeling and imaging strategies on

the mapping process. The first section provides a brief overview of the state of Con-

nectomics research and Expansion Microscopy. The second section covers SimExm,

a software for simulated Expansion Microscopy experiments. The third section de-

scribes the reconstruction strategies and the model architectures. The fourth section

describes our results, which are discussed in the fifth section, alongside some thoughts

on the future of connectomics.

13

1.1 Connectomics

There is currently no scalable solution to generate precise maps of the nervous system.

Most methods in the field involve electron microscopy (EM), a slow and expensive

process that has been at the center of connectomic research from its birth. EM

provides great resolution but has failed at scaling. For instance, one of the largest

annotated datasets of EM brain images was recently published by the Lichtman Lab

at Harvard, and consists of ”only” 1500 cubic microns [12]. For the rest of this

paper we refer to ”segmentation” as the process of assigning each pixel in the image

to a the cell it belongs to, or to extra cellular space. EM analysis relies solely on

membrane contrast, which makes the segmentation difficult, even for a trained human.

Results obtained through fully automated algorithms or machine learning still require

intensive proofreading and, therefore, EM remains far from ideal [9, 17].

1.2 Expansion Microscopy (ExM)

Expansion microscopy offers an exciting alternative, but its application to connec-

tomics still needs to be fleshed out [4]. ExM consists of the physical expansion

of brain tissue uniformly in all directions, which allows for the use of optical mi-

croscopes for high resolution imaging, out-weighing the constraints imposed by the

diffraction limit of light. The specimen is labeled pre-expansion and then embedded

in a water swellable gel which binds to the label proteins in the sample. The tissue

is then washed while the targeted fluorescent proteins remain bounded to the gel.

The water swellable nature of the gel allows it to expand in all directions uniformly

and with minimal distortion, thus improving on the resolution of the imaged sample

and avoiding the limitations imposed by the diffraction limit of light. In contrast to

EM, which imposes grayscale imaging, ExM makes use of light microscopy for high

resolution imaging, thus adding color labeling. The use of multiple color channels

should help solidify reconstruction process, and the use of cheaper and faster optical

microscopes will make ExM a more scalable solution than EM.

14

1.3 A scalable approach?

Expansion microscopy was only published very recently, in 2015, and most work done

so far has attempted to make the expansion process better, with higher magnification

and minimal distortion [3]. Attempts to apply the technique to connectomics are still

in the early stages. Expansion microscopy data is only available in limited quantity,

and the question of whether the data is ”good enough” for segmentation is often

hard to answer. This makes it hard to test image processing methods, and limits

progress on the computational end of connectomics research. To address this issue,

we developed SimExM, a software for expansion microscopy simulations. SimExM

uses annotated electron microscopy images to simulate the biological labeling and

imaging process involved in Expansion Microscopy. Because it provides ground truth

for the synthetic data, SimExM enables quantitative measurement of the accuracy

of segmentation algorithms, and makes it possible to train supervised models, in a

similar fashion to what is done in electron microscopy.

The decades of work on electron microscopy have accumulated a vast resource of

processing and segmentation methods to efficiently reconstruct neuron morphologies

[12, 19]. These usually rely heavily on supervised learning, and similar algorithms

can be used for the analysis of ExM. However, the addition of color, which increases

the amount of information in the image, may also enable methods which don’t rely

as strongly on training data. The best strategy remains an open question and the

amount of ground truth required will be an important question to answer. In partic-

ular, obtaining such ground truth currently involves having a human expert manually

annotate the images, assigning each pixel in the image to a cell, or to background. A

key factor is ensuring that this amount of manual work does not become a bottleneck.

Building a scalable process thus requires finding a segmentation algorithm that

only needs few training examples, as in a semi-supervised approach or develop a

fully unsupervised segmentation. This work explores how different strategies impact

the amount of ground truth needed, the required expansion factor, and the overall

complexity of the process.

15

16

Chapter 2

SimExM

2.1 Description

SimExM is a software, fully written in Python, which allows flexible expansion mi-

croscopy simulations, under different labeling and imaging conditions. It is designed

to be highly flexible, and to reproduce the basics of the biological labeling, and opti-

cal imaging under confocal microscopy. It produces simulated image stacks, and the

corresponding ground truth labels on a per channel basis. A simulation run consists

of three steps: data processing, labeling and imaging. The software is described in

detail in the next section, followed by a set of example use cases.

2.1.1 Data processing

SimExM takes as input segmented fluorescent or electron microscopy image stacks

and distributes fluorophore proteins across the cells or cell regions present in the

volume. The ground truth images must be formatted as follows: the value of each

voxel in the volume is a cell id, assigning that voxel to the cell that it belongs to.

An example input is shown in Figure 2-1. We then simulate the basics of what we

understand of protein labeling on a per-cell basis. The data is loaded in a way that

the set of voxels can be accessed from a per cell basis. SimExM also allows to specify

which region of the cell to label, should the annotation be present in the ground truth.

17

(a) Electron Microscopy image. (b) Ground Truth, cell annotation

Figure 2-1: Left: Electron Microscopy image with a pixel resolution of 8 nanometers.
Right: Manually annotated EM image. Each neuron is labeled with a different color.
The right image is an example of ground truth data, which is used as the basis for
creating synthetic images. Images taken from the Janelia Group[10].

2.1.2 Labeling

One labeling approach, which can be coupled to ExM, is known as the ”Brainbow”

method. This is a process where cells are genetically targeted and express a single

color given some uniform probability distribution over a predefined color space [2].

Simply put, different cells are likely to have different colors on their surface, and

this can be simulated with flexibility in SimExM. Each fluorophore targets a portion

of the cells in the volume as defined by the input labeling density. The number of

fluorophores usually determines the number of channels in the output image. To accu-

rately reproduce channel leaking, and the dominance of certain fluorescent proteins

over others, SimExM uses a database of fluorophores and their attributes, storing

the excitation and emission wavelengths, as well as the quantum yield and the ex-

tinction coefficient for each of the following fluorophore type: Alexa350, Alexa790,

ATTO390, ATTO425, ATTO430LS, ATTO465, ATTO488, ATTO490LS, ATTO550,

ATTO647N, ATTO700. The set of labeling parameters for the labeling module can be

found in Table 2.1. Once the fluorescent proteins are distributed across the volume,

the antibody amplification is simulated by amplifying and replacing the fluorescent

proteins using a Gaussian distribution centered at their original locations.

18

2.1.3 Imaging

Next, the labeled volume is passed to the optics module whose role is to simulate

the imaging process through optical microscopes. SimExM allows control over noise,

lasers, filters, and other microscope parameters. The optics module starts by com-

puting the mean photon count associated with each laser / fluorophore pair. The

number of photons per protein is then sampled from a Poisson distribution with the

above mean. Once the photon counts are grouped by channels, the module generates

a theoretical point spread function and performs a 3D convolution with the location

of the fluorescent proteins in the volume. The point spread function follows the ap-

proximation proposed by Richards and Wolf [22]. Finally, Gaussian noise is added to

the volume, which is then normalized to the [0, 255] range. The full set of parameters

for the labeling and optics modules can be found in the appendix.

2.2 Use cases

We show here some example use cases of SimExM. The ground truth datasets used

for these simulations are public and were taken from the Lichtman Lab, at Harvard

University [12], through the ISBI challenge [1]. These simulated stacks are used to

train and evaluate the models described in Chapter 3. The full set of parameters used

in producing these stacks can be found in the appendix as well.

2.2.1 Brainbow

The following figures show the Brainbow labeling at three different levels of expansion,

three degrees of sparsity and three different number of color channels. In all figures,

the 20x single membrane stain is used as baseline for comparison. Figure 2-2, shows

slices of the volume at 4x, 10x, and 20x expansion. Figure 2-3, shows the volume

with 10%, 50% and 100% of labeled cells. Figure 2-3, shows cells labeled with one,

two and three orthogonal fluorophores, respectively. All stacks use the same protein

density, the same optics parameters and the same amount of baseline noise.

19

(a) 20X (b) 10X (c) 4X

Figure 2-2: Single membrane stain at different expansion levels

(a) High density (b) Medium density (c) Low density

Figure 2-3: Low, medium and high labeling density

(a) Single channel (b) Two channels (c) Three channels

Figure 2-4: One, two and three color stains over the whole volume

20

2.2.2 Sparse-dense

Another interesting labeling approach is to use a different labeling density in different

channels. For instance, in the two stacks below, all neurons are labeled in the first

channel (red), while only a few are labeled in the second (green, once as a membrane

stain and once as a cytosolic stain). These datasets are particularly interesting from

a semi-supervised point of view. Because single neuron reconstruction is an easy task,

one can imagine having an automated algorithm to segment a single neuron within a

sub-volume, which could create training labels automatically from the sparse channel.

These object masks can then be used to train the model to produce a segmentation

by training exclusively on the dense channel, in an attempt to generalize to all neurons

in the volume. One possible issue with this method is the lack of negative examples

for the boundary detection. However, this strategy fits particularly well with flood

filling networks (see 3.1.3) as they do not focus on detecting edges, but compute

whole object masks. Assuming enough cells are reconstructed in the sparse channel,

it should be possible to train a model that generalizes well.

Figure 2-5: Sparse-dense datasets. The first channel (red) is a membrane stain on
all cells. The second channel (green) is a membrane stain for the left image and a
cytosolic stain for the right image, on a few neurons in the volume (≈ 10%).

21

2.2.3 Rosetta Brain

Another crucial aspect of connectomics is the detection of synaptic connections be-

tween neurons, and the strength of these connections. This is difficult to estimate.

With ExM, there is the hope of being able to stain synapses in an orthogonal chan-

nel, which should prove a lot more reliable than post synaptic density detection in

electron microscopy images, though that remains to be tested further [3]. In fact, it

may be difficult, if not impossible to segment spatially close synapses without expan-

sion. In the figure below, we show a simulated estimate of how synapses might look

if all stained with their own color, at different expansion levels. Note that this is a

simulation and should be interpreted as such. From looking at the images, it seems

difficult to distinguish synaptic terminals from each other below 3x or 4x expansion.

Figure 2-6: Multicolor synapse stain at different levels of expansion. From left to
right: 1x, 2x, 3x, 4x, 5x, 10x, 20x.

The Rosetta Brain paper [18] explains a potential implementation of RNA bar-

codes to identify cells (and potentially their synapses) using multicolor dots to label

voxels to specific cells. Each cell produces a unique RNA bar-code. This bar-code is

then transcribed in a way that each A, T, G, C base is associated with a different

fluorescent protein (in practice the process is a little more complex and involves pairs

of bases). As the bar-code is transcribed, a chemical lock is put in place to ensure

that the microscope has the time to take a snapshot of the sample. This results in

a sequence of images, where the bar-codes change color, effectively reproducing their

RNA bar-code sequence in color space. These bar-codes can be used to uniquely

identify a cell, in multiple locations. One of the current goals is to force these bar-

codes to travel to the synaptic terminal to reliably identify connections between cells.

22

We use SimExM to simulate this process. In particular, we use 4 possible colors

(as in 4 bases), and bar codes of length 15. The bar-codes take the form of 400nm dots

in post-expansion space. In the following images, most bar codes target the synaptic

terminals but a few are spread around the rest of cell body. Synaptic terminals are

stained in yellow, while the 4 color bar-codes use the red, green, blue and magenta

channels. The same image is shown at two expansion levels: 1x and 4x, and at two

different steps (A, T, G, C base) in the bar-code sequence. While dots can be seen

easily in both the 1x and 4x expansions, only the 4x expansion allows to distinguish

between two different dots sitting at the same synaptic terminals. As real data is not

currently available for this task, this work does not explore the related computational

questions further.

Figure 2-7: Rosetta brain at 1x expansion. Left: 1st base, Right: 2nd base

Figure 2-8: Rosetta brain at 4x expansion Left: 1st base, Right: 2nd base.

23

24

Chapter 3

Cell Morphology Reconstruction

Segmentation refers to the process of assigning each voxel in a given volume a label

which indicates what neuron the voxel is on. With a segmented volume, we can

then try to infer which cells are connected to each other, as well as learn about the

shapes and types of neurons composing the volume. In general, most segmentation

algorithms adopt one of two strategies:

1. Most segmentation approaches consist of a boundary detection step, followed

by a pixel agglomeration algorithm based on these boundaries. The watershed

algorithm, in particular, is used in both [6, 15].

2. More recently, there has been work in trying to build end to end models produc-

ing the segmentation directly as opposed to first detecting the cell boundaries.

This is an active area of research in semantic segmentation, with the recent

appearance of fully convolutional networks and autoencoder designs [16, 20, 5].

Currently, the only application of such designs to connectomics are Flood-Filling

Networks [11], which are described in section 3.1 3.

Both strategies can be used with unsupervised or supervised learning. With the

current state of the field, it is difficult to imagine a fully unsupervised algorithm being

able to account for the stochasticity in biological samples. Using machine learning

is promising but requires computational power, and a large amount of annotated

25

data. The task is thus to find a form of data that is easily segmentable. We call

easily segmentable, a dataset for which the ratio of reconstruction accuracy to amount

of training data is high. From an unsupervised learning perspective, a dataset is

considered easily segmentable if the segmentation accuracy matches more or less the

segmentation accuracy obtained with supervised learning.

3.1 Supervised segmentation

The two strategies are outlines below. In the first section, we describe a convolutional

neural network architecture for boundary prediction. The output of this network is

then passed through a watershed to produce the final segmentation. The basics of

the watershed algorithm are covered in section 3.1.2. Finally, we describe the Flood-

Filling network architecture, current state of the art in connectomics [11].

3.1.1 Boundary detection

We set up the boundary detection learning task by using a pixel classifier. For some

pixel pi, the goal is to predict if pi belongs to the same object as its neighbors, or

if it doesn’t (in which case it is considered a boundary pixel). The feature vector

is a square window around the pixel, thus providing the local information needed in

detecting edges. In short, this is a simple binary classification task. For a single pixel

pi with label yi and predicted value ai, the pixel-wise cross entropy loss if given by:

L(yi, ai) = −yilog(ai)− (1− yi)log(1− ai)

Note that the data is usually highly unbalanced as the number of negative ex-

amples greatly exceeds the number of positives. To account for the unbalance, we

modify the loss function by adding a weight on the positive examples. For this task

we use the N4 convolutional network model, from Ciresanet al. [6]. The network can

be extended to account for 3D information as well [15], but we use the simple 2D case

as a baseline.

26

Figure 3-1: The N4 architecture. Image taken from [15]

The network consists of 4 convolutional layers, each followed by a maximum pool-

ing layer. Then the output is flattened and passed through two fully connected layers,

and a softmax activation which computes the probability of belonging to each of the

two classes. In our experiments, we modify the architecture slightly by using ReLU

activation functions. All weights are initialized using Xavier initialization [7]. The

network is trained on mini-batches of image patch, using the Adam optimizer [13]

and the loss is averaged over the mini-batch. Then, inference consists of feeding the

network each pixel in the test image, thus producing a heat map of where edges are

located. It is usually preferable to process the output of the network with a smoothing

kernel, and simple thresholding, to remove artifacts,and facilitate the watershed.

3.1.2 Watershed Segmentation

Once the boundary prediction is obtained, it’s passed on to the watershed algorithm.

The watershed uses seed locations, and expands them using the gradient of the image

to guide the flow of the expansion. When two super-pixels (group of pixels) collide,

they are either merged together, if they hold the same label, or the expansion halts

at that location.

Thus, one issue with the watershed is to determine the initial seed points – as it

turns out, this problem also affects Flood filling network. Fortunately, the current

work on RNA bar-codes [18], as described in section 2.2.3 has the potential to fill

that gap. In our segmentations, we assume that such bar-codes are available. We

run our segmentations using a single bar-code per cell per slice in a volume of size

3.2µ× 3.2µ× 0.24µ.

27

3.1.3 Flood-filling networks

Flood-Filling networks, as opposed to the previously mentioned method, produce

the segmentation directly, without going through a boundary detection step. The

network architecture is shown below.

Figure 3-2: Flood-Filling Network architecture. Image taken from [11]

The network takes as input a sub-volume of data, and an object mask, and outputs

an updated object mask. The target mask is a binary volume where only voxels

belonging to the object covering the center voxel are given. The network tries to

reconstruct objects one at a time, and the mask is updated iteratively. Computing

object masks for all seed points (given at least one seed per cell) produces the final

segmentation. During training, the field of view (FoV) of the network is restricted

to pre-specified sub-volumes, and the loss is weighted with respect to the number of

active voxels in the sub-volume. An active voxel is defined here as a voxel belonging

to the same object as the center voxel in the FoV.

28

3.2 Sparse-dense learning

While Flood-filling networks provide great accuracy, they require a large amount of

training data. We would like to tune the chemistry in a way that either removes

human annotations for the pipeline or reduces them effectively. Generating gold-

standard ground truth is difficult, but in a very sparse setting, with for instance a

single cell in the second channel, it may be possible, depending on the quality of the

data, to reconstruct the cell to gold standard quality, and use its object mask to train

a flood filling network to generalize to all cells in the volume. One could even imagine

using the sparse channel as the object masks directly, though the noise might be too

important without any preprocessing.

Figure 3-3: The sparse-dense learning framework.

We first produce a segmentation of the sparse channel. Then, we sample sub-

volumes from the segmented object. Again we bias the network to focus on small

ambiguous regions by adding a weight on the sample inversely proportional to the

number of active voxels in the sub-volume. The network architecture is the same, but

only the first (red) channel is fed for training and inference.

29

30

Chapter 4

Results

This section covers the segmentation results using the watershed, N4, and Flood-

filling network models, on the simulated stacks from section 2. We first run three

baseline experiments based on the Brainbow stacks. In particular, we consider the

effect of expansion, the number of color channels, and the proportion of cells labeled

in the volume on the segmentation accuracy. In our experiments we assume that

we have access to at least one bar-code per cell per slice in the test volume of size

3.2µ× 3.2µ× 0.24µ. This would be the equivalent of having a human point at each

cell in the volume, for example. All baselines experiments are run on the first two

models: a simple preprocessing + watershed, and the boundary classifier + watershed,

as they don’t require large training times. Each use the 20x expansion, single channel

membrane stain dataset as baseline for comparison with other datasets.

We then proceed to train a flood-filling network on the same 20x expansion, single

channel membrane stain dataset, and compare its performance to the baseline models.

Finally, we show that flood filling networks can be used in a sparse-dense learning

task, where labels are created automatically from the sparse channel, given a robust

single cell reconstruction algorithm, and attempt to generalize the segmentation to

all cells in the volume by using a single neuron to generate training examples.

31

4.1 Segmentation Accuracy

Many metrics can be used to measure segmentation accuracy. For all experiments

we evaluate the accuracy using two of these: the pixel error, and the rand error, the

latter being more robust to small spatial shifts than the former. Given an output

segmentation S, and a ground truth segmentation G, the two errors are computed as

follows:

1. Pixel error: the proportion of voxels having the same label in S and in G is

given by:

P.E =
1

N

∑
pS ,pG∈S×G

IpS = pG (4.1)

2. Rand error: we start by first counting a) the number of pairs of pixels which

are in the same object in both S and G, and b) the number of pairs of pixels

that are not in the same object in both S and G. The rand error is then given

by:

R.E = 1− a+ b(
n
2

) (4.2)

4.2 Baselines

We use the standalone watershed algorithm and the N4 boundary predictor followed

by the watershed as baseline models. The N4 models were trained over a 100000

examples, with a batch size of 100. The learning rate was set to 0.0001 and no

regularization penalty used. The trained models were then used to segment a small

test sub-volume. The predicted boundary map were passed through a 3D median filter

of radius 2 pixels, and the watershed algorithm, producing the final segmentation.

Due to the stochasticity in assigning initial seed locations, the results were averaged

over 10 runs of the watershed for each experiment.

32

4.2.1 Expansion

We first look at the effect of expansion on the segmentation accuracy using the 4x,

10x, and 20x stacks, and a single channel dense membrane stain. Note that the N4

model was modified to only a reduced window size of 47 on the smallest 4x dataset

due to the size of the training volume.

Figure 4-1: Segmentation accuracy, at 4x, 10x and 20x expansion. Top: pixel error,
bottom: rand error.

As expansion increases, the pixel error drops significantly. Note however, that at

10x expansion, the rand error is almost as low as for the 20x data. Looking into the

images reveals that, as expected, the 10x model fails in some of the smaller regions.

Higher expansion thus improves on the segmentation accuracy, but the gain seems to

diminish as the expansion factor increases.

33

4.2.2 Sparsity

Next, we look at the effect of sparsity on the segmentation accuracy. The low density,

average density, and high density stacks contain 10%, 50% and 100% of cells labeled,

respectively. The loss was adjusted in training to compensate for the drop in positive

examples in the lower density stacks.

Figure 4-2: Segmentation accuracy, at low, medium and high labeling density. Top:
pixel error, bottom: rand error.

Here, very low density provided close to perfect reconstruction for both the wa-

tershed and the N4 predictor. Interestingly, The models only perform marginally

better on the mid-level density stack compared to the high density stack. This can be

explained in part by the fact that although the potential for merging errors increase

with the number of cells, having a very dense labeling also allows for more seed points

which restrict how large these merging errors might be.

34

4.2.3 Color channels

Finally, we consider the impact of adding color channels on the segmentation accuracy.

For each expansion level and each model, we compute the pixel error, rand error on

1-channel, 2-channel, and 3-channel image stacks. The networks are modified slightly

to account for the multiple input channels.

Figure 4-3: Segmentation accuracy, using 1, 2, and 3 color channels. Top: pixel error,
bottom: rand error.

As the number of colors used in a stain increases, the accuracy decreases. This

may be a surprising result at first but can be explained by the limited amount of

gained information (at least given knowledge of bar code locations), and the non

negligible amount of added noise. Adding color channels can be beneficial but re-

peating information in a different color does not help segmentation unless there are

no bar-codes in the volume.

35

4.3 Flood-filling

We train the flood filling network (FFN) with asynchronous gradient descent. We

use a learning rate of 0.0001 and the Adam optimizer. We train over 3000 training

examples, and make 10 passes over the dataset. Each example is a sub-volume, which

is explored using a smaller field of view (FoV) and the model’s weights are updated

after every move of the field of view. The shape of the field of view and the training

sub-volumes were changed to (33, 33, 11) and (51, 51, 17) to match the anisotropy of

the dataset which has resolution 8x8x25 nm.

Once training was completed, we ran the inference procedure using RNA bar-code

locations as seed points. For simplicity, we represented these bar-codes as random

voxels in the cell object. We removed the split decision biasing and lowered the

movement threshold tmove from 0.9 to 0.75 after training, thus giving the network

more freedom to explore the volume. We averaged the segmentation outputs over 10

runs, and take the mode value over each voxel in the volume. We also prohibited the

network from writing on another cell’s mask, and randomize the order in which cells

are segmented. We first present results on the baseline 20x dense membrane stain

dataset. We then show that the network can be trained in a sparse-dense fashion,

using a single object to sample the training examples from.

4.3.1 Bar-codes

We compare the performance of the Flood filling network as the number of bar-codes

per cell increases. We compare the segmentation errors using a single bar-code per

cell, a bar-code per cell per slice (which would be the equivalent of having a human

point at each cell in an series of images), and sparse cell filling bar-codes, where

10% of cell’s voxels are bar-coded. We run the model on a testing volume of shape

(400 × 400 × 17) allowing a single FoV move in the Z-direction. We then evaluate

the segmentation on the same 10 slices as the previous sections. Figure 4-4 shows the

pixel and rand errors on the various bar-code initializations. Figure 4-5 shows the

output segmentations for the first slice in the testing volume for the best model.

36

Figure 4-4: Segmentation error for the three bar-code initializations.

We obtain our best accuracy when using a bar-code for each cell and each slice

in the volume, and observe a significant improvement on previous models. Using a

single bar-code per cell caused some for some cells not to be explored at all. We

believe that this is mainly results from the small number of examples used in training

(3000). Given more time, and computational power, we expect the model to perform

significantly better, especially when using few seed locations. Adding more bar-codes

beyond the one per slice did not improve the results.

Figure 4-5: Left: the raw image. Right: the segmentation produced by the FFN.

37

In most places the segmentation is very accurate. However, we notice a few cells

missing from the segmentation. This could be a result of a bad initial bar-code

location, and the small number of training examples, especially in smaller regions.

4.3.2 Sparse-dense

Next we use a single neuron in the volume as training data, and assume that this data

can be easily reconstructed from the sparse channel. In practice, the sparse channel

is likely to have degraded signal but the hope is that in a sparse enough environment

(ex: single neuron), the amount of signal needed to reconstruct the cell accurately is

small. Furthermore, manually annotating a sparse dataset is considerably less time

consuming than annotating a dense stack. The model can therefore be be trained

easily in both a semi-supervised and a fully unsupervised fashion.

In our experiment, we use the largest cell in the volume in the sparse channel,

ensuring that we have enough training examples, given the small size of the dataset.

The model was trained over 3000 examples for 10 successive rounds, and evaluated

over the same (400 x 400 x 17) sub-volume used above. The segmentation error for all

four models discussed in this paper are shown in Figure 4-6, for comparison. As we

saw earlier, the FFN performs significantly better than the other models, producing

a rand error of 0.07 with only 3000 training examples, which is considerably less

than the number of examples used in training the N4 model, though that increase in

training examples is compensated by a simpler and quicker model. Thus, although

the number of training examples differed across models, all were trained roughly for

the same amount of time.

The sparse-dense network produced a pixel error of 0.13 and a rand error of 0.11,

only slightly worse than the regular FFN. This is a very promising result, and there

is hope that the accuracy of the FFN can be matched by training the network for

longer and with a few more cells. It is particularly encouraging in that, even with

a few examples, the sparse dense network still performs significantly better than the

N4 boundary predictor, state of the art in the field back in 2012.

38

Figure 4-6: Segmentation error on four models: simple watershed, N4 + watershed,
FFN, and sparse-dense FFN.

39

40

Chapter 5

Discussion

While obtaining good segmentation results on simulated data do not necessarily imply

similar performance on real data, it can be a good indicator of the effects of some of

the most basic data transformations, such as expansion or sparsity. A large part of

this work is indeed motivated by the lack of annotated expansion microscopy images,

as simulations form a convenient baseline before experimenting on real datasets. We

discuss these baseline results, and their implication in the following sections.

5.1 Expansion

The first experiment shows that expansion is necessary in obtaining robust segmen-

tations, but that as expansion increases, the noise to signal ratio increases as well.

For instance, in our experiments, the models performed fairly similarly on the 10x

and 20x datasets. The 4x dataset, however, resulted in a large drop in performance.

Expansion is increasingly important in smaller regions, which is crucial to connec-

tomics, and why 20x should be preferred. The Rosetta brain experiment in section

2 underlines the importance of expansion further. Under 4x expansion, it seems dif-

ficult, if not impossible, to resolve synaptic terminals, and while individual synapses

are better seen at 4x expansion, the 20x image ensures that the pre and post synap-

tic terminals can be identified. As another example, the recent paper on iterative

expansion microscopy shows synaptic terminals under 20x expansion [3].

41

The argument for 20x expansion also derives from electron microscopy. Recent

studies [12, 15, 11] use voxel resolutions of 6x6x30, 8x8x40 and 10x10x20 nanometers

respectively. The question of whether it can be done at lower resolutions is open, but

the pragmatic answer is that 20x is likely to be successful, not only because of its

very high resolution, but also because considerable effort has already been put into

tuning the procedure. In fact, given a 40x objective, 6500nm output pixels, 500nm

focal depth and 20x expansion, one achieves a resolution of:

6500

40 · 20
× 6500

40 · 20
× 500

20
= 8× 8× 25 nm (5.1)

which matches EM resolution. Higher levels of expansion may be beneficial but as

the amount of data increases as the cube of the expansion factor, there is a trade

off in computational complexity. An average male human brain has a size of 1260

cubic centimeters which is the equivalent of 1260 · 1021 cubic nanometers. Assuming

we image a whole brain at 8 × 25 nm resolution, and that each voxel contains at

least 4 bytes, imaging a whole brain would require more storage than is available in

all hard drives currently in the world combined. Once a segmentation is obtained,

however, the data can be stored as simple skeletons, which significantly reduces the

space complexity of the process.

Marblestone et al. [17] argue that mapping a mouse brain with electron microscopy

would be a multi billion dollar project, that could span over many years, or even

decades. Confocal microscopy may help in reducing the time and expenses, but

there is little doubt that mapping a whole mammalian brain will require a large

computational and financial effort, regardless of the method. Another interesting

approach would be to image the sample at different resolutions, using 20x expansion

only on regions that may be more difficult to segment. For instance the RNA bar-

codes could be resolved at 4x expansion, before the second round of expansion, and

their computed coordinates could be upsampled to match the shape of 20x volume.

42

5.2 Sparsity

The proportion of cells labeled inside a volume has a large impact on segmentability.

While a very low density usually results in very accurate reconstruction, very dense

volumes, when coupled with RNA bar-codes can turn out to be easier to segment, as

they offer less room for large merge errors. In our experiments, the models performed

similarly on the dense dataset than on the mid density, confirming the hypothesis. The

low density dataset (with roughly 10% of cells labeled) resulted in a close to perfect

segmentation on all models. We thus consider the sparse dataset easily segmentable

as the supervised algorithm did not improve on the results obtained with a simple

watershed.

One strategy, which particularly underlines the advantages of using a sparse

dataset, is the sparse-dense learning framework described in section 3.2. Flood fill-

ing networks can be trained on the object masks computed from the sparse channel.

However, this raises the question of how sparse to make the second channel. Accu-

racy is essential if we try to create ground truth labels from the sparse channel, thus

favoring lower densities. However, there is the risk that not enough training data

can be sampled from the sparse channel or that these examples aren’t comprehensive

enough, resulting in a model that fails to generalize. In that case, we may need to

stain additional cells, while ensuring that the performance remains the same. We

compared the distribution of training example in terms of the their proportion of ac-

tive voxels and found that the samples taken from a single neuron more or less match

their distribution over the whole volume. However, further research on a real dataset

will be needed to confirm this hypothesis and tune for the right degree of sparsity.

In our simple experiment, the sparse dense model is able to perform almost as

well as the model trained on the whole volume. While these results need to be verify

on a real dataset of the same kind, it is promising to see that the model is able to

generalize on a per cell basis. One could even imagine targeting specific cells through

heuristics, in an attempt to form a training dataset that is a better representation of

the underlying distribution of the sub-volumes in the sample.

43

5.3 Color channels

Our experiments also showed that adding color channels does not improve segmen-

tation accuracy if the added channels fails to contribute new information about cell

morphologies. In fact, adding redundant color channels resulted in worse performance

due to the added noise. Using orthogonal color channels is one the main benefits of

ExM, but these are only useful if the information is ”orthogonal” as well. One ques-

tion, which will be addressed in future work is whether adding a cytosolic stain, or

an extra cellular stain can help segmentation, by correcting for errors in the other

channels, or if the gain in information is too low to account for the added noise.

Another interesting question regarding color channels, is the number of orthogonal

fluorescent proteins required in the different segmentation frameworks. From these

experiments, we believe that using a sparse-dense 20x sample coupled with RNA bar-

codes would be the most viable strategy from both the computational and biological

point of views. This would require 2 channels for the membrane stains, 4 channels

for the bar-codes, and up to 1 or 2 other channels for to stain synaptic terminals.

This would require in total of 7 or 8 orthogonal channels, which may turn into an

interesting problem of itself.

44

Chapter 6

Conclusion

We studied in this work the application of Expansion Microscopy (ExM) to con-

nectomics, analyzed computational bottlenecks and identified a scalable strategy for

segmentation based on sparse-dense learning and RNA bar-codes. We showed that

factors such as sparsity, expansion or the number of color channels have a large im-

pact of segmentation accuracy. Adding redundant color channels, for instance, does

not help segmentation, while still increasing the noise in the data. Expansion in-

creases accuracy but faces reduced signal quality as the sample grows, resulting in

an log-like curve. We also made interesting observations when varying the degree of

sparsity, showing that a dataset with average density can be harder to segment than

a dense dataset. We applied three models in our experiments including a boundary

predictor followed by a watershed, and the recent Flood-Filling networks (FFN). We

showed that FFN’s perform particularly well and that the model fits in the sparse-

dense framework, which could help reduce the amount of human labor significantly.

From the results of our experiment, we feel that ExM offers great promises from a

computational point of view, and expect important advances in the next few years,

as the chemistry around bar-codes and expansion gets further calibrated.

45

6.1 Summary of Contributions

This work contributes to the study of the application of Expansion Microscopy (ExM)

to connectomics. In particular, the main contributions of this thesis are:

• A software: SimExM for flexible simulations of ExM experiments. The software

is public, open source and can be found at github.com/jwohlwend/SimExm.

• An implementation of two state of the art supervised models for cell segmen-

tation: the N4, and Flood-Filling networks. The FFN implementation is also

public and can be found at github.com/jwohlwend/Flood-Filling-Networks.

• A study of the effects of expansion, sparsity, and adding color channels on

segmentation accuracy, using synthetic images and baseline models

• A description, and initial results of a semi-supervised sparse-dense learning

framework, which can help reduce the amount of required human annotations.

6.2 Future work

There are two main avenues for future work. First, there is a crucial need of real

data on which to run experiments. Simulations can be insightful but their results are

meaningless without real data to run on. In particular, we would like to create a 20x

sparse-dense dataset with a full dense red channel and a very sparse green channel

containing one or very few neurons. This dataset would be used for single cell recon-

struction first, and the generated labels would then be used to attempt sparse-dense

learning. Secondly, there is still work to be done in improving Flood filling networks,

and the current state of the art in image segmentation. In particular, we would like to

further investigate the use of RNA bar-codes, and determine if a fully unsupervised

approach is feasible or, alternatively, if using only the bar-codes as labeled data would

be sufficient to produce robust segmentations based on other unsupervised learning

methods such as variational autoencoders, or generative adversarial networks [14, 8].

46

Appendix A

SimExM Parameters

Table A.1: Simulation Parameter List

Labeling Parameter Unit Range
Labeling density Percentage 0 - 1
Probability of infection Probability 0 - 1
Antibody amplification Dimensionless 1 - ∞
Fluorophore noise Percentage 0 - 1
Fluorophores Fluorophore object From list

Expansion Parameter Unit Range
Factor Dimensionless 1.0 - ∞
Optics Parameter Unit Range
Laser wavelengths Nanometers 300 - 800
Laser powers MilliWatts 40 - 60
Laser percentages Percentage 0- 100
Filters Nanometers 300 - 800
Baseline noise Percentage 0 - 100
Exposure time Seconds 0 - ∞
Numerical aperture Dimensionless 0 - 2.0
Refractory index Dimensionless 1.0 - 2.0
Objective efficiency Percentage 0 - 1.0
Detector efficiency Percentage 0 - 1.0
Focal plane depth Nanometers 300 - 800
Objective factor Dimensionless 1 - 100
Pixel size Nanometers 1 - ∞
Pinhole Radius Micrometers 0 - ∞

47

Table A.2: Simulation stacks parameters. Bold font highlights the parameters that
were varied in the experiments.

Labeling Parameter Unit Value
Labeling density Percentage 0.1, 0.5, 1.0
Probability of infection Probability 1.0
Antibody amplification Dimensionless 10.0
Fluorophore noise Percentage 0.4
Fluorophores Fluorophore object ATTO488, ATTO550, ATT0700

Expansion Parameter Unit Value
Factor Dimensionless 4, 10, 20

Optics Parameter Unit Value
Laser wavelengths Nanometers 488, 550, 700
Laser powers MilliWatts 50
Laser percentages Percentage 0.25
Filters Nanometers [438, 538], [500, 600], [650, 750]
Baseline noise Percentage 100
Exposure time Seconds 0.1
Numerical aperture Dimensionless 1.15
Refractory index Dimensionless 1.33
Objective efficiency Percentage 0.8
Detector efficiency Percentage 0.6
Focal plane depth Nanometers 500
Objective factor Dimensionless 40
Pixel size Nanometers 6500
Pinhole Radius Micrometers 0.5

48

Bibliography

[1] I Arganda-Carreras, HS Seung, A Vishwanathan, and D Berger. 3d segmentation
of neurites in em images challenge–isbi 2013, 2013.

[2] Dawen Cai, Kimberly B Cohen, Tuanlian Luo, Jeff W Lichtman, and Joshua R
Sanes. Improved tools for the brainbow toolbox. Nat Meth, 10(6):540–547, 06
2013.

[3] Jae-Byum Chang, Fei Chen, Young-Gyu Yoon, Erica E Jung, Hazen Babcock,
Jeong Seuk Kang, Shoh Asano, Ho-Jun Suk, Nikita Pak, Paul W Tillberg, et al.
Iterative expansion microscopy. Nature Methods, 2017.

[4] Fei Chen, Paul W. Tillberg, and Edward S. Boyden. Expansion microscopy.
Science, 347(6221):543–548, 2015.

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. Semantic image segmentation with deep convolutional nets and
fully connected crfs. arXiv preprint arXiv:1412.7062, 2014.

[6] Dan Ciresan, Alessandro Giusti, Luca M Gambardella, and Jürgen Schmidhu-
ber. Deep neural networks segment neuronal membranes in electron microscopy
images. In Advances in neural information processing systems, pages 2843–2851,
2012.

[7] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Aistats, volume 9, pages 249–256, 2010.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversar-
ial nets. In Advances in neural information processing systems, pages 2672–2680,
2014.

[9] Moritz Helmstaedter, Kevin L Briggman, and Winfried Denk. High-accuracy
neurite reconstruction for high-throughput neuroanatomy. Nat Neurosci,
14(8):1081–1088, 08 2011.

[10] Janelia Group, John Hopkins University.

49

[11] Micha l Januszewski, Jeremy Maitin-Shepard, Peter Li, Jörgen Kornfeld,
Winfried Denk, and Viren Jain. Flood-filling networks. arXiv preprint
arXiv:1611.00421, 2016.

[12] Narayanan Kasthuri, Kenneth Jeffrey Hayworth, Daniel Raimund Berger,
Richard Lee Schalek, Jos Angel Conchello, Seymour Knowles-Barley, Dongil Lee,
Amelio Vzquez-Reina, Verena Kaynig, Thouis Raymond Jones, Mike Roberts,
Josh Lyskowski Morgan, Juan Carlos Tapia, H. Sebastian Seung, William Gray
Roncal, Joshua Tzvi Vogelstein, Randal Burns, Daniel Lewis Sussman, Carey El-
din Priebe, Hanspeter Pfister, and Jeff William Lichtman. Saturated reconstruc-
tion of a volume of neocortex. Cell, 162(3):648 – 661, 2015.

[13] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[14] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[15] Kisuk Lee, Aleksandar Zlateski, Vishwanathan Ashwin, and H Sebastian Seung.
Recursive training of 2d-3d convolutional networks for neuronal boundary predic-
tion. In Advances in Neural Information Processing Systems, pages 3573–3581,
2015.

[16] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

[17] Adam H Marblestone, Evan R Daugharthy, Reza Kalhor, Ian D Peikon, Justus M
Kebschull, Seth L Shipman, Yuriy Mishchenko, David A Dalrymple, Bradley M
Zamft, Konrad P Kording, et al. Conneconomics: the economics of large-scale
neural connectomics. Biorxiv, page 001214, 2013.

[18] Adam H Marblestone, Evan R Daugharthy, Reza Kalhor, Ian D Peikon, Justus M
Kebschull, Seth L Shipman, Yuriy Mishchenko, Je Hyuk Lee, Konrad P Kording,
Edward S Boyden, et al. Rosetta brains: A strategy for molecularly-annotated
connectomics. arXiv preprint arXiv:1404.5103, 2014.

[19] Yuriy Mishchenko. Automation of 3d reconstruction of neural tissue from large
volume of conventional serial section transmission electron micrographs. Journal
of Neuroscience Methods, 176(2):276 – 289, 2009.

[20] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution
network for semantic segmentation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1520–1528, 2015.

[21] Jeffrey M. Perkel. Life science technologies: This is your brain: Mapping the
connectome. Science, 339(6117):350–352, 2013.

50

[22] B. Richards and E. Wolf. Electromagnetic diffraction in optical systems. ii.
structure of the image field in an aplanatic system. 253(1274):358–379, 1959.

[23] S. Seung. Connectome: How the Brain’s Wiring Makes Us Who We Are.
Houghton Mifflin Harcourt, 2012.

51

