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Abstract

The BigDAWG polystore database system aims to address workloads dealing with
large, heterogeneous datasets. The need for such a system is motivated by an in-
crease in Big Data applications dealing with disparate types of data, from large scale
analytics to realtime data streams to text-based records, each suited for different
storage engines. These applications often perform cross-engine queries on correlated
data, resulting in complex query planning, data migration, and execution. One such
application is a medical application built by the Intel Science and Technology Center
(ISTC) on data collected from an intensive care unit (ICU). This thesis presents work
done to add support for two commonly used database engines, Vertica and MySQL,
to the BigDAWG system, as well as results and analysis from performance evaluation
of the system using the TPC-H benchmark.
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Chapter 1

Introduction

In the past decade, there has been a lot of development of database management sys-

tems specialized for narrower use cases, for example, relational column stores for data

warehousing, in memory SQL systems for online transaction processing (OLTP) work-

loads, and NoSQL database engines for flexible data formats such as JSON, exempli-

fying the philosophy that “no one size fits all" for database management systems[18].

These specialized engines provide a performance benefit of several orders of magni-

tude compared to a single DBMS that tries to function as a catch-all for disparate

types of data.

As a case study of an application with a complex workload, we consider a hospi-

tal application designed to handle the MIMIC II dataset[15], a publically available

dataset containing 26,000 ICU admissions at the Beth Israel Deaconess Hospital in

Boston. The dataset contains patient metadata, free-form text data (notes taken

by medical professionals), semi-structured data (lab results and prescriptions), and

waveform data (measurements on vitals like pulse and heartrate). Due to the variety

in data sources, the application must rely on multiple different data access methods;

for instance, an administrator might want to query the number of patients currently

in the hospital with standard SQL, compute complex analytics on patient waveform

data, and even perform text search on patient profiles for free-form data.

The Big Data Analytics Working Group (BigDAWG) system [7][9] has been de-

veloped in an effort to provide a unified interface for these disparate data models,
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database engines and programming models. The current reference implementation

developed around the MIMIC II dataset uses SciDB[17] for time-series data, Apache

Accumulo[1] for freeform text notes, and Postgres[19] for clinical data. Complex

datasets with correlated data will often require support for cross-engine queries. Some

examples of such queries in the reference implementation include querying both SciDB

and Postgres to locate patients with irregular heart rhythms, and querying Accumulo

and Postgres to find doctor’s notes to find doctor’s notes associated with a particular

prescription drug. The BigDAWG system provides the functionality to develop query

plans, execute queries across database engines, and return the results to the user.

Currently, the BigDAWG system only supports a limited subset of engines in-

cluding Postgres, SciDB, and Accumulo. However, there are myriad other database

engines currently available, each suited for different use cases. I worked on making

the BigDAWG polystore system compatible with two widely used database engines:

MySQL and Vertica. Both database engines use the same relational interface as

Postgres, so I was able to build on existing components to integrate them.

The goal of this piece of my research is to serve as a model for future same-

island database integrations. Currently, the engines that are currently supported by

BigDAWG were all integrated by other researchers on this project. However, it is not

feasible to anticipate every database engine that users want support for. This work

provides guidelines for how a user should modify BigDAWG to be compatible with a

new database engine of their choice under the relational island.

Another goal is to analyze BigDAWG’s performance for queries across multiple

different database engines. While there has been some preliminary evaluation of the

reference implementation on the MIMIC II dataset[10], the benchmarks were basic

and use a setup with only two instances of PostgreSQL, which is not very interesting.

In adding support for additional engines, I aimed to verify BigDAWG’s premise: by

leveraging the relative strengths of different database engines, certain queries will

perform better under BigDAWG than on a single database engine. I detail results

and analysis of performance testing on the BigDAWG system later in this report.

The rest of this thesis is organized as follows. In Chapter 2, I describe the Big-
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DAWG architecture and modules. In Chapter 3, I detail the process for integrating

new database engines into the BigDAWG system. In Chapter 4, I discuss the perfor-

mance experiments I conducted and their associated results and analysis. In Chapter

5, I discuss future areas of work and potential improvements to the BigDAWG system

based on my results. In Chapter 6, I conclude.
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Chapter 2

BigDAWG architecture

In this chapter, I describe the design and architecture of the BigDAWG system. The

BigDAWG system[10] is comprised of four layers: database engines, islands that pro-

vide data model abstraction, a middleware and API, and applications. The database

engine layer consists of possibly many distinct database and storage engines, each with

their own relative strengths for handling different workloads. The island layer pro-

vides a user-facing abstraction that informs the underlying engines how to interpret

part of a query. There can be multiple database engines under a particular island, and

a particular database engine can have differing functionality under multiple islands.

2.1 BigDAWG islands

The islands of information are another important part of the BigDAWG polystore

system. The islands serve as an abstraction to the client, each with its own query lan-

guage, data model, and connectors, or shims, to each underlying database engine[16].

In this way, clients do not need to know anything about the underlying engines, and

just need to use the common BigDAWG syntax to issue queries. The client can

also instruct BigDAWG to cast data from one island to another, but that is outside

the scope of this thesis. I focus primarily on workloads that deal with different en-

gines under the relational island, which implements a subset of the Structured Query

Language[12] specification.
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Figure 2-1: Data flow across BigDAWG middleware architecture.

2.2 BigDAWG middleware

My thesis primarily pertains to the BigDAWG middleware layer, which receives client

requests and interacts with the underlying database engines themselves. It is com-

prised of four main modules: The query planning module (Planner), the query ex-

ecution module (Executor), the performance monitoring module (Monitor), and the

data migration module (Migrator), as shown in Figure 2-1.

2.2.1 Planner

The Planner parses incoming client queries and constructing logical query plans.

These plans are in the form of dependency trees, where each node represents a task

such as querying a particular database engine or performing a join. The root node

in the plan represents the computation of the final query result. The planner also

interfaces with the performance monitor to get historical performance data for certain

queries and data migrations to help determine the optimal query plan for a particular

query. Based on the response from the Monitor, the planner selects the best candidate

query plan and dispatches it to the Executor to be executed.

For queries targeting the relational island, the Planner sends the query to a ded-

icated Postgres instance that contains all the table schemas to generate a parse tree

for the query. The Planner then uses the parse tree returned by Postgres to generate a
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tree of dependencies, in which nodes may be combined or re-ordered for optimization

purposes.

2.2.2 Monitor

The Monitor[5] records performance information for past queries, which is then used

to aid the planner in selecting query plans for future similar queries. It uses a

signature-based scheme to determine how similar two queries are. These signatures

are comprised of three main components: a tree representing the structure of the

query (sig-1), a set of the objects referenced and the predicates involved (sig-2), and

a set of the constants in the query (sig-3). When the Monitor receives query plan

from the Planner, it computes a signature for it and compares it to previous queries

it has recorded. If it determines that the queries are similar enough, then it returns

historical performance data back to the Planner. Otherwise, it logs the query as new

information.

2.2.3 Executor

The Executor[11] determines the best way to physically execute the query plan pro-

vided by the Planner. It starts by executing the leaf nodes of the plan, and attempts

to execute as many nodes in parallel as possible, moving up the tree as dependen-

cies are satisfied. The Executor uses the Migrator module to move records from

intermediate queries from one database engine to another in the case of cross-engine

queries.

2.2.4 Migrator

The Migrator moves data between database engines in BigDAWG.The format used

for most migrations between pairs of databases is in CSV format. The advantage

to using CSV is that most database systems provide support exporting and loading

data in this format. Some database engines, such as Postgres, Vertica and SciDB,

also support a binary data format. Migration using binary data requires an explicit
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mapping between datatypes of the two participating engines, and is not as widely

supported by database systems as CSV, but is much more performant. The Migrator

also reports performance metrics from each migration to the Monitor so that they

can be used to evaluate future query plans.
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Chapter 3

Integrating new Database Engines

into BigDAWG

One of the main components of this thesis is the addition of support for two database

engines, MySQL and Vertica, to the BigDAWG system. This chapter discusses the

choice of the two engines, as well as details for how I implemented support for these

engines.

3.1 Database engines used

MySQL[3] is an open-source relational database, commonly used in industry by com-

panies such as Facebook, Twitter, and Ebay. It was a natural choice to start by

integrating MySQL support into BigDAWG, as it implements a subset of the SQL

standard, and is similar to Postgres in its architecture, and is a popularly used alter-

native due to its speed.

Vertica[13] is the commerical version of the C-Store research prototype[20]. While

it shares the same relational interface as MySQL and Postgres, its architecture is

fundamentally different in that records are stored as projections, or sorted subsets of

the attributes of a table, rather than tuples of attributes. This allows Vertica to use a

variety of encoding schemes on the data to significantly improve space efficiency and

performance for analytic workloads.

21



Figure 3-1: A visualization of the BigDAWG architecture, including MySQL and
Vertica.

I chose both of these engines because of their support for the SQL standard, which

is a superset of the operations handled by the relational island.

3.2 Implementation details

In this section, I detail the implementation of a few main components, enumerated

below, for the BigDAWG system to successfully interact with the database engines.

The BigDAWG middleware component is primarily written in Java, so this section

will be described in the context of the language.

3.2.1 Connection to the database

When adding a new engine, one must implement a few interfaces that tell BigDAWG

how to interact with the database. Primarily, one must implement the DBHandler

interface, which is comprised of common operations that are required for BigDAWG to

execute queries on the underlying engines. Both Vertica and MySQL have associated
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JDBC[14] drivers, which allow developers to connect to each of these engines in Java-

based programs.

Since most database engines each have their own unique sets of supported oper-

ations and nuances in syntax, it is necessary to let BigDAWG know how to perform

operations such as creating tables to store intermediate query results, dropping tables

to remove these results when it is done performing a query plan, and importing and

exporting data for migration.

3.2.2 Query generation

BigDAWG must also know how to translate between its own syntax to the underlying

syntax for each engine it supports. This is done through the SQLQueryGenerator

class, which parses the client query and converts it into a version that can be executed

directly on the underlying database engine. Since Vertica shares the same SQL parser

as Postgres, it was able to use the existing class without any changes. MySQL,

however, differs from Postgres in its syntax for certain operations such as SELECT

INTO, and thus it is necessary to modify the QueryGenerator to take this into account

when generating queries to be performed on MySQL.

3.2.3 Migration

When a client issues a query involving a cross-engine join, it is necessary to move

tuples from one engine to another in order to compute the final result. To do so, I

implemented Migrator classes between Postgres and each of the two engines. Each

Migrator class facilitates the transfer of data in a single direction between a pair of

database engines. Because binary data loading requires implementing a module that

will translate data from the source database’s binary format to that of the target

database, I chose to export and load data in CSV format, which is the most widely

used format by database systems for importing and exporting data and did not require

translation beyond the data type conversions in the schema. These Migrators are used

by the Executor when executing the query plan generated by the Planner.
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Currently, my implementation only supports two-way migration between Postgres

and Vertica, and Postgres and MySQL. BigDAWG is currently designed such that

for every ordered pair of databases, there is a unique Migrator class that performs

the migration, due to the specialized attributes of each database. The downside to

this design choice is that the number of Migrator classes scales quadratically with the

number of supported engines. In future iterations, we could generalize the migrator

component to reduce this overhead. Another possibility is a two-stage migration, in

which one engine, for example Postgres, serves as an intermediary between two other

databases, so the number of Migrators scales linearly instead of quadratically, at the

expense of increased migration execution time.

3.2.4 The BigDAWG catalog and schemas

Lastly, BigDAWG stores metadata about what database engines are available, and

what tables are located on which engine in a catalog database (we currently use

Postgres). It is necessary to insert metadata about each database engine into the

catalog so BigDAWG can connect to them to issue queries and knows what tables

exist. This metadata includes connection information (hostname, user, password,

port), the island or islands that the engine can be queried through, and the tables

located on that engine.

BigDAWG also stores schemas for each table in a separate database on the same

Postgres instance. These schemas are used by the Planner when constructing query

plans.
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Chapter 4

BigDAWG performance analysis

In this chapter, I discuss and analyze benchmark results and their implications going

forward with BigDAWG. First I cover the TPC-H benchmark, then I discuss the

experimental setup used, results from the experiments, and analysis of the results.

4.1 The TPC-H benchmark

TPC-H[4] is an industry standard decision support benchmark developed by the

Transaction Processing Performance Council (TPC) that models a an industry in-

volved with managing and distributing products worldwide. It has been widely used

in industry by database vendors as well as researchers to evaluate database systems.

The benchmark is comprised of a set of business-related analytical queries.

Ultimately, I decided to use queries from the TPC-H benchmark for evaluation

purposes. It seemed sufficiently generalizable to the BigDAWG system, and provides

a lot of built-in tools to aid users in generating queries and datasets. I did not follow

the strict TPC-H specification for how to run the tests, because it is mainly targeted

towards commerical database vendors running on high-end hardware. Furthermore,

only a subset of the queries were compatible with BigDAWG, and small modifications

needed to be made in order to execute a few of the remaining queries, as BigDAWG

does not fully support certain syntax such as ORDER BYs using aliases. A full list of

queries used can be found in Appendix A.
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Other benchmarks I considered include the TPC-C benchmark, another widely-

used benchmark developed by the TPC. However, TPC-C was inferior for my purposes

because it is both older than TPC-H and does not provide tools for data and query

generation. I also considered using the Yahoo! Cloud Serving Benchmark (YCSB),

which has been developed to evaluate “cloud OLTP" systems, such as BigTable,

PNUTS, Cassandra, or HBase, whose workload might differ from traditional work-

loads that are simulated by TPC-C[6]. Since it is designed with cloud serving systems

in mind, it ultimately did not seem like a good fit for our use case as it focused more

on evaluating scalability than speed.

4.2 Experimental Setup

The following performance tests were run on a machine running Ubuntu 14.04, with

64GB of RAM and 24 2GHz virtual processor cores. Each of the experiments was

conducted using an installation of the BigDAWG middleware consisting of virtualized

instances of the relevant database engines using Docker[2]. The databases used were

not tuned for performance in any particular way. For simplicity, I use a single-node

installation of Vertica.

I generated data using the tpchgen tool, with a scaling factors of 10 and 100,

resuling in 10GB and 100GB of data, respectively. The relative size of each of the

tables is shown in Table B.1 and Table B.2.

The full dataset was loaded into each of the database engines, with the catalog

modified accordingly to inform BigDAWG what locations to use for each table for

each experiment. I primarily chose to focus on Postgres and Vertica because Postgres

was used in the initial BigDAWG development process, and Vertica differs much more

from Postgres compared to MySQL in its architecture.
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4.3 Single-engine queries through BigDAWG

In this section, I discuss the results of evaluating the performance of queries from the

TPC-H benchmark when querying a single database engine directly, or through the

BigDAWG middleware. The results show that the overhead from querying through

BigDAWG is minimal, and may even improve performance in certain cases.

Figures 4-1 and 4-2 show the relative performance of the selected TPC-H queries

on a single instance of Postgres and a single instance of Vertica, respectively. Since

Postgres performed worse than Vertica on the workload, the overhead incurred by

using BigDAWG was comparatively smaller, typically adding less than 1 percent to

the overall runtime, as shown in Figure 4-1. For Vertica, the overhead added an extra

5 to 10 percent in overall runtime on the 10GB dataset, because Vertica performed

significantly better overall. The overhead incurred by querying through BigDAWG

remains relatively constant with respect to the database engine used, as the overhead

shrinks proportionally when the dataset was increased to 100GB in Figure 4-2. The

underlying data can be found in Appendix B.

We can also see that some queries were actually executed faster when run through

BigDAWG than when Vertica was queried directly. Because TPC-H aims to emulate

queries used in business analysis of an ad-hoc nature, there are portions of the queries

that are randomized, such as the date ranges used. For example, Query 5 (as seen

in A.3), which shows the most dramatic improvement under BigDAWG for Vertica,

adds an interval of 1 year to the date range to query over. During the parsing

process, BigDAWG rewrites the original query to compute the resulting date before

executing the query on Vertica directly, which actually results in a shorter execution

time overall.

4.4 Cross-engine queries through BigDAWG

While BigDAWG performs well with a single engine, we are primarily interested in

how BigDAWG performs in a multi-engine scenario. I instrumented the middleware
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Figure 4-1: TPC-H query performance for a single Postgres instance for 10GB and
100GB of data, respectively, with and without BigDAWG.
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Figure 4-2: TPC-H query performance for a single Vertica instance for 10GB and
100GB of data, respectively, with and without BigDAWG.
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code so that I could get a breakdown of how much time each stage of the total

BigDAWG execution time takes.

In this section, I illustrate the relative performance of three TPC-H queries on

the 100GB dataset in three separate configurations: on a single Postgres instance,

on a single Vertica instance, and a cross-engine configuration where relevant tables

are split between Postgres and Vertica, with the best-performing table assignment

used. I also compute the time it would take with the same split-table configuration,

except instead of using BigDAWG, I copy the entirety of the relevant tables to one

of the engines, and then compute the query on the target engine, emulating how a

cross-engine query would work without the use of BigDAWG.

Some results have been omitted from the following figures to preserve their scaling,

but the complete set of data can be found in Appendix B.

4.4.1 TPC-H Query 14

TPC-H Query 14, which can be seen in A.6, computes the response to a promotion

like a tv advertisement campaign. This query did not have to be modified to be used

successfully on BigDAWG.

The primary execution stages for the query plan developed by the Planner were

roughly as follows:

1. Materialize the results of running a subquery on the lineitem table with the

lineitem-specific filters on Postgres

2. Materialize the results of running the subquery on the part table on Vertica

3. Migrate the resulting lineitem tuples (about 7.5 million) from Postgres to Ver-

tica

4. Perform a query joining the two intermediate results to produce the final result.

Figure 4-3 shows that the cross-engine configuration performed worse than both

Vertica but better than Postgres. It also shows that BigDAWG performs better than

the naive solution of migrating the entire part table to Postgres and executing the
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Figure 4-3: The breakdown of the BigDAWG execution time for TPC-H query 14
with the lineitem table on Postgres and the part table on Vertica.
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original query there by limiting the amount of data that needs to be transferred.

BigDAWG also significantly outperforms a migration of the entire lineitem table to

Vertica before execution of the query, as shown in Table B.12.

Although the query plan used seems reasonable, step 2 is unnecessary because

the executor essentially duplicates the entire part table into another temporary ta-

ble. This behavior would make sense in case the part table needs to be filtered and

migrated to another node, but in this case, it is already at its final destination. In

this case, the overall runtime was probably not affected because this subquery was

run concurrently with the Postgres query in step 1, which took a longer time to com-

plete. However, this may not always be the case, so modifying the query executor

to identify these unnecessary nodes would probably improve performance and reduce

computation overhead.

4.4.2 TPC-H Query 12

TPC-H Query 12, which can be seen in A.5, determines whether the choice of ship-

ping mode affects whether more parts in critical-priority orders are received by cus-

tomers after the commited date. The original query included and l_shipmode in

(SHIPMODE1, SHIPMODE2) as a clause in the filter, but BigDAWG does not yet sup-

port the in keyword, so the modified query computes its effect for all shipping modes.

The primary execution stages for the query plan developed by the Planner were

roughly as follows:

1. Materialize the results of running the subquery on the lineitem table with

lineitem-specific filters on Postgres

2. Materialize the results of running the subquery on the orders table on Vertica

3. Migrate the resulting lineitem tuples (about 10 million) from Postgres to Vertica

4. Perform a query joining the two intermediate results to produce the final result.

Figure 4-4 and Table B.11 show that the cross-engine configuration performed

worse than Vertica but better than Postgres. Since both the lineitem and orders tables
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Figure 4-4: The breakdown of the BigDAWG execution time for TPC-H query 12
with the lineitem table on Postgres and the orders table on Vertica.
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Figure 4-5: The breakdown of the BigDAWG execution time for TPC-H Query 3 with
the customers table on Postgres and the lineitem and orders tables on Vertica.

are the largest tables in the dataset, BigDAWG performs especially well compared to

the naive solution of migrating all tables to one engine before executing the query.

The execution plan used is very similar to that of query 14, and shares the same issue

of an unnecessary materialization of the entire orders table on Vertica. Similarly,

the longer runtime of the concurrently executed Postgres materialization masks the

negative effects, if any.
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4.4.3 TPC-H Query 3

TPC-H Query 3, which can be seen in A.2, is meant to return the 10 unshipped orders

with the highest value. However, BigDAWG does not yet support ordering by aliases,

so I removed ORDER BY revenue from the original generated query.

The primary execution stages for the query plan developed by the Planner were

roughly as follows:

1. Materialize the results of running the subquery on the orders table with the

customer-specific filter on Postgres

2. Materialize the results of running the subquery on the customer table with the

order-specific filter on Vertica

3. Materialize the results of running the subquery on the lineitem table with the

lineitem-specific filters on Vertica

4. Migrate the resulting customer tuples (about 3 million) from Postgres to Vertica

5. Materialize the results of joining the intermediate customers and orders tables

on Vertica.

6. Materialize the results of joining the intermediate lineitem and orders tables on

Vertica.

7. Compute the final result by joining the tuples from two intermediate join nodes

on Vertica.

As shown in Figure 4-5, the cross-engine setup did not perform well relative to

Postgres or Vertica. Because this query uses three tables rather than two, the query

plan and execution plan generated by BigDAWG includes more steps than the ones

used for Queries 12 and 14, with much more time spent on executing intermediate

queries.

While this query plan makes sense given the tree of dependencies, like those of

Queries 12 and 14, there are unnecessary materializations of the orders and lineitem

tables, the largest tables in the TPC-H dataset by far, as shown in Table B.2, taking

nearly 1000 seconds to perform.
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Furthermore, the intermediate joins in steps 5 and 6 probably do not need to be

explicitly materialized, as all the data needed is already colocated on Vertica by that

point. Deferring the execution of the three-table computation to the Vertica query

optimizer would probably also improve performance. In fact, the naive solution of

migrating the entire customers table, which is comparatively small, to Vertica and

then executing the entire query directly on Vertica outperforms BigDAWG by a factor

of about 15, as shown in Table B.10.

4.4.4 Discussion

These results show that for some queries, executing a query through BigDAWG with

two engines can outperform a single engine. The BigDAWG system itself does not

add too much overhead, with query execution on the databases themselves taking

the majority of the execution time. The overhead incurred by the planning stage

remains constant even as the size of the dataset increases. It is unsurprising that

Vertica performs better on the TPC-H query set, which is primarily comprised of

analytical queries, which Vertica is optimized for. The primary gains in performance

over Postgres are likely from performing the final analytical computations, such as

aggregates using SUM, on Vertica, which significantly outperforms Postgres for these

types of queries, as seen in Section 4.3.

These results also show that by identifying and migrating only the tuples that

will be needed for the query, BigDAWG outperforms the naive solution of migrating

entire tables to one destination engine and executing the query there. Large tables,

such as the lineitem table in the TPC-H dataset, can be costly to migrate. For every

incoming query, the Planner determines what objects are necessary to perform the

query, and then generates a query plan based on those dependencies. If the query

involves filtering, it can limit the tuples migrated to only those that satisfy the filter

condition, reducing the amount of data that must be transmitted between engines.

BigDAWG does this dependency checking for its users so that they do not have to

know about the distribution of data among the underlying engines or the optimal

set of tuples to move, which is especially convenient in workloads containing ad-hoc
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queries, in which the data that should be moved may change from query to query.

Thus, queries that involve selective filters should perform well on BigDAWG.

Despite these results, the cross-engine BigDAWG configuration does not perform

as well as it could be. One major factor is that the nodes of the query plan tree are

generated based on an initial single-engine parse tree from a Postgres instance. Since

Postgres is a row store, it does not incur much extra cost by fetching full rows even if

some columns are not needed. In my experimentation, the Postgres query optimizer

typically performed projections at the top level of the query tree, only waiting until

the end of the execution to reduce the number of columns.

Conversely, since Vertica is a column store, it is much more expensive to fetch

extraneous columns, which can have large performance implications, especially as seen

in the execution of TPC-H query 3 in 4.4.3. Furthermore, retaining unused columns in

intermediate results caused extra data to be transmitted during the migration step,

also increasing runtime as well as compute and bandwidth usage. To address this

problem, the Planner should be modified to identify which columns are unnecessary

to compute the final query result, and remove those columns from intermediate nodes

in the query plans it produces.

Another problem is the unnecessary materialization of intermediate nodes during

the execution of query. This behavior makes sense if the intermediate result is to

be migrated to another database engine later, but the query executor seems to do

so indiscriminately, even if the table being materialized is already present on its

destination engine. This results in extraneous computation and disk space usage, as

well as an increase in execution time. This problem does not arise in single-engine

configurations, where the entire query is propagated to the engine itself to be executed.

The Planner and Executor should identify nodes that involve computing intermediates

that are already on their terminal destination engine, and instead combine them with

the final query that is executed directly on the underlying database engine. Further

improvements are discussed in more detail in Chapter 5.
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Chapter 5

Future work

In this chapter, I discuss a few areas where the BigDAWG system could be improved

based on my research.

5.1 Streamlining the process for adding new engines

The process for adding support for new engines to BigDAWG could be streamlined

and better defined. This is important as we open usage of the BigDAWG system to

new users, who may want to use currently unsupported databases. Currently, there

are a large number of disparate classes and components that need to be implemented

and modified in order for BigDAWG to successfully interact with a new database

engine. Refactoring the system by defining more specific interfaces that explicitly

makes clear what functionality should be implemented will make the process easier

moving forward.

5.2 Generalizing the migration process

Currently, the migration between a pair of database engines requires the implemen-

tation of six classes: two Migrators, two Export classes, and two Load classes. As

the number of engines that BigDAWG supports increases, the number of these classes

scales quadratically under the current design. Because the primary format for im-
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porting and exporting data is CSV, it should be possible to refactor the Migrator

components to generalize to most databases, rather than writing new unique classes

for each one.

5.3 Smarter query planning and execution

When the Planner constructs candidate plans for a particular query on the relational

island, it currently parses the parse tree returned by issuing EXPLAIN statement for

the client query on a single Postgres instance containing all the table schemas to

determine the dependencies in the query plan. Due to the initial dependence on the

Postgres query optimizer, the query trees that the Planner constructs may be far from

optimal for databases with divergent architectures from Postgres. For example, while

Postgres does not does not lose much efficiency by fetching full rows rather than the

projections needed to compute a query, column stores such as Vertica incur a large

performance penalty. Furthermore, preserving these unused columns may cause more

bandwidth and computation power to be used in a migration, because extraneous data

is transmitted. Identifying unused columns and removing them from intermediate

queries during the planning stage should improve performance significantly.

Another problem I identified is that in the course of executing cross-engine queries,

intermediate results tend to get unnecessarily materialized, as discussed in 4.4. Mod-

ifying the Executor to identify nodes that are already present on their destination

engines can improve runtime and reduce compute and disk usage. The Planner and

Executor should also aim to defer query optimization to the underlying destination

engines if possible, because they may have vastly differing architectures from Postgres,

and thus optimization strategies used by Postgres may not perform as well as native

query optimization. For example, the Planner could condense colocated nodes in a

query plan into a single node to be executed as one single query and take advantage

of the target engine’s query optimization.
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5.4 Considering a larger set of query plans

The set of query plans that the Planner considers is currently limited based on where

tables are located. For example, if a table is located on a Postgres instance, the

Planner will only consider a query plan that executes solely on that database engine.

However, Vertica vastly outperforms Postgres in analytical queries using aggregates

such as SUM or COUNT, so such a query may be executed faster by simply migrating

relevant tuples to Vertica or another analytics-based database and computing the

final result there, even if none of the data was originally present on that engine.

Another possibility would be to supplement the BigDAWG API to allow the user

to have more control over the query execution plan; an example would be letting the

user specify that analytical queries on data stored in Postgres should be performed

in Vertica. While there exists functionality to tell BigDAWG to move data across

engines using a bdcast, this is only available for inter-island queries.

In this way, we can further leverage the relative strengths of the database engines

available through BigDAWG.

5.5 Migration using the binary data transformer for

Postgres to Vertica

The current implementation only supports CSV-based migration for Postgres and

Vertica. However, CSV data loading can be a highly CPU intensive process due to

parsing and deserialization, and it is likely that we can achieve a significant speedup by

using a binary data format for importing and exporting data[8]. BigDAWG currently

uses a module written in C++ to perform transformation of binary data formats for

migrations between Postgres and SciDB.

Using this module to perform conversions from the binary data formats of Postgres

to that of Vertica will allow us to take advantage of Vertica’s binary data loading

capabilities. Unfortunately, Vertica does not support binary export, so we will only
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be able to improve execution times for Postgres-to-Vertica migrations. Even though

the bulk of the execution time currently comes from executing queries directly on

the underlying database engines, implementing this change should result in a decent

performance improvement.

5.6 Further evaluation for inter-island queries

My thesis focused primarily on evaluating the BigDAWG system for intra-island cross-

engine queries using the TPC-H benchmark on the relational island. Inter-island

queries require explicit migration instructions and are not as easily constructed, but

a systematic evaluation may demonstrate the power of the BigDAWG system even

better.
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Chapter 6

Conclusion

In this thesis, I have described the process for adding support for new database

engines to the relational island in the BigDAWG system. I also presented results

from a performance evaluation of the system using the TPC-H benchmark.

The BigDAWG system performs well in a single-engine scenario, even outper-

forming native queries to Postgres and Vertica in certain cases. There is minimal

planning overhead, which remains constant as the size of the dataset increases. For

cross-engine queries, BigDAWG’s performance seems correlated with the complexity

of the query plan, but seems to achieve reasonable results for queries involving two

tables located on separate engines, with multiple queries showing improved perfor-

mance with a configuration using both Postgres and Vertica when compared to a

single Postgres instance alone. Compared to the naive solution for the two-engine

scenario of migrating all tables to one of the engines and computing the final result

there, BigDAWG also shows a marked improvement by identifying and migrating only

the data that is necessary to compute the final result.

The experiments detailed in this report use query runtime as a primary measure

of performance; while the results do not show the multi-engine configuration out-

performing Vertica alone, it may still be advantageous to use BigDAWG for reasons

outside the scope of this thesis. BigDAWG does not yet support insertions, but one

area where Postgres could outperform Vertica is with transactional workloads, char-

acterized by a large number of small transactions (usually updates or insertions) in a
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short period of time. In scenario with both transactional and analytic workloads on

the same dataset, we can use the relative strengths of each database engine to achieve

better performance overall than with any single engine.

Overall, the BigDAWG system has shown promising results in leveraging the

strengths of its component database engines. From my research, I have identified

certain weaknesses in the current design. Addressing these weaknesses should further

improve usability and performance.
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Appendix A

TPCH Queries Used

A.1 Query 1

select

l_returnflag ,

l_linestatus ,

sum (l_quantity ) as sum_qty ,

sum (l_extendedprice) as sum_base_price ,

sum (l_extendedprice * (1 - l_discount )) as sum_disc_price ,

sum (l_extendedprice * (1 - l_discount ) * (1 + l_tax )) as sum_charge ,

avg (l_quantity ) as avg_qty ,

avg (l_extendedprice) as avg_price ,

avg (l_discount ) as avg_disc ,

count (*) as count_order

from

lineitem

where

l_shipdate <= date ’1998 -12 -01 ’ - interval ’65’ day

group by

l_returnflag ,

l_linestatus

order by

l_returnflag ,

l_linestatus

LIMIT 1;

A.2 Query 3 (ORDER BY removed)
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select

l_orderkey ,

sum (l_extendedprice * (1 - l_discount )) as revenue ,

o_orderdate ,

o_shippriority

from

customer ,

orders ,

lineitem

where

c_mktsegment = ’MACHINERY ’

and c_custkey = o_custkey

and l_orderkey = o_orderkey

and o_orderdate < date ’1995 -03 -01 ’

and l_shipdate > date ’1995 -03 -01 ’

group by

l_orderkey ,

o_orderdate ,

o_shippriority

LIMIT 10;

A.3 Query 5 (ORDER BY removed)

select

n_name ,

sum (l_extendedprice * (1 - l_discount )) as revenue

from

customer ,

orders ,

lineitem ,

supplier ,

nation ,

region

where

c_custkey = o_custkey

and l_orderkey = o_orderkey

and l_suppkey = s_suppkey

and c_nationkey = s_nationkey

and s_nationkey = n_nationkey

and n_regionkey = r_regionkey

and r_name = ’MIDDLE ␣EAST’

and o_orderdate >= date ’1993 -01 -01 ’

and o_orderdate < date ’1993 -01 -01 ’ + interval ’1’ year

group by
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n_name

LIMIT 1;

A.4 Query 6

select

sum (l_extendedprice * l_discount ) as revenue

from

lineitem

where

l_shipdate >= date ’1993 -01 -01 ’

and l_shipdate < date ’1993 -01 -01 ’ + interval ’1’ year

and l_discount between 0.03 - 0.01 and 0.03 + 0.01

and l_quantity < 25

LIMIT 1;

A.5 Query 12 (IN filter removed)

select

l_shipmode ,

sum (case

when o_orderpriority = ’1-URGENT ’

or o_orderpriority = ’2-HIGH’

then 1

else 0

end ) as high_line_count ,

sum (case

when o_orderpriority <> ’1- URGENT ’

and o_orderpriority <> ’2-HIGH’

then 1

else 0

end ) as low_line_count

from

orders ,

lineitem

where

o_orderkey = l_orderkey

and l_commitdate < l_receiptdate

and l_shipdate < l_commitdate

and l_receiptdate >= date ’1994 -01 -01 ’

and l_receiptdate < date ’1994 -01 -01 ’ + interval ’1’ year

group by

l_shipmode
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order by

l_shipmode

LIMIT 1;

A.6 Query 14

select

100.00 * sum(case

when p_type like ’PROMO %’

then l_extendedprice * (1 - l_discount )

else 0

end ) / sum(l_extendedprice * (1 - l_discount )) as promo_revenue

from

lineitem ,

part

where

l_partkey = p_partkey

and l_shipdate >= date ’1994 -11 -01 ’

and l_shipdate < date ’1994 -11 -01 ’ + interval ’1’ month

LIMIT 1;

A.7 Query 18 (ORDER BY removed)

select

c_name ,

c_custkey ,

o_orderkey ,

o_orderdate ,

o_totalprice ,

sum (l_quantity )

from

customer ,

orders ,

lineitem

where

o_orderkey in (

select

l_orderkey

from

lineitem

group by

l_orderkey having

sum( l_quantity ) > 315
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)

and c_custkey = o_custkey

and o_orderkey = l_orderkey

group by

c_name ,

c_custkey ,

o_orderkey ,

o_orderdate ,

o_totalprice

order by

o_totalprice desc ,

o_orderdate

LIMIT 100;
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Appendix B

TPCH Data

Table Number of Tuples Size (bytes)
lineitem 59986052 7.2G
orders 15000000 1.7G
partsupp 8000000 1.2G
part 2000000 231M
customer 1500000 233M
supplier 100000 14M
nation 25 2.2K
region 5 384

Table B.1: Size of tables for generated TPC-H dataset for 10GB of data.
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Table Number of Tuples Size (bytes)
lineitem 600037902 74G
orders 150000000 17G
partsupp 80000000 12G
part 20000000 2.3G
customer 15000000 2.3G
supplier 1000000 136M
nation 25 2.2K
region 5 384

Table B.2: Size of tables for generated TPC-H dataset for 100GB of data.

Configuration Q1 Q3 Q5 Q6 Q12 Q14 Q18

Native 189.8771 45.5855 18.4707 17.9423 34.6521 10.7365 87.9068

BigDAWG Total 197.9404 45.1839 18.4158 17.686 35.0654 10.5532 86.2032

BigDAWG Execution 197.6742 45.0731 18.2619 17.5991 34.8483 10.4782 86.06

Table B.3: Runtime (in s) of running TPCH queries with 10GB data on Postgres.

Configuration Q1 Q3 Q5 Q6 Q12 Q14 Q18

Native 2.9266 2.6009 3.5059 1.0500 4.3671 1.2874 3.1099

BigDAWG Total 3.0771 2.7262 2.0775 1.0798 4.513 1.3458 3.2638

BigDAWG Execution 2.9063 2.6056 1.9129 0.9864 4.3693 1.2497 3.1338

Table B.4: Runtime (in s) of running TPCH queries with 10GB data on Vertica

Configuration Q1 Q3 Q5 Q6 Q12 Q14 Q18

Native 2141.917 1142.892 1458.791 614.992 1329.813 772.902 3648.222

BigDAWG Total 2132.725 1163.713 1412.64 602.095 1300.951 753.526 3687.175

BigDAWG Execution 2132.378 1163.493 1412.378 601.913 1300.747 753.321 3686.961

Table B.5: Runtime (in s) of running TPCH queries with 100GB data on Postgres.

Configuration Q1 Q3 Q5 Q6 Q12 Q14 Q18

Native 24.908 19.446 16.900 8.449 45.083 15.630 55.535

BigDAWG Total 24.523 17.147 32.341 8.139 42.936 11.309 51.307

BigDAWG Execution 24.783 19.326 16.685 8.326 44.943 15.516 55.371

Table B.6: Runtime (in s) of running TPCH queries with 100GB data on Vertica

Configuration Planning Execution Migration Cleanup Total Tuples Migrated

BigDAWG 0.24156 72.790 0.2634 0.577 74.7042 ∼300,000

Migrate to Postgres - 45.5855 840.098 - 885.683 74,986,052

Migrate to Vertica - 2.6009 5.2693 - 7.8702 1,500,000

Table B.7: Query execution breakdown (in s) for TPCH query 3 with 10GB data
with the lineitem and orders tables on Vertica and the customer table on Postgres.
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Configuration Planning Execution Migration Cleanup Total Tuples Migrated

BigDAWG 0.1976 28.2748 0.8573 0.2384 29.1535 ∼1,000,000

Migrate to Postgres - 34.6521 113.7116 - 148.3637 15,000,000

Migrate to Vertica - 4.3671 399.7762 - 404.1433 59,986,052

Table B.8: Query execution breakdown (in s) for TPCH query 12 with 10GB data
with the orders table on Vertica and the lineitem table on Postgres.

Configuration Planning Execution Migration Cleanup Total Tuples Migrated

BigDAWG 0.1143 10.2639 0.9634 0.0677 11.4095 ∼750,000

Migrate to Postgres - 10.7365 17.8245 - 28.561 2,000,000

Migrate to Vertica - 1.2874 399.7762 - 401.0636 59,986,052

Table B.9: Query execution breakdown (in s) for TPCH query 14 with 10GB data
with the part table on Vertica and the lineitem table on Postgres.

Configuration Planning Execution Migration Cleanup Total Tuples Migrated

BigDAWG 0.2327 1223.28 1.429 2.898 1227.81 ∼3,000,000

Migrate to Postgres - 1264.45 8752.58 - 10017.033 750,037,902

Migrate to Vertica - 17.147 61.49 - 78.637 15,000,000

Table B.10: Query execution breakdown (in s) for TPCH query 3 with 100GB data
with the lineitem and orders tables on Vertica and the customer table on Postgres.

Configuration Planning Execution Migration Cleanup Total Tuples Migrated

BigDAWG 0.1505 1080.9147 7.9227 1.3705 1090.4035 ∼10,000,000

Migrate to Postgres - 1329.81 1264.448 - 2594.258 150,000,000

Migrate to Vertica - 42.936 4454.94 - 4497.876 600,037,902

Table B.11: Query execution breakdown (in s) for TPCH query 12 with 100GB data
with the orders table on Vertica and the lineitem table on Postgres.

Configuration Planning Execution Migration Cleanup Total Tuples Migrated

BigDAWG 0.1426 653.7294 7.8498 1.7418 663.46 ∼7,500,000

Migrate to Postgres - 772.90 159.16 - 932.06 20,000,000

Migrate to Vertica - 11.309 4454.94 - 4466.25 600,037,902

Table B.12: Query execution breakdown (in s) for TPCH query 14 with 100GB data
with the part table on Vertica and the lineitem table on Postgres.
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