
OCTOBER 1984 LIDS-P-1411

GENERATION AND TERHIINATION OF BINARY DECISION TREES

FOR NONPARAMETRIC MULTICLASS CLASSIFICATION

S. Gelf'and

S.K. Mitter

Department of Electrical Engineering and Computer Science

and

Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

Cambridge, id, 02139

This research has been supported by the U.S. Army Research Office under

Grant DAAG29-84-K-0005.



Abstract

A two-step procedure for nonparametric rnulticlass classifier design is

described. A multiclass recursive partitioning algorithm is given which

generates a single binary decision tree for classifying all classes. The

algorithm minimizes the Bayes risk at each node. A tree termination

algorithm is given which optimally terminates binary decision trees. The

algorithm yields the unique tree with fewest nodes which minimizes the Bayes

risk. Tree generation and termination are based on the training and test

samples, respectively.
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I. Introduction

We state the nonparametric multiclass classification problem as

follows. M classes are characterized by unknown probability distribution

functions. A data samrple containing labelled vectors from each of the It

classes is available. A classifier is designed based on the training sample

and evaluated with the test sample

Friedman [1] has recently introduced a 2-class recursive partitioning

algorithm, motivated in part by the work of Anderson [2], Henderson and Fu

[3], and Meisel and IIichalopoulos [4]. Friedman's algorithm generates a

bindary decision tree by maximizing the Komlolgorov-Smirnov (K-S) distance

between marginal cumulative distribution functions at each node. In

practice, an estimate of the K-S distance based on a training sample is

maximized. Friedman suggests solving the M-class problem by solving MI 2-

class problems. The resulting classifier has M binary decision trees.

In this note we give a multiclass recursive partitioning algorithm

which generates a single binary decision tree for classifying all classes.

The algorithm minimizes the Bayes risk at each node. In practice an

estimate of the Bayes risk based on a training sample is minimized. We also

give a tree termination algorithm which optimally terminates binary decision

trees. The algorithm yields the unique tree with the fewest nodes which

minimizes the Bayes risk. In practice an estimate of the Bayes risk based

on a test sample is minimized.

The research was originally done in 1981-82 [5]. The recent book of

Breiman et al [6] has elements in common with this paper but we believe the

approach presented here is different.



The note is organized as follows. In Section 2 we give binary decision

tree notation and cost structure for our problem. In Section 3 and 4 we

discuss tree generation and termination, respectively.

II. Notation

We shall be interested in classifiers which can be represented by

binary decision trees. For our purposes, a binary decision tree T is a

collection of nodes {Ni}iK 1 with the structure shown in Fig. 2.1. The

levels of T are ordered monotonically as 0, 1, ...,L-1 going from bottom to

top. The nodes of T are ordered monotonically as 1,2,...,K going from

bottom to top, and for each level from left to right. We shall find it

convenient to denote the subtree of T with root node Ni and whose terminal

nodes are also terminal nodes of T as T(i) (see Fig. 2.1).

We associate a binary decision tree and a classifier in the following

way. For each node NisT we have at most five decision parameters: ki, ai,

S i, ri, and c i . Suppose aslRd is to be classified. The root node NK is

where the decision process begins. At Ni the kith component of a will be

used for discrimination. If ak < ai the next decision will be made at Ns

.* If a k > a i the next decision will be made at Nr . If N i is a terminal

node then a is labelled class ci. It is easily seen that a binary decision

tree with these decision parameters can represent a classifier which

partitions Rd into d-dimensional intervals. The algorithms we shall discuss

generate binary decision trees as partitioning proceeds.

Let Hj be the hypothesis that the vector under consideration belongs to

the jth class, j=1,....,H. We denote be lj the misclassification cost for Hj3 3



and nj the prior probability of Hj. The Bayes risk (of misclassification)
M

is then given by _ Inj(1 - Pr{decide HjIHj}).
j=1

III. Tree Generation

In this section generation of binary decision trees is discussed. An

algorithm is given which generates a single binary decision tree for

classifying all classes. The algorithm minimizes the Bayes risk at each

node. In practice an estimate of the Bayes risk based on a training sample

is minimized.

We first review Friedman's 2-class algorithm. Friedman's algorithm is

based on a result of Stoller's [5] concerning univariate nonparametric

classification (d=l). We assume 11x 1 = 12n 2.

Stoller solves the following problem: find a which minimizes the

Bayes risk based on the classifier

a<a* decide H1 or H2

a>a decide H2 or H;1

Let FI(a), F2(a) be the cumulative distribution functions (c.d.f.'s) for H1,

H2 respectively, and let

D(a) = IF1(a) - F2 (a) (3.1)

Stoller shows that
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a = arg max D(a) (3.2)

(D(a*) is the Komolgorov-Smirnov distance between F1 and F2 ). This

procedure can be applied recursively until all intervals in the classifier

meet a termination criterion. A terminal interval I is then assigned the

class label

c = arg max Pr{asIIH.j (3.3)
j=1,2

Friedman extends Stoller's algorithm to the multivariate case (d>2) by

solving the following problem: find k* and a which minimize the Bayes risk

of the classifier

k* *
a < a decide H1 or H2

~k·" ~~ ~1 2

a > a decide H2 or H

Let Fl,k(a), F2 ,k(a) be the marginal c.d.f.'s on coordinate k for H1,H 2

respectively, and let

Dk(a) = IF1,k(a) - F2,k(a)I (3.4)

In view of (3.2) we have

a (k) = arg max D (a)
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k = arg mfx Dk (a (k)) (3.5)

* * *
a = (k)

As with the univariate case, Friedman's procedure can be applied recursively

until all (d-dimensional) intervals in the classifier meet a termination

criterion. A terminal interval is then assigned class label

c = arg max Pr({aIIH.} (3.6)
j=1,2

To apply Friedman's algorithm to the nonparametric classification

problem we must estimate Fj k(a) and Pr{a&IIHj }. Let all ...1 an l

a21, ,_a2,n 2 be the training sample vectors where aj i is the ith vector

froml the jth class. Suppose we have arranged the sample such that ak 1

k ( ~ ~, k
a ,2

< ... < a n We estimate Fj k(a) by

0 (~ < ej,1O a < a <k

k 
Fjk (a) _ in aji < a < aJ,i+/

a> a.1k- 3 3,nj

and Pr{aeIIHj } by the fraction of training sample vectors in class j which

land in I.

Note that Friedman's algorithm generates a binary decision tree as

partitioning proceeds by appropriately identifying the decision parameters

of Section 2.



Friedman extends his algorithm to the 14-class case by generating MI

binary decision trees, where the jth tree discriminates between the jth

class and all the other classes taken as a group. We next propose an

extension which has the advantage of generating a single binary decision

tree for classifying all classes. At the same time we relax the constraint

that all the jnj's are equal.

Consider the following problem: find the k*, a , m and n which

minimize the Bayes risk based on the classifier

k*

k decide or 
a > a decide H or H

Let

R (a) = min{k R (1-F (a)) + n F (a),
m,nk rII m m,k n nn,k

nv(1-Fnk(a)) + In F (a))

,J (307)

Then it can easily be shown that
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a (m,n,k) = arg min R (a)
m,n,k

k* (m,n) = apg min Rm nk(a* (m,nk))

(mr* ,n*) = ar min R ,nk* (mn )(a*(m,n,k*(m,n)))

k = k (in ,n )

a = a (m ,n ,k*) (3.8)

Furthermore, if k1nl = ... = QM~M the minimizations over Rm,n,k(a) reduce

to maximizations over

D ,k(a) = IF (a) - F n,k( (3.9)m,n,k m,k n

If we now replace the double maximization (3.5) in Friedman's algorithm with

the triple minimization (3.8) we get the proposed multiclass recursive

partitioning algorithm. Of course (3.6) should be replaced by

c = arg rax .r Prf{asIjHj. (3.10)
j=l.... j J -

Otherwise the algorithms are the same. In particular the multiclass

algorithm generates a single bindary decision tree as partitioning proceeds

by appropriately identifying the decision parameters of Section 2. Note

that m and n are not decision parameters.

IV. Tree Termination
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In this section termination of binary decision trees is discussed. An

algorithm is given for optimally terminating a binary decision tree. The

algorithm yields the unique tree with fewest nodes which minimizes the Bayes

risk. In practice an estimate of the Bayes risk based on a test sample is

minimized.

Suppose we generate a binary decision tree with the multiclass

recursive partitioning algorithm of Section 3. Partitioning can proceed

until terminal nodes only contain training sample vectors from a single

class. In this case the entire training sample is correctly classified.

But if class distributions overlap the optimal Bayes rule should not

correctly classify the entire training sample. Thus we are led to examine

termination of binary decision trees.

Friedman introduces a termination parameter k = minimum number of

training sample vectors in a terminal node. The value of k is determined by

minimizing the Bayes risk. In practice an estimate of the Bayes risk based

on a test sample is minimized. In the sequel we will refer to the binary

decision tree with terminal nodes only containing training sample vectors

from a single class as the 'full" tree. What Friedman's method amounts to

is minimizing the Bayes risk over a subset of the subtrees of the full tree

with the same root node. At this point the following question arises: is

there a computationally efficient method of minimizing the Bayes risk over

all subtrees of the full tree with the same root node? The answer is yes as

we shall now show.

We first state a certain combinatorial problem. Suppose we have a

binary decision tree and with each node of the tree we associate a cost. We



define the cost of each subtree as the sum of the costs of its terminal

nodes. The problem is to find the subtree with the same root node as the

original tree which maximizes cost. More precisely, let To = {Ni}K be a
i=l

binary decision tree with L levels and Ki nodes at level i as described in

Section 1, gi the cost associated with node Ni, and G(T) the cost of subtree

T. Then

K

G(T) = i(T)g. (4.1)
1 1J.

i=l

where

1 N. is a terminal node of T
1

i.(T) =

0 else

Now let F be the set of subtrees of To withe the same root node NK. The

problem can then be stated as:

K

max G(T) = Max 1 i (T)g. (4.2)

i=1

Next consider the following simple algorithm. Going from first to last

level and for each level from left to right, if deleting descendents of

current node does not decrease cost, delete descendents and go to next node,

etc. In view of (4.1) the algorithm becomes:
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For i = 1,..., L-1 do:

Ti f -Ti 1

r For j = Ki- + 1,..., K do:

If gj G(T.(j):

Ti ( j) - {N.}

Define T* = TL_1. We claim that T* solves (4.2).

Theorem: G(T*) > G(T) for all TEF.

Furthermore, if G(T*) = G(T) for some TeF, TT*, then T* has fewer nodes

than T.

Proof: See Appendix.

Finally, we show that the problem of minimizing the Bayes risk over all

subtrees of the full tree with the same root node has form (4.2). Let To be

the full tree and

gi = ci ci Pr{asNi.H ci i=l,...,K (4.3)

where ci is the class label of Ni if N i becomes a terminal node, i.e.,

Ci = arg max Z.n .Pi (4.4)
where j= is the fraction of training saple vectors in class j whih land

where Pij is the fraction of training sample vectors in class j which land
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in Ni. Then by direct computation the Bayes risk of TES is given by

NM1 K M

R(T) = T j .j li(T)gi = 2 jnj - G(T) (4.5)

j=1 i=1 j=1

Hence, minimizing R(T) is equivalent to maximizing G(T). In practice an

estimate of R(T) based on a test sample is minimized. In this case

ii = 1, i ... ,K (4.6)

where qij is the fraction of test sample vectors in class j which land in

Ni .

APPENDIX

Proof of Theorem Section IV: Let Si be the set of subtrees of To with

the same root node NK and which only have nodes missing from levels i-

1,...,0 (or equivalently, every terminal node on levels i,...,L-1 is also a

terminal node of To). We shall say that Ti is optimal over Si if the

theorem holds with T* and S replaced by Ti and Si, respectively. We show

that Ti is optimal over Si for i = 1,...,L-1. Since T* = TL-1 and S = SL-1

the theorem follows. We proceed by induction. T1 is clearly optimal over

Si. We assume Ti is optimal over Si and want to show that Ti+1 is optimal

over Si+1. Let TeSi+1 and T # Ti+1. There are four cases to consider.

Suppose there exists a terminal node NjcTi+l which is a nonterminal

node of T and Nj is on some level < i. Construct T'eSi+l from T by
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terminating T at Nj. Since Nj is a terminal node of Ti+1 it is also a

terminal node of Ti and it follows from (4.1) and the optimality of Ti that

gj < G(T(j)) so that G(T') < G(T), and since T' has fewer nodes than T, T

cannot be optimal over Si+1.

Next, suppose there exists a terminal node NjcT which is a nonternlinal

node of Ti+1 and Nj is on some level < i. Contruct T'&Si+1 from T by

augmenting T with Ti+l(j) at Nj. Since Ti+1(j) = Ti(j) it follows from

(4.1) and the optimality of Ti that G(T'(j)) < gj so that G(T') < G(T), and

consequently T cannot be optimal over Si+1.

Next, suppose there exists a terminal node NjgTi+l which is a

nonterminal node of T and Nj is on level i+1. If T(j) = Ti(j) construct

T'eSi+! from T by terminating T at Nj. Since gj < G(Ti(j)) = G(T(j)) it

follows from (4.1) that G(T') < G(T), and since T' has fewer nodes than T, T

cannot be optimal over Si+1. If T(j) # Ti(j) construct T'cSi+1 from T by

replacing T(j) with Ti(j). At this point we essentially are in one of the

preceding cases (with Ti+1 replaced by T').

Finally, suppose there exists a terminal node NjeT which is a

nonterminal node of Ti+ and Nj is on level i+1. Construct T'cSi+1 from T

by augmenting T with Ti+l(j) at Nj. Since Ti+l(j) = Ti (j) we have gj >

G(Ti(j)) = G(Ti+I(j)) = G(T'(j)) and it follows from (4.1) that G(T) >

G(T'), and consequently T cannot be optimal over Si+1 . QED
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