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Abstract

Kinetically-controlled catalytic cross-metathesis reactions that generate (Z)-α,β-unsaturated esters 

selectively are disclosed. A key finding is that the presence of acetonitrile obviates the need for 

using excess amounts of a more valuable terminal alkene substrates. On the basis of X-ray 

structure and spectroscopic investigations a rationale for the positive impact of acetonitrile is 

provided. Transformations leading to various E,Z-dienoates are highly Z-selective as well. Utility 

is highlighted by application to stereoselective synthesis of the C1–C12 fragment of biologically 

active natural product (−)-laulimalide.
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Conspicuously absent from the list of available kinetically-controlled stereoselective olefin 

metathesis reactions[1,2] are cross-metathesis (CM) processes that can deliver linear (Z)-α,β-

unsaturated esters.[3,4,5] Such transformations would offer a valuable disconnection that may 

be complementary to Wittig-type[6] or alkyne partial hydrogenation reactions.[7] A case in 

point is a possible stereoselective route to the C1–C12 segment of (−)-laulimalide, a 

naturally occurring microtubule stabilizing agent (Scheme 1a).[8] Z-Enoate i could 

accordingly be synthesized through two Z-selective CM steps (ii→i and v→iv). Small-ring 
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lactones are accessible through ring-closing metathesis (RCM), but because of carbonyl 

coordination to the metal center, these processes are at times inefficient and demand elevated 

temperatures and relatively high catalyst loadings (e.g., 20 mol %).[9] In such instances a 

Lewis acidic additive can enhance efficiency[10] but not always.[11]

Development of a Z-selective enoate CM requires that the following problems are resolved 

(Scheme 1b): 1) The carbonyl unit of a carboxylic ester-substituted alkylidene might 

coordinate to the metal center to reduce reaction rates. 2) High efficiency might demand 

larger amounts of a structurally complex alkenyl compound. For example, excess of the 

more valuable α-alkenes ii or v might be required for high efficiency (Scheme 1a). 3) 

Electronic factors do not favor formation of productive metallacyclobutanes. Unlike 

macrocyclic RCM reactions,[12] where geometric constraints oppose the mismatched 

electronic factors (see I, Scheme 1b), in CM formation of electronically (and sterically) 

favored intermediates II–III would lead to nonproductive metallacyclobutanes (vs. IV–V, 

Scheme 1b). The active complex must therefore be sufficiently long living for productive 

CM that occurs subsequent to nonproductive cycles.

We began by probing the ability of a number of complexes to promote CM between 1-

decene (3.0 equiv.) and acrylate 1a (Table 1). With Ru-1[13] formation of Z-2a was fully Z-

selective but inefficient (Table 1, entry 1) and with Ru-2[5e] none of the expected product 

was formed (entry 2). Reaction with bis-alkoxide Mo-1 proceeded only to 35% conversion 

after 4 hours and was mildly E-selective (31:69 Z:E). There was 90% conversion to the 1,2-

disubstituted enoate with monoaryloxide pyrrolide (MAP) complex Mo-2a[14] but the E 
isomer was again formed preferentially (6:94 Z:E, entry 4) probably due to facile post-

metathesis isomerization. The latter scenario is consistent with the findings in entries 5 and 

6: for CM with Mo-2b, which carries a more sizeable aryloxide group, conversion was lower 

(62% vs. 90% with Mo-2a) but 2a was obtained with 92:8 Z:E selectivity. With the more 

active pentafluorophenylimido Mo-3, there was 96% conversion after four hours but a nearly 

equal mixture of Z and E-2a was generated (58:42).

Our goal then became to find conditions that would deliver high efficiency and Z selectivity 

simultaneously. What made the task particularly challenging was that enhanced efficiency 

would have to be achieved without excess amounts of the (non-enoate) terminal alkene. In 

light of the possibility of Z-to-E interconversion and because Mo-3 was similarly efficient 

but delivered a more favorable Z:E ratio than Mo-2a (cf. entries 4 and 6, Table 1) we 

reasoned that the CM process with the former complex might be substantially improved 

under a different set of conditions. Accordingly, the studies summarized in Table 2 were 

carried out. Under mild vacuum (100 torr) and with the same initial 1-decene:acrylate ratio 

as before (3:1), there was 79% conversion to 2a after five minutes and stereoselectivity 

improved to 79:21 Z:E (62% yield; entry 1). However, the Z selectivity was diminished 

within 30 minutes (53:47 Z:E; entry 2), further supporting the post-metathesis isomerization 

scenario. Selectivity was considerably higher (>98%) with lesser amounts of 1-decene but 

efficiency was poor (≤30% conv., entries 3–4) and extended times did not improvement 

matters.
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To gain more information as to whether internal carbonyl chelation hampers reactivity, 

spectroscopic analysis of the reaction between Mo-2b with 1b was performed (Scheme 2). 

An alkylidene proton resonance appeared in one hour at δ 11.47 ppm, which probably 

belongs to the anti isomer Mo-4 (JCH = 160 Hz).[15] We were also able to secure the X-ray 

structure of a closely related anti-alkylidene Mo-5; the Mo–O bond length (2.33 Å) suggests 

Mo-carbonyl association. The alkylidene C–H resonance for Mo-5 appears at δ 10.46 ppm 

(JCH = 182 Hz), suggesting the major isomer in the initial process to be anti.

We surmised that internal chelation might be weakened or entirely inhibited if an external 

Lewis base, which would likely be more readily displaced by an alkene substrate, were to be 

coordinated to the Mo center. Turnover frequency could be diminished, but turnover number 

could increase if olefin binding and displacement of the external Lewis base were to become 

more competitive. Further, the Lewis base-chelated 16-electron methylidene species would 

be less prone to decomposition and less able to promote post-metathesis isomerization.[16] 

Diminished reactivity could then translate to superior chemoselectivity. As pointed out 

previously regarding CM involving Mo-1,[17] an alkyl-substituted alkylidene might react 

faster with an electron deficient acrylate and vice versa. Nonetheless, the challenge here was 

to identify a Lewis basic additive that would coordinate readily with a Mo MAP complex 

and yet could be displaced by an olefin.

Mindful of observations regarding increased enantioselectivity of reactions with chiral Mo 

diolates in tetrahydrofuran (vs. benzene),[18] we investigated the CM of 1-decene and 1a in 

the same solvent. Efficiency and Z selectivity was notably higher (2a in 70% yield and 90:10 

Z:E; entry 1, Table 3) and more so in a less concentrated solution (93:7; entry 2). Still, after 

30 minutes olefin isomerization became problematic (69:31 Z:E; entry 3).

We then examined the impact of acetonitrile,[19] envisioning that this mildly Lewis basic[20] 

but less sterically demanding (vs. thf) additive might coordinate to the Mo complex, 

disrupting internal chelation. This would allow the acetonitrile-bound syn alkylidene, the 

precursor to a productive metallacyclobutane (cf. IV, Scheme 1b), to be formed (alkene 

substrate may displace the MeCN). With acetonitrile as the solvent the model CM remained 

highly Z-selective (>98% Z) but efficiency decreased substantially (14% conv., 60 min; 

Table 3, entry 4). In a more concentrated solution (entry 5) 2a was formed in 67% yield and 

91% Z selectivity; there was no significant change in efficiency or stereochemical purity 

with an equal mixture of the two substrates (entry 6). With a 1:2 ratio of 1-decene:1a (entry 

7, Table 3), Z-2a was isolated in 71% yield and 94:6 Z:E selectivity (22 °C, 1 h).

The method has appreciable range (Scheme 3). With a 1:2 ratio of the α-olefin:1a, Z-enoates 

2b-h were isolated in up to 71% yield and >98% Z selectivity. Reactions with aryl olefins 

were hampered by stilbene formation, but those of sterically hindered vinylcyclohexane 

afforded 2g in 64% yield and 94:6 Z:E ratio. Transformations with 1,3-dienes were less 

efficient but highly stereoselective (cf. Z,E-2h).[21]

Spectroscopic studies support acetonitrile–Mo coordination.[22] With more MeCN the 

alkylidene proton singlet moves downfield (Figure 1), consistent with previous 

observations.[23] The broader signal, and the absence of separate resonances for the free and 
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acetonitrile-containing species at different temperatures, implies rapidly reversible complex 

formation (Figure 1; in neat acetonitrile; cf. Table 3). An additional resonance was detected 

at ~δ 10.7 ppm when the 1H NMR spectrum of the sample containing 0.5 equivalents of 

Me13CN was recorded at −60 to −80 °C; we attribute this to the acetonitrile-free complex, 

which was not simultaneously present when 5.0 equivalents of the additive was present.[23]

E,Z-Dienoates may be prepared through catalytic CM as well (Scheme 4), allowing access 

to either stereoisomer of an α,β,γ,δ-unsaturated ester. Either a t-butyl or a phenyl ester may 

be accessed, as indicated by synthesis of E,Z-4a and E,Z-5a. Although products were 

obtained in similar yield and Z selectivity in this case, use of t-butyl dienoate often led to 

better outcomes.[21] Here, adamantylimido Mo-6 is optimal. For example, 5a was generated 

with 87:13 Z:E selectivity with Mo-3. There was <2% conversion to the desired product 

with Ru-1,2 and Mo-1 (cf. Table 1). Two additional points are noteworthy: (1) Because the 

dienoate carbonyl group can no longer associate intramolecularly with the Mo center, 

addition of thf or MeCN only led to lower reaction rates. (2) Excess amounts of the terminal 

alkene are needed as otherwise formation of the less reactive[24] alkenyl-substituted Mo 

alkylidene species leads to lower efficiency.

To complete the study, we examined the feasibility of the aforementioned application 

regarding synthesis of laulimalide (Scheme 5). CM between alkene 6[9b] and 1a (2.0 equiv.) 

performed in a 10:1 MeCN:PhCN[25] mixture afforded 7 with 91:9 Z:E selectivity. Ester 

hydrolysis/silyl ether removal and lactone formation occurred upon treatment with 10 mol % 

p-toluenesulfonic acid, affording 8 in 74% overall yield. Conversion to homoallyl ether 

9[10b] was followed by a second CM, delivering diene 10, formerly utilized in a former 

synthesis of laulimalide,[9b] in 63% yield and 94:6 Z:E selectivity.

Further mechanistic investigations and applications to the development of other kinetically 

controlled stereoselective olefin metathesis reactions are in progress.
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Figure 1. 
Spectroscopic analysis indicating rapid and reversible formation of an acetonitrile complex 

derived from Mo-3 (600 MHz 1H NMR, 22 °C, C6D6; see the Supporting Information for 

details).
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Scheme 1. 
The principal objectives of the study and the challenges involved.
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Scheme 2. 
Preparation and structural analysis of two ester-substituted Mo alkylidene complexes.
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Scheme 3. 
(Z)-α,β-Unsaturated esters obtained through catalytic cross-metathesis. Reactions performed 

at 100 torr for 1 h (2b–c), at 100 torr for 4 h (2d–f) and at ambient pressure for 24 h (2g–h). 

See the Supporting Information for details.
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Scheme 4. 
(E,Z)-Dienoates obtained through catalytic Z-selective cross-metathesis. [a] Overall yield 

after removal of the silyl group. [b] 1.5 equiv. 1-decene used. [c] Reaction time = 24 h. See 

the Supporting Information for details.
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Scheme 5. 
Application to stereoselective synthesis of the C1–C12 segment of laulimalide.
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Table 1

Examination of various complexes for CM of 1-decene and acrylate 1a.
[a]

Entry Complex Conv. [%]
[b]

Yield [%]
[c]

Z:E
[b]

1 Ru-1 27 ND >98:2

2 Ru-2 <2 NA NA

3 Mo-1 35 31 31:69

4 Mo-2a 90 90 6:94

5 Mo-2b 62 55 92:8

6 Mo-3 96 83 58:42

See the Supporting Information for details. Abbreviations: Mes, 2,4,6-(Me)3C6H2; ND, not determined; NA, not applicable.

[a]
Performed at ambient pressure (entries 1–2) or under 100 torr vacuum (entries 3–6).

[b]
Determined by analysis of 1H NMR spectra of unpurified mixtures; conv. (±2%) with dmf as the internal standard.

[c]
Yields of isolated and purified products (±5%).
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Table 2

Influence of time and substrate ratios on the CM leading to Z-2a.
[a]

Entry t [min] Decene:1a Conv. [%]
[b]

Yield [%]
[c]

Z:E
[b]

1 5 3:1 79 62 79:21

2 30 3:1 82 56 53:47

3 5 1:1 30 ND >98:2

4 5 1:3 20 ND >98:2

See the Supporting Information for details. Abbreviation: ND, not determined.

[a]
Performed under N2 atm.

[b]
Determined by analysis of 1H NMR spectra of unpurified mixtures (±2%).

[c]
Yields of isolated and purified products (±5%).
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Table 3

Effect of coordinating solvents on the CM leading to Z-2a.
[a]

Entry Solvent Mo-3 [M] t [min] Decene:1a Conv. [%]
[b]

Yield [%]
[c]

Z:E
[b]

1 thf 0.1 5 3:1 79 70 90:10

2 thf 0.025 5 3:1 71 53 93:7

3 thf 0.025 30 3:1 90 64 69:31

4 MeCN 0.025 60 3:1 14 ND >98:2

5 MeCN 0.1 60 2:1 88 67 91:9

6 MeCN 0.1 60 1:1 79 69 91:9

7 MeCN 0.1 60 1:2 75 71 94:6

See the Supporting Information for details. Abbreviation: ND, not determined.

[a]
Performed under N2 atm.

[b]
Determined by analysis of 1H NMR spectra of unpurified mixtures (±2%).

[c]
Yields of isolated and purified products (±5%).
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