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Traditional models of visual search such as feature
integration theory (FIT; Treisman & Gelade, 1980), have
suggested that a key factor determining task difficulty
consists of whether or not the search target contains a
‘‘basic feature’’ not found in the other display items
(distractors). Here we discriminate between such
traditional models and our recent texture tiling model
(TTM) of search (Rosenholtz, Huang, Raj, Balas, & Ilie,
2012b), by designing new experiments that directly pit
these models against each other. Doing so is nontrivial, for
two reasons. First, the visual representation in TTM is fully
specified, and makes clear testable predictions, but its
complexity makes getting intuitions difficult. Here we
elucidate a rule of thumb for TTM, which enables us to
easily design new and interesting search experiments. FIT,
on the other hand, is somewhat ill-defined and hard to pin
down. To get around this, rather than designing totally new
search experiments, we start with five classic experiments
that FIT already claims to explain: T among Ls, 2 among 5s,
Q among Os, O among Qs, and an orientation/luminance-
contrast conjunction search. We find that fairly subtle
changes in these search tasks lead to significant changes in
performance, in a direction predicted by TTM, providing
definitive evidence in favor of the texture tiling model as
opposed to traditional views of search.

What makes search easy or hard?

What determines the difficulty of searching for a
target such as a friend in a crowd or a lesion in a medical
image? Visual search has fascinated generations of
researchers, both for its real practical importance, and as
a window into visual processing. Fully understanding
search requires studying both stimulus-specific factors,
such as how easy it is to discriminate the target from

other parts of the display, as well as higher-level factors
such as expertise, priors on the location of the target,
and decision-making (Oliva, Torralba, Castelhano, &
Henderson, 2003; Wolfe, Butcher, Lee, & Hyle, 2003;
Oliva, Wolfe, & Arsenio, 2004; Wolfe, Horowitz, &
Kenner, 2005). To isolate stimulus-specific factors,
search experiments often use simple displays consisting
of a search target and a number of distractors, where the
target appears with equal probability in one of the
possible item locations. Typically, researchers plot the
time to correctly respond whether or not a target is
present (the reaction time, or RT) as a function of the
number of items in the display (the set size). The slope of
this function provides a common measure of search
difficulty known as the search efficiency—the number of
items processed per unit time—allowing the categoriza-
tion of search tasks into efficient and inefficient search
(Wolfe, 1994).

According to FIT, search is easy if and only if the
target contains a basic feature not found in the rest of
the display (Figure 1A). This suggests the extremely
attractive idea that a simple behavioral experiment
might inform us in a straightforward way about basic
feature detectors early in vision. These basic features
(e.g., orientation, motion, or color), are presumed to be
available preattentively and in parallel across the visual
field, leading to rapid search. If the target differs from
the distractors only in a conjunction (e.g., red and
vertical) or configuration of features (red to the left of
green), then FIT predicts difficult search, because the
observer will have to serially attend to each item in
order to bind the features and identify the target
(Treisman & Gelade, 1980). FIT has explained a
number of classic search phenomena, though a number
of researchers have also pointed out issues both
regarding FIT’s ability to predict search results, and
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regarding the notion that only maps of basic features
are available in preattentive vision. (e.g., Carrasco,
Evert, Chang, & Katz, 1995; Carrasco, McLean, Katz,
& Frieder, 1998; Carrasco & Yeshurun, 1998; Vlas-
kamp, Over, & Hooge, 2005; Wertheim, Hooge,
Krikke, & Johnson, 2006; Reddy & VanRullen, 2007;
Rosenholtz et al., 2012a; Hulleman & Olivers, 2015).

We have recently shown that an alternative model,
TTM, also explains a number of classic results (Rose-
nholtz et al., 2012b). TTM puts the blame for many
difficult search tasks not on the limits of preattentive
vision, but rather on the limits of peripheral vision
(Rosenholtz et al., 2012b).

Peripheral vision has considerable loss of informa-
tion relative to the fovea. Its well-known reduction in
visual acuity has a modest effect compared to visual
crowding. In crowding, observers can have difficulty
identifying a peripheral target when it is flanked by
other display items, even when those items lie quite far
from the target. Behavioral work suggests that the
critical target-flanker spacing is approximately 0.4 to
0.5 times the eccentricity (the distance to the center of

fixation) of the target, for a fairly wide range of stimuli
(Bouma, 1970; Pelli, Palomares, & Majaj, 2004).

The critical spacing of crowding suggests that
peripheral vision processes sizable patches. In an often-
cluttered search display, such patches likely contain
multiple elements. For a given fixation, one patch may
contain only distractors. Another may contain dis-
tractors plus the target. If the observer can easily tell
apart a peripheral target-present patch from a target-
absent patch (Figure 1B), search should be easy. If
peripheral information is insufficient for the discrimi-
nation of the two types of patches, search will be
difficult because the observer will need to move their
eyes to regain the lost information. The key is to
understand the information available in peripheral
vision.

TTM hypothesizes that peripheral vision ‘‘com-
presses’’ its inputs, by representing them in terms of a
rich set of local image statistics. In particular, we use
the statistics identified by Portilla and Simoncelli (2000)
for the purposes of capturing the appearance of visual
texture. Portilla and Simoncelli (2000) first process the

Figure 1. Comparison of two visual search models. (A) Rule of thumb for the traditional feature integration theory (FIT). FIT is a word-

model that operates on descriptions of the target and distractor items. As such, it allows for easy intuitions, enabling design of new

and interesting experiments. However, it is inherently under-specified without a complete description of basic features. (B) The

texture tiling model (TTM). TTM is an image-computable model which takes as input image patches from the search display. Its

features—a rich set of local image statistics—are fully specified. However, due to this complex set of features, TTM does not as easily

lend itself to intuitions, making design of new experiments more difficult. Here we work to develop a TTM rule of thumb, to facilitate

understanding of the model and intuitions about its predictions.
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input with a multiscale, multiorientation steerable
pyramid. Then, in addition to computing statistics such
as the marginal distribution of luminance and the
luminance autocorrelation, they compute correlations
of the magnitude of responses of that pyramid across
differences in orientation, neighboring positions, and
scale, and phase correlation across scale. This is simpler
than it may sound; computing a given second-order
correlation merely requires taking responses of a pair of
subbands (a subband is the output of the pyramid for a
given scale and orientation), point-wise multiplying
them, and taking the average over the specified region.
These statistics are sufficient to capture information
about the distribution of luminances and orientations
present in a patch, as well as the sharpness of edges.
The statistics signal the existence of junctions—the
representation does not consist merely of a collection of
oriented lines. The various correlations also encode a
sort of ‘‘proto-grouping’’; they capture sufficient
information to preserve regions of similar features as
well as extended contours.

The original image can be perfectly reconstructed
from the full multiscale pyramid. However, the
summary statistics described above cannot unambigu-
ously specify the original stimulus. The summary
statistics involve averaging or pooling over space,
which loses information. We hypothesize that the
resulting ambiguity about the contents of the stimulus
leads to visual crowding (Korte, 1923; Bouma, 1970;
Lettvin, 1976).

To validate TTM, we have tested its ability to predict
performance on a range of peripheral tasks. We have
generated and tested predictions in the following way.
We first use the Portilla and Simoncelli (2000) texture
analysis/synthesis technique to synthesize, for a given
local image patch, other patches with approximately
the same image statistics.1 We call these syntheses
‘‘mongrels.’’ They look like jumbled versions of the
original patch. Mongrels allow us to visualize the
information encoded by the model statistics. A number
of unique patches have the same statistics as the
original; in practice, we generate around 10 mongrels
per stimulus patch. We then have observers perform
tasks with these mongrels. In the case of visual search,
for example, observers attempt to distinguish target-
absent from target-present patches. If the mongrel
discrimination is difficult, TTM predicts peripheral
discriminability will be difficult, as will search.

Other means of testing the model are possible.
Freeman and Simoncelli (2011) demonstrated that a
full-field version of this encoding can produce visual
metamers for a fixating observer. Alexander et al.
(2014) showed that observers performing a search task
made different saccades to an array of teddy bears than
they made to an array of teddy bear mongrels
(synthesized using only local summary statistics). This

suggests that peripheral vision has access to additional
shape features, either through additional summary
statistics or through interactions of multiple overlap-
ping pooling regions. We have preferred tests of task
performance; they degrade gracefully if the peripheral
encoding model is not perfectly correct, which is almost
certainly the case here.

TTM has done well so far. We have shown that it
explains not only search performance, including four of
the tasks discussed here (Rosenholtz et al., 2012b), but
also performance identifying a peripheral symbol
(Balas et al., 2009; Keshvari & Rosenholtz, 2016), and
getting the gist of a scene (Rosenholtz et al., 2012a;
Ehinger & Rosenholtz, 2016). It seems that the model
does well at capturing information available and lost by
the encoding in peripheral vision.

The need both to synthesize images with the same
statistics and to have observers perform tasks with
those syntheses (in our methodology as well as that of
Freeman & Simoncelli, 2011, and Alexander et al.,
2014) has perhaps discouraged other researchers from
testing TTM. Here, one of our goals is to uncover a
more intuitive rule of thumb for TTM, to enable more
widespread testing.

Our main goal, however, concerns discriminating
between models of visual search. Both FIT and TTM
can predict the results of a number of classic search
experiments. Here we seek a tie-breaker: new search
experiments for which the models make different
predictions.

A rule of thumb for the texture tiling model

FIT’s rule of thumb (Figure 1A) enables easy
intuitions, which has led to decades’ worth of
interesting experiments. To design experiments to
compare FIT and TTM, we here develop a rule of
thumb for the latter by examining mongrels from five
classic search tasks (Figure 2). In this paper, as in our
previous syntheses for single pooling regions (Balas et
al., 2009; Rosenholtz et al., 2012a; Rosenholtz et al.,
2012b; Zhang, Huang, Yigit-Elliott, & Rosenholtz,
2015), we generate mongrels using Portilla and
Simoncelli’s (2000) texture analysis/synthesis routine,
with parameters (number of scales ¼ 4, number of
orientations¼ 4, neighborhood size ¼ 9).

Clearly, representation in terms of image statistics
leads to an ambiguity between the original stimulus and
jumbled versions of that stimulus. If we compare the
target-absent mongrels of easy Q among O search with
those of the four more difficult tasks, we can see an
interesting difference. The mongrels of O-only patches
contain no Q-like items (Figure 2C), whereas for all
other conditions, the mongrels of target-absent patches
can contain target-like items. In the difficult search
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tasks, the image statistics are ambiguous in a way
detrimental to efficiently finding the target. Where do
these target-like items come from? For the T among L
search (Figure 2A), the T-like items in target-absent
mongrels may arise from lining up and piecing together
two differently oriented Ls, tiling them together.
Similarly, 2-like items seem to tile from a pair of 5s
(Figure 2B). Note that these illusory targets need not
appear in every mongrel for the model to predict
difficulty discriminating target-absent from target-
present patches, leading to difficult search.

In the target-absent patches of easy Q among O
search, Os can’t easily tile to form a Q in the same way
(Figure 2C). This means that according to TTM,
peripheral target-absent patches are less likely to be
confused with target-present patches, making search
for Q among O easier.

Difficult O among Q search shows somewhat the
opposite effect. In target-absent mongrels, Qs exhibit
the dual of tiling: they disperse, leaving isolated vertical
bars and O-like forms. This ambiguity may mislead the
observer about the presence of a peripheral target O
(Figure 2D). As the conjunction search story is more
complicated, we discuss it later after further developing
the basic intuitions (see Figure 8).

These examples suggest the following rule of thumb:
Crowding in peripheral vision leads to ambiguities
between an original patch and jumbled versions of that
patch. If in that jumbling, distractors can easily tile to
produce a target, search is hard; otherwise, search will
be easy. In later sections, we will elucidate the meaning
of this rule of thumb, and give a better sense of what
tiling means as we design variants to classic search
tasks. In particular, we will suggest that two portions of
a local patch can join or tile if they contain a similar set
of local orientations. However, this can only occur if
their joining does not change the summary statistics of
the patch as a whole. Neighboring portions of a patch
can also disperse if grouping between them is weak and
if the place where they meet has features similar to
other parts of the patch, so that when they disperse,
they have somewhere else to go and join. Finally, we
will clarify that tiling should really be thought of as
happening in subbands rather than in pixel space, and
discuss the implications for conjunction search.

Of course, peripheral vision also causes ambiguities
in target-present patches. They may also jumble,
perhaps eliminating anything like a target, again
leading to difficult search. In fact, for classic T among
L search we often see no target in mongrels of target-
present patches, as well as illusory targets in mongrels
of target-absent patches. However, for the classic
search conditions under examination, TTM predicts a
significant amount of the difficulty lies in representa-
tion of target-absent patches. In our experience, it is
difficult to construct an interesting search condition
with good representation of target-absent patches yet
poor representation of target-present patches—inter-
esting in the sense that not all models predict difficult
search. If target-absent patches can be well encoded by
peripheral vision, often so can target-present patches,
so long as the target is sufficiently discriminable from
the distractors. As a result, here we focus on
representation of target-absent patches.

Tileability suggests interesting modifications to
classic search tasks

Fully specifying FIT would require enumerating all
of the basic features available preattentively. This
makes it difficult to generalize to novel search stimuli,
and makes FIT itself somewhat of a moving target. To
get around this issue, rather than designing totally new
search tasks, we start with five classic search tasks that
FIT has previously explained using its accumulated
rules of thumb. As we know FIT’s explanation for
performance on those tasks, if new search tasks use
similar-enough stimuli we should be able to generalize
FIT’s predictions to those tasks.

Specifically, we modified five classic search experi-
ments by making subtle changes to the stimuli. We do
so in order to manipulate tileability, while maintaining
insofar as possible the presence or absence of com-
monly accepted basic features. By thus pitting predic-
tions of FIT and TTM against each other, we can
definitively compare the two models.

Figure 3 shows examples of the classic and new
search tasks. We discuss the rationale for the new
search tasks in the following sections. Tileability
predicts, for each condition, that these subtle changes

 
Figure 2. Why does TTM predict that classic search conditions are easy or hard? For five classic search tasks (target-present patch in

column 1), we synthesized two images having approximately the same summary statistics as a target-absent patch. We call these

synthesized images mongrels. Mongrels visualize the information encoded by the model and ambiguities due to lost information. For

the difficult search tasks, the mongrels show target-like figures even though the original patch contained no target (respectively, a T,

2, O, and black vertical). Therefore, TTM predicts that peripheral vision will have difficulty distinguishing target-present from target-

absent patches, leading to difficult search. What causes the target-like figures? Diagrams below the first four conditions show the

hypothesized origin. We discuss conjunction search later (see Figure 8).
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Figure 3. Five classic search tasks and our new modified conditions. Tileability predicts that the conditions on the left are easier than

those on the right, a result borne out by our experimental results. (A) Classic condition on the right. The true classic task involved four

possible orientations of both T and Ls. (B) New task with longer bottom bar shown on the left. (C) New task, with vertical bar moved,

on the right. (D) New task with thicker lines on the left. (E) New task with thinner bars on the left.
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to the stimuli will change search performance in a
particular way, making it easier in some conditions,
and harder in others. Though we focus on the rule of
thumb for TTM in this paper, as opposed to our usual
methodology for making predictions for TTM (e.g.,
Zhang et al., 2015), for each condition, we generate
several mongrels to check our intuitions derived from
the notion of tileability.

In general, FIT-based models do not obviously
predict that these manipulations should have any effect.
Below we discuss each of the stimulus manipulations,
and then present experimental results.

T among L

Traditional search for a T among Ls, where both the
T and Ls could appear in any of four 908 rotations, is
relatively slow and difficult, requiring 20–30 ms/item
for target-present trials (Wolfe, 2001). Wolfe proposed
that this search is inefficient because targets and
distractors share the same basic features, i.e., Ts and Ls
are both composed of a vertical and a horizontal line
element (Wolfe, 2001). Recall that target-absent
mongrels for this condition suggested that this search
task might instead be difficult because two Ls could tile
to form an illusory T. Might we make a change to the
stimulus that would reduce the probability of tiling to
form a T? It would seem a challenge to keep Ls at any
orientation from forming a T at any orientation. But
what if we limit the target to an upright T? Are some
orientations of Ls worse than others for making search
for an upright T difficult?

For convenience, we label the four oriented Ls as
follows: L0 represents a normal, upright L; L90, L180,

L270 represent Ls rotated clockwise by the indicated
number of degrees. One can place L180 (similar to the
left half of a T) and L90 (similar to the right half of a T)
next to each other to make something like an upright T.
The two Ls share many of the orientations and co-
occurrences of orientations present in the T, making
this a plausible tiling. (Of course, we do not see in the
mongrels a T made by literally piecing together two Ls.
Such a T would be too large, violating image statistics
measured at a coarser scale. Rather, the pieces left over
from tiling two Ls into a T appear as additional
structures elsewhere in the mongrel.) One can perhaps
not so easily tile L0 and L90 to make an upright T while
remaining consistent with the measured statistics.
Tileability predicts that search for an upright T among
(L0, L90) will be an easier search than among (L180,
L90).

However, there is a subtlety to this claim. If we flip
L0, we get L180. An image containing only L0 actually
has the same statistics as one containing only L180 (this
is just a consequence of Fourier theory, plus pooling of
statistics; see Zhang et al., 2015). This might suggest
that (L0, L90) could tile to make an upright T just as
easily as (L180, L90), since L0 and L180 are ambiguous.
However, in multi-item displays, coarser scales provide
additional information. Neighboring Ls can trigger
responses of horizontal and/or vertical filters at a
coarser scale, even if the Ls are not perfectly aligned. In
an (L0, L90) patch, it may be difficult to preserve
coarser scale statistics if one flips an L0 to an L180

without also flipping the L90 into an L270, again making
tiling into an upright T unlikely. We have examined a
number of mongrels from these two conditions, to
confirm these intuitions (see Figure 4 for examples). We
compare search for an upright T among (L180, L90) to

Figure 4. Mongrels for T among L search, old and new conditions. Note the prevalence of illusory Ts in the mongrels for the classic

search (top) as opposed to the new search condition (bottom), as predicted by tileability.
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that among the less-likely-to-tile (L0, L90). For brevity,
we refer to the former condition as the ‘‘classic’’ search
condition, as it should have a similar tiling issue as
classic T among Ls. Note that comparison with the
truly classic T among Ls would be an unfair
comparison, as that condition has both more possible
targets and more heterogeneous distractors. Increasing
target uncertainty leads to more difficult search, all else
being equal. It is also known that when target–
distractor discriminability is low, increasing distractor
heterogeneity results in decreased search efficiency
(Bergen & Julesz, 1983; Duncan & Humphreys, 1989).

With the same basic features, same target uncer-
tainty, same distractor variability, and the same need
for binding of horizontal and vertical bars to distin-
guish target from distractors, models like FIT should
predict that our ‘‘classic’’ and ‘‘new’’ tasks are
equivalently difficult. We predict that the new task will
be easier, because the distractors cannot as easily tile to
make a target.

2 among 5

Classic search models explain the difficulty of search
for a 2 among 5s as due to the target and distracters
sharing the same basic features—presumably the
component horizontal and vertical bars—and differing
only in the configuration of those basic features. At a
coarse scale, the target and distractors actually do have
a different, although weak, dominant orientation,
which one can see by greatly blurring the items. (A 5
has energy oriented at about 208 to the left, and a 2, at

about 208 to the right.) However, this difference
apparently does not suffice to support efficient search.

The bottom bar of a 5 has much in common with the
top bar, such as similar local orientations and contrast.
As a result, the top of one 5 can tile with the bottom of
another to make a short chain of ‘‘5-stuff.’’ We
frequently see such chains in our mongrels (Figure 2B).
Perfectly good 2s appear in the middle of such chains,
and in fact, as a result, sometimes appear in the
mongrels on their own. This ambiguity about whether
target-absent patches contain a target means that
tileability explains the difficulty of this classic search
condition (20–30 ms/item for target-present trials;
Wang, Cavanagh, & Green, 1994; Wolfe, 2007).

Not every lining up of similar things like bars leads
to likely tiling. Two 5s do not so easily tile side-by-side,
for instance, with the bottom vertical of one lining up
with the top vertical of the other. To do so would
disagree too much with the image statistics of the
original patch; a side-by-side tile of this sort contains
significant orientations, coarse-scale spatial frequen-
cies, and pair-wise correlations between orientations
(proto-junctions) not present in the original patch. In
line with these intuitions, we do not tend to see such
side-by-side tiling of 5s in our mongrels.

What if we subtly lengthen the bottom bar of both
the 2 and 5 (Figure 5)? The 5s may still tile, but the
resulting chain of 5 ‘‘stuff’’ would not contain anything
that looks quite like the new target 2 (Figures 3B and
5). Tileability predicts that this subtle modification will
make the search task easier. FIT-based search models
should predict no difference. Lengthening the bottom
bars actually reduces the difference between coarse-
scale orientation of the 2 and the 5, so we have actually

Figure 5. Mongrels for 2 among 5 search, old and new conditions. Note the presence of chains with 2-like regions in several of the

mongrels for the classic condition (e.g., bottom center of the second mongrel), and the absence of such illusory 2s in the new

condition mongrels, as predicted by tileability.
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reduced a potentially informative orientation cue. The
new 2 and 5 can still only be differentiated by their
spatial configuration.

Q among Os

Search for a Q among Os is fairly efficient, whereas
search for an O among Qs is inefficient. Classic
explanations suggest that it is easier to find the presence
of a vertical bar than its absence (Treisman & Souther,
1985).

According to tileability, the Q among O search is
easy because Os can’t easily tile to form a Q. But Os do
tile to form a structure that looks like an a (Figures 2C
and 6), which is much like the original target Q, but
with the bar moved to the side of the O. Tileability
predicts that search for an a among Os (Figure 3C) will
be more difficult. (For historical reasons, we call these
Q among Os tasks, though neither target looks like a
Q.)

The modified target still contains a unique basic
feature, the vertical bar, implying that the stimulus
change should have minimal effect, according to classic
explanations. The vertical bar remains quite distinct.
However, a more detailed account of Q among O
search has hypothesized at least four candidate basic
features which are unique to the Q: orientation, size/
length, intersection, and line termination (Wolfe &
Horowitz, 2004). Our modified search task removes an
X-junction, adds some other kind of junction, and
reduces the size difference between target and distrac-
tors. Depending upon one’s favorite feature that drives
easy Q among O search, classic models may or may not

predict more difficult search in the modified condition.
Nonetheless we can use this condition to further test
the predictive ability of the tileability rule of thumb.

O among Qs

According to tileability, search for an O among Qs
may be difficult because the distractors fail to cohere,
dispersing into pieces that look like a target O. Perhaps
if we render the Os and Qs with thicker lines, we can
increase the grouping between the vertical bar and the
O. Essentially more scales will signal that the bar co-
occurs with the O. Stronger Q coherence should make it
easier to disambiguate whether a peripheral patch
contains an O, making search easier (Figures 3D and
7). It is difficult to see how making the strokes modestly
thicker would change the prediction of classic search
models.

Conjunction search

What about conjunction search? At first it seems
nonobvious how one can tile light-vertical and dark-
horizontal bars to make a dark-vertical bar. Conjunc-
tion search reveals an important aspect of tileability.
Tileability derives from the texture tiling model, which
computes image statistics on the responses of a
multiscale steerable pyramid (Portilla & Simoncelli,
2000; Balas et al., 2009; Rosenholtz et al., 2012a;
Rosenholtz et al., 2012b). As a result, one should think
of tiling in multiscale subbands, i.e., as acting on the
outputs of bandpass filters rather than on the pixels.

Figure 6. Mongrels for Q among O search. Note that, unlike the other conditions, all mongrels shown here come from the same class

of original image (i.e., all Os). None of the mongrels (top or bottom) contain strong evidence of a classic Q target, but several contain

items that look like alpha or infinity symbols (containing an alpha).
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Figure 7. Mongrels for O among Q search, old and new conditions. Note the appearance of several O-like structures in the mongrels

for the classic condition (top), but not in the new condition (bottom).

Figure 8. Tileability and conjunction search. Shown are 1-D bars, and the result of filtering those bars with fine scale (left) and coarse

scale (right) bandpass filters (e.g., with a Gaussian second derivative). The fine-scale filter responses to a distractor light bar can be

tiled to form a target dark bar. However, the same is not the case for the coarse-scale filter responses to a light bar. This suggests that

thinner bars may lead to fewer illusory conjunctions.
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Figure 8 gives intuitions in the 1-D case. It shows
two bars, the left one with a positive sign of contrast,
and the right with a negative sign of contrast. Below
that, we show the results of filtering each bar with a
bandpass filter, which computes essentially a blurred
second derivative. In a fine-scale subband (left)—where
the filter is narrower than the bars—the responses to
light bars can tile to make the response to a target dark
bar. At scales finer than the bars, we expect illusory
conjunctions. In a coarse-scale subband (right)—where
the center lobe of the filter is at least as wide as the
bar—the responses to light vertical bars cannot easily
tile to form the response to a dark vertical target. Scales
of processing that are coarse relative to the width of the
bars can tell dark bars from light, but finer scales
cannot. We are left with a surprising prediction:
assuming a limited number of scales of processing, the
width of the bars should matter. With fatter bars, more
processing scales will be fine relative to the bar, leading
to more illusory conjunctions; with thinner bars, more
scales will be coarse relative to the bar, leading to fewer
illusory conjunctions. Whereas for O among Qs we
predict that making the bars thicker makes search
easier, here we predict that making the bars thinner
makes search easier. The mongrels for these conditions
do in fact seem to bear out this intuition (Figure 9).

This analysis might at first glance seem to make the
absurd prediction that peripheral vision cannot tell a
patch with all light bars from one also containing a
dark bar, making search for dark among light difficult.
However, again, tileability is simply a rule of thumb to
give intuitions about the TTM model. The underlying
model only confuses patches with similar image
statistics. A patch of only light bars cannot be confused
with a patch with a dark bar, because the two would

have different image statistics, such as the mean
luminance. We expect no illusory black bars in a
peripheral patch of all light bars. Tiling must preserve
the local image statistics measured by the model.

Given that both the classic and modified conjunction
tasks (Figure 3E) contain strongly oriented stimuli—
the observer should have no difficulty distinguishing
horizontal from vertical—it is difficult to see how this
subtle manipulation could affect the classic search
explanation.

Summary

Through discussion of each of these search condi-
tions, we hope to have given the reader intuitions about
the tileability rule of thumb. Two image regions can
join or tile if they have contain similar local orienta-
tions, so long as their joining does not change the
summary contents of the patch as a whole (T among
Ls, 2 among 5s, Q among Os). Image regions with (for
lack of a better term) weak grouping cues can disperse,
particularly if the locations where the parts join in the
original contain features similar to those at other
locations in the patch. For example, the Qs in the
original O among Qs condition contain horizontalþ
vertical orientation, but so do Os themselves. Although
in many cases we can get intuitions by thinking about
tiling as occurring on the pixels of the image, more
correctly it occurs within multiscale subbands (con-
junction search).

We carried out five classic search tasks and their
corresponding modified versions using two experimen-
tal paradigms. First, we measured the time (RT) to
correctly indicate the presence or absence of a target, as
a function of the number of items in the display. In

Figure 9. Mongrels for conjunction search, old and new conditions. Target is a black vertical. Note the illusory black verticals in the

classic search mongrels, which are absent from the mongrels for the new modified condition.
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addition, we gave a second set of observers a two-
interval forced-choice (2IFC) task requiring them to
indicate which of two briefly-presented displays con-
tained the target, and measured their performance. We
used both paradigms because the RT paradigm
represents the standard for the visual search field, but is
potentially subject to speed-accuracy tradeoffs.

Search difficulty for new and classic
tasks

Methods

Subjects

Six adults participated in each condition after giving
written informed consent. One set of six did the O
among Q, Q among O, and conjunction search tasks,
while another set of six did the other four tasks. In both
cases, subjects were aged 18–40 years, half of themmale.
All subjects reported normal or corrected-to-normal
vision and received monetary compensation for their
participation. All subjects were naı̈ve as to the purpose
of the experiment and were paid for their participation.

Stimuli

In both experiments, the targets and distractors were
the same, with one exception: conjunction search with
black and white search items (gray values of 0 and 255,
respectively) led to performance at ceiling in the 2IFC
task. Conjunction search is typically only modestly
more difficult than feature search, and less difficult
than configuration search. Since we want to test
whether making the bars thinner makes search easier,
we need to get performance on the classic task off of
ceiling. Rather than reducing the display time for these
conditions, we instead make the tasks more difficult by
reducing the contrast of the display items, setting their
gray values to 64 and 192, respectively, instead of to 0
and 255. Stimuli were presented on a 26.8 3 21.1 cm
monitor, with subjects seated 75 cm away in a dark
room. The search displays consisted of a number of

items, either all distractors (target-absent display) or
one target and the rest distractors (target-present
display). Stimuli were randomly placed on four
concentric circles, with added positional jitter (up to 1/8
degree), to minimize accidental alignment of the items.
The radii of the circles were 48, 5.58, 78, and 8.58 of
visual angle. Each target or distractor subtended
approximately 18. Sample target-present stimuli for two
of the conditions, O among Qs and T among Ls, are
shown in Figure 10, for set size ¼ 18.

Reaction time task

Subjects indicated with a key press whether or not the
stimulus contained a target, and were given auditory
feedback. The search display appeared on the computer
screen until participants responded. Target-present and
target-absent displays occurred with equal probability.

Trials were blocked by condition. At the start of
each block, participants performed 18 test trials to
familiarize them with the target, distractor, and
experimental procedure. Each participant completed
216 trials for each task for each condition (108 target-
present and 108 target-absent), evenly distributed
across three set sizes (6, 12, and 18). The order of
testing for classic versus modified conditions was
counterbalanced across participants, with half of
participants seeing classic conditions first, and half
seeing modified conditions first.

2IFC task

On each trial, the participant viewed the first search
display for 100 ms, followed by a blank display with a
central fixation disk for 500 ms, and then the second
search display, also for 100 ms, followed by another
blank display (Figure 11). Set size was always 18. One
of the two displays was always target-present, and the
other was target-absent. Target-present displays ap-
peared first or second with equal probability. Partici-
pants gave a nonspeeded response, indicating with a
key press whether the first or second display contained
the target. They received auditory feedback as to the
correctness of their answer.

Each participant performed 72 trials in each of the
10 experimental conditions. The order in which subjects
saw classic versus modified conditions was counter-
balanced across subjects. Before each task, subjects had
12 practice trials to become familiar with the target,
distractor, and the procedure.

Results

Figure 12 plots mean reaction time versus set size for
correct target-present and target-absent trials, from the

Figure 10. Example layout of search displays. Shown for set size

¼ 18, target-present. Left, search for an upright T among Ls of

two possible orientations (our nominal classic search condition).

Right, new O among Q search.
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RT tasks. Mean RTs were estimated using log-
transformed data, as in Zhou and Gao (1997). As is
standard in the search literature, we quantify search
difficulty as the slope of the best-fit line (also shown).
The legend for each search task gives the target-present
and target-absent slopes. Figure 12 also shows average
error rates for each combination of set size and search
condition. Experimental results for the classic search
conditions were consistent with previously reported
studies.

In the rest of the analysis and discussion of the RT
tasks we focus on correct target-present slopes. Many
models of search, including TTM, predict a similar
relationship between target-present and target-absent
slopes. Typical target-absent trials are inherently
slower due to a need to make decisions about all noisy
items in the display, as opposed to needing to make
decisions about only half of the items, on average, in a
target-present display. This holds true not only for
serial models like FIT, but also for parallel models
(e.g., Chen, Navalpakkam, & Perona, 2011), as well as
models that employ a combination of serial and
parallel processing. In fact, one can see little of interest
in the target-absent data, with the slopes generally
about twice that of target present trials. Furthermore,
target-absent trials can be governed by criterion
setting issues, often orthogonal to the question at
hand.

The rightmost column of Figure 13 summarizes the
experimental results from both the RT tasks and the
2IFC tasks. For each condition, the direction of the
arrow indicates whether tileability predicts that the
modified search task will be easier or harder than the
classic task. Search difficulties for the 2IFC test are
characterized by error rate. For all five pairs of
conditions and both experimental paradigms, search

performance changed by a significant amount in the
direction predicted by tileability.

In particular, tileability correctly predicts that
looking for an upright T (08) among distractors (L0,
L90) is easier than looking for the upright T among
distractors (L90, L180). As predicted, the slope of the
modified task is significantly shallower than that of the
classic: slope difference ¼�9.4 msec/item; one-tailed
paired t test, t(5)¼�3.69, p¼ 0.007. These results were
consistent with the 2IFC tasks: difference in error rate
¼�11.8%; one-tailed paired t test, t(5)¼�4.09, p¼
0.005.

We predicted that a modest lengthening of one of the
bars on both the 2 and 5 would make that search easier.
In fact, search was significantly more efficient in the
modified condition: slope difference¼�4.7 msec/item;
one-tailed paired t test, t(5) ¼�2.17, p¼ 0.041. Error
rates on the 2IFC task for the modified condition were
also significantly lower: difference ¼�5.5%; one-tailed
paired t test, t(5) ¼�2.11, p ¼ 0.004.

For Q among O search, tileability predicted that
simply moving the position of the vertical line in the Q
would make this easy task more difficult. The
experimental results of both RT and 2IFC tests
confirmed this prediction. The modified search task is
significantly less efficient: slope difference¼ 7.7 msec/
item; one-tailed paired t test, t(5)¼ 2.50, p¼ 0.027, and
led to significantly poorer performance on the 2IFC
task: difference in error rate¼ 12.5%; one-tailed paired
t test, t(5) ¼ 2.96, p ¼ 0.016.

We predicted that search for an O among Qs
becomes easier when one makes the lines thicker.
Search was significantly more efficient in the modified
condition: mean difference in slope¼�12.8 msec/item;
one-tailed paired t test, t(5) ¼�6.36, p¼ 0.001. The
results of the 2IFC experiment further validate this
conclusion, as participants made significantly fewer
errors in the modified O among Qs search task: mean
difference in error rate¼�7.6%; one-tailed paired t test,
t(5)¼�3.91, p¼ 0.006.

Finally, tileability predicted that we could reduce the
number of illusory conjunctions, and thus make
conjunction search easier, by making the bars thinner.
The experimental results echoed our predictions, with
shallower search slope: slope difference¼�2.9 msec/
item; one-tailed paired t test, t(5)¼�2.31, p¼ 0.034 in
the reaction time paradigm, and lower error rates:
difference¼�6.7%; one-tailed paired t test, t(5) ¼
�2.51, p ¼ 0.027 in the 2IFC paradigm.

It is difficult to see how such modest, image-based
changes, such as moving basic features, or making
bars thicker, thinner, or longer, would lead to
changes in performance, if the presence or absence of
a basic feature was the principle underlying search
difficulty.

Figure 11. A 2IFC trial. Target-present in the second display. All

2IFC trials had set size ¼ 18.
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Figure 12. Results from the reaction time task. Reaction times versus set size for correct target-present (TP) and target-absent (TA)

trials, along with error rates, averaged across subjects. Error bars show standard errors. Solid lines represent linear fits for classic

search experiments. Dashed lines are fits to data for the new modified tasks. Slopes are given in the legend.
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Figure 13. Predictions of tileability versus experimental results. Left column shows targets and distractors for each condition. Middle

column summarizes the tileability explanation for new and classic conditions. Right column shows experimental results. Arrows

indicate the direction of the predicted change in performance for new versus classic tasks. The two bars on the left indicate RT versus

set size slopes for correct target-present trials. A higher slope indicates a harder task. The right two bars give mean error rates in the

2IFC experiment. A higher error rate means a harder search task. In each case, for both the RT and 2IFC experiments, search

performance changed significantly in the direction predicted by tileability. Error bars show standard error.
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Discussion

Traditional models of visual search have suggested
that a key factor determining task difficulty consists of
whether or not the search target contains a basic
feature not found in the distractors. Recently we
extended our texture tiling model of peripheral
encoding to search. This model puts the blame for
many difficult search tasks not on the limits of
preattentive vision, but rather on the limits of
peripheral vision. If peripheral vision loses too much
information, it will be difficult to tell apart a target-
present patch from a target-absent patch; search will be
difficult. Both the traditional FIT and TTM can
explain a number of classic search results. Here we
attempt to directly discriminate between the two
models. Our results were better predicted by TTM than
by FIT.

It is worth noting that TTM itself has limits. For
instance, it almost certainly cannot predict the asym-
metry in which search for a tilted line among vertical is
easier than vice versa. However, others have predicted
this asymmetry essentially by adding a component to
the model (Heinke & Backhaus, 2011; Vincent, 2011;
see also discussion in Rosenholtz et al., 2012a), and this
seems also a plausible solution for TTM. A later
version of TTM might also include additional image
statistics; it currently has no explicit end-stopping,
which might be required for adequate performance on
a C among Os task, and it also currently lacks
correlations across space between different orienta-
tions, perhaps necessary for good continuation. Fur-
thermore, future work is required to incorporate TTM
into a more complete model of search, including
predicting reaction times, choosing stopping criteria,
and utilizing priors about target location.

FIT has long benefited (and arguably also suffered)
from having an intuitive word model. Researchers may
find such models lead to easier intuitions, enabling
design of novel experiments to test the theory.
Similarly, Duncan and Humphreys (1989) related
increased search efficiency to both increasing target-
distractor similarity and decreasing distractor-distrac-
tor similarity. Though they only fairly vaguely defined
‘‘similarity’’ and the template-matching and grouping
processes presumed to underlie the observed effects,
this work has been highly cited and inspired much
research, particularly on heterogeneity effects. Quite
possibly the peripheral crowding mechanisms modeled
by TTM underlie the similarity effects described by
Duncan and Humphreys (1989). For instance, their
suggestion that similarity might have to do with the
amount of shared contour might sound related to
aspects of tileability. Furthermore, strength of crowd-
ing is known to depend both upon target-flanker
grouping (Andriessen & Bouma, 1976; Kooi, Toet,

Tripathy, & Levi, 1994; Saarela, Sayim, Westheimer, &
Herzog, 2009) and flanker-flanker grouping (Livne &
Sagi, 2007; Sayim, Westheimer, & Herzog, 2010;
Manassi, Sayim, & Herzog, 2012).

To gain easier intuitions about TTM, we developed a
rule of thumb for that model, which we call tileability.
Crowding in peripheral vision leads to ambiguities
between an original patch and jumbled versions of that
patch. If in that jumbling, distractors can easily tile
produce a target, search is hard. Similarly, if in that
jumbling the distractors disperse and form the target,
search is hard. We hope that tileability provides
researchers with an intuitive shortcut to predictions of
TTM. Of course, tileability can provide only qualitative
predictions (one condition is easier than another) rather
than more quantitative predictions (how much easier).

Ultimately, however, TTM is the true model. TTM
computes image statistics on the responses of a
multiscale steerable pyramid. TTM only confuses
patches with similar image statistics. This means that
while we can gain a certain amount of leverage by
imagining tiling in the image domain, ultimately tiling
‘‘occurs’’ in subbands, operating on the outputs of
bandpass filters, not on pixels, nor on presegmented
entities like bars. Tiling does not produce a random
pileup of distractors; only local regions with similar
responses to oriented filters are likely to tile together to
form new structures. The jumbled patch as a whole
must preserve the image statistics of the original patch.
If there is any question as to the predictions of TTM,
one can use our standard methodology of generating
mongrels from target-present and target-absent patch-
es, and measuring discriminability of those mongrels
(Rosenholtz et al., 2012b; Zhang et al., 2015). Unlike
FIT or similarity theory, our word model has a clearly
defined computational model to back it up.

In this paper, we compared FIT and TTM by testing
performance on new search tasks. Five classic search
tasks—explained by both TTM and the traditional FIT
model—form the basis for these new search experiments.

Based on tileability, we modified each of these search
tasks in a way that should make minimal difference to
FIT, but matter to TTM. In each case, tileability made
predictions in advance about whether the modifications
would make search easier or harder. We then ran both
standard RT search tasks and a 2IFC version, and
looked at which theory does better. Experimental
results from both RT tasks and 2IFC tasks show that
fairly subtle changes in these search tasks lead to
significant changes in performance, in a direction
predicted by tileability. Classic search models do not
obviously predict these results. At the very least, the
effects of subtle stimulus changes point to the need for
models that operate on images, rather than on
presegmented ‘‘things,’’ like bars. Furthermore, the
success of tileability provides definitive evidence in
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favor of the texture tiling model explanation of search
as opposed to FIT.

Keywords: visual search, image statistics, summary
statistics, mongrel, texture tiling model, feature integra-
tion theory, search asymmetry, peripheral vision
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Footnote

1 In the full version of the model, summary statistics
are measured within multiple ‘‘pooling’’ regions that grow
linearly with distance to the point of fixation, sparsely
overlap, and tile the visual field (Balas, Nakano, &
Rosenholtz, 2009). Visualizing the information available
then requires iteratively satisfying constraints from
multiple pooling regions, a process that is at present quite
computationally intensive (Freeman & Simoncelli, 2011;
Rosenholtz et al., 2012a). In many cases, however, we can
get intuitions from examining the information encoded in
a single pooling region.
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