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Abstract—The problem of storing permutations in a distributed
manner arises in several common scenarios, such as efficient
updates of a large, encrypted, or compressed data set. This
problem may be addressed in either a combinatorial or a coding
approach. The former approach boils down to presenting large
sets of permutations with locality, that is, any symbol of the
permutation can be computed from a small set of other symbols.
In the latter approach, a permutation may be coded in order to
achieve locality. This paper focuses on the combinatorial approach.

We provide upper and lower bounds for the maximal size of
a set of permutations with locality, and provide several simple
constructions which attain the upper bound. In cases where the
upper bound is not attained, we provide alternative constructions
using Reed-Solomon codes, permutation polynomials, and multi-
permutations.

Index Terms—Distributed storage, permutation codes, lo-
cality, Reed-Solomon codes, permutation polynomials, multi-
permutations.

I. I NTRODUCTION

For an integern, let Sn be the group of all permutations
on n elements. Given a permutationπ ∈ Sn we consider
the problem of storing a representation ofπ in a distributed
system of storage nodes. This problem arises when considering
efficient permutation updatesto a distributed storage system.
That is, in a system which stores a file with large entries
whose order commonly changes, one might prefer to store the
permutation of the entries, rather than constantly shift them
around. Alternatively, the stored file may besigned, hashed,
or compressed, and storing the permutation alongside the file
allows to update the file without altering its signature. Perhaps
the most natural example for an update is the common operation
of cut and paste, which may be modeled as a permutation
update.

The crux of enabling efficient storage lies in the notion of
locality, that is, any failed storage node may be reconstructed by
accessing a small number of its neighbors. The corresponding
coding problem is often referred to assymbol locality, in which
every symbol of a codeword is a function of a small set of other
symbols. In this paper we consider symbol locality. Further,
since our underlying motivation is allowingsmallupdates to be
done efficiently, we disregard the notion of minimum distance
between the stored permutations, and focus solely on locality.

Locality in permutations may be considered in either a
combinatorial or a coding approach. Under the combinatorial
approach, which is the main one in this paper, the underlying
motivation is set aside, and the problem boils down to finding
(or bounding the maximum size of) sets of permutations
which present locality. Under the coding approach, the given
permutation may be coded in order to achieve locality, e.g.
by using alocally recoverable code(LRC). The combinatorial
approach clearly outperforms the use of LRCs in terms of
redundancy (see Section II), at the price of not being able to
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store any permutation. Furthermore, it may be shown [10] that
storing a subset ofSn using an LRC while maintaining the same
overhead as in the combinatorial approach does not enable an
instant access to the elements of the permutation, as discussed
further in this section.

The combinatorial approach may also be applied in rank
modulation coding for flash memories [9], in which each flash
cell contains an electric charge, and a block of cells contains
the permutation which is induced by the charge levels. A rank
modulation code which enables local erasure correction allows
quick recovery from a complete loss of charge in a cell. Yet, this
application requires some further adjustments of our techniques,
since the charge levels usually representrelative values rather
thanabsoluteones.

A system which storesπ ∈ Sn is required to answer either
π−1(i) =? (denoted Q1) orπ(i) =? (denoted Q2) quickly, for
anyi. In the combinatorial approach, either one of Q1 or Q2 be-
comes trivial, depending if we consider the permutation at hand
as (π(1), . . . , π(n)) or

(

π−1(1), . . . , π−1(n)
)

. That is, when
storing the latter, answering Q1 is straightforward, and answer-
ing Q2 is possible by inspectingπ−1(i), π−1(π−1(i)), . . . , etc.,
until i is found (see [6, ch. 1.3, p. 29]). Hence, the number of
required queries for Q1 is 1 (orlogn bits), and for Q2 it is
at most the length of the longest cycle inπ. Although it is
not the general purpose of this research, we take initial steps
towards efficient retrieval ofπ(i) and π−1(i) simultaneously.
A more expansive discussion will appear in the full version of
this paper.

Since a variety of mathematical techniques are used through-
out this paper, in each technique we consider the permutations
in Sn as operating on a different sets of symbols. These
sets may be either[n] , {1, . . . , n} or {0, . . . , n − 1}.
Alternatively, we may assume thatn is a power of prime, and
{0, 1, . . . , n − 1} is an enumeration of the elements inFn,
the finite field with n elements, where the additive identity
element ofFn is denoted by “0” and the multiplicative identity
element is denoted by “1”. Unless otherwise stated, we consider
permutations in theone line representation(one-liner, in short),
that is,π , (π1, . . . , πn) =

(

π−1(1), . . . , π−1(n)
)

. Given a set
S ⊆ Sn, we say thatS has localityd if for any π ∈ S, any
symbolπi may be computed fromd other symbols ofπ. The
rate of S is defined aslog |S|/ log(n!).

This paper is organized as follows. Section II summarizes
related previous work. Section III discusses upper and (exis-
tential) lower bounds on the maximal possible size of subsets
of Sn which present locality. Section IV provides several simple
constructions, some of which attain the upper bound presented
in Section III. One of these constructions is enhanced by using
Reed-Solomon codes and permutation polynomials in Subsec-
tion IV-C, and by using multi-permutations in Section IV-D.
Concluding remarks and problems for future research are
given in Section VI. For the lack of space, some proofs are
omitted, and are included in the full version of this paper [10].
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Additional omitted results are briefly summarized in Section V.

II. PREVIOUS WORK

Coding overSn, endowed with either of several possible
metrics [5], was extensively studied under many different
motivations. For example, codes inSn under the Kendall’sτ
metric [1] and the infinity metric [13] were shown to be useful
for non-volatile memories, and codes under the Hamming
metric (also known as permutation arrays) were shown to be
useful for power-line communication [4]. In all of these works,
the permutations are encodings of messages, and hence should
maintain minimum distance constraints. In this work, however,
the permutation itself is of interest, and thus minimum distance
is not considered.

As mentioned in the Introduction, we consider permuta-
tions in their one line representation (one-liner, in short). Our
problem may be seen as allowing localerasurecorrection of
permutations in the one-liner. Erasure and deletion correction
of permutation codes was discussed in [8]. In this work it
was shown that the most suitable metric for erasure correction
(called “stable erasure” in [8]) is the Hamming metric, that
measures the number of entries in which the one-liners differ.
However, the work of [8] was motivated by the rank modulation
scheme in flash memories and thus locality was not discussed.

Furthermore, it is obvious that a permutation array with
minimum Hamming distancen − d + 1 allows local erasure
correction of any symbol from anyd other symbols. However,
constructing permutation arrays with minimum Hamming dis-
tance is an infamously hard problem, let alone in the high
distance region [2]. Moreover, construction of permutation
arrays with minimum Hamming distance isnot equivalent to
finding sets of permutations with locality, since the inverse is
clearly untrue, that is, a set with localityd does not imply a
permutation array with minimum Hamming distancen−d+1.

A similar motivation lies in the work of [11], where the au-
thors considered updates which involvedeletionsandinsertions
to a file in a distributed storage system. Clearly, a permutation
update can be seen as a series of deletions and insertions and
conversely, a deletion is treated in [11] as a permutation. Our
work may be seen as an extension of “scheme P” from [11] to
permutationupdates, as we handle various types of larger sets
of permutations.

When considering the coding approach, a standard technique
is to use LRCs. An(m, k, d) LRC is a code that produces
an m-symbol codeword from ak-symbol message, such that
any symbol of the produced codeword may be recovered by
contacting at mostd other symbols. LRCs have been subject
to extensive research in recent years [12], mainly due to
their application in distributed storage systems. Consider any
permutationπ ∈ Sn as a string over the alphabet1 [n], and
encode it tom symbols using an optimalsystematicLRC. LRCs
that encoden = k symbols tom symbols and admit locality
of d satisfy [12, Theorem 2.1]

n

m
≤

d

d+ 1
, (1)

i.e., their rate is bounded from above byd/(d + 1). Thus,
n/d redundant information symbols are required to achieve
locality of d. Using the combinatorial approach we achieve
smaller storage overhead, in the price of not being able to
store any permutation. In addition, in Subsection III-B it will be
shown that there exists acosetof an optimal locally recoverable

1More precisely, the alphabet[n] when seen as a subset of a large enough
finite field Fq , over whom the construction of the LRC is possible.

codeC, which contains a setS of words that can be considered
as permutations. However, this claim is merely existential, and
does not provide any significant insights on the structure ofS.

III. B OUNDS

Let A(n, d) be the maximum size of a subset ofSn with
locality d. This section presents an upper bound and an ex-
istential lower bound onA(n, d). This upper bound is later
improved ford = 1, and is attained by a certain construction
in Section IV-A to follow.

A. Upper Bounds

The bound for LRCs (1) can be used as-is ifn is a power
of prime, and the set of permutations is considered as a non-
linear code inFn

n. By a simple adaptation of [12, Theorem 2.1]
to non-linear codes, we have that a non-linear code inF

n
n with

locality d contains at mostn⌊dn/(d+1)⌋ codewords. This bound
may be improved by utilizing the combinatorial structure of
permutations.

Theorem 1. A(n, d) ≤ n!

⌈ n

d+1⌉!
.

Using the Stirling approximation, Theorem 1 implies an
upper bound of d

d+1 on the rate of a set of permutations with
locality d.

The trivial subsetC = Sn admits locality ofd = n − 1,
and attains the upper bound. In addition, thealternating group,
and its complement, have locality ofn− 2. This is due to the
fact that a given permutation with two erased symbols can be
corrected to either of two possible permutations, one of which is
odd and the other is even. Hence, thealternating groupand its
complement attain this upper bound as well. According to these
examples, we have thatA(n, n − 1) = n!, andA(n, n− 2) =
n!/2.

For d < n − 2 there exists a large gap between this bound
and the sizes of the sets presented in this paper. This gap may
be resolved ford = 1 by using a graph theoretic argument on
the dependency graph in the proof of Theorem 1.

As a result, we obtain the following bound on the maximal
size of sets of permutations with locality one.

Theorem 2. A(n, 1) ≤ n!! ,
∏⌈n/2⌉−1

i=0 (n− 2i).

Since the set constructed in Section IV-A below attains the
bound of Theorem 2 ford = 1, we have thatA(n, 1) = n!!.

B. Lower Bound

Optimal LRC of lengthn and locality d may easily be
constructed overZn, the set of integers modulon. This is done
by addingn/(d + 1) “parity checks” to all disjoint sets ofd
consecutive symbols inZn−n/(d+1)

n . This requires thatd + 1
divides n, but may easily be adapted to anyd. The rate of
this code attains the upper bound ofn−n/(d+1)

n = d
d+1 , given

in (1), and since the code is linear, all its cosets have locality
d as well. Sincen! of the words inZn

n are permutations, we
obtain the following existentiallower bound onA(n, d).

Theorem 3. A(n, d) ≥ n!/nn/(d+1).

The rate which is implied by Theorem 3 asymptotically
attains the rate of the upper bound which is implied by
Theorem 1. Yet, the upper and lower boundsdo not coin-
cide, since Theorem 3 implies higher redundancy (that is,
log(n!) − log |S|) than the one implied by Theorem 1. It is
evident from Theorem 1 and Theorem 3 that enabling larger
locality may potentially increase the size of the sets.



IV. H IGH RATE CONSTRUCTIONS

This section presents several constructions of sets of per-
mutations with locality, some of which attain the upper bound
given in Section III-A. The first set of permutations, discussed
in Section IV-A, is those that may be seen as a concatenation
of n/h permutations inSh, for some h which divides n.
Subsection IV-B shows a similar technique which achieves
high locality. Subsection IV-C and Subsection IV-D enhance
the construction of Subsection IV-A by using Reed-Solomon
codes over permutation polynomials, and by using multi-
permutations.

A. Concatenation of Short Permutations

Obviously, in the one-line representation, any single symbol
may easily be computed from all other symbols. This principle
leads to simple sets of permutations which can be stored
efficiently.

Consider the setS of permutations inSn which may be
viewed as a concatenation ofn/h shorter permutations onh
elements, for some integerh which dividesn. That is, their one-
liner may be viewed as a concatenation ofn/h one-liners, each
of which is a permutation of either of the sets{1, . . . , h}, {h+
1, . . . , 2h}, etc. Clearly,S contains(h!)n/h · (n/h)! permuta-
tions, has localityd = h− 1 and rate 1

d+1 .
Note that multiple erasures can be corrected simultaneously,

as long as they do not reside in the same short permutation. Two
erasures from the same short permutation cannot be corrected
simultaneously. In addition, Q1 can be answered trivially,
and Q2 requires finding the suitable sub-permutation inn/h
queries, and additionalh queries to locate the desired element.

For d = 1 we have|S| = n!!, and thus this construction
attains the bound of Theorem 2 with equality. However, for any
d = O(1), d ≥ 2, these setsdo notattain the optimal rate, and
are superseded by the existential lower bound of Theorem 3.

B. Concatenation of Range-Restricted Permutations

In this subsection we provide a technique for producing sets
of permutations with high localityd ≥ n/2. For a set of
symbolsΣ let S(Σ) denote the set of all permutations ofΣ. In
this subsection we use the alphabetΣ = {0, . . . , n − 1}, and
henceS(Σ) = Sn. Let h be an integer which dividesn, and
for i ∈ {0, . . . , n/h− 1} let

Ki , S({ih, ih+ 1, . . . , (i+ 1)h− 1}) ◦

S([n] \ {ih, ih+ 1, . . . , (i+ 1)h− 1}),

where◦ denoted the ordinary concatenation of sequences.

Lemma 1. The setS , ∪
n/h−1
i=0 Ki has localityd = n−h− 1.

Proof. To repair a missing symbolπj , 0 ≤ j ≤ n−1 in π ∈ S,
distinguish between the casesj ≤ h−1 andj ≥ h. If j ≤ h−1,
πj may clearly be computed from{πi}i∈{0,...,h−1}\{j}. If j ≥
h, the set of symbols{πi}i∈{h,...,n−1}\{j} must contain a gap
of h consecutive numbers, which are located in the prefix ofπ.
After identifying this gap, the missing symbolπj may easily
be deduced.

The setS containsn
h · h! · (n− h)! = n · (h− 1)! · (n− h)!

and it does not attain the upper bound given in Theorem 1. For
constanth the rate ofS asymptotically approaches 1 asn goes
to infinity, since

log(n · (h− 1)! · (n− h)!)

log(n!)
≥

log((n− h)!)

log(n!)

n→∞
−→ 1.

Equal rate may be obtained for lower locality, whereh =
Θ(n); if h = δn for some constant0 < δ < 1, then

log(n · (h− 1)! · (n− h)!)

log(n!)

n→∞
−→ δ + (1 − δ) = 1.

An identical rate is also obtained by choosingh = Θ(nǫ).
Hence, the best choice of parameters for this technique seems
to be h = Θ(n), since it results in low locality and optimal
rate.

C. Extended Construction from Error-Correcting Codes

This section provides a construction of a set of permutations
in Sn with locality, from two constituent ingredients. The first
ingredient is a set of permutationsS ⊆ Sn−t with locality d,
for some givent and d. The second ingredient is an error-
correcting codeT , in which all codewords consist oft distinct
symbols.

A symbol replacement functionf is an injective function
which maps one alphabet to another. Given a permutationπ
and a symbol replacement functionf let f(π) be the result
of replacing the symbols ofπ according tof . For a set of
permutationsS let f(S) , {f(π)|π ∈ S}. The construction of
this section relies on the following observation.

Observation 1. If S ⊆ Sn−t is a set of permutations with
locality d, andf is a symbol replacement function, thenf(S)
is a set of permutations with localityd as well.

Using a proper symbol replacement functionf , a permutation
f(π) for π ∈ S is concatenated to a codeword fromT to create
a permutation inSn. This symbol replacement function is given
in the following definition, which is followed by an example.

Definition 1. For any integers1 < t < n, let π be a
permutation inSn−t and e ∈ [n]t be a word witht distinct
symbols{σ1, . . . , σt} , E ⊆ [n]. Let fE be the following
symbol replacement function

fE : [n− t] → ([n− t] \ E) ∪

{n− t+ 1, . . . , n− t+ |E ∩ [n− t]}

fE(i) =



























i, i /∈ E.

j,

For some integers, i and j are the
s-smallest numbers inE ∩ [n− t] and
{n− t+ 1, . . . , n} \ E, respectively.

That is,fE maps each element which does not appear inE to
itself, and each element which appears inE is mapped to a
symbol in{n− t + 1, . . . , n} which does not appear inE, in
an increasing manner. UsingfE , define the operator⊙ as

π ⊙ e , fE(π) ◦ e,

where◦ denotes the ordinary concatenation of strings.

Example 1. For n = 7 and t = 3, let π = (1, 2, 3, 4), e =
(3, 4, 7), andE = {3, 4, 7}. By Definition 1 we have that

fE(1) = 1, fE(2) = 2, fE(3) = 5, fE(4) = 6, and

π ⊙ e = fE(π) ◦ e = (1, 2, 5, 6, 3, 4, 7) ∈ S7.

The operation⊙ is used to extend an existing setS ⊆ Sn−t

with locality to a subset ofSn with a larger locality by using
an error-correcting MDS codeT .

Lemma 2. For integers1 < t < n, if S ⊆ Sn−t is a set with
locality d andT is an MDS code in[n]t with minimum distance
δ and distinct symbols, thenS ⊙ T , {s⊙ e|s ∈ S, e ∈ T } ⊆
Sn is a set of permutations with localityd+ t− δ + 1.



Proof. Let π = s ⊙ e be a permutation inS ⊙ T . To repair
a missing symbolπj for 1 ≤ j ≤ n we distinguish between
the casesj ≤ n − t and j > n − t. If j > n − t, by the
minimum distance property of the MDS codeT we may obtain
πj by accessingt − δ + 1 symbols frome. If j ≤ n − t,
then by accessingt − δ + 1 symbols frome we may identify
the functionfE used to define the operator⊙ (Definition 1).
OncefE is known, the symbolπj may be obtained by using
Observation 1.

This technique can be used to obtain explicit sets with
constant localityd ≥ 2, which are the largest ones in this paper
for this locality. Unfortunately, to the best of our knowledge the
asymptotic rate of these sets does not exceed1

2 , and hence
they are not optimal. Moreover, since a set with locality1
also has localityd ≥ 2 for any d, the sets of locality 1 from
Subsection IV-A can be used for any locality greater than 1,
while obtaining rate of12 as well. Nevertheless, for small values
of d we are able to construct explicit sets with localityd which
contain more permutations than the sets with locality 1 from
Subsection IV-A. To provide good examples by this technique,
we must construct error-correcting codes where each codeword
consists of distinct symbols.

Recall that aReed-Solomoncode is given by evaluations of
degree restricted polynomials on a fixed set of distinct elements
from a large enough finite field. These codes contain sub-codes
which are suitable for our purpose. The codewords in these sub-
codes are obtained by evaluations ofpermutation polynomials.
A permutation polynomial is a polynomial which represents
an injective function fromFn to itself. In spite of the very
limited knowledge on permutation polynomials in general, all
permutation polynomials of degree at most 5 are known (see [4,
Table 2]). For example, we have the following lemma.

Lemma 3. [4, Table 2] If n is a power of 2, then there exist at
least(n−1)(2n+ n(n2+2)

3 ) permutation polynomials of degree
at most 4 overFn.

As a corollary, we obtain the following constructions.

Example 2. Let n be an integer power of 2, and let
S ⊆ Sn−6 be an optimal set with locality 1 (which exists by
Subsection IV-A, sincen − 6 is even). LetT be a subset of
a Reed-Solomon code of dimension5 and length6 over Fn,
which corresponds to all permutation polynomials of degreeat
most 4. According to Lemma 2 and Lemma 3, the setB , S⊙T

contains(n − 6)!! · (n − 1)(2n + n(n2+2)
3 ) permutations, and

has locality 6.

Notice that an optimal setA ⊆ Sn with locality 1,
which may be seen as having any larger locality, containsn!!
permutations (see Section IV-A). The setB is larger, since
n!! = (n − 6)!! · Θ(n3) and |B| = (n − 6)!! · Θ(n4). Hence,
Example 2 provides sets which are at leastn times larger than
those given in Section IV-A, and have larger constant locality.
Additional examples are provided in [10].

D. High-Locality Construction From Multi-Permutations

While constructing sets of permutations with constant lo-
cality d ≥ 2 and rate above12 seems hard, it is fairly easy
to construct sets with such rate and localityd = Θ(nǫ), for
0 ≤ ǫ ≤ 1. Such a set is obtained from Section IV-A by taking
h = Θ(nǫ). However, the resulting rate isǫ, where Theorem 3
guarantees that for this locality there exist sets with ratewhich
tends to 1 asn tends to infinity.

In this subsection it is shown that the construction from
Section IV-A may be enhanced by using multi-permutations,

achieving rate of12 + ǫ
2 for locality d = Θ(nǫ). The methods

and notations in this subsection are strongly based on [3].
For nonnegative integersℓ and m, a balanced multi-set

{1m, 2m, . . . , ℓm} is a collection of the elements in[ℓ], where
each element appearsm times. A multi-permutationon a
balanced multi-set is a string of lengthℓm, which is given
by a function σ : [ℓm] → [ℓ] such that for all i ∈ [ℓ],
|{j|σ(j) = i}| = m. The set of all multi-permutations is
denoted bySℓ,m, and its size is(mℓ)!

(m!)ℓ
. To distinguish be-

tween different appearances of the same element in a multi-
permutationσ, for j ∈ [mℓ], i ∈ [ℓ], and r ∈ [m] we denote
σ(j) = ir andσ−1(ir) = j if the j-th position ofσ contains
the r-th appearance ofi.

Example 3. If m = 2 and ℓ = 3 thenπ = (1, 1, 2, 3, 2, 3) is
a multi-permutation on the balanced multi-set{1, 1, 2, 2, 3, 3}.
To refer to the second appearance of2 we say thatπ(5) = 22.

We are interested in multi-permutations withtwoappearances
of each element, and therefore assume thatm = 2 andℓ = n/2.
In particular, we consider such multi-permutations in which any
two appearances of the same element are not too far apart. To
this end, the following definition is required.

Definition 2. If π ∈ Sn/2,2 and t ∈ [n] then,

w(π) , max
i∈[n/2]

∣

∣π−1(i1)− π−1(i2)
∣

∣ , and

Bt , {π ∈ Sn/2,2|w(π) ≤ t}.

That is,w(π) indicates the maximum distance between two
appearances of the same element, or alternatively,w(π) − 1
indicates the maximum number of elements between two
appearances of the same element inπ. For a givent, Bt is
the set of all multi-permutations inSn/2,2 in which every two
identical elements are separated by at mostt−1 other elements.
Clearly, the multi-permutationπ which was given in Example 3
is in B2.

To construct “ordinary” permutations inSn from multi-
permutations inSn/2,2 we use the termassignment of permuta-
tions. As in Subsection IV-B, for a set of elementsΣ we denote
by S(Σ) the set of all permutations ofΣ (that is, the set of all
injective functionsf : {1, . . . , |Σ|} → Σ).

Definition 3. If π ∈ Sn/2,2 and γ1, . . . , γn/2 are permuta-
tions such thatγi ∈ S ({2i− 1, 2i}) for all i, then σ =
π(γ1, . . . , γn/2) is the permutation inSn such that for all
1 ≤ j ≤ n, if π(j) = ir thenσ(j) = γi(r).

Example 4. If π = (1, 1, 2, 3, 2, 3) ∈ S3,2 and γ1 =
(1, 2), γ2 = (4, 3), and γ3 = (6, 5) thenσ = π(γ1, γ2, γ3) =
(1, 2, 4, 6, 3, 5) ∈ S6.

Note that by choosingh = 2 in the construction which
appears in Subsection IV-A, the resulting setS can be described
as

S = {π(γ1, . . . , γn/2) | ∀i, γi ∈ S({2i− 1, 2i}) andπ ∈ B1}.

Hence, the construction in the following lemma may be seen
as a generalization of the construction from Subsection IV-A.

Lemma 4. For a nonnegative integert, the set

At , {π(γ1, . . . , γn/2) | ∀i, γi ∈ S({2i−1, 2i}), and π ∈ Bt}

has locality4t.

Using this lemma, we are able to provide a set with high
locality Θ(nǫ), and asymptotic rate strictly above12 .

Theorem 4. If t = Θ(nǫ) then limn→∞
log |At|
logn! ≥ 1

2 + ǫ
2 .



V. A DDITIONAL RESULTS

Due to space constraints, some of the results from the full
version of this paper were omitted. We list some of the omitted
results below, and the interested reader may find them, together
with full proofs of all the included results, in [10].

For certain low values of locality, a lower bound equivalent
to Theorem 3 is obtained by a connection to a classic problem
in combinatorics. This problem is known as the toroidal semi-
queens problem, or alternatively, a set of transversals in a
cyclic Latin square [7]. It can be shown that given an efficient
algorithm which produces transversals in a cyclic Latin square,
one may construct a linear set of permutations with locality
and optimal rate. However, such algorithm does not currently
exists, and in fact, an estimation of the number of transversals
in cyclic Latin squares was only recently given in [7].

As mentioned in Section II, in this paper the permutations
themselves are of interest, as opposed to most of the research
in permutation codes, where the permutations are a means
to overcome technical limitations. For this reason we seek
insightful structures of permutations which induce locality, and
not necessarily provide a non-vanishing rate.

One such structure is given by a ball in theinfinity metric
on Sn, i.e., the set of permutations in which every element
is located no more thanr positions from its original location,
for some given radiusr. These permutations arise naturally
in scenarios where an initial conjectured ranking of items is
imposed, and any item is not expected to exceed its initial
ranking by more than a certain bound. For a given radiusr, we
show in [10] that the corresponding permutations have locality
of 4r, and concurrent erasures may be handled simultaneously
more efficiently than separately. Although the exact size of
the ball in the infinity metric is not known, it is known to
be exponential.

Another interesting structure arises in consumption of media,
where the consumer begins with an arbitrary item of a feed,
and either proceeds forward or backwards from the set of
consecutive items which he read so far. This procedure induces
2n − 2 permutations in which any prefix (or suffix) consists of
consecutive numbers, and admits locality of (at most) four.

In this paper we discussed the storage problem of permuta-
tions from acombinatorialpoint of view, with no encoding.
Needless to say that this restriction, albeit being mathemat-
ically appealing, is merely a narrow interpretation of the
wide spectrum of techniques which can be devised to store
permutations in a distributed manner. In the full paper, we
take several initial steps towards expanding our arsenal by
allowing encoding (“the coding approach”). In this approach
we show that a ball in the infinity metric admits a more efficient
representation with the same locality. Additionally, we present
a framework for supporting queries ofarbitrary powers of
the stored permutation, a technique which is interconnected
with the combinatorial approach. We conclude with a proof of
concept that permutations can be stored with less redundancy
than ordinary strings, achieving a (highly) negligible advantage
for locality of two and three.

VI. D ISCUSSION ANDOPEN PROBLEMS

In this paper we discussed locality in permutations without
any encoding, motivated by applications in distributed storage
and rank modulation codes. The lack of encoding enables to
maintain low query complexity, which is a reasonable require-
ment in our context. Clearly, if no such constraint is assumed,
any permutation can be represented using⌈log(n!)⌉ bits, and
stored using an LRC. However, when a query complexity

requirement is imposed, there seems to be much more to be
studied, and our results are hardly adequate comparing withthe
potential possibilities. Additional discussion about techniques
which involve encoding appears in the full version of this paper.

We provided upper and lower bounds for the maximal size of
a set of permutations with locality, and provided several simple
constructions with high rate. For simplicity, we assumed that
each node stores a single symbol from[n], and focused on
symbol locality. This convention may be adjusted to achieve
storage systems with different parameters, i.e., one might
impose anarray codestructure on this problem, in order to
improve the parameters.

Finally, we list herein a few specific open problems which
were left unanswered in this work.

1) Close the gap between the upper bound in Theorem 1 and
the lower bound in Theorem 3, potentially by using the
methods of Theorem 2.

2) Provide an explicit construction of sets with constant
locality d ≥ 2 and optimal rate d

d+1 . The existence of
these sets is guaranteed by Theorem 3.

3) Find additional large sets of permutations that have good
locality.

4) Explore the locality of permutations under different rep-
resentation techniques.

5) EndowSn with one of many possible metrics, and explore
the locality of codes with a good minimum distance by this
metric.
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