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Abstract
The navigation problem for mobile robots operating in unknown environments can be
posed as a subset of Simultaneous Localization and Mapping (SLAM). For computationally-
constrained systems, maintaining and promoting system sparsity is key to achieving
the high-rate solutions required for agile trajectory tracking. This thesis focuses on
the computation involved in the elimination step of optimization, showing it to be a
function of the corresponding graph structure. This observation directly motivates
the search for measurement selection techniques to promote sparse structure and
reduce computation. While many sophisticated selection techniques exist in the liter-
ature, relatively little attention has been paid to the simple yet ubiquitous heuristic
of decimation. This thesis shows that decimation produces graphs with an inher-
ently sparse, partitioned super-structure. Furthermore, it is shown analytically for
single-landmark graphs that the even spacing of observations characteristic of deci-
mation is near optimal in a weighted number of spanning trees sense. Recent results
in the SLAM community suggest that maximizing this connectivity metric corre-
sponds to good information-theoretic performance. Simulation results confirm that
decimation-style strategies perform as well or better than sophisticated policies which
require significant computation to execute. Given that decimation consumes negli-
gible computation to evaluate, its performance demonstrated here makes decimation
a formidable measurement selection strategy for high-rate, realtime SLAM solutions.
Finally, the SAMWISE visual-inertial estimator is described, and thorough experi-
mental results demonstrate its robustness in a variety of scenarios, particularly to the
challenges prescribed by the DARPA Fast Lightweight Autonomy program.
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Chapter 1

Introduction

The navigation problem is ubiquitous in mobile robotics [7, 8, 13, 21, 27, 29, 46, 59].

In this thesis, navigation refers to the determination of the robot's position (more

generally position and orientation, or pose) at every instant in time with respect to

some fixed local or global frame. Here, navigation will not refer to trajectory planning,

which concerns where to go next, but rather localization of the robot at the current

time or in the past.

Having a solution to the navigation problem is a prerequisite to trajectory planning

and control, and it is difficult to imagine a real-world mission of a mobile robot that

does not require some form of navigation. For example, an autonomous vehicle which

needs to maneuver to a goal position needs to know its own position at every instant

in order to make sure it is heading in the right direction. A robot searching for a

specific target or exploring a large area needs to reason about where it has been in

order to ensure it searches efficiently and can communicate the target location or

describe the environment afterward.

The solution to the navigation problem can be as simple as relying on the GPS satel-

lite constellation via many off-the-shelf solutions, or using some other domain-specific

infrastructure such as motion-capture. However, these dependencies on existing in-

frastructures or known maps restrict the applicability of such systems to environments
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in which such infrastructure exists. In many environments of interest to robotic sys-

tems, such as underwater, indoors, and the surfaces of other planets, GPS is com-

pletely unavailable. Additionally, systems such as GPS can be crippled or jammed by

hostile actors, so solutions which can operate independently or degrade "gracefully"

under loss of GPS signal are highly desirable in military or other critical applications.

Many self-contained, or onboard, navigation solutions have been proposed over the

past half-century. Inertial navigation methods and well-known algorithms such as the

Kalman Filter 1341 and its derivatives [3,30,39,461 have been used in pose estimation

for decades. In 1969, the Apollo navigation system 1271 pioneered by the MIT In-

strumentation Lab demonstrated the capability of fusing inertial measurements with

external references (star sightings) to successfully navigate the lunar capsule to the

moon and back.

Inertial methods rely primarily on sensors such as gyroscopes and accelerometers,

which often are bundled as Inertial Measurement Units (IMUs). They are completely

self-contained, relatively inexpensive, and low-SWaP (Size, Weight, and Power). Ad-

ditionally, they can provide a high-rate (> 1 KHz) of data, enabling high-closed-loop

control. In combination with monocular vision, IMUs provide valuable observability

of metric scale as well as the gravity vector [431. IMUs directly measure angular

velocities and linear accelerations, and estimates of orientation and position are pro-

duced by integrating these signals. Besides the fact that this means the initial pose

is unobservable, the inevitable presence of noise in the sensor signal is compounded

in integration. Without correction, the resulting estimates will "drift" over time. As

a further complexity, consumer-grade IMUs can demonstrate non-negligible biases

which vary slowly over time. Without additional sensing, these biases are unobserv-

able, and can significantly degrade output quality. In many cases, in particular for

small robots with inexpensive inertial sensors, the results of naive integration (i.e.

"dead-reckoning") can drift so much as to become operationally useless in as little as

a few seconds.

The drift issue can be mitigated or eliminated by enforcing consistency with addi-
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tional, extrinsic observations of the robot's pose relative to landmarks or some global

fixed frame. GPS satellites or other known references can be well-suited for this task,

but are often unavailable or unreliable as mentioned previously.

For these reasons, it is desirable for navigation solutions to leverage ambient informa-

tion in unknown, unstructured environments. In the context of navigation, unknown

environments are characterized by the lack of known reference landmarks. Thus,

navigation solutions in unknown environments often make use of repeated sightings

of recognizable opportunistic landmarks which exist naturally in the environment.

Some examples of opportunistic landmarks detected in visual data in both outdoor

and indoor environments are shown in Figure 1-1.

Figure 1-1: Visual landmark detections (orange) produced by the Shi-Tomasi detector
156], which selects pixel regions of high intensity gradient. Individual landmarks can
be tracked from frame to frame in a video stream, producing a feature track. By
leveraging a projective camera model (Section 1.2.1), each track provides a set of
noisy geometric constraints which constrain camera motion over time.

Because these landmarks do not have known position a priori, and are observed via

noisy sensors, their positions must be simultaneously estimated alongside the robot's

pose. This is often formulated as a Simultaneous Localization and Mapping (SLAM)

problem, as both the robot's state and the set of latent landmarks it observes (the

map) are estimated simultaneously. For this reason, even though mapping, or building

a representation of the environment, is not a direct goal of the navigation task, in

SLAM approaches it is an integral, simultaneous process.
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While SLAM can be formulated generally, independent of the particular sensor modal-

ities in use, the choice of sensors has significant impact on the specific challenges of

the problem. In GPS-denied environments, the most common extrinsic sensors are

body-mounted laser scanners (LIDAR) or cameras. LIDARs are active sensors, giving

high accuracy and wide field-of-view (FOV) at least in two dimensions, but at the

cost of increased SWaP. Additionally, their scan patterns are often limited to only

2D planar slices, limiting their reliability for robots not confined to the plane. Cam-

eras, by contrast, are passive sensors amenable to much lower SWaP budgets, and

indeed are already present on many consumer cell phones, quadrotors, and automo-

biles. They naturally operate in full 3D, and their measurement range can extend

to the full line-of-sight. However, cameras do induce some challenges of their own,

primarily the non-linearity of their measurements (see Section 1.2) and their limited

field-of-view. Nonetheless, the use of such vision information has been the subject of

much of the last decade-and-a-half of research in this area [7,37,39,43,46,601, and

indeed this will be the focus of much of this thesis.

A realtime vision-aided navigation solution

A central contribution of this thesis is a presentation of the SAMWISE vision-

aided navigation system (originally published in [59]). Designed for computation-

constrained, fast-moving autonomous systems, SAMWISE provides high-rate state

estimates to facilitate both closed-loop control and long-term planning. Though SAM-

WISE places a large emphasis on the combination of inertial and vision-based sensing,

it can also accommodate a suite of other sensors, such as laser altimeters, barometers,

and GPS.

In Chapter 4, the architecture of SAMWISE is discussed in detail. SAMWISE makes

several key innovations over standard state estimation libraries that facilitate robust,

low-latency navigation and planning for agile vehicles. Developed in part for the

DARPA Fast Lightweight Autonomy (FLA) program [491, SAMWISE is designed

specifically to enable high-speed, agile autonomous flight on the Draper-MIT quadro-
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tor platform shown in Figure 1-2. Experimental results taken from a recent FLA

program milestone are provided, demonstrating robustness in a variety of conditions.

Additionally, ground-truth comparison is performed on the open-source EuRoC MAV

dataset [51.

Figure 1-2: The latest iteration of the Draper-MIT autonomous quadrotor platform
developed for the DARPA FLA program.

Measurement selection for computation reduction

Computation management is a vital, open challenge in SLAM today. Realtime,

computationally-constrained systems require high-rate data fusion to produce ac-

curate, robust state-estimation and navigation solutions. As is discussed at great

length in this thesis, maintaining sparsity in the underlying optimization is crucial

for efficient performance. As the measurements incorporated into the estimate ulti-

mately determine both sparsity and estimation performance, intelligent measurement

selection has the potential to maximize accuracy while minimizing computation.

Indeed, simple measurement selection heuristics such as decimation already abound

in practice. For many low-SWaP robots, the sensors they carry can easily generate

much more data than can be processed by the computational resources available.

This is especially true in camera-equipped systems, as each frame represents signifi-

cant pre-processing, even before being incorporated into a SLAM solver. In order to

achieve realtime performance, many of these measurements have to be discarded or

19

m



approximated. Intuitively, this incurs some loss of accuracy when compared to the

solution which could be derived from the full set of data.

At the heart of realtime SLAM is a fundamental tradeoff between accuracy and com-

putation. It is well-known (and intuitive) that incorporation of more information will

generally lead to better estimation performance. However, this often comes at the cost

of increased computation, potentially both in pre-processing and in SLAM optimiza-

tion. The exact relationship between the number and nature of measurements and

the ultimate computation is difficult to quantify and depends on the SLAM method

used. However, for iterative smoothing methods (defined in Section 1.3.2) common

in recent literature, incorporated measurements have a direct impact on the sparsity,

and therefore computational complexity, of the underlying system. Though vitally

important, the precise relationship between sparsity and the resulting computational

complexity is left somewhat vague in the SLAM literature. For reasons discussed

in Chapter 2, this relationship is difficult to quantify fully. In this thesis, the elim-

ination complexity is introduced as a direct (although incomplete) measure of the

computational complexity of a particular problem.

Compared to other modalities, the video stream provided by a camera is data-rich,

and can easily provide hundreds of potential measurements per frame, at a high data

rate. The obvious heuristic, and what is often done in practice, is decimation, where

only every n-th measurement or image frame is accepted. More sophisticated ap-

proaches have been proposed to this end, but they generally require extensive compu-

tation that often scales poorly with the size of the problem, making them prohibitive

for realtime use. Additionally, as will be seen, these approaches often implicitly as-

sume that reducing the number of measurements corresponds directly to reduced

computation. As will be seen, this assumption is correct in some ways, but too sim-

plistic in others, often leading to underwhelming computation savings. In contrast,

decimation-style policies are shown to produce an inherently-sparse super-structure

which fundamentally bounds elimination complexity. Numerical experiments verify

that decimated graphs demonstrate significant computation savings, even when dis-
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carding relatively few edges. Furthermore, decimation is shown to have near-optimal

connectivity characteristics in simple graphs. The surprising effectiveness of decima-

tion is the subject of Chapter 3.

The remainder of this chapter will formulate the visual-inertial navigation problem as

a graphical SLAM problem, and introduce measurement selection as an optimization

over this graph. Chapter 2 provides a detailed discussion of computation in graph

optimization, and introduces elimination cost as a representation of the computa-

tional complexity of a particular graph. Chapter 3 rigorously analyzes the commonly-

implemented decimation heuristic in landmark SLAM, and demonstrates that it is

in fact quite effective, providing comparable or better performance than more so-

phisticated approaches. Finally, Chapter 4 introduces the SAMWISE vision-aided

navigation system implemented as part of the DARPA FLA program, and provides

some recent performance results in challenging, real-world trials.

1.1 Related Work

1.1.1 Visual-inertial navigation

In the past decade, significant progress has been made in the direction of robust,

efficient visual-inertial navigation. Several filtering approaches based on the EKF

have been proposed, specifically tailored to the challenges presented by visual mea-

surements. The Multi-State Constrained Kalman Filter (MSCKF) [461 avoids rep-

resenting landmarks within the state vector by instead estimating the recent history

of states simultaneously. All observations of a particular landmark are incorporated

at once, as a single measurement, with a linearization point based on the latest es-

timate (which is assumed more accurate than any earlier-available estimates). This

dramatically improves accuracy and reduces both computation and memory require-

ments. [39] show that the use of multiple linearization points for pose variables over

time cause an observability mismatch in VIN systems, and ultimately leads to in-
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consistency. By simply locking the linearization points of variables in the MSCKF,

they demonstrate improved consistency and accuracy. In a similar vein, [26] pose an

explicit observability-constrained formulation of the standard EKF. However, as will

be discussed in Section 1.3.1, filtering methods suffer from the limitation that they

cannot re-linearize past measurements as the estimate is updated.

Unlike filtering methods, bundle adjustment or smoothing methods explicitly estimate

multiple robot or camera poses simultaneously as a nonlinear least squares minimiza-

tion. One of the earliest bundle adjustment methods demonstrated for use in com-

putational constrained environments is Parallel Tracking and Mapping (PTAM) 137].

PTAM successfully tracks camera motion and a sparse set of high-gradient features in

small workspaces, using parallel (but separate) mapping and tracking (localization)

optimizations. The sliding-window filter of Sibley et al. [57] employs a smoothing

framework over the recent history of poses to estimate planetary surface geometry

for a landing craft. A similar technique is used by Chiu et al. [81 which combines a

short-term sliding window graph leveraging the incremental iSAM2 solver [321 with

a long-term map used for global loop closures.

Rather than relying on the outputs of a costly feature extraction step, direct ap-

proaches leverage a photo-metric error model to pose an optimization on the raw in-

tensity values of the image. These allow for the construction of denser maps, as depth

estimates can be formed for each pixel in the image, rather than for only a sparse set

of keypoints. Semi-Direct Visual Odometry (SVO) by Forster et al. [21] use frame-to-

frame alignment for fast tracking, and initializes landmarks in R3 only for pixels with

well-estimated depths. LSD-SLAM [18] optimizes a pose graph with associated depth

maps to build large-scale, dense maps and exploit global loop closures. Multi-Level

Mapping [221 by Greene et al. improves upon LSD-SLAM by gracefully selecting high-

texture image regions to focus computation on, improving the density of the output

maps. Direct Sparse Odometry [17] incorporates a sophisticated camera model and

access to the current exposure setting to account for abrupt lighting changes and high-

order camera affects. While the dense maps constructed by these methods alongside
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the localization solution can be very useful for obstacle detection and avoidance, the

navigation outputs are not suitable for high-rate closed-loop control. Additionally,

these methods require significant multi-core CPU resources or even GPU acceleration,

making them prohibitive for many computationally-constrained systems.

SAMWISE, the subject of Chapter 4, was originally published in [591. It is designed

for high-rate state estimation for agile vehicles requiring closed-loop stabilization and

high-performance trajectory tracking. Designed for small vehicles which cannot afford

sufficient baseline for a stereo camera setup, it works with a single camera and IMU.

1.1.2 Measurement selection for computation reduction

Measurement selection has a long history in robotics and large-scale estimation. In

SLAM, measurement selection generally falls into two broad categories: keyframing

methods, and per-measurement methods.

Keyframing methods [29, 58, 611 select which robot states (usually poses) are most

valuable to represent within the SLAM graph. In vision-based systems, restricting

feature detection and tracking to a sparse set of keyframes can save significant pre-

processing. Stalbaum et al. [58] provide a suite of heuristics capturing the number of

previous and new landmarks detected in a given frame, as well as number of recent

keyframes, which can be used to identify new keyframes. Wang et al. [61] derive a

similar heuristic based on the Kullback-Leibler divergence to select poses based on

the "impact" of the candidate frame's set of landmark observations. As shown by Ila

et al. [29], each pose node in the graph represents a linearizing approximation that

ultimately contributes to inconsistency. By reducing the number of discrete pose

states, this inconsistency can be reduced. To this end, they limit "redundant" pose

vertices in the graph by enforcing a probabilistic threshold over distance traveled.

Similar to [291, Forster et al. [201 recognize that the inclusion of every intermediate

pose node (i.e. at IMU rate) leads to inconsistency and increased computation. By

developing a nonlinear method of pre-integrating, or bundling, consecutive IMU mea-
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surements directly on the SE(3) manifold, they define computationally efficient IMU

factors integrating many sequential IMU readings. This allows the robot's trajectory

to be represented accurately with a much sparser set of discrete nodes.

In contrast to keyframing methods, per-measurement methods select measurements

individually to accept or remove. Carlone and Karaman [7] attempt to replicate the

concepts of anticipation and attention for visual systems by processing only image

sub-regions and subsets of all available landmarks which are most likely to remain

in frame given the planned trajectory. Ila et al. [29] reject potential loop closures

which do not reduce the uncertainty over the latest state by a given threshold. By

clever bookkeeping, the evaluation of uncertainty reduction is kept inexpensive for

relatively simple graphs containing only odometry and loop closure constraints. For

more general graphs, in particular for landmark-SLAM, this calculation is much more

expensive.

From a graphical perspective, many methods have interpreted measurement selection

directly as an optimization over graph structure. Using either information-theoretic

[6, 28,44] or graph-theoretic optimization [35,361, many sophisticated methods aim

to prune edges while minimizing Kullback-Leibler divergence (KLD) or maximizing

graph connectivity. Inspired by the relationship between maximizing t-connectivity

and minimizing uncertainty volume [35], Khosoussi et al. [361 propose greedy and

semi-definite-relaxation algorithms which select the k best edges to prune (or keep).

In [6,28,441, a given set of original measurements are removed and replaced with a new

set of linear [6] or nonlinear [441 "virtual" measurements in a Chow-Liu Tree [6,9] or Cr

sparsified [281 configuration. However, these methods are computationally expensive,

with some requiring iterative optimization. Furthermore, the information-theoretic

optimization assumes a linearization point, which may be arbitrarily bad.

While perhaps applicable for long-term SLAM problems within a bounded geometric

area (and therefore lots of loop closures), such computationally-intensive methods

are less suitable for realtime use on high-rate, computationally-constrained systems.

Additionally, as will be discussed in Chapter 2, the computational complexity of a
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graph is not solely dependent on edge count. Thus the actual computational savings

of approaches such as [36] can be underwhelming, even after aggressive pruning.

An often-implemented heuristic is decimation. Decimation can be applied on a

keyframing level, in which only every r-th image frame or LIDAR scan is pro-

cessed and represented with a corresponding pose state in the graph. At the per-

measurement level, only every r-th observation from a given landmark might be added

to the graph. Decimation is applied broadly in practice [17,18,21,22,59], particularly

in vision-based systems as a method of downsampling the raw video stream. As will

be discussed later in this thesis, decimation has several nice properties, producing

efficiently-optimizable graphs and promoting structures with near-optimal connectiv-

ity properties.

1.2 Visual-inertial navigation

Visual-inertial navigation (VIN) is an increasingly popular approach to the navigation

problem for mobile robots. The modalities of inertial and visual sensing are comple-

mentary, and can be readily accommodated on inexpensive, low-SWaP (Size, Weight,

and Power) systems. Inertial measurements provide high-rate (> 100Hz), full-rank

constraints between sequential poses, and grant observability of metric scale 143].

Each vision measurement can be considered a low-rank observation of a particu-

lar landmark from a particular camera pose. Indirectly, the set of observations for a

given landmark can be considered a constraint between all of the corresponding poses.

Thus, landmarks which are observed over many frames can significantly reduce the

estimation drift which would result from pure inertial integration.

Cameras provide data at a reliable (though generally lower) rate and leverage "am-

bient" information that already exists in the environment rather than relying on

external infrastructure or known beacons. As passive sensors, cameras consume far

less energy than active sensors like LIDARS, and can make observations up to the

full line-of-sight. Cameras can be significantly less expensive than LIDARs, and the
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recent industry demand for cameras in consumer devices such as smart phones has

only increased the availability of high-quality, low-SWaP devices.

However, visual measurements present several unique challenges. As will be seen

in Section 1.2.1, the projective transformation of the implicit observation model is

nonlinear. The Jacobian representing the first-order approximation is highly sensitive

to the linearization point, and the landmark depth in particular. The degree of

non-linearity in vision measurements can make traditional SLAM approaches that

assume linear or simple one-time linearization fail to achieve acceptable accuracy,

and even diverge entirely. This sensitivity is compounded by the fact that any single

monocular observation grants no observability into depth (rather it noisily measures

the ray from the focal center to the landmark). Additionally, the camera model is

dependent on a variety of calibration parameters and distortion effects, which vary due

to manufacturing irregularities. While calibration can be done off-line and is generally

considered stable, it can be prohibitively time-consuming for large fleets of camera-

equipped robots, and imperfect calibration can cause performance degradation if not

accounted for. Third, rapid rotations can make feature tracking difficult and only

allow for landmarks to remain in view for a few frames, limiting their utility in

constraining robot motion over longer timescales. Fourth, as cameras are passive

sensors, they rely on the ambient lighting of the environment. Harsh lighting changes

can induce additional challenges, for example when entering a building from outdoors.

1.2.1 Monocular measurement model

In most vision-based approaches, landmarks are characterized by points 1(w) E R'

in the fixed world frame. Let the camera pose at time i be represented by x ')

(R w), t w)) E SE(3), defined by rotation matrix R w) and translation t w). When

viewed from the camera at pose xi, the landmark 1(w) is first transformed to the

camera frame and then undergoes a projective transformation [24]

Jlxi) R w)(1(w)_ )(i )
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h(l(xi) ['b + C + cY T (1.2)

with 1(xi) x y z] E R3, camera focal lengths fx, fy E R, and principal point

(cX, cy) c R2

It is often assumed that the dominant source of noise is an additive uncertainty

v ~ N(O, a.21 2 ) E R2 which can intuitively be ascribed to uncertainty in the feature

detection step [39,45,46]. Note that the uncertainty parameter - is specified in units

of pixels. Combining (1.1) and (1.2), the measurement z E R2 is assumed to be

generated according to

Z= h(l(xi)) + v (1.3)

The vision model (1.3) has the Jacobian

f. 0 f.X
H (1 () (1.4)

The Jacobian H represents the first-order linearization and is inversely sensitive to

the landmark depth z. Indeed, Montiel et al. [45] argue for using an inverse-depth

parameterization to initialize landmark estimates. For systems which attempt to

initialize landmarks immediately, from one or two observations, this can make a big

difference. However, the true posterior over the landmark does approach a Gaussian in

R3 with increasing observations and camera translation. Therefore, for more flexible

systems which can wait until sufficient observations have been acquired, such as the

SAMWISE system in Chapter 4, a standard R3 position parameterization is used.
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1.3 The smoothing formulation

1.3.1 Limitations of filtering in nonlinear systems

Traditional filtering approaches derive fundamentally from the Kalman Filter [341,

and are characterized by an explicit representation of uncertainty in either the n x n

covariance matrix E or information matrix A = E-1. This representation of Gaussian

uncertainty acts as a compact representation of the complete (linearized) measure-

ment history. In turn, this allows for constant-time algorithmic complexity, which is

desirable for realtime applications. For linear, Gaussian systems, this Gaussian rep-

resentation is lossless, and the Kalman Filter is an optimal unbiased estimator [34].

However, nonlinearity arises in many real-world systems, and many nonlinear exten-

sions of the Kalman Filter have been proposed. Unfortunately, optimality and even

consistency cannot be guaranteed for these methods in general. Proper handling of

the nonlinearity arising from system dynamics or sensor observation models is key to

achieving good accuracy and robustness. While there are several approaches to han-

dling nonlinearity, such as simple first-order linearization (as in the Extended Kalman

Filter, or EKF) or the use of the unscented transform ( [30]), the inevitable lineariza-

tion error is irrecoverably "baked-in" to the uncertainty representation at every step.

Over time, this error builds up, leading to inconsistency and possibly even complete

divergence.

As observed in the previous section, visual observations are nonlinear, and in practice

very sensitive to the chosen linearization point. A modified filtering approach, the

Multi-State Constrained Kalman Filter (MSCKF) proposed by [461 mitigates this

problem by waiting until the full observation history of a landmark has been collected

before incorporating them all at once into the estimate. This allows a more accurate

linearization point to be chosen, leading to improved consistency and accuracy.

Even in the case of the MSCKF, variables and measurements are only linearized once

and cannot be re-linearized once incorporated and as the current estimate is corrected.
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The Iterated EKF [31 allows for repeated iteration of measurement updates, where

the current measurement can be relinearized until convergence at each step. However,

this iterative relinearization is limited to the current measurements.

An additional drawback of naive filtering approaches is the storage space and complex-

ity associated with large covariance matrices. Although individual measurements may

only correlate a small number of variables, the resulting covariance matrix is generally

dense. For dense matrices, storage requirements grow with O(n2 ), and computation

with O(n'). For systems hoping to estimate many landmarks simultaneously, this

can quickly become prohibitive.

For all these reasons, the filtering formulation is not well-suited to highly nonlinear,

large (in terms of number of estimated variables) estimation problems like VIN.

1.3.2 Smoothing as nonlinear least squares

In contrast to filtering, smoothing approaches remove the moratorium on explicitly

maintaining previous measurements. Instead of condensing the measurement his-

tory into a linear-Gaussian uncertainty matrix, the smoothing formulation explicitly

represents inference as a nonlinear least squares (NLLS) optimization over the mea-

surements Z. This naturally lends itself to (and generally requires) the estimation

of multiple instantaneous states representing the robot's trajectory over time, rather

than simply the current state. Thus, smoothing can use current information to update

the estimate of past states.

argmin Z(hi(Xi) - zi)T i-1(hi(Xi) - zi) (1.5)

Because the full (nonlinear) measurements are maintained, each corresponding to a

term in the summation in (1.5), they can be relinearized at each iteration of the solver,

as the estimate is updated. While this optimization does not require a probabilistic

interpretation, under linearization and an assumption of additive Gaussian noise it
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corresponds to Maximum-Likelihood (ML) inference over a high-dimensional, multi-

variate Gaussian distribution. The full covariance matrix for a particular estimate is

thus well-defined, and can be recovered for a given linearization point. Nonetheless,

it is not required for ML inference.

This problem is well-studied, with both linear algebra and graphical interpretations

[13,521. Because the uncertainty is never condensed into a dense covariance matrix,

optimization can naturally take advantage of underlying sparsity in the information

matrix to solve much more efficiently. This sparsity is key in making the smoothing

formulation feasible for realtime systems.

1.3.3 Smoothing and SLAM

Simultaneous Localization and Mapping (SLAM) is a ubiquitous problem throughout

robotics that has been studied for decades. As discussed previously, visual navigation

on a mobile robot using landmarks which are unknown a priori is itself a SLAM

problem (as inferring the set of landmark positions is at least a byproduct, if not

a stated goal). SLAM (and therefore VIN) is naturally represented as an NLLS

smoothing problem.

1.3.4 Representation as graphical inference

It is often convenient to represent SLAM as a graphical inference problem. Graph

theory has a rich history, as does Maximum-Likelihood (ML) estimation theory. There

are several different variants of graphical models for inference, particularly undirected

models and factor graphs.

Undirected models represent estimation variables as nodes in a graph, connected by

edges representing probabilistic dependencies implied by measurements. In undi-

rected models, cliques represent fully-correlated sets of variables. The Markov prop-

erty of undirected models implies that any variable x is independent of all other
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variables given its neighbors N(x).

A factor graph, on the other hand, is made up of variable nodes representing the values

being estimated X, and factor nodes F, which are generated from the independent,

possibly non-linear measurements Z constraining them. Factor nodes represent mea-

surements or priors, and can relate one, two, or more variable nodes (unlike a single

edge in an undirected model).

A simple example of an undirected model and equivalent factor graph are shown in

Figure 1-3.

- - - - - V W WwW -w w wWWw~
Figure 1-3: Undirected model (left) and factor graph (right) representations of the
same SLAM problem. The robot states at discrete time steps are represented as
vertices xi. Landmark positions are represented as vertices Ii. In the undirected
model, variables related by a common measurement are adjacent. On the other hand,
factor graphs represent measurements explicitly via factor nodes (black squares). Note
that unary factors, such as the prior on variable x0 , are represented explicitly in this
model.

Factors can be considered n-ary edges rather than a class of vertices, as in either

case they connect the n variables which they depend on. The factor nodes represent

potentials over subsets of the variable set, and their product is proportional to the

value of the joint distribution. Indeed, the factors F - {Ii 2,(2.... , m} represent

the factorization of the joint distribution

N

P(XIZ) = flDi(Xi)
i=1

(1.6)

Factor graphs are more expressive, but undirected models can be more compact. For

measurements involving exactly two variables (such as odometry relating consecutive

poses, or observations of a particular landmark from a particular pose), there is a
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one-to-one correspondence between the factors in the factor graph and edges in the

undirected model. Thus, both representations are used throughout this thesis.

The chief advantage of graphical models, and factor graphs in particular, is the way

they naturally represent the Markovian independence structure between variables.

An important assumption is that each measurement (factor) 4<i is purely dependent

its neighbors Xi C X and independent noise. Thus, non-adjacent variables (here

"non-adjacent" refers to variables that do not share a common factor) are condi-

tionally independent given some separating set. This fact follows directly from the

factorization shown in (1.6).

1.4 Solving the smoothing problem

Give the joint factorization (1.6), Maximum Likelihood (ML) estimation takes a min-

sum form

m

argmax P(XIZ) = argmax log P(XIZ) = argmin - log 4)i(Xi) (1.7)
X X X i=O

For arbitrary potential functions 4Di, representing and optimizing the full high-dimensional

joint density is intractable. However, in SLAM, the potentials are generally assumed

to be multivariate Gaussian about some nonlinear observation model: .A(hi(Xi), Esi),

where the symmetric matrix Ei represents the noise covariance. In this case, the

optimization in (1.7) reduces to a NLLS optimization of the form (1.5).

Non-iterative solvers for (1.7) and certificates for global optimality have been proposed

in special cases. For example, in pose-graph SLAM where all variables are elements of

SE(3) and all edges are full-rank relative transforms between them, Rosen et al. [53j

developed a method doing just that. They prove that for realistic noise regimes, their

method can recover the global optimum, and often do so faster than iterative methods.

Unfortunately, this method does not immediately extend to general measurement

models, and in particular the low-rank observations acquired via monocular vision.
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For general landmark-SLAM, iterative methods such as Gauss-Newton are used [8,13,

571. Under Gauss-Newton, the joint distribution is iteratively re-linearized to produce

a series of approximating linear least-squares problems of the form

ATAx = -AT b (1.8)

In general, multiple Gauss-Newton iterations are required before converging to a

(possibly only local) minimum. Each iteration corresponds to solving a linear system

of the form (1.8). For dense system matrices, each of these linear solves has O(d3 )

complexity, which can be prohibitive.

1.4.1 The smoothing problem is sparse

Fortunately, Dellaert and Kaess [13] pointed out that the SLAM problem has a sparse

block structure which can be exploited to solve (1.8) much more efficiently. Sparsity

refers to the prevalence of zeros in the system Jacobian A, and the corresponding

lack of edges in the undirected graph relative to a complete graph. In the factor

graph representation, it means that measurement factors each only relate a very few

variables (nodes). From a statistical perspective, sparsity refers to the fact that the

joint distribution p(X) can be factorized into many simpler potentials Di(Xi), as in

(1.6).

As will be discussed in detail in Chapter 2, this sparsity arises naturally in SLAM

because of physical and logical sensor limitations. Furthermore, the computational

complexity of solving (1.8) is much reduced when this sparsity is present. Thus, un-

derstanding the relationship between sparsity and computation is vital to identifying

and promoting computationally-efficient graph structures.
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1.4.2 Incremental solvers

For mobile robots, realtime SLAM can be considered to represent only incremental

updates to this optimization (in the form of new factors Few and variables Xnew).

This realization is leveraged in iSAM [331 to perform incremental solves of the under-

lying linear system, greatly reducing redundant computation when the linearization

point does not change much. The second-generation solver, iSAM2 [321, represents the

inference problem as a Bayes Tree [311. The Bayes Tree represents the dependency-

structure of the inference problem, and allows for re-linearization, re-ordering, and

back-substitution to be performed only in regions of the graph which are significantly

affected by new information. This allows iSAM2 to avoid re-solving the whole sys-

tem or operating over the entire graph at each step, facilitating efficient real-time

optimization.

iSAM2 currently represents the state-of-the-art in incremental algorithms for general

Gauss-Newton graph optimization. The SAMWISE estimation library (the subject

of Chapter 4) leverages the GTSAM [121 implementation of iSAM2 for back-end

optimization of a high-rate VIN front-end.

Note that iSAM and iSAM2 are not truly incremental. If the linearization point

changes significantly, the entire graph may have to be re-linearized and re-eliminated

in what essentially reduces to a batch solve. Thus, the graph size must be bounded

in order to bound worst-case and even mean computation.

Furthermore, both iSAM and iSAM2 are still heavily reliant on sparsity. The struc-

ture of the Bayes Tree is determined by the structure of the corresponding factor

graph, and the extent to which re-linearization can be performed "locally" depends

heavily on this structure. More significantly, the elimination process used by iSAM2

is fundamentally equivalent to that of batch solutions to (1.8) (albeit with intelligent

recycling of computation), and thus shares the same dependence on sparsity.
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1.5 Measurement selection as a means of computa-

tion reduction

Sparsity naturally arises in SLAM problems, due to both assumed observation models

and to real sensor limitations. For example, data from wheel odometry is generally

formulated as a sensor measurement which can only relate consecutive poses. Sim-

ilarly, ranging signals may only relate pose vertices to landmark vertices. Physical

sensor limitations play a role as well, as at any given moment, the robot may only

be able to observe landmarks which are nearby, or within a limited field of view.

Ultimately, these mechanisms lead to sparsity in the realized graph SLAM graph.

For many computationally-constrained systems, the naturally-arising sparsity may

still not be sufficient. Modern IMUs are capable of very high data rates (greater than

1000 Hz), and naive application can lead to gross over-sampling of the trajectory.

Thus, IMU bundling, or pre-integration, approaches such as [20] have been used to

reduce "redundant" or intermediate optimization variables. Cameras too are capable

of high frame rates, and at each frame can observe tens or hundreds of landmarks.

Inclusion of every available observation can result in a relatively dense graph, with

many high-degree poses and landmarks. For long-term SLAM problems, characterized

by loopy trajectories in a restricted geographic area, the inclusion of loop-closure

constraints can also undermine sparsity. Though often very informative, loop closures

can potentially be made between any pair of pose vertices. Without any restriction,

loop closures can ultimately destroy graph sparsity. Thus, measurement selection has

long been motivated [6,28,29,36,611 as a means of promoting sparsity and managing

computation.

In high-rate realtime systems, measurement selection strategies must also be com-

putationally efficient to execute. Many of the sophisticated methods presented in

the literature (see Section 1.1.2), while effective in offline systems, require iterative

optimization or computation that scales with the size of the graph. This makes them

impractical for use in computationally-restricted systems that must run at a high
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rate.

Much existing work [28,36] focuses simply on reducing the number of edges (mea-

surements) in the graph. In contrast, this thesis aims to more holistically exploit the

relationship between structure and computation. In Chapter 2, this relationship is

explored in detail, and a metric of graph complexity is introduced.

As an example of a realtime-implementable strategy, the often-implemented deci-

mation heuristic in analyzed in Chapter 3, and is shown to promote a particularly

sparse graph super-structure. In combination with good connectivity properties, this

makes decimation a very effective technique that often outperforms more sophisti-

cated methods.

1.5.1 Graph connectivity metrics

As measurements in SLAM correspond to graph edges, measurement selection is (at

least in part) an optimization over graphs. Therefore, a thorough understanding of

how graph structure impacts inference should prove valuable.

It has long been understood that the connectivity of a graph is strongly related to

estimate robustness. For linear SLAM graphs, analytic results exist [351 connecting

particular graph connectivity metrics to specific characteristics of the ML solution.

While it is difficult to rigorously extend these results to nonlinear problems such as

VIN, empirical evaluation suggests that these connections still approximately hold.

Average node degree

Average degree is one of the simplest measures of graph connectivity. For a fixed num-

ber of vertices (and under the restriction that all edges (measurements) correspond

to exactly two variables), average degree corresponds one-to-one with the number of

edges. As was observed empirically by Olson and Kaess [471 and proven by Khosoussi

et al. [351, average node degree relates approximately to the expected "over-fitting"
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of the corresponding ML estimate. More precisely, if the value of the negative log-

likelihood function f(X) evaluated at the true parameter setting X0 is fo A f(XO),

and the value at the ML setting X* is f*, several observations can be made:

1. f* < fo by the definition of the minimum.

2. E ~ 1 - Z, where A is the average node degree.

3. Thus, as A increases, E[f*] - 1.

This makes sense intuitively, as an increasing A corresponds to the use of increasing

number of Gaussian measurements. The more measurements are incorporated, the

less likely it becomes that the ML configuration will be "far" from the true setting of

parameters which generated the measurements.

(Weighted) number of spanning trees

The number of spanning trees in the graph (also referred to as t-connectivity or

t(G)) has long been studied as a robustness metric in network theory. A spanning

tree T(V, T) C T(G) of graph G(V, E) corresponds to a selection of edges ST C

such that T is connected and a tree. As t(T) = 1 for any spanning tree, and is

non-decreasing with the incorporation of additional edges, t(G) provides a natural

measure of connectivity [35]. For a complete graph GC, t(Gc) = nn-2 [1].

This definition can be generalized with the incorporation of edge weights wij. The

weight V(T) associated with spanning tree then corresponds to the product of the

edges which define it, and the weighted number of spanning trees tw(G) is defined

V (T) fj wij (1.9)
(ij)EST

tw(G) V(T) (1.10)
TET(G)

Note that unlike the similar-sounding concept of weighted spanning trees, the weighted

number of spanning trees t,, involves a product over edge weights rather than the sum.
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This means that if all wij = 1 for all edges (i, j) E 5, then V(T) = 1 for all spanning

trees, and tw(G) = t(G).

More recently, Khosoussi et al. 1351 proved that, at least in linear SLAM problems, the

uncertainty volume det(E) = det(A 1 ) corresponds directly to the weighted number

of spanning trees, where the edge weights correspond to the measurement precision

wij = . This result links graph structure directly to inference quality, and demon-

strates that maximizing t-connectivity specifically corresponds to better estimation

performance.

While this result was shown rigorously only for a limited class of SLAM problems

(linear measurements, spherical noise covariances), numerical results suggest that the

connection extends to nonlinear systems as well. As measurement selection fundamen-

tally corresponds to edge selection in the SLAM graph, t-connectivity provides a useful

metric in analyzing policies. We can expect policies which promote t-connectivity will

produce better estimation quality than those which do not.

1.5.2 Kullback-Leibler divergence

The Kullback-Leibler divergence (KLD, also DKL) can be loosely understood as a

measure of distance between two probability distributions. Often, for a given full

distribution p(X), we would like to find the best approximating distribution q(X) that

has some desired structure. This is often defined as minimizing DKL (p(X) I q(X)),

corresponding to finding the "nearest" approximating distribution, where the KLD is

defined

DKL (p(X) q(X)) p(X) log dX
J q(X) (.1

It is important to note that unlike Euclidean distances, KLD is in general not sym-

metric

DKL(p(X) fl q(X)) # DKL(q(X) p(X)) (1.12)

Usually, the reference distribution p(X) is taken to be the first argument, and the
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approximating distribution q(X) as the second.

In general, evaluating the KLD over arbitrary continuous-valued distributions is too

expensive for realtime evaluation on computationally-constrained systems. However,

by making the standard assumption of Gaussianity about some linearization point

(usually taken to be the current estimate), the KLD adopts a convenient form de-

pending only on the first and second moments of the corresponding distributions

DKL (.A(pp, A- 1 ) I IA(jiq, A- 1)) = [ trace(AqA;-)-d+log det(AqA- 1)+lt qI,p q]

(1.13)

For large graphs, KLD can be expensive to evaluate in realtime. Additionally, it is

not clear how specific measurement selection choices (and therefore different choices

of q) affect KLD without explicit calculation and comparison. However, KLD is

valuable as a comprehensive metric to empirically evaluate particular measurement

selection schemes. Compared to simpler metrics such as Root-Mean-Squared-Error

(RMSE) which only compare the ML configurations (i.e. the distribution means),

KLD also takes into account the distribution uncertainty. This makes it a more

complete measure of how well the full distribution is approximated.

1.6 Thesis contributions

This central focus of this thesis is in computation management and reduction for

realtime SLAM problems via efficient measurement selection.

In Chapter 2, the relationship between graph structure and requisite computation

is explored. A complexity measure C adopted from the sparse linear algebra com-

munity [25,52] is introduced specifically for the SLAM smoothing problem. C(G, P)

approximates the operation count of the elimination phase for a given ordering 'P,

which, following [311 is shown to be equivalent to a sparse, block-wise factorization

of the linearized system matrix (1.8). C is verified experimentally to predict the

elimination computation required for simulated SLAM problems, and is also shown
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to correlate with the update time of incremental solvers such as iSAM2 [321. This

measure and the rational behind it are introduced to facilitate rigorous analysis of

sparse graph super-structures used in Chapter 3. More broadly, they are presented

as a method of defining the complexity of graph SLAM in a standard way, which is

lacking in the SLAM literature.

Second, a rigorous analysis of decimation-style heuristics is explored in Chapter 3.

Decimation is a very simple policy for measurement selection, but it produces a

distinct sparsity pattern and super-structure in the resulting graph. It is proven

by construction that elimination orderings exist for decimated graphs that result

in bounded complexity at each step of elimination and therefore bounded total C.

Simulated results demonstrate that in practice, decimated graphs often outperform

these bounds by significant margins, due to the additional level of sparsity which

arises naturally but unpredictably due to sensor limitations. In parallel, it is shown

that the "even" spacing of observations produced by decimation is near tm-optimal

(see Section 1.5.1) for a class of single-landmark graphs. This suggests that decimated

graphs are well-connected, and therefore maintain desirable estimation qualities.

In light of these insights, the improved dec++ heuristic policy is introduced to address

specific shortcomings of decimation in incremental estimation. Empirical results from

simulated data are provided to confirm these analytic findings empirically. Further-

more, they demonstrate that despite its simplicity, the dec++ heuristic performs as

well or better than much more sophisticated (and computationally expensive) pruning

strategies.

Finally, the SAMWISE visual navigation system is presented in Chapter 4. A thor-

ough description of the system is provided, as well as benchmarking evaluation on the

open EuRoC MAV dataset [5]. The dec++ heuristic is implemented in SAMWISE

and shown to reduce computation significantly with acceptable accuracy degradation

on this dataset. Furthermore, results from recent stress-tests and a DARPA FLA

program milestone are shown, demonstrating robustness in a variety of challenging

real-world conditions.
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Chapter 2

Structure and Computation in SLAM

Graphs

As described in Section 1.4, the smoothing problem can be represented as inference

over a graph. Though fully-nonlinear solvers have been proposed [531, these make spe-

cific assumptions about the types of variables and measurement constraints involved.

Real-world problems, especially VIN, often involve heterogeneous combinations of

sensors and measurement factors, including IMU factors [20], projective camera mea-

surements (described in Section 1.2), relative pose constraints [6, 44], and others. In

addition to robot poses and landmark positions, various sensor biases and camera

calibrations may also be estimated. For these more general factor graphs, iterative

Gauss-Newton [41 approaches remain the standard [13,32,57].

At each iteration of Gauss-Newton, the nonlinear factors are linearized, producing a

linear system which must be solved. Though this system may have large dimension

(often hundreds or thousands of poses and landmarks), its inherent sparsity allows it

to be solved efficiently [13]. As described in Section 1.4.1, sparsity refers to the fact

that nodes in the graph are only adjacent to a small number of other nodes. A tree

is the most sparse connected graph, and a complete graph is the least.

It should be noted, however, that it is not simply the number of edges in the graph,
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but also their arrangement (or structure), which determines computation. As will

be a main point of this chapter, the relationship between computation and graph

structure is non-trivial, yet vitally important when evaluating measurement selection

strategies for computation reduction.

Incremental solvers such as iSAM [33] and iSAM2 [32] aim to perform minimal up-

dates to the prior solution as the graph is incrementally augmented with new mea-

surements and variables. These methods have been shown to dramatically reduce

computation in many systems, making SLAM more accessible to computationally-

restricted platforms. Just like batch solvers, however, incremental methods are highly

dependent on the sparsity of the given graph.

In this view of SLAM, measurement selection for computation reduction can be seen

as optimization over the edges in the graph. Measurements correspond to factors in

a factor graph, and to edges in undirected models (see Section 1.3.4). Thus, select-

ing measurements in a way that promotes sparse structure, or conversely removing

measurements which hinder sparsity, can be a powerful method of computation man-

agement. In order to evaluate measurement selection strategies for their impact on

computation, the precise relationship between graph structure and computation must

be understood.

In this chapter, this relationship is explored and to some degree quantified. The

graph elimination complexity is introduced as a measure of the intrinsic complexity

of a particular graph. Derived from the fundamental complexity of factorizing sparse

linear systems, elimination complexity C represents an approximate operation count

of the elimination phase of optimization. Later, in Chapter 3, this metric is used to

lend insight into efficient graph structures and demonstrate analytically the inherent

sparsity which results from simple decimation-style pruning.
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2.1 Computation in graph optimization

One of the outstanding challenges in real-world application of the SLAM framework

is computation management. Physical computers have finite memory and processing

resources, and in low-SWaP systems are especially limited. To compound this chal-

lenge, fast-moving, unstable systems often require high-rate and low-latency estimate

updates in order to achieve closed-loop stability and adequate control tracking.

Constant-time update computation is a fundamentally desirable aspect of any real-

time navigation algorithm. Conventional filtering-based approaches based on the

Kalman Filter [34] have been used since the Apollo moon missions [27] for time-

critical aerospace applications. Proponents have long championed the constant-time

characteristics of such approaches. Indeed, the sliding-window formulation of more

general smoothing approaches [8,571 is intended to maintain a semblance of bounded

computation. This serves to bound the size of the graph, and therefore the complexity

of solving the linearized system is naively bounded by 0(d 3 ), where d refers to the

overall scalar dimension of the system. Nonetheless, it is the iterative re-linearization

of the Gauss-Newton solver which ultimately defies bounding. Arbitrarily limiting

the number of re-linearization steps can provide a trivial ultimate bound, although

at the cost of limiting one of the chief advantages of the smoothing formulation.

Of course, the existence of a bound itself is not sufficient for realtime performance. In

VIN, robust and accurate solutions require the simultaneous estimation of many poses

and landmarks. The large number of variables active in many real-world problems

make such worst-case analysis somewhat unhelpful, as the worst-case computation

is generally prohibitive, but fortunately also rare. Additionally, approaches such as

the decoupled strapdown propagation discussed in Chapter 4 somewhat relax the

requirement for fast worst-case updates, as propagation from the IMU is generally

sufficient to stabilize the vehicle through even the longest observed update steps.

It has long been recognized by the linear algebra community [10,42,501 that sparsity

in the matrices defining a linear system can be leveraged to significantly outperform
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the naive O(d) bound. This sparsity is manifested as a large number of zeros in the

system matrix ATA, and in the corresponding graphical system in the fact that most

vertices are adjacent to only a small neighborhood of the total graph. Dellaert et

al. [131 argued that this sparsity was ubiquitous in many SLAM problems, and that

performance could be further improved by leveraging it more explicitly. Indeed, the

state-of-the-art iSAM [33] and iSAM2 [321 algorithms continued that trend by devel-

oping near-incremental (i.e. near-constant-time) methods of updating the (non)linear

system. As the SLAM system is augmented with new variables and measurements,

sparsity facilitates a sense of locality, and changes to a particular region of the graph

have diminishing effect in "distant" regions.

2.1.1 Macro- and micro-sparsity

In many SLAM systems, to a large extent sparsity is a natural result of the types of

physical sensors available. Odometry sensors such as wheel encoders or IMUs give

a noisy measurement of the relative transform in robot pose between two consecu-

tive (discrete) time instants, i.e. xi and xi+. Similarly, a common formulation of

visual measurements relates the camera pose xi at a particular instant to a particular

landmark 1j. Thus, the types of sensors, and the definitions of the corresponding

observation models, directly constrain which vertices in the SLAM graph may be

connected by an edge. Thus, given a particular choice of sensor configuration and

corresponding formulation of measurement factors, the sparsity pattern of the result-

ing system matrix can be loosely upper-bounded. This imposed super-structure can

be thought of as macro-sparsity.

However, the actual sparsity realized during any particular run will in general be

hard to predict, as most landmarks are observed opportunistically. Due to physical

limitations like sensor field of view, sensor range, and occlusions, most landmarks will

only be observed from a relatively small number of poses. Additionally, some sensors

or measurements may only be available in certain environments or at unpredictable

times, such as a differential GPS receiver that only has signal outdoors, or a laser
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altimeter which only works on certain surfaces. Though unpredictable a priori, this

micro-sparsity is often quite significant.

Macro-sparsity can be predicted a priori for a given system, as it depends on known

factors such as sensor suite. It provides a worst-case sparsity bound, which in turn

maps to a worst-case optimization complexity. Micro-sparsity, on the other hand,

refers to the "extra" level of sparsity realized in practice, often due to sensor limi-

tations. Often, micro-sparsity is crucial for realtime performance, as the worst-case

bound defined by macro-sparsity can still be prohibitive.

2.1.2 Quantifying computation

Fundamentally, the nonlinear, iterative nature of most smoothing SLAM solvers (see

Section 1.3.2) makes fully quantifying computation time difficult. Specifically, it

is difficult to predict how many Gauss-Newton iterations will be necessary before

convergence, or even if convergence will ever occur. Convergence and convergence

rate depend on many factors, including the specific measurement functions involved,

the measured data itself, and the initialization point.

In contrast, the per-iteration computation simply corresponds to solving a positive-

definite linear system [13] (repeated from Section 1.4)

ArAx = -ATb (2.1)

where the d x d matrix ATA is assumed positive definite.

Linear systems of the form (2.1) are well-studied, and the computational complex-

ity at this level is much more amenable to analysis. As the total computation of

the nonlinear optimization is essentially the sum of a series of these linear solves,

computational savings at the linear level corresponds to multi-fold savings in total.

Additionally, the computation involved at the linear system level is a direct function

of sparsity, and therefore of graph structure. Thus, understanding the relationship at
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this level provides a clear link from structure to total computation.

2.1.3 The elimination step

The two fundamental steps involved in solving the linear system of the form in (2.1)

are elimination and back-substitution. Elimination is equivalent to factorization of

the system ATA = RTR into the upper-triangular square matrix R [13,501. As will

be seen, the complexity of elimination is highly dependent on graph structure, and in

the worst (fully dense) case is O(d3 ). Elimination represents the bulk of computation

in many SLAM algorithms, including incremental methods like iSAM2 [32].

Back-substitution uses the factor R to determine the maximum-likelihood assign-

ments for variables x, often via an intermediate vector y.

ATAx = RT(Rx) = ATb

RTy = A T b (2.2)

Rx = y (2.3)

Because R is triangular, back-substitution to solve (2.2) and (2.3) for x is relatively

inexpensive compared to the elimination step which produced R. Back-substitution

with a sparse R involves 0(R) operations [111, where 6(R) < d2 is defined as the

number of non-zeros in R.

Because elimination carries a worst-case 0(d3 ) complexity, it often represents the

majority of computation in practice [32]. For this reason, this thesis focuses on

elimination complexity as a measure of the inherent complexity represented by a

graph.
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2.2 Graph elimination as sparse factorization

The system (2.1) is often solved by QR or Cholesky factorization of A or ATA,

respectively [25,31,38,42,50,52]. For dense matrices, this entails O(d3 ) operations [38].

In the case that these matrices are sparse (as in the smoothing problem), factorization

can be done much more efficiently [11, 131.

As noted by [31,42,52] and others, the complexity of sparse QR elimination of this sys-

tem follows the pattern of node elimination on a graph. In node elimination, variable

nodes are eliminated one-by-one from the graph, corresponding to the marginalization

of the corresponding variable from the joint distribution over the remaining variables.

When a node is eliminated, it is removed from the graph, and edges are induced such

that all its remaining neighbors form a fully-connected clique. These new edges which

did not exist in the original graph constitute fill, and represent intermediate depen-

dencies between variables induced by a particular elimination ordering. In the final

upper-triangular R factor, these fill edges correspond to nonzero "filled-in" entries

that were zero in the original system matrix ATA. The process of node elimination

is illustrated in Figure 2-1.

3 4 3 3 3 -... .......0 0

0 1 2 2

Figure 2-1: The node elimination algorithm executed on a simple graph G(. Nodes
are eliminated in the order (0, 1, 2, 3, 4), producing a series of elimination graphs
G('). Induced edges are shown with dotted lines.

It should be noted that for certain graph structures and elimination orders, fill-in

can be catastrophic, destroying sparsity. For example, as shown by Duff [16], sparse

factorization of random matrices with initially very few non-zeros (corresponding to

very few edges in the graph) almost always results in near d3 computation, as fill-in

quickly densifies the graph.

As is well-understood from the sparse linear algebra literature [10, 13, 62], fill is de-
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pendent on the chosen variable ordering P. Though the solution itself is unaffected

by ordering, different orderings can result in widely differing fill at each step of the

optimization. Determining the optimal (i.e. minimum complexity) ordering is NP-

complete [62]. In practice, efficient heuristics such as Column-Approximate Min-

Degree (COLAMD) [10] are widely used.

Each step of node elimination corresponds to computing one step of the corresponding

sparse QR or Cholesky factorization [13,25,52], and scales with the size of the neigh-

bors of the eliminated node. From this perspective, solving the full system (2.1) is

equivalent to solving a series of sub-problems. Thanks to sparsity, these sub-problems

are generally small in size, and by exploiting it to deconstruct (2.1) in this way, sig-

nificant computational savings can be achieved [25,38]. The complexity of factorizing

the full sparse system is then simply the sum of the complexities of the individual

dense sub-problems.

As early as 1972, Rose [52] showed by a simple counting of operations that computing

the RTR decomposition of a sparse n x n matrix can be performed in

1 n-1 
n-1

S d(i, P)(d(i, P) + 3) ~ d(i,P)2  (2.4)
i=1 i=1 -

multiplications, where d(i, P) refers to the degree of the i-th eliminated node in the

elimination graph G produced by ordering P. Indeed, the asymptotic form of

(2.4) is equivalent to the Cholesky FLOP count used by [41]. Note that for a fully

dense matrix (corresponding to a fully-connected graph), di ~ n and factorization

approaches the n3 complexity for dense matrices.

From a purely linear algebra perspective, factorization of the system (2.1) occurs one

row or column at a time. The corresponding graph GM includes n nodes, matching

the scalar dimension of the system. However, as described by Dellaert and Kaess [131,

when referring to SLAM systems, (2.1) has additional block structure. In SLAM, the

variables of interest are often multi-dimensional quantities such as positions and rota-

tions, and measurements generally are defined on the level of these "macro-variables".
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In this case, it is the block sparsity pattern of (2.1) which is represented in the factor

graph.

By applying ordering heuristics such as COLAMD [101 on the block structure directly, [13]

showed improved performance and less fill. Following this fact, modern SLAM solvers

such iSAM2 [32] apply elimination directly on the "macro-variables" of the factor

graph. This motivates the definition of a version of (2.4) which accounts for the block

structure of SLAM.

Definition 1. The elimination complexity C(G, P) of a factor graph G with variables

X and ordering P is defined

C (G, -) A df d(i) ds (i, -p)2
i=1

where df(i, P) and d,(i, P) are the total scalar dimension of the i-th frontal variable

xf and its corresponding separator set x,,, respectively.

Note that under scalar elimination, which corresponds to frontal variables of singular

dimension df(i) = 1, Definition 1 reduces to the asymptotic form of (2.4).

Lemma 1. For a fixed elimination ordering P and graph G, let G+ be constructed

by adding an edge to G. Then, C(G,P) < C(G+ P.

The proof of Lemma 1 is shown in Appendix A. Lemma 1 confirms the intuition

that for a fixed ordering, adding an edge to the graph cannot decrease elimination

complexity. Equivalently, removing an edge cannot increase complexity.

A justification for elimination complexity C(G, P) as a representation of the com-

putation performed by block-wise, sparse factorization is provided in the following

section.

2.2.1 Block-wise sparse factorization

Following the block structure of linear systems characteristic of SLAM problems [13],

block-wise sparse factorization proceeds block-by-block. From a graphical perspec-
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tive, this corresponds to node elimination on the factor graph, where "macro-variables"

xi C X are eliminated one at a time. As is typical in SLAM, x may represent a robot

pose, a landmark position, a sensor calibration, etc.

At the i-th step of elimination, the variable being eliminated is referred to as the

frontal variable xf, of dimension d1 . Those variables adjacent to xf (i.e. those which

share a common factor) in the elimination graph G at step i are referred to as the

separator variables x,.

Thanks to the conditional independence properties implied by the factor graph (1.6),

no other variables in X are involved at this step

p(xf IX) = p(xf x) cx 1 (Xf, X,) (2.5)

where the joint potential 4(xf, x,) over the active set xf U x,

(Xf, X,) 0c exp { - IHAfxf + Ax, - bI1 2} (2.6)

is formed by collecting the measurement Jacobians Af and A, over all measurements

with respect to xj and x,, respectively. Assume the total dimension of the active

measurements is m, then Af is m x df and A, is m x d,. Here b refers to the

m-dimensional right-hand side vector (from the measurement residuals).

In order to eliminate xf, the new marginal factor F'(x,) must be computed

'(x,) oc exp { 2|JA'x, + b'11 2  (2.7)

oc exp { - (xCT A'IAx, - bT A's)} (2.8)

A' A - Af(AfAf) 1AfA (2.9)

b b - Af(A A)- 1A b

-'(s) represents the summarized information over the separators x, which was rep-

resented by the frontal set xf [31j. This can be thought of as marginalization of xj,
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and (2.9) represents the Schur complement. As <b'(x,) represents a fully-correlated

marginal over x,, it causes the nodes making up x,, to become fully-connected, and

therefore possibly creating fill.

Maximizing the conditional probability p(xfIx,) oc JD(xf, x,) for a given x, leads to

AITAfxf = ATb - ATAx, (2.10)

representing the reduced system over xf. (2.10) is solved during during the back-

substitution step, computing the ML estimate of xf given the ML estimate of x,.

In summary, each step of elimination produces a small sub-problem over xf and its

neighbors in the elimination graph x,. Solving this sub-problem involves computing

the marginal factor 4b'(x,) via (2.8) or (2.9). Additionally, it involves factorizing

the reduced system (2.10) into a convenient form to be solved efficiently during the

back-substitution phase.

As will be seen, this can be accomplished using an appropriate dense QR or Cholesky

factorization over a reduced system, each representing - dfd2 operations. In both

cases, we define the augmented Jacobian matrix XA [Af A, b] of dimension

m x (df + d, + 1).

Via dense QR factorization

- r rR M, mn
A [Af A. b] = [Q1  * (2.11)

The orthogonal matrix Q = [Q is formed column-by-column via Gram-Schmidt

or Householder Reflections [511, as the right-hand-side matrix is computed row-by-

row. Only the first df steps of decomposition need to be performed. This partial QR

requires - d1 (d1 + d, + 1)2 multiplications [51].

From the block matrix equality (2.11), it can be shown that the following equalities
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hold

Af = QiR

QTAS =

AJAf = RTR

Qfb= m

(2.12)

Combining (2.12) with (2.7) and (2.10), the necessary outputs can be directly (and

inexpensively) computed

A' AAS

=As

=As

=As

- Af (A TAf)-'A TAs

- (QR)(RTR)- 1 (QiR)TAs

- QIQTAs

- Q1M

b' A b - Af(Af Af)-'Afb

=A, - Qb

(2.13)

(2.14)

A T Afxf = ATb - A Ax,

RTRxf = (Q 1R)Tb - (Q1 R)T Asx,

= RTm - RTM'x8

-- > xf = R-1(m - Msx8 ) (2.15)

(2.13) and (2.14) are computed during elimination to determine the marginal factor

V(xs). (2.15) is computed during back-substitution. Because R is upper-triangular,

and Q1, Ms, and m are formed during the factorization step, these all can be com-

puted inexpensively.
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Via dense Cholesky factorization

Performing Cholesky decomposition of the augmented information matrix to produce

ATA - ftTft, the upper-triangular R is defined:

R M, m

0o * *

0 0

(2.16)

Interpreting this as a block-matrix equality:

AT = [

AfA, A b RTR RTM, RTm=* *
S* * *1

As only the first d1 rows of the augmented Cholesky factor R in (2.16) are needed,

factorization again requires df (df + d, + 1)2 operations [51].

(2.17) provides the necessary equalities in order to efficiently compute outputs re-

quired by (2.8) and (2.10).

A'T A A TAS - (ATAf)(ATAf)- 1 (ATA,)

= A ,AS - MTR(RTR)-RTM

= Af A, - MTM

A'/b = A b - MSm

A Afxf = Afb - AiTAx,

RTRxf = RTm - RTM'x'

==> xf = R1 (m - Mx)

(2.18)

(2.19)

(2.20)

53

(2.17)



2.2.2 Summary

As discussed in Section 2.2, sparse factorization of the full linear system (1.8) corre-

sponds to elimination on a graph. Leveraging the block structure common in SLAM

problems [131, state-of-the-art solvers like iSAM2 [321 perform elimination block-wise

rather than one row or column at a time. Each step of this elimination process

represents a small sub-problem over frontal variable xf and separators x,.

As generally d, > d1 , the complexity results of either QR- or Cholesky-based elimi-

nation can be simplified to O(dfd'). This lends theoretical justification to the use of

elimination complexity C(G, P) (from Definition 1) as a measure of the computation

involved in solving the system represented by graph G with ordering P. Experimental

verification will be provided in Section 2.3.

It should be immediately clear that the dimension of the separator set d, has a large

impact on computation. Even if the frontal variables have small dimension df, the

complexity of eliminating Xf scales with the square of the dimension of the separators

X,. As edges are induced (fill-in) during the process of elimination, naive elimination

orderings or adverse graph structures can result in large separators d. and therefore

significant computation, even if the degree of each node in the original graph is

relatively low [16].

Elimination complexity and iSAM2

Characterizing the update-time computation of incremental solvers such as iSAM2

[321 is in general difficult. Designed to avoid re-eliminating the full graph at each

update, the iSAM2 update re-linearizes and re-orders variables within the Bayes Tree

structure [31j as needed, depending on the numerical values of the measurements and

current estimate. Additionally, in order to avoid full re-elimination at each update,

the elimination ordering represented in the Bayes Tree is semi-static, and depends

on the update history of that particular iSAM2 problem. Though generally guided

by a COLAMD ordering [101, the ordering implicitly "baked-in" to the Bayes Tree may
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not necessarily match PCOLAMD(G) at any time. Furthermore, iSAM2 applies a mul-

tifrontal [14] approach which operates on cliques in the Bayes Tree, rather than on

block variables one at a time. By facilitating parallel, distributed computation, mul-

tifrontal methods can take advantage of multi-core processors if present. As each

clique corresponds to a grouping of multiple variables, this results in a slightly dif-

ferent procedure and operation count than captured by C as presented in Section

2.2.1.

Despite all these factors, by representing the elimination complexity of the factor

graph G, C can be shown numerically to correlate well with "worst-case" update time.

This is demonstrated in the next section.

2.3 Experimental validation

For elimination complexity C(G, P) to be a useful measure of graph complexity, it

should correlate linearly with computation time. Experimental timing results from

simulated SLAM problem described in more detail in Section 3.4) were collected, and

are shown in Figure 2-3. Over several runs with varying levels of measurement prun-

ing, the elimination complexity using a heuristic COLAMD 110] ordering was computed

at each step. The sparse blockwise elimination process described in Section 2.2.1 was

performed using either dense QR or Cholesky factorization at each elimination step.

Additionally, the iSAM2 update time was recorded.
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Figure 2-2: Simulation results demonstrate the linear relationship between elimination

complexity and total computation time. The data used is a conglomeration of several

simulation runs with varying parameter settings. (left) Using dense QR at each

elimination step shows a near-linear relation with residual R2 ~ 0.984. (right) Using

dense Cholesky at each step shows a linear relation with residual R2 ~ 0.997.

Figure 2-2 plots the batch elimination time with either dense QR or Cholesky fac-

torization. As expected, the batch elimination time in both cases follows linearly

in C(G, PCOLAMD). The R2 statistics for the linear fits were approximately 0.984 and

0.997, respectively. While QR and Cholesky demonstrate similar asymptotic complex-

ity, the actual operation counts have different constant coefficients. As can be easily

seen in Figure 2-2, using Cholesky rather than QR for each sub-problem produces a

significant computation time reduction.

The computation involved in the incremental updates of iSAM2 is much more diffi-

cult to predict. iSAM2 achieves significant computational savings by only propagat-

ing updates over the a local region of the graph, and employs fluid relinearization

and reordering schemes to avoid batch Gauss-Newton iteration [32]. Predicting re-

linearization and update propagation requires access to the numerical values of the

current estimate, putting them outside the scope of a graph metric like C. Nonethe-

less, the in practice worst-case incremental update time of iSAM2 in Figure 2-3 also

shows a positive (sub-linear) trend with elimination complexity.
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Figure 2-3: Simulation results comparing incremental iSAM2 update time with
C(G, PCOLAMD). As an incremental solver, iSAM2 often produces relatively quick up-
dates, and is in general difficult to predict. Nevertheless, the (in practice) worst-case
performance still trends (sub-linearly) with elimination complexity.

2.4 Optimal elimination complexity

Use of C(G, P) is complicated by the fact that it depends heavily on elimination order

P [25,52].

Definition 2. The optimal elimination complexity C*(G) is the minimum C(G, P)

over all possible permutations S(|X|) of variables X.

C*(G)A min C(G,P)
PEs(IXI)

The optimal elimination ordering provides a measure of the intrinsic complexity of a

graph G. Unfortunately, determining the optimal complexity C* for general graphs is

NP-complete [41,62]. However, from its definition, we can always upper-bound the

minimum complexity C*(G) C(G, P) using any chosen ordering P. This provides
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a useful method for analyzing the predictable macro-sparsity of particular SLAM

architectures. The effectiveness of measurement selection strategies which impact

macro-sparsity (such as decimation) can also be analyzed this way.

2.5 Summary

Efficient solutions to the smoothing SLAM problem rely heavily on the underlying

sparsity of the system. Gauss-Newton methods used to solve general nonlinear prob-

lems involve repeated solution of linearized systems of large dimension. Because these

linearized systems share the same sparsity as the full nonlinear problem, they can be

solved efficiently. Elimination over the graph is the most expensive phase of this pro-

cedure, and is equivalent to sparse QR or Cholesky factorization of the corresponding

system matrix. By assessing the complexity of this factorization, the elimination com-

plexity C(G, P) quantifies the computation required to eliminate a particular graph

G using a particular ordering P.

One key observation is that elimination complexity, and therefore overall computa-

tion, is not simply a function of edge or factor count. Instead, computation in SLAM

is much more a function of of graph structure. Practically speaking, this means that

depending on their positions in the graph (i.e. the variable nodes they connect), two

otherwise similar measurements can have dramatically different impacts on computa-

tion. For measurement selection, and computation management in general, this has

significant implications.

Many existing measurement selection methods in the SLAM literature focus on re-

moving a fixed [36] or Ll-determined [281 number of edges from the graph, irrespective

of their arrangement. While it is true that removing edges cannot increase elimination

complexity C, pruning done without regard to structure can produce an underwhelm-

ing reduction in complexity. In contrast, measurement selection strategies which

promote sparse structure directly can achieve more significant savings. As will be

seen in Chapter 3, decimation-style strategies do exactly that, and therefore can be
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quite effective.

By understanding and bounding the optimal elimination complexity C*(G) for partic-

ular graph super-structures, the macro-sparsity of graph architectures and measure-

ment selection strategies can be assessed. Ultimately, this can aid in the design and

analysis of inherently sparse graph structures and measurement selection strategies,

making SLAM accessible to increasingly computationally-constrained systems.
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Chapter 3

A Rigorous Look at Decimation

Chapter 2 developed the elimination complexity metric, providing a connection be-

tween graph structure and the computational complexity associated with optimiza-

tion. Because measurements correspond to factors/edges in this graph, intelligent

measurement selection can then be used to minimize elimination complexity and

therefore reduce computation.

As one of the simplest selection policies, decimation can be defined as the policy of

taking every r-th measurement from a particular data stream. From the perspec-

tive of landmark SLAM, a decimation policy might accept only every r-th landmark

observation. Some simple examples of decimated graphs are shown in Figure 3-1.
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(a) Decimation rate of 2 (b) Decimation rate of 4

Figure 3-1: Results of a simple decimation rule on the SLAM graph with a single
landmark (green). Assuming that observations are available from any of the robot
poses (blue), decimation rules select only every r-th observation possible. Pose nodes
are labeled in a time-ordered fashion.

In this chapter, fundamental insights into the sparsity and connectivity of decimated
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graphs are provided. First, it is shown in Section 3.1 that decimation, if applied con-

sistently, produces a naturally sparse super-structure that necessarily bounds fill-in

at each step of elimination. In practice, this results in very sparse graphs that can

maintain many more factors at the same elimination complexity as graphs without

this super-structure. Second, for simple single-landmark graphs, the even spacing

between observations characteristic of decimation is proven in Section 3.2 to be near

optimal in a weighted tree-connectivity sense. As the weighted number of spanning

trees has been shown to be related to the uncertainty volume of the joint distribu-

tion represented by the graph [36], this suggests decimation is also effective from an

estimation perspective.

Despite decimation's simplicity, this combination of properties make it an effective

primitive for graph sparsification. Section 3.3.2 introduces dec++, a decimation-

inspired policy tailored towards incremental SLAM. Empirical evidence from a simple

visual-inertial SLAM simulation demonstrates that dec++ performs quite well, match-

ing or even outperforming more sophisticated strategies.

3.0.1 Decimation as a measurement selection policy

Decimation can be a very general concept, and therefore it is important to define it

specifically in the context of the goals of this chapter.

In a SLAM context, decimation often arises as a keyframing method. In a keyframing

application, decimation can be used to downsample the incoming video stream by only

accepting every r-th image frame. Like [611, [29], and [581, keyframing decimation

can provide a rule for determining when to insert a new pose variable in the graph.

Alternatively, in landmark-SLAM, decimation can be used to select individual mea-

surements, on a per-track basis. A track is the sequence of observations associated

with a particular landmark. In general, per-track decimation allows for cases in which

the decimation patterns of different landmarks may be offset from each other by a

constant in the range {0, 1, 2, ... , r - 1}. Though less common in the literature, it is
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this interpretation of decimation that will be the main focus of this chapter.

Furthermore, it will be assumed that the choice of pose nodes included in the graph

is fixed. The fact that all pose nodes, including "intermediate" nodes which may

not be associated with any incorporated observations, are still represented in the

optimization is important for several reasons. First, in applications such as the local-

frame-planning described in Section 4.1.7, these intermediate poses may be of direct

interest. Second, fixing the set of pose nodes makes analysis and comparison between

strategies more straightforward, as the set of estimation variables is kept consistent

between methods.

If the set of pose nodes in the graph is taken to be fixed, decimation can take two differ-

ent forms: aligned and non-aligned. The aligned case is most similar to a keyframing

policy, in which all landmarks share the same decimation offset. In the more general

non-aligned case, this alignment is not enforced, and the decimation offset of a par-

ticular landmark is determined by the pose index of the first included observation.

These topologies are shown side-by-side in Figure 3-2.

Figure 3-2: Simple side-by-side example of aligned (left) vs. non-aligned (right)
decimation for the two-landmark case. In both cases, a decimation rate of r = 2 is
applied. In the aligned case, observations from the two landmarks (green) can be
considered to be decimated per-pose, while in the non-aligned case, decimation is
applied per-track. Poses in the aligned topology can be labeled as either a keypose
or an intermediate pose according to the presence or absence of associated landmark
observations.

In general, tracks can be decimated fully independently from one another, with differ-

ent offsets and potentially even different decimation rates. However, for the purposes

of this thesis, a consistent, global decimation rate r for all tracks will be assumed.
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One last technicality must be cleared up. For the purposes of the discussion here,

the decimation rate r is taken with respect to the corresponding pose variable in-

dices. For example, imagine a landmark is observed from a series of consecutive poses

{3,4, 5}, leaves the sensor horizon and is not observed by poses {6, 7, 8}, and then

returns to be observed by pose {9}. This corresponds to a track with associated pose

indices {3, 4,5, 9}. The style of decimation discussed here with r = 2 would keep the

observations from poses {3, 5, 9}, not only {3, 5} as would be produced if only the

first and third observations were accepted. The resulting offset associated with this

track would be 1, as determined by the index of the first associated pose.

One emphasis of this chapter is to discuss the differences between these two topologies

in terms of elimination complexity C and estimation quality. As can perhaps be

expected by their more restricted structure, aligned graphs are shown to be again

much sparser than their non-aligned counterparts, and therefore much cheaper to

optimize. However, this comes at the cost of lower connectivity and therefore reduced

estimation quality over the full set of variables (including intermediate poses).

In the analysis and experiments to follow in this chapter, the following additional

assumptions are made.

1. As is conventional in landmark SLAM, landmarks are considered to be dis-

tributed (a priori) independently of one another, and therefore there are no

landmark-landmark edges.

2. As is the case in odometry-focused problems, it assumed there are no explicit

pose-pose loop closures, and therefore, pose node i is only adjacent to pose

nodes i - 1 and i + 1.

3. No other variable types are represented in the graph.

The last two assumptions can be relaxed with some restrictions without affecting the

following results, as will be discussed in Section 3.5.3. Nevertheless, they are assumed

here for simplicity and clarity.
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3.1 Sparsity of decimated graphs

As discussed in Chapter 2, sparsity refers to the desirable structure and properties

of a graph that make it amenable to efficient optimization. Trees are the spars-

est connected graphs, and complete graphs are the least sparse. Additionally, from

Lemma 1 we know that removing an edge from the graph will maintain or decrease

elimination complexity. Nonetheless, elimination complexity is not purely a function

of edge count, and graphs with equivalent numbers of vertices and edges can have

dramatically different complexities.

3.1.1 Empirical motivation

The claim that structure rather than edge count determines computation can easily

verified experimentally. On a simulated visual SLAM problem (described in more

detail in Section 3.4), the computation savings resulting from decimation were eval-

uated in a batch fashion. Given the full SLAM graph with all original observations,

pruning was then performed under aligned, non-aligned, and random strategies in

order to quantify the reduction in de facto optimization complexity, CCoLoM. A subset

of the resulting pruned graphs are shown in Figure 3-3, and computational results

are shown in Table 3.1.

Figure 3-3: Undirected graph of simulated VIN SLAM problem with a robot maneu-
vering along a square trajectory. Pose nodes are shown in blue, with landmarks in
green. Red edges represent visual observations. From left to right: The full graph
with all possible observations; under aligned decimation; under non-aligned decima-
tion; under random decimation. All pruned graphs here are the result of a pruning
rate r = 6. Note that estimation quality varies significantly across different strategies
- this will be discussed in Section 3.1.4.
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Table 3.1: Simulation results demonstrating that decimation strategies produce sig-
nificantly sparser graph structure for the same number of factors (edges). CCOLAMD

corresponds to the de facto elimination complexity of the resulting graph, and elim-
ination time is the computation time of performing.the batch elimination operation
as described in Section 2.2.1. Both are reported as percentages of the correspond-
ing values for the full graph, and thus give a clear metric of computation reduction.
Note that elimination time generally matches CCOLAMD. The details of the full graph
are shown in the top row, and relative quantities (with respect to the full graph) are
shown for the particular pruning methods. Note that random pruning rand removes
a similar number of factors but fails to reduce computation proportionally.

Method # Factors CCOLAMD Elim Time

full 355503 3.24e 9  3.4 [s]

adec2 18030 14.0 % 14.5 %

ndec2 18101 46.5 % 45.6 %

rand2 18002 75.6 % 83.6 %

adec4 9300 2.2 % 2.7 %

ndec4 9417 22.0 % 24.4 %

rand4 9251 43.3 % 54.8 %

adec6 6372 0.8 % 1.2 %

ndec6 6505 12.2 % 12.7 %

rand6 6334 40.4 % 50.6 %

The details of the full graph are shown in the row labeled full, and results under

the various pruning strategies are reported with either absolute or relative values

for easy comparison. adec and ndec refer to aligned and non-aligned decimation

topologies, respectively. As a baseline, rand refers to random pruning, as edges are

selected uniformly to be discarded. This strategy was parameterized to prune a similar

number of measurements as the decimation strategies. Each strategy was evaluated

over a series of r values in {2, 4, 6}.

For any particular value of r, all three strategies maintain a similar number of factors
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(edges), but produce graphs of dramatically different computational complexities.

As can be seen from this experiment, both decimation strategies produce graphs of

significantly lower complexity than random pruning. It will be shown shortly that

this is precisely due to the characteristic structure of decimated graphs.

3.1.2 The sparse super-structure of decimated graphs

In this section, it will be shown that decimated graphs have a global super-structure

that makes elimination relatively inexpensive. By analyzing this super-structure, we

can naturally bound the worst-case optimal elimination complexity.

For conciseness in the following statements, it is assumed that all variables in the

graph (both landmark and pose variables) have the same dimension d = 1. General-

izing the analysis to account for varying variable dimensions is straightforward.

Elimination complexity in the non-aligned case

In the non-aligned case, decimation produces a specific super-structure illustrated in

Figure 3-4. Taking Figure 3-4a to be a typical SLAM graph, non-aligned decimation

produces the graph shown in Figure 3-4b. This decimated graph can be re-drawn as

shown in Figure 3-4c, demonstrating a partitioned structure which is generalized in

Figure 3-4d.

In order to properly analyze this structure, some notation must be defined. Assume

the pose nodes are numbered sequentially in time as shown. Each pose node i can

then be assigned to exactly one set rIk, where k = i mod r is assigned based on the

decimation rate r. We can similarly assign each landmark node to exactly one set

Lk, based on the label of its first incorporated observation. We will refer to this label

k E {0, 1, 2, ... , r - 1} as the decimation offset.

Letting n, refer to the number of poses and ni the number of landmarks, the vertices

of the decimated graph are partitioned into r subgraphs. After decimation, each
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Figure 3-4: (a) Example SLAM graph with 9 landmarks (green) and n, = 20 poses

(blue). Due to sensor limitations and the nature of the trajectory, each landmark
will in general only be observed from a subset of all poses. (b) The same graph after

a non-aligned decimation with r = 4 is applied. The first available observation of

each landmark is kept, thus determining the decimation offset of that track. (c) The

graph (b) can be re-drawn, showing that decimation has essentially partitioned the

graph into m A n subgraphs. These subgraphs have limited inter-connections (ther
odometry edges). (d) A generalized illustration of the partitioning structure produced
by non-aligned decimation.

landmark node is adjacent only to poses of one particular set ['k. This partitioned

structure is illustrated in Figure 3-4d.

Thus, the vertices of the decimated graph are partitioned into disjoint subsets (lk, 12k)

parameterized by decimation offset k. As can be seen, the neighborhood of landmark

j E Lk is necessarily a subset of [1k. Most importantly, these subgraphs have limited

inter-connectedness, as the nature of the odometry edges restricts members of set Hk

to only be adjacent to Ik-1 and Hk+1. Note that if r divides nr evenly, I Il = m A am

for all k.
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Proposition 1. The optimal elimination complexity of a landmark-pose SLAM graph

subject to non-aligned decimation is upper bounded

C* < (n, + 9rm)m2

Figure 3-5: Proposed elimination process in the non-aligned case. (a) General non-
aligned decimated graph. (b) After elimination of landmarks Lo, edges are induced
which in the worst-case cause H to become a complete subgraph. (c) After landmark
elimination for the remaining Lk. (d) All nodes in H are eliminated, inducing edges
between Ho and 112. The elimination of the remaining Hk proceeds similarly from
here.

Proof. We can upper-bound the optimal elimination complexity (i.e.

plexity over all orderings) by evaluating the elimination complexity for

ordering. The procedure is shown in Figure 3-5.

the min com-

any particular

Start by eliminating all landmarks, incurring a complexity of

r-1 14kI r-1

CI E |IFIk 12 =E Z |1Im2 - nm 2

k=O i=1 k=O

Because the neighborhood of each landmark j C Ck is limited to HIk, this cannot
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induce edges outside of [Jk. In the worst case, edges have been induced such that the

variables within each Hk subgraph form fully-connected cliques of size m.

We can proceed from k = 0 to k = r - 1, eliminating all pose variables within 71k at

each step. At the point of eliminating each pose variable i c Uk, the neighborhood

of i is a subset of Hk-1 U Hk U Hk+1, which has cardinality 3m. In total, pose node

elimination is loosely upper-bounded by

r-1 m

C, < ZZ(3m) 2 = rm(3m)2 = 9rm3

k=O i=1

After these steps, the graph has been fully eliminated. Because the chosen ordering

cannot (by definition) be better than optimal, we know that

C* < C+C, + (n, +9rm)m2

Elimination complexity in the aligned case

A similar analysis can be performed in the aligned case. Compared to the non-

aligned case, the aligned case has an even more restrictive structure, as a consistent

decimation offset is used for all landmarks. Pose nodes in an aligned decimation

graph either belong to the set of m keyposes 1o or the set of intermediate poses fL.

The intermediate pose nodes are not adjacent to any landmarks, and form simple

odometry chains between keyposes as illustrated in Figure 3-6.

Proposition 2. The optimal elimination complexity of a landmark-pose SLAM graph

subject to aligned decimation is upper bounded

C* < 4(r - 1)m + (n, + m)m 2 ~ (n, + m)m 2

Proof. Again, we derive an upper-bound for the elimination complexity over the op-
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Figure 3-6: (a) Example SLAM graph with 9 landmarks (green) and n, = 20 poses
(blue). (b) The same graph after an aligned decimation with r = 4 is applied (the
offset is 0 in this case). (c) Intermediate poses form a single odometry path between
consecutive keyposes. (d) A generalized illustration of graph (c).

timal order by evaluating the complexity for a particular order. The procedure is

shown in Figure 3-7.

Because intermediate poses form single chains, they can be eliminated inexpensively.

Each intermediate pose i E I has at most two neighbors (the prior and following pose

nodes i - 1 and i + 1), so this step has complexity

i
Cf = Z 22 = 4(r - 1)m

i=1

Next, elimination over the nj landmarks has complexity of at most

ni

Ci < E m 2 = nim2

j=1
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This induces edges between the remaining poses Ho, at worst leaving them a complete

subgraph. Finally, eliminating the m keyposes comes at a worst-case (fully-connected)

cost of
m

CnO m2 = m 3

Thus, the total elimination cost with this ordering is upper bounded by

C* < C A C + C +C = 4(r - 1)m+ (ni + m)m2

El

a) 5

V-1(m-1)r

b) ("t)

Figure 3-7: Proposed elimination process in the aligned case. (a) General aligned dec-

imated graph. (b) We can start by sequentially eliminating intermediate pose chains,
resulting in single induced edges connecting consecutive keyposes. (c) Elimination of
all landmarks results in a (at worst) clique over the m keyposes Ho. From here, the

keyposes can be sequentially eliminated.

In the non-aligned case, the key property defining sparsity was the partitioning of the

graph into r subgraphs. In the aligned case, the key characteristic is the selection of
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only m keypose nodes from which landmarks are observed. Obviously, the aligned

superstructure is a more restrictive special case of the non-aligned superstructure.

3.1.3 The utility of these bounds

The bounds provided in Propositions 1 and 2 are quite loose, as the worst-case con-

nectivity assumed at each step of the derivations is conservative. Additionally, these

bounds assume that all landmarks are observable from all robot poses (i.e. the case

of no micro-sparsity), although sensor limitations dictate this almost never occurs in

practice. Thus, these bounds speak only to the macro-sparsity (see Section 2.1.1)

induced by decimation. The optimal ordering, and the heuristic ordering chosen in

practice, will almost certainly do much better given the micro-sparsity of the partic-

ular graph in question.

Nonetheless, the superstructures demonstrated in Figures 3-4 and 3-6 still have sig-

nificance. They imply that, given a reasonable variable ordering, fill-in is contained

within a limited region of the graph at each step of elimination. Put another way,

graphs with this partitioning property are guaranteed to have orderings that produce

bounded levels of fill.

In the case of pruning techniques without this structure, such as rand, a similarly

"good" elimination ordering may not exist. Using similar arguments to those de-

scribed here, the corresponding worst-case complexity bound for more general graphs

is 0((nr + n,)ni), resulting from first eliminating the landmarks and then the poses.

Without a similar partitioning property, more generally-pruned graphs can be arbi-

trarily complex up to this general bound.

Compared to this bound, non-aligned and aligned decimation produce bounds which

are asymptotically better by a factor of almost r2 . As was seen experimentally in

Table 3.1, the difference in super-structure between decimated and randomly-pruned

graphs can correspond to significant differences in elimination complexity in practice.

This explains why decimated graphs can afford many more edges while still being less
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computationally expensive than graphs produced via other pruning strategies.

3.1.4 Aligned decimation is the most sparse

These bounds suggest that graphs produced by an aligned decimation scheme should

be much more efficient than even non-aligned decimation schemes, largely due to the

ability to inexpensively "pre-eliminate" intermediate pose nodes. This idea is verified

empirically in Table 3.1, as the aligned graph with a near-identical number of factors

(edges) results in significantly lower elimination cost. As, in many cases, intermediate

poses need not be represented in the first place, this result can be applied to all

keyframing methods (not just decimation). Compared to the full graph, Proposition

2 implies that representing only one r-th of all input frames as keyframes corresponds

to a complexity reduction that scales with a factor between r2 and r3 (depending

on whether ni or n, is dominant). Thus, keyframing is a very powerful method of

computation reduction, although with limitations as discussed in Section 3.3.1.

Of course, sparsity is not the only metric of interest. As will be seen experimentally

in Section 3.4, non-aligned decimation produces a more connected, better-constrained

estimation problem, and often significantly better accuracy.

3.2 t,-optimality in single-landmark graphs

Of course, computational efficiency is not the only consideration when considering a

measurement selection policy. It is also desirable that the distribution represented

by the pruned graph be a good approximation of the distribution represented by the

full set of data. While several information-theoretic metrics can be used, including

the Kullback-Leibler Divergence (see Section 1.5.2), such metrics generally depend on

the particular measurement values. For the purposes of understanding the estimation

performance of decimation as a general strategy, graph-theoretic analysis is much

more applicable.
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As shown by Khosoussi et al. [351 and introduced in Section 1.5.1, the weighted

number of spanning trees t.(G) is related to uncertainty volume det(E) in SLAM

problems. In this perspective, edges (measurements) are weighted by their precision

Put another way, pruning strategies which maintain a large tw should in turn minimize

the inevitable uncertainty increase over the full set of variables. In this section, it is

shown that in single-landmark graphs, the even spacing of observations characteristic

of decimation is in fact near tw-optimal. This suggests that decimation in general

may have good information-theoretic performance, which is later demonstrated ex-

perimentally in Section 3.4.

Lemma 2. Useful properties of tw(G) for connected, weighted graph G with positive

weights:

" t,,(G) > 0 for any connected graph.

" t.(G) is non-decreasing as edges are added to G.

" For any edge (i, j) in G, tw(G) = t,{x(i,1(G)+tw,{\(i3 )}(G). Here, t,{x( ,5)(G)

is defined as the weighted number of spanning trees which necessarily include

(i, j). tw,f\( 1 )}I(G) is defined as the weighted number of spanning trees which do

not include edge (i, j).

Lemma 3. "Dangling chains": For any graph G-, consider a graph G formed by

attaching a chain of edge length n > 1 at one end to exactly one vertex in G-2, such

that G and G- have the same number of cycles. Let v A H> wi be defined as the

product of the edge weights of the added chain. Then

tw(G) = vt(G--)

For brevity, proofs of intermediate results have been left to Appendix A.

We will begin by examining tw-connectivity in a simplified, single-landmark class of

SLAM graphs. Imagine that a robot follows a trajectory along n+1 poses, along which
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it records odometry measurements and observes a single landmark, represented by

node 1. Assume that the discrete pose variables {xO, x1, ... , x"} are evenly spaced in

time. Additionally, assume the robot is constrained to take at most m+1 observations

of the landmark, and each has to be from one of the n + 1 discrete poses. Two such

scenarios are illustrated in Figure 3-8.

WW W W W WI V

XO X1 X2 X3 X4 X 5 X 6 X 7 X8 X9 X10 X11 X12 X0 X1 X2 X 3 X4 X 5 X 6 X7 X8 X9 XI0 X11 X12

Figure 3-8: Two example single-landmark graphs from the set g,, with m = 3 and
n = 12. Note that the observation edges are each assigned weight w, and odometry
edges have unity weight. Each of these graphs corresponds to a particular choice of
m observation edges for a robot driving along n + 1 poses.

Weights can be assigned to the edges in the corresponding graph according to the

precision of the corresponding measurements. Thanks to the assumption that the

state variables are distributed uniformly in time, and because odometry sensors such

as IMUs are generally modeled as continuous-time systems with additive white-noise,

the discrete-time noise along each odometry edge is also uniform (see Appendix B).

Thus, we can weight all odometry edges equally with w,.

Additionally, we will make the simplifying assumption that all observations are also

equally precise, and assign weights w0 . In general, particularly in the case of visual

observations, this is not true, and even the first-order noise propagation is sensitive

to scene geometry (see Section 1.2.1). Nonetheless, the approximation is necessary to

facilitate the following analysis, and ultimately offers some illuminating insight. Be-

cause a global scaling applied to all edge weights scales t", equivalently, for notational

simplicity let us assume all weights are scaled such that odometry edges have unity

weight and observation edges are weighted by w A Note that all original weights,

and therefore the simplified weight w, are assumed to be strictly positive.

The natural question is of optimality: with n + 1 observation "opportunities" and a
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"budget" for m + 1 edges, how do we select observations to maximize t,? First off, it

is known from Lemma 2 that te, is non-decreasing with additional edges. Thus, there

will always exist an optimal graph with exactly m observation edges, thus without

loss of generality it will be assumed that exactly m observations are taken.

Define , as the family of single-landmark graphs with n + 1 discrete poses and m

observations. Figure 3-8 shows two examples. For a fixed m and n, members of gm,n

are differentiated only by the selection of observation edges connecting pose nodes x

to the landmark node 1. Selecting observations corresponds to selecting observation

edges, and therefore to selecting members of 9M,n-

The problem of maximizing t, for single-landmark graphs can be expressed as the

following optimization:

Problem 1.

argmax tw(G)
GEO,,n

Thanks to the following lemma (proved in Appendix A), a maximizer of Problem 1

exists, and must belong to a more restricted class of graphs.

Lemma 4. A maximizer of Problem 1 must exist, and must include the first and last

possible observation edges. That is, it must include the observation edges from pose

x 0 and xn.

This family will be referred to as gm,n C OM'n. Two examples of this sub-family are

shown in Figure 3-9.

W W W W W W

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X0 X1 X2 X 3 X4 X5 X6 X7 X8 X9 X 10 X 11 X 12

Figure 3-9: Two example single-landmark graphs from the set 9m,n C Om,n with
m = 3 and n = 12. By Lemma 4, any maximizer of Problem 1 must be of this form.

As seen in Figure 3-10, members Gm(k) C 9m,n can be parameterized by the spacing
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between observations. Each of the m "triangular" cycles is defined by a single chain of

odometry edges of length ki E Z++. The sum of these chain lengths, of course, must

equal E' ki = n.

W W W W W

(ki) (k2) (k,,)

Figure 3-10: A generalized example of a member of gm,n, parameterized by the ob-

servation spacing k. ki corresponds to the number of odometry edges between the

pose nodes of consecutive observation edges. Note that Z 1 k2 = n.

Thus, Problem 1 can be equivalently interpreted as an optimization over onlygm,n C

gM,n, and given a more convenient form:

Problem 2. Define objective fm(k, w) t,(Gm(k)), which maps a spacing vector k

and weight w to the weighted number of spanning trees of the corresponding graph.

argmax fm(k, w)
kEZm+

subject to Zk = n
i=1

As will be seen shortly, selecting a "uniform" spacing of observations provides a near-

optimal solution to Problem 2. This corresponds to choosing k = " A r Vki, or

taking every r-th possible observation. This corresponds precisely to the pattern

produced by decimation with a rate of r.

Of course, the existence of an integer r requires that n is a multiple of m. As Problem

2 is technically an integer optimization of objective fm(k, w) over k, this will be

assumed from here on out.

With that, we can introduce (and then prove) the following claim:

Claim 1. Assuming that m evenly divides n, a uniform spacing of observation edges
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such that ki = r Vkj provides a near-optimal solution to Problem 2. Defining

r =^ r r ... r]:

fm(r, w) rw + 1
log > mlog

f*.(w) rw+2

To prove Claim 1, we derive upper and lower bounds for fm(k) inductively in Propo-

sition 3, and then substitute the solution r.

Proposition 3. The objective fm is upper- and lower-bounded:

m m
w (kiw +1) fm(k, w) w JJ(kiw +2)

i=1 i=1

Proof. For a given k, induction is performed on m, starting from m = 1.

The base case of m = 1 is easily established. An illustration is shown in Figure

3-11. Because this graph is a simple loop, the set of spanning trees can be easily

enumerated. Trivially, fi (k, w) = w(kiw + 2).

W 

W

(kj)

Figure 3-11: Base case of Proposition 3, for which m = 1. This graph forms a single
cycle. The spanning trees can be trivially enumerated, and the weighted sum is
fi(k, w) = w(kiw + 2).

Next, the inductive step must be established, for m > 1. The graph Gm can be

constructed recursively by appending an additional segment of size km on the right

side of graph Gm-1(k), as shown in Figure 3-12. Note that here, k has dimension

M - 1.
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w w www

I Gm-1 (M)

Figure 3-12: Inductive step of Proposition 3, for which m > 1. The graph Gm is

constructed from Gm-1 by appending a new path of length km + 1 between t and 1,

forming a new cycle.

Put another way, induction corresponds to adding a new path of km odometry edges

between pose node t and landmark 1. This new path is shown on the right side

of Figure 3-12, highlighted in red, and will be referred to as the "right-most path".

By construction, the right-most path is comprised of km odometry edges and one

observation edge, which has weight w. By enumerating spanning trees with respect

to this path, a recursive expression for fm can be found.

Every spanning tree of Gm includes either the complete right-most path, or is missing

exactly one of its km + 1 edges. Note that if two or more edges are removed from

this path, the graph becomes disconnected and therefore contains no spanning trees.

Thus, we can decompose the set of spanning trees into T(Gm) = Tbroken U Tcompiete,

where the explicit dependence on Gm has been dropped for brevity. Tbroken refers

to the set of spanning trees which are missing exactly one edge from the right-most

path, and Tcomplete refers to those spanning trees for which the path is complete.

We can similarly decompose tw(Gm) into a sum of two terms

tw (Gm) = E V(T) + 1: V(T) (3.1)
TE'Tbroken TEcompiete

tw,broken (Gm) tw,complete(Gm)

We will start by finding a recursive equality for tw,broken(Gm). Note that there are
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km+ 1 ways to break the right-most path. If one of the km odometry edges is broken,

the observation edge with weight w must be maintained. The other option is that the

observation edge is broken, in which case all odometry edges must be maintained. In

either case, the result is one or two dangling chains attached to graph Gm-i. These

possibilities are illustrated in Figure 3-13. By applying Lemma 3, tw,broken(Gm) has

the form

tw,broken(Gm) = wkmfm-i(k) + fm-i(k) = (wkm + 1)fm-i(k) (3.2)

W-

W W W WW W W W

SGm-1 GM_1 (km)

Figure 3-13: Two example graphs with broken right-most paths with respect to Gm.
(left) One of km cases where the spanning tree is missing an odometry edge, and
maintains the new observation edge with weight w. (right) The graph missing the
new observation edge, leaving a single chain of odometry poses. In either case, these
graphs demonstrate dangling chains and Lemma 3 applies.

Next, we find a simple recursive inequality for Tompiete. For spanning trees necessarily

containing the complete right-most loop, this forms a fixed, direct path of weight w

between t and landmark 1, as shown in Figure 3-14. In these trees, edge (t, 1) cannot

be included as it would form a cycle with the right-most path. However, fixing the

right-most path is functionally equivalent to fixing edge ( , l), in the sense that

tw,compiete(Gm) = tw,{x(.,y)}(Gm-1) (3.3)

twjx(.t,y)j(Gm-1) V(T) (3.4)
TETx tj)(Gmi)
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(kin)

*,Se3 ----- 0* 0 *

~~ Gm-i

Figure 3-14: (left) Spanning trees within Tcompiete necessarily include the full right-
most path, shown in bold. This in turn implies that they cannot include dashed edge
(:, 1), as that would form a cycle. (right) In terms of weighted number of spanning
trees, the fixed right-most path can be condensed into a single edge of weight w, and

tw,compiete(Gm) = tw,{x(2,1)}(Gm-1).

Leveraging Lemma 2, the weighted number of spanning trees with a fixed, complete

right-most path is

0 < tw,compiete(Gm) = tw,{x(t,l)}(Gm-l) = tw(Gm-1) - tw,{\(y,l)}(Gm-1) < tw(Gm-1)

(3.5)

where the strict inequality arises from the fact that removing (., 1) does not disconnect

Gm-1 and therefore tw,{\(j,l)}(Gm-1) > 0.

Armed with recursive relations (3.2) and (3.5), substituting into the decomposition

(3.1) it can be seen that

fm tw(Gm) = tw,broken(Gm) + tw,compiete(Gm)

= (wkm + 1)fm-i(k, w) + tw,{x'(t,l)}(Gm-1)

(3.6)

(3.7)

and therefore

(wkm + 2)fm-i(k, w) fm (wkm + 1)fm-1(k, w) (3.8)

Combining the base case fi = w(wki + 2) and the recursive inequalities (3.8) in a

straightforward application of induction, Proposition 3 is clear. El

Once the lower and upper bounds provided by Proposition 3 have been established,
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we seek to upper-bound the optimal solution to Problem 2, f*(w). It should be

noted that the constrained maximization of the upper-bound <1(k) L ] ' 1 (kiw + 2)

is equivalent to maximizing the volume of an m-dimensional hyper-cube subject to

a total side length constraint. This maximum is achieved with ki = r Vki, and

therefore <b* = (rw + 2)".

Thus

fm(k, w) < f* (w) <* = (rw + 2)"m (3.9)

By (3.9) and the lower-bound from Proposition 3, it can be seen that

log > log m > log + = log (3.10)
f*(w) - (rw + 2)m - (rw + 2)m rw + 2

This proves Claim 1. E

3.2.1 Discussion

The proof of Claim 1 demonstrates that a "uniform" spacing of landmark observations

is near-optimal in a t, sense for fixed number of observations m + 1. Decimation,

by definition, maintains every r-th landmark observation, achieving precisely this

uniform pattern. For a given number of poses, Claim 1 is equivalent to the claim

that decimation makes a near-t,-optimal selection of m = observations, at least for

single-landmark systems.

From a keyframing perspective, assuming a consistent raw data rate, aligned decima-

tion by definition evenly spaces keyposes in time. As shown in Appendix B, odometry

processes such as IMUs are often modeled with additive Gaussian noise and produce

odometry factors whose noise parameters scale with time. Thus, aligned decima-

tion will produce graphs with uniformly-precise (uniformly-weighted) odometry links

similar to Figure 3-10, and thus are near-tm-optimal by Claim 1.

In non-aligned decimation, landmarks are not necessarily all connected to the same
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poses. Unfortunately, Claim 1 does not necessarily generalize to this multi-landmark

case. However, each single-landmark subgraph is still "well-connected," and exper-

imental results in Section 3.4 will show that non-aligned decimation performs well

from an information volume (the inverse of uncertainty volume) perspective.

Determining the t,-optimal strategy analytically in a more general multi-landmark

case is non-trivial. As the precision of nonlinear observations such as vision depend

heavily on scene geometry, the observation weights wj will not all be equal. Addition-

ally, due to sensor limitations, all landmarks often cannot be observed from all points

in the trajectory. Thus, the truly t,-optimal choice of landmark edges cannot be

determined a priori without specific knowledge of the available observations. Greedy

and semi-definite-relaxed algorithms proposed by 136] exist, but are computationally

impractical for high-rate realtime systems.

3.3 Decimation in implementation

In light of the above observations about the favorable properties of decimated graphs,

several decimation-style strategies for efficient measurement selection can be pro-

posed. There are two main categories, corresponding roughly to "per-frame" and

"per-landmark" styles. Note that here "frame" refers to an image frame, a laser scan,

or other sensor reading that contributes a set of simultaneous landmark observations.

In landmark SLAM, of which VIN is a particular case, the odometry factors connect-

ing consecutive poses are generally not pruned. These measurements are often full

rank, meaning that the set of odometry factors themselves (along with a gauge fix)

are sufficient to fully constrain the ML estimate of pose nodes in SE(2) or SE(3).

Thus, they lend a sense numerical stability to the problem. Additionally, as odom-

etry factors usually only connect pose nodes xi and xi 1 , they form a single chain

and thus are naturally sparse. For these reasons, measurement selection and pruning

often deals exclusively with landmark observation factors.
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3.3.1 Keyframe selection

As was originally mentioned in Section 3.0.1, keyframe selection refers to the problem

of determining which discrete poses (representing the continuous-time robot trajec-

tory) to include explicitly in the SLAM optimization [58J. From the graphical per-

spective, these discrete poses correspond to the set of pose nodes in the SLAM graph.

As noted by [20, 29], reducing the number of discrete pose nodes along the robot's

trajectory can promote consistency. Additionally, the pre-processing associated with

each image frame or LIDAR scan can be non-negligible. Thus, processing only a

fraction of incoming measurements represents significant computational savings.

An important caveat of keyframing is that only measurements associated with key-

poses can be included in the optimization. At any time, currently-tracked landmarks

can leave the field-of-view or sensor detection range. As new landmarks cannot be

initialized until the next keyframe, this can lead to points in time during which

insufficient landmarks are tracked. This is especially an issue for monocular vision-

based systems, which require several observations before reliably triangulating a land-

mark 145]. For this reason, heuristic selection techniques like [58,61] explicitly aim to

maintain sufficient landmarks.

While decimation can be (and is often) used as a keyframing method, its use must

be tempered by the need to ensure a sufficient number of landmarks at all parts of

the trajectory. Thus, there often exists a maximal extent to which decimation-style

keyframing can be used safely, beyond which more flexible per-measurement selection

strategies can be leveraged. For example, a 60 Hz image stream from a camera may

might be decimated to 20 Hz, with pose nodes added to the graph at this rate.

Thus, new landmarks could be detected and initialized at up to 20 Hz. For visual

systems with narrow FOV cameras undergoing aggressive rotation, this may be the

minimum rate to ensure a sufficient number of landmarks are well-estimated at all

times. Beyond this point, any further measurement selection must be performed on

a more flexible, per-measurement basis.
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Additionally, the estimated trajectory (rather than simply the latest estimate) may

be of direct interest. For example, as discussed in Section 4.1.7, the estimate of past

states can be used for local-frame trajectory tracking. As only those pose estimates

which are represented in the graph can be accessed, this requires a sufficiently high

pose incorporation rate.

3.3.2 Per-landmark decimation

Given a fixed set of pose and landmark variables, the remaining question is which

subset of all available measurements best approximates the full distribution. In this

case, the measurement selection process is not restricted to selecting or discarding

all measurements associated with a particular pose as a group, but rather each mea-

surement or factor can be evaluated independently. Thus, strategies inspired by the

patterns of non-aligned decimation are applicable.

As discussed in Section 3.1, decimation naturally partitions graphs into subgraphs

with restricted inter-connectivity. This naturally bounds fill-in and thus significantly

reduces elimination complexity compared to un-partitioned graphs. By the same

token however, the extent to which subgraphs are partitioned or disconnected from

each other is the extent to which the estimation problems are decoupled. Put another

way, this reduced connectivity leads to a less constrained estimation problem, and

therefore reduced estimation performance. This tradeoff is verified numerically in

Section 3.4.

In practice, it should be remembered from Section 2.1.1 that realized micro-sparsity

is still significant - that is, realized performance is dependent on both graph super-

structure and the actual measurements acquired during operation. This means that

sparsity in practice will gracefully degrade as the assumptions of strict partitioning are

violated. Thus, the partitioning structure presented in Figure 3-4 can be interpreted

more as a general guideline rather than a strict rule. As estimation performance

intuitively should improve with increased coupling between partitions, the inclusion
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of "violations" should improve estimation without prohibitively impacting computa-

tion. Fortunately, as the following simulation results would suggest, this tradeoff is

actually quite favorable. It requires relatively few violations of partitioning to achieve

estimation performance on par with much more generally connected structures, while

still achieving near-partitioned computational performance.

Two methods are presented here, one which is a straightforward implementation of

non-aligned decimation and one which is slightly modified to address specific aspects

of incremental SLAM.

ndec refers to straightforward non-aligned decimation. Based on the index of the

first pose node from which a landmark is observed, only observations corresponding

to every r-th pose node are maintained. In this scheme, the first observation of a

particular landmark is always included, and it determines the decimation "offset" of

all future observations associated with the landmark. The partitioning structure of

Figure 3-4 is strictly upheld.

Decimation++

In incremental SLAM, several weaknesses of ndec become apparent. First, at initial-

ization, all landmarks observed from the robot's starting pose xo will be initialized

with a decimation offset of 0. Unless new landmarks are introduced immediately, it is

unlikely that the next r - 1 pose nodes will be constrained by many landmark obser-

vations. Over time, more landmarks are initialized, and the distribution of landmark

decimation offsets becomes more uniform. However, this initial transient pattern is

undesirable and can lead to increased error in the early part of the trajectory. Second,

the latest pose node is often of most direct interest for closed-loop control. Under

simple ndec however, the observations associated with latest pose x, are decimated

just like the rest. Instead, if pruning is simply delayed until after the update, x"

will be left temporarily un-pruned, with all possible observation constraints. In this

way, accuracy of x, can be increased at little computational cost. At each solve, the
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observations associated with pose x, that are due to be decimated represent a small

set of violations to the partitioning structure of pure ndec. These violations add a

small level of coupling between partitions, which in practice significantly improves

estimation quality at cost of a slight increase in computation.

In light of these observations, an improved strategy, dec++, is proposed. This strategy

has two slight modifications addressing specific issues in incremental SLAM.

1. For landmarks observed from initial pose xO, early observations are dropped

by a simple scheme in order to distribute the landmark offsets uniformly. As-

suming the landmarks are labeled sequentially according to their initialization

order, dropping the observations of landmark j before pose k = j mod r will

accomplish this.

2. Pruning is only done up to the second-to-latest pose x,_ 1 . All observations

associated with pose x, are kept in the graph, and decimation is only performed

on these observations after pose xn+1 is added.

The performance of these per-landmark methods will be evaluated on synthetic data

in the following section.

3.4 Simulation Results

A suite of simulation experiments were performed to verify the analytic results dis-

cussed above in a full 3D, nonlinear VIN setting. In the simulation, a robot drives

a square trajectory, observing nearby landmarks according via a monocular visual

sensor, using a pinhole camera model. Poses are represented as elements of SE(3),

and landmarks as Cartesian points in R3

Consecutive poses are linked via noisy odometry measurements, and noisy visual

observations link poses to landmarks. At each step of the simulation, a new pose

node is added to the graph, and newly-triangulated landmarks are added to the

graph. Because of the under-rank nature of monocular measurements, landmarks are
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not initialized (i.e. added to the graph) until they have been observed a minimum

number of times.

.4

1I~A f
A IM

.il

Figure 3-15: Top-down view of the simulation trajectory and full set of measurements.
The robot trajectory is shown as the series of blue pose nodes, and landmarks are
shown in green. The robot moves in a counter-clockwise direction, starting from the
lower-left corner. Red edges indicate the full set of monocular vision observations.

The current estimate is updated at each step of the simulation via the incremen-

tal iSAM2 algorithm [32] as implemented in GTSAM [12]. The batch elimination

complexity is evaluated and timed at each step as well, to provide a more direct mea-

sure of graph sparsity unaffected by the somewhat obfuscating optimization of the

incremental solver. As will be seen, the computation time of the incremental solver

generally tracks the trends of the full batch computation. All timing experiments

are performed on the same desktop machine with an Intel i7 processor running at a

nominal 4.0 GHz.
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The goal of these experiments is to compare the performance of decimation schemes

versus a more sophisticated pruning approach. In all cases, only visual observations

(pose-landmark edges) are considered for pruning. The comparison algorithm used

is the t-optimizing greedy strategy of 1361, which at each step greedily removes the n

visual observations from anywhere in the graph which reduce t-connectivity the least.

The number of observations removed n is based on a budget of k observations per

landmark, and is tuned to approximately maintain a similar number of edges in the

graph as the compared decimation approaches. It should be noted that this approach

is computationally expensive to implement, and the computation involved in actually

executing this pruning procedure is not accounted for in the following results. Rather,

the intent here is to demonstrate that, even if such a strategy were computationally

"free", it still would not outperform decimation for these problems.

Several pruning strategies are evaluated here.

" adec: Aligned decimation.

* ndec: Non-aligned decimation.

" dec++: Decimation-based strategy introduced in Section 3.3.2.

" rand: Random pruning.

* tgreedy: Greedy t-optimizing approach of [36] 1.

All strategies are tuned to maintain approximately 1 of the full set of observations in

the graph. For example, ndec4 and rand4 will produce graphs of different structures,

but with approximately one-quarter of the observation factors used in the original

graph.

Each pruning strategy produces a corresponding approximating graph and distribu-

tion over the set of variables. The Kullback-Leibler divergence (KLD) between the

'Because only observation edges are considered for pruning, and because all simulated vision
measurements are corrupted by an equivalent Gaussian noise, the unweighted variant of 136] is used.
However, because the vision model (see Section 1.2.1) shows that measurement Jacobian depends
on scene geometry, one could imagine a more sophisticated, weighted variant being used, although
it is not necessarily clear how weights would be generated.
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approximating Gaussian and the full distribution (using all measurements) is used

to evaluate estimation quality. Also, the log-determinant of the information matrix

A AE over the linearized joint distribution is plotted. As the information matrix

is the inverse of the covariance matrix, higher values here correspond to lower uncer-

tainty. As the t-greedy approach is designed to explicitly maximize the information

log-determinant, it does the best here for a given number of edges. However, in terms

of KLD, decimation can produce graphs which much more efficiently (in terms of

computational complexity per edge) approximate the full distribution.

3.4.1 Batch graph pruning

In order to validate the impact of decimation structure on estimation and computa-

tion, a set of batch experiments were performed. The full graph and set of observations

is illustrated in Figure 3-15.

From this full graph, a suite of pruning strategies were executed and evaluated, with

various decimation rates. After pruning was performed, the graph was re-optimized,

and the divergence and information volume were computed. Because of the large size

of the problem, tgreedy was too expensive to run in batch.

As can be seen from Figure 3-16, all pruning strategies removed a similar num-

ber of factors at each value of pruning rate r. As expected, the rand graph pro-

duced graphs of consistently higher de facto elimination complexity CCOLAMD than the

decimation-style strategies. Furthermore, the complexity reduction achieved by the

random strategy plateaus quickly, and increasing the pruning rate does little to fur-

ther reduce complexity. In contrast, the decimation-based strategies produce graphs

of much lower complexity.

In terms of divergence, the decimation-based dec++ proposed in Section 3.3.2 does

only comparably to or better than rand, while producing graphs of much lower com-

plexity. From an information volume perspective, dec++ and rand perform almost

identically (higher is better). As expected, adec produces extremely inexpensive (low
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C) graphs, but at the cost of significantly increased KLD and reduced information

volume with respect to the full set of variables.

CCOLAMD

adec
- G ndwc

-)rand
-- doc++

-e -

Decimation rate
6 8

Divergence from full graph

-0-.doc
-0- ndec

-adC -

8
Decimation rate

6.5 x 104

5.5

5

o4.5

4

3.5

32
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Information volume
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.- .rnd

-- doc++

4 e a
Decimation rate

Figure 3-16: Simulation batch pruning results under various strategies and equivalent
decimation rates. (top left) Factor counts are near equal for each strategy for a given
decimation rate. (top right) Elimination complexity is dramatically reduced for adec
and ndec relative to the unpartitioned graph produced by rand. (bottom left) dec++
achieves a similar KLD relative to the full graph to rand, at reduced complexity. ndec

and adec show significantly higher divergence. (bottom right) The log information
volume (log inverse of uncertainty volume) is highest with rand and dec++, as these
graphs are most connected. (Higher is better).

3.4.2 Incremental SLAM

The robustness of decimation strategies was also evaluated in an incremental SLAM

setting. Running the simulation data one iteration at a time, pruning was imple-
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mented at each time step. After pruning, an iSAM2 update was executed. The

divergence between the approximating graph and the full graph at each step was

computed, along with several other metrics.

It should be noted that at each iteration, the tgreedy strategy was free to prune

observations from anywhere in the graph, while rand was restricted to only new

observations. Again, it should be stressed that for a given pruning rate r, all strategies

were tuned to remove a similar number of factors at each step as straightforward

decimation. Results under r = 4 and r = 6 are shown in Figures 3-17 and 3-18,

respectively.
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Figure 3-17: Simulation incremental pruning results under various strategies for r = 4.
(top left) Factor counts are near equal for each strategy. (top right) Elimination
complexity is smallest under adec. ndec and dec++ produce similar complexity until
near the end of the trajectory. rand and tgreedy are both much higher, but in
this case tgreedy happens to produce a relatively sparse structure near the end of
the trajectory. (bottom left) dec++ achieves a similar KLD to rand and tgreedy,
at reduced complexity. ndec and adec show significantly higher divergence, with
ndec showing large fluctuation as the solution switches between nearby local minima.
(bottom right) The log information volume (log inverse of uncertainty volume) is
similar for all strategies besides adec. (Higher is better).
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Remaining factors
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Figure 3-18: Simulation incremental pruning results under various strategies for r = 6,
demonstrating similar trends as Figure 3-17. (top left) Again, factor counts are near
equal for each strategy. (top right) As before, elimination complexity is lowest under
adec, and similar between ndec and dec++. (bottom left) dec++ demonstrates similar
divergence to rand and tgreedy at much reduced complexity. (bottom right) Again,
all strategies besides adec produce a similar log information volume. (Higher is
better).

In all cases, the KLD measured between the estimate produced using the full data

and that using the pruned data generally increases at each step of the simulation.

For a given pruning rate r, the rand and tgreedy strategies both show slow, linear

divergence growth over time. The others, particularly ndec, have a tendency to

jump between different local minima, causing some fluctuation over time. The subtle

modifications made in dec++ suffice to stabilize these fluctuations and generally reduce

divergence, making it comparable with rand and tgreedy. adec shows the worst
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estimation performance with respect to the full set of variables. For the r = 6 case,

as seen in Figure 3-18, the adec6 simulation diverges significantly around iteration

430, and does not recover.

The log information volume for each strategy is also tracked. Defined as the de-

terminant of the information matrix, the information volume is the inverse of the

uncertainty volume. Thus, increasing information volume corresponds to increasing

estimate confidence. As can be seen, dec++ improves upon ndec to achieve compa-

rable performance with rand and tgreedy.

Recall that tgreedy is generally expensive to implement for large graphs, and is

therefore impractical for realtime systems. In general, tgreedy is expected to produce

structure with C noticeably larger than that of decimated graphs, as the algorithm

applies no concept of sparse structure. However, Figure 3-17 shows that for this

SLAM instance in particular, tgreedy at points produces complexity comparable to

ndec and dec++. This may simply be an artifact of chance, as Figure 3-18 shows the

expected larger complexity of tgreedy at a higher pruning rate.

In contrast to tgreedy, the random pruning strategy, rand, is certainly implementable

in realtime, and is observed to produce good estimation performance. However, its

inherent randomness destroys the particular macro-sparsity achieved by decimation,

resulting in more computationally complex graph structures.

A more direct comparison is shown in Figure 3-19. In these plots, dec++2 manages to

maintain more factors at lower complexity, and achieves lower divergence and higher

information volume. This suggests that the inherent sparsity produced by decimation-

based strategies allow them to prune less to achieve the same computation savings,

and in the process maintain a better approximation of the original distribution.
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3.5 Discussion

Despite their simplicity, decimation-style pruning strategies are highly effective. Dec-

imation produces a characteristic graph structure that is inherently sparse, with

bounded elimination complexity. In practice, this allows decimated graphs to main-

tain many more edges at lower computational cost than approaches without this

structure.
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Additionally, the uniform placement of pose-landmark edges incurred by decima-

tion has good t-connectivity characteristics, corresponding to low uncertainty in the

Gaussian-approximated distribution. In the single-landmark case, this structure is

in fact near tm-optimal. In general problems, this means decimation strategies can

perform comparably with sophisticated t-maximizing strategies for similar graph com-

plexity, while being significantly simpler and less expensive to implement.

The decimation-style strategy dec++ was introduced to improve on a pure application

of non-aligned decimation. Using simulation data, this policy was shown to achieve

comparable or better estimation while maintaining comparable or better sparsity.

Given the simplicity of its implementation, this makes it a formidable pruning option

for realtime systems.

Because they are able to maintain more edges for similar computational cost, deci-

mated graphs can achieve a higher average degree. This is known from [471 and [35]

to correspond with better expected ML accuracy. This could partially explain the

strong KLD approximation performance.

Additionally, it was observed that random selection of new edges produced estimation

performance on par with the tgreedy approach proposed by 1361. However, random

pruning lacks any of the partitioning superstructure of decimation, and so produces

graphs that are much more expensive to optimize.

3.5.1 Auxiliary advantages of decimation

The decimation procedure is negligible computationally, and it can be known a priori

whether a measurement will be kept or discarded. From an incremental, realtime ap-

proach, this has several advantages. In the case of aligned decimation, pre-processing

can be reduced or skipped completely for intermediate poses, as it is known that no

produced measurements will be kept. For visual systems, this is particularly useful as

feature detection and tracking can be expensive operations. Unlike simple decimation,

heuristic methods proposed by [58,61] still require feature detection and tracking to
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be performed. Additionally, if estimates for intermediate pose are not needed for out-

put, they never need to be added to graph in the first place. Besides simply reducing

the number of variables in the optimization, this can also have accuracy benefits. As

argued by Ila et al. [29], each intermediate pose variable represents a linearizing ap-

proximation (and a first-order noise propagation), so "over-sampling" the trajectory

can lead to estimator overconfidence. Thus, if intermediate poses are not included,

linearization is applied less frequently (in terms of the number of trajectory samples

per time).

If intermediate frames are simply not represented in the aligned-decimated graph

(for example in Figure 3-2), the resulting reduced graph can be considered a non-

decimated graph with fewer pose nodes. This is essentially the application of deci-

mation to keyposing. In this case, one might define metrics like KLD or information

volume over only the variables in this reduced graph, a subtle yet important modi-

fication. Though beyond the scope of this thesis, the effectiveness of decimation for

keyposing could be the subject of experiments similar to those in the previous section,

but using these modified metrics.

For incremental solvers, it is also desirable if measurements can be removed "up front"

rather than being pruned in a delayed sense. In iSAM2, removal of measurement

factors from arbitrary locations in the graph degrades the incremental assumptions

of the algorithm, and may result in extra computation. If measurements are instead

discarded immediately, as is the case with decimation, or shortly after being added,

as in the case of dec++, non-local modification of the iSAM2 Bayes Tree [32] can be

avoided.

As was also seen, aligned decimation produces much sparser graphs than non-aligned

decimation. However, non-aligned decimation provides a better approximation. Ad-

ditionally, non-aligned strategies are more flexible, as new landmarks can be detected

and initialized at a higher frequency. This can be important for fast-moving robots

that undergo fast rotations or have limited field-of-view. As landmarks may be ob-

servable for only a short time, it is important that new landmarks can be detected
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and added to graph at a high enough frequency to replace those that disappear.

Put in terms of VIN systems, a combined strategy would apply both per-frame and

per-landmark decimation. For example, imagine the camera generates image frames

at 60 Hz. The frames could be decimated by 6, meaning poses are only represented in

the graph at 10 Hz. Then, to achieve further computational savings, a per-landmark

(non-aligned) decimation rate of 2 could be applied, so each landmark only generates

observations at an effective rate of 5 Hz.

This graph reduction can allow the estimator to run on systems with very limited

computation, or can allow for more landmarks to be estimated simultaneously. In

Chapter 4, the dec++ policy is implemented in SAMWISE and shown to effectively

reduce computation while maintaining good estimation characteristics.

3.5.2 Can decimation be beaten?

In this thesis, decimation is analyzed from a graph-theoretic perspective, where all

observations are assumed to be of equal precision. Of course, for most real systems

including VIN, the noise characteristics of an observation can depend upon scene

geometry, sensor parameters, the robot's trajectory, and countless other factors [45].

These factors are domain-specific, and taking them into account would somewhat

limit the generality of the analysis. With the additional information available at run-

time, a smarter strategy could no doubt be imagined, perhaps garnering significant

performance improvements.

From one perspective, decimation can be considered an a priori measurement se-

lection technique that prescribes a graph super-structure regardless of the realized

measurements or trajectory. The resulting macro-sparsity is most valuable in "worst-

case" graphs in which all landmarks are observed from all poses in the trajectory.

However, in any particular SLAM instance, sensor limitations severely restrict the

number of landmarks feasible from any given pose, providing another level of spar-

sity. This micro-sparsity is unpredictable, but can be as, or more, significant than
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the macro-sparsity achievable by decimation. Thus, runtime measurement selection

policies that take into account realized graph structure at each step can potentially

achieve much better complexity reduction in practice.

Nonetheless, decimation shines most in its simplicity. If the ultimate goal of mea-

surement selection is computation reduction, any worthwhile strategy must net com-

putational savings. This sets a high bar for any strategy that aims to meaningfully

improve upon decimation.

3.5.3 Handling loop closures

Loop closures, a conspicuous feature of most long-term SLAM solutions, were ex-

plicitly excluded from much of the analysis in this chapter. Because they represent

a significant generalization of graph structure, their presence makes analysis more

complex.

In terms of graph sparsity, the presence of arbitrary loop closure constraints can anni-

hilate the partitioning super-structure that allows efficient optimization. Fortunately,

with some slight restriction, loop closures can be accommodated without ill effect.

For example, in the case of an aligned-decimated graph, loop closures from keypose

to keypose will not affect the optimization- upper-bound. If intermediate frames are

not represented in the first place, this is accomplished naturally. In the case of non-

aligned decimation, if loop closures only connect nodes within the same 11 k cluster,

the analysis will not be affected. In many systems, pose nodes are generated several

times per second, so finding a "same-offset" node to connect a loop closure should not

be that difficult.
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3.6 Summary

Decimation is a very simple, intuitive approach to measurement selection used com-

monly in practice. To the best of the author's knowledge, its performance has thus

far not been analyzed in a rigorous analytic sense.

Under such analysis, decimation proves to have highly desirable characteristics for

computationally-constrained SLAM. Both aligned and non-aligned topologies pro-

duce super-structures which are relatively inexpensive to eliminate. This means that

compared to more general graphs, decimated graphs can afford to incorporate many

more measurements (i.e. edges) for the same computational complexity. Addition-

ally, the uniform spacing of measurements promoted by decimation tends to promote

a high weighted number of spanning trees, and is in fact near tm-optimal in single

landmark systems. As the weighted number of spanning trees has been related to

reduced uncertainty volume, this suggests good information-theoretic performance.

Ultimately, the combination of these two factors make decimated graphs highly effi-

cient, high quality approximations of the original (full) graph.

The modified decimation-style approach presented in Section 3.3.2 was shown to be

comparable with, and often outperform, the more sophisticated (and computationally

infeasible) graph pruning approach of [35]. As dec++ is trivial to implement and

evaluate, it can be an effective computation reduction strategy for realtime landmark-

SLAM systems, particularly in VIN.

Decimation was compared side-by-side with a more sophisticated approach [361 that

was much more expensive to evaluate at each step. In these simulation experiments,

decimation produced comparable or better approximation performance for the same

graph complexity. Considering that decimation-style policies consume negligible com-

putation and convey the auxiliary benefits discussed in Section 3.5.1, the results

presented in this chapter demonstrate a clear suitability for high-rate, computation-

constrained realtime systems.

102



Chapter 4

The SAMWISE Navigation System

Smoothing And Mapping With Integrated State Estimation (SAMWISE) is a multi-

sensor state-estimation library for mobile robots developed by Draper. Primarily

developed for the DARPA Fast Lightweight Autonomy (FLA) program [491, it is de-

signed to enable agile, closed-loop flight for small UAVs in GPS-denied environments

with a limited computational budget. An earlier version of SAMWISE was published

in [59], but since then the system has matured considerably, and new results are

presented here.

Though with a heavy emphasis on monocular visual-inertial sensing modalities, SAM-

WISE can incorporate (and benefit from) many other types of sensors, such as

laser altimeters, 2D LIDAR scan-matching, and GPS if available. Under the hood,

SAMWISE leverages the GTSAM [12] implementation of the efficient incremental

iSAM2 [32] solver.

While sharing many similarities with other indirect visual-inertial navigation (VIN)

approaches, SAMWISE includes several critical design innovations to meet the needs

of low-latency, high-accuracy navigation for aerial vehicles. Because aerial vehicles like

quadrotors are inherently unstable, they require high-rate, accurate state estimates

to achieve stability and good reference tracking performance. However, attaining

maximal accuracy requires iterative, non-linear solvers which can take up to a second
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to converge. Though iSAM2 updates are generally fast, completing in under 100ms,

they can occasionally take much longer. In order to provide guaranteed state updates

at IMU rate (> 100Hz) and still achieve maximal estimation accuracy, SAMWISE

performs fast, IMU-based state prediction decoupled from the iterative smoothing

optimization. This allows all active poses and landmarks to be optimized simulta-

neously at each solve step, facilitating high accuracy, robust estimation, while still

allowing high-rate control.

In the GPS-denied context, SAMWISE is primarily an odometry system. Unlike gen-

eral SLAM approaches, it does not facilitate long-term loop closures or aim to build a

globally-consistent map. This is primarily because reliable place-recognition is still a

challenging, open problem, and a single incorrect loop-closure constraint can severely

impact estimate quality, potentially even causing divergence. As SAMWISE is de-

signed to produce state estimates for low-level control, such a failure could lead to a

loss of stability and catastrophic failure. Additionally, facilitating global loop closures

is generally costly, requiring some representation of previously-visited locations to be

maintained in the system. If place-recognition is available, the application of loop-

closures can handled at a higher level of the system, without over-complicating the

low-level estimator or exposing it to faulty recognitions. For all these reasons, SAM-

WISE makes no pretense of supporting global loop closures, and will demonstrate

(small) estimation drift over time, even in loopy trajectories.

4.0.1 Design requirements

Several key requirements must be met for a robust, GPS-denied navigation system

on a fast-moving quadrotor:

* Combine data from a number of possible sensor classes, notably IMU and

monocular vision.

* Be robust to non-synchronized sensor streams with variable communication

delays.
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" High rate (> 100 Hz), low latency ( 1 ms) attitude and position output for

closed-loop stability and control.

" Low-drift estimation (i.e. < 2% of distance traveled).

" Remain within a limited computation budget amenable to fully-onboard pro-

cessing on SWaP-limited platforms.

" Operate robustly under widely-varying lighting conditions and environments,

indoors and outdoors.

" Robustly handle outlier visual measurements, such as glare and moving (dy-

namic) objects in the scene.

" Large estimate corrections must be addressed to facilitate smooth trajectory

tracking.

These challenges will be addressed in the following section. Results from several

challenging DARPA FLA trials are presented, demonstrating the robustness and ef-

fectiveness of SAMWISE in closed-loop. SAMWISE is also evaluated on the EuRoC

MAV [51 dataset and compared against ground truth.

4.1 Approach

The overall system architecture of SAMWISE is illustrated in Figure 4-1. As an

indirect visual method, SAMWISE operates on a set of sparse feature detections

extracted from each image frame in the video stream. Spurious tracks and other

"outliers" are detected and discarded by triangulation and comparison to the current

smoothed estimate of the landmarks and trajectory, as described in Section 4.1.6.

Measurements from the IMU and other sensors, such as a barometer or laser altimeter,

form parallel sensor streams which are debuffered and converted in factors. This

process is described in Section 4.1.4, and is flexible to measurements which are slightly

delayed, dropped, or are otherwise asynchronous.
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Figure 4-1: High-level SAMWISE system diagram.

In order to provide high-rate, low-latency estimates of the current state, as decoupled

IMU-based strapdown propagator runs in a separate thread. After each incremen-

tal update performed by the smoothing optimization, this module is updated with

the latest smoothed pose estimate, and IMU data from the timestamp of that pose

onwards is seamlessly re-propagated. More details on this module can be found in

Section 4.1.3.

SAMWISE estimates the (recent) state trajectory of the robot, along with the po-

sitions of visual landmarks, camera calibrations, IMU biases, and other support-

ing variables. To facilitate representation in a graph structure, it approximates the

continuous-time trajectory x(t) with a series of discrete variables {xi_., xi-n+,... , xi}.

Each state variable xi c SE(3) x R3 represents a robot pose and velocity, and describe

the vehicle state at the instant ti.

All estimated variables are represented as the nodes of a factor graph, and nonlinear

measurements as the factor edges connecting them. Unlike a traditional filtering-

based approach, measurements are fully retained in memory until they are removed

or marginalized. This allows them to be re-linearized as needed, granting higher

accuracy. It also makes it easy to insert and remove measurements to/from the graph

as desired, granting greater flexibility.
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Figure 4-2: Architecture of SAMWISE factor graph. Each state variable is a pairing
of a pose pi and velocity vi. Time-varying IMU biases are represented by periodic bj
nodes. Consecutive states are connected via IMU factors, which also depend on biases.
Landmarks 1k are connected to poses from which they are observed via observation
factors, which may also depend on estimates of calibration parameters (not shown).
The dense prior induced via sliding-window marginalization is shown as the large
factor adjacent to pi, vi, bi, and 11.

4.1.1 The IMU as a motion predictor

Body-fixed IMUs are ubiquitous sensors in mobile systems, and for good reason.

They can be very inexpensive and low SWaP, and exist in most consumer mobile

phones. IMUs generally operate at much higher rates than many other sensors, up

to hundreds of Hertz. They also provide a full-rank 6-DoF measurement, sufficient

to predict the affine transform between two rigid-body poses in SE(3) separated in

time. Additionally, in environments with a known, non-zero gravity vector, such as

the surface of the earth, the IMU grants direct observability of the pitch and roll

orientation of the body-frame. This makes the IMU an ideal candidate for a motion

predictor in a state estimation system such as SAMWISE.

The IMU directly measures rotation rates, and linear acceleration, both affected by
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additive, time-varying bias terms. These bias terms, as well as inertial-frame linear

velocities, must be estimated as well. Because the accelerometer grants observability

of the gravity vector, which is fixed in the navigation frame, the vehicle's pitch and

roll are directly observable. However, like most odometry systems, absolute position

and heading are unobservable, even after the incorporation of SLAM-style landmarks.

This gauge freedom is addressed in SAMWISE by applying a strong prior to the initial

pose, positioning it at the origin with zero heading.

Following the methodology and implementation of Forster et al. [20], many consecu-

tive IMU measurements can be "bundled" or pre-integrated to concisely express the

predicted relative transform between pose variables xi and xi+1 separated by an ar-

bitrary time difference dt. This pre-integration is performed directly in SE(3), and

is formulated to allow dynamic re-estimation of the IMU bias terms without costly

re-integration. These IMU bundles comprise odometry factors directly connecting

consecutive state variables xi and xi+1 , as well as the current bias node bj. This is

desirable in that it eliminates the need to introduce a state variable xi for each IMU

reading, making the factor graph much more concise, and the resulting optimization

faster. Additionally, it avoids unnecessary intermediate application of first-order noise

propagation (i.e. linearization) to the dynamics, promoting consistent noise estima-

tion.

4.1.2 Monocular vision

The use of bi- or trinocular camera rigs with overlapping fields-of-view for vision-

aided navigation is quite common [5,23,55,57], as it confers several benefits in terms

of observability and robustness. Because the same landmark can be observed simulta-

neously by multiple cameras, the landmark can be triangulated immediately, and the

posterior distribution over the landmark position approaches Gaussianity faster [45].

Additionally, the baseline between cameras is fixed and known. Compared to a se-

ries of monocular observations separated by time (and an unknown baseline which

is estimated simultaneously), the known baseline between paired stereo observations
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grants direct observability of metric scale and better estimation accuracy. Further-

more, monocular triangulation fails when the landmark lies near the optical center

and motion is along the optical axis, and stereo rigs do not [57].

Nonetheless, the value of stereo or trinocular measurements is heavily dependent on

the physical separation of the cameras. For very small platforms, providing signifi-

cant baseline can be prohibitive. Thus, despite the inherent challenges, monocular

estimation provides the most universal solution.

While it would be straightforward to implement stereo matching within SAMWISE,

it currently is designed to leverage only monocular observations. With that in mind,

all experiments discussed in this chapter are performed using a single camera, even if

others are available as in the case of the EuRoC MAV dataset [5].

4.1.3 Decoupled IMU propagation

Because SAMWISE is designed to facilitate closed-loop control and trajectory track-

ing, it must be able to output updated state estimates at a rate high enough to

provide adequate control bandwidth. Additionally, these estimates must have low

latency, defined as the time between when the update is published (produced) and

when it was valid (when the corresponding sensor data was measured). However, even

state-of-the-art smoothers such as iSAM2 cannot compute updates fast enough, and

do not necessarily hold to constant compute time. For this reason, SAMWISE runs

a separate IMU propagation thread which is decoupled from the graph optimization.
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Figure 4-3: In order to facilitate high-rate state estimation independent of the itera-

tive solve thread, SAMWISE runs a decoupled IMU propagator which allows access

to the latest pose estimate x at any time. New, high-rate IMU measurements are

integrated sequentially starting from the latest smoothed pose xi. After the graph-

based optimizer completes a new solve, the propagator is rebased onto the new latest

smoothed pose xi+,. In the process of rebasing, IMU measurements after t, must

be re-integrated. This process takes some amount of time, indicated here by the

additional IMU measurements incorporated from t,, to t, 2 during the rebase. In im-

plementation, the process of rebasing is handled carefully to ensure that the current

estimate x can be accessed at any time, even while a rebase is occurring.

When an IMU measurement is received, it is added to the IMU queue to be eventually

incorporated into the factor graph and to a separate IMU propagator module. Within

the IMU propagator, the measurement is stored within a circular buffer describing

the IMU history since the last base state xi (at time ti, with bias estimate bi).

When a new set of measurements is incorporated and solved in the solve thread, the

propagator is rebased onto the latest state xj+1 at time t i+ and bias estimate bi+1.

During the rebase, measurements older than tj+1 are discarded from the propagator

buffer, and the state history from t~i+ onwards is recomputed. As this process takes

non-negligible time, IMU measurements continue to accumulate in the buffer. This

process is illustrated in Figure 4-3.

At any time (including while a rebase is occurring), the IMU propagator can be

queried in constant-time for a state prediction for any time in the range [ti, t-1] (before

the rebase), or [ti+1 , t, 2 ] (after the rebase). The output of these queries is a pose
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prediction that combines the latest smoothed estimate with the latest IMU data,

interpreted via the current bias estimate. Thus, as long as the graph-based solver

achieves a sufficiently-high update rate, the propagation period will not grow too

long. The quality of the IMU and the dynamics of the vehicle will determine for

how long measurements can be propagated without accumulating dangerous levels

of error. In practice, using a mid-range ADIS16448 IMU (also used in the EuRoC

MAV dataset [5]), the FLA quadrotor performs well and maintains stability even with

occasional several-second solves.

4.1.4 Measurement buffering

In order to build the optimization factor graph illustrated in Figure 4-2, pose and

velocity nodes must be created to represent the robot's state at the corresponding

measurement times. Said another way, a non-IMU measurement taken at time tj must

be connected to the pose node xj. If this node has not already been created, it must

be added to the graph, and connected to the previous node xj 1 via an odometry

factor. As described in Section 4.1.1, the pre-integrated IMU factors of [20] are used

to represent this odometry, and are formed by pre-integrating the IMU readings in

the interval [ty4, tj].

Clearly, the above process require pose nodes creation, and therefore measurement

processing, to be performed in synchronized order. Nevertheless, it is difficult to time

synchronize the many sensors that may be leveraged in a navigation system. Sen-

sors operate at different frequencies and may even use different clocks. Additionally,

communication buses like USB may be shared among multiple sensors and other de-

vices, causing unpredictable communication delays. For these reasons, SAMWISE

implements a flexible measurement buffering scheme which allows for the incorpo-

ration of delayed and non-synchronized sensor streams. It assumes only that the

measurements from each individual sensor are ordered properly, and allows for the

small communication backups that may occur on, for example, a busy USB bus.
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Each sensor is associated with an ordered stream of time-stamped measurements.

When new measurements are added to SAMWISE, they are added to a correspond-

ing internal buffering queue. Before processing any measurements, SAMWISE waits

until at least one measurement is present in each enabled queue. This ensures that

measurements, which may be received out-of-order in relation to measurements from

different streams, are still processed in the correct overall order.

The above scheme can easily handle delayed measurements. For example, vision mea-

surements require extensive pre-processing and screening before they can be added to

the graph. By reserving a "ghost" state xf corresponding to the time t1 a frame is cap-

tured, the corresponding vision measurements can be added to the graph later, when

they are done processing. This allows normal processing to continue uninterrupted

in spite of delays, and delayed information can be used as it becomes available.

4.1.5 Sliding-window marginalization

In order to limit graph growth over time, a time-parameterized sliding-window is

maintained. Poses which are older than a fixed duration are marked inactive, as are

landmark variables which are adjacent to only inactive poses. Time-varying bias,

calibration, and other auxiliary variables become inactive in a similar way. Inactive

variables and their corresponding measurements are marginalized into a prior dur-

ing the solve step. This keeps computation within reasonable limits and allows for

long-duration flights. As SAMWISE is not designed to accommodate long-term loop

closures, inactive states are simply discarded.

When variables are marginalized out, the corresponding (adjacent) measurement fac-

tors are removed from the graph, and replaced by a dense linear marginal connecting

all adjacent remaining variables. Statistically, this is equivalent to the dense, corre-

lated marginals described as Generic Linear Constraints in [61, and the sliding-window

approach of [57]. However, we can leverage the iSAM2 Bayes Tree to more efficiently

compute this marginal factor, in a way identical to [8]. By pre-ordering the variables
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we wish to marginalize such as to eliminate them first, they form a set of subtrees in

the Bayes Tree. The cached elimination result of each of these subtrees is the corre-

sponding linear marginal, and the subtree (made of variables to be marginalized) can

be simply removed from the tree.

Before a variable can be safely marginalized, its corresponding estimate must be

assumed to have converged to be near its true value. Once a variable and its related

measurements are marginalized out, the corresponding information can no longer

be re-linearized, and any linearization error becomes baked into the corresponding

marginal factor. As was pointed out by [15], the linearization points of the remaining

variables adjacent to the marginalized set must also have their linearization points

locked in order to prevent inconsistency. Thus, it is important that variables be kept

active (and not marginalized) until they, and their neighboring variables, have had

time to converge reasonably well.

In practice, we have found a window length of only 3 seconds to provide a sufficient

compromise between computation time and accuracy for our application. By that

time, the vast majority of landmark estimates have converged to stable values, and

further re-linearization is not required.

4.1.6 Feature track handling

As an indirect visual method, SAMWISE first extracts keypoints, or features, from the

image and then incorporates these observations as noisy, geometric constraints on the

vehicle pose over time. Features correspond to high-gradient regions of the image,

and are tracked across multiple successive frames producing a feature track of all

associated observations. Each of these observations corresponds to a pixel coordinate

in the image, u E Q'.

It is assumed that each track corresponds to a well-defined, static landmark point in

R3 . Using a projective pinhole-camera model (see Section 1.2.1, each feature obser-

vation describes a probabilistic geometric constraint between a vehicle pose and the
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landmark position. In SAMWISE, each landmark is represented in the graph with its

own variable node, and each image frame corresponds to a pose node. Thus, a track

defines a set of these constraints relating a particular landmark to the set of poses

from which it was observed.

Feature tracking is performed with a relatively unsophisticated but computationally

inexpensive Lucas Kanade tracker [40j. While being significantly less computationally

expensive compared to more sophisticated descriptors such as ORB [541 or SURF [21,

it is more prone to unpredictable, incorrect matches. Besides outright matching fail-

ures, features with more ambiguous or weaker gradient in one or more directions

can cause noisier tracking. Because features are matched between consecutive frames

rather than by comparing to the first observation, feature drift can also occur, as small

differences in the tracked feature compound over time. Additionally, in dynamic en-

vironments, the static landmark assumption may be violated, and the corresponding

tracks will be inconsistent with ego-motion alone. If included in the optimization,

these outliers can be very damaging and cause catastrophic divergence.

In SAMWISE, outlier detection and mitigation is handled in two ways. In order

to avoid incorporating bad tracks, observations along a track are pre-triangulated

to produce a preliminary landmark estimate, using the currently-available trajectory

estimate. If this triangulation fails to produce a reasonable landmark estimate, this

suggests a corrupted track. On the other hand, if a reasonable landmark estimate

is produced, a reprojection test is applied to each observation individually. If the

reprojection error falls below a fixed threshold, the observation is considered an inlier.

Assuming sufficient inliers are found, the landmark and its inlier measurements are

introduced into the estimator. However, if too many consecutive observations fail this

test, the track is assumed to have been corrupted.
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Figure 4-4: SAMWISE feature tracking during outdoor evaluation. (Left) Input
monochrome image. (Right) SAMWISE feature tracks. Each KLT track is shown
with a blue trace, indicating the feature position in the recent history of frames.
When a track reaches a minimum length, the landmark position is triangulated. Each
detection is subject to a reprojection test (using the current trajectory estimate), and
if the error falls outside of a fixed window, it is marked as an outlier (red). Detections
whose error falls within a narrower window are marked as green, and added to the
graph as measurement factors.

A key distinction of this method is that each track is essentially compared against

the current estimate, rather than against the other tracks via a RANSAC-based [19]

consensus determination. Assuming the current trajectory estimate is close to the true

trajectory, this method is effective and efficient. Additionally, large dynamic objects

in the scene may produce a self-consistent set of observations which are still "bad"

observations, in the sense that the do not correspond to static landmarks. This case

is correctly rejected by this scheme, but may not be by a pure consensus approach.

Furthermore, by evaluating observations individually, the set of good measurements

from a track can still be used even if the detector at some point "jumps" to a different

feature or has a bad match at any point.

In order to further mitigate outliers which may slip through, visual observations are

modeled via a Huber cost function rather than a conventional squared error. The

Huber error grows only linearly for large error, so inconsistent observations do not

exert undue influence over the full nonlinear cost function.
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Because observations are processed and added to the graph in a delayed fashion,

landmarks are initialized with several observations at once. This reduces the need

for complex landmark parameterizations such as inverse depth, advocated by Montiel

et al. [45] and used extensively in filtering-based approaches. While more accurate

under Gaussianity assumptions when only one or two measurements are available,

such parameterizations converge to a Gaussian distribution over R' quickly once

more observations become available. In practice, they also seem more sensitive to

linearization point, requiring more frequent re-linearization. When implemented, we

did not notice any increased accuracy, but did see increased computation. For that

reason, for SAMWISE a straightforward R3 landmark position representation is used.

4.1.7 Keypose estimation and output

Like all discrete-time estimators, the SAMWISE estimate is prone to discontinuous

corrections as new sensor data is incorporated. In a closed-loop system where the

estimate is used for aggressive control, such discontinuities can lead to twitchy, un-

stable control actions. Such jumps must be mitigated for system reliability and good

performance.

As a smoother, SAMWISE provides explicit access to updated estimates of both the

current and prior states. Often, when such discontinuities occur in the inertial-frame

estimate of the current state, the relative transform between the current pose and

recent previous poses remains relatively smooth. This is illustrated in Figure 4-5.

relative to p,

Figure 4-5: Example of an estimate correction causing a "jump" relative to the base
pose pi. In this case, both current pose pi and recent keypose Pk are corrected
together, and the relative transform is largely unaffected.

116



Thus, if trajectory tracking is done in the local frame defined by a recent keypose,

most of these discontinuities are smoothed out. In many robotic systems, and the

FLA system in particular, trajectory re-planning and generation is done frequently

to account for new obstacle data. As obstacle and environment geometry detected

by body-mounted sensors are naturally described in a local frame, the corresponding

trajectory is naturally defined in a local frame as well. Thus, the tracking error used

for control can be defined in the local frame in which the trajectory was planned,

rather than in the fixed navigation frame. When an estimate correction occurs, the

tracking error in this local frame will be unaffected, and control will remain smooth.

To enable such downstream behavior, SAMWISE publishes a set of recent keyposes

after each solve alongside the updated current estimate. These keyposes generally

correspond to the pose at the time of each image frame, but can be specified in any

way, and have a specified lifetime. SAMWISE guarantees that that these keyposes

will be updated and published for the duration of this lifetime. As long as this lifetime

exceeds the replanning period of the downstream planner and controller, trajectories

can be smoothly tracked in the local frame in which they were generated.

4.2 Evaluation on the EuRoC MAV Dataset

In order to better quantify estimator performance, SAMWISE was evaluated on a

subset of the EuRoC MAV dataset 15] provided by ETH Zurich. This data was taken

on a Micro-Aerial Vehicle (MAV) with a similar configuration to our FLA vehicles,

combining an ADIS16448 IMU at 200Hz with forward-facing 20Hz stereo cameras.

As SAMWISE currently only supports monocular vision (to support the Draper-MIT

single-camera vehicle), only one of the two provided image streams was used.

The particular datasets used were taken from indoor flight in a motion-capture space

and come with provided ground truth. Unlike the typical FLA challenges, these

datasets do not cover long distances, but instead stress high angular rates in relatively

confined environments. The large and frequent rotations meant landmarks are not
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observed for long before leaving the field of view. To compound this difficulty, the

dataset only provides image data at 20 Hz (although the Aptina MT9V034 cameras

[481 used were capable of providing a full 60 Hz). Because monocular estimation

requires multiple sequential observations to reliably triangulate a landmark, this is

especially challenging for monocular-only systems like SAMWISE.

As the provided camera calibration is quite high-fidelity, SAMWISE's online calibra-

tion functionality was disabled for these evaluations. Some iteration in determining

reasonable initial estimates of the time-varying accelerometer biases was made. As

these biases are largely a product of slight manufacturing variations and misalignment

in IMU mounting, they are relatively stable for a particular vehicle over time, and

the same values were used for both evaluations done here. In order to increase SAM-

WISE's ability to re-linearize landmark positions given the challenges imposed by this

dataset, the sliding window length was increased to 8.0 seconds. This also had the

benefit of better demonstrating the role of measurement selection, as demonstrated

by the set of experiments in Section 4.2.2. The set of relevant parameter settings is

shown in Table 4.1. Otherwise, no specific parameter optimization was done.

Table 4.1: SAMWISE parameter values used for the EuRoC dataset.

Parameter Value

Accel noise density 1.6968e-4 [rad / s x s21

Gyro noise density 2.000e-3 [m / s2 x s2J
Init accel bias (-0.011, 0.133, 0.080) [m / s2 1

Init gyro bias (0.0, 0.0, 0.0) [rad / sj
Feature noise sigma 1.0 fpxJ

Sliding window 8.0 [s]
Max features per frame 70

The SAMWISE position estimate and VICON-provided ground truth were aligned by

fixing the initial pose estimate to that reported by VICON. Without fixed references,

the efficacy of SAMWISE was defined by the odometric drift which then accumulated

over time.

In order to validate the improved dec++ decimation-based policy introduced in Section
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3.3, dec++ was implemented in SAMWISE. A suite of decimation rate settings are

evaluated and compared in Section 4.2.2. For brevity, attitude and velocity results

are omitted.

4.2.1 Results

Despite the challenging qualities of this dataset, SAMWISE performs well. On the

Vi_01 "Easy" dataset, shown in Figure 4-6, SAMWISE achieved an overall position

RMSE of 0.2609 m. In this dataset, the image tracker performed well and was able to

track many landmarks for long durations, generating sufficient individual observations

to overwhelm the solver. As will be shown in more detail in the next section, the

result in Figure 4-6 was obtained using the dec++ policy with a rate of r = 2. To put

this number in perspective, the cumulative distance traveled by the vehicle (estimated

from the ground-truth VICON data) for the duration of the flight was 60.1 m.

SAMWISE was also evaluated in the on the aptly-named VI_03 "Difficult" dataset,

which included much harsher motions. The tracker struggled to track well through

harsh motions on the relatively low-rate 20 Hz video stream, and fewer observations

were generated than for the VI_01 dataset. For this reason, no decimation was

performed for the trial shown in Figure 4-7. As expected, slightly higher position

RMSE of 0.5561 m was incurred. For comparison, a total of 75.1 m were traveled in

total.

In these runs, the iSAM2-based solver only achieved rates of between 1-5 Hz. Nonethe-

less, because of the decoupled IMU propagation described in Section 4.1.3, SAMWISE

still produced high-quality state estimates at the full IMU rate of 200 Hz. The results

shown here are the realtime, high-rate outputs which would be available to low-level

planner and controller in a closed-loop application.

As expected, in both runs the computation time of the iSAM2 update tends to follow

the number of active factors.
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Figure 4-6: Real-time SAMWISE performance on the "Easy" dataset, using the dec++

policy with r = 2. (top) Tracking performance in each position coordinate (truth in

black). SAMWISE demonstrated good performance, achieving a position RMSE of

0.2609 m compared to VICON truth over the 60.1 m trajectory. (lower left) Overhead

view of trajectory estimate (red) compared to truth (black). (lower right) iSAM2

update time plotted with active factor count.
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Figure 4-7: SAMWISE performance on the "Difficult" dataset (with no decimation).
(top) Tracking performance in each position coordinate (truth in black). Despite the
challenging maneuvers in this dataset, SAMWISE achieved an RMSE of 0.5561 m
over a trajectory exceeding 75.0 m in length. (lower left) Overhead view of trajectory
estimate (red) compared to truth (black). (lower right) iSAM2 update time plotted
with active factor count.
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4.2.2 Varying the decimation parameter

For the parameter set described in Table 4.1, the VI_01 dataset provided sufficient

quantities of long landmark tracks to facilitate experimentation over varying levels

of decimation. As can be seen in the rows corresponding to full in Table 4.2, the

full data was sufficient to overwhelm the iSAM2 solver, resulting in long solve times,

fewer total updates, and ultimately poor accuracy. Though the decoupled IMU prop-

agation described in Section 4.1.3 means that state estimates are available at IMU

rate irrespective of the update rate, beyond a certain point long update times are

problematic for accuracy. Because new variables (poses and landmarks) added to the

nonlinear optimization are initialized by the current estimate, the quality of these

initializations depends in part on how much "raw" (un-smoothed) IMU propagation

it is based on. Thus, long update times can lead to increasingly noisy initializations,

which can can cause the the Gauss-Newton solver to converge to incorrect local min-

ima. Ultimately this demonstrates a motivation for real-time measurement selection

at the core of this thesis.

The remaining entries of Table 4.2 correspond to SAMWISE performance under var-

ious decimation levels. Because the quality of the estimate often degraded unpre-

dictably during the landing maneuver of the last few seconds of the trajectory, and to

make the statistics more representative of in-flight performance, only results within

the time window of [4.0, 130.0 s were taken (out of a 146 second total scenario) are

used. Additionally, SAMWISE is a multi-threaded library running image tracking,

graph optimization, and IMU propagation in different threads. This makes perfor-

mance on a particular run somewhat stochastic, and therefore two trials of each

measurement policy are reported.
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Table 4.2: Results of varying decimation rate on the EuRoC V1_01 dataset. In each
case, two trials were run, and statistics were computed over a select time window
[4.0, 130.01 s for which performance was most consistent. The number of factors
incorporated without decimation shown in the row labeled full caused long update
times and ultimately poor RMSE. The use of dec++ decimation was effective in
reducing update times, actually improving accuracy over the full case. As expected,
starting from dec++2, increasing decimation rate results in increasing RMSE and
decreasing estimator performance. Note that SAMWISE performance is somewhat
stochastic, as can be seen in the RMSE differences in between trials of dec++3 and
dec++5.

Avg. Factor Avg. Update Updates
Method Trial RMSE [m]

Count Time [s] Completed

full 1 4800 0.478 311 0.947

2 4793 0.476 312 1.022

dec++2 1 2882 0.323 461 0.271

2 2826 0.328 455 0.231

dec++3 1 2221 0.244 611 0.329

2 2127 0.208 716 0.861*

dec++4 1 1826 0.191 778 0.373

2 1818 0.197 754 0.385

dec++5 1 1547 0.145 1020 1.250*

2 1489 0.164 903 0.555

4.3 Evaluation for FLA

The DARPA Fast Lightweight Autonomy (FLA) program is designed to drive algo-

rithmic improvement for closed-loop, fully onboard autonomy for small, fast-flying

quadrotor UAVs. Vehicles must complete missions spanning hundreds of meters of

combined indoor and outdoor environments, with no access to GPS or a detailed

prior map. Successful completion requires lightweight (i.e. computationally inexpen-
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sive) solutions in navigation, obstacle detection, and planning.

During the last three evaluations of Phase 1 of the program, SAMWISE provided

a complete VIN state estimate and navigation solution for the Draper-MIT vehicle.

The performance during the first of these, in November 2016, was discussed in [591.

Since then, the SAMWISE system has continued to improve and to be strenuously

tested in challenging, real-world conditions. The most recent evaluation in May 2017

showed SAMWISE working very reliably. Estimate drift was consistently below 3%,

and often below 1%, over trajectories spanning hundreds of meters.

Sensor configuration

While the FLA program specified several aspects of the vehicle design, most notably

the airframe and battery cell count, the sensor and computational payload design was

left to the individual teams. The Draper-MIT entry to the competition evolved over

time, with several main iterations. At the time of the May 2017 milestone, two main

variants were in use, differing mainly in the onboard computer and the presence or

absence of the 2-D scanning Hokuyo LIDAR. The differences were mainly driven by

the needs of two different obstacle perception and mapping approaches, and the state

estimation configuration used by SAMWISE was identical in either case.

The sensors used by SAMWISE were consistent between variants, and are listed here

" IMU: ADIS 16448

" Camera: PointGrey Flea3

" Downward-pointing laser altimeter: Garmin LidarLite

" Barometer: MEAS MS5611

Computationally, the system was restricted to an Intel NUC i7 or Intel Skullcanyon

compact computer carried onboard the vehicle, with a dual- or quad-core Intel i7 CPU

respectively. The more powerful Skullcanyon system was developed to accommodate

sophisticated vision-processing algorithms used for other aspects of the mission. In
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either case, the peak SAMWISE consumption was approximately one (physical) core

for feature tracking and optimization.

4.3.1 Draper-MIT warehouse

A long-duration stress test was performed to evaluate the estimator (and whole-

system) robustness. The vehicle was made to fly to a series of arbitrary clicked

waypoints entered by an untrained user in a moderately-cluttered indoor warehouse

environment in Charlestown, Massachusetts. The mission lasted a little over three

minutes, corresponding to the full duration of the flight battery, and included several

obstacle avoidance maneuvers.

Figure 4-8: Sample image taken from the vehicle's forward-mounted camera at the
Draper-MIT warehouse test site. Note that the camera is monochrome, as is the
input image to SAMWISE.

No ground truth data was available, but the vehicle was ultimately commanded to

land back at the takeoff location (the origin), and was observed to in fact land within

1m of that position. The landing logic is in fact quite loose, and from the estimate

output it clearly landed knowing it was still about im short of the start location, as

seen in 4-9. As the flight included over 250m of distance traveled, this corresponds

to below 0.5% estimate drift.
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Figure 4-9: SAMWISE position estimation during warehouse stress test. Ground

truth was unavailable, but the vehicle was observed to land within 1m of the true

commanded location at the end of the flight. (Left) Overhead trajectory estimate

showing the complex, user-defined maneuver. (Middle) Component-wise position

estimates. As the vehicle was commanded to series of waypoints with some time in

between, the roughly rectilinear traces are expected. (Right) Total distance traveled

alongside distance from start. With over 250m traveled in total, an achievement of

less than 1m final error corresponds to < 0.5% estimate drift.
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4.3.2 DARPA FLA results

The May 2017 DARPA FLA milestone stressed long outdoor traverses as well as

indoor flight in a large warehouse. Flights took place during daylight hours, but

lighting conditions varied significantly between early morning and afternoon. These

lighting changes were exacerbated by the presence of forest canopy, indoor-outdoor

transitions, and the need to fly directly into the sun at times. Nonetheless, SAMWISE

enabled 67 flight attempts over the week with no state-estimation related failures.
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As no ground truth is available (vehicles were not allowed to use or log GPS data), it

is difficult to quantitatively evaluate the performance of SAMWISE for these flights.

However, as all missions were essentially out-and-back, state estimation drift can be

evaluated by how far away the vehicle landed from the start.

4.3.3 Forest flight

Part of the evaluation involved flight through a relatively dense forest, with a thick

overhead canopy. Besides stressing the vehicle's autonomous obstacle avoidance sys-

tem, the environment was challenging due to the varying lighting conditions involved.

Additionally, as the obstacle avoidance system often introduced harsh maneuvers and

rotations, SAMWISE did not have the luxury of many long feature tracks. Nonethe-

less, the estimator performed well throughout the day.

A selection of screenshots from the onboard Flea3 camera during one of the successful

flights is shown in Figure 4-11. The maximum speed achieved during this flight was

8.8 m/s, which is significant considering the degree of clutter. The total flight covered

over 250 m and lasted about 50 seconds, after which the system (as can be seen in the

image sequence) landed within 2m of the start location. This corresponds to below

1% error. The realtime position estimate is shown in Figure 4-12.
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Figure 4-11: Sequence of images from the onboard Flea3 camera taken during an
autonomous forest flight. Note the challenging lighting conditions imposed by the
forest canopy and tree shadows. The first and last images are taken from the takeoff
pad and the landing pad, respectively. Note that the last image clearly shows the
takeoff pad immediately in front of the vehicle's final landing position, indicating that
SAMWISE successfully navigated the system back to the start with little drift.
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Figure 4-12: SAMWISE position estimation during forest flight. (Left) Overhead
trajectory estimate. (Middle) Component-wise position estimates. (Right) Total
distance traveled alongside distance from start.

4.3.4 Combined outdoor and indoor flight

One of the main challenges posed by the FLA program is the ability to traverse

hundreds of meters through relatively open space outdoors and navigate through

tighter indoor environments within the same mission. Besides preventing "fine-tuning"

of system parameters to cater to a single environment, this is especially difficult for

visual systems because of extreme lighting changes during indoor/outdoor transitions.

Even if the camera exposure is automatically adjusted to accommodate these varying

conditions, feature tracking be significantly impacted immediately after a transition

occurs. This often results in the loss of all feature tracks during a harsh lighting

change, which can significantly degrade estimator performance.

In these evaluations, the vehicle had to navigate to a large warehouse doorway, enter

the building, and then navigate a short way inside to find the goal. Then, it had to

turn around and find its way back to the start. While the outdoor portion of the flight

was relatively uncluttered, except for a large stand of trees to the right, the warehouse

environment was much more complex. Additionally, as can be seen from the images

in Figure 4-13, the doorway presented a significant lighting transition, as the inside of

the building was much darker than the outside. In combination with several extreme

obstacle avoidance maneuvers, this caused feature tracking to be inconsistent and

even interrupted entirely at several points during flight.

The flight shown in Figure 4-13 involved a total traverse of 650 m, and a maximum
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speed of 6.5 m/s. While SAMWISE would have performed well even at higher speeds,

the maximum speed had to be restricted to ensure safe obstacle avoidance inside the

cluttered warehouse. When the vehicle returned to the start location about 209

seconds into the flight, approximately 20 m of estimator drift had built up, causing

the vehicle to overshoot the start. Because it was nearing the boundary of the flight

area, the safety pilot took manual control a few seconds later as a precaution, and

flew the vehicle back to the start location.
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Figure 4-13: Sequence of images from the onboard camera taken during an au-
tonomous flight including both outdoor and indoor elements. The vehicle traversed
hundreds of meters, starting outdoors and navigating to a goal location inside a
warehouse before flying back to the start. The lighting conditions during the in-
door/outdoor transitions were particularly challenging, causing feature tracking to
be interrupted several times. Due to accumulated drift, the vehicle overshot the start
location. The moment that the vehicle passes over the start location is captured in
the last image.
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The position estimate can be seen in Figure 4-14. This final error corresponds to

~ 3% estimator drift over the greater than 700 m of total flight. The increase in

error here over the results of the previous sections reflects the interruptions to feature

tracking presented by the particularly challenging lighting conditions of this scenario.
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Figure 4-14: SAMWISE position estimation during outdoor/indoor flight. (Left)

Overhead view of trajectory estimate. (Middle) Component-wise position estimates.

(Right) Total distance traveled alongside distance from start. Navigated by SAM-

WISE, the vehicle finished about 20m from the start, after about 700m of flight. This

corresponds to ~~ 3% estimator drift. About 209 seconds into the flight, the manual

safety pilot took over, navigating the vehicle safely back to the start location.

4.4 Summary

SAMWISE is a fully-functional, flight-tested state estimator and navigation solution

for fast-moving robots. Designed for unstable aerial robots requiring high-rate closed-

loop control, SAMWISE provides low-latency state estimates at IMU rate. Leveraging

an asynchronous iSAM2-based solver, SAMWISE provides high accuracy at relatively

low computation. By adopting a smoothing, factor-graph based representation, SAM-

WISE naturally accommodates delayed measurements and multiple sensor streams.

As a smoother, SAMWISE also supports local-frame trajectory planning.

Computationally, SAMWISE combines the (on average) efficiency of iSAM2 with

a decoupled IMU propagator to guarantee high-rate output. This allows for high-

accuracy, nonlinear smoothing even on computationally-restricted vehicles.

SAMWISE was evaluated through a challenging series of tests during Phase 1 of

the DARPA FLA program. Large-scale missions stressed the estimator's global con-
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sistency over hundreds of meters and its reliability with flights consistently lasting

several minutes. Varied environmental and lighting conditions, along with high speeds

and large rotations, stressed the visual pipeline. Nonetheless, SAMWISE performed

reliably, with consistently low levels of drift (0.5 - 3%, depending on the trajectory

and environment).

While SAMWISE currently only accommodates monocular camera measurements

due to the constraints of the FLA vehicle, adding support for stereo would be a

natural extension and would offer increased observability and significantly reduced

drift. Additionally, work is currently being done to accommodate short-term loop

closures using descriptive features which can be recognized even after leaving the

frame. This will significantly improve robustness to large rotations.

As it continues to mature, we believe SAMWISE will provide a robust, accurate,

general-purpose vision-aided inertial navigation solution with applications to both

ground and aerial systems.
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Chapter 5

Conclusions

The navigation problem is ubiquitous throughout robotics and aerospace, in appli-

cations and environments as disparate as Augmented Reality [37] and the Apollo

program [27]. Whether autonomous or manned, many systems need to be able to

localize themselves. However, infrastructure-based solutions such as GPS are not

available at all in certain environments, or may be unreliable due to hostile action.

For this reason, there is a need for self-contained, onboard solutions.

For small robots or vehicles, onboard computational resources can be quite restricted.

To compound this difficulty, agile, inherently unstable vehicles such as quadrotors re-

quire state estimate updates to be produced with low-latency and at a high rate to

ensure stability and achieve maximal trajectory tracking performance. Thus, algo-

rithms for navigation and estimation must be lightweight and efficient.

One promising approach to this problem is via a smoothing formulation of landmark-

SLAM [131. Rather than estimating only the latest robot state at each step, smoothing

formulations simultaneously solve for multiple robot and landmark states simultane-

ously. By leveraging sparsity in the problem, the smoothing optimization can be

performed relatively efficiently.
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5.1 Computation in graph SLAM

Computation management is a vital, open challenge in SLAM today. Realtime,

computationally-constrained systems require high-rate data fusion to produce accu-

rate, robust state estimation and navigation solutions. The smoothing approach has

been shown to be much more accurate, robust, and flexible than filtering methods, but

relies heavily on system sparsity for efficiency. As measurements correspond directly

to factors or edges in landmark-SLAM, the choice of incorporated measurements di-

rectly impacts sparsity. Thus, intelligent measurement selection has the capacity to

significantly improve sparsity and reduce computation over naive SLAM.

Understanding the relationship between graph structure and computation is therefore

vital. Chapter 2 introduced the optimal elimination complexity C*(G) as a reflection

of the intrinsic computational complexity represented by an estimation graph. The

elimination complexity C is derived from the approximate operation count of solving

the corresponding sparse linear system (i.e. performing variable elimination), which

is well-understood from a linear algebra perspective [41,521. One contribution of this

thesis was to demonstrate empirically that elimination complexity also correlates with

the update computation of incremental solvers like iSAM2. In Chapter 3, this com-

plexity metric provided a basis for sparsity analysis of decimation-style measurement

selection policies.

5.2 Decimation as a measurement selection policy

Though sparsity arises naturally in SLAM systems, it is not always sufficient for

computationally-constrained systems. Modern sensors such as cameras can easily

produce enough data and measurements to overwhelm even state-of-the-art incre-

mental solvers. Fortunately, through intelligent measurement selection and pruning,

it is possible to achieve significant computational savings with acceptable degradation

in estimation performance.
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For high-rate landmark-SLAM systems, particularly those involving vision, measure-

ment selection policies can play a large role in computation reduction. However,

many of the sophisticated methods proposed in the literature (see Section 1.1.2) are

computationally expensive and impractical for real-time use in many high-rate sys-

tems. Additionally, many remove edges without regard for graph structure [28,36],

which can result in underwhelming computation reduction, even after aggressive edge

pruning.

Decimation-style policies, on the other hand, are simple to implement and compu-

tationally negligible to evaluate. As argued in Chapter 3, decimation produces an

inherently sparse super-structure, which allows decimated graphs to maintain many

more measurements at lower computational cost. This corresponds to a higher av-

erage node degree, which was shown by [35,47] to reduce over-fitting and improve

accuracy. Furthermore, in Section 3.2 it was shown that the even spacing of obser-

vations characteristic of decimation was near t-optimal in single-landmark graphs.

This suggests that decimation has good connectivity properties as well, and promotes

reduced uncertainty volume [351.

Additionally, the modified, decimation-based policy dec++ was proposed in Section

3.3, which addressed some of the minor implementation drawbacks of naive per-

landmark decimation. Simulated SLAM results demonstrated empirically in Section

3.4 that decimation-style approaches can perform as well or better than more so-

phisticated methods, both in terms of KLD and resulting graph complexity. Given

the negligible implementation and computational complexity of these policies, they

present an effective and formidable measurement selection strategy available to even

the most rudimentary landmark SLAM systems.
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5.3 A robust, high-rate visual-inertial system for small,

agile vehicles

The SAMWISE state estimator is designed to provide a robust, accurate, high-

rate state-estimation and navigation solution for agile robots. Developed under the

DARPA Fast Lightweight Autonomy (FLA) program, SAMWISE fuses inertial and

monocular-video data streams into a smoothing-SLAM framework to provide maximal

accuracy and robustness. By leveraging the state-of-the-art iSAM2 [321 incremental

solver algorithm, SAMWISE efficiently estimates the vehicle trajectory, landmark

positions, and a suite of calibration parameters simultaneously.

As described in Chapter 4, SAMWISE incorporates several key innovations which

make feasible high-rate, low-latency closed-loop control. Decoupled IMU propaga-

tion and rebasing allows constant-time access to the latest state estimate (Section

4.1.3). Keypose publishing facilitates local-frame planning for robust trajectory track-

ing (Section 4.1.7).

In Section 4.2, SAMWISE was evaluated on the open-source EuRoC MAV dataset L51,
demonstrating good performance in spite of the inherent challenges of this dataset.

Furthermore, the proposed dec++ policy was implemented within SAMWISE and

tested on the EuRoC dataset under varying decimation rate parameters. Further

flight results from indoor (Section 4.3.1) and outdoor (Sections 4.3.3 and 4.3.4) en-

vironments were presented as part of the DARPA FLA program, showing robustness

in and applicability to challenging real-world conditions.

5.4 Future work

The insights presented in this thesis pose additional questions and expose some areas

for future work.

The elimination complexity metric presented in Chapter 2 proved a useful tool for
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offline analysis of the computational cost represented by particular graph structure.

Nonetheless, evaluation requires replicating the elimination process, and is therefore

impractical for real-time use in measurement selection strategies. Methods of predict-

ing computation directly from local graph structure, such as being able to evaluate

the marginal cost of maintaining a particular measurement, could prove quite use-

ful in implementing improved selection policies. Identification of additional sparse

super-structures, similar to the partitioning structure discussed in Section 3.1, could

inform implementation of inherently sparse graph architectures or novel measurement

pruning policies.

This thesis showed that decimation essentially partitions the graph, which has the

benefit of producing an inherently sparse super-structure. However, this partitioning

intuitively comes at the cost of some form of connectivity, and empirically it was

observed that significant accuracy can be lost. In a sense, decimation policies specify

graph structure a priori. However, the realized sparsity in practice can depend signif-

icantly on the particular trajectory, availability of landmarks, and sensor limitations.

Thus, more sophisticated selection policies which consider the current state of the

graph could result in dramatic sparsity gains.

Ultimately, however, the arguments presented in this thesis show that decimation

provides at the very least an effective primitive in the area of measurement selection.

For computationally-constrained, high-rate systems, the simplicity of decimation can

make it a formidable choice.
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Appendix A

Proof of Lemmas

Lemma 1: C(G, P) is non-decreasing as edges are added to G

Proof. Let G+ refer to the graph constructed by adding an edge to G. Following the

elimination process described in Section 2.2, it is clear that the elimination neighbor-

hood at each step i cannot be smaller for G+ than for G

d, (i, G, P) < d,(i, G+, P) Vi (A.1)

and substituting this into the definitions of C(G, P) and C(G+, P), it is clear that

C(G, P) C(G+, P) (A.2)

Lemma 2: Properties of t.(G) for graph G with positive weights

Proof. The definition of the weighted number of spanning trees is repeated here

tw(G) V(T)
TET(G)

V(T) 1 j we
eCT

(A.3)

(A.4)
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From the definition (A.3), t,(G) is a sum over all spanning trees of G. If G is

connected, G must have at least one spanning tree. Additionally, because the edge

weights are all positive, V(T) > 0 for each T C T(G). Thus, t.(G) > 0. /

Because adding a new edge to graph G to produce C cannot break any existing

spanning trees, T(G) c T(O). Using V(T) > 0, it is clear that t.(G) < tw(G). /

For any edge (i, j) which exists in G, the set of spanning trees can be decomposed

into two disjoint sets

T(G) = T (,j)(G) + T(ij) (A.5)

where Tx(iJ) is the set of spanning trees which include edge (i, J) and T\( 3 ) is the set

which lack edge (i, j).

From the definition of tw in (A.3),

tw(G) V(T) (A.6)
TCT(G)

= V(T) + V(T) (A.7)
T ETx (4,jy (G) TE T(ij)(G)

tw,{x(i,j)}(G) + t1,{\(iJ)}(G) (A.8)

Lemma 3: "Dangling chains"

Proof. For any graph G-, consider a graph G formed by attaching a chain of edge

length n > 1 at one end to exactly one vertex xO in G-, such that no new cycles

are created. Refer to these added vertices as X = {x 1 , x2 ,. .. , Xn}, and the chain

itself as T({xo} U Z, Et). Thus, for any node xi E X, there exists exactly one path

(comprising only of edges in Et) connecting it to xo and the rest of G-.

By definition, spanning trees of G C T(G) must include all vertices X and be con-

nected. Because exactly one path exists between poses in X and xO, this entire path t

must be maintained in every tree T E T(G). Given any spanning tree T- c T(G-),
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the corresponding spanning tree T C T(G) can be generated by appending the full

chain defined by T, i.e. T = T- U T. Therefore,

tw(G) V(T) (A.9)
TET(G)

= V(t)V(T-) (A.10)
T-CT(G-)

= V(t)t,(G-) (A.11)

= vtW(G-) (A.12)

Lemma 4: An optimal solution to Problem 1 exists and necessarily includes the

observation edges associated with pose node xo and x,.

Proof. Problem 1 is a maximization over the finite set of graphs 9
m,.n Thus, an

optimum must exist. /

Following the notation in Section 3.2, let 9m,n C om,n be this family of single landmark

graphs which necessarily include the observation edges associated with the first and

last pose nodes, xO and Xn. The fact that any optimizer G* must belong to Gm,n will

be shown by contradiction.

Because an optimum must exist, assume for the purpose of contradiction that Go #

gm,,, is a maximizer. From the definition of gm,, Go cannot simultaneously contain

the first and last observation edges associated with xo and Xn, and therefore must

include one or two dangling odometry chains. A possible example is shown in the left

pane of Figure A-1.
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Go G- G*

Z0 T X2 X3 X1 X5 6 X7 -8 X9 XI1 X11 X12  X2 X3 X4 X5 X 6 X7 -T Ig O10 2  2 0 X1 X2 X3 X4 X5 2X X7 X$ X9 X 10 X 11 X 12

Figure A-1: (left) An example graph Go 9m.., with a dangling odometry chain of
nodes {xo, x1 }. (center) The graph Go produced by removing the chain characterized
by nodes {xo, x 1}. By Lemma 3, t,(Go) = t,(G-). (right) The graph G* produced
from Go by moving the first (and generally last) observation edges to xo and xa,
respectively. In this case, {xo, x1} have been "absorbed" into the left-most cycle of
GO.

By Lemma 3, and using the fact that odometry edges are assigned unity weight,

there exists a subgraph Go E Om,n such that t,(Go) = t,(Go). Additionally, we can

construct a graph G* based on Go by moving the first and last included observation

edges to poses xo and x, respectively, such that G* E Gfl. Examples of a possible

Go and corresponding G- and G* are shown in Figure A-1.

Because t,(Go) = tw(G-), it is sufficient to compare G* and G- directly. It is clear

from inspection that tw(G*) > t.(G-) necessarily, and the conclusion follows. Thus,

tw(G*) > tw(Go), and thus Go g m cannot be a maximizer of Problem 1. E
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Appendix B

Additive Noise in Continuous-Time

Systems

Stochastic, time-varying systems are often modeled with additive Gaussian noise

x(t) = f(x(t), u(t), t) + w(t) (B.1)

with random process vector x(t), known input u(t), and time-varying mean dynamics

f(x, u, t). Often, in inertial systems, the input u(t) is taken to be the raw sensor

readings from the IMU. w(t) is a zero-mean, isotropic, white noise process, meaning

that

E[w(Ti)] = 0 E[w(1-i)w(r2 )f] = u.6(-2 - Ti)I (B.2)

for all T1 , T 2 E R, and identity matrix I.

In order to be represented in digital systems, and particularly in a factor graph struc-

ture, the continuous time dynamics must be represented in discrete time. Between

times t1 and t 2 , this involves determining Ax xt2 - Xt1. For short time intervals

At t2 - t1 < 1, the dynamics can be assumed constant

Ax = f f(x(r), u(T), T) + w(T) dT (B.3)
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~~ f(x(ti), u(ti), t1) + w(T) di-

= f(x(ti), u(ti), ti)At + J w(r) dr

(B.4)

(B.5)

Because w(t) is a random process, Ax is a random variable. Fortunately, its mean

and covariance can be computed in a straightforward fashion

E[Ax] = f(x(ti), u(ti), ti)At

Cov(Ax, Ax)

(B.6)

(B.7)

(B.8)

(B.9)

= E[(Ax - E[Ax])(Ax - E[Ax])f)

[ Jt2  w(Tr)w(T 2 )T dri dr2]

ft2 

t2

= 1: i. 2I dri

= 0.2AtI

(B.10)

(B.11)

Given the above assumptions, it is clear that uncertainty growth in the system (over

short time scales) grows linearly with At, and is independent of the mean dynamics

f(-).
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