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Abstract

The navigation problem for mobile robots operating in unknown environments can be
posed as a subset of Simultaneous Localization and Mapping (SLAM). For computationally-
constrained systems, maintaining and promoting system sparsity is key to achieving
the high-rate solutions required for agile trajectory tracking. This thesis focuses on
the computation involved in the elimination step of optimization, showing it to be a
function of the corresponding graph structure. This observation directly motivates
the search for measurement selection techniques to promote sparse structure and
reduce computation. While many sophisticated selection techniques exist in the liter-
ature, relatively little attention has been paid to the simple yet ubiquitous heuristic
of decimation. This thesis shows that decimation produces graphs with an inher-
ently sparse, partitioned super-structure. Furthermore, it is shown analytically for
single-landmark graphs that the even spacing of observations characteristic of deci-
mation is near optimal in a weighted number of spanning trees sense. Recent results
in the SLAM community suggest that maximizing this connectivity metric corre-
sponds to good information-theoretic performance. Simulation results confirm that
decimation-style strategies perform as well or better than sophisticated policies which
require significant computation to execute. Given that decimation consumes negli-
gible computation to evaluate, its performance demonstrated here makes decimation
a formidable measurement selection strategy for high-rate, realtime SLAM solutions.
Finally, the SAMWISE visual-inertial estimator is described, and thorough experi-
mental results demonstrate its robustness in a variety of scenarios, particularly to the
challenges prescribed by the DARPA Fast Lightweight Autonomy program.
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Chapter 1

Introduction

The navigation problem is ubiquitous in mobile robotics [7, 8, 13,21, 27,29, 46, 59].
In this thesis, navigation refers to the determination of the robot’s position (more
generally position and orientation, or pose) at every instant in time with respect to
some fixed local or global frame. Here, navigation will not refer to trajectory planning,
which concerns where to go next, but rather localization of the robot at the current

time or in the past.

Having a solution to the navigation problem is a prerequisite to trajectory planning
and control, and it is difficult to imagine a real-world mission of a mobile robot that
does not require some form of navigation. For example, an autonomous vehicle which
needs to maneuver to a goal position needs to know its own position at every instant
in order to make sure it is heading in the right direction. A robot searching for a
specific target or exploring a large area needs to reason about where it has been in
order to ensure it searches efficiently and can communicate the target location or

describe the environment afterward.

The solution to the navigation problem can be as simple as relying on the GPS satel-
lite constellation via many off-the-shelf solutions, or ﬁsing some other domain-specific
infrastructure such as motion-capture. However, these dependencies on existing in-

frastructures or known maps restrict the applicability of such systems to environments
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in which such infrastructure exists. In many environments of interest to robotic sys-
tems, such as underwater, indoors, and the surfaces of other planets, GPS is com-
pletely unavailable. Additionally, systems such as GPS can be crippled or jammed by
hostile actors, so solutions which can operate independently or degrade “gracefully”

under loss of GPS signal are highly desirable in military or other critical applications.

Many self-contained, or onboard, navigation solutions have been proposed over the
past half-century. Inertial navigation methods and well-known algorithms such as the
Kalman Filter [34] and its derivatives [3,30,39,46] have been used in pose estimation
for decades. In 1969, the Apollo navigation system [27] pioneered by the MIT In-
strumentation Lab demonstrated the capability of fusing inertial measurements with
external references (star sightings) to successfully navigate the lunar capsule to the

moon and back.

Inertial methods rely primarily on sensors such as gyroscopes and accelerometers,
which often are bundled as Inertial Measurement Units (IMUs). They are completely
self-contained, relatively inexpensive, and low-SWaP (Size, Weight, and Power). Ad-
ditionally, they can provide a high-rate (> 1 KHz) of data, enabling high-closed-loop
control. In combination with monocular vision, IMUs provide valuable observability
of metric scale as well as the gravity Qector [43]. IMUs directly measure angular
velocities and linear accelerations, and estimates of orientation and position are pro-
duced by integrating these signals. Besides the fact that this means the initial pose
is unobservable, the inevitable presence of noise in the sensor signal is compounded
in integration. Without correction, the resulting estimates will “drift” over time. As
a further complexity, consumer-grade IMUs can demonstrate non-negligible biases
which vary slowly over time. Without additional sensing, these biases are unobserv-
able, and can significantly degrade output quality. In many cases, in particular for
small robots with inexpensive inertial sensors, the results of naive integration (i.e.
“dead-reckoning”) can drift so much as to become operationally useless in as little as

a few seconds.

The drift issue can be mitigated or eliminated by enforcing consistency with addi-
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tional, extrinsic observations of the robot’s pose relative to landmarks or some global
fixed frame. GPS satellites or other known references can be well-suited for this task,

but are often unavailable or unreliable as mentioned previously.

For these reasons, it is desirable for navigation solutions to leverage ambient informa-
tion in unknown, unstructured environments. In the context of navigation, unknown
environments are characterized by the lack of known reference landmarks. Thus,
navigation solutions in unknown environments often make use of repeated sightings
of recognizable opportunistic landmarks which exist naturally in the environment.
Some examples of opportunistic landmarks detected in visual data in both outdoor

and indoor environments are shown in Figure 1-1.

Figure 1-1: Visual landmark detections (orange) produced by the Shi-Tomasi detector
[56], which selects pixel regions of high intensity gradient. Individual landmarks can
be tracked from frame to frame in a video stream, producing a feature track. By
leveraging a projective camera model (Section 1.2.1), each track provides a set of
noisy geometric constraints which constrain camera motion over time.

Because these landmarks do not have known position a priori, and are observed via
noisy sensors, their positions must be simultaneously estimated alongside the robot’s
pose. This is often formulated as a Simultaneous Localization and Mapping (SLAM)
problem, as both the robot’s state and the set of latent landmarks it observes (the
map) are estimated simultaneously. For this reason, even though mapping, or building
a representation of the environment, is not a direct goal of the navigation task, in

SLAM approaches it is an integral, simultaneous process.

17



While SLAM can be formulated generally, independent of the particular sensor modal-
ities in use, the choice of sensors has significant impact on the specific challenges of
the problem. In GPS-denied environmenfs, the most common extrinsic sensors are
body-mounted laser scanners (LIDAR) or cameras. LIDARs are active sensors, giving
high accuracy and wide field-of-view (FOV) at least in two dimensions, but at the
cost of increased SWaP. Additionally, their scan patterns are often limited to only
2D planar slices, limiting their reliability for robots not confined to the plane. Cam-
eras, by contrast, are passive sensors amenable to much lower SWaP budgets, and
indeed are already present on many consumer cell phones, quadrotors, and automo-
biles. They naturally operate in full 3D, and their measurement range can extend
to the full line-of-sight. However, cameras do induce some challenges of their own,
primarily the non-linearity of their measurements (see Section 1.2) and their limited
field-of-view. Nonetheless, the use of such vision information has been the subject of
much of the last decade-and-a-half of research in this area (7,37, 39,43, 46,60], and

indeed this will be the focus of much of this thesis.

A realtime vision-aided navigation solution

A central contribution of this thesis is a presentation of the SAMWISE vision-
aided navigation system (originally published in [59]). Designed for computation-
constrained, fast-moving autonomous systems, SAMWISE provides high-rate state
estimates to facilitate both closed-loop control and long-term planning. Though SAM-
WISE places a large emphasis on the combination of inertial and vision-based sensing,

it can also accommodate a suite of other sensors, such as laser altimeters, barometers,

and GPS.

In Chapter 4, the architecture of SAMWISE is discussed in detail. SAMWISE makes
several key innovations over standard state estimation libraries that facilitate robust,
low-latency navigation and planning for agile vehicles. Developed in part for the
DARPA Fast Lightweight Autonomy (FLA) program [49], SAMWISE is designed
specifically to enable high-speed, agile autonomous flight on the Draper-MIT quadro-
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tor platform shown in Figure 1-2. Experimental results taken from a recent FLA
program milestone are provided, demonstrating robustness in a variety of conditions.
Additionally, ground-truth comparison is performed on the open-source EuRoC MAV
dataset [5].

Figure 1-2: The latest iteration of the Draper-MIT autonomous quadrotor platform
developed for the DARPA FLA program.

Measurement selection for computation reduction

Computation management is a vital, open challenge in SLAM today. Realtime,
computationally-constrained systems require high-rate data fusion to produce ac-
curate, robust state-estimation and navigation solutions. As is discussed at great
length in this thesis, maintaining sparsity in the underlying optimization is crucial
for efficient performance. As the measurements incorporated into the estimate ulti-
mately determine both sparsity and estimation performance, intelligent measurement

selection has the potential to maximize accuracy while minimizing computation.

Indeed, simple measurement selection heuristics such as decimation already abound
in practice. For many low-SWaP robots, the sensors they carry can easily generate
much more data than can be processed by the computational resources available.
This is especially true in camera-equipped systems, as each frame represents signifi-
cant pre-processing, even before being incorporated into a SLAM solver. In order to

achieve realtime performance, many of these measurements have to be discarded or
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approximated. Intuitively, this incurs some loss of accuracy when compared to the

solution which could be derived from the full set of data.

At the heart of realtime SLAM is a fundamental tradeoff between accuracy and com-
putation. It is well-known (and intuitive) that incorporation of more information will
generally lead to better estimation performance. However, this often comes at the cost
of increased computation, potentially both in pre-processing and in SLAM optimiza-
tion. The exact relationship between the number and nature of measurements and
the ultimate computation is difficult to quantify and depends on the SLAM method
used. However, for iterative smoothing methods (defined in Section 1.3.2) common
in recent literature, incorporated measurements have a direct impact on the sparsity,
and therefore computational complexity, of the underlying system. Though vitally
important, the precise relationship between sparsity and the resulting computational
complexity is left somewhat vague in the SLAM literature. For reasons discussed
in Chapter 2, this relationship is difficult to quantify fully. In this thesis, the elim-
ination complexity is introduced as a direct (although incomplete) measure of the

computational complexity of a particular problem.

Cbmpared to other modalities, the video stream provided by a camera is data-rich,
and can easily provide hundreds of potential measurements per frame, at a high data
rate. The obvious heuristic, and what is often done in practice, is decimation, where
only every n-th measurement or image frame is accepted. More sophisticated ap-
proaches have been proposed to this end, but they generally require extensive compu-
tation that often scales poorly with the size of the problem, making them prohibitive
for realtime use. Additionally, as will be seen, these approaches often implicitly as-
sume that reducing the number of measurements corresponds directly to reduced
computation. As will be seen, this assumption is correct in some ways, but too sim-
plistic in others, often leading to underwhelming computation savings. In contrast,
decimation-style policies are shown to produce an inherently-sparse super-structure
which fundamentally bounds elimination complexity. Numerical experiments verify

that decimated graphs demonstrate significant computation savings, even when dis-
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carding relatively few edges. Furthermore, decimation is shown to have near-optimal
connectivity characteristics in simple graphs. The surprising effectiveness of decima-

tion is the subject of Chapter 3.

The remainder of this chapter will formulate the visual-inertial navigation problem as
a graphical SLAM problem, and introduce measurement selection as an optimization
over this graph. Chapter 2 provides a detailed discussion of computation in graph
optimization, and introduces elimination cost as a representation of the computa-
tional complexity of a particular graph. Chapter 3 rigorously analyzes the commonly-
implemented decimation heuristic in landmark SLAM, and demonstrates that it is
in fact quite effective, providing comparable or better performance than more so-
phisticated approaches. Finally, Chapter 4 introduces the SAMWISE vision-aided
navigation system implemented as part of the DARPA FLA program, and provides

some recent performance results in challenging, real-world trials.

1.1 Related Work

1.1.1 Visual-inertial navigation

In the past decade, significant progress has been made in the direction of robust,
efficient visual-inertial navigation. Several filtering approaches based on the EKF
have been proposed, specifically tailored to the challenges presented by visual mea-
surements. The Multi-State Constrained Kalman Filter (MSCKF) [46] avoids rep-
resenting landmarks within the state vector by instead estimating the recent history
of states simultaneously. All observations of a particular landmark are incorporated
at once, as a single measﬁrement, with a linearization point based on the latest es-
timate (which is assumed more accurate than any earlier-available estimates). This
dramatically improves accuracy and reduces both computation and memory require-
ments. [39] show that the use of multiple linearization points for pose variables over

time cause an observability mismatch in VIN systems, and ultimately leads to in-
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consistency. By simply locking the linearization points of variables in the MSCKF,
they demonstrate improved consistency and accuracy. In a similar vein, [26] pose an
explicit observability-constrained formulation of the standard EKF. However, as will
be discussed in Section 1.3.1, filtering methods suffer from the limitation that they

cannot re-linearize past measurements asthe estimate is updated.

Unlike filtering methods, bundle adjustment or smoothing methods explicitly estimate
multiple robot or camera poses simultaneously as a nonlinear least squares minimiza-
tion. Ome of the earliest bundle adjustment methods demonstrated for use in com-
putational constrained environments is Parallel Tracking and Mapping (PTAM) [37].
PTAM successfully tracks camera motion and a sparse set of high-gradient features in
small workspaces, using parallel (but separate) mapping and tracking (localization)
optimizations. The sliding-window filter of Sibley et al. [57] employs a smoothing
framework over the recent history of poses to estimate planetary surface geometry
for a landing craft. A similar technique is used by Chiu et al. [8] which combines a
short-term sliding window graph leveraging the incremental iISAM2 solver [32] with

a long-term map used for global loop closures.

Rather than relying on the outputs of a costly feature extraction step, direct ap-
proaches leverage a photo-metric error model to pose an optimization on the raw in-
tensity values of the image. These allow for the construction of denser maps, as depth
estimates can be formed for each pixel in the image, rather than for only a sparse set
of keypoints. Semi-Direct Visual Odometry (SVO) by Forster et al. [21] use frame-to-
frame alignment for fast tracking, and initializes landmarks in R3 only for pixels with
well-estimated depths. LSD-SLAM [18] optimizes a pose graph with associated depth
maps to build large-scale, dense maps and exploit global loop closures. Multi-Level
Mapping [22] by Greene et al. improves upon LSD-SLAM by gracefully selecting high-
texture image regions to focus computation on, improving the density of the output
maps. Direct Sparse Odometry [17] incorporates a sophisticated camera model and
access to the current exposure setting to account for abrupt lighting changes and high-

order camera affects. While the dense maps constructed by these methods alongside
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the localization solution can be very useful for obstacle detection and avoidance, the
navigation outputs are not suitable for high-rate closed-loop control. Additionally,
these methods require significant multi-core CPU resources or even GPU acceleration,

making them prohibitive for many computationally-constrained systems.

SAMWISE, the subject of Chapter 4, was originally published in [59]. It is designed
for high-rate state estimation for agile vehicles requiring closed-loop stabilization and
high-performance trajectory tracking. Designed for small vehicles which cannot afford

sufficient baseline for a stereo camera setup, it works with a single camera and IMU.

1.1.2 Measurement selection for computation reduction

Measurement selection has a long history in robotics and large-scale estimation. In
SLAM, measurement selection generally falls into two broad categories: keyframing

methods, and per-measurement methods.

Keyframing methods [29, 58, 61] select which robot states (usually poses) are most
valuable to represent within the SLAM graph. In vision-based systems, restricting
feature detection and tracking to a sparse set of keyframes can save significant pre-
processing. Stalbaum et al. [58] provide a suite of heuristics capturing the number of
previous and new landmarks detected in a given frame, as well as number of recent
keyframes, which can be used to identify new keyframes. Wang et al. [61] derive a
similar heuristic based on the Kullback-Leibler divergence to select poses based on
the “impact” of the candidate frame’s éet of landmark observations. As shown by Ila
et al. [29], each pose node in the graph represents a linearizing approximation that
ultimately contributes to inconsistency. By reducing the number of discrete pose
states, this inconsistency can be reduced. To this end, they limit “redundant” pose

vertices in the graph by enforcing a probabilistic threshold over distance traveled.

Similar to [29], Forster et al. [20] recognize that the inclusion of every intermediate
pose node (i.e. at IMU rate) leads to inconsistency and increased computation. By

developing a nonlinear method of pre-integrating, or bundling, consecutive IMU mea-
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surements directly on the SE(3) manifold, they define computationally efficient IMU
factors integrating many sequential IMU readings. This allows the robot’s trajectory

to be represented accurately with a much sparser set of discrete nodes.

In contrast to keyframing methods, per-measurement methods select measurements
individually to accept or remove. Carlone and Karaman [7] attempt to replicate the
concepts of anticipation and attention for visual systems by processing only image
sub-regions and subsets of all available landmarks which are most likely to remain
in frame given the planned trajectory. Ila et al. [29] reject potential loop closures
which do not reduce the uncertainty over the latest state by a given threshold. By
clever bookkeeping, the evaluation of uncertainty reduction is kept inexpensive for
relatively simple graphs containing only odometry and loop closure constraints. For
more general graphs, in particular for landmark-SLAM, this calculation is much more

expensive.

From a graphical perspective, many methods have interpreted measurement selection
directly as an optimization over graph structure. Using either information-theoretic
[6,28,44] or graph-theoretic optimization [35,36]|, many sophisticated methods aim
to prune edges while minimizing Kullback-Leibler divergence (KLD) or maximizing
graph connectivity. Inspired by the relationship between maximizing t-connectivity
and minimizing uncertainty volume [35], Khosoussi et al. [36] propose greedy and
semi-definite-relaxation algorithms which select the k best edges to prune (or keep).
In [6,28,44], a given set of original measurements are removed and replaced with a new
set of linear [6] or nonlinear [44] “virtual” measurements in a Chow-Liu Tree [6,9] or £,-
sparsified [28] configuration. However, these methods are computationally expensive,
with some requiring iterative optimization. Furthermore, the information-theoretic

optimization assumes a linearization point, which may be arbitrarily bad.

While perhaps applicable for long-term SLLAM problems within a bounded geometric
area (and therefore lots of loop closures), such computationally-intensive methods
are less suitable for realtime use on high-rate, computationally-constrained systems.

Additionally, as will be discussed in Chapter 2, the computational complexity of a
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graph is not solely dependent on edge count. Thus the actual computational savings

of approaches such as [36] can be underwhelming, even after aggressive pruning.

An often-implemented heuristic is decimation. Decimation can be applied on a
keyframing level, in which only every r-th image frame or LIDAR scan is pro-
cessed and represented with a corresponding pose state in the graph. At the per-
measurement level, only every r-th observation from a given landmark might be added
to the graph. Decimation is applied broadly in practice [17,18,21,22,59], particularly
in vision-based systems as a method of downsampling the raw video stream. As will
be discussed later in this thesis, decimation has several nice properties, producing
efficiently-optimizable graphs and promoting structures with near-optimal connectiv-

ity properties.

1.2 Visual-inertial navigation

Visual-inertial navigation (VIN) is an increasingly popular approach to the navigation
problem for mobile robots. The modalities of inertial and visual sensing are comple-
mentary, and can be readily accommodated on inexpensive, low-SWaP (Size, Weight,
and Power) systems. Inertial measurements provide high-rate (> 100Hz), full-rank
constraints between sequéntial poses, and grant observability of metric scale [43].
Each vision measurement can be considered a low-rank observation of a particu-
lar landmark from a particular camera pose. Indirectly, the set of observations for a
given landmark can be considered a constraint between all of the corresponding poses.
Thus, landmarks which are observed over many frames can significantly reduce the

estimation drift which would result from pure inertial integration.

Cameras provide data at a reliable (though generally lower) rate and leverage “am-
bient” information that already exists in the environment rather than relying on
external infrastructure or}known beacons. As passive sensors, cameras consume far
less energy than active sensors like LIDARS, and can make observations up to the

full line-of-sight. Cameras can be significantly less expensive than LIDARs, and the
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recent industry demand for cameras in consumer devices such as smart phones has

only increased the availability of high-quality, low-SWaP devices.

However, visual measurements present several unique challenges. As will be seen
in Section 1.2.1, the projective transformation of the implicit observation model is
nonlinear. The Jacobian representing the first-order approximation is highly sensitive
to the linearization point, and the landmark depth in particular. The degree of
non-linearity in vision measurements can make traditional SLAM approaches that
assume linear or simple one-time linearization fail to achieve acceptable accuracy,
and even diverge entirely. This sensitivity is compounded by the fact that any single
monocular observation grants no observability into depth (rather it noisily measures
the ray from the focal center to the landmark). Additionally, the camera model is
dependent on a variety of calibration parameters and distortion effects, which vary due
to manufacturing irregularities. While calibration can be done off-line and is generally
considered stable, it can be prohibitively time-consuming for large fleets of camera-
equipped robots, and imperfect calibration can cause performance degradation if not
accounted for. Third, rapid rotations can make feature tracking difficult and only
allow for landmarks to remain in view for a few frames, limiting their utility in
constraining robot motion over longer timescales. Fourth, as cameras are passive
sensors, they rely on the ambient lighting of the environment. Harsh lighting changes

can induce additional challenges, for example when entering a building from outdoors.

1.2.1 Monocular measurement model

In most vision-based approaches, landmarks are characterized by points {*) € R?
in the fixed world frame. Let the camera pose at time ¢ be represented by xgw) =
(ng) ,tﬁ“’) ) € SE(3), defined by rotation matrix ng) and translation tgw). When
viewed from the camera at pose x;, the landmark 1™ is first transformed to the

camera frame and then undergoes a projective transformation [24]

1x) & ng)(l(“’) —t) (1.1)

26



’ T

T
with 1) £ [a: y z] € R3, camera focal lengths f., f, € R, and principal point

(ceycy) € R2.

It is often assumed that the dominant source of noise is an additive uncertainty
v ~ N(0,02L,) € R? which can intuitively be ascribed to uncertainty in the feature
detection step [39,45,46]. Note that the uncertainty parameter o is specified in units
of pixels. Combining (1.1) and (1.2), the measurement z € R? is assumed to be

generated according to

z=h(1%)) +v (1.3)

The vision model (1.3) has the Jacobian

L g _f=

HI&N = | = 2 14
(=)= 5 iy (1.4)

The Jacobian H represents the first-order linearization and is inversely sensitive to
the landmark depth z. Indeed, Montiel et al. [45] argue for using an inverse-depth
parameterization to initialize landmark estimates. For systems which attempt to
initialize landmarks immediately, from one or two observations, this can make a big
difference. However, the true posterior over the landmark does approach a Gaussian in
R3 with increasing observations and camera translation. Therefore, for more flexible
systems which can wait until sufficient observations have been acquired, such as the

SAMWISE system in Chapter 4, a standard R?® position parameterization is used.

27



1.3 The smoothing formulation

1.3.1 Limitations of filtering in nonlinear systems

Traditional filtering approaches derive fundamentally from the Kalman Filter [34],
and are characterized by an explicit representation of uncertainty in either the n x n
covariance matrix 3 or information matrix A £ X!, This representation of Gaussian
uncertainty acts as a compact representation of the complete (linearized) measure-
ment history. In turn, this allows for constant-time algorithmic complexity, which is
desirable for realtime applications. For linear, Gaussian systems, this Gaussian rep-

resentation is lossless, and the Kalman Filter is an optimal unbiased estimator [34].

However, nonlinearity arises in many real-world systems, and many nonlinear exten-
sions of the Kalman Filter have been proposed. Unfortunately, optimality and even
consistency cannot be guaranteed for these methods in general. Proper handling of
the nonlinearity arising from system dynamics or sensor observation models is key to
achieving good accuracy and robustness. While there are several approaches to han-
dling nonlinearity, such as simple first-order linearization (as in the Extended Kalman
Filter, or EKF) or the use of the unscented transform ( [30]), the inevitable lineariza-
tion error is irrecoverably “baked-in” to the uncertainty representation at every step.
Over time, this error builds up, leading to inconsistency and possibly even complete

divergence.

As observed in the previous section, visual observations are nonlinear, and in practice
very sensitive to the chosen linearization point. A modified filtering approach, the
Multi-State Constrained Kalman Filter (MSCKF) proposed by [46] mitigates this
problem by waiting until the full observation history of a landmark has been collected
before incorporating them all at once into the estimate. This allows a more accurate

linearization point to be chosen, leading to improved consistency and accuracy.

Even in the case of the MSCKF, variables and measurements are only linearized once

and cannot be re-linearized once incorporated and as the current estimate is corrected.
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The Iterated EKF (3] allows for repeated iteration of measurement updates, where
the current measurement can be relinearized until convergence at each step. However,

this iterative relinearization is limited to the current measurements.

An additional drawback of naive filtering approaches is the storage space and complex-
ity associated with large covariance matrices. Although individual measurements may
only correlate a small number of variables, the resulting covariance matrix is generally
dense. For dense matrices, storage requirements grow with O(n?), and computation
with O(n3®). For systems hoping to estimate many landmarks simultaneously, this

can quickly become prohibitive.

For all these reasons, the filtering formulation is not well-suited to highly nonlinear,

large (in terms of number of estimated variables) estimation problems like VIN.

1.3.2 Smoothing as nonlinear least squares

In contrast to filtering, smoothing approaches remove the moratorium on explicitly
maintaining previous measurements. Instead of condensing the measurement his-
tory into a linear-Gaussian uncertainty matrix, the smoothing formulation explicitly
represents inference as a nonlinear least squares (NLLS) optimization over the mea-
surements Z. This naturally lends itself to (and generally requires) the estimation
of multiple instantaneous states representing the robot’s trajectory over time, rather
than simply the current state. Thus, smoothing can use current information to update

the estimate of past states.

argmin & 3~((X:) — 27 S (i (X)) — ) (15)

=0

Because the full (nonlinear) measurements are maintained, each corresponding to a
term in the summation in (1.5), they can be relinearized at each iteration of the solver,
as the estimate is updated. While this optimization does not require a probabilistic

interpretation, under linearization and an assumption of additive Gaussian noise it
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corresponds to Maximum-Likelihood (ML) inference over a high-dimensional, multi-
variate Gaussian distribution. The full covariance matrix for a particular estimate is
thus well-defined, and can be recovered for a given linearization point. Nonetheless,

it is not required for ML inference.

This problem is well-studied, with both linear algebra and graphical interpretations
[13,52]. Because the uncertainty is never condensed into a dense covariance matrix,
optimization can naturally take advantage of underlying sparsity in the information
matrix to solve much more efficiently. This sparsity is key in making the smoothing

formulation feasible for realtime systems.

1.3.3 Smoothing and SLAM

Simultaneous Localization and Mapping (SLAM) is a ubiquitous problem throughout
robotics that has been studied for decades. As discussed previously, visual navigation
on a mobile robot using landmarks which are unknown a priori is itself a SLAM
problem (as inferring the set of landmark positions is at least a byproduct, if not
a stated goal). SLAM (and therefore VIN) is naturally represented as an NLLS

smoothing problem.

1.3.4 Representation as graphical inference

It is often convenient to represent SLAM as a graphical inference problem. Graph
theory has a rich history, as does Maximum-Likelihood (ML) estimation theory. There
are several different variants of graphical models for inference, particularly undirected

models and factor graphs.

Undirected models represent estimation variables as nodes in a graph, connected by
edges representing probabilistic dependencies implied by measurements. In undi-
rected models, cliques represent fully-correlated sets of variables. The Markov prop-

erty of undirected models implies that any variable z is independent of all other
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variables given its neighbors N(z).

A factor graph, on the other hand, is made up of variable nodes representing the values
being estimated X, and factor nodes F, which are generated from the independent,
possibly non-linear measurements Z constraining them. Factor nodes represent mea-
surements or priors, and can relate one, two, or more variable nodes (unlike a single

edge in an undirected model).

A simple example of an undirected model and equivalent factor graph are shown in

Figure 1-3.

Figure 1-3: Undirected model (left) and factor graph (right) representations of the
same SLAM problem. The robot states at discrete time steps are represented as
vertices x;. Landmark positions are represented as vertices l;. In the undirected
model, variables related by a common measurement are adjacent. On the other hand,
factor graphs represent measurements explicitly via factor nodes (black squares). Note
that unary factors, such as the prior on variable xg, are represented explicitly in this
model.

Factors can be considered n-ary edges rather than a class of vertices, as in either
case they connect the n variables which they depend on. The factor nodes represent
potentials over subsets of the variable set, and their product is proportional to the
value of the joint distribution. Indeed, the factors F £ {®;,®,,...,®,,} represent

the factorization of the joint distribution
N
P(X|Z) =[] @:i(X:) (1.6)
i=1

Factor graphs are more expressive, but undirected models can be more compact. For
measurements involving exactly two variables (such as odometry relating consecutive

poses, or observations of a particular landmark from a particular pose), there is a
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one-to-one correspondence between the factors in the factor graph and edges in the

undirected model. Thus, both representations are used throughout this thesis.

The chief advantage of graphical models, and factor graphs in particular, is the way
they naturally represent the Markovian independence structure between variables.
An important assumption is that each measurement (factor) ®; is purely dependent
its neighbors X; € X and independent noise. Thus, non-adjacent variables (here
“non-adjacent” refers to variables that do not share a common factor) are condi-
tionally independent given some separating set. This fact follows directly from the

factorization shown in (1.6).

1.4 Solving the smoothing problem

Give the joint factorization (1.6), Maximum Likelihood (ML) estimation takes a min-

sum form

argmax P(X|Z) = argmax logP(X|Z) = argmin — Zlog ?,(X;) (1.7)
X X X

=0

For arbitrary potential functions ®;, representing and optimizing the full high-dimensional
joint density is intractable. However, in SLAM, the potentials are generally assumed
to be multivariate Gaussian about some nonlinear observation model: A (h;(X;),X;),
where the symmetric matrix X; represents the noise covariance. In this case, the

optimization in (1.7) reduces to a NLLS optimization of the form (1.5).

Non-iterative solvers for (1.7) and certificates for global optimality have been proposed
in special cases. For example, in pose-graph SLAM where all variables are elements of
SE(3) and all edges are full-rank relative transforms between them, Rosen et al. [53]
developed a method doing just that. They prove that for realistic noise regimes, their
method can recover the global optimum, and often do so faster than iterative methods.
Unfortunately, this method does not immediately extend to general measurement

models, and in particular the low-rank observations acquired via monocular vision.
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For general landmark-SLAM, iterative methods such as Gauss-Newton are used [8,13,
57]. Under Gauss-Newton, the joint distribution is iteratively re-linearized to produce

a series of approximating linear least-squares problems of the form

ATAx = -A"b (1.8)

In general, multiple Gau_s.s-Newton iterations are required before converging to a
(possibly only local) minimum. Each iteration corresponds to solving a linear system
of the form (1.8). For dense system matrices, each of these linear solves has O(d?)

complexity, which can be prohibitive.

1.4.1 The smoothing problem is sparse

Fortunately, Dellaert and Kaess [13] pointed out that the SLAM problem has a sparse
block structure which can be exploited to solve (1.8) much more efficiently. Sparsity
refers to the prevalence of zeros in the system Jacobian A, and the corresponding
lack of edges in the undirected graph relative to a complete graph. In the factor
graph representation, it means that measurement factors each only relate a very few
variables (nodes). From a statistical perspective, sparsity refers to the fact that the
joint distribution p(X) can be factorized into many simpler potentials ®;(X;), as in

(1.6).

As will be discussed in detail in Chapter 2, this sparsity arises naturally in SLAM
because of physical and logical sensor limitations. Furthermore, the computational
complexity of solving (1.8‘) is much reduced when this sparsity is present. Thus, un-
derstanding the relationship between sparsity and computation is vital to identifying

and promoting computationally-efficient graph structures.
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1.4.2 Incremental solvers

For mobile robots, realtime SLAM can be considered to represent only incremental
updates to this optimization (in the form of new factors Fpew and variables Xpew).
This realization is leveraged in iISAM [33] to perform incremental solves of the under-
lying linear system, greatly reducing redundant computation when the linearization
point does not change much. The second-generation solver, iSAM2 [32], represents the
inference problem as a Bayes Tree [31]. The Bayes Tree represents the dependency-
structure of the inference problem, and allows for re-linearization, re-ordering, and
back-substitution to be performed only in regions of the graph which are significantly
affected by new information. This allows iISAM2 to avoid re-solving the whole sys-
tem or operating over the entire graph at each step, facilitating efficient real-time

optimization.

iSAM2 currently represents the state-of-the-art in incremental algorithms for general
Gauss-Newton graph optimization. The SAMWISE estimation library (the subject
of Chapter 4) leverages the GTSAM [12] implementation of iISAM2 for back-end
optimization of a high-rate VIN front-end.

Note that iISAM and iISAM2 are not truly incremental. If the linearization point
changes significantly, the entire graph may have to be re-linearized and re-eliminated
in what essentially reduces to a batch solve. Thus, the graph size must be bounded

in order to bound worst-case and even mean computation.

Furthermore, both iSAM and iSAM2 are still heavily reliant on sparsity. The struc-
ture of the Bayes Tree is determined by the structure of the corresponding factor
graph, and the extent to which re-linearization can be performed “locally” depends
heavily on this structure. More significantly, the elimination process used by iSAM2
is fundamentally equivalent to that of batch solutions to (1.8) (albeit with intelligent

recycling of computation), and thus shares the same dependence on sparsity.
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1.5 Measurement selection as a means of computa-

tion reduction

Sparsity naturally arises in SLAM problems, due to both assumed observation models
and to real sensor limitations. For examplé7 data from wheel odometry is generally
formulated as a sensor measurement which can only relate consecutive poses. Sim-
ilarly, ranging signals may only relate pose vertices to landmark vertices. Physical
sensor limitations play a role as well, as at any given moment, the robot may only
be able to observe landmarks which are nearby, or within a limited field of view.

Ultimately, these mechanisms lead to sparsity in the realized graph SLAM graph.

For many computationally-constrained systems, the naturally-arising sparsity may
still not be sufficient. Modern IMUs are capable of very high data rates (greater than
1000 Hz), and naive application can lead to gross over-sampling of the trajectory.
Thus, IMU bundling, or pre-integration, approaches such as [20] have been used to
reduce “redundant” or intermediate optimization variables. Cameras too are capable
of high frame rates, and at each frame can observe tens or hundreds of landmarks.
Inclusion of every available observation can result in a relatively dense graph, with
many high-degree poses and landmarks. For long-term SLAM problems, characterized
by loopy trajectories in a restricted geographic area, the inclusion of loop-closure
constraints can also undermine sparsity. Though often very informative, loop closures
can potentially be made between any pair of pose vertices. Without any restriction,
loop closures can ultimately destroy graph sparsity. Thus, measurement selection has
long been motivated [6,28,29,36,61] as a means of promoting sparsity and managing

computation.

In high-rate realtime systems, measurement selection strategies must also be com-
putationally efficient to execute. Many of the sophisticated methods presented in
the literature (see Section 1.1.2), while effective in offline systems, require iterative
optimization or computation that scales with the size of the graph. This makes them

impractical for use in computationally-restricted systems that must run at a high
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rate.

Much existing work [28, 36] focuses simply on reducing the number of edges (mea-
surements) in the graph. In contrast, this thesis aims to more holistically exploit the
relationship between structure and computation. In Chapter 2, this relationship is

explored in detail, and a metric of graph complexity is introduced.

As an example of a realtime-implementable strategy, the often-implemented deci-
mation heuristic in analyzed in Chapter 3, and is shown to promote a particularly
sparse graph super-structure. In combination with good connectivity properties, this
makes decimation a very effective technique that often outperforms more sophisti-

cated methods.

1.5.1 Graph connectivity metrics

As measurements in SLAM correspond to graph edges, measurement selection is (at
least in part) an optimization over graphs. Therefore, a thorough understanding of

how graph structure impacts inference should prove valuable.

It has long been understood that the connectivity of a graph is strongly related to
estimate robustness. For linear SLAM graphs, analytic results exist [35] connecting
particular graph connectivity metrics to specific characteristics of the ML solution.
While it is difficult to rigorously extend these results to nonlinear problems such as

VIN, empirical evaluation suggests that these connections still approximately hold.

Average node degree

Average degree is one of the simplest measures of graph connectivity. For a fixed num-
ber of vertices (and under the restriction that all edges (measurements) correspond
to exactly two variables), average degree corresponds one-to-one with the number of
edges. As was observed empirically by Olson and Kaess [47] and proven by Khosoussi

et al. [35], average node degree relates approximately to the expected “over-fitting”
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of the corresponding ML estimate. More precisely, if the value of the negative log-
likelihood function f(X) evaluated at the true parameter setting Xo is fo £ f(Xo),

and the value at the ML setting X* is f*, several observations can be made:
1. f* < fo by the definition of the minimum.
2. IE[’;—;] ~1-— %, where ) is the average node degree.
3. Thus, as A increases, E[%} — 1.

This makes sense intuitively, as an increasing A corresponds to the use of increasing
number of Gaussian measurements. The more measurements are incorporated, the
less likely it becomes that the ML configuration will be “far” from the true setting of

parameters which generated the measurements.

(Weighted) number of spanning trees

The number of spanning trees in the grdph (also referred to as t-connectivity or
t(G)) has long been studied as a robustness metric in network theory. A spanning
tree T(V,Er) € T(G) of graph G(V, E) corresponds to a selection of edges £ C &
such that 7" is connected and a tree. As ¢(T) = 1 for any spanning tree, and is
non-decreasing with the incorporation of additional edges, ¢(G) provides a natural

measure of connectivity [35]. For a complete graph G., t(G.) = n"~2 [1].

This definition can be generalized with the incorporation of edge weights w;;. The
weight V(7T') associated with spanning tree then corresponds to the product of the
edges which define it, and the weighted number of spanning trees t,,(G) is defined

V(T) = H Wij (1.9)
(i.4)€€T

tw(G) 2 > V(T) (1.10)
TeT(G)

Note that unlike the similar-sounding concept of weighted spanning trees, the weighted

number of spanning trees t,, involves a product over edge weights rather than the sum.
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This means that if all w;; = 1 for all edges (¢,j) € £, then V(T') = 1 for all spanning
trees, and t,,(G) = ¢(G).

More recently, Khosoussi et al. [35] proved that, at least in linear SLAM problems, the
uncertainty volume det(X) = det(A~!) corresponds directly to the weighted number
of spanning trees, where the edge weights correspond to the measurement precision
wy; = ;—12]- This result links graph structure directly to inference quality, and demon-
strates that maximizing ¢-connectivity specifically corresponds to better estimation

performance.

While this result was shown rigorously only for a limited class of SLAM problems
(linear measurements, spherical noise covariances), numerical results suggest that the
connection extends to nonlinear systems as well. As measurement selection fundamen-
tally corresponds to edge selection in the SLAM graph, t-connectivity provides a useful
metric in analyzing policies. We can expect policies which promote t-connectivity will

produce better estimation quality than those which do not.

1.5.2 Kullback-Leibler divergence

The Kullback-Leibler divergence (KLD, also Dgy) can be loosely understood as a
measure of distance between two probability distributions. Often, for a given full
distribution p(X), we would like to find the best approzimating distribution q(X) that
has some desired structure. This is often defined as mininﬁzing Dy (p(X) || a(X)),
corresponding to finding the “nearest” approximating distribution, where the KLD is

defined

Dia (p(X) [ a(20)) 2 [ pX)log 288 ax (1.11)

It is important to note that unlike Euclidean distances, KLD is in general not sym-

metric

Dk (p(X) || (X)) # Dxw(a(X) || p(X)) (1.12)

Usually, the reference distribution p(X) is taken to be the first argument, and the
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approximating distribution q(X) as the second.

In general, evaluating the KLD over arbitrary continuous-valued distributions is too
expensive for realtime evaluation on computationally-constrained systems. However,
by making the standard assumption of Gaussianity about some linearization point
(usually taken to be the current estimate), the KLD adopts a convenient form de-

pending only on the first and second moments of the corresponding distributions

_ _ 1 _ -
DKL (N(’J‘P’Apl) H N(I""‘bAq 1)) = -2_ trace(Aqu 1)—d+10g det(Aqul)"‘Hﬂ'p_l"quq
(1.13)

For large graphs, KLD can be expensi\;e to evaluate in realtime. Additionally, it is
not clear how specific measurement selection choices (and therefore different choices
of ¢q) affect KLD without explicit calculation and comparison. However, KLD is
valuable as a comprehensive metric to empirically evaluate particular measurement
selection schemes. Compared to simpler metrics such as Root-Mean-Squared-Error
(RMSE) which only compare the ML con’ﬁgurations (i.e. the distribution means),
KLD also takes into account the distribution uncertainty. This makes it a more

complete measure of how well the full distribution is approximated.

1.6 Thesis contributions

This central focus of this thesis is in computation management and reduction for

realtime SLAM problems via efficient measurement selection.

In Chapter 2, the relationship between graph structure and requisite computation
is explored. A complexity measure C adopted from the sparse linear algebra com-
munity [25,52] is introduced specifically for the SLAM smoothing problem. C(G, P)
approximates the operation count of the elimination phase for a given ordering P,
which, following [31] is shown to be equivalent to a sparse, block-wise factorization
of the linearized system matrix (1.8). C is verified experimentally to predict the

elimination computation required for simulated SLAM problems, and is also shown
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to correlate with the update time of incremental solvers such as iSAM2‘[32]. This
‘measure and the rational behind it are introduced to facilitate rigorous analysis of
sparse graph super-structures used in Chapter 3. More broadly, they are presented
as a method of defining the complexity of graph SLAM in a standard way, which is
lacking in the SLAM literature.

Second, a rigorous analysis of decimation-style heuristics is explored in Chapter 3.
Decimation is a very simple policy for measurement selection, but it produces a
distinct sparsity pattern and super-structure in the resulting graph. It is proven
by construction that elimination orderings exist for decimated graphs that result
in bounded complexity at each step of elimination and therefore bounded total C.
Simulated results demonstrate that in practice, decimated graphs often outperform
these bounds by significant margins, due to the additional level of sparsity which
arises naturally but unpredictably due to sensor limitations. In parallel, it is shown
that the “even” spacing of observations produced by decimation is near t,-optimal
(see Section 1.5.1) for a class of single-landmark graphs. This suggests that decimated

graphs are well-connected, and therefore maintain desirable estimation qualities.

In light of these insights, the improved dec++ heuristic policy is introduced to address
specific shortcomings of decimation in incremental estimation. Empirical results from
simulated data are provided to confirm these analytic findings empirically. Further-
more, they demonstrate that despite its simplicity, the dec++ heuristic performs as
well or better than much more sophisticated (and computationally expensive) pruning

strategies.

Finally, the SAMWISE visual navigation system is presented in Chapter 4. A thor-
ough description of the system is provided, as well as benchmarking evaluation on the
open EuRoC MAV dataset [5]. The dec++ heuristic is implemented in SAMWISE
and shown to reduce computation significantly with acceptable accuracy degradation
on this dataset. Furthermore, results from recent stress-tests and a DARPA FLA
program milestone are shown, demonstrating robustness in a variety of challenging

real-world conditions.
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Chapter 2

Structure and Computation in SLAM
Graphs

As described in Section 1.4, the smoothing problem can be represented as inference
over a graph. Though fully-nonlinear solvers have been proposed [53], these make spe-
cific assumptions about the types of variables and measurement constraints involved.
Real-world problems, especially VIN, often involve heterogeneous combinations of
sensors and measurement factors, including IMU factors [20], projective camera mea-
surements (described in Section 1.2), relative pose constraints [6,44], and others. In
addition to robot poses and landmark positions, various sensor biases and camera
calibrations may also be estimated. For these more general factor graphs, iterative

Gauss-Newton [4] approaches remain the standard [13,32,57].

At each iteration of Gauss-Newton, the nonlinear factors are linearized, producing a
linear system which must be solved. Though this system may have large dimension
(often hundreds or thousands of poses and landmarks), its inherent sparsity allows it
to be solved efficiently [13]. As described in Section 1.4.1, sparsity refers to the fact
that nodes in the graph are only adjacent to a small number of other nodes. A tree

is the most sparse connected graph, and a complete graph is the least.

It should be noted, however, that it is not simply the number of edges in the graph,
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but also their arrangement (or structure), which determines computation. As will
be a main point of this chapter, the relationship between computation and graph
structure is non-trivial, yet vitally important when evaluating measurement selection

strategies for computation reduction.

Incremental solvers such as iSAM [33] and iSAM2 [32] aim to perform minimal up-
dates to the prior solution as the graph is incrementally augmented with new mea-
surements and variables. These methods have been shown to dramatically reduce
computation in many systems, making SLAM more accessible to computationally-
restricted platforms. Just like batch solvers, however, incremental methods are highly

dependent on the sparsity of the given graph.

In this view of SLAM, measurement selection for computation reduction can be seen
as optimization over the edges in the graph. Measurements correspond to factors in
a factor graph, and to edges in undirected models (see Section 1.3.4). Thus, select-
ing measurements in a way that promotes sparse structure, or conversely removing
measurements which hinder sparsity, can be a powerful method of computation man-
agement. In order to evaluate measurement selection strategies for their impact on
computation, the precise relationship between graph structure and computation must

be understood.

In this chapter, this relationship is explored and to some degree quantified. The
graph elimination complexity is introduced as a measure of the intrinsic complexity
of a particular graph. Derived from the fundamental complexity of factorizing sparse
linear systems, elimination complexity C represents an approximate operation count
of the elimination phase of optimization. Later, in Chapter 3, this metric is used to
lend insight into efficient graph structures and demonstrate analytically the inherent

sparsity which results from simple decimation-style pruning.
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2.1 Computation in graph optimization

One of the outstanding challenges in real-world application of the SLAM framework
is computation management. Physical computers have finite memory and processing
resources, and in low-SWaP systems are especially limited. To compound this chal-
lenge, fast-moving, unstable systems often require high-rate and low-latency estimate

updates in order to achieve closed-loop stability and adequate control tracking.

Constant-time update computation is a fundamentally desirable aspect of any real-
time navigation algorithm. Conventional filtering-based approaches based on the
Kalman Filter [34] have been used since the Apollo moon missions [27] for time-
critical aerospace applications. Proponents have long championed the constant-time
characteristics of such approaches. Indeed, the sliding-window formulation of more
general smoothing approaches [8,57] is intended to maintain a semblance of bounded
computation. This serves to bound the size of the graph, and therefore the complexity
of solving the linearized system is naively bounded by O(d?), where d refers to the
overall scalar dimension of the system. Nonetheless, it is the iterative re-linearization
of the Gauss-Newton sol\}er which ultimately defies bounding. Arbitrarily limiting
the number of re-linearization steps can pfovide a trivial ultimate bound, although

at the cost of limiting one of the chief advantages of the smoothing formulation.

Of course, the existence of a bound itself is not sufficient for realtime performance. In
VIN, robust and accurate solutions require the simultaneous estimation of many poses
and landmarks. The large number of variables active in many real-world problems
make such worst-case analysis somewhat unhelpful, as the worst-case computation
is generally prohibitive, but fortunately also rare. Additionally, approaches such as
the decoupled strapdown propagation discussed in Chapter 4 somewhat relax the
requirement for fast worst-case updates, as propagation from the IMU is generally

sufficient to stabilize the vehicle through even the longest observed update steps.

It has long been recognized by the linear algebra community [10,42, 50| that sparsity

in the matrices defining a linear system can be leveraged to significantly outperform
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the naive O(d®) bound. This sparsity is manifested as a large number of zeros in the
system matrix ATA, and in the corresponding graphical system in the fact that most
vertices are adjacent to only a small neighborhood of the total graph. Dellaert et
al. [13] argued that this sparsity was ubiquitous in many SLAM problems, and that
performance could be further improved by leveraging it more explicitly. Indeed, the
state-of-the-art iSAM [33] and iSAM2 [32] algorithms continued that trend by devel-
oping near-incremental (i.e. near-constant-time) methods of updating the (non)linear
system. As the SLAM system is augmented with new variables and measurements,
sparsity facilitates a sense of locality, and changes to a particular region of the graph

have diminishing effect in “distant” regions.

2.1.1 Macro- and micro-sparsity

In many SLAM systems, to a large extent sparsity is a natural result of the types of
physical sensors available. Odometry sensors such as wheel encoders or IMUs give
a noisy measurement of the relative transform in robot pose between two consecu-
tive (discrete) time instants, i.e. z; and x;;;. Similarly, a common formulation of
visual measurements relates the camera pose x; at a particular instant to a particular
landmark {;. Thus, the types of sensors, and the definitions of the corresponding
observation models, directly constrain which vertices in the SLAM graph may be
connected by an edge. Thus, given a particular choice of sensor configuration and
corresponding formulation of measurement factors, the sparsity pattern of the result-
ing system matrix can be loosely upper-bounded. This imposed super-structure can

be thought of as macro-sparsity.

However, the actual sparsity realized during any particular run will in general be
hard to predict, as most landmarks are observed opportunistically. Due to physical
limitations like sensor field of view, sensor range, and occlusions, most landmarks will
only be observed from a relatively small number of poses. Additionally, some sensors
or measurements may only be available in certain environments or at unpredictable

times, such as a differential GPS receiver that only has signal outdoors, or a laser
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altimeter which only works on certain surfaces. Though unpredictable a priori, this

micro-sparsity is often quite significant.

Macro-sparsity can be predicted a priori for a given system, as it depends on known
factors such as sensor suite. It provides a worst-case sparsity bound, which in turn
maps to a worst-case optimization complexity. Micro-sparsity, on the other hand,
refers to the “extra” levelv of sparsity realized in practice, often due to sensor limi-
tations. Often, micro-sparsity is crucial for realtime performance, as the worst-case

bound defined by macro-sparsity can still be prohibitive.

2.1.2 Quantifying computation

Fundamentally, the nonlinear, iterative nature of most smoothing SLAM solvers (see
Section 1.3.2) makes fully quantifying computation time difficult. Specifically, it
is difficult to predict how many Gauss-Newton iterations will be necessary before
convergence, or even if convergence will ever occur. Convergence and convergence
rate depend on many factors, including the specific measurement functions involved,

the measured data itself, and the initialization point.

In contrast, the per-iteration computation simply corresponds to solving a positive-

definite linear system [13] (repeated from Section 1.4)
ATAx=-ATb (2.1)

where the d x d matrix ATA is assumed positive definite.

Linear systems of the form (2.1) are well-studied, and the computational complex-
ity at this level is much more amenable to analysis. As the total computation of
the nonlinear optimization is essentially the sum of a series of these linear solves,
computational savings at the linear level éorresponds to multi-fold savings in total.
Additionally, the computation involved at the linear system level is a direct function

of sparsity, and therefore of graph structure. Thus, understanding the relationship at
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this level provides a clear link from structure to total computation.

2.1.3 The elimination step

The two fundamental steps involved in solving the linear system of the form in (2.1)
are elimination and back-substitution. Elimination is equivalent to factorization of
the system ATA = RTR into the upper-triangular square matrix R [13,50]. As will
be seen, the complexity of elimination is highly dependent on graph structure, and in
the worst (fully dense) case is O(d?). Elimination represenfs the bulk of computation

in many SLAM algorithms, including incremental methods like iISAM2 [32].

Back-substitution uses the factor R to determine the maximum-likelihood assign-

ments for variables x, often via an intermediate vector y.

ATAx = RT(Rx) = ATb

Rx=y (2.3)

Because R is triangular, back-substitution to solve (2.2) and (2.3) for x is relatively
inexpensive compared to the elimination step which produced R. Back-substitution
with a sparse R involves #(R) operations [11], where §(R) < d? is defined as the

number of non-zeros in R.

Because elimination carries a worst-case O(d®) complexity, it often represents the
majority of computation in practice [32]. For this reason, this thesis focuses on
elimination complezity as a measure of the inherent complexity represented by a

graph.
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2.2 Graph elimination as sparse factorization

The system (2.1) is ofteh solved by QR or Cholesky factorization of A or ATA,
respectively [25,31,38,42,50,52]. For dense matrices, this entails O(d?) operations [38].
In the case that these matrices are sparse (as in the smoothing problem), factorization

can be done much more efficiently [11,13].

As noted by [31,42,52] and others, the complexity of sparse QR elimination of this sys-
tem follows the pattern of node elimination on a graph. In node elimination, variable
nodes are eliminated one-by-one from the graph, corresponding to the marginalization
of the corresponding variable from the joint distribution over the remaining variables.
When a node is eliminated, it is removed from the graph, and edges are induced such
that all its remaining neighbors form a fully-connected clique. These new edges which
did not exist in the original graph constitute fill, and represent intermediate depen-
dencies between variables induced by a particular elimination ordering. In the final
upper-triangular R factor, these fill edges correspond to nonzero “filled-in” entries
that were zero in the original system matrix ATA. The process of node elimination

is illustrated in Figure 2-1.

3 ® @
AN

Figure 2-1: The node elimination algorithm executed on a simple graph G®. Nodes
are eliminated in the order (0, 1, 2, 3, 4), producing a series of elimination graphs
G®. Induced edges are shown with dotted lines.

® QO 6 6

It should be noted that for certain graph structures and elimination orders, fill-in
can be catastrophic, destroying sparsity. For example, as shown by Duff [16], sparse
factorization of random matrices with initially very few non-zeros (corresponding to
very few edges in the graph) almost always results in near d* computation, as fill-in

quickly densifies the graph.
As is well-understood from the sparse linear algebra literature [10, 13, 62], fill is de-
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pendent on the chosen variable ordering P. Though the solution itself is unaffected
by ordering, different orderings can result in widely differing fill at each step of the
optimization. Determining the optimal (i.e. minimum complexity) ordering is NP-
complete [62]. In practice, efficient heuristics such as Column-Approximate Min-

Degree (COLAMD) [10] are widely used.

Each step of node elimination corresponds to computing one step of the corresponding
sparse QR or Cholesky factorization [13,25,52], and scales with the size of the neigh-
bors of the eliminated node. From this perspective, solving the full system (2.1) is
equivalent to solving a series of sub-problems. Thanks to sparsity, these sub-problems
are generally small in size, and by exploiting it to deconstruct (2.1) in this way, sig-
nificant computational savings can be achieved [25,38]. The complexity of factorizing
the full sparse system is then simply the sum of the complexities of the individual

dense sub-problems.

As early as 1972, Rose [52] showed by a simple counting of 6perations that computing

the RTR decomposition of a sparse n x n matrix can be performed in

]
L

d(i, P)(d(i,P) + 3) ~ Zd i P)2 (2.4)

1

|~

(2

multiplications, where d(i, P) refers to the degree of the i-th eliminated node in the
elimination graph G® produced by ordering P. Indeed, the asymptotic form of
(2.4) is equivalent to the Cholesky FLOP count used by [41]. Note that for a fully
dense matrix (corresponding to a fully-connected graph), d; ~ n and factorization

approaches the n® complexity for dense matrices.

From a purely linear algebra perspective, factorization of the system (2.1) occurs one
row or column at a time. The corresponding graph G includes n nodes, matching
the scalar dimension of the system. However, as described by Dellaert and Kaess [13],
when referring to SLAM systems, (2.1) has additional block structure. In SLAM, the
variables of interest are often multi-dimensional quantities such as positions and rota-

tions, and measurements generally are defined on the level of these “macro-variables”.
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In this case, it is the block sparsity pattern of (2.1) which is represented in the factor

graph.

By applying ordering heuristics such as COLAMD [10] on the block structure directly, [13]
showed improved performé,nce and less fill. Following this fact, modern SLAM solvers
such iISAM2 [32] apply elimination directly on the “macro-variables” of the factor
graph. This motivates the definition of a version of (2.4) which accounts for the block
structure of SLAM.

Definition 1. The elimination complexity C(G, P) of a factor graph G with variables
X and ordering P is defined

| %]

C(G,P) & Z dy(3)ds(i, P)>?

where ds (i, P) and dy(i,P) are the total scalar dimension of the i-th frontal variable

Xy and its corresponding separator set X, respectively.

Note that under scalar elimination, which corresponds to frontal variables of singular
dimension d;(7) = 1, Definition 1 reduces to the asymptotic form of (2.4).
Lemma 1. For a fized elimination ordering P and graph G, let G be constructed

by adding an edge to G. Then, C(G,P) < C(G™,P.

The proof of Lemma 1 is shown in Appendix A. Lemma 1 confirms the intuition
that for a fixed ordering, adding an edge to the graph cannot decrease elimination

complexity. Equivalently, removing an edge cannot increase complexity.

A justification for elimination complexity C(G,P) as a representation of the com-
putation performed by block-wise, sparse factorization is provided in the folloWing

section.

2.2.1 Block-wise sparse factorization

Following the block structure of linear systems characteristic of SLAM problems [13],

block-wise sparse factorization proceeds block-by-block. From a graphical perspec-
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tive, this corresponds to node elimination on the factor graph, where “macro-variables”
x; € X are eliminated one at a time. Asis typical in SLAM, x may represent a robot

pose, a landmark position, a sensor calibration, etc.

At the i-th step of elimination, the variable being eliminated is referred to as the
frontal variable x¢, of dimension dy. Those variables adjacent to X (i.e. those which
share a common factor) in the elimination graph G® at step i are referred to as the

separator variables x;.

Thanks to the conditional independence properties implied by the factor graph (1.6),

no other variables in X are involved at this step
p(xs|X) = p(xf|x,) o< (x5, %) (25)
where the joint potential ®(xy,x;) over the active set x; U X,
1 2
®(xy,%,) < exp { — §||Afxf + Ax, — b|*} (2.6)

is formed by collecting the measurement Jacobians Ay and A, over all measurements
with respect to x; and x,, respectively. Assume the total dimension of the active
measurements is m, then Ay is m x df and A; is m x d;. Here b refers to the

m-dimensional right-hand side vector (from the measurement residuals).

In order to eliminate x¢, the new marginal factor ®’(x,) must be computed

&'(x,) o exp { — %HA'XS + b)) (2.7)
xexp{ — %(XZA'TA'XS —bTA’s)} (2.8)
AT2A, - A ATA,)'ATA, (2.9)

b 2 b— Ap(ATA)) AT

®'(s) represents the summarized information over the separators x, which was rep-

resented by the frontal set x; [31]. This can be thought of as marginalization of xy,
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and (2.9) represents the Schur complement. As ®’(x,) represents a fully-correlated
marginal over x;, it causes the nodes making up x, to become fully-connected, and

therefore possibly creating fill.

Maximizing the conditional probability p(xs|x;) «x ®(xs,x;) for a given x, leads to
ATApx; = ATb — ATA X, (2.10)

representing the reduced system over x;. (2.10) is solved during during the back-

substitution step, computing the ML estimate of x; given the ML estimate of x;.

In summary, each step of elimination produces a small sub-problem over x; and its
neighbors in the elimination graph x,. Solving this sub-problem involves computing
the marginal factor ®'(x,) via (2.8) or (2.9). Additionally, it involves factorizing
the reduced system (2.10) into a convenient form to be solved efficiently during the

back-substitution phase.

As will be seen, this can be accomplished using an appropriate dense QR or Cholesky
factorization over a reduced system, each representing ~ d ¢d? operations. In both
cases, we define the augmented Jacobian matrix A £ [A A b} of dimension

mx(df+ds+1).

Via dense QR factorization

VN B N |t T
- f s = 1 .

0 % %
The orthogonal matrix Q = [Ql *} is formed column-by-column via Gram-Schmidt
or Householder Reflections [51], as the right-hand-side matrix is computed row-by-

row. Only the first d; steps of decomposition need to be performed. This partial QR
requires ~ dys(dy + ds + 1) multiplications [51].

From the block matrix equality (2.11), it can be shown that the following equalities
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hold

A;=QR ATA;=R'R (2.12)
QTA; =M, Q’b=m

Combining (2.12) with (2.7) and (2.10), the necessary outputs can be directly (and

inexpensively) computed

A2 A, — Af(ATAf)T'ATA,
= A, - (QR)R'R)(QIR)"A,
=A, - QIQTA,
=A, - Q;M, (2.13)

b 2b- A/ (ATA;)'ATH
=A,-Qpb | (2.14)

ATAx; = ATb — ATA x,
RTRx; = (Q;R)"b — (Q;R)TA,x,
=RT'm - R"TM,x,
= x; =R '(m—- M,x,) (2.15)

(2.13) and (2.14) are computed during elimination to determine the marginal factor
®'(x,). (2.15) is computed during back-substitution. Because R is upper-triangular,
and Q;, M,, and m are formed during the factorization step, these all can be com-

puted inexpensively.
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Via dense Cholesky factorization

Performing Cholesky decomposition of the augmented information matrix to produce

ATA = R”R, the upper-triangular R is defined:

R M, m
R2l0 % * (2.16)
0 0 %
Interpreting this as a block-matrix equality:
A}“A? A}"AS A}"b R’R R”M, R'm
ATA=| %* % x| =RR=| % % % (2.17)
* * * * * *

As only the first d; rows of the augmented Cholesky factor R in (2.16) are needed,

factorization again requires ~ dg(d; + ds + 1)? operations [51].

(2.17) provides the necessary equalities in order to efficiently compute outputs re-

quired by (2.8) and (2.10).

ATA 2 ATA, — (ATA))(ATA;)H(ATA,)
= ATA, - MTR(RTR)'R™M,
=ATA, -MTM, (2.18)

A"b=ATb—-MTm (2.19)
A?Afo = A?b — A?ASXS

R'Rx; = R"m — R"M,x,
= x;=R'(m - M,x,) (2.20)
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2.2.2 Summary

As discussed in Section 2.2, sparse factorization of the full linear system (1.8) corre-
sponds to elimination on a graph. Leveraging the block structure common in SLAM
problems [13], state-of-the-art solvers like iISAM2 [32] perfdrm elimination block-wise
rather than one row or column at a time. Each step of this elimination process

represents a small sub-problem over frontal variable x; and separators x;.

As generally d, > dy, the complexity results of either QR~ or Cholesky-based elimi-
nation can be simplified to O(d;d?). This lends theoretical justification to the use of
elimination complexity C(G,P) (from Definition 1) as a measure of the computation
involved in solving the system represented by graph G with ordering P. Experimental

verification will be provided in Section 2.3.

It should be immediately clear that the dimension of the separator set d, has a large
impact on computation. Even if the frontal variables have small dimension dy, the
complexity of eliminating Xt scales with the square of the dimension of the separators
X;. As edges are induced (fill-in) during the process of elimination, naive elimination
orderings or adverse graph structures can result in large separators d, and therefore
significant computation, even if the degree of each node in the original graph is

relatively low [16].

Elimination complexity and iSAM2

Characterizing the update-time computation of incremental solvers such as iISAM2
[32] is in general difficult. Designed to avoid re-eliminating the full graph at each
update, the iSAM2 update re-linearizes and re-orders variables within the Bayes Tree
structure [31] as needed, depending on the numerical values of the measurements and
current estimate. Additionally, in order to avoid full re-elimination at each update,
the elimination ordering represented in the Bayes Tree is semi-static, and depends
on the update history of that particular iSAM2 problem. Though generally guided
by a COLAMD ordering [10], the ordering implicitly “baked-in” to the Bayes Tree may
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not necessarily match Peorap(G) at any time. Furthermore, iISAM2 applies a mul-
tifrontal [14] approach which operates on cliques in the Bayes Tree, rather than on
blockb variables one at a time. By facilitating parallel, distributed computation, mul-
tifrontal methods can take advantage of multi-core processors if present. As each
clique corresponds to a grouping of multiple variables, this results in a slightly dif-
ferent procedure and operation count than captured by C as presented in Section

2.2.1.

Despite all these factors, by representing the elimination complexity of the factor
graph G, C can be shown numerically to correlate well with “worst-case” update time.

This is demonstrated in the next section.

2.3 Experimental validation

For elimination complexity C(G,P) to be a useful measure of graph complexity, it
should correlate linearly with computation time. Experimental timing results from
simulated SLAM problem described in more detail in Section 3.4) were collected, and
are shown in Figure 2-3. Over several runs with varying levels of measurement prun-
ing, the elimination complexity using a heuristic COLAMD [10] ordering was computed
at each step. The sparse blockwise elimination process described in Section 2.2.1 was
performed using either dense QR or Cholesky factorization at each elimination step.

Additionally, the iISAM2 update time was recorded.
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Figure 2-2: Simulation results demonstrate the linear relationship between elimination
complexity and total computation time. The data used is a conglomeration of several
simulation runs with varying parameter settings. (left) Using dense QR at each
elimination step shows a near-linear relation with residual R? ~ 0.984. (right) Using
dense Cholesky at each step shows a linear relation with residual R? ~ 0.997.

Figure 2-2 plots the batch elimination time with either dense QR or Cholesky fac-
torization. As expected, the batch elimination time in both cases follows linearly
in C(G, Peouan). The R? statistics for the linear fits were approximately 0.984 and
0.997, respectively. While QR and Cholesky demonstrate similar asymptotic complex-
ity, the actual operation counts have different constant coefficients. As can be easily
seen in Figure 2-2, using Cholesky rather than QR for each sub-problem produces a

significant computation time reduction.

The computation involved in the incremental updates of iSAM2 is much more diffi-
cult to predict. iSAM2 achieves significant computational savings by only propagat-
ing updates over the a local region of the graph, and employs fluid relinearization
and reordering schemes to avoid batch Gauss-Newton iteration [32]. Predicting re-
linearization and update propagation requires access to the numerical values of the
current estimate, putting them outside the scope of a graph metric like C. Nonethe-
less, the in practice worst-case incremental update time of iSAM2 in Figure 2-3 also

shows a positive (sub-linear) trend with elimination complexity.
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Figure 2-3: Simulation results comparing incremental iSAM2 update time with
C(G, PeoLawp). As an incremental solver, iSAM2 often produces relatively quick up-
dates, and is in general difficult to predict. Nevertheless, the (in practice) worst-case
performance still trends (sub-linearly) with elimination complexity.

2.4 Optimal elimination complexity

Use of C(G, P) is complicated by the fact that it depends heavily on elimination order
P [25,52].

Definition 2. The optimal elimination complezity C*(G) is the minimum C(G,P)
over all possible permutations S(|X|) of variables X.

C*(G)2 min C(G,P)
PeS(|X])

The optimal elimination ordering provides a measure of the intrinsic complexity of a
graph G. Unfortunately, determining the optimal complexity C* for general graphs is

NP-complete [41,62]. However, from its definition, we can always upper-bound the

minimum complexity C*(G) < C(G,P) using any chosen ordering P. This provides
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a useful method for analyzing the predictable macro-sparsity of particular SLAM
architectures. The effectiveness of measurement selection strategies which impact

macro-sparsity (such as decimation) can also be analyzed this way.

2.5 Summary

Efficient solutions to the smoothing SLAM problem rely heavily on the underlying
sparsity of the system. Gauss-Newton methods used to solve general nonlinear prob-
lems involve repeated solution of linearized systems of large dimension. Because these
linearized systems share the same sparsity as the full nonlinear problem, they can be
solved efficiently. Elimination over the graph is the most expensive phase of this pro-
cedure, and is equivalent to sparse QR or Cholesky factorization of the corresponding
system matrix. By assessing the complexity of this factorization, the elimination com-
plexity C(G,P) quantifies the computation required to eliminate a particular graph

G using a particular ordering P.

One key observation is that elimination complexity, and therefore overall computa-
tion, is not simply a function of edge or factor count. Instead, computation in SLAM
is much more a function of of graph structure. Practically speaking, this means that
depending on their positions in the graph (i.e. the variable nodes they connect), two
otherwise similar measurements can have dramatically different impacts on computa-
tion. For measurement selection, and computation management in general, this has

significant implications.

Many existing measurement selection methods in the SLAM literature focus on re-
moving a fixed [36] or £;-determined [28] number of edges from the graph, irrespective
of their arrangement. While it is true that removing edges cannot increase elimination
complexity C, pruning done without regard to structure can produce an underwhelm-
ing reduction in complexity. In contrast, measurement selection strategies which
promote sparse structure directly can achieve more significant savings. As will be

seen in Chapter 3, decimation-style strategies do exactly that, and therefore can be
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quite effective.

By understanding and bounding the optimal elimination complexity C*(G) for partic-
ular graph super-structures, the macro-sparsity of graph architectures and measure-
ment selection strategies can be assessed. Ultimately, this can aid in the design and
analysis of inherently sparse graph structures and measurement selection strategies,

making SLAM accessible to increasingly computationally-constrained systems.
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Chapter 3

A Rigorous Look at Decimation

Chapter 2 developed the elimination complexity metric, providing a connection be-
tween graph structure and the computational complexity associated with optimiza-
tion. Because measurements correspond to factors/edges in this graph, intelligent
measurement selection can then be used to minimize elimination complexity and

therefore reduce computation.

As one of the simplest selection policies, decimation can be defined as the policy of
taking every r-th measurement from a particular data stream. From the perspec-
tive of landmark SLAM, a decimation policy might accept only every r-th landmark

observation. Some simple examples of decimated graphs are shown in Figure 3-1.

Xo X3 X2 X3 Xg X5 Xg X; Xg Xg Xy Xy X2 Xo X X; X3 Xq X5 Xg X7 Xg Xg Xyp Xy Xy

(a) Decimation rate of 2 (b) Decimation rate of 4

Figure 3-1: Results of a simple decimation rule on the SLAM graph with a single
landmark (green). Assuming that observations are available from any of the robot
poses (blue), decimation rules select only every r-th observation possible. Pose nodes
are labeled in a time-ordered fashion.

In this chapter, fundamental insights into the sparsity and connectivity of decimated
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graphs are provided. First, it is shown in Section 3.1 that decimation, if applied con-
sistently, produces a naturally sparse super-structure that necessarily bounds fill-in
at each step of elimination. In practice, this results in very sparse graphs that can
maintain many more factors at the same elimination complexity as graphs without
this super-structure. Second, for simple single-landmark graphs, the even spacing
between observations characteristic of decimation is proven in Section 3.2 to be near
optimal in a weighted tree-connectivity sense. As the weighted number of spanning
trees has been shown to be related to the uncertainty volume of the joint distribu-
tion represented by the graph [36], this suggests decimation is also effective from an

estimation perspective.

Despite decimation’s simplicity, this combination of properties make it an effective
primitive for graph sparsification. Section 3.3.2 introduces dec++, a decimation-
inspired policy tailored towards incremental SLAM. Empirical evidence from a simple
visual-inertial SLAM simulation demonstrates that dec++ performs quite well, match-

ing or even outperforming more sophisticated strategies.

3.0.1 Decimation as a measurement selection policy

Decimation can be a very general concept, and therefore it is important to define it

specifically in the context of the goals of this chapter.

In a SLAM context, decimation often arises as a keyframing method. In a keyframing
application, decimation can be used to downsample the incoming video stream by only
accepting every r-th image frame. Like [61], [29], and [58], keyframing decimation

can provide a rule for determining when to insert a new pose variable in the graph.

Alternatively, in landmark-SLAM, decimation can be used to select individual mea-
surements, on a per-track basis. A track is the sequence of observations associated
with a particular landmark. In general, per-track decimation allows for cases in which
the decimation patterns of different landmarks may be offset from each other by a

constant in the range {0,1,2,...,7 — 1}. Though less common in the literature, it is
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this interpretation of decimation that will be the main focus of this chapter.

Furthermore, it will be assumed that the choice of pose nodes included in the graph
is fixed. The fact that all pose nodes, including “intermediate” nodes which may
not be associated with any incorporated observations, are still represented in the
optimization is important for several reasons. First, in applications such as the local-
frame-planning described in Section 4.1.7, these intermediate poses may be of direct
interest. Second, fixing the set of pose nodes makes analysis and comparison between
strategies more straightforward, as the set of estimation variables is kept consistent

between methods.

If the set of pose nodes in the graph is taken to be fixed, decimation can take two differ-
ent forms: aligned and non-aligned. The aligned case is most similar to a keyframing
policy, in which all landmarks share the same decimation offset. In the more general
non-aligned case, this alignment is not enforced, and the decimation offset of a par-
ticular landmark is determined by the pose index of the first included observation.
These topologies are shown side-by-side in Figure 3-2.
@) o)
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Figure 3-2: Simple side-by-side example of aligned (left) vs. non-aligned (right)
decimation for the two-landmark case. In both cases, a decimation rate of r = 2 is
applied. In the aligned case, observations from the two landmarks (green) can be
considered to be decimated per-pose, while in the non-aligned case, decimation is
applied per-track. Poses in the aligned topology can be labeled as either a keypose
or an intermediate pose according to the presence or absence of associated landmark
observations.

In general, tracks can be decimated fully independently from one another, with differ-
ent offsets and potentially even different decimation rates. However, for the purposes

of this thesis, a consistent, global decimation rate r for all tracks will be assumed.
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One last technicality must be cleared up. For the purposes of the discussion here,
the decimation rate r is taken with respect to the corresponding pose variable in-
dices. For example, imagine a landmark is observed from a series of consecutive poses
{83,4,5}, leaves the sensor horizon and is not observed by poses {6, 7,8}, and then
returns to be observed by pose {9}. This corresponds to a track with associated pose
indices {3,4,5,9}. The style of decimation discussed here with r = 2 would keep the
observations from poses {3,5,9}, not only {3,5} as would be produced if only the
first and third observations were accepted. The resulting offset associated with this

track would be 1, as determined by the index of the first associated pose.

One emphasis of this chapter is to discuss the differences between these two tépologies
in terms of elimination complexity C and estimation quality. As can perhaps be
expected by their more restricted structure, aligned graphs are shown to be again
much sparser than their non-aligned counterparts, and therefore much cheaper to
optimize. However, this comes at the cost of lower connectivity and therefore reduced

estimation quality over the full set of variables (including intermediate poses).

In the analysis and experiments to follow in this chapter, the following additional

assumptions are made.

1. As is conventional in landmark SLAM, landmarks are considered to be dis-
tributed (a priori) independently of one another, and therefore there are no

landmark-landmark edges.

2. As is the case in odometry-focused problems, it assumed there are no explicit
pose-pose loop closures, and therefore, pose node 7 is only adjacent to pose

nodes ¢ — 1 and 7 + 1.
3. No other variable types are represented in the graph.

The last two assumptions can be relaxed with some restrictions without affecting the
following results, as will be discussed in Section 3.5.3. Nevertheless, they are assumed

here for simplicity and clarity.
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3.1 Sparsity of decimated graphs

As discussed in Chapter 2, sparsity refers to the desirable structure and properties
of a graph that make it amenable to efficient optimization. Trees are the spars-
est connected graphs, and complete graphs are the least sparse. Additionally, from
Lemma 1 we know that removing an edge from the graph will maintain or decrease
elimination complexity. Nonetheless, elimination complexity is not purely a function
of edge count, and graphs with equivalent numbers of vertices and edges can have

dramatically different complexities.

3.1.1 Empirical motivation

The claim that structure rather than edge count determines computation can easily
verified experimentally. On a simulated visual SLAM problem (described in more
detail in Section 3.4), the computation savings resulting from decimation were eval-
uated in a batch fashion. Given the full SLAM graph with all original observations,
pruning was then performed under aligned, non-aligned, and random strategies in
order to quantify the reduction in de facto optimization complexity, Ceoramp. A subset
of the resulting pruned graphs are shown in Figure 3-3, and computational results

are shown in Table 3.1.

Figure 3-3: Undirected graph of simulated VIN SLAM problem with a robot maneu-
vering along a square trajectory. Pose nodes are shown in blue, with landmarks in
green. Red edges represent visual observations. From left to right: The full graph
with all possible observations; under aligned decimation; under non-aligned decima-
tion; under random decimation. All pruned graphs here are the result of a pruning
rate r = 6. Note that estimation quality varies significantly across different strategies
— this will be discussed in Section 3.1.4.
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Table 3.1: Simulation results demonstrating that decimation strategies produce sig-
nificantly sparser graph structure for the same number of factors (edges). Ccoramp
corresponds to the de facto elimination complexity of the resulting graph, and elim-
ination time is the computation time of performing the batch elimination operation
as described in Section 2.2.1. Both are reported as percentages of the correspond-
ing values for the full graph, and thus give a clear metric of computation reduction.
Note that elimination time generally matches Ceorap. The details of the full graph
are shown in the top row, and relative quantities (with respect to the full graph) are
shown for the particular pruning methods. Note that random pruning rand removes
a similar number of factors but fails to reduce computation proportionally.

Method # Factors Ceuamp Elim Time

full 355503 3.24¢° 3.4 [s]
adec?2 18030 14.0 % 14.5 %
ndec?2 18101 46.5 % 45.6 %
rand?2 18002 75.6 % 83.6 %
adec4 9300 2.2 % 2.7 %
ndec4 9417 22.0 % 244 %
rand4 9251 43.3 % 54.8 %
adec6 6372 0.8 % 1.2 %
ndec6 6505 122 % 127 %
rand6 6334 404 % 50.6 %

The details of the full graph are shown in the row labeled full, and results under
the various pruning strategies are reported with either absolute or relative values
for easy comparison. adec and ndec refer to aligned and non-aligned decimation
topologies, respectively. As a baseline, rand refers to random pruning, as edges are
selected uniformly to be discarded. This strategy was parameterized to prune a similar
number of measurements as the decimation strategies. Each strategy was evaluated

over a series of r values in {2,4,6}.

For any particular value of r, all three strategies maintain a similar number of factors
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(edges), but produce graphs of dramatically different computational complexities.
As can be seen from this experiment, both decimation strategies produce graphs of
significantly lower complexity than random pruning. It will be shown shortly that

this is precisely due to the characteristic structure of decimated graphs.

3.1.2 The sparse super-structure of decimated graphs

In this section, it will be shown that decimated graphs have a global super-structure
that makes elimination relatively inexpensive. By analyzing this super-structure, we

can naturally bound the worst-case optimal elimination complexity.

For conciseness in the following statements, it is assumed that all variables in the
graph (both landmark and pose variables) have the same dimension d = 1. General-

izing the analysis to account for varying variable dimensions is straightforward.

Elimination complexity in the non-aligned case

In the non-aligned case, decimation produces a specific super-structure illustrated in
Figure 3-4. Taking Figure 3-4a to be a typical SLAM graph, non-aligned decimation
produces the graph shown in Figure 3-4b. This decimated graph can be re-drawn as
shown in Figure 3-4c, demonstrating a partitioned structure which is generalized in

Figure 3-4d.

In order to properly analyze this structure, some notation must be defined. Assume
the pose nodes are numbered sequentially in time as shown. Each pose node i can
then be assigned to exactly one set II;, where k =4 mod r is assigned based on the
decimation rate r. We can similarly assign each landmark node to exactly one set
Lk, based on the label of its first incorporated observation. We will refer to this label

ke {0,1,2,...,r — 1} as the decimation offset.

Letting n, refer to the number of poses and n; the number of landmarks, the vertices

of the decimated graph are partitioned into r subgraphs. After decimation, each
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Figure 3-4: (a) Example SLAM graph with 9 landmarks (green) and n, = 20 poses
(blue). Due to sensor limitations and the nature of the trajectory, each landmark
will in general only be observed from a subset of all poses. (b) The same graph after
a non-aligned decimation with r = 4 is applied. The first available observation of
each landmark is kept, thus determining the decimation offset of that track. (c) The
graph (b) can be re-drawn, showing that decimation has essentially partitioned the
graph into m £ 2z subgraphs. These subgraphs have limited inter-connections (the
odometry edges). (d) A generalized illustration of the partitioning structure produced
by non-aligned decimation.

landmark node is adjacent only to poses of one particular set II;. This partitioned

structure is illustrated in Figure 3-4d.

Thus, the vertices of the decimated graph are partitioned into disjoint subsets (I, L)
parameterized by decimation offset k. As can be seen, the neighborhood of landmark
j € Ly is necessarily a subset of IIr. Most importantly, these subgraphs have limited
inter-connectedness, as the nature of the odometry edges restricts members of set IIj
to only be adjacent to IT;_, and ITy,,. Note that if r divides ny evenly, |[I;| = m £ 2=

for all k.
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Proposition 1. The optimal elimination complezity of a landmark-pose SLAM graph

subject to non-aligned decimation is upper bounded

C* < (ng + 9rm)m?

a)
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Figure 3-5: Proposed elimination process in the non-aligned case. (a) General non-
aligned decimated graph. (b) After elimination of landmarks Ly, edges are induced
which in the worst-case cause IIj to become a complete subgraph. (c) After landmark
elimination for the remaining £;. (d) All nodes in II; are eliminated, inducing edges
between IIy and II>. The elimination of the remaining I, proceeds similarly from
here.

Proof. We can upper-bound the optimal elimination complexity (i.e. the min com-
plexity over all orderings) by evaluating the elimination complexity for any particular

ordering. The procedure is shown in Figure 3-5.

Start by eliminating all landmarks, incurring a complexity of

r—1 |Lkl r—1
Cr <) D IM? =) |Lklm? = nym?
k=0 i=1 k=0

Because the neighborhood of each landmark j € L is limited to IIj, this cannot
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induce edges outside of II;. In the worst case, edges have been induced such that the

variables within each II; subgraph form fully-connected cliques of size m.

We can proceed from k = 0 to k = r — 1, eliminating all pose variables within Il at
each step. At the point of eliminating each pose variable i € II;, the neighborhood
of ¢ is a subset of II;_; U II; U I, ;, which has cardinality 3m. In total, pose node

elimination is loosely upper-bounded by

-1

Cr< Y i m(3m)? = 9rm?

=0 i=1

<

x>

After these steps, the graph has been fully eliminated. Because the chosen ordering

cannot (by definition) be better than optimal, we know that

C* < C +C, < (ng +9rm)m?

Elimination complexity in the aligned case

A similar analysis can be performed in the aligned case. Compared to the non-
aligned case, the aligned case has an even more restrictive structure, as a consistent
decimation offset is used for all landmarks. Pose nodes in an aligned decimation
graph either belong to the set of m keyposes Iy or the set of intermediate poses II.
The intermediate pose nodes are not adjacent to any landmarks, and form simple
odometry chains between keyposes as illustrated in Figure 3-6.

Proposition 2. The optimal elimination complezity of a landmark-pose SLAM graph

subject to aligned decimation is upper bounded
C* < 4(r — )m+ (n + m)m® ~ (n, + m)m?®

Proof. Again, we derive an upper-bound for the elimination complexity over the op-
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c)

fm-1)r

Figure 3-6: (a) Example SLAM graph with 9 landmarks (green) and n, = 20 poses
(blue). (b) The same graph after an aligned decimation with r = 4 is applied (the
offset is 0 in this case). (c) Intermediate poses form a single odometry path between
consecutive keyposes. (d) A generalized illustration of graph (c).

timal order by evaluating the complexity for a particular order. The procedure is
shown in Figure 3-7.

Because intermediate poses form single chains, they can be eliminated inexpensively.
Each intermediate pose i € IT has at most two neighbors (the prior and following pose

nodes i — 1 and i + 1), so this step has complexity
||
Cr= 222 =4(r—1)m
1=1

Next, elimination over the n; landmarks has complexity of at most

ny
< E m? = nym?

j=1
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This induces edges between the remaining poses Il, at worst leaving them a complete
subgraph. Finally, eliminating the m keyposes comes at a worst-case (fully-connected)

cost of
m

Cn, < ng =m?

i=1

Thus, the total elimination cost with this ordering is upper bounded by

C*éééC’ﬂ-l-C;—!—Cno:4(r—1}m+(m+m)m2

|
a) (n)
(r-1) (r-7) (r-1)
L JR AL 4 o 90
b) ()
(m-1)r
° o

Figure 3-7: Proposed elimination process in the aligned case. (a) General aligned dec-
imated graph. (b) We can start by sequentially eliminating intermediate pose chains,
resulting in single induced edges connecting consecutive keyposes. (c) Elimination of
all landmarks results in a (at worst) clique over the m keyposes II;. From here, the
keyposes can be sequentially eliminated.

In the non-aligned case, the key property defining sparsity was the partitioning of the

graph into r subgraphs. In the aligned case, the key characteristic is the selection of
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only m keypose nodes from which landmarks are observed. Obviously, the aligned

superstructure is a more restrictive special case of the non-aligned superstructure.

3.1.3 The utility of these bounds

The bounds provided in Propositions 1 and 2 are quite loose, as the worst-case con-
nectivity assumed at each step of the derivations is conservative. Additionally, these
bounds assume that all landmarks are observable from all robot poses (i.e. the case
of no micro-sparsity), although sensor limitations dictate this almost never occurs in
practice. Thus, these bounds speak only to the macro-sparsity (see Section 2.1.1)
induced by decimation. The optimal ordering, and the heuristic ordering chosen in
practice, will almost certainly do much better given the micro-sparsity of the partic-

ular graph in question.

Nonetheless, the superstructures demonstrated in Figures 3-4 and 3-6 still have sig-
nificance. They imply that, given a reasonable variable ordering, fill-in is contained
within a limited region of the graph at each step of elimination. Put another way,
graphs with this partitioning property are guaranteed to have orderings that produce

bounded levels of fill.

In the case of pruning techniques without this structure, such as rand, a similarly
“good” elimination ordering may not exist. Using similar arguments to those de-
scribed here, the correspohding worst-case complexity bound for more general graphs
is O((n; + nr)n?), resulting from first eliminating the landmarks and then the poses.
Without a similar partitioning property, more generally-pruned graphs can be arbi-

trarily complex up to this general bound.

Compared to this bound, non-aligned and aligned decimation produce bounds which

2, As was seen experimentally in

are asymptotically better by a factor of almost r
Table 3.1, the difference in super-structure between decimated and randomly-pruned
graphs can correspond to significant differences in elimination complexity in practice.

This explains why decimated graphs can afford many more edges while still being less
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computationally expensive than graphs produced via other pruning strategies.

3.1.4 Aligned decimation is the most sparse

These bounds suggest that graphs produced by an aligned decimation scheme should
be much more efficient than even non-aligned decimation schemes, largely due to the
ability to inexpensively “pre-eliminate” intermediate pose nodes. This idea is verified
empirically in Table 3.1, as the aligned graph with a near-identical number of factors
(edges) results in significantly lower elimination cost. As, in many cases, intermediate
poses need not be represented in the first place, this result can be applied to all
keyframing methods (not just decimation). Compared to the full graph, Proposition
2 implies that representing only one r-th of all input frames as keyframes corresponds
to a complexity reduction that scales wifh a factor between 72 and r® (depending
on whether n; or n, is dominant). Thus, keyframing is a very powerful method of

computation reduction, although with limitations as discussed in Section 3.3.1.

Of course, sparsity is not the only metric of interest. As will be seen experimentally
in Section 3.4, non-aligned decimation produces a more connected, better-constrained

estimation problem, and often significantly better accuracy.

3.2 ty-optimality in single-landmark graphs

Of course, computational efficiency is not the only consideration when considering a
measurement selection policy. It is also desirable that the distribution represented
by the pruned graph be a good approximation of the distribution represented by the
full set of data. While several information-theoretic metrics can be used, including
the Kullback-Leibler Divergence (see Section 1.5.2), such metrics generally depend on
the particular measurement values. For the purposes of understanding the estimation
performance of decimation as a general strategy, graph-theoretic analysis is much

more applicable.
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As shown by Khosoussi et al. [35] and introduced in Section 1.5.1, the weighted
number of spanning trees ¢,,(G) is related to uncertainty volume det(X) in SLAM
problems. In this perspective, edges (measurements) are weighted by their precision

R |
wi,j =5z

Put another way, pruning strategies which maintain a large t,, should in turn minimize
the inevitable uncertainty increase over the full set of variables. In this section, it is
shown that in single-landmark graphs, the even spacing of observations characteristic
of decimation is in fact near t,-optimal. This suggests that decimation in general
may have good information-theoretic performance, which is later demonstrated ex-
perimentally in Section 3.4.

Lemma 2. Useful properties of t,,(G) for connected, weighted graph G with positive

weights:
e t,(G) > 0 for any connected graph.
o t,(G) is non-decreasing as edges are added to G.

o For any edge (i,7) in G, ty(G) = tu (x(i,j)} (G)+tw (i)} (G). Here, ty (xi.j)}(G)
is defined as the weighted number of spanning trees which necessarily include
(4,7)- tw, @ (G) is defined as the weighted number of spanning trees which do
not include edge (i, 7).

Lemma 3. “Dangling chains™ For any graph G, consider a graph G formed by
attaching a chain of edge length n > 1 at one end to ezactly one vertex in G~2, such
A

that G and G~ have the same number of cycles. Let v = [T, w; be defined as the
product of the edge weights of the added chain. Then

For brevity, proofs of intermediate results have been left to Appendix A.

We will begin by examining t,-connectivity in a simplified, single-landmark class of

SLAM graphs. Imagine that a robot follows a trajectory along n+1 poses, along which
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it records odometry measurements and observes a single landmark, represented by
node [. Assume that the discrete pose variables {xq,z1,...,2,} are evenly spaced in
time. Additionally, assume the robot is constrained to take at most m-1 observations
of the landmark, and each has to be from one of the n + 1 discrete poses. Two such

scenarios are illustrated in Figure 3-8.

Tg Ty Tz T3 T4 Ts Te Ty Tg Tg Typ Ty T12

Figure 3-8: Two example single-landmark graphs from the set .C';m,n with m = 3 and
n = 12. Note that the observation edges are each assigned weight w, and odometry
edges have unity weight. Each of these graphs corresponds to a particular choice of
m observation edges for a robot driving along n + 1 poses.

Weights can be assigned to the edges in the corresponding graph according to the
precision of the corresponding measurements. Thanks to the assumption that the
state variables are distributed uniformly in time, and because odometry sensors such
as IMUs are generally modeled as continuous-time systems with additive white-noise,
the discrete-time noise along each odometry edge is also uniform (see Appendix B).

Thus, we can weight all odometry edges equally with w,.

Additionally, we will make the simplifying assumption that all observations are also
equally precise, and assign weights w,. In general, particularly in the case of visual
observations, this is not true, and even the first-order noise propagation is sensitive
to scene geometry (see Section 1.2.1). Nonetheless, the approximation is necessary to
facilitate the following analysis, and ultimately offers some illuminating insight. Be-
cause a global scaling applied to all edge weights scales t,, equivalently, for notational
simplicity let us assume all weights are scaled such that odometry edges have unity
weight and observation edges are weighted by w £ e. Note that all original weights,

and therefore the simplified weight w, are assumed to be strictly positive.

The natural question is of optimality: with n + 1 observation “opportunities” and a
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“budget” for m + 1 edges, how do we select observations to maximize ¢,,? First off, it
is known from Lemma 2 that t,, is non-decreasing with additional edges. Thus, there
will always exist an optimal graph with ezactly m observation edges, thus without

loss of generality it will be assumed that exactly m observations are taken.

Define G, ,, as the family of single-landmark graphs with n + 1 discrete poses and m
observations. Figure 3-8 shows two examples. For a fixed m and n, members of G, ,,
are differentiated only by the selection of observation edges connecting pose nodes z
to the landmark node I. Selecting observations corresponds to selecting observation

edges, and therefore to selecting members of C:m,n.

The problem of maximizing t,, for single-landmark graphs can be expressed as the
following optimization:
Problem 1.

argmax t,,(G)
GEg_m,n

Thanks to the following lemma (proved in Appendix A), a maximizer of Problem 1
exists, and must belong to a more restricted class of graphs.

Lemma 4. A mazimizer of Problem 1 must exist, and must include the first and last
possible observation edges. That is, it must include the observation edges from pose

Ty and T.

This family will be referred to as Gp, C Gy Two examples of this sub-family are

shown in Figure 3-9.

Ty -T1 352 I3 $4 375 Zs 337 $3 399 T10 -Tn 1‘12 Zo Il ) 353 T4 Ts $s 7 sz Ty Tio T11 T2

Figure 3-9: Two example single-landmark graphs from the set G, C Gm.n with
m = 3 and n = 12. By Lemma 4, any maximizer of Problem 1 must be of this form.

As seen in Figure 3-10, members G,,(k) € G, can be parameterized by the spacing
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between observations. Each of the m “triangular” cycles is defined by a single chain of
odometry edges of length k; € Z,,. The sum of these chain lengths, of course, must

equal > ki =n.

Figure 3-10: A generalized example of a member of G,, ,, parameterized by the ob-
servation spacing k. k; corresponds to the number of odometry edges between the
pose nodes of consecutive observation edges. Note that > " k; = n.

Thus, Problem 1 can be equivalently interpreted as an optimization over only G, n C
g‘m,n, and given a more convenient form:
Problem 2. Define objective fr(k,w) £ to,(Gm(k)), which maps a spacing vector k

and weight w to the weighted number of spanning trees of the corresponding graph.

argmax fn(k, w)
KEZT,
m

subject to Z ki=n

i=1

As will be seen shortly, selecting a “uniform” spacing of observations provides a near-
optimal solution to Problem 2. This corresponds to choosing k; = ;- L r Vk;, or

taking every r-th possible observation. This corresponds precisely to the pattern

produced by decimation with a rate of r.

Of course, the existence of an integer r requires that n is a multiple of m. As Problem
2 is technically an integer optimization of objective f,,(k, w) over k, this will be

assumed from here on out.

With that, we can introduce (and then prove) the following claim:

Claim 1. Assuming that m evenly divides n, a uniform spacing of observation edges
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such that k; = 2 r Vk; provides a near-optimal solution to Problem 2. Deﬁnmg

T
I‘—[ s W

fm( w) % rw—+1

e ) ™8

To prove Claim 1, we derive upper and lower bounds for f,(k) inductively in Propo-
sition 3, and then substitute the solution r.

Proposition 3. The objective f,, is upper- and lower-bounded:

m

w[hw+1) < fulkw) < w][hw+2)

i=1 i=1
Proof. For a given k, induction is performed on m, starting from m = 1.

The base case of m = 1 is easily established. An illustration is shown in Figure
3-11. Because this graph is a simple loop, the set of spanning trees can be easily

enumerated. Trivially, f(k, w) = w(kiw + 2).

Figure 3-11: Base case of Proposition 3, for which m = 1. This graph forms a single
cycle. The spanning trees can be trivially enumerated, and the weighted sum is
filk,w) = w(kyw + 2).

Next, the inductive step must be established, for m > 1. The graph G,, can be
constructed recursively by appending an additional segment of size k,, on the right
side of graph G,,_1(k), as shown in Figure 3-12. Note that here, k has dimension
m — 1.

79



Figure 3-12: Inductive step of Proposition 3, for which m > 1. The graph G, is
constructed from G,,_; by appending a new path of length k,, + 1 between T and [,
forming a new cycle.

Put another way, induction corresponds to adding a new path of k,, odometry edges
between pose node Z and landmark [. This new path is shown on the right side
of Figure 3-12, highlighted in red, and will be referred to as the “right-most path”.
By construction, the right-most path is comprised of k, odometry edges and one
observation edge, which has weight w. By enumerating spanning trees with respect

to this path, a recursive expression for f,, can be found.

Every spanning tree of G,, includes either the complete right-most path, or is missing
exactly one of its k,, + 1 edges. Note that if two or more edges are removed from
this path, the graph becomes disconnected and therefore contains no spanning trees.
Thus, we can decompose the set of spanning trees into 7(Gm) = Toroken U Tcompletes
where the explicit dependence on G,, has been dropped for brevity. Toroken refers
to the set of spanning trees which are missing exactly one edge from the right-most

path, and Teomplete Tefers to those spanning trees for which the path is complete.

We can similarly decompose t,,(G,,) into a sum of two terms

t(Gm)= > VID)+ Y. V() (3.1)

T€7-broken TE?u-:ompl.ecc
N - [ )
tw.broken(cm) tw,complebe (Gm)

We will start by finding a recursive equality for t, broken(Gm). Note that there are
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km +1 ways to break the right-most path. If one of the k,, odometry edges is broken,
the observation edge with weight w must be maintained. The other option is that the
observation edge is broken, in which case all odometry edges must be maintained. In
either case, the result is one or two dangling chains attached to graph G,,_;. These
possibilities are illustrated in Figure 3-13. By applying Lemma 3, t, broken(Gm) has

the form

tw,broken(Gm) = kafm—l(k) = fmfl(k) = (w'km 5 l)fm—l(k) (32)

Figure 3-13: Two example graphs with broken right-most paths with respect to G,,.
(left) One of k,, cases where the spanning tree is missing an odometry edge, and
maintains the new observation edge with weight w. (right) The graph missing the
new observation edge, leaving a single chain of odometry poses. In either case, these
graphs demonstrate dangling chains and Lemma 3 applies.

Next, we find a simple recursive inequality for Teomplete- FOr spanning trees necessarily
containing the complete right-most loop, this forms a fixed, direct path of weight w
between Z and landmark [, as shown in Figure 3-14. In these trees, edge (Z,[) cannot
be included as it would form a cycle with the right-most path. However, fixing the
right-most path is functionally equivalent to fixing edge (Z,!), in the sense that

tw,complete(Gm) = tw,{x(i,l)}(Gm—l) (33)

tuix@n}(Gm-) 2 D V(D) (3.4)
T€Tx(z,1)(Gm-1)
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T
: Gm—l : : Gm—l :

Figure 3-14: (left) Spanning trees within Tcompiete Decessarily include the full right-
most path, shown in bold. This in turn implies that they cannot include dashed edge
(z,1), as that would form a cycle. (right) In terms of weighted number of spanning
trees, the fixed right-most path can be condensed into a single edge of weight w, and

tw.complete(Gm) = tw,{x(a‘:,l)}(Gm-l)-

Leveraging Lemma 2, the weighted number of spanning trees with a fixed, complete

right-most path is

0< tw,complete(Gm) = tw,{x(:ﬁ,!)}(gm—l) = tw(Gm—l) - tw,{\(f:,l)}(Gm——l) < tw(Gmfl)
(3.5)
where the strict inequality arises from the fact that removing (Z, [) does not disconnect

Gm-1 and therefore t,, (\(z,)}(Gm-1) > 0.

Armed with recursive relations (3.2) and (3.5), substituting into the decomposition

(3.1) it can be seen that

fm = tw(Gm) = tw,broken(Gm) + tw,complete(Gm) (36)
= (’Uka + l)fm—l(ka 'LU) + tw,{x(i,l)}(Gmfl) (37)

and therefore
(Whi, + 2) fm-1(k,w) > fr = (Wkyy + 1) frn—1(k, w) (3.8)

Combining the base case f; = w(wk; + 2) and the recursive inequalities (3.8) in a

straightforward application of induction, Proposition 3 is clear. O
Once the lower and upper bounds provided by Proposition 3 have been established,
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we seek to upper-bound the optimal solution to Problem 2, f*(w). It should be
noted that the constrained maximization of the upper-bound ®(k) £ [T, (ksw + 2)
is equivalent to maximizing the volume of an m-dimensional hyper-cube subject to
a total side length constraint. This maximum is achieved with k; = r Vk;, and

therefore ®* = (rw + 2)™.
Thus

fm(k,w) < fr(w) <O = (rw+2)" (3.9)

By (3.9) and the lower-bound from Proposition 3, it can be seen that

fm(r,w) fm(r,w) > (rw+1)" rw—+1

log =/~ > log ——~ " - = 3.10
o8 fo(w) — o8 (rw+2)m™ — °8 (rw + 2)™ o8 o (3.10)
This proves Claim 1. 0

3.2.1 Discussion

The proof of Claim 1 demonstrates that a “uniform” spacing of landmark observations
is near-optimal in a t,, sense for fixed number of observations m + 1. Decimation,
by definition, maintains every r-th landmark observation, achieving precisely this
uniform pattern. For a given number of poses, Claim 1 is equivalent to the claim
that decimation makes a near-t,-optimal selection of m = 2 observations, at least for

single-landmark systems.

From a keyframing perspective, assuming a consistent raw data rate, aligned decima-
tion by definition evenly spaces keypoées in time. As shown in Appendix B, odometry
processes such as IMUs are often modeled with additive Gaussian noise and produce
odometry factors whose noise parameters scale with time. Thus, aligned decima-
tion will produce graphs with uniformly-precise (uniformly-weighted) odometry links

similar to Figure 3-10, and thus are near-t,-optimal by Claim 1.

In non-aligned decimation, landmarks are not necessarily all connected to the same
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poses. Unfortunately, Claim 1 does not necessarily generalize to this multi-landmark
case. However, each single-landmark subgraph is still “well-connected,” and exper-
imental results in Section 3.4 will show that non-aligned decimation performs well

from an information volume (the inverse of uncertainty volume) perspective.

Determining the t¢,-optimal strategy analytically in a more general multi-landmark
case is non-trivial. As the precision of nonlinear observations such as vision depend
heavily on scene geometry, the observation weights w; will not all be equal. Addition-
ally, due to sensor limitations, all landmarks often cannot be observed from all points
in the trajectory. Thus, the truly t,-optimal choice of landmark edges cannot be
determined a prior: without specific knowledge of the available observations. Greedy
and semi-definite-relaxed algorithms proposed by [36] exist, but are computationally

impractical for high-rate realtime systems.

3.3 Decimation in implementation

In light of the above observations about the favorable properties of decimated graphs,
several decimation-style strategies for efficient measurement selection can be pro-
posed. There are two main categories, corresponding roughly to “per-frame” and
“per-landmark” styles. Note that here “frame” refers to an image frame, a laser scan,

or other sensor reading that contributes a set of simultaneous landmark observations.

In landmark SLAM, of which VIN is a particular case, the odometry factors connect-
ing consecutive poses are generally not pruned. These measurements are often full
rank, meaning that the set of odometry factors themselves (along with a gauge fix)
are sufficient to fully constrain the ML estimate of pose nodes in SE(2) or SE(3).
Thus, they lend a sense numerical stability to the problem. Additionally, as odom-
etry factors usually only connect pose nodes x; and x;;1, they form a single chain
and thus are naturally sparse. For these reasons, measurement selection and pruning

often deals exclusively with landmark observation factors.
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3.3.1 Keyframe selection

As was originally mentioned in Section 3.0.1, keyframe selection refers to the problem
of determining which discrete poses (representing the continuous-time robot trajec-
tory) to include explicitly in the SLAM optimization [58]. From the graphical per-
spective, these discrete poses correspond to the set of pose nodes in the SLAM graph.
As noted by [20,29], reducing the number of discrete pose nodes along the robot’s
trajectory can promote consistency. Additionally, the pre-processing associated with
each image frame or LIDAR scan can be non-negligible. Thus, processing only a

fraction of incoming measurements represents significant computational savings.

An important caveat of keyframing is that only measurements associated with key-
poses can be included in the optimization. At any time, currently-tracked landmarks
can leave the field-of-view or sensor detection range. As new landmarks cannot be
initialized until the next keyframe, this can lead to points in time during which
insufficient landmarks are tracked. This is especially an issue for monocular vision-
based systems, which require several observations before reliably triangulating a land-
mark [45]. For this reason, heuristic selection techniques like [68,61] explicitly aim to

maintain sufficient landmarks.

While decimation can be (and is often) used as a keyframing method, its use must
be tempered by the need‘to ensure a sufficient number of landmarks at all parts of
the trajectory. Thus, there often exists a maximal extent to which decimation-style
keyframing can be used safely, beyond which more flexible per-measurement selection
strategies can be leveraged. For example, a 60 Hz image stream from a camera may
might be decimated to 20 Hz, with pose nodes added to the graph at this rate.
Thus, new landmarks could be detected and initialized at up to 20 Hz. For visual
systems with narrow FOV cameras undergoing aggressive rotation, this may be the
minimum rate to ensure a sufficient number of landmarks are well-estimated at all
times. Beyond this point, any further measurement selection must be performed on

a more flexible, per-measurement basis.
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Additionally, the estimated trajectory (rather than simply the latest estimate) may
be of direct interest. For example, as discussed in Section 4.1.7, the estimate of past
states can be used for local-frame trajectory tracking. As only those pose estimates
which are represented in the graph can be accessed, this requires a sufficiently high

pose incorporation rate.

3.3.2 Per-landmark decimation

Given a fixed set of pose and landmark variables, the remaining question is which
subset of all available measurements best. approximates the full distribution. In this
case, the measurement selection process is not restricted to selecting or discarding
all measurements associated with a particular pose as a group, but rather each mea-
surement or factor can be evaluated independently. Thus, strategies inspired by the

patterns of non-aligned decimation are applicable.

As discussed in Section 3.1, decimation naturally partitions graphs into subgraphs
with restricted inter-connectivity. This naturally bounds fill-in and thus significantly
reduces elimination complexity compared to un-partitioned graphs. By the same
token however, the extent to which subgraphs are partitioned or disconnected from
each other is the extent to which the estimation problems are decoupled. Put another
way, this reduced connectivity leads tb a less constrained estimation problem, and
therefore reduced estimation performance. This tradeoff is verified numerically in

Section 3.4.

In practice, it should be remembered from Section 2.1.1 that realized micro-sparsity
is still significant — that is, realized performance is dependent on both graph super-
structure and the actual measurements acquired during operation. This means that
sparsity in practice will gracefully degrade as the assumptions of strict partitioning are
violated. Thus, the partitioning structure presented in Figure 3-4 can be interpreted
more as a general guideline rather than a strict rule. As estimation performance

intuitively should improve with increased coupling between partitions, the inclusion
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of “violations” should improve estimation without prohibitively impacting computa-
tion. Fortunately, as the following simulation results would suggest, this tradeoff is
actually quite favorable. It requires relatively few violations of partitioning to achieve
estimation performance on par with much more generally connected structures, while

still achieving near-partitioned computational performance.

Two methods are presented here, one which is a straightforward implementation of
non-aligned decimation and one which is slightly modified to address specific aspects

of incremental SLAM.

ndec refers to straightforward non-aligned decimation. Based on the index of the
first pose node from which a landmark is observed, only observations corresponding
to every r-th pose node are maintained. In this scheme, the first observation of a
particular landmark is always included, and it determines the decimation “offset” of
all future observations associated with the landmark. The partitioning structure of

Figure 3-4 is strictly upheld.

Decimation+-+

In incremental SLAM, several weaknesses of ndec become apparent. First, at initial-
ization, all landmarks observed from the robot’s starting pose zy will be initialized
with a decimation offset of 0. Unless new landmarks are introduced immediately, it is
unlikely that the next » — 1 pose nodes will be constrained by many landmark obser-
vations. Over time, more landmarks are initialized, and the distribution of landmark
decimation offsets becomes more uniform. However, this initial transient pattern is
undesirable and can lead to increased error in the early part of the trajectory. Second,
the latest pose node is often of most direct interest for closed-loop control. Under
simple ndec however, the observations associated with latest pose x, are decimated
just like the rest. Instead, if pruning is simply delayed until after the update, z,
will be left temporarily un-pruned, with all possible observation constraints. In this

way, accuracy of x,, can be increased at little computational cost. At each solve, the
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observations associated with pose z, that are due to be decimated represent a small
set of violations to the partitioning structure of pure ndec. These violations add a
small level of coupling between partitions, which in practice significantly improves

estimation quality at cost of a slight increase in computation.

In light of these observations, an improved strategy, dec++, is proposed. This strategy

has two slight modifications addressing specific issues in incremental SLAM.

1. For landmarks observed from initial pose xy, early observations are dropped
by a simple scheme in order to distribute the landmark offsets uniformly. As-
suming the landmarks are labeled sequentially according to their initialization
order, dropping the observations of landmark j before pose £k = j mod r will

accomplish this.

2. Pruning is only done up to the second-to-latest pose x,_1. All observations
associated with pose z,, are kept in the graph, and decimation is only performed

on these observations after pose z,,; is added.

The performance of these per-landmark methods will be evaluated on synthetic data

in the following section.

3.4 Simulation Results

A suite of simulation experiments were performed to verify the analytic results dis-
cussed above in a full 3D, nonlinear VIN setting. In the simulation, a robot drives
a square trajectory, observing nearby landmarks according via a monocular visual
sensor, using a pinhole camera model. Poses are represented as elements of SE(3),

and landmarks as Cartesian points in R3.

Consecutive poses are linked via noisy odometry measurements, and noisy visual
observations link poses to landmarks. At each step of the simulation, a new pose
node is added to the graph, and newly-triangulated landmarks are added to the

graph. Because of the under-rank nature of monocular measurements, landmarks are
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not initialized (i.e. added to the graph) until they have been observed a minimum

number of times.

Figure 3-15: Top-down view of the simulation trajectory and full set of measurements.
The robot trajectory is shown as the series of blue pose nodes, and landmarks are
shown in green. The robot moves in a counter-clockwise direction, starting from the
lower-left corner. Red edges indicate the full set of monocular vision observations.

The current estimate is updated at each step of the simulation via the incremen-
tal iISAM2 algorithm [32] as implemented in GTSAM [12]. The batch elimination
complexity is evaluated and timed at each step as well, to provide a more direct mea-
sure of graph sparsity unaffected by the somewhat obfuscating optimization of the
incremental solver. As will be seen, the computation time of the incremental solver
generally tracks the trends of the full batch computation. All timing experiments
are performed on the same desktop machine with an Intel i7 processor running at a

nominal 4.0 GHz.
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The goal of these experiments is to compare the performance of decimation schemes
versus a more sophisticated pruning approach. In all cases, only visual observations
(pose-landmark edges) are considered for pruning. The comparison algorithm used
is the t-optimizing greedy strategy of [36], which at each step greedily removes the n
visual observations from anywhere in the graph which reduce t-connectivity the least.
The number of observations removed n is based on a budget of k observations per
landmark, and is tuned to approximately maintain a similar number of edges in the
graph as the compared decimation approaches. It should be noted that this approach
is computationally expensive to implement, and the computation involved in actually
executing this pruning procedure is not accounted for in the following results. Rather,
the intent here is to demonstrate that, even if such a strategy were computationally

“free”, it still would not outperform decimation for these problems.
Several pruning strategies are evaluated here.

e adec: Aligned decimation.

ndec: Non-aligned decimation.

dec++: Decimation-based strategy introduced in Section 3.3.2.

rand: Random pruning,.

tgreedy: Greedy t-optimizing approach of [36] .

All strategies are tuned to maintain approximately % of the full set of observations in
the graph. For example, ndec4 and rand4 will produce graphs of different structures,
but with approximately one-quarter of the observation factors used in the original

graph.

Each pruning strategy produces a corresponding approximating graph and distribu-

tion over the set of variables. The Kullback-Leibler divergence (KLD) between the

1Because only observation edges are considered for pruning, and because all simulated vision
measurements are corrupted by an equivalent Gaussian noise, the unweighted variant of |36] is used.
However, because the vision model (see Section 1.2.1) shows that measurement Jacobian depends
on scene geometry, one could imagine a more sophisticated, weighted variant being used, although
it is not necessarily clear how weights would be generated.
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approximating Gaussian and the full distribution (using all measurements) is used
to evaluate estimation quality. Also, the log-determinant of the information matrix
A £ 31 over the linearizéd joint distribution is plotted. As the information matrix
is the inverse of the covariance matrix, higher values here correspond to lower uncer-
tainty. As the t-greedy approach is designed to explicitly maximize the information
log-determinant, it does the best here for a given number of edges. However, in terms
of KLD, decimation can ‘produce graphs which much more efficiently (in terms of

computational complexity per edge) approximate the full distribution.

3.4.1 Batch graph pruning

In order to validate the impact of decimation structure on estimation and computa-
tion, a set of batch experiments were performed. The full graph and set of observations

is illustrated in Figure 3-15.

From this full graph, a suite of pruning strategies were executed and evaluated, with
various decimation rates. After pruning was performed, the graph was re-optimized,
and the divergence and information volume were computed. Because of the large size

of the problem, tgreedy was too expensive to run in batch.

As can be seen from Figure 3-16, all pruning strategies removed a similar num-
ber of factors at each value of pruning rate r. As expected, the rand graph pro-
duced graphs of consistently higher de facto elimination complexity Ccoupp than the
decimation-style strategies. Furthermore, the complexity reduction achieved by the
random strategy plateaus quickly, and increasing the pruning rate does little to fur-
ther reduce complexity. In contrast, the decimation-based strategies produce graphs

of much lower complexity.

In terms of divergence, the decimation-based dec++ proposed in Section 3.3.2 does
only comparably to or better than rand, while producing graphs of much lower com-
plexity. From an information volume perspective, dec++ and rand perform almost

identically (higher is better). As expected, adec produces extremely inexpensive (low
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C) graphs, but at the cost of significantly increased KLD and reduced information

volume with respect to the full set of variables.
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Figure 3-16: Simulation batch pruning results under various strategies and equivalent
decimation rates. (top left) Factor counts are near equal for each strategy for a given
decimation rate. (top right) Elimination complexity is dramatically reduced for adec
and ndec relative to the unpartitioned graph produced by rand. (bottom left) dec++
achieves a similar KLD relative to the full graph to rand, at reduced complexity. ndec
and adec show significantly higher divergence. (bottom right) The log information
volume (log inverse of uncertainty volume) is highest with rand and dec++, as these
graphs are most connected. (Higher is better).

3.4.2 Incremental SLAM

The robustness of decimation strategies was also evaluated in an incremental SLAM

setting. Running the simulation data one iteration at a time, pruning was imple-
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mented at each time step. After pruning, an iISAM2 update was executed. The
divergence between the approximating graph and the full graph at each step was

computed, along with several other metrics.

It should be noted that at each iteration, the tgreedy strategy was free to prune
observations from anywhere in the graph, while rand was restricted to only new
observations. Again, it should be stressed that for a given pruning rate r, all strategies
were tuned to remove a similar number of factors at each step as straightforward
decimation. Results under r = 4 and r = 6 are shown in Figures 3-17 and 3-18,

respectively.
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Figure 3-17: Simulation incremental pruning results under various strategies for r = 4.
(top left) Factor counts are near equal for each strategy. (top right) Elimination
complexity is smallest under adec. ndec and dec++ produce similar complexity until
near the end of the trajectory. rand and tgreedy are both much higher, but in
this case tgreedy happens to produce a relatively sparse structure near the end of
the trajectory. (bottom left) dec++ achieves a similar KLD to rand and tgreedy,
at reduced complexity. ndec and adec show significantly higher divergence, with
ndec showing large fluctuation as the solution switches between nearby local minima.
(bottom right) The log information volume (log inverse of uncertainty volume) is
similar for all strategies besides adec. (Higher is better).
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Figure 3-18: Simulation incremental pruning results under various strategies for r = 6,
demonstrating similar trends as Figure 3-17. (top left) Again, factor counts are near
equal for each strategy. (top right) As before, elimination complexity is lowest under
adec, 