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Abstract

Anticipating actions and objects before they start or ap-
pear is a difficult problem in computer vision with several
real-world applications. This task is challenging partly
because it requires leveraging extensive knowledge of the
world that is difficult to write down. We believe that a
promising resource for efficiently learning this knowledge
is through readily available unlabeled video. We present a
framework that capitalizes on temporal structure in unla-
beled video to learn to anticipate human actions and ob-
jects. The key idea behind our approach is that we can train
deep networks to predict the visual representation of images
in the future. Visual representations are a promising predic-
tion target because they encode images at a higher seman-
tic level than pixels yet are automatic to compute. We then
apply recognition algorithms on our predicted representa-
tion to anticipate objects and actions. We experimentally
validate this idea on two datasets, anticipating actions one
second in the future and objects five seconds in the future.

1. Introduction
What action will the man do next in Figure 1 (left)? A

key problem in computer vision is to create machines that
anticipate actions and objects in the future, before they ap-
pear or start. This predictive capability would enable sev-
eral real-world applications. For example, robots can use
predictions of human actions to make better plans and inter-
actions [18]. Recommendation systems can suggest prod-
ucts or services based on what they anticipate a person will
do. Predictive models can also find abnormal situations in
surveillance videos, and alert emergency responders.

Unfortunately, developing an algorithm to anticipate the
future is challenging. Humans can rely on extensive knowl-
edge accumulated over their lifetime to infer that the man
will soon shake hands in Figure 1. How do we give ma-
chines access to this knowledge?

We believe that a promising resource to train predic-
tive models are abundantly available unlabeled videos. Al-
though lacking ground truth annotations, they are attractive

b)	  Feature
Space

(d	  dim)

a)	  Unlabeled
Video

�(xt)
�(xt+1)

Time
xt xt+1

Figure 1: Predicting Representations: In this paper, we
explore how to anticipate human actions and objects by
learning from unlabeled video. We propose to anticipate
the visual representation of frames in the future. We can
apply recognition algorithms on the predicted representa-
tion to forecast actions and objects.

for prediction because they are economical to obtain at mas-
sive scales yet still contain rich signals. Videos come with
the temporal ordering of frames “for free”, which is a valu-
able asset for forecasting.

However, how to leverage unlabeled video to antici-
pate high-level concepts is unclear. Pioneering work in
computer vision has capitalized on unlabeled videos be-
fore to visualize the future [31, 36, 39] and predict mo-
tions [28, 40, 43]. Unfortunately, these self-supervised
approaches are not straightforward to apply for anticipat-
ing semantics because, unlike pixels or motions, concepts
are not readily accessible in unlabeled video. Methods
that anticipate concepts have typically required supervision
[16, 21, 12], which is expensive to scale.

In this paper, we propose a method to anticipate con-
cepts in the future by learning from unlabeled video. Recent
progress in computer vision has built rich visual represen-
tations [6, 32, 44]. Rather than predict pixels or depend on
supervision, our main idea is to forecast visual representa-
tions of future frames. Since these representations contain
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signals sufficient to recognize concepts in the present, we
then use recognition algorithms on the forecasted represen-
tation to anticipate a future concept. Representations have
the advantage that they both a) capture the semantic infor-
mation that we want to forecast and b) scale to unlabeled
videos because they are automatic to compute. Moreover,
representations may be easier to predict than pixels because
distance metrics in this space empirically tend to be more
robust [6, 19].

Since we can economically acquire a large amounts of
unlabeled video, we create our prediction models with deep
networks, which are attractive for this problem because
their capacity can grow with the size of data available and
are trained efficiently with large-scale optimization algo-
rithms. In our experiments, we downloaded 600 hours of
unlabeled video from the web and trained our network to
forecast representations 1 to 5 seconds in the future. We
then forecast both actions and objects by applying recogni-
tion algorithms on top of our predicted representations. We
evaluate this idea on two datasets of human actions in televi-
sion shows [25] and egocentric videos for activities of daily
living [29]. Although we are still far from human perfor-
mance on these tasks, our experiments suggest that learning
to forecast representations with unlabeled videos may help
machines anticipate some objects and actions.

The primary contribution of this paper is developing a
method to leverage unlabeled video for forecasting high-
level concepts. In section 2, we first review related work.
In section 3, we then present our deep network to predict
visual representations in the future. Since the future can be
uncertain, we extend our network architecture to produce
multiple predictions. In section 4, we show experiments
to forecast both actions and objects. We plan to make our
trained models and code publicly available.

2. Related Work
The problem of predicting the future in images and

videos has received growing interest in the computer vision
community, which our work builds upon:

Prediction with Unlabeled Videos: Perhaps the ideas
most similar to this paper are the ones that capitalize on the
wide availability of big video collections. In early work,
Yuen and Torralba [43] propose to predict motion in a sin-
gle image by transferring motion cues from visually simi-
lar videos in a large database. Building on the rich poten-
tial of large video collections, Walker et al. [39] demon-
strate a compelling data-driven approach that animates the
trajectory of objects from a single frame. Ranzato et al.
[31] and Srivastava et al. [36] also learn predictive models
from large unlabeled video datasets to predict pixels in the
future. In this paper, we also use large video collections.
However, unlike previous work that predicts low-level pix-
els or motions, we develop a system to predict high-level

concepts such as objects and actions by learning from unla-
beled video.

Predicting Actions: There have been some promising
works on predicting future action categories. Lan et al. [21]
propose a hierarchical representation to predict future ac-
tions in the wild. Ryoo [33] and Hoai and De la Torre [11]
propose models to predict actions in early stages. Vu et
al. in [38] learn scene affordance to predict what actions
can happen in a static scene. Pei et al. [26] and Xie et al.
[42] infer people’s intention in performing actions which is
a good clue for predicting future actions. We are different
from these approaches because we use large-scale unlabeled
data to predict a rich visual representation in the future, and
apply it towards anticipating both actions and objects.

Predicting Human Paths: There have been several
works that predict the future by reasoning about scene se-
mantics with encouraging success. Kitani et al. [16] use
concept detectors to predict the possible trajectories a per-
son may take in surveillance applications. Lezema et al.
[23], Gong et al. [8] and Kooij et al. [17] also predict the
possible future path for people in the scene. Koppula and
Saxena [18] anticipate the action movements a person may
take in a human robot interaction scenario using RGB-D
sensors. Our approach extends these efforts by predicting
human actions and objects.

Predicting Motions: One fundamental component of
prediction is predicting short motions, and there have been
some investigations towards this. Pickup et al. in [27] im-
plicitly model causality to understand what should happen
before what in a video. Fouhey and Zitnick [7] learn from
abstract scenes to predict what objects may move together.
Lampert [20] predicts the future state of a probability distri-
bution, and applies it towards predicting classifiers adapted
to future domains. Pintea et al. [28] predict the optical flow
from single images by predicting how pixels are going to
move in future. We are hoping that our model learns to ex-
trapolate these motions automatically in the visual represen-
tation, which is helpful if we want to perform recognition in
the future rather than rendering it in pixel space.

Big Visual Data: We build upon work that leverages a
large amount of visual data readily available online. Tor-
ralba et al. [37] use millions of Internet images to build ob-
ject and scene recognition systems. Chen et al. [2] and Div-
vala et al. [3] build object recognition systems that have ac-
cess to common sense by mining visual data from the web.
Doersch et al. [5] use large repositories of images from the
web to tease apart visually distinctive elements of places.
Kim and Xing [15] learn to reconstruct story lines in per-
sonal photos, and recommend future photos. Zhou et al.
[45] train convolutional neural networks on a massive num-
ber of scene images to improve scene recognition accuracy.
In our work, we also propose to mine information from vi-
sual media on the web, however we do it for videos with the
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Figure 2: Network Diagram: We visualize the network architecture we use in our experiments. During training, the network
uses videos to learn to predict the representation of frames in the future. Since predicting the future is a multi-modal problem,
our network predicts K future representations. Blue layers are the same for each output while green layers are separate for
theK outputs. During inference, we only input the current frame, and the network estimatesK representations for the future.
Please see section 3 for full details.

goal of learning a model to anticipate semantic concepts.
Unsupervised Learning in Vision: To handle large-

scale data, there have been some efforts to create unsuper-
vised learning systems for vision. Ramanan et al. [30] uses
temporal relationships in videos to build datasets of human
faces. Ikizler-Cinbis et al. [13] propose to use images from
the web to learn and annotate actions in videos without su-
pervision. Le et al. [22] show that machines can learn to
recognize both human and cat faces by watching an enor-
mous amount of YouTube videos. Chen and Grauman [1]
propose a method to discover new human actions by only
analyzing unlabeled videos, and Mobahi et al. [24] similarly
discover objects. This paper also proposes to use unlabeled
data, but we use unlabeled video to learn to predict visual
representations.

Representation Learning: Recent work has explored
how to learn visual representations, for example with im-
ages [4] or videos [41]. Our work is different because we
do not seek to learn a visual representation. Rather, our goal
is to anticipate the visual representation in the future. More-
over, our approach is general, and in principle could predict
any representation.

3. Anticipating Visual Representations

Rather than predicting pixels (which may be more diffi-
cult) or anticipating labeled categories (which requires su-
pervision), our idea is to use unlabeled video to learn to
predict the visual representation in the future. We can then
apply recognition algorithms (such as object or action clas-
sifiers) on the predicted future representation to anticipate a
high-level concept. In this section, we explain our approach.

3.1. Self-supervised Learning

Given a video frame xit at time t from video i, our goal
is to predict the visual representation for the future frame

xit+∆. Let φ(xit+∆) be the representation in the future. Us-
ing videos as training data, we wish to estimate a function
g(xit) that closely predicts φ(xit+∆):

ω∗ = argmin
ω

∑
i,t

‖g
(
xit;ω

)
− φ

(
xit+∆

)
‖22 (1)

where our prediction function g(·) is parameterized by ω.
Our method is general to most visual representations,

however we focus on predicting the last hidden layer (fc7)
of AlexNet [19]. We chose this layer because it empiri-
cally obtains state-of-the-art performance on several image
[32, 6] and video [44] recognition tasks.

3.2. Deep Regression Network

Since we do not require data to be labeled for learning,
we can collect large amounts of training data. We propose to
use deep regression networks for predicting representations
because their model complexity can expand to harness the
amount of data available and can be trained with large scale
data efficiently with stochastic gradient descent.

Our network architecture is five convolutional layers fol-
lowed by five fully connected layers. The last layer is the
output vector, which makes the prediction for the future rep-
resentation. In training, we use a Euclidean loss to minimize
the distance between our predictions g(xt) and the repre-
sentation of the future frame φ(xt+∆).

Our choice of architecture is motivated by the successes
of the AlexNet architecture for visual recognition [19, 45].
However, our architecture differs by having a regression
loss function and three more fully connected layers.

3.3. Multi-Modal Outputs

Given an image, there can be multiple plausible futures,
illustrated in Figure 3. We wish to handle the multi-modal
nature of this problem for two reasons. Firstly, when there



Figure 3: Multiple Futures: Since the future can be uncer-
tain, our model anticipates multiple possibilities.

are multi-modal outputs, the optimal least squares solution
for regression is to produce the mean of the modes. This is
undesirable because the mean may either be unlikely or off
the manifold of representations. Secondly, reasoning about
uncertain outcomes can be important for some applications
of future prediction.

We therefore extend deep regression networks to pro-
duce multiple outputs. Suppose that there are K possible
output vectors for one input frame. We can support mul-
tiple outputs by training a mixture of K networks, where
each mixture is trained to predict one of the modes in the
future. Given input xit, network k will produce one of the
outputs gk(xit).

3.4. Learning

To train multiple regression networks, we must address
two challenges. Firstly, videos only show one of the possi-
ble futures (videos like Figure 3 are rare). Secondly, we do
not know to which of the K mixtures each frame belongs.
We overcome both problems by treating the mixture assign-
ment for a frame as latent.

Let zit ∈ {1, . . . ,K} be a latent variable indicating this
assignment for frame t in video i. We first initialize z uni-
formly at random. Then, we alternate between two steps.
First, we solve for the network weights w end-to-end using
backpropagation assuming z is fixed:

ω∗ = argmin
ω

∑
i,t

∣∣∣∣∣∣gzi
t

(
xit;ω

)
− φ

(
xit+∆

)∣∣∣∣∣∣2
2

(2)

Then, we re-estimate z using the new network weights:

zit = argmin
k∈{1,...,K}

∣∣∣∣gk (xit;ω)− φ (xit+∆

)∣∣∣∣2
2

(3)

We alternate between these two steps several times, a pro-
cess that typically takes two days. We learn w with warm
starting, and let it train for a fixed number of iterations be-
fore updating z. We illustrate this network in Figure 2.

Although we train our network offline in our experi-
ments, we note our network can be also be trained online
with streaming videos. Online learning is attractive because
the network can continuously learn how to anticipate the
future without storing frames. Additionally, the model can

adapt in real time to the environment, which may be useful
in some applications.

3.5. Predicting Categories

Since our network uses unlabeled videos to predict a rep-
resentation in the future, we need a way to attach semantic
category labels to it. To do this, we use a relatively small
set of labeled examples from the target task to indicate the
category of interest. As the representation that we predict
is the same that is used by state-of-the-art recognition sys-
tems, we can apply standard recognition algorithms to the
predicted representation in order to forecast a category.

We explore two strategies for using recognition algo-
rithms on the predicted representations. The first strategy
uses a visual classifier trained on the standard features (we
use fc7) from frames containing the category of interest,
but applies it on a predicted representation. The second
strategy trains the visual classifier on the predicted repre-
sentations as well. The second strategy has the advantage
that it can adapt to structured errors in the regression.

During inference, our model will predict multiple repre-
sentations of the future. By applying category classifiers to
each predicted representation, we will obtain a distribution
for how likely categories are to happen in each future repre-
sentation. We marginalize over these distributions to obtain
the most likely category in the future.

3.6. Implementation

Our network architecture consists of 5 convolutional lay-
ers followed by 5 fully connected layers. We use ReLU
nonlinear activations throughout the network. The convo-
lutional part follows the AlexNet architecture, and we refer
readers to [19] for complete details. After the convolutional
layers, we have 5 fully connected layers each with 4096
hidden units.

The K networks (for each output) can either be disjoint
or share parameters between them. In our experiments, we
opted to use the following sharing strategy in order to re-
duce the number of free parameters. For the five convolu-
tional layers and first two hidden layers, we tie them across
each mixture. For the last three fully connected layers, we
interleave hidden units: we randomly commit each hidden
unit to a network with probability p = 1

2 , which controls
the amount of sharing between networks. We do this as-
signment once, and do not change it during learning.

We trained the networks jointly with stochastic gradient
descent. We used a Tesla K40 GPU and implemented the
network in Caffe [14]. We modified the learning procedure
to handle latent variables. We initialized the first seven lay-
ers of the network with the Places-CNN network weights
[45], and the remaining layers with Gaussian white noise
and the biases to a constant. During learning, we also used
dropout [35] with a dropout ratio of 1

2 on every fully con-



Figure 4: Unlabeled Videos: We collected more than 600
hours of unlabeled video from YouTube. We show a sample
of the frames above. We use this data to train deep networks
that predict visual representations in the future.

nected layer. We used a fixed learning rate of .001 and mo-
mentum term of 0.9.

4. Experiments
In this section, we experiment with how well actions and

objects can be forecasted using the predicted representa-
tions. We show results for forecasting basic human actions
one second before they start, and anticipating household ob-
jects five seconds before they appear.

4.1. Unlabeled Repository

In order to train our network to predict features, we lever-
age a large amount of unlabeled video. We experimented
with two sources of unlabeled videos:

Television Shows: We downloaded over 600 hours of
publicly available television shows from YouTube. To pick
the set of television shows, we used the top shows accord-
ing to Google. The videos we downloaded generally consist
of people performing a large variety of everyday actions,
such as eating or driving, as well as interactions with objects
and other people. We show a few example frames of these
videos in Figure 4. We use this repository in most of our
experiments. Since we test on different datasets, one con-
cern is that there may be videos in the repository that also
appear in a testing set. To check this, we queried for nearest
neighbors between this repository and all testing sets, and
found no overlap.

THUMOS: We also experimented with using videos
from the THUMOS challenge [9], which consists of 400
hours of video from the web. These videos tend to be tu-
torials and sports, which has a different distribution from
television shows. We only use THUMOS as a diagnostic
dataset to quantify the performance of our method when the
training distribution is very different from the testing set.

4.2. Baselines

Our goal in this paper is to learn from unlabeled video
to anticipate high-level concepts (specifically actions and
objects) in the future. Since our method uses minimal su-
pervision to attach semantic meaning to the predicted repre-

sentation, we compare our model against baselines that use
a similar level of supervision. See Table 1 for an overview
of the methods we compare.

SVM: One reasonable approach is to train a classifier on
the frames before the action starts to anticipate the category
label in the future. This baseline is able to adapt to contex-
tual signals that may suggest the onset of an action. How-
ever, since this method requires annotated videos, it does
not capitalize on unlabeled video.

MMED: We can also extend the SVM to handle sequen-
tial data in order to make early predictions. We use the code
out-of-the-box provided by [11] for this baseline.

Nearest Neighbor: Since we have a large unlabeled
repository, one reasonable approach is to search for the
nearest neighbor, and use the neighbor’s future frame as the
predicted representation, similar to [43].

Linear: Rather than training a deep network, we can
also train a linear regression on our unlabeled repository to
predict fc7 in the future.

Adaptation: We also examine two strategies for training
the final classifier. One way is to train the classifier on the
ground truth regression targets, and test it on the inferred
output of the regression. The second way is to adapt to the
predictions by also training the classifier on the inferred out-
put of the regression. The latter can adapt to the errors in
the regression.

4.3. Forecasting Actions

Dataset: In order to evaluate our method for action fore-
casting, we require a labeled testing set where a) actions
are temporally annotated, b) we have access to frames be-
fore the actions begin, and c) consist of everyday human
actions (not sports). We use the TV Human Interactions
dataset [25] because it satisfies these requirements. The
dataset consists of people performing four different actions
(hand shake, high five, hug, and kissing), with a total of 300
videos.

Setup: We run our predictor on the frames before the an-
notated action begins. We use the provided train-test splits
with 25-fold cross validation. We evaluate classification ac-
curacy (averaged across cross validation folds) on making
predictions one second before the action has started. To at-
tach semantic meaning to our predicted representation, we
use the labeled examples from the training set in [25]. As
we make multiple predictions, for evaluation purposes we
consider a prediction to be correct only if the ground truth
action is the most likely prediction under our model.

Results: Table 2 shows the classification accuracy of dif-
ferent models for predicting the future action one second
into the future given only a single frame. Our results sug-
gest that training deep models to predict future represen-
tations with unlabeled videos may help machines forecast
actions, obtaining a relative gain of 19% over baselines.



Regression Classifier
Method Feature Train Data Method Output K Frame Data Method
SVM Static fc7 - - - 1 During RO SVM
SVM fc7 - - - 1 Before RO SVM
MMED fc7 - - - 1 Before RO MMED
Nearest Neighbor fc7 UV 1-NN fc7 1 Before RI SVM
Nearest Neighbor Adapted fc7 UV 1-NN fc7 1 Before RO SVM
Linear fc7 UV Linear fc7 1 Before RI SVM
Linear Adapted fc7 UV Linear fc7 1 Before RO SVM
Deep K=1 RGB UV CNN fc7 1 Before fc7 of RI SVM
Deep K=1 Adapted RGB UV CNN fc7 1 Before RO SVM
Deep K=3 RGB UV CNN fc7 3 Before fc7 of RI SVM
Deep K=3 Adapted RGB UV CNN fc7 3 Before RO SVM
Deep K=3 THUMOS RGB THUMOS CNN fc7 3 Before fc7 of RI SVM
Deep K=3 THUMOS Adapted RGB THUMOS CNN fc7 3 Before RO SVM
Deep K=1 ActionBank Adapted RGB UV CNN ActionBank 1 Before RO SVM
Deep K=3 ActionBank Adapted RGB UV CNN ActionBank 3 Before RO SVM

Table 1: Overview of Models: We compare several different ways of training models, and this table shows their different
configurations. To train the regression (if any), we specify which source of unlabeled videos we use (UV for our repository,
or THUMOS), the method, the regression target output, and the number of outputs K. This is then fed into the classifier,
which uses labeled data. To train the classifier, we specify which frame to train the classifier on (during action, or before
action), the regression input (RI) or output (RO), and the classifier. During testing, the procedure is the same for all models.

Method Accuracy
Random 25.0
SVM Static 36.2± 4.9
SVM 35.8± 4.3
MMED 34.0± 7.0
Nearest Neighbor 29.9± 4.6
Nearest Neighbor [43], Adapted 34.9± 4.7
Linear 32.8± 6.1
Linear, Adapted 34.1± 4.8
Deep K=1, ActionBank [34] 34.0± 6.1
Deep K=3, ActionBank [34] 35.7± 6.2
Deep K=1 36.1± 6.4
Deep K=1, Adapted 40.0± 4.9
Deep K=3 35.4± 5.2
Deep K=3, Adapted 43.3± 4.7
Deep K=3, THUMOS [9], Off-the-shelf 29.1± 3.9
Deep K=3, THUMOS [9], Adapted 43.6± 4.8
Human (single) 71.7± 4.2
Human (majority vote) 85.8± 1.6

Table 2: Action Prediction: Classification accuracy for
predicting actions one second before they begin given only a
single frame. The standard deviation across cross-validation
splits is next to the accuracy.

We conjecture our network may obtain the stronger perfor-
mance partly because it can better predict the future fc7.
The mean Euclidean distance between our model’s regres-

sions and the actual future is about 1789, while regressing
the identity transformation is about 1907 and a linear re-
gression is worse, around 2328.

Human Performance: To establish an upper expecta-
tion for the performance on this task, we also had 12 human
volunteers study the training sets and make predictions on
our testing set. Human accuracy is good (an average human
correctly predicts 71% of the time), but not perfect due to
the uncertain nature of the task. We believe humans are not
perfect because the future has inherent uncertainty, which
motivates the need for models to make multiple predictions.
Interestingly, we can use the “wisdom of the crowds” to
ensemble the human predictions and evaluate the majority
vote, which obtains accuracy (85%).

We also performed several experiments to breakdown
the performance our method. Different Representations:
We also tried to train a deep network to forecast Action-
Bank [34] in the future instead of fc7, which performed
worse. Representations are richer than action labels, which
may provide more constraints during learning that can help
build more robust models [10]. Different Training Sets:
We also evaluated our network trained on videos that are
not television shows, such as sports and tutorials. When we
train our network with videos from THUMOS [9] instead
of our repository, we still obtain competitive performance,
suggesting our method may be robust to some dataset bi-
ases. However, adaptation becomes more important for
THUMOS, likely because the classifier must adapt to the
dataset bias. Different Intervals: We also evaluated our



Figure 5: Example Action Forecasts: We show some ex-
amples of our forecasts of actions one second before they
begin. The left most column shows the frame before the ac-
tion begins, and our forecast is below it. The right columns
show the ground truth action. Note that our model does not
observe the action frames during inference.
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Figure 6: Performance vs ∆: We plot performance on fore-
casting actions versus number of frames before the action
starts. Our model (red) performs better when the time range
is longer (left of plot). Note that, since our model takes
days to train, we evaluate our model trained for one second,
but evaluate on different time intervals. The baselines are
trained for each time interval.

model varying the time before the action starts in Figure 6.
The relative gain of our method is often better as the predic-
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Figure 7: Multiple Predictions: Given an input frame
(left), our model predicts multiple representations in the fu-
ture that can each be classified into actions (middle). When
the future is uncertain, each network can predict a different
representation, allowing for multiple action forecasts. To
obtain the most likely future action, we can marginalize the
distributions from each network (right).
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Figure 8: Example Object Forecasts: We show examples
of high scoring forecasts for objects. The left most frame is
five seconds before the object appears.

tion time frame increases.
Multiple Predictions: Since we learn a mixture of net-

works, our model can make diverse predictions when the
future is uncertain. To analyze this, Figure 7 shows a scene
and a distribution of possible future actions. For example,
consider the first row where the man and woman are about
to embrace, however whether they will kiss or hug is am-
biguous. In our model, two of the networks predict a rep-
resentation where kissing is the most likely future action,
but one network predicts a representation where the most



Method Mean dish door utensil cup oven person soap tap tbrush tpaste towel trashc tv remote
Random 1.2 1.2 2.8 1.1 2.4 1.6 0.8 1.5 2.1 0.2 0.3 0.6 1.1 0.5 0.3
SVM Static 6.4 2.6 15.4 2.9 5.0 9.4 6.9 11.5 17.6 1.6 1.0 1.5 6.0 2.0 5.9
SVM 5.3 3.0 8.2 5.2 3.6 8.3 12.0 6.7 11.7 3.5 1.5 4.9 1.3 0.9 4.1
Scene 8.2 3.3 18.5 5.6 3.6 18.2 10.8 9.2 6.8 8.0 8.1 5.1 5.7 2.0 10.3
Scene, Adapted 7.5 4.6 9.1 6.1 5.7 15.4 13.9 5.0 15.7 13.6 3.7 6.5 2.4 1.8 1.7
Linear 6.3 7.5 9.3 7.2 5.9 2.8 1.6 13.6 15.2 3.9 5.6 2.2 2.9 2.3 7.8
Linear, Adapted 5.3 2.8 13.5 3.8 3.6 11.5 11.2 5.8 4.9 5.4 3.3 3.4 1.6 2.1 1.0
Deep K=1 9.1 4.4 17.9 3.0 14.8 11.9 9.6 17.7 15.1 6.3 6.9 5.0 5.0 1.3 8.8
Deep K=1, Adapted 8.7 3.5 11.0 9.0 6.5 16.7 16.4 8.4 22.2 12.4 7.4 5.0 1.9 1.6 0.5
Deep K=3 10.7 4.1 22.2 5.7 16.4 17.5 8.4 19.5 20.6 9.2 5.3 5.6 4.2 8.0 2.6
Deep K=3, Adapted 10.1 3.5 14.7 14.2 6.7 14.9 15.8 8.6 29.7 12.6 4.6 10.9 1.8 1.4 1.9

Table 3: Object Prediction: We show average precision for forecasting objects five seconds before they appear in egocentric
videos. For most categories, our method improves prediction performance. The last column is the mean across all categories.

likely action is hugging. The other rows show similar sce-
narios. Since performance drops when K = 1, modeling
multiple outputs may be important both during learning and
inference.

Qualitative Results: We qualitatively show some of our
predictions in Figure 5. For example, in some cases our
model correctly predicts that a man and woman are about to
kiss or hug or that men in a bar will high five. The second
to last row shows a comic scene where one man is about
to handshake and the other is about to high five, which our
model confuses. In the last row of Figure 5, our model in-
correctly forecasts a hug because a third person unexpect-
edly enters the scene.

4.4. Forecasting Objects

Dataset: Since our method predicts a visual representa-
tion in the future, we wish to understand how well we can
anticipate concepts other than actions. We experimented
with forecasting objects in egocentric videos five seconds
before the object appears. We use the videos from Activ-
ities of the Daily Living dataset [29], which is one of the
largest datasets of egocentric videos from multiple people.
Anticipating objects in this dataset is challenging because
even recognizing objects in these videos is difficult [29].

Setup: In order to train our deep network on egocen-
tric videos, we reserved three fourths of the dataset as our
repository for self-supervised learning. We evaluate on the
remaining one fourth videos, performing leave-one-out to
learn future object category labels. Since multiple objects
can appear in a frame, we evaluate the average precision
for forecasting the occurrence of objects five seconds be-
fore they appear, averaged over leave-one-out splits.

Baselines: We compare against baselines that are simi-
lar to our action forecasting experiments. However, we add
an additional baseline that uses scene features [45] to antic-
ipate objects. One hypothesis is that, since most objects are
correlated with their scene, recognizing the scene may be

a good cue for predicting the onset of objects. We use an
SVM trained on state-of-the-art scene features [45].

Results: Table 3 shows average precision for our method
versus the baselines on forecasting objects five seconds into
the future. For the many of the object categories, our model
outperforms the baselines at anticipating objects, with a
mean relative gain of 30% over baselines. Moreover, our
model with multiple outputs improves over a single output
network, suggesting that handling uncertainty in learning is
helpful for objects too. The adapted and off-the-shelf net-
works perform similarly to each other in the average. Fi-
nally, we also qualitatively show some high scoring object
predictions in Figure 8.

5. Conclusion
The capability for machines to anticipate future concepts

before they begin is a key problem in computer vision that
will enable many real-world applications. We believe abun-
dantly available unlabeled videos are an effective resource
we can use to acquire knowledge about the world, which we
can use to learn to anticipate future.
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