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Abstract

The richness of visual experience far exceeds our ability to remember what we have seen.
However, it is unclear what neural mechanisms give rise to these limits to visual short-term
memory capacity. Here, we measured neural activity in a change localization task, in which
monkeys viewed two displays of multiple colored squares separated by a brief delay, and
made a saccade to the square that changed color between displays. In chapter 2, we examine
local field potentials in the lateral intraparietal area (LIP), frontal eye field, and lateral pre-
frontal cortex (PFC). At stimulus encoding, lower frequency oscillations decreased in power
in proportion to the total number of stimuli presented, while higher frequency oscillations
increased in power in proportion to the number of stimuli contralateral to the recording site.
During the delay, lower frequency power instead increased with the number of contralateral
stimuli, while higher frequency power was not modulated. We interpret these findings in
terms of roles for low- and high-frequency oscillations in changing and maintaining cognitive
state. In chapter 3, we compare spiking activity between LIP, PFC, and inferotemporal
cortex (IT). Although the task required that the animal remember stimulus colors, activity
in LIP and PFC primarily reflected the stimulus positions, while activity in IT primarily
reflected color. In PFC, color information increased with the number of stimuli presented,
while in IT, color information remained constant or decreased. Thus, IT was more strongly
capacity-limited than PFC. Color selectivity during the delay was weak in all regions. How-
ever, in IT, activity at test stimulus presentation reflected the difference in square colors
between the sample and test displays, while in PFC, activity primarily reflected the location
of the changed square. Selectivity to these attributes was stronger on correct trials than
incorrect trials. Our findings suggest a possible role for passive processes in IT in visual
short-term memory.

Thesis Supervisor: Earl K. Miller
Title: Picower Professor of Neuroscience
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Chapter 1

Introduction

1.1 Cognitive Capacity, Short-Term Memory, and Magic

Numbers

The idea of an intrinsic cognitive capacity limit was first formulated by G. A. Miller (1956).

Miller observed that, in studies of absolute judgments of pitch, loudness, saltiness, and posi-

tion on a line, the mutual information between the stimulus and judgment was remarkably

consistent, averaging 2.6 bits, or 6.5 categories. Moving on to studies of short-term memory

span for letters, digits, and words, he observed that the number of items that subjects could

recall was similarly limited to 7 +/- 2, regardless of the complexity of the individual items.

While further studies have downgraded the standard estimate of short-term memory capac-

ity to 3 to 5 items (Henderson, 1972; Luck & Vogel, 1997; Cowan, 2001), both the concept

of "capacity," whether of cognition in general and of short-term memory in particular, and

the idea of a "magic number" that indexes the limit to this resource continue to guide many

experiments.

In change detection tasks, which require subjects to detect whether a display of items

has changed across a brief delay, studies have reported no effect of the type of stimuli (Luck

& Vogel, 1997) or the duration of the sample display or the delay (Bays, Gorgoraptis, Wee,
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Marshall, & Husain, 2011; Tsubomi, Fukuda, Watanabe, & Vogel, 2013) upon subsequent

behavioral performance. Although some authors have interpreted these findings as evidence

for a single, fixed capacity limit for maintaining visual information, recent studies have

challenged this assertion. Visual search speed and short-term memory performance appear

to be higher for simple objects compared to complex objects, suggesting that the amount of

information to be maintained, rather than the total number of items, controls the precision of

visual short-term memory representation (Wheeler & Treisman, 2002; Alvarez & Cavanagh,

2004). However, advocates of fixed capacity have proposed that the apparent reduction

in capacity for complex objects result from increased sample-test display similarity, rather

than object complexity per se (Awh, Barton, & Vogel, 2007). Moreover, Brady, St6rmer, and

Alvarez (2016) recently showed that capacity is not independent of the temporal parameters

of the task. They found that observed insensitivity to encoding time holds only for artificial

stimuli, such as colored squares. When subjects maintained images of objects, performance

increased with exposure duration. EEG activity during the delay was greater for trials when

the exposure duration was longer, suggesting that the behavioral advantage reflects active

maintenance processes, rather than use of long-term memory. Thus, although the capacity

of visual short-term memory appears to be consistent under a wide variety of conditions, a

single "magic number" cannot explain performance in all tasks.

1.2 Models of Multiple-Item Short-Term Memory

The finding that performance in change detection tasks achieves ceiling levels at loads of 3

to 4 items, but drops as load is further increased, led Luck and Vogel (1997) to postulate

that our visual short-term memory "store" has 3 to 4 discrete "slots" in which items may

be held. According to this view, when the number of items to be remembered exceeds the

number of available slots, information about some items must be discarded. A competing

view proposes that visual short-term memory is a shared resource that is distributed among

all items in the stimulus display, and performance decreases when more than 3 to 4 items

16



must be remembered because an insufficient amount of this resource can be devoted to each

individual item.

Studies of visual short-term memory precision using continuous report paradigms have

shown that neither of these models are entirely correct. In these studies, as in change detec-

tion studies, subjects see an array of multiple colored squares, which is followed by a delay

period. However, instead of signaling whether a second display contains a change, subjects

report the color of a specific item in the initial display by clicking on a color wheel. A naive

slot model predicts that the distribution of the subjects' choices around the correct response

should be the same for all stimulus displays below capacity, but when above capacity, the

distribution should be a mixture of the below capacity distribution and a uniform distribu-

tion that corresponds to guessing of items not encoded. A naive resource model predicts

that the response distribution should be "stretched" as the number of items increases re-

gardless of whether the initial display was above or below capacity. In reality, the response

distribution is stretched as the number of items increases up to capacity, but more closely

resembles a mixture distribution when the number of items exceeds capacity (Zhang & Luck,

2008; Gorgoraptis, Catalao, Bays, & Husain, 2011). Zhang and Luck (2008) proposed that

the discrepancy with the naive slot model could be explained by a "slots + averaging" or

"discrete representation" model, in which the number of slots remains fixed, as in the or-

dinary slot model, but multiple slots may be devoted to the same object. However, Bays,

Catalao, and Husain (2009) showed that incorrect responses were not random, but instead

clustered around the colors of non-target squares, consistent with a resource model in which

both color and position information must compete for representation.

Additional studies have shown that subjects' behavior can be readily explained by a

"variable precision" resource model, in which the division of resources among items in the

stimulus display is not equal, but instead varies from trial to trial (Fougnie, Suchow, & Al-

varez, 2012; van den Berg, Shin, Chou, George, & Ma, 2012; Ma, Husain, & Bays, 2014). The

variable precision model explains two additional qualities of observed experimental results.

First, the uniform-normal mixture proposed by Zhang and Luck (2008) is not a particularly

17



good fit to behavior in studies of visual short-term memory precision. The variable precision

model implies that the distribution of responses should be more closely approximated by

an infinite mixture of normal distributions of different variances, which is indeed the case

(Fougnie et al., 2012; van den Berg et al., 2012). Second, subjects have some metacognitive

information regarding which items were encoded better than others, and subjects can recall

the item they believe they encoded best better than other items (Fougnie et al., 2012).

1.3 Neural Mechanisms of Visual Short-Term Memory

Most single neuron electrophysiology studies focus on persistent, stimulus-selective spik-

ing during the delay period as the neural substrate of visual short-term memory. Robust

stimulus-selective persistent delay period activity for visual stimuli has been reported in the

inferotemporal cortex (IT) (Fuster & Jervey, 1982; Miyashita & Chang, 1988; E. K. Miller,

Li, & Desimone, 1993) and prefrontal cortex (PFC) (Fuster & Alexander, 1971; Niki &

Watanabe, 1976; F. A. W. Wilson, Scalaidhe, & Goldman-Rakic, 1993; E. K. Miller, Er-

ickson, & Desimone, 1996). Additionally, several studies have reported that lesions to or

reversible inactivation of these regions produce deficits in visual short-term memory perfor-

mance (Passingham, 1975; Fuster, Bauer, & Jervey, 1985; Horel, Pytko-Joiner, Voytko, &

Salsbury, 1987; Kowalska, Bachevalier, & Mishkin, 1991; Gaffan & Murray, 1992). However,

these lesion studies are somewhat difficult to interpret. Impairments are often relatively

small. Deficits arising from IT lesions could reflect impaired ability to process visual stimuli,

whereas deficits arising from PFC lesions could reflect impaired executive control processes.

One study reported that sufficiently large lesions to ventrolateral prefrontal cortex impaired

both simultaneous and delayed color discrimination, but all deficits disappeared after ani-

mals were retrained to preform the simultaneous matching task (Rushworth, Nixon, Eacott,

& Passingham, 1997).

Stimulus-selective delay period activity is an intuitive way in which information about

previously presented stimuli could be maintained in neurons, but recent studies suggest that
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it may not be necessary or sufficient. Rigotti et al. (2013) showed that, although sample

stimulus identity could be readily decoded from PFC neurons during the delay period even

on incorrect trials with nearly perfect accuracy, the number of implementable binary clas-

sifications between different stimulus conditions was substantially lower on incorrect trials.

Thus, beyond the mere presence or absence of persistent activity, the dimensionality of such

activity appears to be important for behavior. Other recent work has emphasized the impor-

tance of short-term synaptic plasticity in maintaining information during the delay (Stokes,

2015). Although modeling studies have confirmed the adequacy of short-term plasticity

to support short-term memory (Mongillo, Barak, & Tsodyks, 2008; Lundqvist, Herman, &

Lansner, 2011), it is difficult to observe directly. Thus, at present, evidence for a truly

"activity-silent" representation of the contents of short-term memory is somewhat lacking.

The original motivation for this hypothesis came from a study in which animals performed

a secondary task while maintaining a stimulus in short-term memory. The magnitude of

stimulus-selective persistent activity dropped during this second task, and then rebounded

when it was complete (Watanabe & Funahashi, 2014). Although this study underscores the

dynamic nature of prefrontal representations, persistent activity was never totally absent.

Rose et al. (2016) recently reported that they could "reactivate" a latent representation of a

memory item that was not presently task-relevant using transcranial magnetic stimulation

(TMS). Before TMS, the unattended memory identity could not be decoded from EEG, but

TMS produced a small but significant increase in decoding accuracy above chance. However,

there are alternative potential explanations for this effect. If persistent activity is present

but weak, it might not be decodable simply because the signal is insufficiently strong. TMS

might act by boosting this pre-existing persistent activity or suppressing intrinsic neuronal

variability, rather than by revealing otherwise silent representations in synaptic weights.

Recent reports indicate that early visual areas may also play a role in short-term memory

maintenance. fMRI studies have shown that it is possible to decode remembered stimuli

from areas as early as VI (Harrison & Tong, 2009; Serences, Ester, Vogel, & Awh, 2009).

However, electrophysiological evidence for delay period activity in early visual areas is mixed.
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Although some studies have found robust delay period activity in Vi (Super, Spekreijse, &

Lamme, 2001; van Kerkoerle, Self, & Roelfsema, 2017) and V4 (Hayden & Gallant, 2013),

other studies have reported only weak modulation in a small proportion of neurons (Chelazzi,

Miller, Duncan, & Desimone, 2001; Lee, Simpson, Logothetis, & Rainer, 2005). Discrepancies

between these studies could reflect differences in task designs and training procedures, but

it is also possible that observed fMRI results reflect factors other than delay period activity,

as fMRI signals can diverge from spiking in some circumstances (Logothetis, Pauls, Augath,

Trinath, & Oeltermann, 2001; Maier et al., 2008; Sirotin & Das, 2009). In particular, Lee et

al. (2005) have shown that the contents of visual short-term memory modulate the strength

of ongoing theta oscillations in V4 as well as the degree of phase locking to these theta

oscillations.

1.4 Neural Mechanisms of Capacity Limitations

A large body of research implicates the posterior parietal cortex (PPC) in capacity limita-

tions. fMRI studies have shown that the BOLD response in the human intraparietal sulcus

(IPS) increases with stimulus load up to an individuals' behavioral capacity, then saturates

once capacity is reached (Todd & Marois, 2004, 2005; Xu & Chun, 2005; Robitaille et al.,

2010). Further research has differentiated the BOLD response in the superior IPS, which

appears to track the total number of objects regardless of complexity, from the inferior IPS,

where the BOLD response is more strongly modulated by object complexity (Xu & Chun,

2005; Xu, 2007, 2008). In addition, an event-related potential, termed "contralateral delay

activity" (CDA), can be measured by recording occipitoparietal EEG electrodes while sub-

jects perform a visual short-term memory task in which they are cued to remember items

from the contralateral side. Similar to BOLD responses in the IPS, CDA increases with stim-

ulus load contralateral to the recording site and saturates at individuals' behavioral capacity

(Vogel & Machizawa, 2004; McCollough, Machizawa, & Vogel, 2007). However, the PPC is

unlikely to be the only region implicated in capacity limitation. Several fMRI studies have
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also reported modulation of the BOLD response with load in other regions, including PFC,

occipitotemporal cortex, and the anterior cingulate (Linden et al., 2003; Todd & Marois,

2004). Furthermore, human subjects with lesions to either the basal ganglia or PFC show

impaired performance in multiple-item visual short-term memory tasks and no load-related

modulation in CDA (Voytek & Knight, 2010).

In the last five years, several studies have investigated multiple item visual short-term

memory and visual short-term memory capacity by invasive methods in non-human pri-

mates using similar tasks to those previous reports in humans. Buschman, Siegel, Roy, and

Miller (2011) showed that the amount of information about each encoded item decreased

in the lateral intraparietal area (LIP), frontal eye fields (FEF), and PFC as the number of

items presented in the contralateral hemifield increased. However, this study used a simple

linear model to measure encoded information about each stimulus, whereas neurons could

potentially respond non-linearly to different stimulus combinations. Lara and Wallis (2014)

recorded from PFC in a one- or two-item change detection task with equiluminant colored

squares. They reported that, even when only a single colored square was presented, scarcely

more PFC neurons represented information about the color to be remembered than would

be expected by chance.

While the studies above have revealed regions putatively implicated in capacity limits

and shown that these limits manifest themselves in neural responses, little is known about

the source of the capacity limit itself. One proposal from Lisman and Idiart (1995) suggests

that neurons representing specific stimuli are sequentially activated every gamma cycle, with

the whole sequence of remembered stimuli repeated every theta cycle. Although there is lit-

tle evidence for this specific model, the idea that oscillatory phase could separate multiple

items held in short-term memory remains influential. Several studies of oscillatory activ-

ity and short-term memory have shown parametric modulation by load (Jensen & Tesche,

2002; Howard et al., 2003; Meltzer et al., 2008; van Vugt, Schulze-Bonhage, Litt, Brandt,

& Kahana, 2010; J. M. Palva, Monto, Kulashekhar, & Palva, 2010; S. Palva, Kulashekhar,

Hdmdiinen, & Palva, 2011; Roux, Wibral, Mohr, Singer, & Uhlhaas, 2012). However, sim-
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ple modulation of oscillatory activity provides only weak evidence for phase coding. Other

studies provide more explicit evidence. Siegel, Warden, and Miller (2009) recorded from

monkey PFC during a two item visual short-term memory task with sequentially presented

stimuli. The authors showed that spikes encoding information about the first item were

concentrated in earlier phases of the ongoing gamma oscillation, while spikes encoding in-

formation about the second item were concentrated in later phases. Axmacher et al. (2010)

report that cross-frequency coupling between theta phase and gamma amplitude in human

hippocampus increases with stimulus load. While these studies alone each provide evidence

for phase coding, it is somewhat discomforting that they report very different effects: Siegel

et al. (2009) imply sequence replay within gamma cycles, whereas Axmacher et al. (2010)

imply sequence replay within theta cycles. While it is possible that these discrepancies arise

from true differences in the brain areas investigated, further studies are necessary to confirm

that phase coding plays a role in multiple item visual short-term memory.

Other models have suggested that capacity limits arise not from limits in coding within

oscillatory cycles, but from normalization. Normalization refers to the finding that the firing

rates of neurons are intrinsically limited by the firing of neighboring neurons, such that the

summed activity within a group remains constant (Carandini & Heeger, 2012). A substantial

literature exists regarding normalization in neural circuits from the Drosophila olfactory bulb

to low- and mid-level visual areas (Reynolds & Heeger, 2009; Olsen, Bhandawat, & Wilson,

2010; N. R. Wilson, Runyan, Wang, & Sur, 2012). Both computational (Wei, Wang, & Wang,

2012) and statistical (Bays, 2014) models have recently been proposed that reproduce human

behavioral capacity results by including normalization in population coding of remembered

stimuli. Electrophysiological (Buschman et al., 2011; Balan, Oristaglio, Schneider, & Got-

tlieb, 2008; Mirpour & Bisley, 2012) and fMRI (Sprague, Ester, & Serences, 2014) studies

have shown that, when multiple stimuli are presented simultaneously, neural responses to

any given stimulus in prefrontal, parietal, and early visual cortices are weakened. Further

studies are necessary to determine whether measured normalization effects accurately reflect

behavioral capacity limitations.
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Chapter 2

Stimulus Load and Oscillatory

Activity in Higher Cortex

The contents of this chapter are reproduced from Simon Kornblith, Timothy J. Buschman,

and Earl K. Miller, Stimulus load and oscillatory activity in higher cortex, Cerebral Cortex,

2016, 26(9), 3772-3784, by permission of Oxford University Press.

2.1 Abstract

Exploring and exploiting a rich visual environment requires perceiving, attending, and re-

membering multiple objects simultaneously. Recent studies have suggested that this mental

"juggling" of multiple objects may depend on oscillatory neural dynamics. We recorded local

field potentials from the lateral intraparietal area, frontal eye fields, and lateral prefrontal

cortex while monkeys maintained variable numbers of visual stimuli in working memory. Be-

havior suggested independent processing of stimuli in each hemifield. During stimulus pre-

sentation, higher frequency power (50-100 Hz) increased with the number of stimuli (load)

in the contralateral hemifield, while lower frequency power (8-50 Hz) decreased with the

total number of stimuli in both hemifields. During the memory delay, low frequency power

increased with contralateral load. Load effects on higher frequencies during stimulus en-
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coding and lower frequencies during the memory delay were stronger when neural activity

also signaled the location of the stimuli. Like power, higher frequency synchrony increased

with load, but beta synchrony (16-30 Hz) showed the opposite effect, increasing when power

decreased (stimulus presentation) and decreasing when power increased (memory delay).

Our results suggest roles for lower frequency oscillations in top-down processing and higher

frequency oscillations in bottom-up processing.

2.2 Introduction

While a wealth of studies have investigated how humans and animals remember single ob-

jects, less is known about how we remember multiple objects simultaneously. It is well-known

that human capacity for multiple items is severely limited: The average adult human can

only hold 3-4 objects in mind (working memory) simultaneously (Luck & Vogel, 1997; Vogel,

Woodman, & Luck, 2001). fMRI signals from a variety of brain areas are modulated by the

number of remembered stimuli (stimulus load) (Linden et al., 2003; Todd & Marois, 2004).

Similarly, EEG event-related potentials scale with stimulus load, saturate when behavioral

capacity is exceeded, and reflect individual differences in working memory capacity (Vogel &

Machizawa, 2004; Vogel, McCollough, & Machizawa, 2005; McCollough et al., 2007; Ikkai,

McCollough, & Vogel, 2010; Luria & Vogel, 2011). However, multiple-item working memory

processes are much less studied in animals, where we can assess neural activity with greater

temporal and spatial precision.

We previously reported correlates of multiple-item working memory in individual neurons

in frontal and parietal cortex (Buschman et al., 2011). Monkeys performed a human test

of capacity (Figure 2-1). Two arrays of 2-5 colored squares were separated by a memory

delay. The color of a random square was changed. Monkeys were trained to saccade to

this change. Multiple electrodes were implanted in lateral prefrontal cortex (lPFC), frontal

eye fields (FEF), and lateral intraparietal area (LIP). These regions are critical for short-

term memory (Passingham, 1975; Kowalska et al., 1991; Sawaguchi & Goldman-Rakic, 1991;
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Li, Mazzoni, & Andersen, 1999) and human studies implicate them in capacity limitations

(Linden et al., 2003; Todd & Marois, 2004, 2005; Vogel & Machizawa, 2004; J. M. Palva et

al., 2010; Voytek & Knight, 2010). On the neuron level, we found capacity limitations were

bottom-up (appearing in parietal before frontal cortex), neural information about the target

stimulus decreased with stimulus load even when these stimuli was correctly remembered,

and neural information was present but reduced in trials in which the animal failed to select

the correct target (Buschman et al., 2011).

Here, we use these data to examine effects of stimulus load on oscillations of local field

potentials (LFPs). There is increasing evidence that oscillations play a role in cognition.

Different oscillatory frequencies may mediate feedforward versus feedback processing (Engel,

Fries, & Singer, 2001; Buschman & Miller, 2007; Engel & Fries, 2010; Arnal & Giraud,

2012; Bastos et al., 2015) and dynamically link neurons into ensembles (Gray, K6nig, Engel,

& Singer, 1989; Buschman, Denovellis, Diogo, Bullock, & Miller, 2012; Salazar, Dotson,

Bressler, & Gray, 2012). Capacity limits have been hypothesized to arise from coding of

different stimuli at different oscillatory phases (Lisman & Idiart, 1995; Siegel et al., 2009;

Lundqvist et al., 2011). The few human EEG studies investigating oscillatory activity showed

that power and synchrony increases with stimulus load across a range of frequencies (Jensen

& Tesche, 2002; Howard et al., 2003; Meltzer et al., 2008; J. M. Palva et al., 2010; S. Palva

et al., 2011). But the link between oscillations and multiple item working memory is not

well-studied and thus far from understood.

2.3 Methods

2.3.1 Behavioral Task

One adult male rhesus macaque (Macaca mulatta) and one adult male cynomolgus macaque

(Macaca fascicularis) were trained to perform a change localization task. All procedures

followed the guidelines of the Massachusetts Institute of Technology Committee on Animal

Care and the National Institutes of Health. Animals fixated for 500 ms to initiate a trial.

25



After this fixation period, an array of 2-5 colored squares (1-3 per hemifield) appeared for

800 ms. The stimuli then disappeared. After a 800-1000 ms memory delay period, the array

reappeared with a change to the color of the random square. The animal received a juice

reward for making a direct saccade to the changed square. From the start of the trial until

the presentation of the second array of colored squares, the animal was required to fixate

within 1.75 degrees of a central fixation point. Task timing was similar to a previous human

study (Luck & Vogel, 1997). In humans, retinal persistence of stimuli presented for 500 ms

is approximately 100 ms after stimuli offset (Coltheart, 1980), so it is unlikely that the task

could be accomplished on the basis of retinal persistence alone. When one of the authors

(SK) performed the task, there was no indication of retinal persistence that substantially

outlasted stimulus presentation.

The location of the target was randomized for each trial. However, in order to permit

inspection of neural encoding of visual information during the delay period, square loca-

tions were chosen from 6 positions (3 per hemifield) in any single session, and only 2 colors

could be present at any single position. Additionally, given our behavioral evidence for the

independence of working memory representations in each hemifield, in each trial, we manip-

ulated the number of stimuli in each hemifield rather than the total number of stimuli in

the display, while constraining the total number of stimuli to between two and five. In order

to maintain behavioral performance and to acquire a sufficient number of trials with low

total load, trials with fewer stimuli in a given hemifield were presented at higher probability

than trials with greater numbers of stimuli. This trial selection procedure was uninformative

about the location of the target and did not provide any additional information that could

assist in the performance of any given trial.

New stimulus locations and colors were randomly selected before each recording session.

Stimulus locations were selected to be within 75 degrees of polar angle from the horizontal

meridian and between 4-6 degrees of visual angle from the central fixation point, and colors

were manually inspected to ensure sufficient discriminability. All twelve possible colors in

a given session were unique. The minimum difference between the sample and test color of

26



the changed square was CIEDE2000 AEOO = 23.4 (mean AEOO = 55.6; max AEOO = 113.8).

Thus, color changes were very perceptible to a human observer (Yang, Ming, & Yu, 2012). An

infrared video eye tracking system (ISCAN) recorded eye positions at 240 Hz. A computer

running the MonkeyLogic software (Asaad & Eskandar, 2008) controlled the stimulus display

and behavioral reward.

2.3.2 Electrophysiological Recording

Epoxy-coated dura-piercing tungsten electrodes (FHC) were lowered into each region using

a custom-built grid and microdrive assembly that lowered electrodes in pairs using a single

screw. Recordings were performed using a Plexon Multichannel Acquisition Processor. All

signals were referenced to ground. Local field potentials were filtered with hardware filters

between 3.3 Hz and 88 Hz prior to amplification and sampled at 1000 Hz. 2-pole notch

filters at 60 Hz (line noise frequency), 85 Hz (monitor refresh rate), and 120 Hz (line noise

harmonic) were applied prior to data analysis.

We restricted our analyses to electrodes from which we recorded at least one single unit.

Only parietal electrodes whose units showed a spatially selective response in a delayed saccade

task (p < 0.05, permutation test of W2 ) were included in further analyses. Electrodes in FEF

and 1PFC were differentiated using microstimulation. Out of 1125 recorded electrodes, 546

electrodes fit our criteria (2.1).

Region Total Mean IQR Min Max

LIP 142 5.1 3.75-7.25 1 9

FEF 155 5.5 4.75-6 1 12

PFC 249 8.9 7-10.25 5 15

All 546 19.5 18-21.25 13 28

Table 2.1: Number of electrodes analyzed for main analyses. "Total" denotes the total number of penetrations

in each region. "Mean," "IQR," "Min," and "Max" denote the mean, inter-quartile range, minimum, and

maximum numbers of electrodes in individual sessions.
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2.3.3 Estimation of Behavioral Capacity

Our procedure for estimating behavioral capacity by mutual information is described in

detail in Buschman et al. (2011). To determine mutual information for the entire display,

for each load, we computed the conditional mutual information between the animal's choice

and the target given the stimulus display:

I(choice; target~display) =

6 6 Pdisplay (Z) Pchoice,target,display (X, y, z) 
1 :Pchoice,target,display (x, Y, Z) log

xEdisplays y=1 x=1 l Pchoice,display (X, Z) Ptarget,display (Y, z)

where x represents the animals' chosen square, y represents the correct target, and indicates

each possible display for a given load condition. The resulting values are shown in Figure

2-1C. To determine mutual information for each hemifield, for each stimulus display, we

computed the mutual information between the choice and target for each individual display:

E~ ~ Ecoc~tre (xie~are y) oI(choice; target) = Pchoice,target (x, y) log Pchoice(Xtarget (),/
Y=1 X=1 (Pchoice WI)Parget (Y)

Since the behavioral analysis in Figure 2-1B showed that the two hemifields were inde-

pendent, we dissociated the amount of mutual information in each hemifield using linear

regression, fitting the mutual information for the E=2 ( = 56 possible displays (15 2-

stimulus displays, 20 3-stimulus displays, 15 4-stimulus displays, and 6 5-stimulus displays)

against a design matrix of 16 indicators representing each of the EiL ( = 8 possible

left and right sides. The resulting coefficients averaged by load are shown in Figure 2-1D.

Confidence intervals were computed by bootstrapping individual sessions.

Because we asked subjects to localize a changed object, rather than detect whether an

object has changed, we cannot measure capacity in this task using Pashler's and Cowan's

K, which are the most commonly reported measures in human studies. Previous human

localization using a task similar to ours have reported either K = (proportion correct x

set size) - 1 (Gold et al., 2006) or K = proportion correct x set size (Johnson et al., 2013).
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When applied to our data, the latter measure yields capacity estimates of K = 1.6 (SEM =

0.02) at total load 2, K = 2.1 (SEM = 0.03) at load 3, K = 2.8 (SEM = 0.04) at load 4,

and K = 3.1 (SEM = 0.06) at load 5. K = 2.8 at load 4 falls within the reported range for

healthy human subjects (Johnson et al., 2013).

2.3.4 Time-Frequency Analysis

All analyses were performed using the Julia programming language (http://www.julialang.org/)

Spectrograms and coherograms in Figures 2-2, 2-3, 2-6, and 2-S4 were computed by con-

tinuous wavelet transform. The continuous wavelet transform was computed using complex

Morlet wavelets by multiplication of the Fourier transform of the data with the analytically

computed Fourier transform of the wavelet (Torrence & Compo, 1998). Our 22 daughter

wavelets had center frequencies spanning from 2.8 Hz to 107.6 Hz and a multiplicative step

of 2 between frequencies with a wavenumber of 5. While the highest frequencies we inves-

tigated exceed the cutoff of the hardware filter, the cutoff is not hard (58% power reduction

at 100 Hz), and our analyses are sensitive only to relative changes in power. We computed

wavelet transforms for all samples recorded from each electrode and session, and then cut

the data according to task epochs and preserved the wavelet coefficients corresponding to

every tenth time point for further analysis. We linearly interpolated time points at which the

amplifier saturated and removed trials where the amplifier saturated for 5 or more successive

samples.

Before computing power and phase statistics, we removed the evoked potentials by ana-

lyzing the sum of the squares of the real and imaginary components of the wavelet coefficients

after fitting and removing signals that were phase-locked across trials. We fit the real and

imaginary components of the wavelet coefficients of each frequency and time point using

a design matrix comprising indicators for each contralateral and ipsilateral load condition

and performed subsequent analysis on the least squares residuals. Since an intercept column

would be linearly dependent with the columns in this design matrix, subtracting the fit com-

ponents also removes evoked potentials unaffected by load. Because the real and imaginary
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components of the wavelet coefficients are sums of the original samples with fixed weights,

this procedure is equivalent to regressing the load conditions from the original samples before

computing the wavelet transform. This procedure leaves only induced potentials, which are

by definition of random phase across trials.

Bar and line graphs in Figures 2-4, 2-5, 2-7, 2-S1, 2-S3, and 2-S4 were computed using

multitaper time-frequency transforms. The time-bandwidth product NW was tailored to

the specific epoch and frequency band as:

(tend - tstart)(fend - fstart)

2

where tstart and tend were the first and last time points of the signal in seconds, fstart and fend

were the first and last frequencies in the band. Only the [2NW -1 maximally concentrated

discrete prolate spheroidal sequences were used as tapers. As for the wavelet transforms, the

evoked potential was removed by linear regression of each ipsilateral and contralateral load

condition.

2.3.5 Oscillatory Power Analysis

Power was modeled with a generalized linear model with a gamma likelihood function and a

logarithmic link function. We chose to use a gamma likelihood because it yields the maximum

likelihood estimator of the effects under the assumption that the wavelet coefficients follow

a circularly symmetric complex normal distribution. Under this assumption, the wavelet

power is distributed as kWX2 ~ 2PkX', where W is the estimated wavelet coefficient and

Pk is the power for the given stimulus conditions (Torrence & Compo, 1998). Equivalently,

JW12 ~ Gamma(1, Pk), where the gamma distribution is parameterized by its shape and

scale. Note that this implies that the standard deviation of the power increases linearly with

its mean. A similar relationship applies to the multitaper coefficients. Because each taper

provides an orthogonal estimate of power, the average power estimated with n tapers is

distributed as [ -M2 Gamma (n, , where Mi is the coefficient for the ith taper.
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We chose the logarithmic link to give a convenient interpretation of the power, although

fitting models with the identity link yielded similar results and comparable values for the

deviance. All plots show mean parameter values transformed to percent signal change as

PSC(3) = 100(e3 - 1).

We compared the gamma distribution model of power changes with load to an ordinary

linear (normal) model, as well as a linear model applied to the log-transformed power. The

likelihood of the gamma model was greater than that of the normal model for 98% of recorded

electrodes, frequencies, and time points, and greater than that of the log-transformed normal

model for 78% of electrodes, frequencies, and time points, indicating that it is a better fit to

the data.

Because this model reasonably approximates the underlying distribution of the data,

significance and confidence intervals for individual parameters can be computed without

resampling. However, because signals in different electrodes recorded simultaneously could

be correlated, we computed confidence intervals and p-values by bootstrapping trials recorded

in each session and fitting a normal distribution to the mean of these bootstraps across all

sessions weighted by nelectrodes x ntrials. The normality assumption is justified by the central

limit theorem. We used 100 bootstraps for the time-frequency analysis in Figures 2-2 and

2-3, and 1000 bootstraps for the bar graphs in Figure 2-4 and p-values reported in the text.

2.3.6 Permutation Test for Monotonic Relationship Between Power

and Load

To determine whether power and synchrony changes were strictly monotonic, we applied a

permutation test. We first determined whether the estimated power for each load condition

was strictly monotonic, i.e., sign(P2 - P) = sign(P3 - P2), where Pn is the average power in a

given band and epoch across all recorded electrodes. If this condition was satisfied, we then

computed the test statistic T = T(P, P2 , P3) = min (IP2 - P2 , P3 - P2 1), the minimum

difference in power between any two load conditions. If this condition was not satisfied, we

set T = 0. To determine the distribution of T under the null hypothesis, we permuted load
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condition labels 25,000 times and computed T for power estimates based on the permuted

labels. We then calculated the p-value as the proportion of permutations for which T > T.

The significance threshold in Figures 2-5 and 2-S4 was fixed at p < 0.05 after Holm multiple

testing correction.

2.3.7 Assessing Position Information in Power

We used the gamma generalized linear model described above to assess information about

the locations of presented stimuli in measured oscillatory power. Because load information

is nested in position information (i.e., stimulus load can be described as the sum of the

indicators representing individual positions), we determined whether significant position in-

formation was present by model comparison. The full model incorporated indicators for all 6

possible stimulus positions and the contralateral and ipsilateral load zero conditions, as well

as an intercept. We assessed whether position information was present for a given hemifield

by comparing whether the full model explained more deviance than a null model where the

position indicators in that hemifield were replaced with a load regressor representing their

sum. Since these two models are nested:

kfV1 - (D(y; pt~uun) - D(y; pfull)) ' Fkfullkull,nkfullkfunl - knunl

(Fox, 2008). D(y; p) = -2 E= 1 (log (Yi) - Yi"i), the gamma model deviance, kfrll is the

number of predictors in the full model, knull is the number of predictors in the null model,

and V is the shape parameter of the gamma distribution estimated by the moment estimator

Vn-k , where y is the vector of observed values, j2 is the vector of fitted values,

and k is the number of predictors in the model. (Although v is known a priori under the

assumptions above, and thus a x 2 test could be used in place of the F-test, we nonetheless

estimate v from the data to account for possible over- or under-dispersion.)

We computed adjusted R2 , a measure of goodness of fit that is resistant to bias from
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small sample sizes or large numbers of covariates, as:

R2 
-

adj

D(y; pfull) + (kfull - knull)/V

D(y; /pnull)

This measure is analyzed in further detail in (Mittlbdck & Heinzl, 2002).

Full counts of the number of channels included in the analysis in Figure 2-7 are included

in Table 2.2.

Band and Epoch LIP NPS LIP PS FEF NPS FEF PS lPFC NPS lPFC PS Total NPS Total PS

Early Sample 8-50 Hz 9 11 25 22 52 28 86 81

Early Sample 50-100 16 25 35 22 60 49 111 96

Hz

Late Sample/Early 35 30 32 64 90 105 157 199

Delay 8-50 Hz

Late Sample/Early 22 39 41 44 78 93 141 176

Delay 50-100 Hz

Late Delay 8-50 Hz 28 24 31 43 81 82 140 149

Late Delay 50-100 Hz 10 26 38 40 85 81 133 147

Table 2.2: Number of electrodes analyzed in each region in 2-7. NPS Not position-selective, PS position-

selective. Because only electrodes showing any significant power modulation in a given band and epoch were

included in the analysis, total counts differ for each row.

2.3.8 Synchrony Analysis

To determine the relationship between synchrony and load (Figures 2-8, 2-9, 2-S2, 2-S3,

and 2-S4), for each electrodes pair, time point, and frequency, we first computed surrogate

coherence values with each individual trial removed:

si - coh([x1, x 2, ... , Xi 1 , i+1 .. . , , [yi, Y2, . . . Yi-i, Yi+1, ... , Yn])
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where x and y are the wavelet or multitaper coefficient vectors for the two electrodes and

coh(x, y) is the standard sample estimator of coherence:

coh(x, y) = IXH-YH

The value coh(x, y) - si provides a measure of the contribution of the ith trial to the total

coherence. This measure has been used previously (Womelsdorf, Fries, Mitra, & Desimone,

2006; Hipp, Engel, & Siegel, 2011) and has recently been shown to achieve greater power than

alternative approaches (Richter, Thompson, Bosman, & Fries, 2015). We then computed the

correlation between these surrogates and load (denoted here as 1) as vi = -corr(coh(x, y) -

s,l) = -corr(s, 1), and the mean of these correlation values as tanh (zi tanh-1 vi).

To compute synchrony statistics for individual load conditions (Figure 2-S4), we used

the pairwise phase consistency, an estimator of the squared mean resultant length that is

not biased by the number of trials (Vinck, van Wingerden, Womelsdorf, Fries, & Pennartz,

2010):

2 N-I N

PPC(-) = - E (cos cos 6 + sin Oj sin 6 k)
j1 k=j+1

= E ep(i6j) -N
N(N - 1) ex

= 1 - var(cos 6) - var(sin 6)

where 6 is the vector of angular differences between the coefficients of the two electrodes,

i.e., 6O = arg(yi) - arg(xj), exp(iO) = .jyj

As in the power analyses, we determined confidence intervals and p-values in all synchrony

analyses by bootstrapping over trials. We used 100 bootstraps for the time-frequency local-

ized analysis in Figures 2-8 and 2-S2, and 1000 bootstraps for the bar graphs in Figures 2-9,

2-S3, and 2-S4 and p-values reported in the text.
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A

Fixation (500 ms) Sample (800 ms) Delay (800-1000 ms) Test (Until Response)

B C i 0.8.
.3 358% 5% 0.7

to 0.5
15 Lm 0.4

2 65% 67% 68% 71% ' 2 3 4 5
0 Total # of Stimuli

D' 0.45
E 0.40

1 88% 91% 92% 2 0.35
6 0.30
L 0.25

0 1 2 3 1 2 3
Stimuli on Opposite Side Stimuli in Hemifield

Figure 2-1: A: Change localization task. After fixating for 500 ms, animals saw an array of colored squares

for 800 ms. These squares then disappeared, and subjects were required to maintain the colors of these

squares in memory for a variable delay of 800-1000 ms. The array then reappeared with a change to the

color of one square. The animal was rewarded for saccading to the changed square. B: Average behavioral

performance according to the number of squares on the same side as the changed stimulus ("target side") and

the number of squares on the opposite side. Performance depended on the number of squares on the target

side, not the total number of squares. C: Mutual information between the location of the target stimulus

and the animal's choice given the display for total loads 2 through 5. D: Mutual information between the

location of the target stimulus and the animal's choice given the display for loads 1, 2, and 3 in the target

hemifield. Error bars reflect 95% confidence intervals based on non-parametric bootstrapping across sessions.

2.4 Results

2.4.1 Monkeys Maintain Multiple Items in Working Memory

Our change localization task and behavioral results are described in detail in Buschman et

al. (2011). Animals saw a sample array of 2 to 5 colored squares for 800 ms (Figure 2-1A).

After an 800-1000 ms delay period, the array reappeared with a change to the color of one

of the squares. Animals had to saccade to the changed square to receive a juice reward. The

"target" was defined as the stimulus that changed between the two array presentations. The

monkey was not cued to (and could not predict) which stimulus would be the target.
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As Buschman et al. (2011) reported and others have confirmed (Matsushima & Tanaka,

2014), the right and left visual hemifields seemed to process stimuli separately. There were

independent capacities on the right and left for the number of stimuli that could be pro-

cessed/remembered: A stimulus in the same hemifield as the target degraded both the ability

of the animal to detect its change and the neural information present about that stimulus.

By contrast, a stimulus in the opposite hemifield had little or no effect. Indeed, task per-

formance showed a strong dependence on the number of stimuli in the same hemifield as

the target (p < 10-1, ANOVA; Figure 2-1B) but no significant dependence on the number

of stimuli in the opposite hemifield from the target (p = 0.23, ANOVA). To determine the

animal's behavioral capacity, we measured mutual information between the animals' choices

and the target position (Figure 2-1B). Mutual information between the target and response

plateaued at 4 items in the display, consistent with reports of working memory capacity of

3 to 4 items in humans (Luck and Vogel 1997; Vogel et al. 2001). Because the behavioral

analysis above suggested that the two hemifields were independent, we used linear regres-

sion to separate information in each hemifield (see Methods). Information increased when

a second stimulus was added to the target hemifield (p < 10-", bootstrap Z-test; Figure

2-1D), but showed no change when a third stimulus was added (p = 0.94). Thus, behavioral

capacity appears to saturate between 1 to 2 stimuli per hemifield.

2.4.2 Oscillatory Power Correlates with Stimulus Load

We tested the effects of contralateral stimulus load on LFP power using a generalized linear

model. After removing evoked potentials, we regressed the instantaneous power at 22 fre-

quencies spanning from 2.8 Hz to 107.6 Hz and 211 time points from -500 to 1600 ms after

stimulus onset against the number of stimuli presented in the ipsilateral and contralateral

hemifields (see Methods). We estimated the multiplicative contribution over the model in-

tercept, which estimates the power in the absence of any stimuli. Figure 2-2A shows the

percent power change for each contralateral stimulus load condition. Figure 2-2B plots the

percent change in LFP power for each added contralateral stimulus, as estimated based on
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observed power at loads one to three. The black polygons indicate time-frequency "zones"

of significant changes in power with increasing load (see Methods). Figure 2-3 shows the

same analysis for ipsilateral stimulus loads. We first consider the effects of contralateral

loads. We saw effects of contralateral load in two broad bands, 8-50 Hz ("lower frequencies",

including theta, alpha, beta, and low gamma) and 50-100 Hz ("higher frequencies" or high

gamma). We chose these bands empirically based on the clear differentiation between them

within the data. Although our "higher frequencies" are slightly higher in frequency than

previous reports of gamma activity in early visual areas (Fries, Womelsdorf, Oostenveld,

& Desimone, 2008), the peak of gamma modulation within visual areas differs according to

stimulus contrast (Ray & Maunsell, 2010). Modulation in the 50-100 Hz band we investigate

has been reported in human MEG studies (Siegel, Donner, Oostenveld, Fries, & Engel, 2008;

Hipp et al., 2011) as well as other monkey studies of oscillations in frontal regions (Lara &

Wallis, 2014; Lundqvist et al., 2016). We will first summarize the main effects. Then, we

will discuss their temporal dynamics.

During sample array presentation, higher frequency LFP power increased with increased

contralateral stimulus load (positive correlations, warm colors) while lower frequency LFP

power decreased with increased contralateral stimulus load (negative correlations, cool col-

ors). During the memory delay (especially late in the delay), there was no effect of con-

tralateral load on higher frequencies and the effects at lower frequencies inverted (Figure

2-2).

Figure 2-3 shows the effect of ipsilateral stimulus load on LFP power. Like contralateral

load, ipsilateral load inversely correlated with lower frequency LFP power during stimulus

presentation. But in contrast to contralateral load, effects of ipsilateral load at higher fre-

quencies were weaker. Additionally, the positive correlation between memory delay lower

frequency 1PFC power and contralateral load was not observed for ipsilateral loads. Thus,

the independence between the two visual hemifields seen in behavior was reflected in positive,

but not the negative, correlations between load and power. As Figures 2-2 and 2-3 illustrate,

the changes in LFP with stimulus load was more complex than this summary; there were
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Figure 2-2: A, Percent power change for contralateral loads 1, 2, and 3 relative to the model intercept across

frequencies and time. First dashed line indicates time of sample onset. Second dashed line indicates time of

sample offset. B, Percent power change per contralateral stimulus. Boxes indicate significant modulations

(bootstrap Z-test, p < 0.05, Holm corrected for 22 frequencies x 211 time points).
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Figure 2-3: A, Percent power change for ipsilateral loads 1, 2, and 3 relative to the model intercept across

frequencies and time. First dashed line indicates time of sample onset. Second dashed line indicates time

of sample offset. B, Percent power change per ipsilateral stimulus. Boxes indicate significant modulations

(bootstrap Z-test, p < 0.05, Holm corrected for 22 frequencies x 211 time points).

differences in the temporal dynamics in effects between brain areas. Next, we quantify these

effects and consider them in more detail.

2.4.3 Differences in Effects of Stimulus Load by Time and Fre-

quency Band

As Figures 2-2 and 2-3 indicate, the main effects of stimulus load were seen across two broad

frequency bands (lower: 8-50 Hz and higher: 50-100 Hz). When we separated the lower
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frequencies into standard frequency bands (theta, 4-8 Hz; alpha, 8-12 Hz; beta, 16-30 Hz;

low gamma, 30-50 Hz), the pattern of effects in the narrow bands mirrored the broadband

effects (i.e., negative correlations in theta through low gamma, positive correlations in high

gamma, see Figure 2-Si). Thus, for simplicity we report statistics computed across the broad

bands using the multitaper method (see Methods).

Figures 2-2 and 2-3 suggest that different load effects grouped themselves into three

distinct time periods, especially in the 1PFC. There was an early sample epoch (0-400 ms

after sample onset), a late sample/early delay epoch (400 - 1000 ms after sample onset) and

a late delay epoch (1000-1800 ms after sample onset). We therefore computed the power

across each of these epochs separately. Figure 2-4 plots the average percent change in LFP

power per added stimulus for the two broad frequency bands and in each of the three epochs

for each brain area. The asterisks indicate a significant change in power with increasing load.

The hatched bars indicate when a given measure in a given brain area showed a significant

difference between the effects of contralateral vs. ipsilateral load. Next, we consider the

effects in each epoch.

Early Sample Epoch (Figure 2-4A)

All three brain areas showed a decrease in low frequency power with increased contralateral

stimulus load (LIP: -1.4%/item, p < 10-6; FEF: -1.2%/item, p < 10-8; lPFC: -0.9%/item,

p < 10-6). The effects of contralateral load on higher frequency power were mixed. LIP

showed a significant positive correlation (0.8%/item, p = 0.004) and 1PFC showed a signif-

icant negative correlation with contralateral load (-0.8%/item, p < 10-6). For ipsilateral

loads, there were numerically negative correlations with lower frequencies, but only the

FEF and 1PFC showed a significant negative correlation with lower frequency power (FEF:

-1.1%/item, p < 10-6; lPFC: -0.5%/item, p = 0.03). The differences in correlations for

contralateral vs. ipsilateral stimulus loads did not reach significance for the lower frequencies.

(No bars corresponding to lower frequencies in Figure 2-4A are hatched, indicating no dif-

ference between contralateral and ipsilateral loads for each area.) In contrast to contralateral
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Figure 2-4: Percent power change per contralateral (left) and ipsilateral (right) item by region, grouped by

lower frequencies (left bar group) and higher frequencies (right bar group) during the early sample (A), late

sample/early delay (B), and late delay (C). Error bars are standard error of the mean. Asterisks indicate

significant differences (bootstrap Z-test, p < 0.05, Holm corrected for 2 bands x 3 epochs x 3 regions). White

hatching indicates significant differences in modulation by ipsilateral and contralateral load (bootstrap Z-

test, p < 0.05, Holm corrected). p-values above bars indicate significant differences between regions (F-test,

p < 0.05).
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loads, none of the areas showed a significant correlation between higher frequencies and

ipsilateral load. This difference between the effects of contralateral and ipsilateral load on

higher frequencies was significant for the 1PFC (p = 0.007; hatched bars, Figure 2-4A). In

this way, the higher frequency power was similar to our previously reported single-neuron

results (Buschman et al. 2011).

Late Sample/Early Delay Epoch (Figure 2-4B)

Contralateral stimulus load had different effects on lower versus higher frequencies in all

three areas. All three areas showed a significant negative correlation with contralateral

load at lower frequencies (LIP: -2.2%/item, p < 1025; FEF: -1.5%/item, p < 10-22; lPFC:

-2.2%/item, p < 10-79; see Figure 2-4B) and a significant positive correlation at higher

frequencies (LIP: 1.1%/item, p < 10-8; FEE: 0.5%/item, p = 0.001; lPFC: 1.5%/item,

p < 10-4). As in the early sample epoch, lower frequency power decreased with ipsilateral

load in all three areas (LIP: -1.9%/item, p < 1018; FEF: -1.4%/item, p < 10-19; lPFC:

-1.9%/item, p < 10-50), with weak or no effect on higher frequencies. Only the 1PFC showed

a small, but significant positive correlation between higher frequency power and ipsilateral

load (0.5%/item, p < 10-5) and it was significantly weaker than the correlation between

1PFC higher frequency power and contralateral load (hatched bar in Figure 2-4B; p < 10').

Late Delay Epoch (Figure 2-4C)

Later in the memory delay, the effects of contralateral load on lower frequency power in the

FEF and iPFC reversed relative to earlier in the trial. They showed a significant positive

(as opposed to negative) correlation between lower frequency power and contralateral load

(FEF: 1.1%/item, p < 10-"; lPFC: 0.6%/item, p < 10-4). By contrast, there was no effect

of contralateral load on higher frequency power. Increased ipsilateral stimulus load continued

to produce negative correlations with lower frequency power in LIP (-0.7%/item, p = 0.02)

and 1PFC (-0.7%/item, p < 10-7). This difference between the effects of contralateral and

ipsilateral load at lower frequencies was significant for the FEF and 1PFC (hatched bars,
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Figure 2-4C; FEF: p < 10-9; IPFC: p < 10-). Ipsilateral load effects on higher frequency

power remained weak; only the 1PFC showed a positive correlation (0.5%/item, p < 0.0001).

2.4.4 Do Load Effects Saturate at Behavioral Capacity?

Above, we cataloged whether increased stimulus load increased or decreased LFP power.

These effects could reflect a strictly monotonic relationship (every added stimulus changes

LFP power to a certain degree). Alternatively, there could be a step-like, or threshold,

relationship. For example, power could have been constant below a specific load and then

increased above it. To test this, we computed the average change from baseline (i.e., no

stimulation) for each contralateral and ipsilateral load from one to three stimuli. This is

plotted in Figure 2-5 for each area and for contralateral and ipsilateral loads. As can be

seen, the relationship between stimulus load and power seems mostly monotonic. Each added

stimulus produces a similar degree of change in oscillatory power. Note that, even though

the animals' performance dropped off beyond two stimuli, adding a third stimulus to the load

resulted in further changes in power. The asterisks in Figure 2-5 indicate which brain areas

showed a strictly monotonic relationship between power and load, i.e., the smallest observed

difference in power of any pair of load conditions was larger than would be expected by

chance (see Methods). In most bands, epochs, and regions where we observed significant

modulation of power by load, the effect was strictly monotonic. This was true for all observed

low frequency power decreases with contralateral or ipsilateral load in the early sample and

late sample/early delay periods, as well as high frequency power increases with contralateral

load in LIP during the early sample and in LIP and 1PFC during the late sample and early

delay. Crucially, in FEF and IPFC, strictly monotonic and seemingly linear effects were

present even in the late delay period.

2.4.5 Relationship Between LFP Position and Load Information

In addition to information about stimulus load, LFPs also carried information about stimulus

positions. Similar to above, we fit generalized linear models to each electrode, band, and
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Figure 2-5: Percent power change for contralateral loads (left) and ipsilateral loads (right) 1, 2, and 3 relative

to load 0, for epochs and frequency bands. Asterisks indicate significance of all pairwise differences for the

band, region, and epoch (permutation test, p < 0.05, Holm corrected for 2 bands x 3 epochs x 3 regions).

44



epoch incorporating either load alone or both load and stimulus positions in either the

contralateral or ipsilateral hemifields. Based on the difference in these two models, we

computed adjusted R2 , a debiased measure of the additional information captured by the

model that included stimulus positions similar to w2 in linear ANOVA (see Supplementary

Methods).

In all bands, epochs, and regions, significant information about stimulus position was

present in LEP power (all p < 0.0003, non-parametric bootstrap test, Holm-corrected; Fig-

ure 2-6). Additionally, a small amount of information about ipsilaterally presented stimuli

was present in low frequency power in the late sample/early delay period and late delay pe-

riods in all regions and at high frequency power in FEF and 1PFC. However, the amount of

information about contralaterally presented stimuli was substantially greater in all bands, fre-

quencies, and epochs (all p < 0.005, paired non-parametric bootstrap test, Holm-corrected).

The modulation of power by load reported above could reflect either position-specific

or position-invariant effects. If power in a given electrode increased or decreased when a

stimulus was presented in a specific location, then power might also increase or decrease

with load, since any given stimulus is more likely to be present at higher loads than at

lower loads. Alternatively, the load effects may reflect global changes in power, i.e., even

electrodes that do not carry position information might nonetheless show modulation by

load. To distinguish these possibilities, for each frequency band and epoch, we separately

computed the average percent power change per contralateral stimulus for electrodes with

and without significant effects of contralateral stimulus position in that epoch and band

(F-test, p < 0.05). To minimize confounds from non-position selective electrodes with low

statistical power, we excluded electrodes where neither load nor stimulus position explained

any significant variation. Because previous analyses showed similar trends across recorded

regions, we pooled electrodes across regions to increase statistical power. Applying the

analysis to only frontal (FEF and lPFC) electrodes yielded an identical pattern of signif-

icance, as did a test for a significant main effect of position selectivity in a 2 x 3 ANOVA.

There were no significant interactions between the effect of position selectivity and region
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Figure 2-6: Comparison of position information (adjusted R2 ) for contralateral and ipsilateral stimuli. Error

bars are standard error of the mean. Asterisks indicate significant information (non-parametric bootstrap

test, p < 0.05, Holm corrected for 2 bands x 3 epochs x 3 regions). White hatching indicates significant dif-

ferences in modulation by ipsilateral and contralateral load (non-parametric paired bootstrap test, p < 0.05,

Holm corrected).
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Figure 2-7: Percent power change per contralateral item for position-selective and non-position-selective

electrodes. Asterisks indicate significant modulation by load (one sample t-test, p < 0.05, Holm corrected

for 2 bands x 3 epochs). p-values above bars indicate significant differences between position-selective and

non-position-selective electrodes (unequal variance t-test, p < 0.05, Holm corrected).

(all p > 0.15, Holm-corrected F-test). The results of this analysis are shown in Figure 2-7.

In the early sample and late sample/early delay period, lower frequency power decreased

with contralateral load in both position-selective and non-selective electrodes (all p < 10-',

t-test), but the strength of the modulation did not differ (early sample: p = 0.34 [0.26

uncorrected]; late sample: p = 0.34 [0.17 uncorrected]; unequal variance t-test with Holm

correction). Differences were present at higher frequencies. In the early sample period,

power in position-selective electrodes increased with contralateral load (1.2%/item, p = 0.04,

one-sample t-test with Holm correction), whereas power in non-position-selective electrodes

decreased with load (-0.8%/item, p = 0.01; difference: p = 0.002, unequal variance t-test

with Holm correction).

In the late sample/early delay period, higher frequency power in both position-selective

and non-position-selective electrodes increased with load (position-selective: 2.7%/item,

p < 10-'; non-position-selective: 1.1%/item, p = 0.0004), but position-selective electrodes

showed a stronger average modulation (p = 0.003). Thus, while the mean decrease in lower

frequency power with load in the sample period is independent of position selectivity, the

mean increase in higher frequency power with load appears to be driven largely by position-

selective electrodes.

In the late delay period, lower frequency power in position-selective electrodes increased

with load (2.2%/item, p < 10-9). Non-position-selective electrodes showed no average mod-
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ulation (-0.16%/item, p = 0.5; difference: p < 10-6). Since these electrodes were selected on

the basis of the presence of power or load effects, we conjecture that the individual channel

effects average to zero over the recorded population. Thus, like the increase in higher fre-

quency power during the sample period, the mean increase in lower frequency power with

load in the late delay period appears to be due to position-selective electrodes. Higher fre-

quency power increased with load for position-selective electrodes (0.9%/item, p = 0.02) and

decreased with load for non-position-selective electrodes (-0.6%/item, p = 0.03; difference:

p < 0.001). This relationship between load and stimulus position effects suggests that the

effects of load mostly occur in neuron populations that process bottom-up information about

the stimuli (see Discussion).

2.4.6 Effects of Stimulus Load on LFP Synchrony

The above analyses focused on changes in oscillatory power with stimulus load. We next

examine whether stimulus load affected the synchrony of LFP signals between electrodes

within and across brain areas. We computed total coherence values across all trials, and

constructed single trial surrogate coherence values for each trial as the difference between

these total coherence values and coherence values based on all trials except the trial of inter-

est. We then measured the correlation between LFP synchrony and load as the correlation

between these single trial coherence surrogates and contralateral or ipsilateral load in that

trial (see Methods).

Figure 2-8 shows the correlation between LFP synchrony and contralateral stimulus load

as a function of frequency and time during the trial (see Methods). There was little, if any,

change in synchrony with ipsilateral load (Figures 2-S2 and 2-S3). Figure 2-9 shows the

effects of load on synchrony for the standard frequency bands (theta, alpha, beta, and low

and high gamma). Here, we summarize the significant effects using the same higher/lower

frequency classifications we used for LFP power.

During sample presentation and shortly after, increases in contralateral load increased

higher frequency LFP synchrony within LIP (early sample: r = 0.017, p = 0.0002, bootstrap
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Figure 2-8: Correlation of single trial coherence surrogates with contralateral load. Boxes indicate significant

modulations (bootstrap Z-test, p < 0.05, Holm corrected for 22 frequencies x 211 time points). The same

analysis for ipsilateral load is shown in Figure 2-S2.
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Figure 2-9: Correlation of single trial coherence surrogates with contralateral load for frequency bands and

epochs. Asterisks indicate significant differences (bootstrap Z-test, p < 0.05, Holm corrected for 5 bands

x 4 epochs x 6 region pairs). White hatching indicates significant differences in modulation by ipsilateral

and contralateral load (bootstrap Z-test, p < 0.05, Holm corrected). The same analysis for ipsilateral load

is shown in Figure 2-S3.

Z-test, Holm-corrected; late sample: r = 0.023, p < 10-12; early delay: r = 0.012, p = 0.04;

Figures 2-8 and 2-9) and between LIP and IPFC (only in the early sample, r = 0.009,

p = 0.049). In the late sample epoch, increased contralateral load significantly increased

beta synchrony between LIP and IPFC (r = 0.010, p = 0.02) and between the FEF and IPFC

(r = 0.011, p = 0.004). (While these cross-region effects did not achieve significance in the

time-localized analysis in Figure 2-8, they are apparent in the epoched analysis in Figure 2-9.)

In the late delay, beta synchrony within the 1PFC instead decreased with contralateral load

(r = -0.011, p = 0.004). Additionally, there were significant decreases in alpha synchrony

with contralateral load between LIP and FEF in the late sample (r = -0.012, p = 0.02)

and within the 1PFC in the early delay (r = -0.011, p = 0.02), and an increase in alpha

synchrony with contralateral load within LIP in the late delay (r = 0.017, p = 0.002). As

noted above, there were few changes in synchrony with ipsilateral load. There was only a

decrease in alpha synchrony in the late sample period (r = -0.012, p = 0.009, see Figures

2-S2 and 2-S3).
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Synchrony effects were generally fewer and smaller than the effects of load on LFP power.

Given the small effect sizes, it is possible that these synchrony effects are not computation-

ally relevant. Nonetheless, we were able to detect that the effects of contralateral load on

LFP synchrony in the sample period had a monotonically increasing relationship with con-

tralateral load. Figure 2-S4 shows the difference in pairwise phase consistency between trials

with contralateral loads 1, 2, and 3 and zero contralateral load trials for each region pair,

band, and epoch. We determined significance using the same permutation test as in the test

for monotonicity of power changes above. Synchrony within LIP increased monotonically

with load in the higher frequencies in the early and late sample periods. Synchrony between

LIP and 1PFC increased monotonically with contralateral load in the beta band in the late

sample period. We did not see significant monotonic effects in other bands after the multiple

comparison correction.

2.5 Discussion

We tested the effects of different stimulus loads in three brain areas known to be important

for visual attention and working memory, the lateral prefrontal cortex (lPFC), the frontal

eye fields (FEF) and the lateral intraparietal area (LIP). Previously, we reported the single

neuron correlates of stimulus load (Buschman et al., 2011). Here, we report the effects of

load on oscillatory dynamics (power and synchrony) of local field potentials (LFPs).

During stimulus presentation, there were decreases in lower frequency (8-50 Hz) LFP

power with increases in contralateral and ipsilateral stimulus load. However, higher frequency

(50-100 Hz) LFP power increased only with contralateral stimulus load. Contralateral load

also (briefly) increased lower frequency (16-50 Hz, encompassing beta and low gamma) power

in the middle of the memory delay. This is relevant because our monkeys showed behavioral

evidence of separate visual working memory capacities in each hemifield. This predicts that

the neural effects of load tied most directly to behavior would be limited to the contralateral

field. Synchrony measures are naturally noisier than measures of power but the effects of
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load on synchrony generally matched effects on power. The exceptions were in the beta

band where there was an inverse relationship between stimulus load and synchrony. Beta

synchrony (16-30 Hz) increased with stimulus load during the sample presentation (when

beta power decreased) and decreased during the delay (when beta power increased). Finally,

we found that even after the monkeys' behavioral capacity had been reached, increases in

stimulus load continued to affect oscillatory power.

Our results coincide with previous reports of changes in LFP power in multiple item

working memory tasks. Lara and Wallis (2014) also found that in the IPFC, high gamma

power increased and beta power decreased during stimulus presentation, while beta power

increased during a memory delay. While they did not explicitly compare power in one-item

and two-item trials, the effects appear to be stronger in the two-item trials, consistent with

our findings that power in these bands and epochs scales with load. S. Palva et al. (2011)

analyzed MEG and EEG power during a multiple item working memory task in humans.

They reported increases in delay period beta and low gamma power with load that did not

saturate at behavioral capacity. However, the same authors report that power increases

were associated with strengthened inter-areal synchrony (J. M. Palva et al., 2010), which

we also observed during sample presentation, but not in the memory delay. Mitchell and

Cusack (2011) showed bilateral decreases in induced alpha power immediately following

sample presentation in human MEG data, consistent with our findings during the sample

presentation.

Increases in high frequency power accompanied by decreases in lower frequency power

have also been reported from a variety of visual attention and perception tasks. Monkey

studies of V4 and FEF LFPs have shown that attention towards a stimulus increases higher

frequency power and decreases lower frequency power (Fries et al., 2008; Gregoriou, Gotts,

Zhou, & Desimone, 2009; Gregoriou, Rossi, Ungerleider, & Desimone, 2014). Human EEG

and MEG studies report similar results across a wide range of cortical regions (Siegel et

al., 2008; Hipp et al., 2011). Our findings add important details. We found a dissociation

between the effects of load on lower versus higher frequency power and their relationship

52



to behavior. During sample presentation, lower frequency power was modulated by both

contralateral and ipsilateral load, whereas higher frequency power was modulated more by

contralateral load. This reflects the strong contralateral bias in visual cortical processing.

It suggests that the effects of load on higher frequencies are more strongly associated with

bottom-up processing of visual stimulus information per se. Indeed, we found stronger higher

frequency power changes in electrodes that showed selectivity for stimulus location (whereas

lower frequency power changes were similar in all electrodes.).

This may be due to previously observed associations between lower and higher frequency

oscillations and top-down and bottom-up cortical processing, respectively (Engel et al., 2001;

Buschman & Miller, 2007; Engel & Fries, 2010; Arnal & Giraud, 2012; Bastos et al., 2015).

Lower frequency (beta) oscillations have been linked to maintaining the existing cognitive

set (Engel & Fries, 2010; Buschman et al., 2012) and may help to stabilize working memory

representations against disruption during memory delays (Pereira & Wang, 2014). Our data

support these hypotheses. During sample presentation, higher frequency power increased

with contralateral load, especially in electrodes with bottom-up information about stimulus

location. The difference in modulation between position-selective and non-position-selective

electrodes suggests that higher frequency oscillations reflect bottom-up input from sensory

areas. However, since non-position-selective electrodes were also modulated by contralateral

load during the late sample/early delay period, albeit more weakly, these oscillations could

additionally reflect top-down modulation of cortical areas processing contralateral stimuli.

Lower frequency power decreased with load during sample presentation and in all electrodes.

This suggests a more global state change such as a broader focusing of attention across more

locations. By contrast, during the late delay, lower frequency power instead increased only

with contralateral load and only in electrodes with information about stimulus location.

Thus, during memory maintenance, beta oscillations may stabilize the working memories in

the circuits that carry information about the stimuli.

Note that while beta power decreased during stimulus array presentation, beta synchrony

increased. Beta synchrony has been linked to shifts of attention between multiple stimuli
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(Buschman & Miller, 2009). Thus, the increase in beta synchrony with stimulus load may

reflect an increased number of attentional shifts. One possible source for beta signals is

the pulvinar, which projects to both prefrontal and parietal cortex (Asanuma, Andersen, &

Cowan, 1985), contains units with both ipsilateral and contralateral receptive fields (Bender,

1981), and has recently been shown to modulate low frequency oscillations and synchrony in

extrastriate visual cortex during attention (Saalmann, Pinsk, Wang, Li, & Kastner, 2012).

Our results put some constraints on models of how cognitive capacity arises. According

to "slot" models, capacity is limited by an individual's specific number of memory slots.

Once they are filled, capacity is reached (Luck & Vogel, 1997, 2013; Vogel et al., 2001; Ma

et al., 2014). Any further increase in stimulus load should have no effect on neural activity;

once all the slots are filled no more information can be encoded. By contrast, in flexible

resource models information is a like a pool. Increasing stimulus load uses more and more

of this pool. Once the pool becomes too thin, behavior can no longer be supported and

effective capacity is reached, but increasing load beyond behavioral capacity will continue

to draw from the pool and thus continue to affect neural activity (Bays & Husain, 2008;

Luck & Vogel, 2013; Ma et al., 2014). Our subjects had a behavioral capacity of between

one and two in each hemifield. However, we observed increases in local field potential power

with stimulus load between two and three stimuli, indicating that the animals processed

information about stimuli above behavioral capacity. While the absence of saturation at

capacity during stimulus presentation might relate to purely visual processes, the absence

of saturation during the late delay period is more surprising and more difficult to explain

with a slot model. Nonetheless, it is possible that the power increase reflects maintenance of

more spatial locations, but the capacity bottleneck arises in maintaining color per se. Thus,

our results are consistent with either a resource model or a modified slot model in which

information is maintained about positions of unremembered stimuli, but a fixed number of

slots are available for object identity information.

In sum, we found increases in high gamma oscillations with increased stimulus load may

reflect changes in feed-forward (bottom-up) sensory processing. Decreases in lower frequency
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oscillations may instead reflect top-down processes such as the allocation of attention and

working memory maintenance.
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Figure 2-Si: Percent power change per contralateral (left) and ipsilateral (right) item by region for an

extended set of frequency bands. Error bars are standard error of the mean. Asterisks indicate signif-

icant differences (bootstrap Z-test, p < 0.05, Holm corrected for 2 bands x 3 epochs x 3 regions). White

hatching indicates significant differences in modulation by ipsilateral and contralateral load (bootstrap Z-

test, p < 0.05, Holm corrected). p-values above bars indicate significant differences between regions (F-test,

p < 0.05).
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Figure 2-S2: Correlation of single trial coherence surrogates with ipsilateral load. Boxes indicate significant

modulations (bootstrap Z-test, p < 0.05, Holm corrected for 22 frequencies x 211 time points). See Figure

2-8 for correlation with contralateral load.
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Figure 2-S3: Correlation of single trial coherence surrogates with ipsilateral load for frequency bands and

epochs. Asterisks indicate significant differences (bootstrap Z-test, p < 0.05, Holm corrected for 5 bands

x 4 epochs x 6 region pairs). White hatching indicates significant differences in modulation by ipsilateral

and contralateral load (bootstrap Z-test, p< 0.05, Holm corrected). See Figure 2-9 for correlation with

contralateral load.
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Figure 2-S4: Differences in pairwise phase consistency relative to no contralateral stimulation condition for

contralateral loads 1, 2, and 3 (left to right), for epochs and frequency bands. Asterisks indicate significance

of all pairwise differences for the band, region pair, and epoch (permutation test, p < 0.05, Holm corrected

for 5 bands x 4 epochs x 6 region pairs).
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Chapter 3

Neural Correlates of Multiple-Item

Visual Short-Term Memory in

Prefrontal, Parietal, and Temporal

Cortex

3.1 Abstract

The richness of visual experience far exceeds our ability to remember what we have seen.

However, it is unclear what neural mechanisms give rise to these limits to visual short-term

memory capacity. Here, we recorded from the lateral intraparietal area (LIP), prefrontal

cortex (PFC), and inferotemporal cortex (IT) during a multiple item change localization task

as a monkey maintained multiple colored squares in visual short-term memory. Although

activity in all regions reflected both stimulus positions and colors, LIP and PFC preferentially

represented position, while IT preferentially represented color. At sample presentation, PFC

conveyed more color information as the number of stimuli (load) increased, while IT conveyed

the same amount of color information regardless of load. At test presentation, both PFC

and IT conveyed the location of the changed square, with similar latencies. Although IT
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delay period activity was barely detectable, activity at test signaled differences between

sample and test displays, and the strength of this representation correlated with behavioral

performance. Our results suggest that high-level visual cortex is more strongly capacity

limited than prefrontal or parietal cortices, and imply a role of passive memory signals from

visual regions in some visual short-term memory tasks.

3.2 Introduction

Most electrophysiological studies of visual short-term memory examine activity related to

maintenance of a single object. However, in our everyday lives, objects are rarely present

in isolation; our visual field typically contains dozens of objects. Our ability to remember

the characteristics of these objects is limited, even over a brief delay (Simons & Rensink,

2005). When humans must remember more than 3 to 5 ordinary objects simultaneously,

performance drops substantially (Luck & Vogel, 1997). Many studies have investigated how

these capacity limits are manifested in behavior. Although some authors have proposed that

items held in visual short-term memory are stored in a fixed number of discrete slots (Luck

& Vogel, 1997; Awh et al., 2007; Zhang & Luck, 2008; Fukuda, Awh, & Vogel, 2010), the

balance of evidence favors a model in which the total amount of representable information

is fixed, but this "shared resource" is distributed flexibly across items (Bays & Husain,

2008; Bays et al., 2009; van den Berg et al., 2012; van den Berg, Awh, & Ma, 2014; Ma

et al., 2014; Schneegans & Bays, 2016; Brady et al., 2016). Most of our knowledge of the

neural mechanisms behind these capacity limits comes from the measures that reflect average

activity of hundreds of thousands of neurons. Such studies typically implicate posterior

parietal cortex, where functional magnetic resonance imaging (fMRI) activity and evoked

potentials measured by electroencephalography (EEG) correlate with the number of items

to be remembered (stimulus load), saturate at behavioral capacity, and reflect individual

differences in task performance (Vogel & Machizawa, 2004; Todd & Marois, 2004; Vogel et

al., 2005; Todd & Marois, 2005).
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However, these bulk measures of neural activity measure only how average activity at a

macroscopic scale changes with memory demand. They provide little insight into how the

brain's stimulus representations change when multiple stimuli must be processed simultane-

ously. As the number of items to be remembered increases, stimulus representations could

be severely degraded even if average activity does not change. Indeed, single neuron studies

provide strong evidence that simultaneous presentation of multiple objects impairs stimulus

representation in high-level visual areas (Sato, 1989; E. K. Miller, Gochin, & Gross, 1993;

Rolls & Tovee, 1995; Chelazzi, Duncan, Miller, & Desimone, 1998; Missal, Vogels, Li, &

Orban, 1999; Zoccolan, Cox, & DiCarlo, 2005). However, few single neuron studies have

investigated representation of simultaneously presented stimuli in a visual short-term mem-

ory task. Buschman et al. (2011) reported that representations in the lateral intraparietal

area (LIP) and prefrontal cortex (PFC) were degraded when subjects maintained multiple

items (colored squares) in visual short-term memory, but Lara and Wallis (2014) found no

evidence for any representation of color in PFC in a similar task. Moreover, despite evi-

dence for involvement of sensory areas in visual short-term memory processes (Pasternak &

Greenlee, 2005; Harrison & Tong, 2009; Postle, 2016; Christophel, Klink, Spitzer, Roelfsema,

& Haynes, 2017), no single neuron studies have investigated how maintenance of multiple

stimuli in visual short-term memory affects representations in visual regions.

Here, we compare the neural correlates of visual short-term memory for multiple visual

stimuli (colored squares) in LIP, PFC, and anterior inferotemporal cortex (IT) during a

change localization task. In this task, we presented two displays of two to four colored

squares separated by a brief delay, and the animal was rewarded for choosing the square that

changed color. The three recorded regions are interconnected (Blatt, Andersen, & Stoner,

1990; Webster, Bachevalier, & Ungerleider, 1994; Saleem, Miller, & Price, 2014), and all

are widely implicated in visual short-term memory processes (Fuster & Alexander, 1971;

Fuster & Jervey, 1982; Passingham, 1975; Miyashita & Chang, 1988; Kowalska et al., 1991;

Sawaguchi & Goldman-Rakic, 1991; Li et al., 1999; Petrides, 2000; Linden et al., 2003; Todd

& Marois, 2004, 2005; Vogel & Machizawa, 2004; Voytek & Knight, 2010). Additionally,
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anterior IT is critically involved in color perception (Heywood, Gaffan, & Cowey, 1995;

Huxlin, Saunders, Marchionini, Pham, & Merigan, 2000). We investigated how stimulus

load affected neural activity at stimulus encoding and over the delay period, and how these

regions participated in determining which square changed color.

3.3 Methods

3.3.1 Behavioral Task

One adult female rhesus macaque (Macaca mulatta) was trained to perform a change lo-

calization task. All procedures followed the guidelines of the Massachusetts Institute of

Technology Committee on Animal Care and the National Institutes of Health. The struc-

ture of the behavioral task is shown in Figure 3-1. After an initial fixation period of 1

second, the animal saw an array colored squares of 0.75 degrees of visual angle (DVA) at

50 of eccentricity. These squares then disappeared for a delay of 1.2 to 1.5 seconds before

reappearing with a change to the color of one square. The animal received a juice reward

for saccading to the changed square. If the animal broke fixation before the presentation of

the test squares, the trial was aborted.

In all trials, a single square was shown in the hemifield ipsilateral to the recording sites,

along the horizontal meridian. In the contralateral hemifield, squares could appear in four

locations: along the horizontal meridian; in the upper and lower quarter field separated at

an angle of 650 with respect to the horizontal meridian; in a "crowding" location in either the

upper or lower quarter field at an angle of 400, corresponding to a displacement of 2.2 DVA

between their centers. The quarter field in which the crowding square was presented was

chosen randomly by session. Data from trials on which the crowding square was presented

are included only in Figure 3-10 and the corresponding results section. All other analyses

were performed excluding these trials.

Each square had two possible associated colors. Colors were randomized across recording

sessions. The minimum difference between the sample and test color of the changed square
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was CIEDE2000 AEOO = 23.6 (mean AzEoO = 58.9; max AEoo = 95.5). Thus, color changes

were very perceptible to a human observer (Yang et al., 2012). All colors were unique except

for those of the square along the horizontal meridian and the crowding square, which shared

the same color pair but were never presented simultaneously. One to three squares were

shown in the contralateral hemifield, corresponding to a total load of 2 to 4. At test, the

changed square was selected randomly. There were 88 possible sample stimulus displays (16

2-item displays, 40 3-item displays, and 32 4-item displays), of which 52 stimulus displays

(12 2-item displays, 12 3-item displays, and 16 4-item displays) did not include the crowding

square. The probability of each stimulus condition was uniform. The animal had to complete

trials where each of the 88 displays was presented as a sample (not necessarily correctly)

before any were shown again. The animal performed an average of 927 trials over the course

of a session (inter-quartile range 864 - 1026) corresponding to 10.5 presentations of each

sample display. In most analyses, we pooled across possible ipsilateral stimulus displays,

yielding an average of 21 presentations per sample display.

3.3.2 Electrophysiological Recording

Recording sites were targeted using chambers that were custom-fit to the animal's skull

based on a pre-implantation MRI (Mulliken et al., 2015). In IT, we localized a region

rich in color-selective cells by coregistering the animal's anatomical MRI with functional

MRIs obtained from other animals, graciously provided by Bevil Conway and Doris Tsao.

We explored recording sites in preliminary recording sessions, characterized their properties

during passive fixation, and selected the most color-selective locations for recordings during

the task. Our recording sites most likely correspond to color patch ALc (Lafer-Sousa &

Conway, 2013), on the lateral bank of the anterior middle temporal sulcus. Consistent with

imaging results, highly color-selective sites were located medial to highly face-selective sites.

Epoxy-coated dura-piercing tungsten electrodes (FHC) were lowered into PFC and LIP

using a custom-built grid and microdrive assembly that moved electrodes in pairs using a

single screw. In inferotemporal cortex, a 32-contact V-Probe (Plexon) with 50 m spacing
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was lowered using a Narishige MO-97A hydraulic microdrive. Recordings were performed

using a Blackrock Microsystems Cerebus system. In sessions including IT recordings, signals

were referenced to the shank of the V-Probe. In other sessions, signals were referenced to

saline in the prefrontal chamber. In all sessions, the reference was tied to ground. Raw

signals were digitized at 30 KHz and saved to disk for offline analysis.

Prior to spike detection, signals were denoised using independent components analysis

(ICA) (Pedregosa et al., 2011; Hyvarinen, 1999). This process greatly reduced EMG and

juicer-related artifacts, to the point that they were no longer audible in the processed signals.

The denoising process consisted of four steps. First, we extracted a representative subset of

the data, consisting of 3.5 second samples of 25 evenly spaced trials were extracted from the

full recording session. Performing ICA on the entire session would be intractable, but since

this subset is large (consisting of 2,625,000 samples), ICA yields nearly identical results.

Second, we filtered this sample between 300 and 10,000 Hz using a second-order Bessel filter.

Third, we whitened the data by PCA. Fourth, we applied ICA to the whitened signal. The

initial mixing matrix was set to an adjusted transposed whitening matrix, such that, at the

first step of the algorithm, the first n - 1 components were the signals recorded from each

channel and the last component was the first principal component. This initialization process

is not strictly necessary and similar results were obtained without it, but has the advantage

that, after the algorithm converges, adjacent components generally reflect adjacent channels

and the last component generally reflects the greatest contribution to the noise. Finally, we

manually identified 1 to 3 noise components and removed them from the original signals.

We separately denoised the signals recorded from tungsten electrodes and those from the

V-Probe.

For the single-electrode recordings in PFC and LIP, we computed multi-unit activity

by counting the number of negative deflections with an amplitude of at least 4 x 0.675 the

median absolute signal in the data. For V-Probe recordings in IT, since spikes corresponding

to individual neurons were generally present across 4 or more channels, we sorted units using

Kilosort (Pachitariu, Steinmetz, Kadir, Carandini, & Harris, 2016) and manually inspected
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the resulting clusters and their crosscorrelograms, discarding those that did not correspond

to well-isolated units. We excluded units with a firing rate at sample presentation of less

than 0.5 spikes per second, and units that were not isolated for at least 440 trials (5 trials

of each stimulus condition). After these exclusions, we recorded 68 channels from LIP, 367

channels from PFC, and 155 single units from IT. For conciseness, we refer to both multi-unit

activity and single-unit activity as "units" in the text below.

Since activity often drifted over the course of a session, we used a Gaussian process to

rescale unit activity. We determined the spike count over the first second of the baseline

period, and fit a Gaussian process with a radial basis function kernel to each unit using

GPy (https://sheffieldml.github.io/GPy/), with a prior standard deviation of 1 and a prior

length scale of 1 hour. For single-unit activity from IT, we used a Poisson likelihood and

fit the model by Laplace approximation. Because multi-unit activity from PFC and LIP

was generally overdispersed relative to a Poisson distribution but of sufficiently high rate

that a normal approximation was sufficient, we used a normal likelihood. After fitting the

Gaussian process model, we obtained smoothed estimates of the baseline rate on each trial,

and multiplied the spiking activity by the ratio between the mean baseline activity over all

trials and the smoothed activity for the given trial. Without rescaling, most analyses yielded

similar results. However, in IT, firing rates during the baseline and delay periods were

predictive of behavioral performance, even though there was no clear change in performance

over time averaged over sessions. After smoothing, activity during these epochs bore no

relationship to performance. While these effects could be physiological in origin, reflecting

slow changes in brain state, they could also result from correlation between electrode drift due

to animal motion and subsequent performance. Smoothing the data based on the baseline

activity mitigates this potential confound.

3.3.3 Analysis of Proportion of Variance Explained (62)

E2 is a debiased measure of the proportion of variance explained in an ANOVA. It is similar

to, but less biased than, the more common r/2 and w2 measures, and is equivalent to adjusted
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R2 for the corresponding general linear model (Okada, 2013). It estimates:

2
explained

U
2

total

by replacing the numerator and denominator with unbiased sample estimators. For compar-

ison of two models, the estimator of oexpained is:

07explained =MSnul - MSull

MSnunl =RSSnunl
n - Pnull

MSfull RSSunl
n - Pfull

MSnull and MSfull are unbiased estimates of the variance of the residuals of the null and

full models, respectively; RSSnull and RSSull are their respective sums of squares; Pnull and

Pfull are their parameter count including intercept; and n is the total number of observations.

Since all sample stimulus conditions were presented a nearly equal number of times, ANOVAs

involving them are nearly orthogonal, and MSnull - MSfull is nearly equal to the mean square

of the model including factors in MSull that are not included in MSnuu.

E2 estimates the proportion of the total trial-to-trial variance that the given model can

explain, with a-otal given by the unbiased sample variance of the dependent variable .2

. Partial E2 (E2) estimates the proportion of the residual variance of the null model

that can be explained by the full model, with a-otal estimated by MSnun. When comparing

variance explained by different factors within the same data, we computed E2 , so that the

denominator was the same between factors. When comparing variance explained by the same

factors in different data, we computed E2. When we sought to compare E2 across factors, but

to exclude contributions to the variance of factors not compared, we estimated a-otal using

the mean square of a different, third model. Table 3.1 shows how we computed E2 for all

analyses.

E2 has significant advantages compared to alternative strategies for measuring information
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in spiking activities. It allows testing of complex hypotheses with minimal bias, and since it

is computed on individual units, it is easy to construct error bars and confidence intervals

for the population. Fitting ordinary linear models produces parameter estimates with higher

mean squared error than could be achieved with regularization or with more complex models.

However, the predictive power of these models is of little interest. As discussed in Shmueli

(2010), explanation and prediction are different goals that often demand different models.

For our purposes, it is of great utility that E2 is a nearly unbiased estimator.

When performing permutation tests of E2 , we used the same models and shuffled according

to the null model, with the exception of analyses performed over the test period. In these

cases, no exact permutation test can be constructed, since So, Stest, and S" : Stest are all

dependent and their dependency structure does not permit permutation (see Table 3.1 for

nomenclature). To test for an effect of sample color, we computed E2 by comparing the

variance of the model S2 X S 3 X S5 + S2est x Stest x S5test to Stest x Stest x Sitest, and permuted

within test displays. To test for an effect of test color, we compared the same full model

to S2 x S3 x S5, and permuted within sample displays. To test for an effect of the changed

square, we computed 2j for a model P2 x P3 x P + S2 : Stest + S 3 : s5 est + S5 : sest relative to

a model including P2 x P3 x P5 . Since the probability of a given square change was uniform

for a given position condition, we permuted within position conditions. Values of E2 plotted

in Figure 3-11B correspond to this model comparison.

When computing the linear change in E2 with load, shown in Figure 3-8, we fit models for

each load condition as in Figure 3-7. For each unit, we fit the ordinary least squares model:

yi = s30 + (I - 2)01 + El

where 1 is the total load, i.e., 2, 3, or 4; y' is the value of E2 at load I; and El is the error term.

Since OLS produces unbiased parameter estimates and values of yi are nearly unbiased, /1 is

a nearly unbiased estimator of the increase in variance explainable by square color with each

square added to the display. Its magnitude depends on the overall degree of color selectivity,

but we sought solely to compare its sign between regions. As shown in Figure 3-8, 01 was
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Item Name Trials Full Model Null Model Denom.
Table 3.2 Stimulus Condition No S4  Si x S2 x S3 x S5  1 1
Table 3.2 Contralateral Color No S4  Si + S2 X S3 x S5  S1 + P 2 x P3 x P5  1
Table 3.2 Ipsilateral Color No S4  Si + S2 x S3 x S5  S2 x S 3 x S5  1
Fig. 3-3 Stimulus Condition No S4  S2 x S3 x S5  1 1
Fig. 3-3 Color No S4  S2 x S3 x S5  P 2 x P3 x P5  1
Fig. 3-4 Position Load 2, no S4  S2 + S3 + S5a S 2 + S 3 + S5 b

Fig. 3-4 Color Load 2, no S4 S2 + S3 + Sa P 2 + P3 + P5  1
Fig. 3-5 Position Passive fixation Position x Color' Color + Position: Color 1
Fig. 3-5 Color Passive fixation Position x Colorc Position+Position: Color 1
Fig. 3-5 Interaction Passive fixation Position x Colorc Position + Color 1
Fig. 3-7 Load 2 Load 2, no S4  S2+83 + S5a P 2 + P3 + P5  P2 + P3 + P5
Fig. 3-7 Load 3 Load 3, no S4  S2 x S3 x S5 P 2 x P3 x P5  P 2 x P 3 x P5
Fig. 3-7 Load 4 Load 4, no S4  S2 x S3 x S5  P 2 x P3 x P 5  P 2 x P 3 x P 5
Fig. 3-10B Load 3 Uncrowded Only S3 & S5 S3 x S5 1 1
Fig. 3-10B Load 3 Crowded Only S4 & Ss S4 x Ss 1 1
Fig. 3-10B Load 4 Uncrowded S2 , S3 , & S5 S2 + S3 x S5 S 2  S 2
Fig. 3-10B Load 4 Crowded S2 , S4 , & S5 S2 + S4 x S5 S 2  S 2
Fig. 3-10C Linear Uncrowded S3 & S5 S2 + P2 x S3 x 

S 5 S 2 + P 2 X (S 3 : S5) S 2
Fig. 3-10C Linear Crowded S4 & S5 S2 + P2 x S4 x S5 S 2 + P2 x (S 4 : S5) S 2
Fig. 3-10C Nonlinear Uncrowded S3 & S5 S2 + P2 x S3 x S5 S 2 + P2 x (S3 + S5) S 2
Fig. 3-10C Nonlinear Crowded S4 & S5 S2 + P2 x S4 x S5 S 2 + P2 x (S4 + S5) S 2
Fig. 3-11A Test Color No S4  S2 x S3 X S5+ Sest x Slest x S2 x S3 x S 5 +S2 : Sst+ P 2 x P3 x P5

Stest + S 2 : Stest + S 3 : 3 : Stest + s5 : SSit
Siest + St : test

Fig. 3-11A Sample Color No S4  52 X 53 xS+Stest xSSest x Stestx Stest x Sest +S 2 : P 2 x P 3 x P 5
____t + 2 est +S 3 : ~- *t + S3 : 5tst + S:
___ + S3 : es css

Fig. 3-11A Changed Square No S4  S2 x S3 x S5 +Sjest x 5 lest x S2 xS3 xSs + Sest x P2 xP3 x P
Stest + S 2 : 5 test + S 3 : 5 test 3 5tst
Siest+ S5 : Stest

Fig. 3-12 Changed Square Load 3or 4,noP 2 x P3 x Ps 2 3  P2 x P3 x P5 + S2 3  P2 x P3 x P5
S4 , contralateral Se + lest + Slest + Slest + S + Slest + Slest + 5iest
target, correct or S2 : S2st + S3 : eSt * +S5:
incorrect + est

Fig. 3-12 Sample Color Load 3 or 4, no P2 x P3 x Ps+2 + S3 + P2 x P 3 x Ps + Ses t 
+ P 2 x P3 x P5

S4 , contralateral S5 + Stest + Stest + Stest + 5 lest + 5 lest +S 2 : est +
target, correct or S2 : Stest + S3 Sest +Ss : 3:est + S : 5 e
incorrect Stest

Table 3.1: ANOVA Factors. Factors in ANOVAs used to compute e2. Figure indicates the figure in
which the ANOVA was presented. Model Name indicates the name of the ANOVA in the corresponding
figure. Trials indicates the trials to which the ANOVA was fit. Full Model is the model from which
MSr11 was computed. The Null Model is the model from which MSnuii was computed, which was
always nested inside the full model. Denom. is the model used to compute ta1 above. 1 denotes the
intercept-only model. "+" denotes a linear effect; ":" denotes an interaction; "x" denotes a linear effect
and its interaction, i.e. a x b a + b c+ a: b. Si is the ipsilateral square, which was always located along
the horizontal meridian. Remaining squares were all contralateral, and are numbered according to their
absolute angular displacement from the uncrowded quarter field. S2 was in the uncrowded quarter field;
S3 was along the horizontal meridian; 54 was the "crowding" square at 40* from the horizontal meridian;
and S5 was at 65 from the horizontal meridian that is adjacent to S4 . So is a three-level factor, reflecting
whether a square was not present, color A, and color B. P is a two-level factor that reflects whether
square S was presented. flest is the same as So, but for squares presented at test.
a In the load 2 condition, only one contralateral square was presented, so there are no interaction terms.
b Responses to the two ple colors of Sn were constrained to sum to zero.
C During passive fixation, we presented only a single square, but manipulated its position and color factorially.
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significantly greater than zero in PFC during the sample and delay, but significantly less

than zero in IT, and there was a significant interaction.

When determining the latency of modulation by the changed square (Figure 3-11B), we

convolved firing rates with a raised cosine function of 20 ms full width at half maximum.

Unlike a Gaussian, this raised cosine function has finite support on an interval of 60 ms. Thus,

values of E2 reflect activity at most 30 ms after a given time point. We computed values of

62 for 1000 permutations within positions over time points from 0 to 161 ms after stimulus

onset, and fixed the significance threshold as the 95% quantile of the maxima over time of

the permutation. We determined the latency as the first time point at which the observed

value of E2 exceeded this threshold. We tested for a significant difference difference between

regions by performing the same procedure for 1000 realizations of the data, resampling with

replacement among units, and computing a two-sided bootstrap p-value:

2 1000 1000
P = 10 0 0 min {ai > bi}, {ai < bi}

where ai is replicate i from region a and bi is replicate i from region b.

When testing for differences between correct and incorrect trials (Figure 3-12), we re-

stricted analysis to trials where the load was 3 or 4, since the animal rarely responded

incorrectly on load 2 trials. We additionally required that the target square was contralat-

eral, since the animal's performance was higher for ipsilateral targets at all load conditions

(Figure 3-2). Because these restrictions left few incorrect trials of any given type, we fit

a simplified model (Table 3.1). We constructed permutations by shuffling the correct and

incorrect trial labels within load conditions, such that the numbers of correct and incorrect

load 3 and load 4 trials for each permutation were equal to the numbers of correct and in-

correct load 3 and load 4 trials for the true data. Although E' was never significantly higher

on incorrect trials than correct trials, we computed 2-sided p-values by first computing the

maximum and minimum of the difference in E; over time points from -100 to 300 ms after

test onset for each permutation, then comparing the true values at each time point against

these permutation minima and maxima and adjusting for the two tests performed.
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3.3.4 Classification Analysis

In order to confirm that the load effects that we observe do not result solely from our choice of

2 as a measure of color selectivity, we tested these effects using a different analysis strategy.

We trained linear support vector machines (SVMs) to distinguish between two stimulus

displays where squares were located in the same positions and only one contralateral square

differed in color, for all valid pairs of uncrowded stimulus displays. We first restricted our

analyses to units for which we recorded at least 14 trials of each contralateral stimulus

condition. Next, we split the data into 14 possible train/test splits, each consisting of 13

training trials and 1 test trial for each contralateral stimulus condition. For each split, we

trained SVMs for each pair of square colors as follows. First, we computed the mean firing

rate for each unit over training trials, and the pooled standard deviation for each unit as

the square root of the mean within-condition variance of the training trials. We z-scored

the training and test sets using these estimates. Next, we estimated the optimal SVM soft

margin parameter C based on 3-fold cross-validation within the training set. Finally, we

trained an SVM on the entire training set using the value of C that produced the best

results on the cross-validation sets, and tested it on the test set. We computed the classifier

performance as the proportion of correct classifications over all test sets and square color

pairs. We trained a classifier for each unit individually, as well as for 500 random subsets of

2, 3, 4, 6, 8, 11, 16, 23, 32, 45, 64, 91, and 128 units. In PFC, we also investigated subsets

of 181 and 256 units.

Computing accurate confidence intervals for classification analysis is non-trivial. While

confidence intervals could in principle be computed as the proportion of correct responses

over train/test splits, it is unclear whether such confidence intervals would be valid, since

the training data are not independent between splits. Additionally, when comparing results

between regions, confidence intervals should remain valid for different units recorded from

these regions, not simply for different trials recorded from the same units. Bootstrapping

over units is also problematic, since redundant features are less informative than unique

features sampled from the same distribution. Indeed, we found that bootstrapping over all
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units yielded classifier performance that was substantially lower than the true performance.

We thus computed classifier performance over subsamples of units drawn without replace-

ment, and estimated the variance with a correction for finite population (Politis, Romano,

& Wolf, 1999). For a vector 01, ... , 0, of subsamples of k units from a sample of n units, we

approximated the variance of 6 as:

k 2

m(n - k) Ei_ 0

This formula is equivalent to the equivalent to that of the delete-d jackknife variance es-

timator (Shao & Wu, 1989). In general, subsampling is applicable to a wider variety of

circumstances than bootstrapping (Andrews, 1999; Politis et al., 1999). This estimator gen-

erally produces larger variance estimates than a bootstrap estimator, especially as k -+ n,

although the two methods are asymptotically equivalent as k/n -4 0. Although we approx-

imated the distribution of the mean over subsamples with a normal distribution, results

closely resemble those obtained by estimating the distribution based on empirical quantiles

of Oi - 0, suggesting that a normal approximation is adequate.

We fit the change in classification accuracy with load using a logistic regression model:

yi - Binomial ni, 1 + e(3-(-2)1)

where y, is the number of held out trials that were correctly classified at load 1, and n, is

the total number of held out trials. /o estimates the log odds ratio of correct classification

at load 2. /1 estimates the change in log odds ratio per square added to the display. If

i1 is less than 0, classification performance decreases with load; if /1 is greater than zero,

classification performance increases with load; and if /31 is 0, classification performance has

no linear relationship with load. We fit this model for every subsample of units, took the

mean of 31 across subsamples, and estimated its variance &, using the formula above,

and performed hypothesis tests by approximating the distribution of /1 by its mean across

subsamples /1' and its variance &1. Specifically, when testing whether !1 was significantly
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different from zero, we computed the p-value as:

p = 2 1 - <( )

where <D is the cumulative distribution function of the standard normal distribution. When

testing whether 31 differed between sets of subsamples a and b, we computed the p-value as:

p=2 1-4)ADi

3.4 Results

The animal performed a change localization task, shown in Figure 3-1A. Animals were re-

quired to encode and maintain an array of colored squares in visual short-term memory.

We manipulated the number of contralateral squares as well as their locations. Two, three,

or four squares were presented simultaneously. In the hemifield ipsilateral to the recording

site, one square was present along the horizontal meridian on every trial. In the hemifield

contralateral to the recording site, and one, two, or three squares were presented. The seven

position conditions are shown in Figure 3-1B. Since we also varied the colors of the squares,

there were a total of 52 sample stimulus conditions. On average, the animal performed 10.5

trials for each condition. As the animal performed the task, we recorded from the lateral

intraparietal area (LIP), prefrontal cortex (PFC), and a region in anterior inferotemporal

cortex (IT) chosen for its color selectivity.

3.4.1 Behavioral Performance

Figure 3-2 shows the animal's performance. As expected, performance decreased with load

(all p < 10--2, Fisher's exact test; Figure 3-2A). We measured the animal's ability to detect

the target square as conditional mutual information (CMI) between the target square location

and chosen square location given the shown square locations. CMI increased from load 2 to 3
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B Load 2

I nid 'A

Figure 3-1: Change Localization Task. A: After fixating for 1000 ms, the animal saw an array of colored

squares at 5 degrees of eccentricity. These squares then disappeared for a delay of 1.2 to 1.5 seconds before

reappearing with a change to the color of a random square. The animal was rewarded for saccading to

the changed square. B: A single colored square was presented in the same position within the hemifield

ipsilateral to the recording sites on every trial. The number of contralateral squares was varied from one

to three. Each square could be one of two colors. Possible colors were different for every square, and were

randomized between sessions.
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Figure 3-2: Behavioral Performance. A: Percentage of correct trials by load condition. Dotted lines indicate

chance performance. B: Mutual information between the location of the changed (target) square and the

animal's choice. Information increased with load. C: Percentage of correct trials by load condition and

target side. "Contra Target" indicates that the changed square was in the hemifield contralateral to the

recording site, in which the number of squares varied from 1 to 3 at loads 2 to 4. "Ipsi Target" indicates that

the changed square was in the hemifield ipsilateral to the recording site, which always contained a single

square. Dotted lines indicate chance performance.

and from load 3 to 4 (both p < 10-', bootstrap test; Figure 3-2B). The increase in CMI was

larger from load 2 to 3 than from load 3 to 4 (p = 0.0006, bootstrap test), providing possible

evidence of the plateau observed by Buschman et al. (2011). As in that study, performance

was higher when the ipsilateral square changed than when a contralateral square changed at

all loads (all p < 108, Fisher's exact test; Figure 3-2C).

3.4.2 Selectivity for Position and Color

Activity in all three recorded regions differed by the stimulus. To measure selectivity, we

computed E2, a debiased measure of the proportion of variance in the firing rate explained,

and compared the value against a permutation distribution. During the sample period,

from 80 to 505 ms after sample onset, activity in all three regions differed depending on
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LIP (n = 68) PFC (n = 367) IT (n = 155)

Selectivity for Units E
2  p Units E2 p Units E2 P

Sample

Stimulus Condition 21 0.073 < 10-4 116 0.074 < 10-4 95 0.152 < 10-4

Contralateral Color 5 0.0059 0.0001 45 0.012 < 10-
4  88 0.105 < 10-4

Ipsilateral Color 1 0.0001 0.67 4 0.0004 0.008 6 0.002 0.005

Delay

Stimulus Condition 9 0.022 < 10-
4  103 0.054 < 10-4 4 0.0054 0.004

Contralateral Color 0 0.0003 0.58 27 0.0065 < 10-4 5 0.0033 0.0002

Ipsilateral Color 0 -0.0002 0.67 5 0.0002 0.11 3 0.0001 0.32

Table 3.2: Selectivity for Stimulus Condition and Color. Number of units in each region selective for stimulus

condition, contralateral color, and ipsilateral color at z = 0.01; mean values of E2; and p-values for mean

E
2 . Selectivity was assessed by computing e2 for the given attribute and comparing it against a permutation

distribution (see Methods).

which of the 52 possible stimulus displays had been presented (Table 3.2). Additionally,

within position conditions, the colors of the contralateral squares modulated activity in all

regions. The color of the ipsilateral square also modulated activity in PFC and IT, but this

modulation was weak. Significantly fewer units were modulated by ipsilateral color than

contralateral colors (PFC: 1% vs. 12%, p < 10-9; IT: 4% vs. 57%, p < 10-25, Fisherfs exact

test). Ipsilateral color also accounted for little variance in firing rate relative to contralateral

color (PFC: 22 = 0.0004 vs. 0.013, t(366) = 7.1, p < 101"; IT: E2 = 0.002 vs. 0.106,

t(154) = 10.0, p < 10-17, t-test).

All three regions exhibited stimulus-selective delay period activity in the window from

300 to 1200 ms after stimulus offset (Table 3.2). However, only PFC and IT were significantly

modulated by the contralateral square color. Modulation by contralateral color was weak

in both PFC and IT, with no significant difference between the regions (PFC E2 = 0.0065,

IT f2 = 0.0033; p = 0.11, unequal variance t-test), even though modulation by contralateral

color at sample presentation was substantially stronger in IT than PFC (f2 - 0.105 vs.

0.012; p < 10-15). Because modulation by ipsilateral color was weak during the sample and

non-significant during the delay, we pooled over ipsilateral color conditions when performing

all analyses below.
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Figure 3-3: Topographical Distribution of Selectivity in PFC. Proportions of penetrations yielding any

selectivity for stimulus condition (top) or selectivity for contralateral stimulus colors (bottom) during the

sample (left) or delay (right), as assessed by comparing 62 against a permutation distribution at a = 0.01.

The size of circles indicates the number of penetrations at the given site. Anatomy was reconstructed by

co-registering a post-implantation MRI to a pre-implantation MRI and computing a map of the distance to

cortex along the axis of the recording chamber. as = arcuate sulcus, ps = principal sulcus.
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Figure 3-4: Selectivity for Position and Color. The debiased proportion of variance explained (e2 ) by position

and color in each recorded region. Left: Proportion of variance explained over time. Dotted vertical lines

indicate the onset and offset of the sample. Firing rates were smoothed with a Gaussian of 50 ms FWHM.

Right: Proportion of variance explained over the sample (60 to 505 mg after stimulus onset) and delay (300

to 1200 ms after stimulus offset) epochs. p-values indicate significance by dependent samples t-test. Error

bars are SEM.

Within PFC, stimulus selectivity differed greatly across recording sites. Figure 3-3 shows

the proportion of penetrations that yielded activity selective to stimulus condition and color

for different sites recorded in PFC. Within individual sites, selectivity was similar between

sample and delay, and between stimulus condition and color. A substantially larger propor-

tion of electrode penetrations along the caudal portion of the arcuate yielded selective activity

as compared to the rest of PFC. This region is near the junction of areas 8av, 46v, and 45a

(Saleem et al., 2014), in a location consistent with the ventral prearcuate region identified

by Bichot, Heard, DeGennaro, and Desimone (2015), and the region in which Lundqvist et

al. (2016) found the strongest modulation of spiking activity and gamma modulation during

a sequential multiple-item visual short-term memory task.

Using only two-item trials, we compared selectivity for the position of the contralateral
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square with selectivity for its color. Figure 3-4 shows E2 across the three recorded regions.

At sample presentation, units in all three regions were modulated by both the positions and

the colors of the squares (all p < 0.005, permutation test of mean E2 ). LIP and PFC were

more strongly modulated by the positions of the presented squares than their colors (LIP:

t(67) = 3.7, p = 0.00005; PFC: t(366) = 8.0, p < 10-13, t-test; Figure 3-4). By contrast,

in inferotemporal cortex, neurons were more strongly modulated by color than position

(t(154) = 7.1, p < 10-10). During the delay, PFC remained more strongly modulated by

position than color (PFC: t(366) = 7.9, p < 10-13). Position selectivity persisted in LIP, and

was significantly stronger than the insignificant color selectivity (t(67) = 4.4, p < 0.0001).

During two-item delays, IT was not significantly selective for either position or color (both

p > 0.4). Thus, PFC and LIP preferentially represented stimulus positions, whereas IT

preferentially represented stimulus colors.

Since colors in the change localization task were different for every square, position se-

lectivity could potentially reflect a unit's preference for colors shown at some squares over

colors shown at other squares. To fully disentangle position from color selectivity, in a subset

of sessions, we recorded from PFC and IT while the animal passively fixated single squares

of all possible colors at all possible locations. Both regions were selective to position and

color (all p < 0.0001, permutation test of E2; Figure 3-5). IT, but not PFC, also showed a

significant interaction (IT: p < 0.0001, PFC: p = 0.07). As in the change localization task,

more variance was explained by position than color or interactions in PFC (position vs.

color: t(135) = 5.6, p < 10-6; position vs. interaction: t(135) = 6.0, p < 10-7, t-test), and

more variance was explained by color than position or interactions in IT (color vs. position:

t(126) = 8.8, p < 10-14; color vs. interaction: t(126) = 8.5, p < 10-13, t-test).

3.4.3 Modulation by Load

Firing rates at sample were significantly modulated by load in PFC, but no significant dif-

ferences were present in LIP or IT. Figure 3-6 shows average unit activity over time in the

three recorded regions. In PFC, the strength of the initial response transient (from 100
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Figure 3-5: Selectivity for Position and Color During Passive Fixation. A: The debiased proportion of

variance explained (E2) by position, color, and their interaction in PFC (n = 136 channels) and IT (n = 127

units). Left: Proportion of variance explained over time. Dotted vertical line indicates the onset of the

stimulus. The stimulus was presented for 106 ms, followed by a 106 ms blank period. Firing rates were

smoothed with a Gaussian of 30 ms FWHM. Right: Proportion of variance explained from 60 to 180 ms

after stimulus onset. p-values indicate significance by dependent samples t-test. Error bars are SEM.

B: Average responses to positions and colors, z-scored with respect to activity during the baseline (80 to

150 ms after stimulus offset). For each unit, prior to averaging, positions were sorted according to the

maximum response over colors, and colors were sorted according to the maximum response over positions.

To avoid circularity, sort order was determined on odd presentations, and responses were measured on even

presentations.
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Figure 3-6: Changes in Firing Rate with Load. Firing rates in LIP, PFC, and IT, baseline-subtracted and

normalized by the baseline standard deviation, and smoothed with a Gaussian of 75 ms FWHM. Error bars

are SEM after removing firing rates averaged across loads by unit.
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to 200 ms after sample onset) decreased with load (F(2, 732) = 36.6, E = 0.59, p < 10-9,

repeated measures ANOVA with Greenhouse-Geisser correction). During this period, firing

rates were higher at 2 compared to loads 3 and 4 (load 2 vs. 3: t(366) = 5.0, p < 10-;

load 2 vs. 4: t(366) = 6.4, p < 10-9), and at load 3 compared to load 4 (t(366) = 6.4,

p < 10-9, t-test). However, the strength of the sustained response (from 300 to 505 ms after

sample onset) increased with load (F(2, 732) = 16.4, E = 0.59, p < 10-4). Firing rates were

higher at loads 3 and 4 compared to load 2 (load 3 vs. 2: t(366) = 5.0, p < 10-6; load 4

vs. 2: t(366) = 3.9, p = 0.0001). There was no significant difference between load 3 and 4

(t(366) = 1.1, p = 0.24).

After sample presentation, firing rate modulation by load disappeared, but was reestab-

lished just before the onset of the test stimulus (Figure 3-6). In the middle of the delay

(from 300 to 900 ms after sample offset), there was no difference in firing rate between load

conditions in any region (all p > 0.27, repeated measures ANOVA with Greenhouse-Geisser

correction). However, over the 200 ms before test stimulus presentation, firing rates in all re-

gions increased (LIP: t(67) = 5.3, p < 10-'; PFC: t(366) = 7.1, p < 10-11; IT: t(154) = 4.8,

p < 10-'). During this period, LIP and PFC were modulated by load (LIP: F(2, 134) = 8.1,

F= 0.61, p = 0.003; PFC: F(2, 732) = 17.1, E = 0.62, p < 10-). In PFC, firing rates were

higher at loads 3 and 4 compared to load 2 (load 2 vs. 3: t(366) = 4.0, p < 0.0001; load 2 vs.

4: t(366) = -4.4, p < 0.0001) and at load 4 compared to load 3 (t(366) = 3.3, p = 0.001).

In LIP, a firing rates were greater at load 3 than load 2 (t(67) = 3.7, p = 0.0004), and

marginally greater at load 4 than load 2 (t(67) = 2.6, p = 0.01), but not significantly dif-

ferent between loads 3 and 4 (t(67) = 0.39, p = 0.70). There was no significant modulation

by load in IT in any epoch. However, IT firing rates were suppressed relative to baseline in

the middle of the delay (t(154) = 3.6, p = 0.0005), in contrast to PFC firing rates, which

were enhanced (t(366) = 3.7, p = 0.0003). No significant difference between baseline and the

middle of the delay was observed in LIP (t(67) = 0.1, p = 0.90). Thus, although IT activity

during the delay bore little relationship to the contents of visual short-term memory, it was

nonetheless modulated by the task.
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Figure 3-7: Changes in Color Selectivity with Load. The debiased proportion of variance explained (e2) by

contralateral square colors in PFC and IT. Left: Proportion of variance explained over the sample period.

Firing rates were smoothed with a Gaussian of 75 ms FWHM. Right: Proportion of variance explained

averaged over the sample (80 to 505 ms after stimulus onset) and delay (300 to 1200 ms after stimulus offset)

epochs. p-values indicate significance by dependent samples t-test. Error bars are SEM after removing

color selectivity averaged across loads by unit.

Beyond simple investigation of firing rates, we also sought to determine how information

about the colors of the presented stimuli varied with load. Since we recorded few LIP channels

selective for color at sample or delay, and few IT units selective for color during the delay,

we restricted this analysis to the sample and delay periods in PFC and the sample period in

IT. Figure 3-7 shows the proportion of variance explained by the colors of all stimuli (E2),

including possible interactions between stimuli, in PFC and IT. At sample presentation and

during the delay, color selectivity was greater in PFC at loads 3 and 4 than at load 2 (load 3

vs. 2 at sample: t(366) = 3.8, p = 0.0001; load 4 vs. 2 at sample: t(366) = 3.8, p = 0.0002;

load 3 vs. 2 during delay: t(366) = 2.8, p = 0.005; load 4 vs. 2 during delay: t(366) = 2.3,

p = 0.02, t-test), but there was no significant difference between loads 4 and 3 (sample:

t(366) = 0.5, p = 0.61, delay: t(366) = -0.3, p = 0.78). In IT, color selectivity did not

increase with load. It was not significantly different between loads 2 and 3 (t(154) = -0.2,

p = 0.83), but decreased at load 4 (load 2 vs. 4: t(154) = 3.6, p = 0.0004; load 3 vs. 4:

t(154) = 5.3, p < 10-6).
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Figure 3-8: Scaling of Color Selectivity with Load. Change in debiased proportion of variance explained

(E ) by contralateral square colors in PFC and IT with number of squares. p-value for PFC sample versus

delay reflects significance by a dependent samples t-test. p-values for PFC versus IT reflect significance by an

unequal variance t-test. p-values at bottom reflect significant differences from zero according to a one-sample

t-test. Error bars are SEM.

Thus, while PFC carried more color information as additional squares were added to the

display, IT carried less. To verify that this regional difference was statistically significant, we

computed the change in the proportion of variance explained (E') by color with load in PFC

and IT for each unit by linear regression, then averaged these values across the population of

units (Figure 3-8). The proportion of variance explained increased with load in PFC during

the sample (t(366) = 3.8, p = 0.0002, t-test) and delay (t(366) = 2.3, p = 0.02), but there

was no significant difference between effects during the two epochs (t(366) = 2.0, p = 0.09,

t-test). In IT, it instead decreased with load during the sample (t(154) = 3.6, p = 0.0004).

Changes with load were significantly different between regions (PFC sample vs. IT sample:

t(185.6) = 4.6, p < 10'; PFC delay vs. IT sample: t(173.8) = 4.0, p < 0.0001, unequal

variance t-test). We observed a similar pattern if only units selective in the given epoch were

included in this analysis.

We also confirmed this difference between load effects in PFC and IT in a different way, by

performing a classification analysis. Holding the colors of other contralateral squares fixed,

we trained a linear support vector machine to discriminate the color of a single contralateral

square based on activity during the sample from units for which we recorded at least 14 trials
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Figure 3-9: Change in Color Classification Performance with Load. A: Classification performance by load

condition and number of units, in PFC (n = 361) and IT (n = 127). B: Change in log odds ratio of correct

classification with the number of squares, in PFC and IT. Error bars are the subsampling estimate of SEM

with finite population correction (see Methods).
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of each contralateral condition. We trained the classifier on all but one trial and tested its

performance on the held out trial, for all 14 possible train/test splits. We then determined

how classification performance changes with the number of squares, using logistic regression

to determine how the log odds ratio of correctly classifying the color of a given square changed

with the number of squares present in the display (see Methods).

This analysis measures information about an individual square, rather than all squares,

but the results correspond to expectations from the analysis of explained variance above.

In IT, classification accuracy using random subsamples of 1 to 64 units decreased as load

increased (p < 0.005, test of difference in logistic regression / from zero by subsampling).

Thus, IT conveyed less information about any given square as load increased, as expected

if total information (about all squares) did not increase or increased sublinearly with load.

However, in PFC, classification performance did not change with load regardless of the

number of channels used (all p > 0.4). Thus, PFC conveyed approximately the same amount

of information about any given square regardless of load, as expected if information increased

linearly with load. Averaged across loads, classification performance based on a single IT

unit was equivalent to between 23 and 32 PFC channels (1 IT unit: 57.6%; 23 PFC channels:

56.2%; 32 PFC channels; 58.1%). With these numbers of units, the decrease in log odds ratio

of correct classification with load was significantly higher in IT than PFC (1 IT unit vs. 23

PFC channels, p = 0.02; 1 IT unit vs. 32 PFC channels, p = 0.04, subsampling), confirming

that IT was more strongly capacity-limited than PFC.

3.4.4 Effect of Crowding

As shown in Figures 3-4 and 3-5, PFC was more sensitive to position than IT. Thus, one

possible explanation for the difference between effects of load in PFC and IT is a difference

in receptive field sizes. If neurons only represent the contents of their receptive fields but

have a fixed representational capacity, then presenting additional squares outside of the

receptive fields would increase the amount of information represented at the population

level. Presenting additional squares inside of the receptive fields would leave the amount of
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information unchanged, or perhaps produce a decrease due to interference.

To examine this possibility, we manipulated the distance between squares, so that two

squares were either "crowded" or "uncrowded." In both uncrowded and crowded conditions,

we presented one square in either the upper or lower quarter-field, with the quarter-field

randomized by session. In uncrowded conditions, we presented a second square along the

horizontal meridian. In crowded conditions, we presented the second square adjacent to

the first (Figure 3-10A). This second square had the same pair of possible colors in both

conditions. We computed E' for the 4 possible color combinations of these two squares, and

compared values between the crowded and uncrowded conditions at loads 3 and 4.

Color selectivity in PFC did not decrease with crowding. Instead, at sample and during

the delay, the square colors explained more variance in the crowded condition compared

to the uncrowded condition (sample: F(1, 366) = 10.6, p = 0.001; delay: F(1, 366) =

7.0, p = 0.009, ANOVA on condition and load with repeated measure of unit; Figure 3-

10B). Explained variance (e') was greater in the crowded condition at both load 3 (sample:

t(366) = 2.6, p = 0.01; delay: t(366) = 2.1, p = 0.04, t-test) and load 4 (sample: t(366) =

2.4, p = 0.01; delay: t(366) = 2.3, p = 0.02). In IT, there was no significant effect of

crowding (F(1, 154) = 1.5, p = 0.23, ANOVA). Although we are unsure why color selectivity

in PFC should increase with crowding, the presence of an increase, rather than a decrease,

indicates that differences in modulation by load between PFC and IT cannot be explained

solely by differences in receptive field sizes.

We performed further analyses to examine possible explanations for the increase in in-

formation in PFC in the crowded conditions. We first examined whether the increase result

from systematic bias in color selectivity for the crowded square positions compared to the

horizontal meridian. At load 2, there was no significant difference in the proportion of vari-

ance explained by square color between the two positions in either region (PFC sample:

t(366) = -0.78, p = 0.44; PFC delay: t(366) = -0.35, p = 0.73; IT: t(154) = -0.41,

p = 0.68). We next apportioned the variance explained by color into linear and nonlinear

components (Figure 3-10C). The linear component reflects variance explained by modeling
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by 2.2 degrees of visual angle from another square. B: Debiased proportion of variance explained (e ) by

the colors of two uncrowded or crowded squares in PFC and IT, in uncrowded (dark colors) and uncrowded
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Error bars are SEM.
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firing rates as the sum of coefficients reflecting the square colors; the nonlinear component

reflects variance explained by the specific combination of the two colors. In PFC, we found

that both linear and nonlinear explained variance increased in the crowded condition com-

pared to the uncrowded condition during the sample and delay (linear sample: t(366) = 2.3,

p = 0.02; nonlinear sample: t(366) = 2.6, p = 0.005; linear delay: t(366) = 2.2, p = 0.03;

nonlinear delay: t(366) = 2.5, p = 0.01), but there was no significant interaction (sample:

F(1, 366) = 0.76, p = 0.38; delay: F(1, 366) = 1.6, p = 0.21). However, in IT, linear in-

formation decreased with crowding (t(154) = 2.6, p = 0.009), while nonlinear information

increased (t(154) = 3.7, p = 0.0003), and the interaction was significant (F(1, 154) = 13.1,

p = 0.0004). Thus, although crowding did not significantly affect the overall proportion of

variance explained by color in IT, it did affect how color was represented.

3.4.5 Effects at Test

When the test screen is presented, the animal must use its knowledge of the previously pre-

sented stimuli to make a saccade. We investigated how the changed square is represented

during this epoch. We fit a model including the test display, sample display, and the square

that changed, and tested how much variance each could explain when excluding contribu-

tions of the remaining factors. Figure 3-11A shows the results. In the window from 70 to

161 ms after test onset, activity in both PFC and IT reflected all three factors (all p < 10-4,

permutation test; see Methods). PFC also showed weak but significant color-selective per-

sistent activity during the final 91 ms of the delay (E' = 0.0036, p < 10-4), and variance

explained by the sample color did not change significantly at test (t(366) = -0.5, p = 0.60,

t-test). By contrast, IT showed no significant color-selective persistent activity at the end of

the delay (e' = -0.0006, p = 0.79, permutation test), but carried sample color information

at test (difference: t(154) = 4.3, p < 106, t-test). Sample color explained more variance at

test in IT than PFC (t(227.8) = 3.9, p = 0.0001, unequal variance t-test), and the difference

between variance explained by sample color during the delay versus test was significantly

greater in IT than PFC (t(235) = 5.0, p < 10-5).
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Figure 3-11: Selectivity at Test. A: Left: Debiased proportion of variance explained (e ) by test color, sample

color, and changed square over time. Each proportion excludes variance explainable by the remaining factors.

Dotted vertical lines indicate the onset of the test stimulus and the median saccade time. Goldenrod shaded
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Since the task required that the animal make a saccade to the location of the changed

square, we investigated the time course with which the two regions signaled this square's

location. Figure 3-11B shows the time course of explained variance by the changed square

location in IT and PFC. Explained variance exceeded that of a permutation distribution

74 ms after stimulus onset in IT, versus 85 ms after stimulus onset in PFC; the difference

was not statistically significant (p = 0.70, bootstrap test). We also investigated firing rates

directly, taking the mean across each test stimulus display separately for trials when the

target was the ipsilateral square and trials when the the target was one of the contralateral

squares. In both regions, firing rates were significantly higher for contralateral targets than

ipsilateral targets (PFC: t(366) = 8.3, p < 10-14; IT: t(153) = 4.2, p < 10-4, t-test on

normalized firing rates from 70 to 161 ms after test onset). Latencies were comparable. In

PFC, the difference was first significant 61 ms after stimulus onset, while in IT, the difference

was significant 65 ms after stimulus onset.

We further examined whether either region was related to the animal's behavior. We

computed the proportion of variance explained by the changed square position, sample color,

and test color separately for correct and incorrect trials at load 3 or 4 (Figure 3-12). We tested

for significance by permuting between groups while holding the load condition constant,

and comparing the true value at each time point against the maxima or minima of the

permutations across all time points (see Methods). In PFC, a significantly greater proportion

of variance was explained by the changed square position on correct trials compared to

incorrect trials (p < 0.002, two-sided permutation test). This difference was only significant

starting at 131 ms after test stimulus onset, and may thus be related to saccade preparation,

rather than stimulus processing. In IT, a significantly greater proportion of variance was

explained by the sample color on correct trials, from 91 and 119 ms after test stimulus onset

(p = 0.006). Variance explained by the changed square position did not differ on incorrect

trials in IT (p = 0.16), and variance explained by the sample color did not differ significantly

in PFC (p = 0.16). Moreover, in both regions, variance explained by test color did not differ

significantly on incorrect trials (PFC: p = 0.79, IT: p = 0.07), and there was no significant
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permutation test, corrected for tests at every time point; see Methods). Error bars are SEM after removing

average unit-level effects.
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difference in variance explained by sample color at sample presentation or during the delay

(PFC sample: p = 0.46, IT sample: p = 0.37, PFC delay: p = 0.13, IT delay: p = 0.14).

3.5 Discussion

Our study reveals three dissociations between PFC and IT during visual short-term memory

for multiple items. First, during the sample period of the change localization task, activity

in PFC primarily reflected square positions, while activity in IT primarily reflected square

colors, although both areas encoded both attributes. Second, the representational capacity

of PFC for square colors increased with load, while the representation capacity of IT re-

mained constant or decreased. Finally, when the test screen was presented, both PFC and

IT represented which square had changed, with similar time courses. However, the nature

of this representation differed between regions. In IT, selectivity for the changed square

location arose simultaneously with selectivity for the sample colors, which was not present

at the end of the delay. The strength of sample color selectivity, but not changed square

location selectivity, correlated with behavioral performance. By contrast, in PFC, selectiv-

ity for sample colors was consistently present throughout the delay and test periods. The

strength of changed square location selectivity, but not sample color selectivity, correlated

with behavioral performance.

While previous studies did not explicitly compare position and color selectivity between

PFC and IT, our results are broadly consistent with earlier reports. Both PFC and IT neu-

rons are known to be spatially selective (Rao, Rainer, & Miller, 1997; DiCarlo & Maunsell,

2003; Meyer, Qi, Stanford, & Constantinidis, 2011; Kadohisa et al., 2015; Hong, Yamins,

Majaj, & DiCarlo, 2016) and possess spatial receptive fields (Suzuki & Azuma, 1983; Rainer,

Asaad, & Miller, 1998; Op De Beeck & Vogels, 2000; Bichot et al., 2015; Riley, Qi, & Con-

stantinidis, 2016). In both regions, receptive fields are predominantly contralateral (Rainer

et al., 1998; Op De Beeck & Vogels, 2000), consistent with our finding that neither region

contained a strong representation of ipsilateral stimuli. Two studies have explicitly inves-
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tigated color selectivity in PFC during multiple-item visual short-term memory. Like our

study, Lara and Wallis (2014) reported substantially stronger position selectivity than color

selectivity in PFC. Although they found no significant delay period color selectivity what-

soever, in our data, delay period color selectivity was present but weak. This discrepancy

may result from differences in recording sites: We found the strongest concentration of sites

yielding color selectivity in the ventral prearcuate region, which they did not sample. By

contrast, Buschman et al. (2011) found marginally stronger color selectivity in PFC than

we report. However, they restricted their analysis to selective units. In IT, we targeted a

region known for its color selectivity (Komatsu, Ideura, Kaji, & Yamane, 1992; Harada et

al., 2009; Lafer-Sousa & Conway, 2013), and the color selectivity we observe is in line with

these previous studies.

Our observations regarding changes in color information with load in PFC differ slightly

from previous literature. Buschman et al. (2011) reported impaired encoding of individual

squares as the number of squares presented increased. In this study, we found that total

variance explained by the colors of all squares doubled as the number of contralateral squares

increased from two to three, although there was no significant increase in explained variance

from three squares to four. Additionally, we found no dependence of decoding accuracy

on contralateral load. This discrepancy likely results from differences between our analysis

and theirs. When measuring proportion of variance explained, we included not only linear

effects of color, but also their interactions. Additionally, our decoding analysis measured

classification performance while holding colors of other squares constant. Thus, our measures

of color selectivity incorporate both linear effects of individual square colors and nonlinear

interactions between squares. Since Buschman et al. (2011) computed variance explained by

square color without taking into account colors of other squares, they measured only linear

effects of individual square colors, and not nonlinear interactions between squares. Such

nonlinear interactions are a form of mixed selectivity, an inherent and behaviorally relevant

feature of prefrontal neurons (Rigotti et al., 2013; Fusi, Miller, & Rigotti, 2016). Applying

our analysis to their data yielded results qualitatively similar to those in Figure 3-7. The
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absence of a detectable capacity limit in PFC is in line with the lack of saturation with

capacity in measures based on local field potentials (Kornblith, Buschman, & Miller, 2016).

Previous studies have reported attenuated activity when multiple stimuli are presented

simultaneously (Sato, 1989; E. K. Miller, Gochin, & Gross, 1993; Rolls & Tovee, 1995;

Chelazzi et al., 1998; Missal et al., 1999; Zoccolan et al., 2005). Since responses to simul-

taneously presented stimuli closely resemble the average response to the individual stimuli,

this attenuation is believed to result from a normalization process (Zoccolan et al., 2005).

Consistent with these previous studies, we found that manipulations of stimulus load or

position had little effect upon the total proportion of variance in IT firing rates that could

be explained by the stimulus colors.

Beyond stimulus representation at sample presentation, our study provides insight into

how the animal might maintain these stimuli in short-term memory and determine which

stimulus changed at test. Although LIP and PFC exhibited robust stimulus-selective delay

period activity, as at sample presentation, they primarily represented the positions of the

stimuli, and not their colors. In IT, we observed very little stimulus-selective delay period

activity, and the population ceased to reflect sample stimulus colors prior to test stimulus

onset. Firing rates were suppressed relative to baseline independent of the stimuli to be

maintained. Nonetheless, we observed a resurgence of modulation by sample color as neurons

responded to the test stimulus. In PFC, modulation by sample color did not change between

the end of the delay and the test period, but shortly after test stimulus onset, both PFC

and IT signaled which stimulus in the display had changed.

Compared with previous studies of short-term memory in IT, we found weaker stimulus-

selective delay period activity, but comparable modulation by stimuli held in short-term

memory at test. In delayed match to sample and visual search tasks, stimulus-selective

delay period activity is present in 10-50% of IT units (Fuster & Jervey, 1982; Miyashita &

Chang, 1988; Chelazzi et al., 1998; Freedman, Riesenhuber, Poggio, & Miller, 2003; Sobotka,

Diltz, & Ringo, 2005; Woloszyn & Sheinberg, 2009). We observed stimulus-selective delay

period activity in only 3% of recorded units (4/155). As we discuss in Appendix A, this
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discrepancy is unlikely to arise from differences in statistical power. It may instead relate

to differences between tasks: While most previous studies rewarded animals for identify-

ing matching stimuli, we rewarded animals for identifying the stimulus that did not match.

But even in the near absence of stimulus selectivity during the delay, we observed modula-

tion by the sample stimulus at test stimulus presentation, consistent with previous reports

(E. K. Miller, Li, & Desimone, 1993; E. K. Miller & Desimone, 1994; Chelazzi et al., 1998;

Pagan, Urban, Wohl, & Rust, 2013). This modulation reflected both the location of the

changed square and the direction of the color change, distinguishing a change from color 1

to color 2 from a change from color 2 to color 1.

How could IT neurons signal a color change without persistent activity? A common

hypothesis in the literature is that such signals originate from PFC (E. K. Miller et al.,

1996; Chelazzi et al., 1998; Pagan et al., 2013). However, in our task, color representation

was weak in PFC, both at sample and during the delay. We cannot dissociate selectivity

to a specific color change from a combination of persistent activity reflecting the sample

stimulus and a visual response to the test stimulus. However, we observed no increase in

selectivity for the sample stimulus at test stimulus presentation relative to the preceding

delay. Such an increase might be expected if PFC provided a feedback signal to IT reflecting

the sample colors only after the test stimulus was presented. An alternative possibility is that

IT represents the previously presented stimulus not through persistent activity, but through

changes in synaptic weights. Whether such changes in synaptic weights truly constitute

"working memory" is unclear. In PFC, such synaptic changes have been termed "activity-

silent working memory" (Stokes, 2015), and modeling studies have confirmed their adequacy

to support behavior in working memory tasks (Mongillo et al., 2008; Lundqvist et al., 2011).

However, IT neurons show similar dependence of visual response upon stimulus history in

the absence of a task (Vogels, Siry, & Orban, 1995) and even under anesthesia (E. K. Miller,

Gochin, & Gross, 1991). These adaptation effects typically take the form of repetition

suppression (E. K. Miller et al., 1991; Vogels et al., 1995; Sawamura, Orban, & Vogels, 2006;

Vogels, 2016).
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Given that IT can signal stimulus changes even in the absence of a task, are such sig-

nals behaviorally relevant? An animal could conceivably implement our change localization

task by simply averaging activity in IT related to the square locations, and saccading to

the location producing the strongest response. We found a link between the strength of the

representation of the sample stimulus at test stimulus presentation and the animal's perfor-

mance, suggesting that a causal role is plausible. Moreover, previous studies have implicated

such passive signals in visual short-term memory tasks. E. K. Miller and Desimone (1994)

showed that animals trained to perform a delayed match to sample task responded to any

repeated stimulus as a match, even if it did not match the initial sample. Only after sub-

sequent training with repeated stimuli did animals learn to compare stimuli to the sample.

Most neurons were suppressed by match stimuli; these neurons were also suppressed by re-

peated non-match stimuli. Some neurons showed enhanced responses to match stimuli; these

neurons did not show enhanced responses to repeated non-match stimuli. However, the pro-

portion of enhanced neurons increased after training with repeated non-match stimuli, and

in one of the two animals, no neurons showed match enhancement prior to training. Thus,

the default strategy that monkeys use to perform short-term memory tasks may rely on

passive repetition suppression effects in IT. Stimulation studies provide additional evidence

for a role of IT in detecting stimulus changes. When Parvizi et al. (2012) stimulated a face-

selective region in human temporal cortex while the subject attended to non-face objects,

the subject reported a non-specific sensation that something in his visual field had changed.

In monkeys, stimulation of anterior IT sites at sample presentation results in little deficit

in delayed match to sample tasks, and evidence for deficits from delay period stimulation is

mixed, but stimulation during test stimulus presentation produces profound deficits (Kovner

& Stamm, 1972; Delacour, 1977; Moeller, Crapse, Chang, & Tsao, 2017).

What, then, is the role of PFC and LIP in our task? Although both regions only weakly

represented square colors, they robustly represented stimulus positions, and this robust rep-

resentation persisted throughout the delay. To some degree, this position-selective persistent

activity may be automatic: It is present even before training on a visual short-term mem-
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ory task (Meyer et al., 2011; Meyers, Qi, & Constantinidis, 2012). However, it could also

play a more active role, helping to direct attention at test stimulus presentation and shield

stimulus representations in visual cortex from interference. Human studies suggest that di-

recting attention toward a particular stimulus location long after sample stimulus offset, but

before test stimulus onset, greatly enhances behavioral performance (Griffin & Nobre, 2003;

Landman, Spekreijse, & Lamme, 2003; Makovski, Sussman, & Jiang, 2008). These effects

are present even when the test display probes only a single item (Griffin & Nobre, 2003), or

when compared to a condition in which a location cue appears simultaneously with the test

display (Landman et al., 2003; Makovski et al., 2008). Given that adaptation effects in IT

dissipate shortly after the onset of the response to the stimulus (Vogels, 2016), maintaining

a representation of stimulus positions may prepare LIP and PFC to process the test stimulus

display and convert IT input to a behavioral response. In tasks involving maintenance of

color information, the relationship between activity in human parietal cortex and individual

differences in visual short-term memory capacity (Vogel & Machizawa, 2004; Vogel et al.,

2005; Todd & Marois, 2005) may reflect the importance of stimulus position signals in the

readout of stimulus changes, rather than a direct role for parietal cortex in representing the

maintained stimuli.

In summary, our study directly implicates inferotemporal cortex as a bottleneck in visual

capacity, and in performance of a multiple-item visual short-term memory task. Compared

with prefrontal cortex, selectivity for colors of visual stimuli in IT was both stronger and

more strongly affected by load. Although persistent activity in both PFC and IT barely

reflected colors of previously presented stimuli across the delay, IT activity reflected the

difference between sample and test stimuli, and the strength of this representation predicted

performance. While activity in IT reflects stimulus changes even in the absence of persistent

activity and cognitive demand, it may nonetheless play an essential role in visual short-term

memory tasks.

97



3.6 Contributions and Acknowledgements

I designed the experiments in this chapter with Earl K. Miller, and performed the experiments

with Roman Loonis, Jefferson E. Roy, and Jacob A. Donoghue. I analyzed the data and

wrote the chapter. All authors commented on the manuscript.

We thank S. L. Brincat for comments on the manuscript. This work was supported by

an NIMH Conte Center grant, The Picower Foundation, and an NSF Graduate Research

Fellowship.

98



Chapter 4

Conclusion

4.1 Summary of Results

Our studies investigated how the number of items to be maintained in visual short-term

memory affect local field potentials and representations throughout the brain. Table 4.1

summarizes the main findings. Both experiments examined neural activity recorded over

the course of a change localization task, in which animals viewed a sample display consisting

of a set of colored squares, remembered them across a brief delay, viewed a subsequent test

display with a change to the color of one of the squares, and made a saccade to this changed

square to receive juice reward. As the number of items to be remembered increased, animals'

performance was substantially impaired.

In chapter 2, we showed that this behavioral limit to cognitive capacity is not manifested

in local field potentials recorded from the primate lateral intraparietal area (LIP), frontal eye

field (FEF), and lateral prefrontal cortex (PFC) in any recognizable way. In both regions,

we observed changes in oscillatory power and synchrony that correlated with the number of

items to be remembered, but did not saturate, even when performance was heavily degraded.

Nonetheless, there were clear dissociations between effects at sample presentation and during

the delay, and between power changes at lower (alpha, beta, and low gamma) frequencies

and changes at higher (high gamma) frequencies. As monkeys viewed the stimulus array,

99



Finding Figure

Low frequency power at stimulus presentation tracks total load, whereas high frequency power primarily
2-4

tracks contralateral load.

Low frequency power decreases with load at stimulus presentation, but increases with load during the
2-4

delay.

Oscillatory power is modulated by load beyond behavioral capacity. 2-5

Although low frequency power is modulated by the total number of stimuli present, position information in
2-6

power primarily reflects contralateral stimulus positions.

Low frequency power decreases are similarly strong in position-selective and non-position-selective
2-7

electrodes.

Position and color information in PFC are strongest within the same circumscribed region. 3-3

LIP and PFC primarily represent stimulus positions, whereas IT primarily represents stimulus colors. 3-4, 3-5

Stimulus load has little effect upon overall firing rates in LIP, PFC, or IT. 3-6

IT has a stronger limit to representational capacity for stimulus colors than PFC. 3-7, 3-8, 3-9

IT represents stimulus changes in the near-total absence of stimulus-selective persistent activity. 3-11

The strength of IT representations of stimulus changes correlates with behavioral performance. 3-12

Table 4.1: Main Findings.

lower frequency power decreased with the total number of stimuli present, while higher

frequency power instead increased, and this increase was driven primarily by the number

of contralateral stimuli. As the animals maintained the previously presented stimuli in

visual short-term memory, effects at lower frequencies was reversed: Power increased with

load in proportion to the number of contralateral items. No effects were present at higher

frequencies. We further showed that the power decrease at lower frequencies during sample

presentation was present in all electrodes regardless of position selectivity, while the power

increases at higher frequencies during sample presentation and at lower frequencies during

the delay was primarily localized to electrodes that conveyed information regarding stimulus

positions.

In chapter 3, we investigated stimulus representation in a similar task in LIP, PFC, and

inferotemporal cortex (IT), which provides the predominant ventral stream input to PFC. We

found striking dissociations between these regions. Although square positions were relevant

during the test period of the task, the task required only that colors, and not positions, were

maintained across the delay period. Nonetheless, at both sample and delay, LIP and PFC
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preferentially represented square positions, rather than colors. By contrast, at sample, IT

preferentially represented square colors, rather than positions. However, all three regions

conveyed some information regarding both stimulus position and color, and we were able to

measure changes in color representation in PFC and IT as load increased. We found that

PFC conveyed more total color information when more colored squares were present on the

screen, in line with our finding that local field potential measures did not saturate, while IT

conveyed the same amount of color information or less. Thus, the representational capacity of

IT, but not PFC, appears to be fixed. While PFC and LIP conveyed substantial information

regarding square positions as the animal maintained the previously presented stimulus in

memory, little color selectivity was present in any recorded region across this brief delay.

However, in IT, but not PFC, we observed a resurgence of information at test presentation,

reflecting the difference between the sample and test displays. Both regions signaled the

location of the changed square with similar, short latencies. Activity at test presentation in

both regions was related to behavior, but in different ways. PFC more strongly represented

the location of the changed square on correct trials than incorrect trials, but this difference

had a relatively long latency, and may reflect its role in generating the saccade to the changed

square. By contrast, IT more strongly represented the difference between sample and test

square colors on correct trials, with a latency consistent with the onset latency of the visual

response. This study implies a stronger capacity limit in IT than PFC, and suggests that

IT may directly participate in producing the behavioral response.

4.2 Non-Selective Modulation in Cognitive Tasks

These findings demonstrate striking dissociations between the degree of neural activity and

the information represented in these measures. In chapter 2, we found that the power of

lower frequency oscillations at stimulus presentation scaled with the number of items dis-

played on the screen, and these changes were equally strong regardless of the hemifield in

which the items were presented (Figure 2-4). The same frequency band also represented
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stimulus positions, but this representation was far stronger for items presented in the hemi-

field contralateral to the recording site than for ipsilaterally presented items (Figure 2-6), and

modulation by load was present even in electrodes that did not carry position information

(Figure 2-7). Reexamination of the data from (Buschman et al., 2011) revealed a substan-

tially stronger representation of contralateral square positions and colors than ipsilateral

square positions and colors in PFC spiking (position: E 2 = 0.040 vs. 0.0081, t(574) = 9.0,

p < 10-17, t-test; color: E2 = 0.0066 vs. 0.0011, t(574) = 4.8, p < 10-5). Thus, these lower

frequency oscillations changed with ipsilateral load, but changes did not track information

represented within the region, either in spiking or in the local field potentials themselves.

In chapter 3, LIP, PFC, and IT all showed similarly elevated firing rates at the end of the

delay of the change localization task, as the animal anticipated the onset of the test stimulus

(Figure 3-6). This "ramping" in firing rate toward the end of the delay is a common feature

of neural activity during cognitive tasks (Rainer & Miller, 2002; Brody, Hernaindez, Zainos,

& Romo, 2003). In prefrontal cortex, it is often accompanied by increased selectivity for the

stimulus held in visual short-term memory. However, in IT, we observed no selectivity for

previously presented stimuli during this period. Importantly, this ramping does not appear

to result purely from decay of recurrent activity following visual stimulation. Although we

do not present the results in chapter 3, we also recorded from the same regions in the same

sessions during a delayed saccade task with a shorter delay (1 second vs. 1.2 to 1.5 seconds in

the change localization task). In this task, ramping was also present in all three regions, and

occurred earlier relative to the change localization task. Ramping thus appears to reflect

anticipation of the end of the delay period, rather than the time elapsed since stimulus

presentation.

These findings reveal the extent of non-selective modulation throughout the brain, and

underscore the difficulty of understanding the brain's representations based on net measures

of neural activity. We remain unsure of the sources of these non-selective signals. The low

frequency oscillations may reflect integration of intrinsic input and input from contralateral

PFC among circuits generating beta oscillations. The ramping signals in IT may originate
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from LIP or PFC, while the ramping signals in the latter regions may be generated intrin-

sically. Alternatively, either form of non-selective modulation could originate or propagate

through afferents from subcortical regions such as the thalamus or midbrain.

4.3 What Does Prefrontal Cortex Represent?

Much of the literature regarding primate lateral prefrontal cortex emphasizes its flexibility

(E. K. Miller & Cohen, 2001; Barbas & Zikopoulos, 2007; Stokes et al., 2013). However,

the results in chapter 3 suggest that prefrontal representations are surprisingly inflexible. In

a task requiring active maintenance of colors in visual short-term memory, most selective

prefrontal neurons represented only stimulus positions. Moreover, comparison of Figures

3-4 and 3-5 reveals strikingly little difference in prefrontal representation between passive

fixation and the task. In Appendix B, we show further results obtained from PFC during

passive fixation, revealing the robustness of PFC activity in the absence of a task.

While most studies of PFC have investigated activity as animals performed a cognitive

task, studies performed during passive viewing show many of the same characteristics. An

early study showed that lateral PFC neurons have circumscribed receptive fields that can

be mapped in a passively fixating animal (Suzuki & Azuma, 1983). Scalaidhe, Wilson, and

Goldman-Rakic (1999) localized a subregion of PFC containing a high proportion of neurons

that responded selectively to faces during passive fixation. Many such neurons exhibited

prolonged responses for up to 200 to 1500 ms after stimulus offset, even in an untrained

animals. Meyers et al. (2012) recorded from PFC before and after animals were trained on

a delayed matching task. Activity during passive viewing prior to training closely resembled

activity during task execution after training. McKee, Riesenhuber, Miller, and Freedman

(2014) found marginally greater category selectivity as animals performed a task requiring

categorization of morphed cat and dog stimuli than when animals passively viewed the

stimuli, although a classifier was capable of decoding the categories from population activity

in both cases.
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Existing literature provides little insight into the nature of PFC stimulus representation.

Categorization tasks indicate that, at least for highly trained stimuli, PFC neurons can be

sensitive to high-level, behaviorally relevant features (Freedman, Riesenhuber, Poggio, &

Miller, 2001; Freedman et al., 2003; McKee et al., 2014). Several studies have compared the

selectivity of LPFC neurons for stimulus location and identity (Everling, Tinsley, Gaffan,

& Duncan, 2006; Meyer et al., 2011; Kadohisa et al., 2015; Bichot et al., 2015; Riley et

al., 2016). These studies suggest that selectivitiy for stimulus location is generally stronger

and more prevalent, as we found in chapter 3. The extent of the difference in selectivity

for stimulus positions versus features in PFC versus IT is somewhat surprising, given that

ventrolateral PFC anterior to the arcuate is believed to receive most of its visual input from

IT (Saleem et al., 2014). It is possible that the representation of position is inherited from

FEF, which is more strongly connected with retinotopic visual areas (Stanton, Bruce, &

Goldberg, 1995; Schall, Morel, King, & Bullier, 1995) and is known to contain a large pop-

ulation of neurons with localized visuospatial receptive fields (Mohler, Goldberg, & Wurtz,

1973). Alternatively, the spatial selectivity we observe in PFC may arise from inputs from

the posterior portion of IT, where neurons exhibit greater retinotopic organization and se-

lectivity to spatial position than in anterior portion from which we recorded in chapter 3

(Boussaoud, Desimone, & Ungerleider, 1991; Yasuda, Banno, & Komatsu, 2010).

The studies presented in chapters 2 and 3 use artificial stimuli (colored squares), and may

not generalize to naturalistic stimuli or scenes. Given its position at the apex of the cognitive

hierarchy, PFC visual representations may be selectively tuned to complex, ecologically rele-

vant stimuli. Alternatively, PFC may mix representations of differing levels of sophistication

originating from many levels of the visual system. Since most cognitive tasks involve the

discrimination or maintenance of visual stimuli, understanding what kinds of visual informa-

tion enter PFC could yield novel insight into how these representations are transformed to

produce behavior. Given the ease with which PFC representations can be activated during

passive visual paradigms, the same approaches to understanding visual representation that

have proved fruitful in IT can be easily applied to PFC.
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4.4 Parallel Mechanisms for Short-Term Memory Re-

visited

On the basis of differences between the characteristics of populations of IT neurons that were

suppressed or enhanced to matching stimuli relative to non-matching stimuli, E. K. Miller

and Desimone (1994) proposed that short-term memory reflects two parallel mechanisms:

One that is passive and automatic, and one that requires active maintenance. Our findings

in chapter 3 implicate the passive mechanism in performance of our change localization task.

This evidence is somewhat circumstantial: While we show a relationship between neural

activity and behavior that is present in the absence of active maintenance signals, we do

not know for certain whether the adaptation effects we observe are necessary or sufficient

for task performance. A causal role is difficult to prove experimentally, particularly in

our change localization task. Although the biological basis of adaptation phenomena is

poorly understood (Vogels, 2016), a hypothetical pharmacological manipulation that affects

adaptation while leaving stimulus selectivity unchanged could yield some evidence. In a task

requiring the animal to report whether or not the display changed, rather than saccade to

a changed square, optogenetic manipulation could also provide some insight. If the animal

selects the response based on the extent of adaptation-mediated repetition suppression, then

inhibiting IT neurons should bias the animal toward a match response, while activating IT

neurons at test stimulus presentation should bias the animal toward a non-match response.

Recent human psychophysics studies have also shown evidence for two separate mech-

anisms of visual short-term memory. Studies of multiple-item change detection paradigms

have compared performance during retro-cued trials, in which a cue signaling a specific item

in the display to be examined is presented long after sample offset but prior to test, to post-

cued trials, in which the cue is presented simultaneously with the test display. The retro-cue

yields a substantial increase in performance relative to the post-cue, effectively doubling

visual short-term memory capacity, even if the delay before the cue onset in the retro-cue

condition is as long as the delay before the test onset in the post-cue condition (Landman
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et al., 2003). Compared to post-cued trials, performance in the presence of a retro-cue is

more strongly affected by visual interference, but less strongly affected by cognitive inter-

ference. The retro-cue advantage disappears if the stimulus is masked before the retro-cue

is presented (Sligte, Scholte, & Lamme, 2008), but retro-cued performance does not change

with a concurrent task at encoding, while post-cued performance suffers (Vandenbroucke,

Sligte, & Lamme, 2011; but see Makovski, 2012). Transcranial magnetic stimulation of dor-

solateral prefrontal cortex impairs performance on post-cued trials, but not retro-cued trials

(Sligte, Wokke, Tesselaar, Steven Scholte, & Lamme, 2011), and activity of visual cortex at

encoding predicts later performance on retro-cued trials (Sligte, Scholte, & Lamme, 2009).

The difference in performance and characteristics between retro-cued and post-cued trials

led Sligte et al. (2008) to propose that they reflect two separate visual short-term memory

stores: a "fragile" store with higher capacity that can be accessed only with the aid of the

retro-cue, and a "robust" store used when the retro-cue is absent.

It is possible that "fragile" visual short-term memory reflects passive storage in visual

regions, which is read out by higher regions in the degree of adaptation at test stimulus

presentation. In this scenario, the retro-cue improves performance by allowing the subject

to direct their attention to the stimulus to be examined prior to test screen onset. Since the

effects of adaptation upon visual responses are strongest during the initial response transient

(Vogels, 2016), by the time a simultaneously presented cue could be processed, information

has already been lost. Because the process is passive, it would be unaffected demands of

intervening tasks, but susceptible to distractors, in line with reported findings. While chal-

lenging to prove definitively, this hypothesis makes some testable predictions. Behaviorally, a

mask presented between the retro-cue and test display should produce a similar performance

degradation to a mask presented between the sample display and retro-cue. Electrophysi-

ologically, if the retro-cue exerts its effect through deployment of spatial attention at test

stimulus presentation, then attention should modulate the degree of adaptation. To our

knowledge, no studies have directly examined adaptation in the context of spatial attention.

Finally, we suggest that task demands and strategies affect which short-term memory
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mechanisms are used, particularly for highly trained animals. E. K. Miller and Desimone

(1994) showed that training animals to perform a delayed match to sample task with repeated

non-match items altered activity in IT, substantially increasing the proportion of neurons

that exhibited enhanced responses to a matching stimulus. Vogels and Orban (1994) reported

heterogeneity of repetition effects in IT in animals performing delayed match to sample task:

In two monkeys, most neurons with significant effects were suppressed to matching stimuli,

while in a third, most neurons were enhanced. Although some visual short-term memory

tasks, such as those requiring maintenance of serial order (Warden & Miller, 2007, 2010),

cannot be solved using adaptation signals alone, many could be, including most delayed

match to sample tasks. As we noted in the introduction, human studies find evidence for

stimulus-selective persistent activity in visual areas as far back as VI (Harrison & Tong,

2009; Serences et al., 2009), but monkey studies have reported mixed evidence for such

representations in retinotopic cortex (Super et al., 2001; Chelazzi et al., 2001; Lee et al., 2005;

Hayden & Gallant, 2013), and in chapter 3, we found little evidence for behaviorally relevant

stimulus-selective persistent activity in anterior IT. It may be that the brain has multiple

mechanisms capable of maintaining the information necessary to solve common short-term

memory tasks, and the presence or absence of persistent activity in sensory regions depends

on the strategy the subject chooses.
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Appendix A

Power Analysis for IT Delay Period

Selectivity

In chapter 3, we reported that only 3% of IT units (4/155) were significantly selective for the

stimulus display during the delay period of our multiple item visual short-term memory task

(permutation test of E2, a = 0.01). Analyzing the power of the study with respect to previous

studies is challenging. In addition to the number of stimuli used, number of trials recorded,

and statistical test, our ability to detect an effect in a given unit depends on how spiking

activity varies across stimuli, trials, and units. Although we use a permutation ANOVA

to test for statistical significance, for test against an F distribution with data conforming

to the standard ANOVA model (observations normally distributed conditioned on the task

condition, with equal within-condition variance), the power for a given unit is ordinarily

computed as a function of the asymptotic value of F, the ratio of the true between-condition

variance to the true within-condition variance. We may also write F as a function of the
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Figure A-1: Power to Detect Significant Units. The solid line represents unit-level power to detect a signif-

icant effect of stimulus condition, for different proportions of explainable single-trial variance (easymptotic).

For tractability, firing rates are assumed to be conditionally normally distributed and homoscedastic, and

power is computed based on an F-test rather than the permutation test used in Chapter 3. The orange circle

in the lower left reflects the observed mean value of E2 (x error bar is 95% CI based on normal approximation)

and the observed proportion of selective units (y error bar is 95% Clopper-Pearson binomial CI). The dashed

line indicates the a of the test.

asymptotic value of E2 , the proportion of trial-to-trial variance explainable by the parameters:

2
2 _ between

Easymptotic - 12 + 2
between + within
2

Obetween
Fasymptotic = 2

2~within
asymptotic

asymptotic +

The average unit-level power for different values of e2symptotic given the number of trials

recorded is shown in Figure A-1. If the value of esymptotic is the same for all units, then

the expected proportion of selective units equals the average unit-level power. In general,

however, the expected proportion of selective units depends not only upon the mean value

of esymptotic but also on its distribution across units. Specifically:

P(unit selective) = P(unit selectivel asymptotic = )P(Eaymptotic --- dx
0
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where P(unit selectiveEymptotic = x) is the power function plotted in A-I and p(Eymptotic

x) is the probability density function of Eymptotic across units. Unfortunately, no previous

studies have attempted to characterize this distribution, and it is likely to depend on the

stimuli used in the task.

We also directly compared our results with those of previous studies. Table A.1 shows

task parameters and proportions of selective units for previous reports of IT delay period

selectivity. Because Woloszyn and Sheinberg (2009) recorded a similar number of trials as

we did (when pooling ipsilateral and contralateral stimulus conditions), we chose to compare

our results directly using their analysis strategy. We first measured firing rates over the

sample period (60-505 ms after stimulus onset), and split them into two halves. We used

one half to select the most and least effective displays, and the other to estimate the area

under the curve (AUC) and stimulus selectivity index (SSI). As in Woloszyn and Sheinberg

(2009), we analyzed only units with AUC > 0.75 and SSI > 0.25 at presentation. For these

31 units, we tested for a significant difference in firing rate over the delay (300-1200 ms after

stimulus offset) between trials on which the most effective display was maintained and trials

on which the least effective display was maintained. On average, this analysis included 18

trials for each display, the same number as Woloszyn and Sheinberg (2009). However, only

10% of units (3/31) showed differential modulation during the delay (Mann-Whitney U test,

S= 0.05; p = 0.20, binomial test), with a mean AUC of 0.5. This proportion is significantly

smaller than the 42% of units (33/79) reported in Woloszyn and Sheinberg (2009) (p = 0.002,

Fisher's exact test).
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Study Stimuli Trials Delay Test % Vis. Sel. % Delay Sel.

Fuster and
2 or 4 colored lights > 5 16-20 s t-test 29% (123/417) 10% (41/416)

Jervey (1982)

Miyashita and
64 fractals 7-16 16 s ? 77% (144/188) 41% (77/188)

Chang (1988)

Eskandar,
> 7 550 ms ANOVA

Richmond, and 32 Walsh stimuli 82% (41/55) N.S.
Optian (992)((.= 15) (last 256 ins) (a =0.05)Optican (1992)

2 (face and pattern) 30-40 5 s 77% (46/60) 18% (11/60)
Gross (1994) (a = 0.01)
Mikami (1995) ? ? 1-4 s ? only selective 11% (19/174)

Chelazzi et al. 2 shapes eliciting 1500 ms t-test
120-144 only selective 49% (54/111)

(1998) differential response (last 500 ms) (a = 0.05)

Freedman et al. 54 morphed cats 1 s ANOVA
>10 48% (213/443) 7% (29/443)

(2003) and dogs (300-1100 ms) (a = 0.01)

Sobotka et al. 8-10 s t-test
2 complex images 17 unspecified 36% (75/211)

(2005) (last 2 s) (a = 0.05)
Woloszyn and Mann-

2 images eliciting 1 s
Sheinberg 18 Whitney U only selective 42% (33/79)

differential response (last 750 ins) ( .5 _______

(2009) (a = 0.05)

permutation
52 displays of > 5 1.2-1.5 s

Chapter 3 ANOVA 61% (95/155) 3% (4/155)
colored squares (p 9) (300-1200 ins) ( .1 _______ _______

b A. 1 P R o(a = 0.01) p

Table A. 1: Previous Reports of IT Delay Period Selectivity. Study is the publication from which the data

were extracted. Stimuli is the stimulus set used for the visual

is the number of repetitions per stimulus analyzed for delay

short-term memory task in the study. Trials

period activity. Delay is the length of the

delay period, with the analysis period relative to stimulus offset given in parentheses if it was not the entire

period. Test is the statistical testing procedure used, including the significance level (a) if specified. %

Vis. Sel. is the proportion of visually selective neurons among those analyzed, or "only selective" if only

visually selective units were recorded in the task. % Delay Sel. is the proportion of neurons with significant

delay period selectivity. (N.S. = not significant; no proportion was provided in this study.) In the latter two

columns, the number of selective units and the total number of units are given in parentheses.
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Appendix B

Prefrontal Stimulus Representation

During Passive Fixation
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Figure B-i: Distribution of Position-Selective Activity During Passive Fixation. Proportions of penetrations

for each site that yielded significant selectivity for position (a = 0.01, permutation test of ry), as assessed

by mapping receptive fields. Stimuli were grids of colored dots subtending 1.5 degrees of visual angle,

presented at presented at locations spanning 24 degrees of visual angle. They were presented individually

as the animal passively fixated a white dot, with a presentation time of 105 ms and a 105 ms blank interval

between presentations.
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Figure B-2: Receptive Fields of Prefrontal Sites. Each row corresponds to an individual recording site in

prefrontal cortex, shown at the left. Columns to the right show average multiunit activity to stimuli presented

at locations spanning 24 degrees of visual angle over different recording sessions. See Figure B-1 for stimulus

descriptions. Time windows were chosen to maximize the proportion of variance explained by position.
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Figure B-3: Representational Dissimilarity Matrices. Representational dissimilarity matrices between pop-

ulation responses to different stimuli in prefrontal cortex and inferotemporal cortex. Each cell reflects an

individual stimulus pair. The animal passively fixated as stimuli were presented for 105 ms, followed by a 105

ms blank period between stimuli. Activity was measured over the period from 80 to 180 ms after stimulus

onset, and z-scored relative to activity during the blank period. Dissimilarity was computed as 1 - r, where

r is the Pearson correlation coefficient.
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