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Abstract

Chemotherapy is widely used in the treatment of solid tumors, but its effects are often asso-
ciated with cancer relapse, metastasis, and drug resistance. The biological mechanisms that
drive the structural and functional changes in cancer cells associated with these features
of disease progression remain poorly understood. Consequently, quantitative characteri-
zation of molecular signaling pathways and changes in cancer cell phenotypes induced by
chemotherapy through the use of in vitro model systems would expand our understanding
of drug mechanisms and provide for putative strategies to counteract drug-induced cancer
progression.

Toward this end, I develop bioimage informatics tools to characterize changes in signaling,
structure, and function of cancer cells from fluorescence microscopy data. I first present
a generally-applicable probabilistic time-series modeling framework to classify cell shape
dynamics. Times-series models draw quantitative comparisons in cell shape dynamics that
are used to distinguish and interpret cellular responses to diverse drug perturbations.

Next, I investigate the effects of doxorubicin, a DNA-damaging chemotherapeutic drug, on
breast cancer cell signaling and phenotype. Bioinformatics analyses of phosphoproteomics
data are first used to infer biological processes downstream of DNA damage response signal-
ing networks altered by doxorubicin treatment. These analyses reveal changes in phospho-
proteins associated with the actomyosin cytoskeleton and focal adhesions. Live-cell imaging
of cell morphology, motility, and apoptosis dynamics reveals a link between doxorubicin-
induced cytoskeletal signaling and morphological elongation, directional migration, and
enhanced chemo-tolerance. These findings imply that sub-maximal tumor killing can exac-
erbate disease progression through adaptive resistance to primary chemotherapy treatment
through DNA damage response-regulated cytoskeletal signaling.

Finally, I combine the results of the phosphoproteomic analysis with phenotypic profiling
to characterize doxorubicin-induced changes in actomyosin signaling that affect cancer cell
shape and survival. I additionally describe a generally-applicable multiplexed fluorescence
imaging framework that uses diffusible nucleic acid probes to detect nearly a dozen subcellu-
lar protein targets within the same biological sample. Taken together, these methodologies
reveal previously-unappreciated effects of chemotherapy on breast cancer signaling and phe-
notype, and demonstrate the value of combining bioinformatics analyses of -omics data with
quantitative fluorescence microscopy as a general strategy in biological mechanism discov-
ery.
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Chapter 1

Introduction

1.1 Chemotherapy in the treatment of breast cancer

Chemotherapy is commonly used in the treatment of solid tumors, including those of breast
tissue origin. Despite many examples of successful clinical response in cancer patients over
the past decades, chemotherapy has posed considerable challenges related to efficacy and
toxicity. Chemotherapy carries many unfavorable side effects and can lead to drug resis-
tance. Doxorubicin is a widely used drug in breast cancer treatment, and although is can
be highly effective upon primary application, subsequent treatments commonly exhibit re-
duced tumor response. What are the reasons for these unfortunate clinical observations of
reduced drug efficacy that manifest from multiple rounds of treatment? Incomplete tumor
eradication upon primary treatment leaves behind surviving cancer cells that are exposed to
sub-lethal doses of the drug. These remaining cells can undergo pronounced genetic, epige-
netic, transcriptional, or protein-level signaling changes that drive important structural and
functional alterations in cancer cells. These alterations may contribute to reduced efficacy
following multiple rounds of treatment. Using in vitro model systems, this thesis combines
phosphoproteomics, quantitative imaging, and molecular biology approaches to investigate
the effects of doxorubicin on breast cancer cell signaling, structure, and function. The goal
of this work is to expand our understanding into how protein-level signaling networks and
subsequent phenotypic changes contribute to cancer cell response to this important clinical
agent.

Doxorubicin is a natural product derived from Streptomyces peucetius and is part of a
class of DNA damaging agents called anthracyclines. This drug was first introduced in the
late 1960s and by the 1970s was considered among the most effective compounds for breast
cancer treatment [24, 176]. Therapies combining doxorubicin with other agents such as 5-
fluorouracil and cyclophosphamide became standard treatment regimens for both metastatic
and adjuvant disease [243]. During the 1970s and 1980s relatively few new chemotherapeutic
drugs were developed that could achieve a substantial improvement in therapeutic efficacy
[241]. The turning point occurred with the development of microtubule-targeting taxanes,
such as paclitaxel and docetaxel, which showed therapeutic effects comparable to, if not bet-
ter than, those of doxorubicin [86]. Despite the growing use of taxanes, clinical trials showed
that inclusion of doxorubicin in combination treatment regimens with cyclophosphamide
and 5-fluorouracil, for instance, were more effective than those that excluded doxorubicin,
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highlighting the importance of this drug in the treatment of breast cancer [73, 81, 94, 87].
Subsequent studies showed that doxorubicin monotherapy was as effective as combination
therapies in terms of overall patient survival. As a result, sequential rounds of doxorubicin

monotherapy were reinstated for the treatment of the majority of breast cancer patients

[242, 34], and anthracyclines continue to be used as a standard post-operative therapy in

the early stages of the disease [105].

In addition to the prevalent use of doxorubicin and other cytotoxic chemotherapies in

the clinic, targeted therapies are also highly effective in particular types of breast cancer.
Gene expression profiling and histopathological staining have enabled tumor subtype clas-
sification - an early chapter in the story of "personalized medicine". The development of

targeted therapies has enabled physicians to match molecular characteristics of tumors in
patients to specific courses of treatment. Although molecular subtyping for therapy cus-
tomization continues to improve, there are a number of core categories of breast cancers
for which therapeutic options have been specifically defined and are commonly used in the
clinic [253]. Targeted therapies have proven highly effective against breast cancers that
express particular combinations of receptors: estrogen (ER), progesterone (PR), or HER2.
HER2 is a transmembrane receptor tyrosine kinase (RTK) that propagates intracellular
signals responsible for regulating cell proliferation and migration, among other processes.
Estrogen and progesterone receptors also drive tumor growth. Consequently, anti-estrogen
therapy, such as Tamoxifen or Raloxifene, is highly effective in treating ER+ tumors. Th-
mors with HER2 amplifications, which occur in approximately 15% of diagnosed patients,
often have poor clinical outcomes, but are frequently treated with targeted antibody-based
therapies, such as trastuzumab, an anti-HER2 antibody that is often used in combina-
tion with chemotherapeutic agents [240, 239, 103]. For ER+/PR- tumors that overexpress
HER2, aromatase inhibitors have been effective in postmenopausal women, which block the
conversion of androgen into estrogen, thus producing anti-growth effects similar to those of
hormone therapy [198].

Although breast cancers that express particular receptors such as ER or HER2 that
drive tumor growth are amenable to targeted therapies, cancers that fail such therapies are
commonly treated with chemotherapy as a second-line option. Another common subtype
of the disease, referred to as "triple-negative breast cancer" (TNBC) does not respond to
targeted therapies. TNBC typically presents as ER/PR negative with normal levels of
HER2, making cytotoxic chemotherapy the frontline treatment option. This subtype of
breast cancer is arguably one of the most aggressive forms for the disease [207], and has
been shown to exhibit high levels of intercellular variability in response to chemotherapy
[198]. TNBC is generally responsive to chemotherapy, but favorable treatment outcomes
are often short, with average survival remaining at around 2 years. As a result, the study
of chemotherapy effects on breast cancer are particularly important in TNBC subtypes,
for which few other therapeutics options are currently available. Although a distinctive
feature of TNBC is lack of ER/PR and normal HER2 levels, this subtype also generally
exhibits mesenchymal-like characteristics that confer pro-invasive, metastatic properties to
tumor cells [156, 205]. As a result, the study of cytoskeletal, morphological, and migratory
changes in cancer cells, which often characterize metastatic disease, in addition to the
signaling mechanisms that regulate them, is important for rational therapy design and
selection in the treatment of TNBC.

18



1.1.1 Clinical considerations of drug efficacy and toxicity

One key clinical consideration in the use of doxorubicin chemotherapy treatment regimens
is drug toxicity. The most prominent toxic side effects of doxorubicin treatment are car-
diotoxicity, neuropathy, myelosuppression, and alopecia [198, 28]. Cumulative doses of the
drug that exceed 450 nig/m 2 

(M 2 corresponds to patient surface area), dramatically increase
the chance of congestive heart failure. Numerous strategies to ameliorate doxorubicin tox-
icity have been developed, many of which are used in the clinic. Liposomal formulation of
doxorubicin (e.g. DoxilTM) improves the pharmacokinetic properties and intratumoral dis-
tribution of the drug. This formulation makes the drug more permeable within the tumor
and increases drug retention, while partially alleviating doxorubicin-associated cardiotoxi-
city [248, 267, 187]. Unfortunately, approval for clinical use of this formulation is currently
in place only for the treatment of certain types of ovarian cancers. Doxorubicin metabolism
and binding with intracellular iron produces reactive oxygen species (ROS) that can damage
healthy tissue [28, 198]. Dexrazoxane, an iron chelator that reduces doxorubicin-induced
oxygen radicals, is used clinically to reduced cardiotoxicity associated with doxorubicin in
breast cancer treatment [266].

Combination treatments with chemotherapeutics can improve tumor killing, but must
be carefully chosen in order to avoid increased toxicity. For example, trastuzumab is an effec-
tive therapy in breast cancer with HER2 amplification, but, like doxorubicin, is cardiotoxic,
making combinations of anthracyclines and trastuzumab problematic [172, 198, 28]. Be-
cause trastuzumab is often used in combination with anthracyclines such as doxorubicin,
which are in themselves cardiotoxic, great care must be taken to avoid excessive toxicity
and make the combination therapeutically justified. Moreover, combining anthracyclines
with taxanes (e.g., doxorubicin and paclitaxel/docetaxel) has shown to be highly effective,
but often leads to increased levels of cardiomyopathy [83]. A combination of paclitaxel and
doxorubicin, for instance, elevates cardiac toxicity, likely due to paclitaxel interactions with
doxorubicin metabolites. Combined and sequential administration of these agents is there-
fore typically avoided [244]. These data emphasize the potential advantage of monotherapies
and show the challenges associated with combination treatments - combinations are guided
not only by a need to improve efficacy, but must also be carefully selected to minimize
toxicity.

Furthermore, chemotherapy dosing and scheduling are additional key variables that
determine therapeutic response and toxicity. The use of multiple treatment cycles of dox-
orubicin with shorter (e.g., 2 week versus 3 week) drug-free intervals, called dose-dense
regimens, can elicit better therapeutic response based on the Norton-Simon hypothesis
[115, 50]. Unfortunately, these regimens are also associated with increased toxicity, such
as myelosuppression, while more frequent but lower doses are less toxic [255]. As a result,
typical doxorubicin monotherapy regimens consistent of multiple rounds of treatment - sin-
gle doses range from 50 to 75 mg/M 2 , with multiple I.V. administrations every 3 weeks, or
use lower doses of the drug in a dose-dense regimen. This approach - multiple rounds of
treatment with weeks of no drug treatment in between rounds - may constitute a temporal
window for tumor adaptation to therapy in the context of incomplete tumor eradication
(discussed below), a process that is explored in this thesis in Chapter 3 using an in vitro
model system of TNBC.

Selection of therapeutic strategies is particularly important in breast cancer, as medical
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imaging has revealed that many patients may not even require treatment to manage the
disease [198]. This additional variable opens the door for over-treatment of cancer that
exacerbates patient mortality and morbidity. Maximizing drug efficacy, which pertains to
tumor killing, while reducing toxicity associated with doxorubicin treatment, are principal
goals. The consequences of over-treatment and the tradeoffs between efficacy and toxicity
(i.e., the "benefit-to-risk ratio") collectively demonstrate that despite decades of progress,
much work still remains to better understand the factors that constitute and promote breast
cancer progression in the context of chemotherapy treatment. Part of the solution may be
to identify and validate better prognostic biomarkers for improved personalized treatment
that is tailored to specific patients. Another important angle is the use of relevant in vitro
and animal model systems to explore the vast therapeutic parameter space on the cellular
level in order to optimize treatment combinations, dosing, and scheduling.

1.1.2 The many paths to cancer drug adaptation and resistance

Despite the progress in the development and implementation of targeted therapies and
chemotherapies, drug resistance in breast cancer is common, leading to disease relapse and
recurrence [118]. One phenomenon that drives resistance is genetic evolution. In 1943, Luria
and Delbriick published their seminal paper describing two principal modes of bacterial re-
sistance to viral infection [161]. They postulated two competing hypotheses that could lead
to bacterial resistance to bacteriophage: (1) mutation to immunity, and (2) acquired immu-
nity. In essence, their studies demonstrated the Darwinian principles of natural selection at
work by showing that random mutagenesis inherent to a growing population of organisms
can provide a survival advantage in a competitive microenvironment or confer resistance
to exogenous insult. Since then, many studies have shown that these modes of resistance
- instrinsic or acquired - are also at play in pathophysiological systems, including tumors.
Therapy-resistant subpopulations of cancer cells, or clones, can be present in a tumor prior
to any treatment. When these subpopulations comprise the bulk of a tumor, "intrinsic"
resistance is present. Intrinsic resistance manifests as poor response to primary treatment
(Fig. 1-1a).

In addition to intrinsic resistance, later work offered alternative possibilities of cancer
cell adaptation to drug treatment through "acquired" resistance [198, 253] (Fig. 1-lb-c).
In acquired resistance that has a genetic basis, a rare subpopulation of resistant cells that
arises from random genetic mutations survives the initial treatment, even though the overall
tumor may die off and shrink below detectable size [113]. Although acquired resistance can
constitute progressive selection of resistant clones which harbor mutations that confer re-
sistant properties, a variety of other possible mechanisms exists. These mechanisms include
bypass signaling through alternative biochemical and signal transduction pathways [113],
signaling network rewiring through altered proteolytic shedding [178], drug efflux through
transmembrane transporters, or altered drug metabolism [253]. For instance, previous stud-
ies have shown that redundant RTK signaling pathways can drive cancer cell proliferation
and survival, so targeted inhibition of a specific RTK leads to activation and bypass sig-
naling through another [113]. Proteolytic shedding of RTKs at the cell surface is a key
modulator of receptor signaling, enabling bypass mechanisms and signaling cross-talk that
contribute to resistance [178].

The delineation between predisposed, or intrinsic, resistance and one that is acquired
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Figure 1-1: Tumor cell resistance to multiple rounds of therapy has various paths. (a)

Pre-existing intrinsic resistance in the bulk of the tumor leads to poor primary response.

(b) Rare drug-resistant clones within the tumor are selected for by primary treatment,
which grow out due to eradication of drug-sensitive cells that comprise the bulk of the

tumor prior to treatment. In (a) or (b), genetic or epigenetic factors play a dominant role

in drug resistance. (c) Drug-induced acquired resistance results from activation or rewiring

of cellular signaling networks through post-translational modifications. Sub-lethal doses

of the drug at the tumor core are insufficient to induce cell death, but nonetheless alter

signaling and phenotype of survivors that can lead to drug tolerance or resistance.

can often lead to philosophical "chicken and egg" arguments. One can argue that even

in the case of acquired resistance through bypass RTK signaling, there is a predisposed

propensity for a resistance mechanism. Nonetheless, one distinction between the two resis-

tance modes can be established from a clinical response perspective. In intrinsic resistance,
a drug has little or no effect at the beginning of treatment without resistant clone selection,
while in acquired resistance lack of drug efficacy is observed progressively over time after

multiple rounds of treatment. Another important distinction is related to whether the re-

sistance is permanent or reversible. Intrinsic resistance to a specific drug derived through

random mutagenesis within a genomically heterogeneous population prior to treatment is

more likely to be permanent since reversion of a specific genomic locus to a previous state

by chance is unlikely. On the other hand, drug adaptation, which can be thought of as

one mode of acquired resistance, is a more dynamic process. An adaptive response to a

drug, which is investigated in this thesis in Chapter 3, constitutes rewiring of signaling net-

works that depend on many intracellular (e.g., altered phospho-signaling) or extracellular

(e.g., stromal cells) inputs, all of which can change substantially over the lifetime of a cell.

Numerous strategies have been developed to identify and target drug resistance, including
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drug transport inhibitors and drugs that target the DNA repair machinery in cancer cells
[198, 28]. Although in vitro studies have shown promise, their clinical efficacy has been
minimal, largely due to the multifactorial nature of resistance and the capacity of cancer
cells to adapt to treatment through a variety of acquired bypass mechanisms [285].

A unique feature of DNA damaging chemotherapy like doxorubicin is that, unlike tar-
geted therapies like monoclonal antibodies or RTK inhibitors, these drugs promote genomic
instability that can increase tumor cell mutagenesis [198]. As a result, submaximal tumor
killing can actually exacerbate the disease in some cases by increasing the chance of an
acquired resistance genotype. Pharmacokinetics also play an important role in drug re-
sistance. Limitations on maximal tolerable dose of cytotoxic chemotherapy due to high
toxicity leads to sub-lethal doses of the drug in some tumor cells, especially at the core of
larger tumor masses where the diffusion profile results in lower drug concentration at the
tumor core than at the periphery. This sub-lethal dose can still initiate doxorubicin-induced
signaling (discussed in the next section), but is insufficient to induce apoptosis, which can
drive a stress response that leads to drug adaptation.

Interestingly, clinical data has shown that the use of anthracyclines, like dokorubicin,
results in higher levels of recurrent metastatic disease in patients that have bten previ-
ously treated post-operatively with these drugs [105]. Remarkably, lower levels of partial
or complete response in patients that have had prior chemotherapy treatment relative to
patients who are treated for the first time with a particular drug, is not unique to an-
thracyclines. Randomized clinical trials have shown that mitotic inhibitors (e.g., taxanes),
anti-metabolites (e.g., capecitabine and gemcitabine), alkylating-like agents (e.g., cisplatin),
and hydroxyquinolones (e.g., mitoxanthrone), are all less effective in patients who have un-
dergone previous chemotherapy treatment (see Table 34.5 in [198]). These data demonstrate
a serious challenge in the use of state-of-the-art chemotherapy regimens for breast cancer,
in that promising early response turns into resistant and progressive disease in subsequent
cycles of treatment. By the clinical definition, this constitutes tumor adaptation and ac-
quired resistance. In Chapters 3 and 4 of the thesis, I investigate and describe one such
adaptive response mechanism that is driven by the DNA damage response networks induced
by sub-lethal doses of doxorubicin in an in vitro model system of TNBC.

1.1.3 Doxorubicin: a frontline chemotherapy with broad effects on cellu-
lar signaling

As discussed above, doxorubicin is widely used as a frontline therapy for TNBC, either
alone, in combination, or in sequence with other chemotherapeutics or targeted agents. This
therapy often leads to acquired resistance, but the mechanisms that lead to this resistance
remain largely unknown. The most well-characterized and intended mode of action of
doxorubicin in the treatment of cancer is the inhibition of topoisomerase II, a nuclear enzyme
involved in DNA replication and transcription. Topoisomerase II inhibition leads to DNA
damage that activates the DNA damage response - intracellular protein networks that result
in cell cycle arrest. Successful repair of drug-induced DNA lesions can result in cell cycle
re-entry and cell survival, whereas irreparable damage in tumor cells leads to cell death
[113] (Fig. 1-2). Doxorubicin also reacts with intracellular iron to form the doxorubicinol
derivative, leading to reactive oxygen species (ROS) production [266, 28]. High level of
ROS can damage cellular macromolecules including proteins and lipids, but ROS also act
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as important signaling molecules. ROS, and hydrogen peroxide (H202) in particular, act
as second messengers that inactivate tyrosines phosphatases, leading to increased RTK
signaling. ROS also activate a variety of signals including p38MAPK, Src kinase, and the
Rho GTPase family member, Rac [116, 142]. These proteins are hub kinases that mediate
cellular cytoskeletal organization and morphogenesis, proliferation, survival, and migration.
As a result, sub-cytotoxic levels of doxorubicin chemotherapy can dramatically alter the
signaling and phenotypic landscape of cells, the properties of which are studied in this

thesis.
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Figure 1-2: Doxorubicin has multiple modes of action that contribute to its toxicity and
efficacy. Reactive oxygen species (ROS) produced by doxorubicin react with intracellular
iron, which leads to mitochondrial dysfunction and macromolecular damage that produce
toxicity in healthy organs like the heart. DNA damage response signaling networks are
activated in cancer cells by doxorubicin-induced inhibition of topoisomerase II (Topo II)
function, leading to cell cycle arrest that blocks tumor growth. Irreparable DNA damage
leads to cell death, while DNA repair results in cell cycle re-entry and continued tumor
growth.

Two-dimensional cell culture systems, which are used in this thesis, are typically limited
in capturing in vivo microenvironmental context of surrounding stromal cells, extracellular
matrix composition, or tissue architecture, but nonetheless provide an experimental model
system for studying the signaling and phenotypic landscape of cells. These 2-D cultures
provide a well-defined system in which microenvironmental variables (e.g., cell density, drug
dose, etc.) can be reliably controlled and measurements can be made specifically from the
cell type of interest. Such systems are particularly amenable for high-throughput charac-
terization of single-cell phenotypic changes from hundreds of cells that provide enough data
for robust statistical analyses and data modeling, and are commonly used for mechanistic
studies. The findings from 2-D systems can set the stage for additional experiments with
added complexity that aim toward specific in vivo-like conditions to be tested.

Collectively, the multitude of mechanisms by which doxorubicin alters cellular struc-
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ture and function complicates the delineation of specific pathways that may confer tolerance
and resistance to chemotherapy. The DNA damage response, stress signaling through ser-
ine/threonine kinases, altered metabolism, and ROS damage and signaling, may all play a
role in the poorly characterized process of doxorubicin resistance in cancer and toxicity in
healthy tissues. The complexity of these intertwined mechanisms is further complicated by
the prevalent use of combination therapies that pair doxorubicin with other chemotherapeu-
tic drugs and targeted therapies. The interactions among drugs in combination treatments
are critical determinants of the efficacy and toxicity for a given regimen, making it even
more important to understand the modes of action of each individual therapeutic compo-
nent. Clarifying these mechanisms may shed light into alternative synergistic combination
treatments that have favorable risk-to-benefit ratios for patients. Guided by clinical findings
and therapeutic strategies, the discovery and characterization of these mechanisms along
with the cellular phenotypes they control falls into the domain of biomolecular investigation.

In addition to the utilization of -omics technologies (e.g., genomics, transcriptomics,
proteomics) for biomolecular studies, fluorescence imaging enables characterization of cel-
lular signaling and phenotype on a single-cell level, capturing the heterogeneity of cellular
responses to external cues. Imaging provides a means for quantifying cytoskeletal structure
and cellular morphology, which are critical properties that regulate a variety of cellular func-
tions, including cell motility, division, and death - key processes that reflect tumor response
to drugs. As a result, fluorescence imaging and the complementary computational infor-
matics approaches are critical research tools that enable the generation of specific biological
hypotheses and their detailed validation, which are discussed next.

1.2 Bioimage informatics: analysis of signaling and pheno-
type with single-cell resolution

Bioimage informatics refers to the application of computer vision methods to the anal-
ysis and interpretation of quantitative measurements extracted from biological images.
The bioimage informatics field draws concepts, theories, and algorithms from computer
vision, which is a subfield of computer science that integrates image processing and analysis
methodologies with statistical modeling used to understand and manipulate visual data in
the real world [58]. Computer vision has been largely applied to areas such as process man-
ufacturing and quality control, satellite image interpretation, automated vehicle navigation,
and medical image segmentation, among many others. In the field of molecular and cellular
biology, which is the domain of this thesis, bioimage informatics has defined the application
of computer vision to the study of cellular structure and function from light microscopy
data. As discussed in Section 1.1, extracellular perturbations such as chemotherapeutic
drugs can produce a variety of signaling and phenotypic alterations among individual cells,
leading to heterogeneous cellular responses that can contribute to drug resistance. Integral
to the proper characterization of this cellular heterogeneity is the ability to analyze cellular
structure and function on the single-cell level. Population-level central tendency measures
often mask properties of rare subpopulations and can miss underlying modes, or classes,
of responses. These classes, which could be cells that upregulate a certain receptor or not,
or are migratory versus immobile, are important to capture and quantitatively characterize
in order to rationalize effective therapeutic strategies. A key aim of this thesis is therefore
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to develop and apply bioimage informatics tools to characterize changes in cellular signal-
ing, structure, and function in order to better understand the mechanisms and phenotypic
consequences of sub-lethal doxorubicin chemotherapy in TNBC.

1.2.1 Mechanisms of cellular morphology and motility regulation

Migration is the defining process in cancer cell dissemination and metastasis that is a key
determinant of patient morbidity and mortality [190, 284]. It is therefore no surprise that
considerable attention has been given to gaining a deeper understanding of the intercon-
nectedness between cancer therapies, altered signaling mechanisms, cell morphology and
motility. This thesis principally deals with actin cytoskeleton signaling processes and the
changes in cell shape and motility that these processes regulate, with an emphasis on under-
standing how sub-lethal chemotherapy influences these features of signaling and phenotype.

Central to the initiation and propagation of cell movement is the concerted reorgani-
zation of subcellular signaling pathways and cytoskeletal structure under the influence of
extrinsic factors. This asymmetric intracellular localization of signals and resulting differ-
ences in cytoskeletal organization define a polarized migratory cell state [41]. The polar-
ization in signals and local shape is highly dynamic, and results in a cell migration "cycle"
of protrusion, de/adhesion, and retraction that together orchestrate cell movement [20]
(Fig. 1-3). Although protrusion, retraction, and substrate interaction events are common
to all motile cells, the identities of and spatial patterns of sub-cellular signals determine
the steps and physical manifestations of the migration cycle for a given cell [138]. Signaling
networks transduce biochemical and mechanical information from the local surroundings
into asymmetric physical changes in morphology that lead to orientation and directionality
of movement. The morphological properties that a migratory cell adopts and its mode
of migration are reflective of cell type, local identities and concentrations of pericellular
stimuli, such as soluble (chemotactic) and extracellular matrix (ECM) protein (haptotac-
tic) gradients, intercellular interactions, and local ECM topology, dimension, and stiffness
(durotactic) variations [41, 20, 53, 59].

Modes of cell migration can be broadly broken down into mesenchymal and amoeboid
[200]. Amoeboid movement, which is a major mode of motility of leukocytes, is relatively
rapid and is characterized by squeezing of cells through pores in 3D matrices via cycles of
contraction and relaxation, regulated predominantly by the actomyosin machinery, in which
F-actin filaments associate and slide across myosin motors to generate contractile force. The
mesenchymal mode of migration leads to slower cell speeds, and involves actin polymeriza-
tion at the front, association of the cell with the extra-cellular matrix (ECM) through focal
adhesions, and the activity of intracellular and secreted proteases for substrate de-adhesion
and matrix degradation, respectively [199, 200]. The mesenchymal mode of migration is
also less well understood with regard to spatial asymmetry in signaling molecules and the
generation of highly dynamic and spatially segregated cytoskeletal structures, making it of
considerable interest to study in the context of migratory cell polarity [15].

Considerable progress has been made in the migration field to dissect the individual
intracellular signaling pathway components (signals) that play particular roles in different
regions of a polarized cell [12, 132, 289, 97]. It is important to emphasize that both the
identities of the nodes (signals) and regulatory interactions (edges/arrows) in canonical actin
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Figure 1-3: Motility cycle of mesenchymal cell migration. (a) Actin polymerization at

the leading edge forms protrusions that extend at the front of the migrating cell. (b)
Protrusions adhere to the substrate through nascent focal adhesions. (c) Actin assembles
with myosin II to form actomyosin contractile units at the back of the migrating cell,
producing intracellular tension that pulls on mature focal adhesions in the trailing end of
the cell. This leads to morphological elongation of the migrating cell. (d) and (e) Proteases,
such as m-calpain, cleave multiple molecular components of focal adhesions in the back of
the cell. (f) Actomyosin tension coupled with focal adhesion degradation leads to retraction
of the trailing end producing translocation of the cell body in the direction of cell motion.

regulatory signaling networks represent only a small subset of a broader set of heavily studied
fraction of the actual multitude of molecular players, interactions, and spatial topologies of
networks regulating cell shape and cytoskeletal organization. Most biological studies focus

on the specific roles of 1 to 2 molecular species in the context of only a single cell type
and extracellular cue. However, cell morphology and migration is a highly complex process

that employs the spatiotemporal coordination of dozens of signal and structural proteins
on a systems level. Consequently, we next describe a subset of highly-studied signaling
species, transduction events, and cytoskeletal structures that have been shown to regulate

cell morphology and motility.

Signaling and cytoskeletal structures at the leading edge

Unlike highly polarized cells such as leukocytes that have a clearly defined actin-rich pro-
trusive front, mesenchymal cell protrusions are highly dynamic. These protrusions, such

as filopodia and lamellipodia, are variable in structure and molecular composition and are

used by the cell to probe the surrounding environmental cues and generate traction during

migration. Local gradients in these cues activate transmembrane receptors asymmetrically
within the cell leading to localized subcellular signaling. In addition, integrin-based adhe-
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sions sense substrate cues, and the study of their compositional and spatial differences is of
profound interest given their role in bi-directional signaling at the cell-ECM interface and
regulation of cytoskeletal organization [277, 15, 180, 287, 227].

Ligand binding to RTKs leads to conformational changes and phosphorylation of cy-
toplasmic domains that recruit adapter proteins that transduce the local signal [148]. At
the leading edge, various temporally regulated signaling pathways lead to the formation of
lamellipodia - sheet-like protrusions driven by both linear and branched actin polymeriza-
tion [138]. The Rho family of GTPases, including various isoforms of Rho, Rac, and cdc42,
are key regulators of polarization and morphology of leading edge structures [164]. Within
seconds of ligand binding to an RTK, cdc42 directs phospholipase C gamma (PLCy) to
the cell front and its activation leads to cleavage of phosphoinositide-(4,5)-bisphosphate,
PI(4,5)P2, into inositol trisphosphate (IP3) and diacyl-glycerol (DAG) [46]. This cleav-
age leads to de-sequestration of F-actin severing proteins such a cofilin and gelsolin, and
formins, such as profilin, that generate new barbed ends and actin polymerization produc-
ing outward protrusion of the plasma membrane [47, 270, 186]. IP3 and DAG also lead to
the activation of various isoforms of protein kinase C (PKC), which have been shown to
spatially segregate during migratory polarization and result in directed cell movement in
the presence of chemo- and hapto-tactic cues [67, 71].

Persistent lamellipodial protrusion that characterizes a dominant leading edge has been
shown to be regulated in part by phosphoinositide 3-kinase (P13K). P13K phosphorylates
PI(4,5)P2 at the 3' position on the inositol ring, which, following dephosphorylation at the 5'
phosphate by SHIP2, leads to protein kinase B (Akt) activation and binding of lamellipodin
to PI(3,4)P2 [11]. These events, together with Rac GTPase function through WAVE lead to
activation of the Arp 2/3 complex that initiates nascent polymerizing actin branches that
produce lamellipodia [288]. Cdc42 can also activate Arp 2/3 complex to produce lamellipo-
dia through WASP. Moreover, smaller-scale actin-rich structures, filopodia, are generated
by cells to sense the local environment that can prime persistent directed movement. These
structures are composed of linear actin filaments bundled by fascin and regulated by Ena-
VASP proteins [217]. Both lamellipodia and filopodia comprise a multitude of structural
and signaling species whose identities and functions are a topic of continued investigation
in the cell migration community.

Signaling and cytoskeletal organization in the trans-cellular body and trailing
end

In addition to actin polymerization at the migratory cell front that generate forward force,
contractility of the body and de-adhesion of the cell rear is required for productive cell
movement [277]. Contractility of the cell is induced by stress fibers - bundles of F-actin
associated with non-muscle myosin II, with or without tropomyosin and ca-actinin bridges,
depending on myosin isoform. Motor function of myosin II is regulated by phosphoryla-
tion of the myosin light chain (MLC) on S19 and T18 through various kinases, such as
Rho-associated kinase (ROCK), which is activated by RhoA, and PKC6 [119, 274]. MLC
phosphorylation is positively regulated by myosin light chain kinase (MLCK) and ROCK,
and negatively regulated by myosin light chain phosphatase (MLCP), a multimeric com-
plex. Importantly, MLCP is recruited to myosin through the myosin phosphatase targeting
subunit 1 (MYPTI) in a wide variety of cell types, and post-translational modifications of
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MYPTI alter its association with MLCP. Stress fibers extend to the cell rear and are sites of
stable focal adhesions that link the cytoskeleton with the underlying ECM. Following pro-
trusion and contractility, a migratory cell attains an elongated morphology with a pointed
trailing end due to substrate attachment. At this stage, calpain cysteine proteases, of which
m-calpain is a key isoform, cleave focal adhesion proteins that link the actin cytoskeleton
to transmembrane integrins that bind ECM. The localization of m-calpain activity to the
trailing end has been shown to be regulated by transient Erk activity and PI(4,5)P2 bind-
ing [147]. Calpain activation leads to disengagement of the cytoskeleton from the ECM,
and, due to the tension from transcellular actomyosin contraction, the trailing end rapidly
retracts from the ECM [75].

1.2.2 Image-based analysis of cellular morphology and molecular signal-
ing

Measurement of sub-cellular signal localization and cytoskeletal structure through fluores-
cence microscopy has been paramount in the study of migratory cell shape regulation. Live
fluorescent reporter constructs typically employ stable or transient ectopic expression of a
specific protein of interest that can be imaged in live cells. In addition to overall expression,
FRET-based sensors have been used to measure activation of cytoskeleton regulators, such
as Rho GTPases. For example, Machacek et al. used FRET sensors to study the temporal
profiles of Rho GTPase activity through computational multiplexing, which links signals of
different probes in different cells through similarities in leading edge boundary dynamics
[163]. Fluorescent protein-fused binding domains have been used to detect various phos-
phoinositides, such as GFP-PH-domains of Akt for PI(3,4)P2 detection, as by Johnson and
Haugh to detect P13K activity in lamellipodia of randomly migration fibroblasts [122]. A
number of computational techniques have been developed to quantify local boundary dy-
namics, such as level sets [163] and electrostatic contour migration method [265], the former
using partial differential equation modeling to propagate points through time and space for
tracking points at the leading edge. Tsygankov and coworkers developed a software package
for quantifying protrusion dynamics and identifying filopodia using shape skeletonization
[261].

Despite the prevalent use and advantage of acquiring dynamic signaling measurements,
live reporters have a number of disadvantages. Although live-cell imaging captures rich
temporal dynamics of cellular processes, time-lapse imaging and generation of cell lines of
ectopically expressing fluorescent proteins is low throughput. It requires cloning, transfec-
tion/transduction, cell sorting, and maintenance of live cultures for long periods of imaging
time. In addition, ectopic expression leads to the observer effect - fluorescent protein
variants used for imaging can compete with the endogenous cellular pool of the protein,
changing the stoichiometry and local concentrations that are critical for signaling network
behavior [106]. The fluorescent probes fused to the protein of interest may also interfere
with protein-protein interaction interfaces. Photobleaching of fluorophores, stage drift over
time, temperature fluctuations, and cellular phototoxicity are some of the many additional
unfavorable features that have been identified that introduce measurement artifacts and
perturb cell function in live imaging.

As a result, many cell morphology and migration studies have used fixed-cell immuno-
cytochemistry techniques for measuring signal localization and cell shape description. Un-
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fortunately, the vast majority of studies focusing on cytoskeletal structure and assessment
of signal localization in fixed cells have been largely descriptive and qualitative in nature,
hampering the ability to draw definitive, quantifiable differences in experimental conditions
of interest. For instance, a study looking at localization of PKC isoforms during fibroblast
chemotaxis used arbitrary, undescribed, qualitative means of assessing signal localization
to the leading edge [67]. Many studies also use arbitrary judgment in assessing changes in
cytoskeletal morphology and stress fiber formation [268]. Without live imaging that enables
unequivocal detection of shape dynamics, identification of polarized cytoskeletal structures
are but a subjective human evaluation. Such subjectivity introduces user bias and is likely a
confounding factor in the attempt to make cross-study comparisons of cell shape regulation
mechanisms.

To address this need, researchers have turned to high-content imaging screens (HCS) to
quantitatively characterize cell shape and capture intracellular signals from images of thou-
sands of cells [294, 124, 211, 203]. Image-based cell shape description and quantification
of immunofluorescence images of signaling proteins has gained significant popularity and
utility in HCS. These screens comprise the following main steps: (1) cell staining and image
acquisition using high-throughput imaging platforms, (2) data storage and annotation, (3)
cell or subcellular object segmentation, (4) feature extraction, (5) generation of multivariate
phenotypic profiles, and (6) statistical modeling and machine learning approaches to com-
pare, visualize, and interpret phenotypic profiles between treatment conditions (discussed
in the next section). A key challenge in such imaging screens is the difficulty of measuring
more than 4 targets in the same cell population, largely due to spectral limits imposed
by overlap in fluorophore emission and excitation spectra. In Chapter 5 of the thesis, I
describe a framework that provides an effective way to overcome this challenge by realizing
multiplexed fluorescence imaging using diffusible probes. Although steps (1)-(3) above are
generally common to many types of fluorescence imaging studies, the foundational principle
of HCS is to measure hundreds or even thousands of shape, intensity, and texture parame-
ters, or features, from single cells with the goal of capturing biological properties that can
be used to categorize cells into phenotypic classes based on feature similarity. Comparing
frequencies of phenotypic classes of cells following treatment with perturbagens, such as
drugs or gene knockdowns through RNAi or CRISPR/Cas9, reveals similarities in drug
action and signaling protein function that can be used to generate testable mechanistic
hypotheses [123].

1.2.3 Extracting biological insights: computational modeling applied to
imaging data

As discussed in Section 1.1, dosing and scheduling are critical parameters that are often eval-
uated in randomized clinical trials designed to study and optimize the myriad of variables
that can be altered in a therapeutic regimen. Clinical trials are expensive and put patient
lives at risk, and although in vitro and animal models of cancer have their drawbacks, they
provide a powerful platform for evaluating and comparing therapeutic strategies. Various
technologies are currently used to profile cellular changes in the (epi)genome, transcriptome,
proteome, and metabolome under experimental pertubations in model systems. Genome
sequencing, microarrays and RNA sequencing, and mass spectrometry, are but a few of the
core tools used to measure these cellular changes in bulk populations. In addition, cellular
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imaging with light microscopy is widely used to study cellular signaling, structure, and
function on the single-cell level. A key challenge with microscopy measurements is how to
properly analyze and interpret the information-rich content of these types of data. One
powerful way to convert image-based measurements into interpretable biological insights is
through machine learning. Machine learning is a rapidly growing field within computer vi-
sion that is used to detect patterns in data used for comparing cells or treatment conditions
to each other (unsupervised learning) or to classify cells or treatment conditions based on
previously-categorized instances (supervised learning) [98, 169, 114].

Another important advancement in machine learning applied to bioimage informat-
ics is data visualization. HCS typically produces hundreds to thousands of image-derived
features, making their interpretation and summarization challenging. Many features may
carry little information content, masking the important measured properties of cells that
convey biologically meaningful changes across cells. The need to summarize and visualize
multivariate data has motivated the application of dimensionality reduction techniques like
principal component analysis (PCA), which is used in this thesis to identify morphologi-
cal features of cells that vary most between treatment conditions (Appendix A.5), and is
commonly applied by others in the field [294, 224, 232]. Other nonlinear dimensionality
reduction techniques like multidimensional scaling [258] and t-distributed Stochastic Neigh-
bor Embedding (t-SNE) [162], have also facilitated the visualization and comparison of
single-cell measurements derived from flow cytometry and microscopy experiments. Rep-
resenting image-derived cellular features and their inter-relationships as network graphs,
scatter plots, and Glyph-based plots has also aided in microscopy data consolidation and
visualization [225]. Central to these approaches is the facile usability by non-expert users
who can rapidly interpret HCS results that help guide follow-up studies.

In addition to HCS-based analysis of fixed cells, live-cell imaging screens can be used to
characterize cellular phenotypes that capture drug response (e.g., morphology, migration,
apoptosis, proliferation) over time. These assays can be used to screen different combina-
tion regimens and administration sequences using in vitro model systems in which many
such conditions can be studied. Although substantial progress has been made in HCS assay
development and data analysis, these screens typically miss the rich temporal dynamics of
cellular processes that are integral to studying the dynamics of drug response. A key focus
of this thesis (Chapter 2) is therefore to develop computational modeling tools that can
be used to objectively characterize and summarize the dynamics of image-derived cellular
measurements, thus leveraging time-series data to compare the effects of experimental treat-
ments on cellular structure and function. In this thesis, probabilistic time series modeling
is applied to classify single-cell shape dynamics as discrete morphological states explored
in time, which can be applied to other phenotypic or signaling measurements derived from
imaging data as well. In a case study, the framework reveals important similarities and
identifies key differences in shape dynamics following inhibition of molecular regulators of
cytoskeletal organization in breast cancer cells. Accounting for temporal dynamics of in-
dividual cells within heterogeneous populations helps to distinguish and interpret cellular
response to diverse drug perturbations. This temporal characterization and summarization
of multivariate features typically measured in HCS experiments also helps with interpreta-
tion as to which cellular properties vary most between different treatments, shedding light
on putative molecular mechanisms of action involved.
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1.3 Motivation, overview, and structure of the thesis

In Section 1.1, I discussed that the chemotherapeutic drug doxorubicin is a frontline clinical
therapy for triple-negative breast cancer (TNBC), a subtype of the disease for which few
other drugs offer an effective treatment response. Cytotoxic levels of doxorubicin activate
DNA damage response networks that lead to cell cycle arrest and cell death. Unfortunately,
although high doses of chemotherapy are more effective at killing cancer cells, they also
adversely affect normal physiology. Clinically, high dosing of doxorubicin is principally
limited by toxicity, which can lead to incomplete tumor eradication. These consequences
lead to an important question: what effect do doses that fail to completely eradicate a
tumor have on surviving cancer cells?

This thesis develops and applies informatics approaches to investigate this question
using an in vitro model system of TNBC. In Chapter 2, I develop live- and fixed-cell flu-
orescence image processing and analysis tools to measure, model, and interpret cellular
structure and function. The overarching goals of such imaging-based cellular characteriza-
tion in this system is two fold:

1. To generate testable hypotheses from measured morphological changes in cells in order
to hone in on putative molecular mechanisms involved.

2. Directly characterize and establish relationships between cell structure (morphol-
ogy) and function (migration and apoptosis), to explore whether doxorubicin-induced
changes in the cytoskeleton manifest downstream, and in the longer-term, as pheno-
types associated with drug resistance and disease progression.

Toward achieving these goals, I present a broadly-applicable statistical time-series
modeling framework called SAPHIRE (Stochastic Annotation of Phenotypic Individual-cell
Responses), which combines live-cell imaging, image processing, multivariate data analy-
sis, and hidden Markov modeling to characterize cell shape dynamics on a single-cell level.
A proof-of-principle shape profiling study demonstrates that temporal dynamics modeled
with SAPHIRE are better able to classify actomyosin-altering drugs based on mechanism-
of-action compared to existing approaches. This framework can be broadly applied to other
cell types and live-cell phenotyping applications as open-source software (http://saphire-
hcs.org), capturing rich dynamic features of cellular responses that are missed in fixed-cell
assays.

In Chapter 3, I characterize changes in cell signaling and infer putative biological pro-
cesses altered by doxorubicin from phosphoproteomics data using bioinformatics and data
visualization tools. This data captures the effects of doxorubicin on the phosphoproteome
regulated by checkpoint kinases MK2, Chk1, and Chk2, three key mediators of the DNA
damage response. Additionally, I explore the checkpoint kinase substrate regulation network
using targeted phosphoproteomics data that quantifies the effects of selective knockdown
of each checkpoint kinase individually in the context of doxorubicin treatment. I further
present the follow-up validation of numerous protein species whose phosphorylation is al-
tered by chemotherapy.

In the remainder of Chapter 3, I characterize TNBC cell morphology, motility, and
apoptosis dynamics following doxorubicin treatment using the image processing and feature
extraction modules of SAPHIRE. Using multiple fluorescent reporters enables simultaneous
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tracking of cell nuclei (H2B-mCherry), F-actin (LifeAct-eGFP), and apoptosis (AnnexinV-
Alexa647), which I use to relate cellular morphodynamics with the corresponding migration
and death rates within the same population upon doxorubicin treatment.

In Chapter 4, I combine the results from the SAPHIRE development experiments
and the fixed/live-cell doxorubicin studies, to show that morphological changes associated
with ROCK and myosin II ATPase inhibition, but not MLCK, phenocopy those of low-
dose doxorubicin treatment, suggesting that myosin II activity may be affected by the
drug. In support of this hypothesis, I find that phosphorylation of the myosin II regulatory
light chain (MLC) activating site (S19) is reversibly reduced in MDA-MB-231 cells after
24 hours of doxorubicin treatment. Application of a Rho-activating compound reverses
the doxorubicin-induced reduction in pMLC and enhances apoptosis of doxorubicin-treated
cells. This observation suggests that low doses of doxorubicin may lead to deregulated
actomyosin contractility, a crucial biophysical process involved in cell migration, and that
reduced pMLC may be associated with altered cellular morphology and viability upon drug
exposure.

In Chapter 5, I describe the development of a multiplexed fluorescence imaging ap-
proach that uses nucleic acid barcoding of antibodies and peptides to detect a large number
(approximately a dozen) different sub-cellular protein targets within a given sample. This
approach provides the methodological foundation to expand molecular profiling of cellular
specimens beyond the spectral limitations imposed by conventional imaging systems. It
sets the stage for building relationships between altered subcellular signaling (e.g., Chap-
ters 3 and 4) and changes in cellular phenotypes (e.g., Chapter 2), enabling the study of
signaling-to-phenotype relationships on a single-cell level.

Finally, in Chapter 6, I conclude by summarizing the key findings presented in the
thesis and describe future directions of interest for additional applications and extensions of
bioimage informatics in drug discovery. I highlight the value of using -omics data analyses
to hone in on biological processes that may be altered in the system under study. These
putative processes can then be used to design structural and functional assays (e.g., using
fluorescence imaging) to capture the associated phenotypic properties with finer detail. This
thesis demonstrates that findings from phenotypic assays, when coupled with bioinformatics
analyses of -omics data, can help guide follow-up mechanistic studies to narrow down and
identify putative modes of drug action. Such approaches may be particularly useful in
identifying mechanisms of action (e.g., altered cytoskeletal signaling and phenotypes) of
non-targeted therapies like chemotherapeutic drugs that may have consequential effects on
tumor response and disease progression in the clinic.

Taken together, this thesis advances the state-of-the-art in quantitative profiling of live-
and fixed-cell phenotype and signaling from fluorescence imaging data sets (Chapters 2 and
5), and explores in depth the detailed mechanisms that coordinate previously-unappreciated
changes in cancer cell morphology, migration, and survival induced by sub-lethal DNA-
damaging chemotherapy (Chapters 3 and 4).

32



Chapter 2

Probabilistic time-series modeling
of live-cell shape dynamics for
categorizing mechanisms of
cytoskeletal regulation

The contents of this chapter were published as:

S. Gordonov, M. K. Hwang, A. Wells, F. B. Gertler, D. A. Lauffenburger, and M. Bathe.
Time series modeling of live-cell shape dynamics for image-based phenotypic profiling. In-
tegrative Biology, 8(1):73-90, 2016.
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2.1 Abstract

Live-cell imaging can be used to capture spatio-temporal aspects of cellular responses that
are not accessible to fixed-cell imaging. As the use of live-cell imaging continues to in-
crease, new computational procedures are needed to characterize and classify the temporal
dynamics of individual cells. For this purpose, here we present the general experimen-
tal-computational framework SAPHIRE (Stochastic Annotation of Phenotypic Individual-
cell Responses) to characterize phenotypic cellular responses from time series imaging
datasets. Hidden Markov modeling is used to infer and annotate morphological state and
state-switching properties from image-derived cell shape measurements. Time series model-
ing is performed on each cell individually, making the approach broadly useful for analyzing
asynchronous cell populations. Two-color fluorescent cells simultaneously expressing actin
and nuclear reporters enabled us to profile temporal changes in cell shape following phar-
macological inhibition of cytoskeleton-regulatory signaling pathways. Results are compared
with existing approaches conventionally applied to fixed-cell imaging datasets, and indicate
that time series modeling captures heterogeneous dynamic cellular responses that can im-
prove drug classification and offer additional important insight into mechanisms of drug
action. The software is available at http://saphire-hcs.org.

2.2 Introduction

High-content imaging (HCI) is widely used to perform quantitative in vitro cell phenotyping
in a broad range of applications from RNAi and drug screening to prediction of stem cell
differentiation fates [80, 159, 258, 271]. In contrast to population-level assays that measure
concentrations and activities of molecular species pooled over heterogeneous cellular pop-
ulations, HCI has the advantage of profiling cells in situ in a manner that captures both
overall cellular morphology as well as sub-cellular features such as protein localization and
their relative levels [92, 171]. Shape is the most common property used to characterize
cellular phenotype in part due to the ease of image-based quantification enabled by cy-
toskeletal staining and the importance of morphology in a wide variety of cellular processes.
In practice, fixed-cell imaging is typically performed because it avoids large-scale handling
of live cultures during imaging or generation of fluorescent reporter cell lines, and enables
quantification of large numbers of cells at a single time point, increasing statistical power
for comparing cellular phenotypes across experimental conditions [280, 189]. Multivariate
statistical modeling of fixed-cell image features has been effective in phenotype-based drug
classification, providing important insight into signaling pathways involved in cellular mor-
phogenesis [9, 197]. Single-cell analysis using imaging has been particularly instrumental in
identifying and deciphering cellular phenotypes in disease states [32]. User-defined shape
categories coupled with supervised learning such as support vector machines, as well as
unsupervised methods such as principal component analysis (PCA), have been used to gen-
erate quantitative profiles for comparing experimental perturbations and inferring spatial
signaling mechanisms of shape regulation [123, 294, 139, 157].

However, fixed-cell assays, while relatively simple to perform through fluorescent stain-
ing and imaging, suffer from several important limitations. Principal among these is the loss
of information regarding cellular dynamics in response to long-term or transient drug treat-
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ments. In addition, imaging artifacts may occur due to cell fixation and permeabilization,
which may distort spatially resolved protein distributions [228]. For these reasons, live-cell
imaging is increasingly being used to characterize cellular phenotypes, particularly in the
subcellular analysis of cell shape dynamics and polarization. For example, computational
tools for cell boundary tracking [25, 261, 13], morphodynamics profiling [163, 260, 61, 272],
measurement of fluorescent reporters [283, 60], and quantitative morphology and subcel-
lular protein distribution analyses [262] in live cells have become an integral component
of high-resolution analyses of cell shape and its regulation, particularly in the context of
cell migration. In cell migration studies, live-cell shape and signaling analyses have been
complemented by direct quantification of motility properties such as cell speed and persis-
tence of motion to establish links between molecular mechanisms and migratory phenotypes
[131, 15, 154, 281, 282, 109].

In these applications, the relative strengths of high-resolution, live-cell imaging versus
fixed-cell HCI assays are apparent: the former captures rich, dynamic properties of single-
cell behavior while the latter enables large-scale screening of hundreds to thousands of cells.
In an effort to bridge this gap, several mathematical approaches have been developed to
infer dynamic properties of cell populations from fixed-cell measurements in HCI studies.
For example, ergodic rate analysis based on differential equation modeling has been used to
infer transition rates through cell cycle stages from images of molecular reporters that define
various mitotic phases in individual fixed cells [128]. Additionally, Bayesian network model-
ing of shape parameters coupled with RNAi knockdown of cytoskeleton-regulatory proteins
has been used to infer shape state transitions of migratory cells and reveal underlying reg-
ulatory signaling modules [224, 232]. However, these approaches assume quasi-steady-state
of the cell population, assign cells into pre-defined phenotypic categories, and, in the case of
Bayesian networks, face difficulties in modeling repetitive processes such as motility cycle
stages in migrating cells. Moreover, they are not directly applicable to the analysis of live
cells over time to monitor individual cellular responses to drug perturbations.

To address these limitations, here we present a live-cell HCI framework that captures
the dynamics of a large number of cells on the scale of a phenotypic screen. The approach
combines high-content live imaging, image processing, multivariate data analysis, and prob-
abilistic modeling to characterize cell shape dynamics in a drug-screening context. Inspired
by existing methods for modeling cell cycle stages from time series images [108, 298], our
framework employs hidden Markov modeling to describe shape dynamics as temporal se-
quences of morphological states that are observed as noisy, multivariate image data. De-
scribing temporal trajectories of multivariate shape measurements as a finite set of states
that is limited in number by Bayesian model selection that penalizes model complexity, re-
sults in an efficient description of time-dependent shape categories explored by a cell. This
approach provides a means of modeling the shape dynamics of hundreds of individual cells,
capturing temporal evolution in cell morphology directly from live images without assump-
tions of steady-state cell populations or predefined shape categories assumed by fixed-cell
analyses. We show here in a proof-of-principle study that drug-response profiles derived
from these models can be used for phenotypic drug comparisons and can reveal spatially
distinct and pathway-specific roles that drug-targeted species play in modulating shape dy-
namics. Our computational framework is available as open source for the computational
cell biology community to apply using MATLAB at http://saphire-hcs.org.
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2.3 Results

We developed a framework to characterize single-cell shape dynamics for large collections
of cells from live-imaging assays (Fig. 2-1). Fluorescent cells treated with a variety of drug
perturbations are imaged in a multi-well format followed by image processing and analysis
to track and outline individual cells over time. Image-derived features, or descriptors, of
cell shape are extracted to generate a data cube for the entire imaging screen, with the
three dimensions corresponding to shape features, individual cells, and time points. PCA
is used for dimensionality reduction along the shape feature axes to generate temporal
"shape-space" trajectories of individual cells in principal component (PC) space. HMM is
then used to annotate each cell shape trajectory using a small set of shape states that are
determined using Bayesian model selection, revealing important time-dependent features of
cell morphology while substantially reducing live-cell data size and complexity. Features
extracted from temporal model annotations of hundreds of cells are then used for clustering
and classifying perturbations. In the following sections we detail the steps of the framework
and present a proof-of-principle study in profiling the heterogeneity in cell shape dynamics
from a small-scale drug screen.

2.3.1 Live imaging enables temporally-resolved readout of cell pheno-
types

We first generated a triple negative breast cancer cell line, MDA-MB-231, with stable ex-
pression of two fluorescent reporters, LifeAct-eGFP and histone H2B-mCherry, for concur-
rent imaging of actin and nuclear dynamics, respectively. This enabled the unambiguous
identification, isolation, and tracking of individual cells using the segmented nuclei, while
the actin reporter enabled quantitative characterization of cytoskeletal morphology. MDA-
MB-231 cells were chosen for their mesenchymal-like properties and lack of epithelial-type
intercellular junctions, making this cell line particularly amenable to studying phenotypic
behavior on the single-cell level. The two-color fluorescent reporter cells were seeded in
96-well plate format and treated with different drugs that target distinct components of
the actomyosin cytoskeleton-regulatory pathways including ROCK (Rho-associated protein
kinase), myosin II, EGFR (epidermal growth factor receptor), calpain, MLCK (myosin light
chain kinase), and MEK (mitogen-activated protein kinase kinase), to probe their effects
on cell shape dynamics in two independent imaging experiments (Appendix A.1).

In one experiment, we included two controls in order to set a baseline for cell behavior
under no drug treatment: one of growth media only and the other with 0.1% v/v DMSO in
growth media to assess effects of DMSO alone since it was used to dissolve drug stock. We
also included two different doses for the ROCK and MLCK inhibitors to assess drug con-
centration effects on cell shape dynamics characterized in our framework. In an additional
experiment, we expanded the panel of drug treatments and used a different microscope,
culture media, and cell passage number to assess these factors on reproducibility of exper-
iments and subsequent analyses. Epifluorescence 2-D microscopy using a 10x/0.3NA air
objective offered a suitable tradeoff between field-of-view and resolution, enabling us to
maximize the number of cells captured with sufficient detail to characterize individual cell
morphologies over approximately eighteen hours for each treatment condition.

Visual inspection of the compiled time series movies revealed asynchronous populations
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of dividing, apoptotic, and migratory cell phenotypes (see online Supplementary Videos Si-
S3 in [96]). For cells not undergoing division or death, we observed a broad range of shape
changes, with some cells changing shape rapidly with pronounced cell body protrusions and
retractions, while others exhibited less noticeable morphodynamic activity. Although the
cells generally exhibited autonomous behavior that was largely independent of one another,
we observed frequent contact and spatial overlapping of some cells in addition to entry and
exit of cells into and out of the imaging fields of view. Collectively, the large quantity of
imaging data and phenotypic cell behaviors rendered fully manual data parsing and analysis
intractable, thereby motivating the need for an automated computational analysis pipeline
for processing the time-series images.

2.3.2 Automated processing with quality control ensures accurate pars-
ing of image data

A priority in formulating our probabilistic modeling approach was to ensure that any data
input into the model accurately captures cell shape properties. We therefore developed an
image processing pipeline to segment and track cells with as many automated, user-free
steps as possible to increase throughput and minimize user subjectivity (see Materials and
Methods A.1; Fig. 2-2A). Automated image parsing, cell segmentation, and tracking were
first performed for all acquired image time series (see examples in online Supplementary
Videos S1-S3 in [96]). A major challenge, however, involved the treatment of variations
in image illumination between fields and within fields over time, as well as variability in
fluorescent reporter levels between cells, leading to occasional image processing errors such
as over- or under-segmentation of cells (Fig. 2-2B). We therefore developed a GUI-based
quality control (QC) module that enabled manual validation and modification of segmented

regions and cell tracks. Here, user input is desirable because cell boundaries can be defined
unambiguously by the human eye while automated segmentation is notoriously sensitive to
image properties. This module was used to discern and correct artifacts introduced during
image acquisition and automated processing steps. The QC module also enabled us to
identify and label dividing and dying cells, which were removed from subsequent analyses
(Fig. 2-2C).

2.3.3 Drug treatments diversify morphologies of MDA-MB-231 cells

The automated image processing and QC pipeline resulted in a collection of accurately
segmented and tracked cell trajectories. We next extracted a set of eighteen morphological
features from segmentation masks of each cell and time point (Table B.1). Following z-score
normalization of each feature across cells, we applied PCA to the data in order to capture
and visualize the variability in shape between all cell images from the imaging experiment
with the expanded panel of drug treatments (Fig. 2-3A, see Appendix A.5). Here, we call
the basis of the projected data onto the first two PCs the "shape-space". The first two PCs

captured over 80% of the shape variability in the observations. In order to assess how PCA
distributes and orients morphological properties of cells in shape-space, we selected random

time snapshots from four different cells in seven regions of PC space and visualized the

overlaid actin and nuclei images (Fig. 2-3B). This visualization revealed that morphologies
of MDA-MB-231 cells across all seven drug treatments vary from large and spread (Fig.
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2-3B, panel d), to round cells with pronounced cortical actin at the cell periphery (Fig.
2-3B, panels e and f), as well as polarized cells with varying degrees of elongation (Fig.
2-3B, panels a, b and g), and branched morphologies (Fig. 2-3B, panel c).

To visualize how morphologies vary in different directions and radial distances away
from the data mean in shape-space, we created a polar representation of the two PCs. The
polar shape-space was subdivided into twelve equal angular bins, with each bin subdivided
further into quartiles. Fig. 2-3C shows the representative cell shapes in each radial quartile
of the angular bins as well as the contributions of the original eighteen shape features to the
values of the two PCs. The highest variance in shape, along the first PC, predominantly
captures cell elongation and branching, while the second PC captures cell spreading area
and roundness. Features such as major axis length, geodesic diameter, and maximum Feret
length capture similar length properties of cells and therefore have similar PC coefficients
and directions in shape-space. These features are anti-correlated with solidity, circularity,
and extent, which point in the opposite direction for both PCs, showing that branched and
elongated morphologies have smaller solidities and circularities, as expected. As captured
mainly by the second PC, cells with longer minor axes and larger areas have generally lower
eccentricities and smaller ratios of major to minor axis lengths.

Furthermore, we found that cells are densely packed around the data mean at the origin
in shape-space, with the point density dissipating radially (Fig. 2-3A). This suggests that
although MDA-MB-231 morphologies are visually distinct, shape properties of the popula-
tion as a whole vary on a continuum, with no clearly distinguishable groups. Interestingly,
however, when we plotted cell shape trajectories one at a time we found increased grouping
and clustering of points. We applied k-means clustering to individual cells and to the cell
population as a whole for k = 2 to k = 10 clusters, and computed average silhouette values
in order to quantify the degree to which points form well separated, or cohesive, groups
(Fig. 2-3D). As may visually be discerned in Fig. 2-3A, example cell trajectory i forms 2
groups while cell trajectory j forms 3 groups, which is confirmed by the maximum silhou-
ette value that occurs for k = 2 and k = 3 clusters, respectively. On average, points from
individual cell trajectories had higher cluster cohesion than did random samples with the
same number of points as the trajectories or the entire cell population as a whole.

2.3.4 Probabilistic modeling of morphological states reveals heterogene-
ity in cell shape dynamics

Having observed that individual cell trajectories form more cohesive clusters than the popu-
lation as a whole, we next sought to develop a principled and reproducible means of modeling
morphological dynamics on a single-cell basis. We reasoned that the higher cluster cohesive-
ness within individual trajectories signifies the presence of underlying "states" that the cell
explores in shape-space over time. Although Gaussian mixture modeling (GMM) is a highly
useful approach for unsupervised, model-based data clustering that would eliminate sub-
jective, user-defined delineation of states [298], it typically ignores the temporal nature of
data. Including temporal information during model inference is reasonable a priori because
GMM inherently assumes that observations are independent [74], which is not necessarily
satisfied for sequential time series measurements from the same cell, whose shape may be
highly correlated in time. We therefore applied an HMM framework in which temporal
dependencies are directly incorporated during model inference, using a modified approach
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developed for annotating modes of single-particle motion in live cells [184]. Within this
HMM framework, the "hidden" underlying states correspond to cell shape states that pro-
duce observable emissions that are associated with the measureable cell shapes computed in
PC shape-space (see Materials and Methods A.1). Additionally, Bayesian model selection
enables us to penalize models with greater numbers of underlying shape states to fit the set
of time series points satisfying Occam's razor or the Principle of Parsimony [206, 209].

To compare our approach with GMMs that ignore dependencies in time series data,
we simulated shape-space trajectories from underlying hidden Gaussian states to explore
differences with HMM-based annotation using SAPHIRE. Specifically, we sought to compare
state identification capability of the two methods, with SAPHIRE using Bayesian model
selection and GMM using the Bayesian information criterion to penalize model complexity.
Our two-state model simulations revealed that SAPHIRE is more likely to choose the model
with the correct number of states and has better accuracy in inferring locations of state
means compared with GMM due to SAPHIRE's incorporation of temporal dependencies in
the data during the state inference steps (Fig. 2-9).

Next, we applied SAPHIRE to experimental observations of cells in the two-dimensional
PC shape-space to infer a time series model for each cell individually. The inferred model
specifies the most probable number of hidden shape states, which is unknown a priori, as
well as the state parameters. Each state is a symmetric, bivariate Gaussian distribution
in shape-space with two variables corresponding to the two PCs. The inferred parameters
for each Gaussian distribution are the standard deviation and the mean, which capture
temporal shape variation and average morphology of the cell within the state, respectively.
The model also specifies a state transition probability matrix that describes the probability
of transitions between shape states. Each cell is annotated in time with the most probable,
or maximum likelihood, shape state sequence, enabling us to determine the most likely state
that the cell exists in at each point in time. We first compared shape state inference of our
approach with that of commonly-used GMM under different model constraints. Allowing for
elliptically-shaped Gaussian states in the GMM led to undesirable grouping of cell shapes
with visually-dissimilar morphologies into the same state (Fig. 2-10), and, similar to the
results of the numerical simulations (Fig. 2-9), SAPHIRE was better able to capture distinct
morphological phases of cells that gradually move between distinct regions of shape-space
(Fig. 2-11). In certain cases of cells moving between two visually distinguishable underlying
states, the state annotations of cell trajectories were similar for SAPHIRE and GMM (Fig.
2-12). Moreover, from all modeled cell trajectories we found that a larger fraction of cells
exists in two to three underlying states, while fewer cells explore either a single state or four
or more states (Fig. 2-13).

Despite some similarities in the numbers of states explored by cells, the inferred param-
eters of transition dynamics and state annotations varied considerably between cells. These
variations not only existed for cells across different drugs, but also across cells within a given
treatment and for cells with the same number of shape states. Fig. 2-4 shows the inferred
shape states for two example cells treated with the same drug having the same number
of inferred states, but with notable heterogeneity in state parameters and transition dy-
namics. Some cells exhibited rapid back-and-forth switching between states corresponding
to periodicity in actin protrusions and retractions, resulting in shapes that are elongated,
rounded, or those in between (Fig. 2-4A). Other cells exhibited individual instances of state
transitions, progressively changing shape in a given direction in shape-space, such as going
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from larger and more spread to smaller and rounder morphologies (Fig. 2-4B). The max-
imum likelihood state annotations capture different phases in the morphodynamic history
of a cell, with state transition parameters derived from the state sequence providing useful
insights into its dynamic behavior. For instance, the model for the cell in Fig. 2-4A reveals
that the cell is more likely to stay in state 1 (p = 0.19) or state 2 (p = 0.29) than transition
to other states, and that direct transitions between elongated (state 1) and a rounded (state
3) morphology without going through an intermediate shape (state 2) is not likely (p = 0).

2.3.5 Shape state annotations serve as phenotypic readouts of drug action

Our probabilistic modeling framework produced annotated sequences of shape dynamics for
all individual cell trajectories from the inhibitor screen, with each trajectory comprised of
morphological states evolving in PC shape-space over time. We next explored how shape
dynamics compare between cells treated with the distinct compounds. We first generated
phenotypic signatures from the annotated state sequences for each cell. These signatures
capture where in PC shape-space states are located, how long a cell spends in its inferred
states, and how frequently and in what directions in PC space a cell makes shape transitions
(Fig. 2-5A).

We next assessed how the distribution of cellular shape states in polar PC space was
affected by the experimental treatment conditions (Fig. 2-5B). Cells in the DMSO and
growth media controls were positioned closely and were fairly evenly distributed around
the mean of the shape-space data without exhibiting biased morphologies in any particular
direction compared with the morphologies induced by drugs. The ROCK and myosin II
inhibitors pushed cells predominantly towards highly elongated and branched morphologies
with longer dwell times in these states. On the other hand, MLCK inhibition had the oppo-
site effect, biasing cells toward smaller and rounder morphologies along the negative first PC
axis. In the experiment with the expanded panel of drugs, both MEK inhibitors tested led
to a broader variety of states, predominantly either rounder, or more elongated, shapes, al-
though no strong biases of shape state location or state dwell time were observed upon MEK
inhibition (Fig. 2-14A). Similarly, EGFR inhibition led to a broader and relatively more
uniform distribution of morphological states around shape-space, albeit with a noticeable
shift towards less elongated morphologies, whereas calpain inhibition biased cells into more
elongated morphologies. Further, doubling the dose of the myosin II inhibitor shifted cells
slightly towards more branched morphologies while diminishing elongated states, whereas
an increase in dose of the MLCK inhibitor appeared to accentuate the bias towards smaller
and more rounded shapes (Fig. 2-5B). For either drug, however, the overall distributions
of cellular shape states and state dwell times were similar across both doses tested, as well
as between the two imaging experiments.

Live-cell analysis also enables the determination of whether drugs differentially affect
the trajectories that cells take through shape-space when they transition between distinct
morphological states. To our surprise, state transition directions were similar across the
drugs tested, with cells moving between two relatively narrow angular ranges, 120 to 180
degrees or 300 to 360 degrees in shape-space (Fig. 2-5C and Fig. 2-14B) that correspond to
decreased elongation with increased roundness versus increased elongation and decreased
roundness, respectively (Fig. 2-3C). This finding suggests that most of the dynamics in
shape that MDA-MB-231 cells undergo are along this morphological axis of increasing or
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decreasing elongation, regardless of drug treatment, which may be indicative of cytoskeletal
protrusion and retraction cycles, while transitions toward larger, spread morphologies, for
example, are quite rare for this cell type. Despite the similarity in the directions of state
transitions taken by cells across drugs, ROCK and myosin II inhibition led to larger mag-
nitudes and slightly broader distributions in state transitions, suggesting that these drugs
induce more pronounced variations along the roundness-elongation axis of cell shape, likely
by reducing transcellular actomyosin tension.

Moreover, readouts of shape state locations and state transitions can be used to group
treatments based on similarities in induced phenotype dynamics. We derived a dynamic
shape state "profile" for each treatment from the shape state and state transition histograms
(Fig. 2-5B,C and Fig. 2-14A,B) and hierarchically clustered the treatments using profile
similarities for each imaging experiment separately (Fig. 2-6A,B). As anticipated based
on the preceding results, the two MEK inhibitors clustered closest together, as did the
DMSO and growth media controls. These results serve as internal controls to validate the
HMM annotation and phenotypic drug comparison procedure proposed here. The MEK
inhibitors were also found to have dynamic shape state profiles more similar to those of
the EGFR and calpain inhibitors than to the MLCK, ROCK, and myosin II inhibitors.
Myosin II inhibition with Blebbistatin produced phenotypes most similar to those with
ROCK inhibition. Perhaps surprisingly, MLCK inhibition, which is known to alter myosin
II activity, induced shape dynamics more similar to those under MEK and EGFR inhibition
than under myosin II and ROCK inhibition. Overall, the computational analyses from
these imaging experiments demonstrate that temporal dynamics of individual cells can
be combined into quantitative profiles that serve as useful readouts for phenotypic drug
comparison and for inferring shape-regulatory roles of targeted signaling molecules.

2.3.6 State-space temporal modeling of cell morphology improves drug
classification over existing image-based profiling methods

SAPHIRE generates phenotypic profiles of experimental treatments from single-cell models
of HMM-annotated morphological state trajectories in shape-space. This approach differs
from existing fixed-cell HCI profiling methods, which, instead of modeling cellular properties
of a given cell over time, characterize cellular properties for different cells in a population
at a given time point. Therefore, we sought to assess the benefit that live-cell temporal
modeling on a per-cell basis has in comparison with fixed-cell approaches [197, 249, 238,
296] in classifying treatment conditions in our screen (Fig. 2-7). We chose four profiling
methods that have previously been compared amongst one another and have shown high
drug classification accuracies in a large-scale drug screen study (see [157] and Materials
and Methods A.1). To make a fair comparison with live-cell analyses, we used live-cell
population data from our inhibitor screen at five different time points post-treatment for
the fixed-cell analysis methods in order to mimic a fixed-cell time course experiment. We
additionally profiled the dynamics of individual cells but without the HMM that is used in
SAPHIRE to assess the value of the HMM state-space shape representation for classifying
treatments.

For the three treatments tested that were amenable to the classification analysis ap-
proach as in [157], of the four fixed-cell methods the "Factor Analysis + Means" profiles
performed best, correctly classifying 5 of 6 treatments (Fig. 2-7A,B). This approach has
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also previously been shown to have good classification performance in a large-scale screen
of dozens of drugs from different mechanistic classes [157, 296]. Profiles generated using
Gaussian mixtures [238] and the K-S statistic [197] correctly classified 4 of 6 treatments,
whereas the simplest "Means" [249] approach only classified 2 of 6 treatments correctly.
Treatment profiles generated using SAPHIRE resulted in correct classification of all 6 treat-
ments, demonstrating improvement over the fixed-cell profiling methods tested. Moreover,
the HMM annotation of morphological states using SAPHIRE appears to be critical for
improving correct treatment classification, as profiles derived from single-cell temporal dy-
namics without the HMM misclassified 2 of the 6 treatments.

To further understand which properties of the state-space treatment profiles generated
using SAPHIRE improve treatment classification, we separately considered the use of fea-
tures that capture state transitions versus features that only consider properties of the states
themselves (Fig. 2-7C). Treatment classification confusion matrices using these state fea-
tures separately revealed that state transitions correctly classify all six treatments, whereas
exclusion of temporal transition information leads to misclassification of a treatment, yield-
ing a classification performance similar to the fixed-cell "Factor Analysis + Means" profiling
approach.

Collectively, these results demonstrate that all of the methods implemented, with the
exception of the "Means" approach, correctly classify the MLCK and myosin II inhibitors,
but fail to differentiate between cells treated with MEK inhibitor versus control, or those
treated with ROCK versus myosin II inhibitors. Thus, as shown in Fig. 2-7D, when the
shape distributions of two treatments differ, both state-space modeling of individual cells
over time and existing fixed-cell profiling methods that measure features of different cells at
multiple time points, can correctly classify and resolve treatment effects on cell shape. When
shape distributions of two treatments are similar, however, state-space modeling of single-
cell temporal transitions within the population distributions can improve discriminability
and classification of treatments compared with existing methods that only capture shape
properties of distinct cells within a population. Therefore, annotation of cell morphologies
with a state-space representation using HMM, and in particular capturing state transition
dynamics on a per-cell basis, can improve the accuracy of classifying treatment conditions
in an HCI experiment.

2.4 Discussion

Here, we presented a computational framework that applies probabilistic time series model-
ing to characterize shape dynamics of individual cells under the action of drug perturbations
assayed using live-cell imaging. Modeling temporal dynamics of cell shape using HMM con-
denses complex multivariate imaging data into simpler sequences of morphological states
that evolve over time. Advantages of our approach over existing methods that are de-
signed for fixed-cell imaging applications were explored. Quantitative features extracted
from HMM state sequences using our approach serve as temporal signatures for comparing
morphodynamic behaviors between cells, which are not available from fixed-cell analysis
procedures. Temporal signatures from multiple identically treated cells are combined to
serve as phenotypic profiles for clustering and classifying experimental perturbations.

It has been proposed that cell populations can assume either discrete or continuous
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morphological landscapes, principally determined by cell type, extracellular environment,
types of perturbations, and the particular phenotype captured [295]. For example, in cases
when particular morphologies are reached under effect of genetic perturbations, cells may
exhibit more stable steady-state morphologies leading to discrete shape states [294]. Our
results suggest, however, that shorter-term responses to pharmacological perturbation of

highly asynchronous cell populations fall on a more continuous, finely graded morphological
spectrum of shapes that conceals more cohesive and well separated shape state clusters

within temporal trajectories of individual cells (Fig. 2-3). Consequently, two different
approaches to cell profiling, one using commonly-applied fixed-cell analyses of populations
of distinct cells and the other using temporal modeling of individual live cells presented
here, may collectively serve as a powerful combined approach to reveal idiosyncrasies in

phenotypic effects of different molecular perturbations (Fig. 2-8).

In particular, within the context of image-based phenotypic profiling, our results illus-
trate that state-space temporal modeling of cell shape using HMM can improve the resolu-
tion of cellular classification in response to distinct drug treatments. This result, shown in

Fig. 2-7D, highlights an important practical outcome of this work in the context of HCI.
Existing phenotypic profiling methods correctly classified some treatments and misclassified

others in the actomyosin cytoskeleton-focused drug screen. Our analyses demonstrate that
modeling morphological transitions over time on an individual cell basis using HMM can
provide useful live-cell phenotypic information for discriminating between treatment effects.
Some of these effects are not captured by simply modeling cell shape distribution properties
of different cells in a population, even if the same population is profiled over time. This sug-
gests that the framework presented offers additional information beyond fixed-cell profiling
in image-based classification using morphological data. An interesting application of tem-
poral modeling would be to complement fixed-cell assays that utilize immunofluorescence

staining in order to augment phenotypic profiling and better resolve underlying molecular
differences driving distinct cellular drug responses assayed using live imaging.

In addition to investigating the utility of temporal shape modeling in HCI applications,
we characterized differential cell shape dynamics induced by small-molecule inhibitors in or-
der to infer relationships between actomyosin signaling mechanisms and shape phenotypes.
Similarities in shape dynamics between DMSO and non-DMSO controls, between the two
MEK inhibitors, and under different doses of the same drugs, validates the morphological
states and state transitions as fundamentally reflecting target-specific effects. Similar dy-
namic responses in cell shape induced by EGFR, MEK, and calpain inhibition suggest that
these species function along a common signaling axis of cell shape regulation in MDA-MB-
231 breast cancer cells (Fig. 2-6B). This result is in concordance with previous molecular

mechanistic studies performed in fibroblasts, which showed that m-calpain activity is di-
rectly regulated by Erk by altering its spatial localization and association with PI(4,5)P2
at the plasma membrane [147]. This process can be mediated by EGFR signaling through
PLC--y, which depletes PI(4,5)P2 at the leading edge resulting in localization and activation
of m-calpain at the trailing end that plays an important role in migratory cell polarization.

The increased elongation phenotype induced by calpain inhibition revealed from our anal-
ysis (Fig. 2-14A) reflects the role of m-calpain in adhesion remodeling, the inhibition of

which leads to trailing end retraction defects [91, 75].

Moreover, our observation that ROCK and myosin II inhibitors biased cells toward
branched and elongated morphologies is consistent with reported effects of increased acto-
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myosin tension promoting cell polarization and limiting the formation of new protrusions
[64, 257, 274, 273]. The increased elongation and branching dynamics we observed reflect
the impairment in actomyosin contractility and loss of cell polarity upon ROCK and myosin
II inhibition, leading to multiple competing protrusions extending outwards around the cell
periphery. Given that MLCK and ROCK are both known to induce myosin II phospho-
rylation and activation, we may have expected their inhibition to promote similar shape
dynamics. Instead, the surprisingly dissimilar and near-opposite morphologies that their
inhibition produced (Fig. 2-5B) suggests that MLCK and ROCK differentially affect cy-
toskeletal dynamics; this notion is supported by previous studies which showed that MLCK
and ROCK have spatially distinct roles in regulating myosin II activity, and whose activ-
ities have opposite effects on the number of lamellipodial protrusions, cell elongation, and
polarization [257, 160]. The MDA-MB-231 cell shapes induced by MLCK inhibition in our
work are reflective of single-front motile cell morphologies for which formation of additional
lamellipodial protrusions is limited (see Video S3 in [96]), as has been suggested to also oc-
cur in keratocytes at different stages of development [160]. The differential effects of ROCK
and MLCK inhibition on shape dynamics that we identified through our analyses (Fig. 2-8)
may have consequential effects on overall cell polarization and migratory behavior in cancer
that warrants further investigation in future work.

More generally, the plasticity and variability in shape revealed in our analyses reflects
the highly dynamic cytoskeletal changes characteristic of protrusion and retraction events,
such as those of migratory cells undergoing directional changes or motility cycles. In light of
this, further exploration of interest would be to characterize and understand what cellular
functions the morphological states captured by HMM annotation may represent. Qualitative
visual inspection suggests that cells in rounder states have higher amounts of cortical actin,
whereas those in more elongated states are polarized and may therefore be migratory (Fig.
2-2B and see Videos S1-S3 in [96]). Future studies will focus on characterizing morpholog-
ical state properties in more depth by quantifying cytoskeletal organization in addition to
whole-cell shape, incorporating signaling status from live or fixed-cell fluorescent reporters
in post-capture analysis [283, 136], and combining model-annotated state-space dynamics
with motility measurements to establish temporal relationships between morphology and
migratory behavior [131, 158, 231].

Notwithstanding, the current work demonstrates that phenotypic information derived
from imaging-based models of temporal shape dynamics reflects underlying signaling path-
way activities that regulate cell shape, which enables hypothesis generation for more in-
depth, mechanistic follow-up studies. In vitro profiling of phenotype dynamics is also rele-
vant in the context of early-phase drug discovery. In that context, time series modeling of
live-cell phenotypes can complement existing fixed-cell imaging methods as well as genetic
and biochemical approaches for understanding cellular drug responses, particularly with
the advent of genome editing approaches such as CRISPR/Cas9 [82, 173, 192, 54, 165].
The collective implementation and application of these approaches will become an increas-
ingly important component of integrative drug profiling and holistic understanding of cell
function.
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Figure 2-1: Schematic of SAPHIRE (acronym) for live imaging-based modeling of cellular
phenotypes. Live fluorescent cells treated with drugs or other perturbations are imaged in
multi-well format on a microscope with an incubation system. Temporal image acquisition
is followed by image processing and analysis to segment and track individual cells over
time. Cell shape descriptors are extracted to generate a data "cube" with dimensions
corresponding to [shape features] x [individual cells] x [time-points] for the entire imaging
screen. Principal component analysis is applied to generate the temporal "shape-space"
trajectories of individual cells. For each cell trajectory, probabilistic time series modeling is
applied to infer the most likely underlying model of phenotypic states (e.g. blue, pink, and
yellow) and its parameters, which are used to annotate a temporal sequence of states and
state transitions. Model-derived temporal features of single-cell dynamics from multiple
cells are then used to generate phenotypic profiles for drug clustering and classification.
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Figure 2-2: Processing and analysis of two-color fluorescent cell movies for segmentation,
tracking, phenotype annotation, and quality control. (A) Schematic of the image time series

processing workflow used to generate tracked cell outlines in multi-well imaging experiments.

Boxes in yellow indicate steps with user input. (B) Left, an example image time series field

of view showing touching (yellow) and isolated (non-touching) cells (cyan) automatically

identified in the processing pipeline. Inset shows automatic thresholds that may lead to

under- or over-segmentation that are subsequently adjusted by the user with a GUI tool.

Right, example of individual cells segmented and tracked using the pipeline in (A) from time

series imaging over approximately sixteen hours. (C) Quality control and phenotype labeling

of processed cell image time series. Two example cell trajectories imaged for eighteen hours

at 20 minute intervals are shown, one undergoing cell division (left), characterized by cell

rounding in mitosis followed by cytokinesis, and another undergoing death (right), with

progressive cytoskeletal shrinking, non-uniformity in actin structure (green), and disruption

of nuclear morphology (pink). Isolated cells are automatically labeled s while cells touching

others or the image boundary are labeled b. Dividing or dying cells are interactively labeled

d and a, respectively.
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Figure 2-3: Visualization and clustering of live-cell shape features reveals a morpholog-
ically diverse shape-space following drug treatments. (A) PCA of approximately 20,000
temporal snapshots (gray points) from live imaging of 293 cells treated with seven drugs
(inhibitors of: EGFR, Calpain, MEK (2), Myosin II, ROCK, and MLCK). Two PCs explain
over 80% of the variability in the original shape features (upper right panel). Inset shows
a continuous shape-space with highest point density around the mean of the data for the
cell population, while single-cell trajectories form more well separated clusters in time. (B)

Visualization of 28 live-cell snapshots randomly chosen in different regions (a-g) of shape-

space in (A). Under the influence of the seven drugs, shapes vary from large and spread,
to round with cortical actin, to varying degrees of elongation, to branched morphologies.
(C) Polar coordinate PC shape-space visualization. Shapes are shown in different angular
bins and radial distances from the mean of the data, which is the origin of the two PC axes
in (A). Cell shapes are colored based on the radial distance quartiles within each angular
bin. The orientations of the original shape features that contribute to each PC are shown.
Lengths of gray lines for each feature correspond to the relative magnitudes of their PC
coefficients. (D) K-means clustering of morphologies in shape-space on individual cell tra-
jectories (examples, yellow and blue) reveals clusters that are tighter and better separated
on average for all imaged trajectories (orange) compared with clustering of cells pooled
together (black) or of random single-cell trajectories of the same lengths (pink).
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Figure 2-4: Probabilistic modeling of temporal shape-space trajectories captures hetero-
geneous dynamic transitions in cell morphology. (A) A cell exhibiting repetitive back-
and-forth switching between three inferred morphological states of increasing elongation of
the cell body from yellow to pink to blue. Top left, the temporal trajectory of the cell
through PC shape-space. Top center, Gaussian shape states inferred by Bayesian HMM in
SAPHIRE with circles corresponding to one and two standard deviations from the mean
(circle center), respectively. Trajectory time points are colored based on the maximum
likelihood (ML) hidden state inferred from the model. Top right, a diagram of the dy-
namic state transitions derived from the ML state sequence with numbers next to arrows
corresponding to transition frequencies between, or within, states. Live-cell actin reporter
images are outlined with the cell body mask boundaries and colored according to their ML
states. (B) A cell with switch-like transitions between three morphological states, changing
shape continuously from larger and spread to smaller and round. Shape modeling of this
cell trajectory is performed independently of the cell in (A).
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Figure 2-5: Dynamic features of model-annotated shape state sequences from multiple cells
enable phenotypic comparisons between experimental treatment conditions. (A) Traversal
of a hypothetical cell through polar shape-space showing shape state and state transition
features for deriving a phenotypic signature of a cell trajectory. Circles are locations of
inferred state means, blue arrows are state transitions, and the green arrow is an example
of a radial distance of a particular state from the shape-space center. State transitions
capture direction of cellular shape changes over time regardless of state location, whereas
state locations capture the particular morphological properties of a cell in a given region
of shape-space where the state resides. States and transitions are used to generate a phe-
notypic signature for each cell individually to enable comparisons between cells. (B) Polar
distributions of combined states from all single-cell trajectory models for treatments tested
in the imaging screen. Rose plot petals correspond to directional bins in polar shape-space
as in (A), but represent average responses of all cells in a given treatment. Longer petals sig-
nify radial distances that are further from the shape-space origin. Petal color depth relates
to state dwell time of cells in a given slice of polar shape-space, normalized to total trajec-
tory length. (C) Effects of drugs on directions of cellular transitions in polar shape-space.
Rose plot petals are average state transition directions of cells in a given treatment. Longer
petals signify larger transition magnitudes between states, meaning that state means are
farther apart. Petal color depth relates to dwell times of the target states normalized to
total trajectory length.
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Figure 2-6: Comparisons of drug effects on morphological states and state transition
dynamics. (A) Top, hierarchical clustering of phenotypic profiles derived from single-cell

models of shape dynamics under the effect of small-molecule inhibitors that target molec-

ular species involved in regulating actomyosin organization. Increasing Euclidean distance
indicates decreasing similarity between treatments that are grouped in the dendrogram us-

ing average linkage. Bottom, permutation tests indicate statistical significance of pairwise
similarities between treatment profiles. (B) Clustering of model-derived phenotypic pro-

files, as in (A), of cell shape dynamics in response to treatment with an expanded panel of

inhibitors.
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modeling of cellular shape dynamics improves drug classification
existing image-based profiling methods. (A) Confusion matrices
classifications of individual treatments in the inhibitor screen-

ing experiment using existing fixed-cell drug profiling methods and the dynamic modeling
approach presented in this work. The myosin II and MLCK inhibitor (BB and ML7, re-
spectively) treatments are comprised of two different doses tested for each drug, "Ctrl"
comprises the DMSO and non-DMSO controls, and "Other" comprises Y-27632 (ROCK
inhibitor) and AZD6422 (MEK inhibitor) treatments that were only tested at a single dose
and therefore not used for classification comparisons. (B) Overall treatment classification
performances of the proposed and existing phenotypic profiling methods. Classification
accuracy reflects the number of correctly predicted treatments out of six true treatment
comparisons made in (A). (C) Confusion matrices showing treatment classification perfor-
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alone for generating profiles used in classification. (D) Utility of single-cell temporal mod-
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Figure 2-8: Schematic of the conceptual difference between fixed-cell analyses versus

SAPHIRE, and their combined insights into molecular mechanisms of cell shape regulation.

The distribution of morphologies of drug-treated MDA-MB-231 breast cancer cells falls on a

continuum, illustrated in gray. The extent of cell elongation and branching is the dominantly

varying morphological property of the breast cancer cell line analyzed in our drug screen

(Fig. 2-3). Fixed-cell profiling captures the morphological landscape of distinct cells in

the population at a given time point. In contrast, SAPHIRE captures the morphological

evolution of individual cells over time. SAPHIRE uses an HMM framework to detect the

presence of morphological states (e.g. orange and green states for one cell, blue and pink

states for another) used to model the temporal dynamics of each cell independently within

the population. Application of both of these approaches to live-cell shape profiling reveals

that MLCK inhibition decreases, while ROCK and myosin II inhibition increases, cellular

elongation and branching.
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Figure 2-9: Simulations demonstrating differences in model selection and parameter es-
timation of Bayesian HMM in SAPHIRE versus GMM under varying degrees of state dis-
criminability. (A) Two bivariate Gaussian states (blue and pink) with equal variances along
x and y (left panel) were used to create temporal trajectories with a single state transi-
tion. In practice, the states are unknown and must be inferred from a time series cellular
trajectory of coordinates (right panel). State circles represent one and two true standard
deviations from the mean (circle centers) and points are random samples drawn from the
states. Simulated trajectories of different lengths (different number of samples drawn from
the states) and varying resolvability of the states (how well separated the states are, 6p/o)
are shown. (B) Comparison between Bayesian HMM and GMM ability to infer the correct
2-state model (versus a 1-state, or 3-state models) as a function of how well separated the
two states are (6tp/o) for different trajectory lengths. Here, 6p is the Euclidean distance
between the means (centers) of the two states and o is the standard deviation of each state,
set to be the same for the two states in the simulations. Error bars represent +/- standard
error of the mean for 20 state-drawn samples for each 6p/u. Inclusion of temporal infor-
mation in the true two-state trajectories enables the Bayesian HMM in SAPHIRE to infer
the correct 2-state model with higher probability (purple curve) compared to GMM with
expectation maximization (green curve), which does not take temporal information of the
trajectory into account. For both the Bayesian HMM and GMM inference methods, longer
trajectories and larger separation of underlying states improved inference of the correct
2-state model. (C) The percent error in inferred state means for the Bayesian HMM and
GMM. Cumulative percent error in the state means was calculated as

% error = 100 (Ps.,2 - Psia IIsaY - Pa'Y 1)/1P

where sa is the actual (true) state (two states in these simulations), I I denotes absolute
value, and si is the inferred state closest to the true state sa, for all 2-state inferred models,
regardless of whether they are the most probable model or not.
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Figure 2-10: Gaussian mixture modeling (GMM) with full covariance matrix specifica-
tion leads to state under-fitting and undesirable grouping of diverse morphologies into the
same state. Three examples of individual cell shape trajectories from the expanded drug
panel imaging experiment modelled with SAPHIRE to derive annotated underlying shape
state sequences from PCA shape-space trajectories (a). The same cell shapes over time
are classified into groups using GMM with a diagonal, equal-variance constraint for the
covariance matrix (b) or full covariance matrix (c), with BIC used for the GMMs to find
the most probable shape state model for each cell trajectory individually, independent of
other cells. The full covariance matrix GMM lumps cell with heterogeneous morphologies

(e.g., rounder, elongated, branched) into similar groups, showing that Gaussian states with
diagonal, equal variances (circles as opposed to ellipses) better resolve and describe the
underlying morphological states of MDA-MB-231 cells in shape-space.
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Figure 2-11: Probabilistic time series modeling using SAPHIRE better resolves cell shape
states compared to GMM when cells progressively explore shape-space over time. Three
PCA shape-space cell trajectories are shown, with annotation with the most likely shape
state model and state sequence using SAPHIRE (a), and GMM using diagonal, equal-
variance constraint on the covariance matrix (b) or full covariance matrix (c) using BIC
to select the most likely model for the GMMs. The cells shown generally move through
shape-space continuously in given directions over time (e.g., left to right for the first cell
in the upper panel), with SAPHIRE able to capture these states and state transitions,
whereas the GMM is unable to resolve them. This is consistent with numerical simulations
(Fig. 2-9) showing that time series information taken into account by SAPHIRE, which
is neglected by the GMM, is better able to resolve, model, and annotate the underlying
temporal shape state behavior of individual cells. The inability to properly resolve and
capture shape states by GMM leads to under-fitting of the number of states and improper
grouping of morphologically dissimilar shapes into the same state.
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Figure 2-12: Examples of cells with similar SAPHIRE and GMM shape state annotations.
Cell trajectories in shape-space were annotated with the most likely shape state model
and state sequence using Bayesian HMM (a), and GMM using diagonal, equal-variance
constraint on the covariance matrix (b) or full covariance matrix (c). For the GMMs,
the BIC was used to select the most likely state model. When a cell moves progressively
through shape-space over time and resides in well-separated shape-space regions (early time
in black and later time in gray/white in left panels), Bayesian HMM and GMM categorize
morphologies using the same number of states, with state transitions (blue to red) found to
occur at similar points in time.
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from the probabilistic models across different treatment conditions for the two imaging
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infer the a priori unknown number of hidden shape states explored by each cell.
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actomyosin-regulatory proteins using model-annotated profiles of cell shape dynamics. (A)
Effects of the expanded panel of drugs targeting various molecular species involved in regu-
lating actomyosin dynamics on model-inferred cellular shape state locations in polar shape-

space (as in Fig. 2-5B). (B) Effects of the expanded panel of drugs on cellular state transi-

tions in shape-space (as in Fig. 2-5C).
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Chapter 3

The checkpoint kinase-regulated
phosphoproteome drives a
cytoskeleton-associated adaptive
response to doxorubicin
chemotherapy

Contributions

This chapter comprises work derived from equal and joint contribution of the author and
his collaborator Dr. Mun Kyung Hwang from the laboratory of Dr. Michael Yaffe at
the Massachusetts Institute of Technology. Mun Kyung Hwang designed and conducted
experiments, including phosphoproteomics and cell population-level assays. The author
designed and conducted imaging experiments, performed bioinformatics analysis of mass
spectrometry data, and processed and analyzed imaging data.

3.1 Abstract

Conventional cytotoxic chemotherapy activates a DNA damage response (DDR) that in-
duces cell cycle arrest and apoptosis, but can also lead to drug resistance. To identify novel
targets of the DDR, we performed a phosphoproteomic analysis for substrates of three
DDR checkpoint kinases, MK2, Chk1, and Chk2, following treatment with doxorubicin, a
cancer drug used in the clinic. Intriguingly, functional annotation analyses showed that a
large number of checkpoint kinase phospho-substrates induced at 12 hours after doxorubicin
treatment were cytoskeleton-associated proteins that modulate the structure and function
of actomyosin and focal adhesions. Doxorubicin altered cancer cell morphology, migration,
and focal adhesion organization, which were associated with prolonged cell survival and
anoikis resistance. We demonstrate that checkpoint kinases can activate targets with di-
verse functions, which collectively link the DDR, cytoskeleton, and adhesome in an adaptive
cellular response to chemotherapy to enhance drug tolerance, likely contributing to disease
progression.
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3.2 Introduction

Cytotoxic chemotherapy alters a variety of biological processes in normal and tumor cells

through signal transduction pathways that mediate protein post-translational modifications
[16]. The DNA damage response (DDR) constitutes one such signaling network that not
only senses and responds to chromatin lesions, but also coordinates downstream responses
including transcriptional activation, cell cycle arrest, recruitment of DNA repair machin-
ery, and induction of apoptosis or senescence following genotoxic stress [120, 48, 216]. In
response to DNA damage by chemotherapeutic drugs, cells activate three major checkpoint
effector kinases: Chk1, Chk2, and MK2. These three kinases share a common core sub-
strate phosphorylation motif [166], but appear to play distinct and separable roles in the
DDR [215, 14]. Chk1 and Chk2 function primarily in the nucleus at early times after DNA
damage to initiate cell cycle arrest, while MK2, in contrast, participates in the prolonged
maintenance of cell cycle checkpoints by acting on substrates in the cytoplasm [214]. Chk1,
Chk2, and MK2 are known to share a few common direct substrates such as the mitotic
phosphatases Cdc25B and C (reviewed in ref. [129]).

In addition, Chk1 and MK2 bind to and/or phosphorylates different proteins that
share related molfcular functions including chromatin organization) [21, 230], transcrip-
tional control [21, 221] and RNA processing/stability [22, 213, 33]. For example, Chk1
phosphorylates RBM7, a targeting subunit of the RNA exosome, leading to the release of
non-coding RNAs after DNA damage, while MK2 phosphorylates the RNA binding protein
hnRNPAO, to stabilize p27Kip1 and Gadd45a mRNAs, resulting in sustained G1/S and
G2/M arrest in p53-defective cells [214, 22, 33]. Despite these functional similarities and
differences, only a limited number of downstream substrates of these important kinases are
known [21, 22, 254, 299], particularly at later times after genotoxic stress. Clarifying the
identities, differential regulation, and function of checkpoint kinase substrates on a global
scale would provide a more comprehensive, mechanistic understanding of DDR pathways
that determine cellular response to chemotherapy treatment.

We therefore set out to characterize the phospho-substrate landscape of three check-
point kinases, Chk1, Chk2, and MK2, in cancer cells treated with doxorubicin, a DNA-
damaging chemotherapeutic agent widely used in the clinic for treatment of cancer. We
applied Stable Isotope Labeling with Amino acids in Cell culture (SILAC) quantitative
phosphoproteomics using three metabolic labels [167], together with targeted enrichment
for checkpoint kinase substrate motifs, in order to characterize this signaling/substrate
landscape. We further assessed whether the differential regulation of specific phosphosites
induced by doxorubicin is dependent on each checkpoint kinase by using inducible RNAi
knockdowns of each kinase in the SILAC screen. Unexpectedly, we found that, in addition
to canonical DDR processes such as DNA repair and chromatin modulation, the check-
point kinase-regulated phosphoproteome is highly enriched in proteins that participate in
cytoskeletal regulation, particularly actin and focal adhesion remodeling. We show that
sub-lethal doses of doxorubicin alter cancer cell morphology, motility, and survival - three
interdependent processes that constitute an adaptive response to chemotherapy regulated
in part by checkpoint kinase signaling.
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3.3 Results

3.3.1 Phosphoproteomic profiling elucidates the doxorubicin-induced
checkpoint kinase effector signaling network

In response to DNA damage, the protein kinases Chkl, Chk2 and MK2 phosphorylate a
variety of downstream effector molecules that control the subsequent cellular response, in-
cluding cell cycle arrest, DNA repair, or cell death. To examine phosphorylation-dependent
modification of the proteome of human U20S osteosarcoma cells downstream of these effec-
tor kinases, we first profiled their kinetics of activation in response to doxorubicin-induced
DNA damage. As shown in Fig. 3-8, both Chk1 and Chk2 were maximally activated within
30-60 min, and remained active for up to 12 hrs, albeit at lower levels. In contrast, in this
experiment robust MK2 activation was not observed until 6 hrs with maximal activation at
12 hrs.

The 12 hr time point was selected for subsequent phosphoproteomic analyses to max-
imize the identification of MK2 substrates, while still maintaining some ability to identify
Chk1 and Chk2 targets. U2OS cells were selectively SILAC labeled with medium or heavy
isotopes of Lys and Arg at least five passages to fully convert all unlabeled Arg and Lys
residues to isotope-labeled ones. After labeling, cells were treated with 5 pM doxoru-
bicin for 12 hrs or with DMSO as a vehicle control using two biological replicates with
a SILAC labeling swap (Fig. 3-1a). To enrich for substrates of these checkpoint effector
kinases, we used a tandem pooled phospho-specific antibody enrichment approach based
on the common Chkl/Chk2/MK2 substrate motif LxRxxpS/pT (where x is any amino
acid) [166] for peptide immunoprecipitation (IP). To preserve motif sequences, samples were
digested with LysC prior to IP and subsequently digested with trypsin, then separated by
HPLC and analyzed by tandem mass spectrometry (MS/MS) (Fig. 3-1b). These replicate
SILAC phosphoproteomic screens identified 413 and 962 unique phosphosites, respectively,
together spanning 711 different proteins, with 280 phosphosites detected in both replicates,
spanning 227 different proteins. The screen showed high reproducibility in phosphosite reg-
ulation after doxorubicin treatment across both biological replicates (Fig. 3-1c). Of the
280 phosphosites, 208 were upregulated and 31 were downregulated consistently in both
replicates.

3.3.2 Doxorubicin induces a multifunctional phosphoproteome enriched
in cytoskeleton-remodeling proteins

Phosphoproteins were ranked for doxorubicin-induced upregulation and tested for enrich-
ment in gene ontology (GO) annotations using Gene Set Enrichment Analysis (GSEA)
[245]. Because our ranked list of 711 proteins input into GSEA was much shorter than
genome-wide lists typically used for analysis, we chose a less conservative false discovery
rate (FDR) threshold to define enriched GO terms (Fig. 3-1d). A network visualization of
the enriched GO terms (Fig. 3-le) revealed a number of expected annotations for checkpoint
kinase-mediated DDR pathways, including DNA repair, DNA/chromatin organization, cell
cycle regulation, and RNA processing. Surprisingly, however, we also found numerous en-
riched GO terms relating to cytoskeletal organization, including proteins that localize to
cell-extracellular matrix junctions such as focal adhesions and those that regulate micro-
tubule dynamics (Fig. 3-le (i), orange). Under the premise that phosphosites detected
in both SILAC screen replicates are more likely to be true positives, we defined a set of
high-confidence "hits" whose phosphorylation on Chkl/Chk2/MK2 consensus sites was up-
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regulated following doxorubicin treatment (Fig. 3-1f). Singular enrichment analysis (SEA)
was then performed on these proteins to identify GO term gene sets in which the "hits" were
over-represented (Fig. 3-1g). As shown in Fig. 3-1h, in agreement with the GSEA results,
SEA-enriched GO terms related largely to cytoskeleton regulation. Notably, "hit" proteins
FLNA, DOCK7, and CLASP1, which are known regulators of actin and microtubule dy-
namics, occurred in the majority of enriched GO terms identified by SEA. Collectively, these
findings suggest that substrates of these checkpoint kinases that remain phosphorylated 12
hrs following doxorubicin treatment participate in a variety of diverse biological processes,
and are unexpectedly enriched in proteins that mediate cytoskeletal organization.

3.3.3 Doxorubicin treatment alters cell shape and F-actin organization

To directly assess whether doxorubicin treatment of U20S cells induced alterations in the
cytoskeleton, we used fluorophore-conjugated phalloidin to visualize the actin fiber network
along with accompanying changes in cell morphology. Untreated cells contained a large
number of pronounced F-actin stress fibers throughout the cell, while doxorubicin treat-
ment resulted in stress fiber loss i n central regions of the cell with retention of cor$ical
actin bundles, producing noticeablp changes in overall cell shape (Fig. 3-9a). Alth9 ugh
our phosphoproteomic screen was performed in U20S cells, a cell line typically used in
studies of DNA damage signaling [117, 70, 2], the morphological phenotypes of these cells
proved difficult to characterize on a larger scale, since these cells tend to grow in clusters,
making detailed single-cell morphology analyses challenging. We therefore turned to the
triple negative breast cancer cell line, MDA-MB-231, to further characterize changes in cell
morphology induced by doxorubicin. This tumor tissue type is clinically treated with dox-
orubicin as a component of anti-cancer chemotherapy, and MDA-MB-231 cell line is widely
used to study cytoskeleton-mediated processes such as cell migration [78]. As observed
with U20S cells, doxorubicin caused a loss of central stress fiber formation in the MDA-
MB-231 cells, and a markedly elongated morphology after 24 hrs of treatment, particularly
at lower doxorubicin doses (Fig. 3-2a). At high doses, the cells displayed a rounded up
morphology and evidence of PARP cleavage, consistent with apoptosis (Fig. 3-2f, described
below). To validate doxorubicin-induced changes in phosphorylation of checkpoint kinase
substrates in U20S cells identified in the SILAC screen, and to confirm similar signal-
ing effects in MDA-MB-231 cells, we performed Western blotting on a subset of proteins
with commercially-available, phospho-specific antibodies. The phosphorylation of FLNA,
PEA15, YAPI, PPP1R12A, and HSP27, were affected similarly by doxorubicin treatment
in both the U2OS and MDA-MB-231 cells. Importantly, the doxorubicin-dependent phos-
phorylation of these cytoskeletal proteins was easily observable after sub-lethal doses of
doxorubicin at 0.5 AM and 5 pM in MDA-MB-231 and U20S cells, respectively (Fig. 3-9b).

To quantify the observed cell shape changes, we performed a high-throughput auto-
mated analysis to characterize the effects of various doxorubicin doses on cell morphology
on a large number of cells. As shown in Fig. 3-2b, c and d, doses of the drug below 5 pM
shifted the cell populations toward a more elongated morphological phenotype, as captured
by the major axis length of the cells. The distributions of cell elongation across doses were
skewed right. There was no obvious presence of multiple modes (Fig. 3-2b), arguing against
the binary activation an on/off switch that leads to elongation in a specific subpopulation of
cells. Moreover, the increase in cell elongation induced by doxorubicin at multiple doses was
irreversible upon drug washout up to 24 hrs (Fig. 3-10). Interestingly, although doxoru-
bicin progressively inhibited cell proliferation in a dose- and time-dependent manner (Fig.
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3-2e), the intermediate doses that promoted morphological elongation showed no noticeable
PARP cleavage, an early marker of apoptosis, while a 5 pM dose did (Fig. 3-2f). Finally, we
confirmed that the sub-lethal 0.5 pM dose of doxorubicin was sufficient to activate DDR at
24 hrs in MDA-MB-231 cells, as assessed by staining for the DNA damage marker -yH2AX
(S139) (Fig. 3-9c), indicating that the observed whole-cell elongation changes occur in the
context of DDR signaling at sub-cytotoxic doxorubicin concentrations.

3.3.4 Alterations in cell phenotype and checkpoint kinase signaling are
induced by other chemotherapeutic drugs and in other breast can-
cer cell lines

We next asked whether the observed morphological changes in MDA-MB-231 cells could be
induced by other chemotherapeutic drugs. Like doxorubicin, the topoisomerase inhibitor
camptothecin also increased cell elongation. In contrast paclitaxel, a microtubule stabilizing
drug, led to a rounded cell morphology (Fig. 3-11 a), consistent with its known mechanism
of action with cell arrest in mitosis [125]. Etoposide and irinotecan had minimal effects on
cell elongation at the doses tested (Fig. 3-11b). Consistent with these results, flow cyto-
metric analysis of the cell cycle revealed that doxorubicin and camptothecin both arrested
MDA-MB-231 cells predominantly in S phase, while paclitaxel treatment led to M phase
arrest (Fig. 3-11c). In addition, doxorubicin and camptothecin both activated at least one
checkpoint kinase among MK2 and Chk1, while paclitaxel, a microtubule poison, did not
appreciably activate any of the checkpoint kinases (Fig. 3-11d). Collectively, the siniilari-
ties in the morphologies, drug sensitivities, stage of cell cycle arrest, and checkpoint kinase
signaling induced by doxorubicin and camptothecin further point to the broader potential
role that the DDR may play in regulating cytoskeletal processes in response to sub-lethal
doses of DNA damaging chemotherapy.

Furthermore, we assessed whether the morphologies of other breast cancer cell lines
were also altered by sub-lethal doses of doxorubicin. In addition to MDA-MB-231 cells, other
triple-negative breast cancer cell lines with a mesenchymal-like pattern of gene expression
displayed a similar elongated phenotype after low-dose doxorubicin treatment, while MCF7
breast cancer cells, a luminal subtype with a more epithelial-like pattern of gene expression
[40, 250], did not (Fig. 3-12a). Interestingly, the 0.5 pM dose of doxorubicin did not
activate either MK2 or Chk1 in MCF7 cells, using phosphorylation as a surrogate readout
for checkpoint kinase activation (Fig. 3-12b). Conversely, in cell lines that became more
elongated, doxorubicin induced activation of at least one of the checkpoint kinases (Fig. 3-
12b), further suggesting a link between chemotherapy-induced checkpoint kinase signaling
and morphological changes across multiple cell lines.

3.3.5 Morphological changes induced by doxorubicin are coupled with
changes in cell motility

Cell morphology and migratory behavior are functionally connected [182], particularly in
mesenchymal cell types like MDA-MB-231, which migrate as single cells through successive
stages of protrusion, adhesion, and retraction. To assess whether the observed doxorubicin-
induced changes in cell shape also affected cell motility, we next used live-cell fluores-
cence microscopy to image MDA-MB-231 cells stably co-expressing LifeAct-eGFP and H2B-
mCherry, as markers of cytoskeletal rearrangement and cell movement, respectively (Fig.
3-3a). Live-cell imaging confirmed that doxorubicin induced visually-discernible increases
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in elongation in a large subset of cells over time, in agreement with our previous fixed-cell
shape analyses (Fig. 3-3b, orange box). Importantly, this increase in elongation was as-
sociated with altered cell migration trajectories (Fig. 3-3b, blue box). Sub-lethal doses of
doxorubicin, and in particular 0.5 pM treatment, caused increased cell elongation begin-
ning at 12 hrs following drug addition, which appeared to be driven largely by impaired or
delayed retraction of the trailing ends of migrating cells.

To quantitatively characterize the relationship between cell shape changes and mi-
gration response in a large number of cells, we measured a variety of commonly used
morphological features and correlated them to three different motility metrics: distance,
displacement, and persistence, for each cell. This analysis revealed that the net migratory
displacement was highly correlated with persistence, a measure of how directionally efficient
motility is for a given cell, while these two metrics were uncorrelated with total distance
travelled (Fig. 3-3c, top three panels). Cells that attained more elongated morphologies
(larger major axis lengths) travelled more persistently largely due to increased migratory
displacement (Fig. 3-3c, bottom three panels). This relationship suggests that differences
in cell elongation dynamics are coupled to cell migration directionality in this cell type.
Interestingly, doxorubicin treatment increased morphological elongation (Fig. 3-3d (i)),
slightly decreased rmigration distance (Fig. 3-3d (ii)), and increased total migratory dis-
placement (Fig. 3-3d (iii)) of the cell population, on average, over time. These alterations
resulted in pronounced induction of persistent cell movement under doxorubicin treatment,
particularly at the 0.5 pM dose (Fig. 3-3d (iv)). These findings collectively demonstrate
that doxorubicin treatment enhanced cell migration directionality, which is tightly linked
to morphological elongation induced by the drug.

3.3.6 Cytoskeleton-associated phosphosites induced by doxorubicin are
differentially regulated by the checkpoint kinases Chkl, Chk2, and
MK2

To assess the dependence of doxorubicin-induced substrate phosphorylation detected in
our SILAC screen on each of the DNA damage-activated checkpoint kinases, we performed
additional SILAC phosphoproteomic experiments using the same substrate motif enrichment
strategy and U2OS cell type as in Fig. 3-1, but with inducible shRNA-mediated knockdown
of either MK2, Chk1, or Chk2. Because checkpoint kinases perform essential functions, and
the murine homozygous Chk1 knockout in particular is embryonic lethal [151], we explicitly
avoided stable knockdown or CRISPR knockout of the checkpoint kinases to limit adaptive
re-wiring. Instead, we used a lentiviral vector containing a miR30-based short hairpin
under the TRE promoter that tightly regulates target protein expression in a doxycycline-
inducible manner (Fig. 3-4a). Four days of doxycycline treatment was sufficient to reduce
checkpoint kinase expression in cells transduced with each kinase-specific hairpin, as assessed
by Western blotting (Fig. 3-4a). This also confirmed that each checkpoint kinase-specific
inducible knockdown minimally affected the activation of other checkpoint kinases and
efficiently reduced on-target checkpoint kinase activation, as assessed by phosphorylation of
MK2, Chk1, or Chk2 (Fig. 3-13). Cells were labeled with different SILAC isotopes, treated
either with DMSO or doxorubicin for 12 hrs, and two LC-MS/MS runs were each performed
twice, as technical replicates, with each run analyzing three treatment and knockdown
conditions (Fig. 3-4b).

This analysis identified 473 unique phosphosites that were identified in both replicates
of the two separate MS runs. Among these sites, 156 were at least 2-fold up- or down-
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regulated, including classical DDR players, such as TP53BP1 (pS1317), MCM3 (pS160),
and RAP80 (pS330), in addition to numerous other proteins not known to be involved in
the DDR. As described in the legend to Fig. 3-4c, kinase-specific "hits" were identified
as phosphosites that were both statistically significantly upregulated by doxorubicin and
whose phosphorylation was dependent on a particular checkpoint kinase (boxed regions in
Fig. 3-4c). MK2-regulated phosphosites had the largest number of "hits" (46, cyan circles),
while Chkl- and Chk2-regulated sites (31 and 15, pink and brown circles, respectively) had
fewer.

To assess the cellular processes in which the checkpoint kinase-regulated phosphosite
"hits" participate, we built a kinase-substrate regulatory network for each of the three ki-
nases (Fig. 3-4d). As expected from our previous analysis (Fig. 3-1), the majority of
substrates in the network were cytoskeleton-associated proteins. We found that a number
of phosphosites on TNS1, FLNA, AHNAK, PALLD, and MAP2, proteins known for their
role in cytoskeletal organization, were dependent on all three checkpoint kinases and showed
higher upregulation following doxorubicin treatment compared to other shared sites. No-
tably, a number of other well established cytoskeleton regulators, including ENAH, LMO7,
and PPP1R12A (MYPTI), were dependent on Chkl and MK2, but not on Chk2, signaling.
Gene ontology analysis (GSEA) of these phosphoprotein substrates, ranked based on their
checkpoint kinase dependence following doxorubicin treatment, revealed that the phospho-
proteins specifically regulated by MK2, in comparison with Chk1 and Chk2 substrates, were
significantly enriched in actin and cytoskeletal binding GO terms (Fig. 3-4e).

3.3.7 MK2 or Chk1 inhibition abrogates doxorubicin-induced changes in
cell shape and migration

We next applied pharmacological and genetic perturbations to directly assess the contribu-
tions of MK2 and Chkl, respectively, to the morphological changes induced by doxorubicin
in MDA-MB-231 cells. We used pharmacological inhibitors against both MK2 or its up-
stream activator p38MAPK, and confirmed their lack of effect on Chkl kinase activity using
IP kinase assays (Fig. 3-5a,b). Treatment with either the p38MAPK or MK2 inhibitor dra-
matically attenuated the increase in cell elongation induced by doxorubicin, as measured by
changes in the cellular major axis length (Fig. 3-5c). We next used siRNA to block MK2
or Chkl, and confirmed the efficiency and specificity of the knockdowns in this cell type by
immunoblotting (Fig. 3-5d). Similar to what was observed with the p38MAPK and MK2
small molecule inhibitors, knockdown of MK2 with siRNA resulted in a marked inhibition
of doxorubicin-induced cell elongation (Fig. 3-5e). Although our inducible shRNA SILAC-
based mass spectrometry screen for Chkl substrates did not show a statistically significant
enrichment of cytoskeletal-containing GO terms by GSEA-based phosphosite ranking, ChkI
was nonetheless activated under chemotherapy treatment conditions that produced a mor-
phologically elongated cell phenotype, (Figs. 3-11d and 3-12b) and Chkl phosphorylated
numerous cytoskeletal proteins that overlapped with those phosphorylated by MK2 (Fig.
3-4d). We therefore also tested the effect of Chkl depletion on doxorubicin-induced change
in cell morphology. As shown in Fig. 3-5f, knockdown of Chkl with siRNA markedly di-
minished the increase in cell elongation induced by doxorubicin, as measured by changes in
the cell major axis length, similar to the effects seen upon MK2 depletion.

We also assessed whether MK2 or Chkl were involved in doxorubicin-induced changes
in cell migration, given their effects on cell morphology. Live-cell imaging and cell tracking
in the presence or absence of MK2 or Chkl siRNA knockdown revealed that the enhanced
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migratory displacement and persistence seen following doxorubicin treatment in wild-type
cells, was reduced in the MK2- or Chkl-depleted cells (Fig. 3-5g-i). Taken together with
the kinase-specific phosphoproteomics data above (Fig. 3-4d), these assays confirm an
important role for MK2 and Chk1 kinases in regulating cytoskeletal processes following
doxorubicin treatment, which contributes to changes in both cell morphology and motility
induced by sub-lethal concentrations of this DNA-damaging agent.

3.3.8 Doxorubicin alters adhesome organization and signaling, and en-
hances anoikis resistance

Changes in cell morphology and migration are highly dependent on interactions between the
actin cytoskeleton and the extracellular matrix, mediated largely through focal adhesions
(FAs) [287, 227, 36). Rapid assembly of FAs occurs at the leading edge of migrating cells,
with concomitant disassembly at the lagging edge. Since doxorubicin treatment induced
trailing-end retraction defects in migrating cells, and GO terms related to cell-substrate
interactions were highly enriched in our phosphoproteomic screen (Fig. 3-le (i)), we next
asked whether the structure and dynamics of FAs was altered by chemotherapy. Immunoflu-
orescence staining of phospho-FAK (Y397), a key component and regulator of focal adhesion
signaling and organization, revealed that doxorubicin-treated cells had larger, more elon-
gated FAs around the cell periphery than did control DMSO-treated cells, which instead
showed a larger number of smaller FAs (Fig. 3-6a). Quantification of the images con-
firmed that doxorubicin treatment significantly increased the total focal adhesion area per
cell (Fig. 3-6b). The presence of fewer but larger FAs, in combination with the elongated
shape of the cells with adherent trailing ends suggested that sub-lethal doxorubicin exposure
might lead to impaired FA turnover [188]. FA disassembly was therefore directly examined
using the nocodazole washout method [66, 72]. This assay is based on the finding that
nocodazole-induced microtubule depolymerization results in stabilization of FAs by a vari-
ety of mechanisms, such as GEF-H1 release/RhoA activation to enhance FA assembly [72],
and/or loss of kinesin-1 mediated transport of FA disassembly factors along microtubules
[188], among others. Following nocodazole washout, rapid microtubule regrowth and syn-
chronous FA disassembly allows cellular recovery to the pre-nocodazole-treated state. As
shown in Fig. 3-6c and d, FA disassembly in DMSO-treated control cells was nearly com-
plete by 15 min of nocodazole washout (top row). In contrast, during this same washout
period there was little FA disassembly in the doxorubicin-treated cells (bottom row). These
findings are consistent with reduced FA disassembly after doxorubicin exposure, contribut-
ing to the observed increase in focal adhesion area, the increased cell elongation, and the
enhanced migratory persistence.

To further explore connections between doxorubicin-induced checkpoint kinase-
regulated phosphoproteins identified in our SILAC screen and those induced upon cell-
matrix adhesion, we compared our list of phosphosites to a published list of adhesosome
proteins whose phosphorylation was induced upon cell attachment to fibronectin [220]. Re-
markably, many proteins and phosphosites were shared between the two lists, including the
actin-binding protein filamin A (FLNA) and the regulatory/targeting subunit of myosin
phosphatase PPP1R12A (MYPT1), which were highly upregulated by doxorubicin in a
checkpoint kinase-dependent manner (Fig. 3-4d), and for which phospho-specific antibod-
ies were available (Fig. 3-9f). As shown in Fig. 3-6f, modestly increased levels of these
phosphorylated proteins were detectable up to 48 hrs after a brief 4 hr doxorubicin pulse, and
intriguingly, this phosphorylation was even maintained when the cells were then re-plated
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on poly-HEMA (P.H.)-coated plates, conditions in which matrix attachment is blocked.
These findings suggest that in addition to affecting adhesion number and size, doxorubicin
treatment results in the sustained phosphorylation of multiple adhesome components even
upon loss of active cell attachment to the surrounding ECM.

Focal adhesions not only function as physical linkers of a cell to the extra-cellular matrix
(ECM), but also contribute to cell survival [90]. FA signaling plays a particularly important
role in resistance to anoikis, a mechanism of apoptotic cell death induced upon loss of ECM
adhesion [5]. Consistent with the observed increase in phosphorylation of adhesome proteins
after low dose doxorubicin treatment, cells treated with 0.5 ptM doxorubicin for 4 hrs showed
increased survival when plated on P.H-coated non-adherent tissue culture plates (Fig. 3-
6g). Collectively, these findings demonstrate that doxorubicin-induced phosphorylation
of molecular components of the adhesome by DNA damage-activated checkpoint kinases
enhances adhesion signaling and may enhance ECM-independent cell survival.

3.3.9 Morphological elongation induced by doxorubicin is associated with
prolonged cell survival following higher dose exposure

The finding that a sub-lethal dose of doxorubicin treatment enhanced cell viability in the
absence of cell adhesion (Fig. 3-6g), led us to ask whether the alterations in cell elonga-
tion (Figs. 3-2 and 3-3), focal adhesion turnover, and adhesome signaling (Fig. 3-6a,b)
were correlated with increased resistance to doxorubicin when the cells were grown on a
highly adherent substrate (tissue culture plastic coated with Collagen I and Matrigel). To
quantify the relationship between doxorubicin-induced cell elongation and the subsequent
induction of cell death, we tracked individual MDA-MB-231-LifeAct/H2B-expressing cells
over 3 days in the presence of a fluorescent apoptosis reporter, AnnexinV-AlexaFluor647,
after a prolonged 24 hr treatment with 1 pM doxorubicin (Fig. 3-6h). Using the morpholo-
gies of untreated cells (DMSO control) as baseline, a threshold was established (see A.2) to
identify cells that became elongated during the 1 pM doxorubicin treatment, and those that
did not (Fig. 3-6i). As shown in the bottom panel of Fig. 3-6j, cells that did not become
elongated within the first 24 hrs died over a wide range of times following drug treatment,
with a median time to death of 43 hrs. Remarkably, cells that became elongated within
the first 24 hrs of drug treatment died at later times, with a median time to death of 49
hrs, and a distribution of cell death kinetics that was markedly skewed left (Fig. 3-6j, top
panel).

3.3.10 Doxorubicin pre-treatment with a sub-lethal dose confers en-
hanced cell elongation and long-term drug tolerance to secondary
treatment

To evaluate whether the observed doxorubicin-induced changes in cell shape, adhesion-
related signaling, and delayed cell death conferred a long-term survival advantage in re-
sponse to subsequent drug exposure, we performed a two-stage doxorubicin treatment pro-
tocol with a prolonged period of drug washout and recovery in between treatments (Fig.
3-7a,b). Sub-confluent MDA-MB-231 cells were pre-treated with 0.5 pM doxorubicin or
DMSO for 24 hrs. Drug or vehicle was then washed out, and the cells allowed to recover by
culturing them in serum-containing growth media without drug for a month. Many of the
pre-treated cells died over the first 2 weeks, but a subpopulation survived, and began to
proliferate after 3 weeks in culture. By one month in culture the growth rate of these sur-
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viving doxorubicin-pre-treated cells was comparable to the growth rate of control cells that
had not been pre-treated with the drug (Fig. 3-7b and c, treatments (iii) and (i), respec-
tively). Furthermore, both the doxorubicin-pre-treated and control cells after one month in
culture had similar morphologies at baseline (Fig. 3-7d). The cells were then secondarily
treated with DMSO or with increasing doses of doxorubicin (0.5-5 puM), and assayed for
survival 48 hrs later. As shown in Fig. 3-7e, the population of pre-treated cells consistently
demonstrated increased tolerance to a secondary doxorubicin treatment compared to the
population of non-pre-treated cells (Fig. 3-7b, treatments (iv) and (ii), respectively), but
had no survival advantage after treatment with the microtubule-targeting drug docetaxel.

To explore the dynamics of response at the single-cell level, cells were transduced to
co-express H2B-mCherry and LifeAct-eGFP, and analyzed for changes in proliferation and
cell shape by fluorescence microscopy over the ensuing 48 hrs in response to an intermediate
(1 pM) dose of doxorubicin (Fig. 3-7a). The media was supplemented with fluorophore-
conjugated AnnexinV, allowing concurrent live cell imaging-based measurements of apopto-
sis. These single-cell measurements confirmed that both the pre-treated and non-pre-treated
cells showed similar proliferation rates at baseline (DMSO treatment) (Fig. 3-7f, treatment
conditions (iii) and (i), respectively), consistent with the previous population based mea-
surements (Fig. 3-7c). Both the pie-treated and control cells ceased to proliferate ater
secondary treatment with 1 pM doxorubicin (Fig. 3-7f, treatment conditions (iv) and (ii),
respectively), and a subset of both types of cells became elongated following doxorubicin
treatment, producing similar morphologies in the pre-treated and control cell populations
(Fig. 3-7g). Importantly, cells that were pre-treated with the drug one month earlier showed
a significantly increased percentage of cells that subsequently became elongated in response
to secondary treatment, compared to the control DMSO pre-treated cells (Fig. 3-7h).

In addition to the increased percentage of cells that became elongated, the cells that
had been pre-treated with 0.5 pM doxorubicin showed a significant reduction in the ki-
netics of apoptotic cell death, as evaluated by live-cell AnnexinV staining as a function
of time, compared to cells that had not been pre-treated, despite the one month period
of time that had elapsed between treatments (Fig. 3-7i). In agreement with the popu-
lation level measurements (Fig. 3-7e), the single-cell assay verified that the pre-treated
cells contained a larger total fraction of non-apoptotic (AnnexinV-negative) cells at 48 hrs
after the secondary doxorubicin treatment (Fig. 3-7j). Finally, to determine whether the
observed increased tolerance to doxorubicin was directly connected to the drug-induced
elongation phenotype, the population of individually tracked cells was grouped into those
that died or survived within the 48 hrs. As shown in Fig. 3-7k and 1, cells that survived
for 48 hrs were the ones that became elongated. Taken together, these data suggest that
changes in doxorubicin-induced cytoskeletal and focal adhesion signaling (Fig. 3-6) underlie
a morphological response that is associated with drug tolerance.

3.4 Discussion

Here we presented a quantitative phosphoproteomics study to profile DNA damage-induced
checkpoint kinase substrates in cells treated with a chemotherapeutic agent, doxorubicin.
We demonstrated that DNA damage checkpoint kinase signaling regulates cytoskeletal or-
ganization and remodeling. Fluorescence imaging and other phenotypic assays showed that
these signaling changes induced by sub-lethal chemotherapy are associated with altered cel-
lular morphology, migration, focal adhesion organization, and chemo-tolerance (Fig. 3-7m).
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Previous large scale phosphoproteomic and smaller detailed mechanistic studies have
shown that, in addition to their role in regulating cell cycle progression, DNA repair, and
apoptosis, DDR-activated kinase signaling pathways also control other cellular processes,
including chromatin structure and transcriptional regulation through RNA binding proteins
[16, 196, 168]. In agreement with these studies, our phosphoproteomics screen revealed that
checkpoint kinase-regulated substrates were highly enriched in RNA-related GO terms that
included, among others, "RNA binding" (Fig. 3-le (ii)) and "Transcriptional regulation by
RNA polymerase II" (Fig. 3-le (iii)). More unexpectedly, however, our screen also revealed
that doxorubicin chemotherapy alters adhesion- and actomyosin cytoskeleton-associated
pathways through checkpoint kinase signaling (Fig. 3-le (i), (iii) and Fig. 3-4d,e).

Regulation of the cytoskeleton requires the spatio-temporal control of many struc-
tural and signaling proteins. Therefore, multiple checkpoint kinases and their substrates
(Fig. 3-4d) may collectively coordinate the morphological and migratory properties of
doxorubicin-treated cells (Fig. 3-5). Although doxorubicin-induced topoisomerase II in-
hibition, mitochondrial dysfunction, and reactive oxygen species production are well doc-
umented (reviewed in ref. [28]), previous studies have shown that doxorubicin can also
alter actomyosin and myofibril organization in cardiac cells in a kinase signaling-dependent
manner [247, 226]. Shi and coworkers demonstrated that doxorubicin alters focal adhe-
sion organization and stress fiber formation in part through ROCK1 in mouse embryonic
fibroblasts, illustrating that chemotherapy can influence cytoskeletal structure through the
actomyosin-regulatory machinery [246, 234]. In the current work, we found that doxoru-
bicin altered the phosphorylation of many adhesion- and actomyosin-associated protein
substrates of checkpoint kinases in cancer cells (Fig. 3-lh and 3-4d, Fig. 3-9b), including
FLNA, a cytoskeleton-membrane linker involved in actomyosin-mediated adhesion matu-
ration; PPP1R12A, a myosin phosphatase subunit regulated by RhoA/ROCK that partic-
ipates in actomyosin contractility-driven adhesion remodeling; and TNS1, a substrate of
calpain-II proteinase localized in focal adhesions that crosslinks actin filaments. In particu-
lar, we speculate that altered phosphorylation of adhesion-associated proteins could affect
their proteolytic cleavage by calpain-II [37, 38, 35] or their endocytic recycling [reviewed in
ref. [185]], resulting in impaired cellular de-adhesion and trailing-end retraction, a defining
phenotype of doxorubicin-treated cells that was observed. Although we do not explore these
or other potential mechanisms here, our phosphoproteomics screen provides a resource that
lays the groundwork for future follow-up studies to determine the contributions of individual
phosphoprotein species to the cytoskeletal changes mediated by DDR signaling.

Furthermore, although selective pressure from doxorubicin treatment can promote the
outgrowth of invasive or resistant subpopulations of cells [93, 264, 259, 1, 31], our phospho-
proteomics data suggest an alternate mechanism - DNA damage-induced cytoskeletal sig-
naling could generate a pro-invasive cell phenotype in the absence of selection. For instance,
doxorubicin has been reported to induce migration and block apoptosis of MDA-MB-231
cells through p38/NF-KB-dependent signaling [193]. Other drugs, such as the microtubule-
targeting chemotherapeutics paclitaxel and vincristine, have also been shown to enhance
cell motility, invasiveness, and metastasis through altered signaling [208, 276, 63]. In the
case of doxorubicin within our system, we speculate that delayed trailing-end retraction
both reduced focal adhesion disassembly (Fig. 3-6c,d), and resulted in larger focal adhe-
sions (Fig. 3-6a,b and Fig. 3-14). These phenomena likely contribute collectively to the
morphological elongation and migratory persistence induced by the drug (Fig. 3-3bd).
Indeed, average cell elongation and migratory persistence were positively correlated (Fig.
3-3c), in agreement with the established notion that focal adhesion disassembly is a criti-
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cal step in the motility cycle of migratory cells [145]. Consequently, doxorubicin-induced
adhesome signaling could alter focal adhesion dynamics that results in cell elongation and
a directionally-persistent migratory phenotype, which could provide for more productive
cancer cell motility and enhanced metastatic potential. Moreover, changes in cell mor-
phology and motility are also a defining feature of an epithelial-to-mesenchymal transition
(EMT) that confers pro-invasive characteristics [292, 293]. Previous studies have reported
a link between chemotherapy treatment and induction of transcription factors associated
with EMT. For example, doxorubicin can promote EMT through the induction of Twist-1
[149], while sub-lethal doses of cisplatin can induce Snail [68]. It would be interesting to
investigate in follow-up studies whether induction of EMT-related markers is associated
with DDR-regulated cytoskeletal and adhesome signaling in response to chemotherapy.

Interestingly, we also found that the morphological changes induced by sub-lethal
doxorubicin were associated with enhanced chemo-tolerance (Fig. 3-6h-j and Fig. 3-
7e,g-1), which could constitute an adaptation to therapy through a variety of possi-
ble mechanisms. For instance, breast cancer cells can adopt a transient and reversible
CD2 4high/CD4 4high state that confers adaptive resistance to chemotherapy, which is dif-
ferent from a CD24o"/CD44high state typically associated with EMT [95]. Alternatively,
cells can also transition from a proliferative state to an invasive state that alters drug sen-
sitivity [130]. For example, it has been shown that proliferative melanomas are sensitive
to B-Raf inhibitors, while non-proliferative melanomas become resistant and more invasive
[111]. Recent work has demonstrated that the transition from a proliferative to an invasive
state requires cell cycle arrest [170]. As a result, doxorubicin-treated cells in our system
may also have undergone such a transition, since sub-lethal doses of the drug induced cell
cycle arrest (Fig. 3-11c) that blocked proliferation (Fig. 3-2e), while promoting cytoskele-
tal reorganization (Fig. 3-2a-d), persistent migration (Fig. 3-3d), and drug tolerance (Fig.
3-6h-j and 3-7e,g-1). Finally, cells in non-proliferating tumors can also exist in quiescent
or dormant states that have been linked to therapy resistance [62] and metastatic burst
[194]. For example, activation of p38MAPK, an upstream regulator of the checkpoint ki-
nase MK2 that we studied here, has been shown to enhance survival of dormant tumor cells
under therapy- or microenvironment-induced stress [256, 212]. Whether sub-lethal doses of
chemotherapy induce tumor dormancy through the p38MAPK/MK2 signaling axis in our
system is not known, but is of interest to investigate in future studies.

One of our most intriguing findings was that sub-lethal doses of doxorubicin enhanced
cell survival under no-adhesion conditions, which may constitute an escape from anoikis
(Fig. 3-6g). Cells treated with doxorubicin maintained higher levels of phosphorylation
of adhesion-associated proteins like FLNA and PPP1R12A under no-adhesion conditions
(Fig. 3-6f). This suggests that doxorubicin-induced DDR signaling may activate cellular
functions typically mediated by focal adhesion signaling, but in the absence of extracellular
matrix-regulated signal transduction or cell-substrate interactions. Functionally, proteins
such as FAK that regulate focal adhesion-mediated signaling can promote cell survival
and chemotherapy resistance [252, 29, 79]. Since anoikis is initiated by loss of cellular
engagement with the extracellular matrix, as would be the case for disseminating cancer
cells in the bloodstream, DNA damage-induced activation of adhesome signaling under such
conditions could support cancer cell viability and confer anoikis resistance during metastasis.

Taken together, our findings suggest that the checkpoint kinase-regulated phosphopro-
teome activated by DNA damage in the context of sub-maximal tumor killing can alter
cytoskeletal organization and migratory behavior, as well as enhance cancer cell survival
that could influence the course of residual disease. The capacity of doxorubicin-treated
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cells to attain elongated morphologies and better tolerate secondary treatment appears to
be retained even weeks after primary drug exposure (Fig. 3-7e-l). This phenomenon could
constitute an adaptive cellular response to chemotherapy that may adversely affect ther-
apeutic efficacy and exacerbate disease progression in clinical regimens involving multiple
rounds of treatment.
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Figure 3-1: Cytoskeleton-associated proteins predominantly define the checkpoint kinase-
mediated phosphosignaling response to doxorubicin. (a) Schematic of the mass spectrom-
etry SILAC labeling strategy to profile doxorubicin effects on the phosphoproteome. (b)
Experimental workflow of the phosphoproteomic screen focused on substrates with check-
point kinase target motifs. (c) Scatterplot showing doxorubicin effects on 280 phosphosites
spanning 227 proteins from two biological replicates (p, Pearson correlation). (d) Left, list
of 711 proteins detected in at least one replicate ranked by doxorubicin-induced upregu-
lation used for gene set enrichment analysis (GSEA). Right, scatterplot of gene ontology
(GO) terms (data points) showing GSEA normalized enrichment scores (NES) and their
corresponding false discovery rate (FDR) q-values. GO terms deemed significantly enriched
in doxorubicin-induced proteins (FDR < 0.25) with positive and negative NES are colored
red and blue, respectively. (e) Network maps of significant GO terms identified in (d) show-
ing enrichment (node size), categorical annotation (node color), and gene set overlap (edge
thickness) in cellular components (i), molecular functions (ii), and biological processes
(iii), of phosphoproteins upregulated by doxorubicin. Network edges with gene set overlap
coefficients > 0.4 are shown. (f) Volcano plot of the 280 phosphosites common to both
replicates in (c) used to identify 83 "hits" spanning 68 proteins (colored orange). "Hits"
are phosphosites upregulated by doxorubicin (x-axis, mean across replicates) with FDR q-
value < 0.25 (Benjamini-Hochberg multiple test-corrected t-test p-values). (g) Scatterplot
of GO terms (data points) showing results of singular enrichment analysis (SEA) that tests
over-representation of "hits" identified in (f) within each GO term gene set. GO terms with
FDR < 0.25 (Fisher's exact test following Benjamini-Hochberg multiple test correction) and
permutation test p < 0.05 for non-hit enrichment were deemed significant (colored red). (h)
Network of significant GO terms identified in (g) enriched with doxorubicin-induced phos-
phoprotein "hits" identified in (f). Nodes are shaded based on the SEA testing FDR shown
in (g) and edge thicknesses correspond to the magnitudes of the gene set overlap coefficients
between terms. The identities and numbers of protein "hits" that occur in each GO term
are listed.
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Figure 3-2: Doxorubicin alters cell morphology. (a) Representative images of MDA-MB-

231 breast cancer cells stained for F-actin (phalloidin, green) and nuclear DNA (DAPI,
blue) 24 h after doxorubicin treatment with the indicated doses. Scale bars, 20 pm. (b-
d) Quantification of cellular morphological elongation (major axis length, MAL) following

treatment with different doses of doxorubicin. MDA-MB-231 cells stably expressing actin

reporter LifeAct-eGFP and nuclear reporter H2B-mCherry were used. (b) shows distribu-

tions of cellular major axis lengths under different doxorubicin doses. Red bar, median; left

black bar, 25th percentile; right black bar, 75th percentile. Distributions were normalized

to have equal areas to aid visual density comparisons. * p < 0.05 Wilcoxon rank sum

test comparing MALs of cells treated with different doses of doxorubicin with the MALs

of untreated cells (Doxo, 0 pM). Limits on x-axis are set to 1st and 95th percentile of the

pooled MAL distribution comprising all conditions to aid visual comparisons. Bottom to

top, n = 523, 232, 200, 152, 112, 264 cells, each from 3 replicates. (c) shows the MAL

distribution of cells from all conditions in (b). Purple shading indicates a given quartile (q)
of the entire distribution. Representative images of cells in each quartile are shown (green,
LifeAct-eGFP; pink, H2B-mCherry). Scale bars, 40 pm. Limits on x-axis are set to 1st and

99th percentile of the pooled distribution of all conditions in (b). (d) Stacked bar graph

showing the percentage of cells under different doxorubicin dose treatments normalized to

each MAL quartile of the untreated (Doxo, 0 pM) cell population (pink shading). Leg-

end indicates the MAL ranges captured by each quartile in the untreated population. (e)

Cell viability/proliferation dose-response to doxorubicin treatment of MDA-MB-231 cells.

Viability/proliferation was measured by SYTO60 cell staining following treatment with dox-

orubicin for 24 or 48 hrs at the indicated doses. Horizontal red dashed line indicates baseline

SYTO60 staining at the start of the experiment (0 h with no doxorubicin treatment). Bars

show mean viability values following normalization to untreated control (Doxo, 0 pM at

0 h) of n = 3 replicates for each condition. Error bars, (+/-) s.e.m. (f) Western blot of

an apoptotic cell death marker, cleaved PARP (cPARP), in MDA-MB-231 cells assayed at

24 hrs following doxorubicin treatment at the doses shown. Assayed lysates include both

supernatant (floating cells) and attached cells collected at the 24 hr time point.
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Figure 3-3: Doxorubicin increases directional cell migration that is coupled to morphologi-
cal elongation. (a) Schematic overview of the experimental and computation workflow used
to quantify and correlate changes in cell motility and shape dynamics induced by doxoru-
bicin. (b) Left, snapshot images showing morphological changes of two representative live
MDA-MB-231 cells expressing actin reporter LifeAct-eGFP (green) and nuclear reporter
H2B-mCherry (pink) at sequential time points following treatment with DMSO (control)
or doxorubicin (Doxo, 0.5 pM). Right, cell migration trajectories of the two cells following
treatment. Trajectories were obtained via automated tracking of the cell nuclei using the
nuclear reporter. (c) Top, correlation (Spearman p) between motility metrics shown in (a)
of 4 h-long single-cell migration trajectories (gray data points) of cells treated with different
doses of doxorubicin (0, 0.1, 0.5, and 1 pM) measured 19 to 23 hrs following treatment.
Bottom, correlation between motility metrics and morphological features of the single-cell
trajectories, relating average value of the features over time with migratory behavior. Cell
elongation (major axis length, MajAL) is highlighted in red. (Perim, perimeter; Eccen,
eccentricity; AxisR, axis ratio; MinAL, minor axis length; Circ, circularity, see Table B.1
for shape feature definitions). (d) Quantification of morphological elongation (major axis
length) and motility (distance, displacement, and persistence) of tracked cells following
treatment with different doses of doxorubicin over time, calculated for sequential 1 h-long

trajectories. Solid colored lines are the mean feature values (y-axis) of all tracked live cells
from n = 8 independent 96-well-plate wells with 3 field of view per well for each treatment
condition. Colored shading indicates (+/-) 95% CI of the mean.
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Figure 3-4: The doxorubicin-activated phosphoprotein networks of checkpoint kinases
MK2, Chk1, and Chk2 consist of shared and distinct substrates with cytoskeleton-regulatory
function. (a) Schematic of the hairpin construct used to generate stable cell lines with
doxycycline-inducible transient knockdown of each checkpoint kinase. Western blot con-
firms the efficiency and specificity of checkpoint kinase knockdown with each construct.
(b) Schematic of the five SILAC labeling conditions used for mass spectrometry, speci-
fying the amino acid label (heavy, medium, or light), treatment (doxorubicin or DMSO),
and knockdown (Luciferase, Luc; checkpoint kinases Chkl, Chk2, or MK2). Two mass
spectrometry runs, each with 3 SILAC-labeled treatment conditions (bottom, boxed) were
performed to assess the dependence of doxorubicin-induced phosphosites on the presence
of each checkpoint kinase. (c) Phosphosite "hit" identification. Scatterplots of shared
phosphosites (data points) identified in all conditions and replicates in (b) plotted as ra-
tios of the conditions shown. "Hits" (cyan, pink , or brown points) are phosphosites at
least two-fold upregulated by doxorubicin (x-axis, mean across replicates) and dependent
on knockdown target (y-axis, mean across replicates) with FDR q-value < 0.05 (Benjamini-
Hochberg multiple test-corrected t-test p-values). The number of "hits" in each knockdown
comparison are: MK2, 46; Chkl, 31; Chk2, 15. (d) Checkpoint kinase regulation network
of phosphosite "hits" identified in (c). Phosphosite node size corresponds to the magnitude
of upregulation upon doxorubicin treatment; node color shows the categorical annotation
having the largest fraction of GO terms containing the phosphoprotein. Edge thickness in-
dicates dependence of phosphosite upregulation on the connected checkpoint kinase (large
pink, brown, or cyan node) upon doxorubicin treatment (log 2(Luc/KD) under doxorubicin).
(e) GSEA of proteins whose upregulation by doxorubicin was dependent on a given check-
point kinase. Log2-transformed fold changes between the SILAC conditions shown (row
labels) were used for GSEA input list ranking. Heatmap shows the subset of all GO terms

(columns) that were deemed significantly enriched (FDR < 0.25) in at least one condition

(row), and the positive normalized enrichment score (NES), out of 470 total GO terms
identified in all conditions.
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Figure 3-5: MK2 or Chk1 depletion abrogates doxorubicin-induced cell elongation and
directional migration. (a, b) Effects of pharmacological inhibitors against p38MAPK (a)
or MK2 (b) on MK2 or Chk1 kinase activity in MDA-MB-231 cells based on in vitro kinase
assays. (c) Effects of pharmacological p38MAPK or MK2 inhibition on doxorubicin-induced
morphological elongation (major axis length, MAL). MDA-MB-231-LifeAct/H2B cells were
treated with a p38MAPK inhibitor (SB202190, 10 pM) or MK2 inhibitor (PF-3644022,
10 pM) with or without doxorubicin (0.5 pM) for 24 hrs, fixed, imaged, and analyzed for
morphological changes. In each distribution, the thicker central vertical line is the median,
left thinner line is 25th percentile, and right thinner line is 75th percentile. Bottom to top,
n = 468, 221, 364, 312, 406, 237 cells, each from 4 replicates. (d) Efficacy and specificity of
siRNA-based knockdown of MK2 or Chk1. MDA-MB-231 cells were transiently transfected
with siRNA targeting control, MK2 or Chk1 for 72 hrs and cell lysates were blotted with an
antibody against MK2 or Chk1. (e) Effect of RNAi-based knockdown of MK2 on morpho-
logical elongation following doxorubicin treatment. MDA-MB-231-LifeAct/H2B cells were
transfected with siRNA against non-targeting control (siCont) or MK2 (siMK2) for 72 hrs
and treated with doxorubicin (0.5 pM) for 24 hrs and analyzed for changes in morphology
as in (c). Bottom to top, n = 395, 153, 216, 116 cells, each from 4 replicates. (f) Effect
of RNAi-based knockdown of Chk1 on doxorubicin-induced morphological elongation. Cell
treatment and analysis same as in (e). Bottom to top, n = 395, 153, 397, 273 cells, each
from 4 replicates. (g) Migration trajectories (12 hr-long, origin-centered at t = 0 hr) of live
MDA-MB-231-LifeAct/H2B cells tracked following doxorubicin treatment (added at t = 0
h, 0.5 pM) with or without MK2 or Chk1 siRNA knockdown for 72 hrs prior to doxorubicin
addition. The top 30 cells that travelled the farthest distance under each condition are
shown. Trajectories have 72 time steps (cells imaged every 10 min in the time period of 12
to 24 hrs following doxorubicin treatment). (h) Effects of doxorubicin treatment on motil-
ity (displacement, persistence, and distance) of MDA-MB-231-LifeAct/H2B cells with or
without siRNA knockdown of MK2 in the time period of 12 to 24 hrs following doxorubicin
treatment. Horizontal black lines in each violin plot distribution are the median values.
Left to right within each panel, n = 245, 169, 71, 56 cells, each from 5 replicates. (i) Effects
of doxorubicin treatment on cell motility (displacement, persistence, and distance) with or
without siRNA knockdown of Chk1. Cell treatment and analysis same as in (h). Left to
right within each panel, n = 245, 169, 243, 198 cells, each from 5 replicates.

85



pFAK FAK Composite b

0

10

0

o

0

11 DMSO Deox

a 2

05

d

LL

r

M 

DMSO Do * ns

2

15!

0.5

0 15 0 15
Noco washout (min)

Doxonhbion-induced
Adhesome checkpoint kinase
phospho- phosphoproteomics
proteomics

YAPI (S109) MAST2 (S74)
BAIAP2 (S366) OSBPL11 (S189)
TBC1D5 (544) PFKFB2 (S466)
ADDI (S726) PLEC (S4642)
AZIl (S47) PPP1R12A (5507)
DENND4C (51042) PPPIR12A (S995)
DOCK7 (S929) PTPN12 (5435)
DOS(S319) RANBP1 (S60)
FLNA (S2152) SPTBN1 (T2328)
HN1 (S88) WDR20 (S434)

f
Pre- Replete
treat Wash an P.H.

4h 48h 48h

TC. P.H.
Doxo (0.5pM) - 4h - 4h

pFLNA m ai *
(S2152)

pPPP1R12A
(-507)t

0actin

g
DMSO or Do

Measure
Wash Replate viability

4h 48h 48h

0
0

-

120 -

40

0.
TO Pr
Replate substrate

N Elongated

0 20 40 60 80
Time to cell death (h) *

0 20 40 60 80
Time to cell death (h)

a

B

h
Plating substrate:
T.C. + Collagen I &
Matrigel coatings

Doxo 1pM

Live-cell imaging

24h 48h

Cel shape A
quanfication n

86

0

Uj



Figure 3-6: Doxorubicin alters focal adhesion organization and promotes anoikis resis-
tance. (a) Representative images of MDA-MB-231 cells treated with DMSO (control) or
doxorubicin (Doxo, 0.5 pM), immunostained for p-FAK (Y347) and total FAK at 24 hrs
post-treatment to assess changes in focal adhesion organization. Scale bars: whole-cell
images, 20 pm; zoom-in images, 2 pm. Additional images are included in 3-14. (b) Quan-
tification of doxorubicin (0.5 pM) effects on focal adhesion area. * p < 0.05 Wilcoxon
rank sum test. n = 51 and 38 cells analyzed, for DMSO and Doxo, respectively. (c) Rep-
resentative images of focal adhesion organization in DMSO- and doxorubicin-treated cells
following nocodazole treatment or 15 min after nocodazole washout. MDA-MB-231 cells
were treated with DMSO or doxorubicin (0.5 pM) for 24 hrs, treated with nocodazole for
4 hrs in serum-free media, washed for the indicated lengths of time, fixed and stained for
p-FAK (Y397). Three representative images are shown for each condition. Scale bars, 20
pm. (d) Quantification of doxorubicin (0.5 pM) effects on focal adhesion area, as performed
in (c), at the indicated time points following nocodazole washout. 0 min washout. corre-
sponds to the time point at 4 hrs of nocodazole treatment. * p < 0.05 Wilcoxon rank sum
test. Left to right, n = 24, 39, 18, 23 cells analyzed. (e) Phosphosite overlap between the
phosphoproteomic data set presented in this work and the consensus adhesome data set of
[220]. Sites further assayed in (f) are highlighted red. (f) Western blotting of phosphory-
lated cytoskeleton- and adhesome-associated proteins, FLNA and PPP1R12A (MYPTI), in
MDA-MB-231 cells before and after culture on non-adhesive substrate (poly-HEMA, P.H.)
following doxorubicin treatment. (g) Top, schematic of the experimental design to assess
effects of doxorubicin pre-treatment on cell viability when cells are seeded on substrates with
low (poly-HEMA, P.H.) or high (tissue culture, T.C.) adhesiveness. Following pre-treatment
and washout, cells were re-plated onto 96-well tissue culture plates coated without (T.C.)
or with poly-HEMA (P.H.), and cell viability then measured via CellTiterGlo at 48 hrs.
Percent viability was normalized to untreated control (DMSO) for each seeding substrate.
* p < 0.05 Student's t-test comparing mean percent viabilities from n = 3 replicates for
each condition. Error bars, (+/-) s.e.m. (h) Workflow schematic for simultaneous analysis
of morphology and apoptosis of MDA-MB-231-LifeAct/H2B cells. AnnexinV conjugated
with AlexaFluor-647 was used for live imaging-based cell death quantification. (i) Live-
cell snapshots of three representative MDA-MB-231-LifeAct/H2B cells at the time point of
maximum elongation over 24 hrs following doxorubicin treatment for the non-elongated and
elongated cell subpopulations. In the images, LifeAct-eGFP is green; H2B-mCherry is red.
Scale bars, 40 pm. (j) Comparison of cell death rates of elongated (ii) and non-elongated
(i) cells following 1 pM doxorubicin treatment. Thick center line, median; left thin line,
25th percentile; right thin line, 75th percentile. Distributions (gray) were normalized to
have equal areas to aid visual density comparisons. * p < 0.05 Wilcoxon rank sum test. n
= 412 non-elongated and 53 elongated cells analyzed.
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Figure 3-7: Sub-lethal doxorubicin pre-treatment followed by long-term recovery increases
cellular tolerance to secondary round of drug exposure. (a) Workflow of MDA-MB-231-
LifeAct/H2B cell morphology, proliferation, and apoptosis following a two-stage doxoru-
bicin regimen (pre-treatment, 0.5 pM; 2nd treatment, 1 pM). AnnV is AnnexinV conju-
gated with AlexaFluor-647. (b) Legend for panels (c)-(j) indicating treatment conditions
and color-coding used throughout the figure. (c) Baseline cell proliferation (normalized to
0 hrs) of pre-treated cells after 1 month recovery. (d) Representative images of DMSO- or
doxorubicin-pretreated cells after 1 month recovery. (e) Effect of doxorubicin pre-treatment
on cell survival following second treatment with various doxorubicin doses or 50 nM doc-
etaxel (Dxt). Prior to secondary treatment, cells were pre-treated as in (a, b). * p < 0.05
Student's t-test comparing means from n = 3 replicates for each condition. Error bars,
(+/-) s.e.m. (f) Effect of doxorubicin pre-treatment and recovery on proliferation assessed
via live-cell imaging over 48 hrs following secondary dose treatment (Doxo, 1 ptM). Solid
colored lines are the mean values from n = 3 replicates. Colored shading: 95% Cl. (g)
Live-cell snapshots of three randomly chosen elongated cells (rows) at the time point of
maximum elongation in each treatment condition (column) labeled (ii) or (iv). Green,
LifeAct-eGFP; pink, H2B-mCherry. Scale bars, 40 pm. Intensity was scaled uniformly
across all image panels to emphasize cell bodies and nuclei. (h) Effect pre-treatment and
1 month recovery on the fraction of elongated cells following treatment with a secondary 1
pM dose of doxorubicin. * p < 0.05 Student's t-test comparing means of n = 3 replicates for
each condition. Error bars, (-+-/-) s.e.m. (i) Effect of pre-treatment and 1 month recovery
on cell death assessed via live-cell imaging over 48 hrs following secondary dose treatment
(Doxo, 1 pM). Solid colored lines are the mean values from n = 3 replicates. Colored shad-
ing: 95% CI. (j) Percentage of viable cells (AnnV negative) at the 48 hr time point after
secondary doxorubicin treatment in the right panel plot in (i), relative to DMSO control.
* p < 0.05 Student's t-test comparing mean percent viabilities. Error bars, (+/-) s.e.m.
(k) Quantification of morphological elongation (MAL) over time for the subpopulations of
doxorubicin pre-treated cells (condition (iv) in (b)) that were either tolerant (green curve)
or sensitive (yellow curve) to secondary treatment of 1 pM doxorubicin. Purple curve: base-
line morphology of alive (AnnV negative) cells under no drug treatment. Key for colors
shown in (1). Solid colored lines are the means. Colored shading: (+/-) 95% CI. The cell
subpopulations in the green, purple, and yellow curves comprise n = 189, 432, and 43 cells,
respectively. (1) Representative morphologies of cells from the tracked subpopulations in
(k). Images: green, LifeAct-eGFP; pink, H2B-mCherry. Scale bars, 40 pm. Intensity scaled
uniformly across all image panels to emphasize cell bodies and nuclei. (m) Summary of
major findings and working model of the checkpoint kinase-mediated phospho-signaling and
phenotypic responses of cancer cells to sub-lethal doxorubicin chemotherapy presented in
this work.
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Figure 3-8: Time course of checkpoint kinase signaling response to doxorubicin. U2OS-
pLL are the cells used for phosphoproteomic screening in 3-1 (replicate 1) and generated by

infecting wild-type U2OS cells with pLL3.7 lentiviral empty vector. U2OS (a) or U2OS-pLL
(b) cells were treated with 5 pM doxorubicin for the indicated lengths of time and lysates

were collected for Western blotting. Phosphorylation-specific antibodies against Ser345 of

Chk1, T68 of Chk2, and T334 of MK2, were used as surrogate readouts of checkpoint kinase

activation. (c) Western blot band intensity is determined by quantification of LiCor signal

using ImageStudio software. Each checkpoint kinase activity is determined by normalization

of phospho-specific signal to its total non-phospho signal. Percent activity of each checkpoint

kinase is normalized to the maximum activity of each checkpoint kinase during the time

course.
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Figure 3-9: Doxorubicin alters actin-cytoskeleton organization and signaling in U2OS
cells. (a) U2OS cells were treated either with DMSO (control) or 5 pM doxorubicin for 12
hrs, and stained for F-actin (Alexa488-conjugated phalloidin). Two representative images
of DMSO- (upper panel) or doxorubicin-treated (lower panel) cells are shown. Scale bars,
20 pm. (b) Changes in phosphorylation of selected cytoskeleton-associated phosphoprotein
sites identified in the SILAC screen (3-1) validated by Western blotting in both U2OS cells
(left panel) and MDA-MB-231 cells (right panel). U2OS cells were treated with 5 AM
doxorubicin for 12 hrs, while MDA-MB-231 cells were treated with 0.5 pM doxorubicin
for 24 hrs prior to lysate collection. (c) MDA-MB-231 cells were treated with DMSO
or doxorubicin (0.5 pM) for 24 hrs, and then stained for -yH2AX (S139) as a readout
of DNA damage (green) and DAPI to delineate nuclei (blue). Representative images for
each treatment are shown (left column, DAPI; middle panel, -yH2AX (S139); right panel,
composite image).
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Figure 3-10: Doxorubicin-induced cell elongation is irreversible upon drug washout. (a)

MDA-MB-231 cells were treated with doxorubicin at the indicated concentrations for 12 hrs

(red) or 24 hrs (blue), and changed to new growth media after washing out drug-containing
media. Following 12 or 24 hrs of drug washout, cells were fixed and stained with F-actin

(Alexa488-conjugated phalloidin). The distributions of major axis lengths of cells is plotted.

Vertical bars in each distribution represent the 25th percentile (left bar), median (middle

bar), and 75th percentile (right bar). (b) Pair-wise statistical comparisons of the major

axis length distributions among all treatment conditions using Wilcoxon rank sum test.
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Figure 3-11: Different cancer drugs show variable effects on morphology, viability, cell
cycle arrest, and checkpoint kinase signaling. (a) MDA-MB-231 cells were treated with
different classes of chemotherapeutic drugs, including 0.5 PM doxorubicin (Doxo, topoi-
somerase II inhibitor), camptothecin (CPT, topoisomerase I inhibitor), etoposide (ETP,
topoisomerase II inhibitor), or irinotecan (IRT, topoisomerase I inhibitor), or with 0.05
piM paclitaxel (PCT, microtubule stabilizing agent). After 24 hrs of drug treatment, cells
were fixed and stained for F-actin (Alexa488-conjugated phalloidin). Scale bars, 40 pm.
Distribution of major axis lengths of cell populations treated with different doses of each
drug are shown. Thinner vertical red lines in each distribution represent the 25th percentile
(left line) and 75th percentile (right line), while the central thicker red line is the median.
(b) Cell viability dose responses to selected drugs. Top, MDA-MB-231 cells were treated
with each drug up to 20 pM, except for PCT, which was used up to 2 pM, and cell viability
was assessed at 24, 48, or 72 hrs. Cell viabilities are measured via CellTiterGlo. Bottom,
representative dose-response curves with viabilities assessed at 48 hrs of drug treatment.
Comparison of differential toxjicity of each drug was assessed using area under the curve
(AUC), with the percent of maximum AUC (max = 100%) for each drug and each time
point calculated (heatmap). ( ) Effects of different drugs on the cell cycle. MDA-MB-231
cells were treated with each drug for 24 hrs at 0.5 pM except for PCT, which was used at
0.05 pM. Cells were then fixed and stained with propidium iodide (PI). (d) Drug effects on
checkpoint kinase phosphorylation. MDA-MB-231 cells were treated with each drug for 24
hrs at 0.5 pM except for PCT, which was used at 0.05 pM. Cell lysates were collected and
Western blotting with phospho-specific antibodies was used to probe phosphorylation of
Chkl, Chk2, or MK2. Line plots show blot quantification of drug effects relative to DMSO
control with phospho-checkpoint kinase blot band normalization to total O-actin levels.
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Figure 3-12: Doxorubicin alters the morphology of multiple breast cancer cell lines. (a)

A panel of five breast cancer cell lines were treated with doxorubicin with the indicated

doses for 24 hrs. Cells were then fixed and stained for F-actin (Alexa488-conjugated phal-

loidin). Effects of multiple doxorubicin doses on average morphological elongation (major

axis length) for each cell line are shown, normalized to untreated control (0 pM doxorubicin).

(b) Comparison of checkpoint kinase signaling activation following doxorubicin treatment

in multiple breast cancer cell lines. Cells were treated with doxorubicin (0.5 /pM) for ei-

ther 20 or 24 hrs, and cell lysates were then analyzed with Western blotting to measure

phosphorylation of Chk1 and MK2. Western blot bands were quantified using ImageJ after

normalization to -actin, and fold change over untreated (DMSO) control for each cell line

is shown.
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Figure 3-13: Time course of checkpoint kinase signaling in U2OS cells following inducible
knockdown of individual checkpoint kinases. (a) Stable U2OS cell lines with doxycycline-
inducible knockdown of Luciferase (iLuc, used as WT control), Chk1 (iChkl), Chk2 (iChk2)
or MK2 (iMK2) were generated. Four days after doxycycline addition to induce knockdown,
cells were treated with 5 ptM doxorubicin for shorter (3 hrs) or longer (12 hrs) periods of
time, and cell lysates were collected for Western blot analysis. Phosphorylation-specific
antibodies against Ser345 of Chk1, T68 of Chk2, and T334 of MK2, are used as surrogates for
checkpoint kinase activation. (b) Western blot band intensity determined by quantification
of LiCor signal using ImageStudio software. Activity of each checkpoint kinase activity
was determined by normalization of phospho-specific signal to its non-phospho signal if the
checkpoint kinase is not the one depleted. If the checkpoint kinase is depleted, the activity
of that kinase was determined by normalization of phospho-specific signal to /-actin. For
example, in the top left graph, normalized pChkl is calculated by dividing the pChk1 signal
intensity to Chk1 in iLuc (black curve) and iChk2 (yellow curve) cells, but in iChk1 (blue
curve) cells the normalized pChkl is calculated by dividing pChkl signal intensity to /-actin
because the Chk1 basal level is too low.
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Figure 3-14: Additional images from the same experiment in 3-6a. MDA-MB-231 cells

were treated with DMSO (control) or doxorubicin (0.5 pM), immunostained for p-FAK

(Y397) and total FAK at 24 hrs post-treatment to assess changes in focal adhesion organi-

zation. Scale bars, 20 pm.
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Chapter 4

Doxorubicin chemotherapy alters
actomyosin signaling that
contributes to cell shape
determination and survival

4.1 Overview

In Chapter 3, we analyzed the checkpoint kinase-regulated phospho-protein network al-
tered by sub-lethal doxorubicin treatment. This network was highly enriched in dozens of
cytoskeleton- and actomyosin-associated proteins that may coordinate the changes in mor-
phology, motility, and survival induced by the drug. In this chapter, we apply the image
processing and analysis tools developed in Chapter 2 together with the phosphoproteomics
data analyses performed in Chapter 3 to hone in on a putative mechanism of action that
regulates these changes. In this chapter, multivariate analysis of cell shape changes induced
by doxorubicin and a number of targeted inhibitors of actomyosin cytoskeleton regulators
revealed morphological similarities between doxorubicin-treated cells and those treated with
Rho associated kinase (ROCK) or Myosin II ATPase inhibitors. Live-cell imaging demon-
strated that although both doxorubicin and the ROCK inhibitor promoted morphological
cell elongation by 24 hrs of treatment, they achieve this effect with different kinetics. Using
a combination of population-level and single-cell assays, measurement of myosin light chain
phosphorylation on S19 (pMLC), a site involved in actomyosin contractility regulation, re-
vealed that doxorubicin promotes a biphasic pMLC response over time - levels increased
by 12 hrs, but were subsequently reduced below baseline by 24 hrs after start of treatment.
Constitutive activation of Rho, an upstream activator of pMLC, increased pMLC levels
back to baseline when administered in combination with doxorubicin. Rho activation also
reduced cellular tolerance to a higher-dose, secondary round of drug treatment. Additional
analyses of cell morphology and contractility in a 3D microenvironment in vitro recapit-
ulated the morphological changes observed in 2D and showed that doxorubicin treatment
diminished cell-mediated gel contraction.
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4.2 Results

4.2.1 Pharmacological inhibition of myosin II and ROCK, but not
MLCK, phenocopies sub-lethal dose of doxorubicin treatment

Phosphoproteomics data analysis in Chapter 3 revealed that actomyosin cytoskeleton-
associated phosphoproteins were upregulated by 12 hrs of doxorubicin treatment in U2OS
osteosarcoma cells (Fig. 3-1 and Fig. 3-4). This altered signaling was accompanied by pro-
nounced changes in cytoskeletal organization and cell shape both in U2OS cells (Fig. 3-9)
and, at 24 hrs post-treatment, in the triple-negative breast cancer cell line MDA-MB-231
(Fig. 3-2). In order to converge on a more detailed, putative downstream signaling mecha-
nism that may mediate these morphological changes, we took a high-content, image-based
phenotypic profiling approach. Morphological phenotypes induced by pharmacological in-
hibition of individual actomyosin regulators (Chapter 2) were compared with the morpho-
logical changes induced by sub-lethal doxorubicin treatment (Fig. 4-1). These regulators
included myosin light-chain kinase (MLCK) and Rho-associated kinase (ROCK), two ubiq-
uitous enzymatic regulators of actomyosin contractility (Chapter 1), as well as the ATPase
region of the heads of myosin f heavy chains. F-actin staining at 24 hrs following compound
treatment showed visually-discernible morphological elongation of MDA-MB-23i cells fol-
lowing ROCK and myosin II ATPase inhibition with Y-27632 and Blebbistatin, respectively,
but not upon MLCK inhibition with ML-7 (Fig. 4-la). These findings recapitulated the
morphological effects induced by these drugs in live-cell experiments discussed in Chapter
2.

Altered cytoskeletal signaling and organization can give rise to a wide variety of com-
plex cellular morphologies that contribute to critical processes such as cell migration and
survival. In order to capture and summarize this complexity in our system, we performed
a multivariate shape analysis to measure eighteen features that capture various aspects of
cell shape (Table B.1). In order to visualize this morphological complexity, we performed
dimensionality reduction using principal component analysis (PCA) on the shape feature
variables across single-cell observations and represented this PCA "shape space" within a
polar coordinate system (Fig. 4-1b). The detailed methods for this approach are described
in Appendix A.5. Interestingly, as was also determined in the work described in Chapter
2, cellular major axis length was aligned in the positive (increasing) direction of the first
principal component (Fig. 4-1b), indicating that cellular elongation is a key morphologi-
cal feature that contributes to the observed variability in cell shape under the treatment
conditions studied here (actomyosin inhibitors and doxorubicin).

We next projected the cell populations onto the principal component shape space from
each treatment condition in order to compare the multivariate shape representations that
the treatments induced. As shown in Fig. 4-1c, ROCK and Myosin II ATPase inhibition, as
well as doxorubicin treatment, increased the fraction of thinner, elongated cell morphologies
in the polar coordinate shape space representation between 0' and 300, and between 330'
and 0' (0' equivalent to 360' in shape space). A key insight from this multivariate analysis
is that morphologies with large PCi values and intermediate-to-low PC2 values differ from
larger, rounded morphologies with low aspect ratios, which exhibit larger values of major
axis length (PC1) but also have larger values in PC2. Cells with larger PCi and PC2
values are large flat cells that are frequently not polarized and are non-migratory. In
contrast, as discussed in Chapter 3, the cells with thinner, elongated cell bodied exhibit
more directionally persistent motility (Fig. 3-3).
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Although ROCK inhibition and sub-lethal doxorubicin treatment produced similar
elongated morphologies at 24 hours following treatment, we wished to compare the kinetics
with which this morphological response is attained under the two treatments. Using MDA-
MB-231 cells stably expressing LifeAct-eGFP and Histone H2B-mCherry, we performed live
cell imaging under DMSO (control), ROCK inhibitor, and doxorubicin treatments and char-
acterized cellular elongation (major axis length) over approximately 1 day. As shown in Fig.
4-1d, we first confirmed that prior to treatment the cell populations showed similar elonga-
tion, but after treatment application at 8 hours after start of imaging, the treatments ex-
hibited diverse morphological responses. The average elongation of DMSO (control) treated
cells remained unchanged following treatment. ROCK inhibition produced rapid cellular
elongation within minutes of treatment that was maintained over the remaining approx-
imately 20 hours of the live imaging experiment. On the other hand, the morphological
elongation of doxorubicin-treated cells steadily increased, on average, after approximately
10 to 12 hours following drug treatment. Both ROCK inhibition and doxorubicin showed
similar elongation at the end of the experiment (Fig. 4-1d) as was found from the fixed-cell
shape analysis (Fig. 4-1a,c). These findings show that doxorubicin-induced elogation has
slower kinetics than the more rapid effects of small-molecule inhibition of ROCK.

4.2.2 pMLC exhibits a biphasic temporal response to doxorubicin

ROCK regulates intracellular actomyosin tension and contractility in part through phospho-
rylation of the myosin light chain on S19 (pMLC). The observation that ROCK and Myosin
II ATPase inhibition produced elongated morphological phenotypes similar to those induced
by doxorubicin treatment (Fig. 4-1), led us to ask whether doxorubicin alters pMLC sig-
naling in MDA-MB-231 cells. The SILAC phosphoproteomic screen described in Chapter 2
revealed that pMLC was significantly upregulated upon doxorubicin treatment at 12 hours
in U2OS cells (Fig. 4-2a). The SILAC screen that incorporated inducible knockdown of
each of the checkpoint kinases we studied, Chk1, Chk2, and MK2, showed that pMLC(S19)
phosphopeptide levels were reduced upon knockdown of each kinase in the context of dox-
orubicin treatment.

Guided by these observations we next assayed for population-average levels of pMLC
in MDA-MB-231 cells at 24 hours following treatment, at a time point at which these
cells exhibited elongated morphologies (Fig. 3-2 and Fig. 4-1). Intriguingly, pMLC was
reduced by doxorubicin treatment by 24 hours following treatment in MDA-MB-231 cells
compared with DMSO (control) or Myosin II ATPase inhibtion with Blebbistatin (negative
control for pMLC reduction), while total ROCK levels remained unchanged. The pMLC
levels decreased with increasing doxorubicin dose, with 1 pM dose producing lower lev-
els than 0.5 pM dose. This decrease in pMLC levels was comparable to that induced by
pharmacological inhibition of ROCK and MLCK, which are known positive regulators of
pMLC. Interestingly, the doxorubicin-induced decrease in pMLC levels could be reversed
and markedly increased by short-term pharmacological inhibition of phosphatases using
Calyculin A. This compound blocks the activity of numerous cellular phosphatases, includ-
ing myosin light chain phosphatase that is involved in pMLC de-phosphorylation and acts
in the reverse direction of MLCK- and ROCK-induced upregulation of pMLC. Moreover,
although we have previously shown that doxorubicin altered focal adhesion number and
organization (Fig. 3-6), doxorubicin treatment did not alter total pFAK (Y397) levels in
the cell population by 24 hours compared to DMSO control, while ROCK inhibition led to
a marked reduction in total pFAK (Fig. 4-2d).
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The potentially discrepant observation that pMLC levels increased at 12 hours in U2OS
cells in the SILAC screen (Fig. 4-2a), but decreased at 24 hours following doxorubicin
treatment in MDA-MB-231 cells (Fig. 4-2b), led us to perform a time course analysis of
pMLC following doxorubicin treatment. We treated multiple MDA-MB-231 cultures with
0.5 [M doxorubicin and assayed for total pMLC and MLC levels by Western blotting at
multiple time points (4, 8, 12, 16, 20, and 24 hours) following treatment (Fig. 4-2e).
Intriguingly, pMLC levels exhibited a biphasic response over time - levels increased up to
12 hours, and then progressively decreased below DMSO (control) levels from 12 to 24 hours
following treatment. Short-term (25 min) treatment of doxorubicin-treated cells at 24 hours
with Ionomycin, an ionophore that increases intracellular Calcium that activates MLCK,
was able to increase pMLC levels. Collectively, these findings suggest that the progressive
decrease in pMLC levels upon sub-lethal doxorubicin treatment between 12 to 24 hours
after start of treatment can be reversed by pharmacological manipulation of the actomyosin
signaling machinery that regulates the balance of phospho and non-phopsho forms of MLC.

4.2.3 Rho activation diminishes doxorubicin-induced effects on pMLC

The RhoA GTPase is a positive regulator of intracellular actomyosin tension and stress fiber
formation that promotes MLC phosphorylation through ROCK activation. We therefore
investigated whether constitutive activation of RhoA could reverse doxorubicin-induced
reduction in pMLC. To achieve this, we used a Rho activator that is based on a cell-
permeant version of the catalytic domain of the bacterial CNF toxin. This activator enters
the cell and activates numerous Rho GTPase isoforms by deamidating glutamine-63, which
is located in the switch II region of Rho GTPases [69]. This deamination converts glutamine-
63 to glutamate, which blocks intrinsic and GAP-stimulated GTPase activity that results
in constitutive Rho activation.

We first developed and applied an imaging-based high-content screening assay to si-
multaneously measure MLC and pMLC levels on a single-cell level. This assay additionally
enabled concurrent quantification of cellular morphology of the same cells in which the
signals were measured (Fig. 4-3a). In agreement with the previous population-level mea-
surements (Fig. 4-2), image-based characterization revealed that a 0.5 PM sub-lethal dose
of doxoubicin decreased pMLC levels (compare gray box plots in Fig. 4-3b). ROCK in-
hibition with Y-27632 also decreased pMLC levels relative to control, as expected. When
administered concurrently with doxorubicin, Rho activator increased pMLC back to base-
line levels (compare (a) and (b) distributions in Fig. 4-3b). Although pMLC levels were
altered by Rho activation, cellular elongation was not (Fig. 4-3c). This observation suggests
that RhoA-mediated increase in pMLC may be decoupled from morphological elongation in
our system, but does not necessarily preclude a possible direct relationship between pMLC
and cell elongation under the effects of doxorubicin.

4.2.4 Morphological elongation induced by sub-lethal doxorubicin is asso-
ciated with enhanced cell survival following higher-dose secondary
treatment

Having established that doxorubicin promotes changes in cell shape (Fig. 3-2 and Fig. 4-1),
we next asked whether these morphological alterations provide a cell survival advantage.
To test this, we performed a time course experiment with two sequential rounds of dox-
orubicin treatment. First, MDA-MB-231 cells expressing LifeAct-eGFP and H2B-mCherry
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were pre-treated with a 0.5 pM dose, which, as found earlier, increased cell elongation.
After 24 hours of pre-treatment with either DMSO or doxorubicin, we added a higher dose
of doxorubicin (2 puM) along with a live-cell apoptosis reporter, fluorophore-conjugated An-
nexinV, and concurrently tracked cell shape changes and apoptosis dynamics for 90 hours
via fluorescence microscopy (Fig. 4-4a). Interestingly, the death rates of cells pre-treated
with doxorubicin were bi-modally distributed, as assessed by Gaussian mixture model fit-
ting (Fig. 4-4b). One cell subpopulation died more quickly, within approximately 44 hours
following treatment with the higher 2 pM doxorubicin dose (red subpopulation in Fig. 4-4c),
while a second subpopulation died more slowly (blue subpopulation in Fig. 4-4c). Intrigu-
ingly, we found that the subpopulation of cells pre-treated with 0.5 pM doxorubicin that
died more slowly was, on average, more elongated just prior to higher-dose exposure. On
the other hand, cells that were not pre-treated with doxorubicin had similar morphological
elongation regardless of cell death rate (Fig. 4-4d,e). Cells that were more elongated follow-
ing doxorubicin pre-treatment that died more slowly upon higher-dose exposure appeared
to lose cell polarity and exhibited abnormal, branched-like morphologies during the course
of treatment (Fig. 4-4f). The enhanced tolerance to secondary doxorubicin treatment that
was applied immediately after pre-treatment here, is in agreement with the long-term tol-
erance (Chapter 3) that was potentiated by doxorubicin pre-treatment over 1 month of
washout prior to secondary exposure.

4.2.5 Rho activation enhances apoptosis of doxorubicin pre-treated cells
following secondary higher-dose treatment

Constitutive Rho activation reversed pMLC reduction induced by doxorubicin (Fig. 4-3b).
In an effort to link pMLC reduction with chemo-tolerance conferred by doxorubicin pre-
treatment (Fig. 4-4a-f), we investigated the effect of Rho activation during doxorubicin
pre-treatment on subsequent cell survival following a second round of drug threatment
with a higher dose. Cell survival was not affected by Rho activation in the absense of
doxorubicin pre-treatment following secondary drug exposure (compare purple and green
curves in Fig. 4-4g left sub-panel). On the other hand, although doxorubicin treatment
blocked cell proliferation under all conditions (Fig. 4-4g right sub-panel), MDA-MB-231
cells co-treated with Rho activator and 0.5 pM doxorubicin were more sensitive, on average,
to secondary drug treatment than cells that were pre-treated with doxorubicin in the absence
of the Rho activator (compare brown and orange curves in Fig. 4-4g left sub-panel).

4.2.6 Doxorubicin increases cell elongation and decreases contractility in
vitro within 3D Collagen I matrix

Although all of our studies to this point were performed in 2D microenvironments that
function as convenient model systems for signaling studies, it is well appreciated that cellular
structure and function in 3D better recapitulates the in vivo environment. We therefore
first sought to assess the effects of sub-lethal doxorubuicin on cellular morphology in 3D.
MDA-MB-231 cells stably expressing LifeAct-eGFP and H2B-mCherry were embedded in
3D gels composed of collagen I, a core extracellular matrix component commonly present in
the tumor microenvironment in vivo. These cells were then treated with DMSO (control) or
with sub-lethal doses of doxorubicin, fixed and imaged in the gels using confocal fluorescence
microscopy 24 hours after treatment (Fig. 4-5a). Using 3D image processing and analysis
tools, isolated (non-touching) cells were then detected and segmented in 3D, enabling us to
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quantify morphological changes induced by the drug (Fig. 4-5b). As we found previously
in the 2D system (Fig. 4-1), sub-lethal doxorubicin also increased morphological elongation
of cells in 3D (Fig. 4-5c).

Finally, because pMLC levels regulate intracellular actomyosin tension and contractil-
ity, doxorubicin-induced reduction in pMLC may alter these biophysical processes. To assess
whether sub-lethal doxorubicin modulates cellular actomyosin contractility we performed a
3D gel contraction assay. In this assay, cells engage with the extra-cellular matrix through
focal adhesions that bridge the actomyosin cytoskeleton with the surrounding matrix. Re-
duced actomyosin tension will proportedly diminish contraction of the matrix, which can
be directly measured via imaging of the gels over time following treatment with compounds
of interest (Fig. 4-6a). As expected, pharmacological inhibition of positive regulators of
pMLC, ROCK or myosin II ATPase, reduced gel contraction over 60 hours following com-
pound addition (Fig. 4-6b, yellow and pink bars). Interestingly, doxorubicin treatment at
0.5 or 1 pM produced similar gel contraction as DMSO (control) at the 18-hour time point,
but subsequently significantly reduced contraction of the gels measured at 42 and 60 hours
following treatment (Fig. 4-6b, gray, blue, and green bars). As shown in Fig. 4-6c, at 60
hours after treatment all conditions had comparable cell survival, with the exception of 1
pM doxorubicin that led to a slight decrease in cell viability, suggesting that reduced gel
contraction may in part be attributed to altered cellular contractility in the days following
doxorubicin exposure.

4.3 Discussion

Here, we studied the effects of sub-lethal doses of doxorubicin chemotherapy on actomyosin
signaling and the associated biophysical processes that control cellular contractility and
morphology in 3D in vitro collagen matrices. Our previous SILAC prosphoproteomic anal-
ysis (Chapter 3) revealed that phosphorylation of myosin light chain on S19 (pMLC), a
positive regulator of actomyosin contraction, was upregulated in U2OS osteosarcoma cells
within 12 hours following sub-lethal doxorubicin treatment (Fig. 4-2a). This effect was
recapitulated in MDA-MB-231 breast cancer cells, and a time course experiment showed
a biphasic temporal response of pMLC levels following drug exposure, with a pronounced
increase at 12 hours and a decrease by 24 hours in pMLC levels following treatment (Fig.
4-2e). This reduction in pMLC was associated with increased cellular elongation both in 2D
and 3D, which phenocopied the effects of ROCK and myosin II ATPase inhibition (Figs. 4-1
and 4-5), potentially implicating decreased pMLC in the manifestation of this morphological
phenotype. As a potential biophysical consequence of these effects, sub-lethal doxorubicin
also reduced cell-mediated contraction of 3D collagen I matrices (Figs. 4-6). In an effort
to understand the permanence of these alterations, we further found that constitutive ac-
tivation of Rho GTPases during doxorubicin treatment reversed the effects on both pMLC
levels (Figs. 4-3b) and the enhanced chemo-tolerance to secondary treatment potentiated
by a 24-hour pre-treatment with the drug (Figs. 4-4g).

The actomyosin machinery plays a central role in cell shape determination and motility
both on planar 2D surfaces and in 3D microenvironments. The two principal modes of cell
migration are mesenchymal and amoeboid, whose manifestation in any particular microenvi-
ronmental context relies heavily on actomyosin signaling and contractility [78, 38, 195, 2011.
Amoeboid migration is characterized by cellular squeezing through pores in the ECM that
is mediated in part through periodic actomyosin contractions at the trailing end and periph-
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ery of a cell. These contractions propel cells forward in low-adhesion microenvironments;
this process is often described as a cell "pushing-off" of the surrounding substrate [155]. In
contrast, mesenchymal migration, which occurs in 3D but is the principal mode of motil-
ity in 2D, is adhesion-dependent. It is characterized by the motility cycle of leading edge
protrusion, adhesion, transcellular contractility, and trailing end retraction [145] (Fig. 1-
3). Although mesenchymal motility involves actomyosin contraction, it is less dependent
on it than the amoeboid mode. Here, we did not investigate the effects of doxorubicin on
these two migration modes directly, but we speculate that doxorubicin-induced reduction
in pMLC would hinder actomyosin contractility-dependent amoeboid motility. This effect
could alter the metastatic propensity of cancer cells in low-adhesion environments, but it
may also adversely affect the motility of other important immune cell types, such as leuko-
cytes. These immune cells, which include neutrophils, T, and B cells, require actomyosin
contraction to squeeze their nuclei through matrix pores during migration, suggesting that
doxorubicin-induced impairment of this machinery could alter immune function [141].

Interestingly, we found that doxorubicin-induced reduction in pMLC could be reversed
rapidly by PP1/PP2a phosphatase inhibition with Calyculin A (Fig. 4-2c,e), by ionophore-
mediated increase in intracellular Calcium (Fig. 4-2e), or by Rho activation (Fig. 4-3). As
PP1 and PPla phosphatases act on many substrates, one of which is myosin light chain phos-
phatase (MLCP) that dephosphorylates MLC [202], it is possible that the resulting increase
in pMLC following Calyculin A treatment may be an indirect effect through proteins other
than MLCP. Intracellular Calcium promotes myosin light chain kinase (MLCK) activation
through CaMKII [202], which increases pMLC levels, suggesting that doxorubicin-induced
reduction in pMLC can be reversed by increasing MLCK activity. The GTPase RhoA ac-
tivates ROCK that leads to MLCP inhibition, demonstrating that doxorubicin effects on
pMLC can also be reversed by activation of ROCK signaling (Fig. 4-3b). These findings
collectively suggest that doxorubicin may alter actomyosin signaling by shifting the bal-
ance from phosphorylated to unphosphorylated MLC, with the core actomyosin regulatory
machinery (e.g., MLCK, ROCK, and MLCP) remaining functionally intact.

Although ROCK inhibition expectedly led to rapid cellular elongation and formation of
multiple protrusions within minutes of treatment as a result of decreased actomyosin tension,
doxorubicin showed a similar, but delayed, response. MDA-MB-231 breast cancer cells
started to elongate only at around 12 hours following treatment; this elongation continued
to increase through 24 hours (Fig. 4-1d). In temporal alignment with this morphological
response, a separate experiment showed that pMLC levels decreased in the same time
range from 12 to 24 hours following doxorubicin treatment (Fig. 4-2e). This suggests that
reduced pMLC levels may be directly related to the morphological elongation observed in
doxorubicin-treated cells. Moreover, cell-mediated gel contraction in 3D collagen matrices
was also delayed under doxorubicin treatment compared with ROCK inhibition (Fig. 4-
6). These effects further lend support to the possible link between changes in actomyosin
signaling, morphological elongation, and cellular contractility that are altered by sub-lethal
doses of doxorubicin.

One intriguing possibility is that doxorubicin-induced changes in adhesion-associated
substrates of checkpoint kinases (Chapter 3) may result in altered pMLC, morphology,
and contractility. Indeed, one checkpoint-kinase substrate phosphosite that we extensively
characterized in Chapter 3, PPP1R12A (a.k.a. MYPTi) (S507), is a direct regulator of
actomyosin organization. MYPT1 is a myosin phosphatase regulatory subunit that is a
canonical substrate of ROCK. ROCK-mediated phosphorylation of MYPTI on T696 and
T853 results in the inhibition of myosin phosphatase and increase in pMLC [236, 202].
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Although the role of the checkpoint kinase target residue of pMYPT1 (S507) remains un-
characterized, it is possible that this site may also regulate myosin phosphatase activity,
which could be responsible for doxorubicin-induced changes in pMLC. In addition, many
other adhesion and actomyosin-associated proteins were differentially phosphorylated in a
checkpoint kinase-dependent manner upon doxorubicin treatment, including FLNA, TLN,
and TNS1, among others (Chapter 3). It is well established that focal adhesion signal-
ing and remodeling is tightly coupled to the organization and function of the actomyosin
cytoskeleton [30, 101, 286, 10, 18], suggesting that altered signaling and/or organization
of focal adhesions (Fig. 3-6) may be directly coupled to altered pMLC and actomyosin
function in doxorubicin-treated cells. As a result, although checkpoint kinases may directly
phosphorylate MLC leading to higher pMLC levels by 12 hours after DNA damage (Fig.
4-1), at later time points (e.g., 24 hours onward) the altered cellular adhesome could be
responsible for the decrease in pMLC levels and the associated morphological elongation we
observed.

Finally, doxorubicin-induced reduction in pMLC may also explain the increased long-
and short-term chemo-tolerance of cells pre-treated with sub-lethal doxorubicin to subse-
quent treatment with higher doses of the drug. In Chapter 3, we showed that pre-treatment
of MDA-MB-231 breast cancer cells with sub-lethal 0.5 yM doxorubicin for 24 hours poten-
tiates increased cell survival upon a second round of treatment even after 1 month of culture
in the absence of the drug (Fig. 3-7). We also established that doxorubicin-induced mor-
phological elongation was associated with decreased rates of cell death following higher dose
exposure (Figs. 3-6h-j and 4-4a-f). Taken together with the fact that doxorubicin treatment
reduced pMLC levels that were also associated with morphological elongation, we speculate
that decreased pMLC results in reduced actomyosin contraction that enhances cell survival.
Previous studies have shown that ROCK deletion, which reduces pMLC levels, enhances
survival of mouse embryonic fibroblasts following doxorubicin treatment [246, 234]. Reduced
actomyosin tension is also associated with higher levels of embryonic stem cell (ESC) [44]
and induced pluripotent stem cell (iPSC) [279] viability in vitro. In these systems, ROCK
and Myosin II ATPase inhibitors are commonly supplemented into growth media to improve
ESC and iPSC viability during long-term culture. Pharmacological inhibition of ROCK,
which leads to reduced pMLC levels, has also been used to immortalize epithelial cells and
enhance survival of normal and tumor cells derived from primary human tissue of various
origins during in vitro culture [152, 56, 39, 153]. We hypothesize that reduced pMLC levels
induced by sub-lethal doxorubicin could also enhance breast cancer cell survival in our sys-
tem. In support of this, constitutive activation of Rho (an upstream positive regulator of
ROCK and pMLC) during doxorubicin pre-treatment, enhanced MDA-MB-231 cell death
upon treatment with a secondary doxorubicin dose (Fig. 4-4g). As typical doxorubicin
regimens in the clinic involve multiple rounds of treatment, these findings highlight the
undesirable consequences of sub-maximal tumor eradication at early phases of treatment.
Although our studies have established numerous associations, future studies will be neces-
sary to reveal any causative links between doxorubicin-induced checkpoint kinase signaling,
pMLC dynamics, cell morphology, contractility, and survival.
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Figure 4-1: Doxorubicin-induced changes in cell shape phenocopy the effects of pharma-
cological ROCK and myosin II inhibition. (a) Representative images of MDA-MB-231 cells
stained for F-actin (fluorophore-conjugated phalloidin) 24 hrs after treatment with DMSO

(control), ML-7 (MLCK inhibitor, 20 ptM), Y-27632 (ROCK inhibitor, 10 PM), BB (Bleb-
bistatin, myosin II ATPase inhibitor, 10 ptM), Doxo (Doxorubicin, 0.5 pM). Scale bars, 60
pm. (b) Polar visualization of principal component analysis (PCA) of cellular morphologies
from treatments in (a). PC1 and PC2 correspond to the first and second principal com-
ponent axes, respectively. Orientation and location of shape features used for PCA signify
directions in which the features increase in magnitude. Analysis was performed as in Fig.
2-3C. Shape feature descriptions are specified in Table B.1. (c) Rose plot quantification of
morphological changes induced by treatments in (a) within the polar PCA shape space in
(b). Each angular bin (petal) represents a slice of PCA shape space spanning the angular
range of 300 intervals. Petal length corresponds to the average distance of cells in the bin
from the origin (center of PCA shape space circle), signifying the average magnitude of
the features in a given direction in (b). Petal shading corresponds to the fraction of cells
within the measured cell population in each treatment condition that falls with a particular
angular bin in PCA shape space. (d) Comparison of morphological elongation dynamics
following doxorubicin treatment or ROCK inhibition. Vertical black line within the plot
indicates time when treatment was added (DMSO, 10 pM Y-27632, or 0.5 pM doxorubicin).
Thick colored lines correspond to the means, shading is the (+/-) 95% CI from all tracked
cells per condition.
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Figure 4-2: Doxorubicin promotes biphasic temporal phosphorylation of myosin light
chain. (a) Effect of doxorubicin treatment (5 pM) in the presence or absence of inducible
shRNA-based checkpoint kinase knockdown on myosin light chain phosphopeptide (pMLC
on S19) in U2OS osteosarcoma cells. Data was derived from the SILAC phosphoproteomic
screen analyzed in Chapter 3. The two technical replicates from the screen are shown in
orange and green. Positive values correspond to upregulation of pMLC under condition
"A" relative to condition "B" shown. The "i" in front of Luc (Luciferase, control), and
the checkpoint kinases Chkl, Chk2, and MK2 corresponds to inducible knockdown. P-
values correspond to one-sample t-test assessing the deviation of the two replicates in each
condition from zero (no change in pMLC under condition "A" and "B"). (b) Effects of
doxorubicin treatment on myosin light chain (MLC) phosphorylation on the actomyosin
contractility-activating S19 residue, with pharmacological inhibitors of ROCK (Y-27632,
abbreviated Y-2) and MLCK (ML-7) known to reduce pMLC as positive controls, assayed
24 hrs post-treatment. The direct mechanism of Blebbistatin (BB)-induced inhibition of
myosin II activity is independent of pMLC. (c) Effects of doxorubicin and actomyosin
inhibitors on focal adhesion kinase (FAK) phosphorylation on the Y397 residue after 24
hrs of treatment. (d) Effects of PPI/PP2A phosphatase inhibition using Calyculin A on
pMLC following doxorubicin treatment. Cells were treated with doxorubicin for 24 hrs,
followed by 10 nM Calyculin A for 25 mins prior to cell lysis and Western blot analysis. (e)
Time course of pMLC following sub-lethal doxorubicin treatment. lonomycin (Io, 4 /_M),
an ionophore used to increase intracellular Calcium, and Calyculin A (Cal, 10 nM) were
added for 25 mins following 24 hrs of treatment with doxorubicin or control, prior to cell
lysis and blot analysis. Bar graph shows blot densitometry analysis of pMLC (S19/T18)
using the dual-site antibody normalized to total MLC levels.
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Figure 4-3: Constitutive Rho activation reverses doxorubicin-induced reduction in myosin
light chain phosphorylation 24 hrs following treatment. (a) Representative composite im-
ages showing overlay of nuclear DNA (DAPI), F-actin (phalloidin), pMLC (S19), and total
MLC. Cells were treated with doxorubicin (Doxo) or media control alone or in combina-
tion with pharmacological agent (RA) that constitutively activates Rho. BB, Blebbistatin
(myosin II ATPase inhibitor); Y-2, Y-27632 (ROCK inhibitor). Scale bars, 100 pm. (b)
Image-based quantification of single-cell levels of pMLC (S19) normalized to total MLC per
cell. R-S, two-tailed Wilcoxon rank-sum test. Data shown is from n = 4 replicates. (c)
Quantification of morphological elongation (major axis length) of cells in (a, b). In each
distribution, thicker center line is the median, left and right thinner red lines are the 25th
and 75th percentiles, respectively. R-S, two-tailed Wilcoxon rank-sum test.
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Figure 4-4: Doxorubicin-induced cell elongation is associated with reduced rate of cell
death upon higher dose exposure. (a) Schematic of the live-cell imaging workflow for con-
current analysis of cell morphology and death under sequential rounds of drug treatment.
Pre-treatment was either media control or 0.5 pM doxorubicin. 2 nd treatment was 2 pM
doxorubicin. AnnV is fluorophore-conjugated AnnexinV used as an apoptosis marker. (b)
Bayesian information criterion (BIC) of Gaussian mixture model (GMM) fitting with dif-
ferent numbers of mixtures used in the models. Models were fit to the times to cell death
of doxorubicin pre-treated cells. (c) Distribution of times to cell death with the best-fitting
(2-state) model in (b). (d) Major axis length (MAL) of tracked cells at the time of 2nd

treatment addition (t = 0) plotted against their time to death (AnnexinV positive) after 2nd

treatment. Cells are grouped into subpopulations that died faster (red) or slower (blue), as
categorized by the best-fitting 2-state GMM in (c). (e) Comparison of major axis lengths
prior to cell death of cells that died more slowly (blue) or more quickly (red), in the pres-
ence or absence of sub-lethal (0.5 pM) doxorubicin pre-treatment. * p < 0.05 two-tailed
Wilcoxon rank-sum test of pair-wise comparisons with all other conditions individually. (f)
Representative images of doxorubicin pre-treated MDA-MB-231 cells tracked over time fol-
lowing 2 "d treatment, which exhibited varying degrees of elongation labeled (a) and (b) in
panel (d). (g) Left, effects of constitutive Rho activation (RA, Rho activator) in combina-
tion with sub-lethal (0.5 pM) doxorubicin pre-treatment on cell death dynamics following
higher-dose exposure with 2 pM doxorubicin. Thick lines correspond to the means, shading
is (+/-) 95% CI, of n = 4 replicates. Right, total number of cells (alive and dead) per well
of a 96-well plate of the same cell population tracked in the left sub-panel.
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Figure 4-5: Doxorubicin increases morphological cell elongation in 3D. (a) Workflow
schematic of cell morphology characterization in 3D Collagen I gels. (b) Top row: repre-
sentative images of maximum (x-y) intensity projections of z-stacks acquired 24 hrs after
treatment of MDA-MB-231 cells with media control or with doxorubicin at the two doses
indicated. Bottom row: smoothed 3D isosurfaces of cells segmented in 3D with automated
detection of touching (orange) and isolated (cyan) cells. (c) Effects of doxorubicin treat-
ment on cell elongation in 3D Collagen I gels. Data shown are from n = 3 replicates for

each condition. Touching cells (orange in (b)) were excluded from morphological analysis.
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Figure 4-6: Doxorubicin reduces cell-mediated contraction of 3D collagen gels. (a) Work-
flow diagram depicting cell-mediated contraction and analysis over time of floating 3D
collagen I gels. (b) Quantification of cell-mediated collagen I gel contraction, imaged at 3
time points following treatment with the conditions indicated. Representative gel images
following 60 hrs of contraction under each condition are shown to the right of the graph.
Bar height is the mean of n = 3 replicates, and error bars correspond to 95% CI. P-values,
Student's t-test at 5% FDR. BB, Blebbistatin; Y-2, Y-27632; Doxo, doxorubicin. (c) Vi-
ability of MDA-MB-231 cells grown within the floating collagen I gels in (b) 60 hrs after
start of treatment. Three gels per treatment condition were pooled for measurement. Per-
cent viability was analyzed using the Trypan-blue exclusion assay following enzymatic gel
dissociation.
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Chapter 5

Multiplexed confocal and
super-resolution fluorescence
imaging of cytoskeletal and
neuronal synapse proteins with
diffusible probes

5.1 Overview

The preceding chapters demonstrated the quantification of cellular structure and function,
such as morphology, migration, and apoptosis dynamics, within the same cellular popula-
tion. In this chapter, I describe a generally-applicable framework that enables multiplexed
fluorescence imaging of close to a dozen subcellular targets within the same sample using
diffusible nucleic acid probes. Multiplexing can be achieved in either super-resolution mode,
or using standard confocal microscopy. Although this chapter presents the methodology
within the context of rodent-derived neurons in culture, it is directly extendable to other
cellular systems for measuring multiple cytoskeletal and molecular signaling species within
the same cells, including in cancer cells that are studied in this thesis. This approach
is* prospectively compatible with prior live-cell imaging followed by end-point, fixed-cell
multiplexed imaging of subcellular signals and structural proteins. This enables linking
of multiple signals (e.g., actomyosin- and adhesion-associated phosphoproteins) with
phenotype (e.g., morphology, migration, apoptosis dynamics) on an individual-cell basis.

The contents of this chapter were published as:

S.-M. Guo, R. Veneziano, S. Gordonov, L. Li, D. Park, A. B. Kulesa, P. C. Blainey,
J. R. Cottrell, E. S. Boyden, and M. Bathe. Multiplexed confocal and super-resolution
fluorescence imaging of cytoskeletal and neuronal synapse proteins. bioRxiv, 2017.
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5.2 Abstract

Neuronal synapses contain dozens of different protein species whose spatially heterogeneous
expression levels are key determinants of synaptic plasticity and signal transmission. Here,
we introduce PRISM: Probe-based Imaging for Sequential Multiplexing, to overcome both
the spectral and spatial resolution limits of conventional light microscopy, enabling multi-
channel confocal and super-resolution imaging in the same cellular sample. To achieve this,
we use high-affinity Locked Nucleic Acid imaging probes that specifically bind antibodies
and peptides in high-throughput, confocal-based imaging, and low affinity DNA imaging
probes for localization, reconstruction-based super-resolution imaging of the same protein
targets with PAINT. We use our approach to quantify the 66 co-expression levels of one
dozen cytoskeletal and synaptic proteins within individual neuronal synapses, as well as
resolve their single-synapse-level nanometer-scale organization. Our approach is scalable to
dozens of target proteins and is compatible with imaging-based screening of genetic and
drug perturbations for interrogating both fundamental and disease-associated biological
processes in a variety of cellular systems.

5.3 Introduction

Neuronal synapses are the fundamental sites of electrochemical signal transmission in the
brain and the primary cellular loci of plasticity that underlie learning and memory. Synapses
are composed of dozens of proteins, whose expression levels, structural organization, and
turnover govern diverse aspects of brain development and neuronal circuit function [65, 51].
Because numerous synaptic protein genes have been implicated in psychiatric and neu-
rological diseases [99, 219, 84] and synaptic protein expression levels are known to vary
widely across organisms, brain regions, and neuronal cell subtypes, characterizing synaptic
protein composition in situ is of major importance to both basic and translational neuro-
science. While fluorescence imaging offers the opportunity to characterize the heterogeneity
in synaptic protein expression levels and localizations within intact neuronal samples6, it
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has been limited by its inability to visualize more than four protein species in any given
neuronal sample using conventional imaging approaches.

Multiplexed imaging strategies that are used to overcome the spectral limit of conven-
tional fluorescence microscopy typically involve multiple rounds of antibody staining and
imaging achieved either by antibody elution [278, 175] or fluorophore inactivation using
photo- and/or chemical bleaching [85, 150, 229]. Array Tomography (AT) applied volumet-
ric imaging of synapses within intact brain tissues by sequentially staining and stripping
ultrathin tissue sections with different antibodies [175, 174, 52]. More recently, gel em-
bedding and expansion of whole intact organs has been used with sequential antibody
loading and stripping to generate 13-channel fluorescence imaging datasets [140]. Cyclic
Immunofluorescence (CycIF) was applied to generate 9-channel diffraction-limited images
of cancer cell lines using repetitive antibody loading-bleaching cycles. In each case, multiple
antibody staining rounds are used together with harsh and time-consuming wash-steps that
limit both epitope accessibility compared with simultaneous antibody loading, as well as
potentially alter epitope reactivity with disruptive chemical or photobleaching treatment.
Further, these preceding approaches are not readily amenable to super-resolution imaging
within the same intact sample, and are therefore unable to resolve sub-synaptic protein
structural organization. While electron microscopy (EM) has been integrated with AT to
facilitate correlative light and EM imaging, EM is limited in its ability to resolve multi-
ple molecular species in the same sample [7, 42], and requires complex sample fixation,
embedding, and processing steps.

In contrast, the use of diffusible fluorescent imaging probes that target specific protein
markers or antibodies in situ can in principle overcome each of the preceding limitations
by offering (1) simultaneous antibody loading prior to imaging; (2) rapid probe-exchange
using mild buffer treatment and (3) super-resolution imaging using PAINT (Points Accumu-
lation In Nanoscale Topography) [233]. Originally introduced by Sharonov and Hochstrasser
[233], PAINT was first used to perform super-resolution imaging of reconstituted lipid
membranes with diffusible dye molecules. Subsequently, several variants of this approach
[233, 88, 134] were introduced including uPAINT [88] that employs diffusible fluorescent
antibodies and DNA-PAINT [127, 126] that uses diffusible fluorescent single-stranded DNA

(ssDNA) molecules (imaging probes) that transiently bind to complementary ssDNA oli-
gos (docking strands) attached to target DNA nanostructures or antibodies to generate
10- or 4-channel data [126], respectively. Protein-fragment-based probes have alternatively
been used to generate multiplexed cytoskeletal and focal adhesion super-resolution images
with higher labeling density compared with antibody-based approaches [134]. However, this
strategy requires identification of highly specific, transiently binding peptides for each tar-
get molecular species, which may be challenging to generalize to other proteins, particularly
those with lower expression levels than cytoskeletal proteins. Critically, each of the preced-
ing super-resolution approaches relies on time-consuming and low-throughput time-lapse
imaging followed by fluorophore localization and reconstruction employed in the conven-
tional single-molecule localization microscopy approaches PALM [19] and STORM [222].
Moreover, diffusible fluorescent probes generate non-specific, high background fluorescence
signals that prevents their application to rapid, high-throughput confocal imaging used in
phenotypic cellular profiling of genomic and drug perturbations.

To overcome- this limitation, here we introduce Probe-based Imaging for Sequential
Multiplexing (PRISM) that offers multiplexed protein imaging either with high-throughput
confocal or super-resolution fluorescence imaging in the same cellular samples. Fluores-
cently labeled ssLNA (LNA-PRISM) and conventional ssDNA (DNA-PRISM) oligos are
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used differentially as high- and low-affinity imaging probes to realize either diffraction-
limited confocal or PAINT-based super-resolution imaging with the same ssDNA-labeled
antibodies or peptides. The design of high specificity and affinity ssLNA probes offers
reversible, tight binding to target proteins with significantly reduced background fluores-
cence of unbound, diffusible imaging probes. We apply LNA-PRISM to 13-channel confocal
imaging of 7 synaptic proteins imaged simultaneously with 5 cytoskeletal proteins that have
been shown to interact with each in vivo [104]. These multiplexed imaging data facilitate
the quantitative analysis of 66 protein co-expression profiles extracted from thousands of
individual synapses within the same intact neuronal culture, revealing strong correlations
amongst subsets of synaptic proteins, as well as heterogeneity in synapse sub-types. We
additionally apply DNA-PRISM using the same ssDNA-antibody and -peptide conjugates
to resolve the 20 nm-scale structural organization of 8 synaptic proteins together with fila-
mentous actin and dendritic microtubules in situ. Our super-resolution imaging data reveal
the nanometer-scale structural organization of 9 targets within single synapses that is con-
sistent with EM [269] and average synaptic structure previously assayed using STORM

[57].

5.4 Results

5.4.1 Overview of LNA- and DNA-PRISM

The PRISM workflow employs neuronal cultures that are fixed, permeabilized, and stained
simultaneously using ssDNA-conjugated antibodies or peptides, collectively termed "mark-
ers", which specifically label cellular targets. Markers are barcoded with single-stranded
nucleic acid oligonucleotides ("docking strands"), rationally designed to optimize orthogo-
nality between complementary fluorescently labeled ssLNA or DNA imaging probes used for
confocal or super-resolution imaging (Fig. 5-1a). To maximize the multiplexing capacity of
the assay, primary rather than secondary antibodies are labeled with docking strands when-
ever possible so that labeling of distinct targets is not limited by the number of secondary
antibodies reacting with different species. Extensive validation of each marker and fluo-
rescently labeled ssLNA/ssDNA imaging probe is performed to ensure that markers retain
their target-specific recognition properties following conjugation with nucleic acid docking
strands, and that imaging strands target cognate docking strands with high affinity and
specificity without cross-talk (Fig. 5-1b). Following marker and imaging probe validation,
multiplexed imaging is performed using sequential labeling and washing out of individual
imaging probes, with wash-steps in between used to clear the sample of imaging probes
(Fig. 5-1c). Diffraction-limited, confocal images are acquired using LNA-PRISM, whereas
single-molecule time-lapse imaging followed by image reconstruction, drift correction, and
image alignment is performed with DNA-PRISM using PAINT.

5.4.2 Design and validation of markers for PRISM

To apply multiplexed neuronal imaging in either confocal or super-resolution modes us-
ing the same protein markers, we conjugated distinct ssDNA docking strands using either
SMCC linkers or site-specific chemoenzymatic labeling to synaptic and cytoskeletal markers
validated in neuronal cell culture (Appendix A.4) (see Fig. S1 in [100]). Whereas SMCC
conjugates docking strands to surface-accessible primary amines through NHS chemistry,
site-specific labeling conjugates ssDNA docking strands to four conserved glycan chains on
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the Fc region of the antibody (see Fig. S2 and Fig. S3 in [100]), thereby minimizing the
likelihood of disrupting the antibody paratope. In generating PRISM antibodies, SMCC
was first attempted for ssDNA conjugation, and site-specific conjugation was alternatively
applied to antibodies that changed localization patterns after SMCC-based conjugation. In
cases where staining patterns were disrupted with both SMCC and site-specific conjugation,
or the fluorescence signal of the primary antibody conjugate was too low for high quality
imaging, ssDNA-conjugated secondary antibodies were instead employed to visualize the
target.

Because conjugation of antibodies and peptides with ssDNA may alter their affinity
and/or specificity, we validated each marker-docking-strand conjugate individually in neu-
ronal culture using indirect immunofluorescence (IF) to ensure the same staining patterns
were obtained compared with the reference, unconjugated marker. However, most markers
were found to exhibit strong nuclear localization following SMCC or site-specific conjuga-
tion with ssDNA, suggesting that the observed change in affinity of the ssDNA-conjugated
antibody to its target is not solely due to the possible modification of paratopes by ssDNA
(Fig. 5-2a, and see Fig. S4 and Fig. S5 in [100]).

To eliminate off-target nuclear localization of the ssDNA-conjugated antibodies, we
screened several nuclear blocking agents and found that salmon sperm DNA commonly
used in Southern blotting successfully blocked the nuclear localization of ssDNA-conjugated
antibodies (Fig. 5-2a) and see Fig. S6 in [100]). Interestingly, conjugating antibodies with
single-stranded Peptide Nucleic Acid (ssPNA) [223] docking strands instead of ssDNA also
eliminated nuclear localization in the absence of any blocking (Fig. 5-2a), supporting the
hypothesis that overall charge of the nucleic acid docking strands present on antibodies was
responsible for their non-specific nuclear localization. Nevertheless, salmon sperm blocking
was performed in all experiments to minimize cost and complexity associated with gener-
ating a full library of ssPNA docking strands. Image cross-correlation analysis showed that
ssDNA-conjugated antibodies produced staining patterns similar to those of unmodified
antibodies, as assessed through indirect IF when samples were blocked with salmon sperm
DNA prior to immunostaining (Fig. 5-2b and see Fig. S7 in [100]).

5.4.3 Imaging probe design for LNA-PRISM

To enable high-throughput confocal imaging of neurons with high signal-to-noise and low
background fluorescence in multi-well plate format, we designed high affinity ssLNA imaging
strands of 11 nt length that target the same 11 nt ssDNA docking strands used in DNA-
PAINT imaging with high specificity [126]. Similar to ssDNA, ssLNA binding affinity
to complementary ssDNA is salt-dependent, thereby enabling rapid probe exchange via
imaging probe wash-out using low salt concentration buffer (see Fig. S8 in [100]). RNase
was used to eliminate off-target binding of ssLNA imaging probes to cellular RNA (see
Fig. S9 in [100]), a treatment that did not affect antibody marker localization (see Fig.
S10 in [100]). Orthogonality of each imaging probe was validated individually using a cell-
based crosstalk assay that resembles the staining and imaging conditions in a multiplexed
PRISM experiment. Results of this cross-talk assay showed less than 10% crosstalk between
each of the docking-imaging-strand pairs for our staining and imaging conditions (see Fig.
S11 and Fig. S12 in [100]). Typical imaging strand incubation and wash-out times for
LNA-PRISM are 5-10 minutes each, which is considerably faster than existing multiplexed
imaging approaches that require multiple rounds of antibody staining and elution that can
require up to hours or days to complete [175, 150, 174]. PRISM washing conditions consist
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of 0.01x phosphate buffered saline (PBS), which is also milder than alternative multiplexed
imaging methods that utilize oxidizing reagents or high-pH buffer [175, 150, 174]. In addition
to reducing the risk of altering epitopes over the course of multiple wash cycles, mild buffer
conditions minimize the possibility of the disruption of delicate cellular structures, which
may be particularly crucial for preserving the integrity of neuronal synapses. RNase-treated
cells produced target staining patterns using LNA-PRISM that were indistinguishable from
those with conventional indirect IF (see Fig. S13 in [100]).

5.4.4 LNA-PRISM: 13-channel confocal neuronal imaging

13-channel imaging of cultured rat hippocampal neurons using 10 ssLNA imaging probes
and three non-PRISM fluorescent markers was performed to characterize the synaptic and
cytoskeletal protein-protein network that is core to the regulation of synapse formation
and plasticity (Fig. 5-3a). This network includes the cytoskeletal proteins actin, Tuj-1,
MAP2, ARPC2, and cortactin, the pre-synaptic proteins synapsin-I, bassoon, and VG-
LUTI, the post-synaptic density proteins PSD-95, Homer-lb/c, and SHANK3, and the
receptor NMDAR2B. The canonical synaptic markers synapsin-I, bassoon, VGLUT1, PSD-
95, Homer-1,b/c, and SHANK3 exhibited a high degree of co-localization, with punctate
patterns, whereas Tuj-1 and MAP2 yielded clear cytoskeletal morphologies (Fig. 5-3b), and
see Fig. S14 in [100]). Noticeably, ARPC2 and cortactin displayed punctate patterns that
also co-localized with other synaptic markers, in agreement with previous results [104]. To
assess whether multiple rounds of imaging probe wash-out and probe application steps phys-
ically distorted the sample or noticeably stripped markers from their epitopes, synapsin-I
was imaged twice, once in the middle and once at the end of the PRISM experiment, which
revealed highly reproducible localization patterns (Fig. 5-3a).

LNA-PRISM offers nearly an order of magnitude increase in the ability to detect co-
localization/co-expression patterns in situ, with 66 protein-protein co-localizations using 12
protein labels compared with only 6 from conventional 4-channel imaging. While synap-
tic proteins generally showed co-localization patterns, examination of individual synapses
revealed variations in co-localization patterns across different proteins and synapses (Fig.
5-4a). To characterize the co-localization/ co-expression patterns of each protein pair, in-
dividual synaptic features including size and intensity were extracted for each target from
PRISM images using an image-processing pipeline optimized for synapse segmentation (see
Fig. S15 in [100], and Appendix A.4). Correlations between distinct synaptic features were
computed across all synapses, with a high correlation score between two synaptic proteins
indicating a higher functional association. The correlation scores showed expression levels
of most synaptic proteins were highly correlated in synapses, with the exception of the
cytoskeletal proteins Tuj-1 and MAP2, in agreement with previous image cross-correlation
analyses that showed that tubulin is largely excluded from synapses [104] (Fig. 5-4b, and
see Fig. S17 in [100]). In addition, the post-synaptic density proteins Homer-lb/c, PSD-95,
and SHANK3 strongly correlated with one another in their expression levels, which may be
attributed to their dense and compact protein distributions within the PSD [263, 107]. The
Arp2/3 complex subunit ARPC2, which has been shown to interact with SHANK3 within
synapses [104], also correlated in its expression level with other PSD proteins. In agreement
with the expected separation of pre- and post- synaptic proteins, synapsin-I and VGLUT1
that are associated with pre-synaptic vesicles were highly correlated with the pre-synaptic
scaffolding protein bassoon, but were only weakly correlated with most post-synaptic pro-
teins (Fig. 5-4b). Interestingly, bassoon and VGLUT1 exhibited moderate correlation
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in expression with PSD95, suggesting a coordination of pre- and post-synaptic structures
across the synaptic cleft. NR2B exhibited correlation with both pre- and post-synaptic
markers, consistent with previous observation of both pre- and post- synaptic localizations
of NMDAR [143, 89].

Large-scale profiling of synapses also enabled us to use the rich protein co-expression
feature profiles assayed with LNA-PRISM to classify synapse subtypes. To identify putative
sub-categories of synapse types in this high-dimensional feature space that consists of 24
dimensions, we applied t-Distributed Stochastic Neighbor Embedding (t-SNE), a tool com-
monly used to visualize high-dimensional single-cell data (Fig. 5-4c) [6]. t-SNE transforms
high dimensional data into two dimensions, aiming to preserve the local high dimensional
data structure within the lower dimensional space. t-SNE analysis of 10,000 randomly sub-
sampled synaptic profiles revealed a cluster of synapses contain most of the synaptic proteins
that we measured, which, given that our antibody panel consisted mostly of excitatory pro-
teins, also likely corresponded to conventional excitatory synapses. In addition, smaller
sub-type clusters were identified, showing an absence of one or more synaptic proteins,
which may correspond to conventional inhibitory synapses or additional synapse subtypes.
Hierarchical clustering of protein feature profiles corroborated findings of the preceding cor-
relation and t-SNE analyses, namely that pre-synaptic proteins are highly clustered with
one another, whereas PSD proteins and ARPC2 form a separate sub-cluster (Fig. 5-4d).
Features of synapsin-I from two imaging rounds were tightly clustered together, confirming
clustering results reflected the similarities between features. These findings suggest that
protein associations derived from PRISM data recapitulate the molecular composition and
structural properties of excitatory synapses, and can do so for one dozen targets simulta-
neously in thousands of synapses within the same intact sample imaged within hours in
multi-well plate format.

5.4.5 DNA-PRISM: Super-resolution imaging using low affinity ssDNA
imaging strands and PAINT

The same antibody-ssDNA conjugates offered the ability to also super-resolve molecular
targets within individual synapses in primary mouse neuronal cultures using DNA-PRISM
(DNA-PAINT) [127, 126]. Neuronal cultures were assembled into flow cells in which fluid
exchange was controlled by an automated fluidics handling system to ensure gentle buffer
washing and imaging probe application designed to minimize sample distortion. Super-
resolution DNA-PRISM images of microtubules and F-actin in neurons were first compared
with widefield IF images. Super-resolved microtubules formed bundles within neuronal
processes, whereas F-actin exhibited linear, filamentous structures within these regions, but
showed punctae within dendritic spines (Fig. 5-5a-d). Subcellular structures imaged with
DNA-PRISM correlated well with the corresponding widefield images, but with significantly
improved spatial resolution (Fig. 5-5b,d). A Gaussian fit to the cross-sectional profile of
a single microtubule produced a full-width at half-maximum (FWHM) of 46.5 nm (5-5g),
which is consistent with previous PAINT measurements in HeLa cells [126]. In addition
to microtubules and F-actin, DNA-PRISM imaging of neuronal synapses also corresponded
well with the widefield IF images, but with significantly improved resolution, as expected,
revealing closely apposed pre- and post-synaptic sites (Fig. 5-5e-f). We quantified the
average synapse size defined by synapsin-I and PSD-95 punctae using the radial cross-
correlation function between synapsin-I and PSD-95, with the decay length of the correlation
function revealing an average synapse size of 200 nm (Fig. 5-5i) [174]. The spatial decay
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of the DNA-PRISM correlation curve occurred at a smaller spatial scale than the widefield
imaging curve, indicating the smaller synapse size revealed by DNA-PRISM due to enhanced
resolution relative to widefield imaging.

We next applied DNA-PRISM imaging to super-resolve the nanoscale pre- and post-
synaptic organization of 9 targets within individual synapses, including Tuj-1, F-actin,
cortactin, PSD-95, synapsin-I, NMDAR2B, SHANK3, Homer-lb/c, and bassoon (Fig. 5-
6a). Due to differences in synapse orientations with respect to the imaging plane, individual
synapses varied in their degree of overlap among proteins within each synapse. For a subset
of synapses with the proper orientation relative to the imaging plane, we identified clear
separation between pre-synaptic proteins (synapsin-I and bassoon) and post-synaptic pro-
teins (PSD-95, SHANK3, Homer-lb/c) (Fig. 5-6b). Pre- and post-synaptic proteins were
localized to opposing regions of the synaptic cleft, cytoskeletal proteins (Tuj-1, actin, cor-
tactin) and NMDAR2B were observed in both sides of the cleft. Moreover, PSD proteins
(PSD-95, SHANK3, Homer-lb/c) showed narrow, overlapping distributions in expression
levels, suggesting physical interaction of these proteins in the PSD (Fig. 5-6c) that is con-
sistent with the correlation analysis applied to the preceding confocal imaging results. In
contrast, synapsin-I exhibited a broader spatial distribution compared with the distribu-
tions of scaffolding proteins, in agreement with the more diffuse distributions expected for
vesicle-associated proteins (Fig. 5-6c). These spatial distributions of synaptic proteins were
consistent with the average distributions previously measured from multiple synapses and
distinct cultures using three-channel STORM26 and EM [269j. However, in stark contrast
to these previous studies that relied on reference markers, our imaging and analysis of
sub-synaptic proteins resolved all measured targets of interest within the same synapse si-
multaneously. Integration of our approach with 3D super-resolution imaging systems would
offer its application to dozens or hundreds of synapses in situ.

5.5 Discussion

PRISM offers a powerful, versatile approach to multiplexed fluorescence imaging of cellu-
lar protein targets for both phenotypic profiling and high-resolution structural analysis of
cellular cultures. LNA-PRISM uses diffusible high-affinity ssLNA imaging probes to real-
ize high-throughput confocal imaging for rapid, large-scale phenotypic screening of more
than one-dozen cytoskeletal and synaptic protein targets across tens of thousands of in-
dividual neuronal synapses in triplicate. Alternately, DNA-PRISM utilizes the same an-
tibody/peptide reagents with ssDNA imaging probes to perform super-resolution synaptic
imaging with PAINT. In future studies, large-scale morphological screens may first be per-
formed in multi-well plate format using LNA-PRISM, followed by super-resolution imaging
of a sub-set of synapses or neuronal sub-regions with DNA-PRISM to resolve synaptic ultra-
structure. Compared with previous multiplexed diffraction-limited imaging approaches that
utilize sequential antibody labeling and stripping or bleaching [175, 150, 1741, LNA-PRISM
offers simultaneous staining of all protein targets, which reduces the risk of "masking" anti-
gens, as well as substantially increasing assay throughput. The use of physiological wash
buffers additionally minimizes the possibility of sample or epitope disruption, which may
be crucial for high-resolution structural and co-localization studies requiring high sample
fidelity, such as in the profiling of synapses within cultured neuronal samples.

Application of our primary antibody conjugation strategy together with the use of li-
braries of orthogonal ssDNA sequences [290] offers the potential for future application of
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PRISM to neuronal and other cellular systems exceeding substantially the approximately
one dozen targets realized here. Genetic and drug perturbation screens aimed at discovering
subtle alterations in neuronal phenotype should additionally benefit substantially from the
large-scale protein association networks within synapses that are derived from the 12 synap-
tic targets examined in this study, which offer 66 pair-wise synaptic co-localizations within
the same neuronal culture. While single-color imaging probes were used to demonstrate the
robustness of our probe-exchange strategy, which yielded reproducible protein localization
even after 10 successive probe exchanges, future applications that utilize multiple laser lines
to simultaneously image 3 distinct fluorophores in any given imaging cycle renders our ap-
proach viable for multiplexing at least 30 molecular targets in situ. The significant increase
in phenotypic information captured by our approach offers major potential for both ba-
sic and translational neuroscience research, including high-content screening of phenotypic
variation due to genetic and compound perturbations, as well as super-resolution ultra-
structural synaptic imaging with nanometer-scale resolution. Future application of PRISM
to 3D super-resolution imaging may also enable multiplexed analysis of neuronal morphol-
ogy and nanoscale protein organization within fixed human and diverse model organism
tissues and organoids, including cancer and immunology models.
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5.7 Figures
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Figure 5-1: Schematic of the PRISM framework for highly-multiplexed imaging of molec-
ular targets in neurons. (a) Reagents ("markers", shown in gray) for detecting subcellular
targets include antibodies or peptides that are conjugated with unique oligonucleotide bar-
codes ("docking strands", shown in blue). A barcoded marker is imaged using the comple-
mentary fluorophore-conjugated oligonucleotides (imaging probes) that bind to the docking
strands on the marker (see (iii) in (b), fluorophores shown as red circles). Binding affinity
of the imaging probes to the docking strands can be varied by changing the sequence and
type of the oligonucleotides, which thereby enables either diffraction-limited (high affinity)
or super-resolution microscopy (low affinity). Conjugation of docking strands to markers
using site-specific click chemistry enables stoichiometric control of the number of nucleic
acids bound to a whole antibody, while SMCC enables conjugation of docking strands to free
amine groups on a variety of markers. (b) The reagent testing and validation phase con-
sists of: (i) generating reference staining patterns of all molecular targets of interest using
standard immunofluorescence (IF), (ii) Specificity and staining quality of markers conju-
gated with docking strands compared to those in the reference IF, and (iii) co-localization
of PRISM-imaged staining patterns using imaging probes (red circles, which correspond to
fluorophores conjugated to the probes) with standard IF staining patterns (green circles).
(c) Overview of the main steps in the PRISM imaging workflow. All molecular targets of in-
terest are immunostained at once using docking strand-conjugated markers (e.g., antibodies

shown in green, blue, and pink). Nucleic acid imaging probes specific to each marker (e.g.,
p1-p10) are applied and imaged sequentially, with each imaging strand washed out after
image acquisition at each step. This approach enables imaging a dozen or more distinct
molecular targets in the same sample. Images of different markers are drift-corrected and
overlaid to generate a pseudo-colored, multiplexed image. For super-resolution PRISM,
prior to drift correction, the super-resolved image of each marker is reconstructed from
the temporal image stack of binding/unbinding events of the imaging probes to/from the
docking strands on the marker.
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Figure 5-2: Blocking off-target nuclear localization of ssDNA-conjugated antibodies.
(a) Neurons were stained with native or ssDNA-conjugated anti-bassoon antibody, anti-
synapsin-I antibody, and DAPI. ssDNA-conjugated anti-bassoon antibody exhibited strong
off-target nuclear localization (ii, green staining inside the nuclei) compared to the native
antibody (i). This nuclear localization was reduced by blocking the fixed sample with
non-specific (salmon sperm) DNA prior to immunostaining (iii), or when the anti-bassoon
antibody used for staining was conjugated with ssPNA instead of ssDNA (iv). Scale bar, 20
pm. (b) Cross-correlation analysis of the IF images in (a). Pearson correlation coefficient
(PCC) of the bassoon channel (green in (a)) with the synapsin-I channel (red in (a)) for
each image. Differences in PCC indicate changes in antibody staining patterns. Error bars
represent 95% confidence intervals.
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Figure 5-3: Confocal LNA-PRISM image of rat hippocampal neuronal synapses. (a) 13-
channel images of 21 days in vitro (DIV) rat hippocampal neuronal culture. The composite
image is shown in the top-left corner, followed by the image of each individual channel.
MAP2 and VGLUT1 were visualized using fluorescently labeled secondary antibodies, and
nuclei were visualized using DAPI, while other targets were visualized using ssLNA imaging
probes. Synapsin-I was imaged twice, once in the middle and once at the end of the

experiment. (b) Zoom-in view of a single dendrite indicated by the white box in (a). Scale
bars: (a) 20 pm; (b) 2 pm.
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Figure 5-4: Analysis of single-synapse profiles from multiplexed confocal imaging data
acquired using LNA-PRISM. (a) LNA-PRISM images of a conventional excitatory synapse
(yellow arrow) with co-localization of every synaptic marker measured, and a synapse (white
arrow) with only a subset of markers present. (b) Network representation of correlations
between intensity levels of synaptic proteins within synapses (n=178,528 synapses from 3
cell culture batches). The thickness of each edge represents the relative correlation strength
between the respective nodes. (c) t-Distributed Stochastic Neighbor Embedding (t-SNE)
maps of n=10,000 synapses from a single culture batch; each with 20 features (intensity
levels and punctae sizes of 10 synaptic proteins). Each point in each t-SNE map represents
a single synapse with its (x,y) coordinates corresponding to the transformed features that
best preserve the distribution of synapses in the original high dimensional feature space.

Intensity levels of individual proteins are color-coded in each map. E: cluster of conventional
excitatory synapses with the presence of most synaptic markers; I: cluster of possible in-
hibitory synapses with the absence of most synaptic markers; S: cluster of possible sub-type
synapses with the presence of only a subset of synaptic markers. (d) Hierarchical clustering
analysis of synapse profiles. Each column in the heat map represents a profile of a single
synapse with 24 synaptic features (rows). "I" and "A" denote image intensity level and

punctum size, respectively (n=53,698 synapses from a single culture batch).
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Figure 5-5: Super-resolution DNA-PRISM imaging of primary neuronal cultures. (a)
Widefield and DNA-PRISM images of neuronal microtubules stained using the DNA-
conjugated anti-Tuj-1 antibody. (b) Zoom-in view of the boxed areas in (a) show resolution
enhancement of DNA-PRISM images compared with widefield images. The arrowhead indi-
cates distinct microtubule bundles that are not resolved in the widefield image (c) Widefield
and DNA-PRISM images of filamentous actin stained using DNA-conjugated phalloidin.
(d) Zoom-in views of the boxed areas in (c) show two actin filaments (left) and the synap-
tic actin punctae with sub-synaptic structures (right, arrow head) that are not resolved in
widefield images. (e) Widefield and DNA-PRISM images of pre-synaptic marker synapsin-I

(red) and post-synaptic marker PSD-95 (cyan) of the same field of view. (f) Zoom-in view
of single synapses indicated by boxes in (e). (g) Cross-sectional profile of the boxed region
in (b) shows a microtubule bundle next to a possible single microtubule with FWHM =
47 nm. (h) Cross-sectional profile of the boxed region in (d) shows two actin filaments or
small filament bundles that are 80 nm apart. (i) The average size of synapses defined by
synapsin-I and PSD-95 is quantified using the normalized radial cross-correlation function.
The decay at the smaller radial shift of the DNA-PRISM curve (red) indicates the smaller
synapse size in the DNA-PRISM image due to the improved spatial resolution. Scale bar:

(a,c,e) 10 pm; (b,d,f) 0.5 pm.
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Figure 5-6: Multiplexed DNA-PRISM image shows distributions of synaptic proteins
within individual synapses. (a) DNA-PRISM images of neurons showing the subset chan-
nels of synaptic proteins (left), the subset channels of cytoskeletal proteins (middle), and all
the channels (right). (b) Zoom-in view of two individual synapses in (a) shows the separa-
tion of pre-synaptic proteins (synapsin-I and bassoon) and post-synaptic proteins (PSD-95,
SHANK3, Homer-lb/c). For each synapse, the nine-target image is shown in the top-left
corner, with distinct pairs of synaptic proteins shown in the remaining images. Synapsin-I
was imaged twice, once at the beginning and once at the end of the experiment. (c) Cross-
sectional profiles of protein distributions along trans-synaptic axes (white boxes with arrows
in (b)) of the two synapses in (b). Red lines indicate the medians of the distributions. Scale
bars: 10 pim in full field views; 500 nn in zoom-in views.
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Chapter 6

Conclusions and future directions

6.1 The convergence of -omics data analysis with image-
based profiling of cellular structure and function

The post-genomic era has ushered in a new wave of -omics technologies that now enable
systems-level interrogation of cellular processes at numerous levels, including the genome,
epigenome, transcriptome, metabolome, and proteome [4]. At the same time, advance-
ments in microscopy now enable detailed characterization of cellular structure and function
largely by using fluorescent reporters to study the regulation of specific molecules in space
and time [114]. -Omics techologies are principally used to measure hundred to thousands
of molecular species and generate hypotheses about which species are most interesting to
use as biomarkers, or which species to follow-up on with more detailed mechanistic studies.
Such technologies, however, typically miss the spatiotemporal features of the species. In
contrast, microscopy studies often characterize only a few molecular species, but do so with
high spatial and temporal resolution. Microscopy is used to capture cellular signaling and
phenotype - morphology, migration, proliferation, apoptosis, signaling dynamics, subcellu-
lar localization of proteins, etc. Importantly, "blind" phenotypic screens that attempt to
quantify thousands of features of a set of general markers (e.g., F-actin, nucleus, micro-
tubules, membrane-bound organelles) have largely been inferior in drug discovery efforts
compared to target-based drug design, as general markers likely fail to capture phenotypes
relevant to many diseases [181, 26]. As a result, more targeted, mechanism-specific phe-
notypic screening is needed. How can one leverage both -omics and quantitative imaging
technologies to hone in on such targeted screens that can reveal molecular mechanisms
important to the biological process under study?

This thesis demonstrates one such approach for identifying putative mechanisms of
drug action, in this case for doxorubicin chemotherapy, a non-targeted therapy with mul-
tiple modes of action. Bioinformatics analyses were first applied to phosphoproteomics
measurements to identify the general class of signaling processes and functions altered by
the drug. The results of this analysis were then used to design an imaging-based pheno-
typic assay to captures these processes and functions with finer spatiotemporal detail to
converge on a putative mechanism. Specifically, in Chapter 3, gene ontology analysis of
checkpoint kinase phospho-substrates revealed a novel role for the DNA-damage response
in regulating cytoskeleton- and adhesion-associated processes. Dozens of phosphoproteins
associated with these processes were upregulated by doxorubicin (Fig. 3-4). The drug also
altered cellular morphology (Fig. 3-2) and migration (Fig. 3-3). A key question remained
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as to whether one of the dozens of phosphoproteins contributed most to these phenotypic
changes. Guided by the phosphoproteomic analysis, a small-scale phenotypic screen was
applied to characterize morphological changes under doxorubicin and a number of targeted
inhibitors of various actomyosin components '(Chapter 4), using both fixed- and live-cell
image processing and analysis tools (Chapter 2). The screen revealed that ROCK and
myosin II, but not MLCK, inhibition phenocopied doxorubicin treatment, which led to the
finding that myosin light chain phosphorylation on S19 (pMLC) may be contributing to the
doxorubicin-induced changes in cell shape and migration (Chapter 4).

A key insight was gained into the value of integrating phosphoproteomic and phenotypic
screens during the course of experiments and data analyses presented in this thesis. Large
changes in magnitude (i.e., upregulation or downregulation) of a measured signal do not
necessarily correspond to a biologically meaningful response. For instance, pMLC, which
we found may largely contribute to doxorubicin-induced changes in cellular elogation, was
ranked 510 out of 711 phosphosites in its magnitude of doxorubicin-induced upregulation.
This phosphosite would likely never have been studied further in this work if not for the con-
vergence of gene ontology and pathway analysis with the rationally-designed, image-based
phenotypic screen. This work demonstrates the power of combining -omics and phenotypic
profiling in mechanism discovery, particularly when one uses information from one to in-
form the other. In this thesis, the phosphoproteomic analysis suggested the relevance of
a phenotypic screen centered around cell morphology and actomyosin organization. How-
ever, other -omics studies may generate hypotheses in which processes and functions other
than actomyosin/adhesions play an important role. A multitude of other cellular processes
can be studied with higher spatiotemporal resolution using quantitative imaging. In such
cases, one can use fixed- and live-cell fluorescent reporters to phenotypically profile mi-
tochonodria, lysosomes, endoplasmic reticulum, nuclear structure, and activation of Erk,
Jnk, or Akt signaling, for example, or generate highly specific fluorescently-tagged protein
constructs whose expression and localization can be microscopically analyzed.

6.2 Future studies for linking multiplexed molecular signals
with changes in cell phenotype using latent variable mod-
els

The key findings from Chapters 3 and 4 suggested that doxorubicin-induced changes in focal
adhesion and actomyosin signaling were associated with altered cellular morphology through
separate experiments, but relationships between cell signaling and cell shape were not firmly
established within the same cells. The phosphoproteomics studies in Chapter 3 showed that
dozens of cytoskeletal and signaling proteins may contribute to doxorubicin-induced changes
in cell shape and motility. Conventional microscopy systems are typically limited to 4
fluorescence channels, making it impossible to realistically measure more than 2-3 signals in
the same sample. The multiplexed fluorescence imaging methodology presented in Chapter 5
enables us to overcome this limit. Future studies should focus on building relational models
between multiplexed sub-cellular signaling and morphological alteration on a single-cell
level. These models will reveal, for instance, whether levels of pMLC and numerous adhesion
associated phosphoproteins altered by doxorubicin are directly related to morphological
elongation (as opposed to other shape features we measured, see Appendix A.5) within
the same population of cells. Provided that the putative phosphoproteins have primary
antibodies compatible with immunofluorescence staining (e.g., as does pMLC that was
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used in Chapter 4), one would simultaneously stain against, for instance, pFLNA (S2152),
pMYPT1 (S508), pMLC (S19), and F-actin, using antibodies and phalloidin conjugated to
nucleic acid barcodes to enable simultaneous measurement in the same cell culture (Chapter
5). Using image processing and analysis techniques discussed in this thesis, quantitative
metrics of the signals and cytoskeletal organization would be extracted, and relational (e.g.,
regression) models built to predict cell shape features from the signal features, or vice versa.
What types of relational models would be useful for this task?

In the relational model we wish to build, the goal is to explain the variance in morpho-
logical responses between cells using measurements of signal levels/distributions. In other
words, we want to establish relationships in a predictive sense - how signals can predict
morphology. The key hypothesis that establishes the variable relationships in the model
and guides its specification is that expression levels and organization of subcellular molecu-
lar signals and cytoskeletal regulators positively correlate with cell shape. One would then
need to transcribe the hypothesis into a formalized relational model, defining variables and
the relationships between them that will be estimated. Importantly, the variables in this
case are expression levels and subcellular organization features of molecules and the mor-
phological characteristics of cells. In Chapter 4 and in Appendix A.5 I showed how such
multivariate features can be extracted, using the tools developed in Chapter 2. Notice that
we are presented with a multivariate data set in which each variable (i.e. signal or shape)
can be described by multiple features that are extracted from the corresponding images.
Some of these features will be meaningful and informative in the sense of explaining variance
among the properties, while others will not. Therefore, a relevant approach is to represent
signal and shape variables as latent variables, which leads us to the use of latent variable
(LV) modeling (discussed below). Latent variables, also called latent constructs, are those
that cannot be directly measured or observed - they are constructed from a combination of
other, measurable, manifest variables (MVs) that can be directly extract from images. We
can regard LVs as data reduction devices in which a set of MVs are linearly combined to
form a particular LV.

Latent variable modeling is a well-established and widely used multivariate tech-
nique popular in the fields of chemometrics, social science, and marketing research
[102, 45, 275]. Similar approaches have also been successfully applied in the biological
domain on population-level measurements to relate molecular signals with phenotypic re-
sponses, such as migration, proliferation, and apoptosis in a variety of in vitro and in vivo
models [121, 177, 144]. This framework is used to establish causal relationships between
variables that cannot be directly observed or quantified, but are composed of multiple mea-
surable (manifest) variables. As an example, take "morphological polarization" as a latent
variable, which can be used to describe the degree to which a migratory cell is direction-
ally polarized (Fig. 3-3). One cannot measure this variable directly, but must instead use
various image features of cell shape and cytoskeletal organization in order to put a number
to the measure of polarization. Therefore, we can formalize the model as a multiple regres-
sion using the latent variable approach. Two popular latent variable modeling frameworks
are covariance-based structural equation modeling (CV-SEM) [45, 102], and partial least
squares structural equation modeling, also called partial least squares path modeling (PLS-
PM) [275]. Both approaches are used to estimate the relationships between latent variables:
CV-SEM seeks to find the parameters that minimize the residual covariance between the
latent variables in the model estimates in comparison with the data. On the other hand,
PLS-PM seeks to maximize the variance explained by the causal latent variables and the
explanatory latent variables in the model.
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The PLS-PM algorithm is iterative, alternating between estimating the relationships
between LVs and their corresponding MVs, first, which describes the measurement, or outer,
model, and, second, the relationship between LVs, which describes the structural, or inner,
model. The relationships between LVs and MVs and among LVs themselves are a series
of simple or multiple linear regressions. The representation of LVs by their indicators, or
MVs, can take the form of formative or reflective relationships. The selection of formative
versus reflective relationship between a LV and its MVs depends on the underlying theory of

the causal directionality of the LV and its associated MVs. In addition, one must consider
whether the MVs are describing the same underlying property, or, conversely, they are not
expected to be correlated. If the MVs describe different, uncorrelated, aspects of a particular
property of a cell represented by a LV, then the formative measurement model would be
appropriate. If, on the other hand, the MVs are expected to correlate in the same direction,
they are assumed to be regulated by the same underlying latent construct, and therefore a
reflective measurement model would be appropriate. As an example, consider a PLS path

model relating pMLC to the morphological polarization. In this case, we treat "pMLC"
and "morphological polarization" as two latent constructs, each of which is associated with
three formative MVs, for instance. The MVs are measurable image features in a cell image
that is stained for pMLC and has a defined cell shape outline, as was done in Chapter 4

(see Fig. 4-3).
One could conceive a formative relationship between LVs and their MVs by theorizing

that three MVs, say asymmetry of pMLC distribution, overall levels, and distance of pMLC
signal from the cell edge are separate, possibly uncorrelated, measures. These three MVs

would together form their LV, which would correspond to a generalized "pMLC" construct
derived from the multiple MVs, or image features, from a given cell. Similarly, morpho-
logical polarization can be described by image features (MVs) that are also not necessarily
correlated, but could be, such as "Major Axis Length", "Area", and "Axis Ratio". The
relationship in the structural model relating the two LVs is captured by an arrow drawn
between the "pMLC" and "morphological polarization" LVs in the PLS path model. The
PLS-PM framework thus enables flexibility in formulating relationships between LVs and

their associated MVs in terms of directionality through which we can incorporate a priori
knowledge of the biological system at hand. PLS-PM also leads to the structural model
relating LVs themselves, each of which can be flexibly associated with its own MVs in a
formative or reflective sense. The goal of the PLS-PM algorithm, not detailed here, would
be to compute weights and loadings relating MVs with their LVs, and path coefficients
relating the LVs among each other.

A separate PLS-PM model can be derived for each of many drug pertubations (e.g.
doxorubicin and ROCK inhibitors in the system studied in this thesis). For each drug's
model, the MV weights inform which MV in the measurement model contributes most to
the explanatory relationship between the LVs, while the path coefficients will inform on the
variance of the predicted LV ("morphological polarization") by the predictor LV ("pMLC").
This model can be extended to include a larger set of signaling and structural proteins and
phenotypic constructs for broadening the scope of associations between molecular signaling
and cell shape on a single-cell level. These PLS-PM models can then be used to objectively
compare and contrast not just the effects of different drug perturbations on cell signaling

or cell phenotype (e.g. morphology) as was done in this thesis, but also on the relationships
between signaling and phenotype. These relationships will help establish, in a statistically
formalized way, direct associations between cellular signaling, structure, and function that
would provide a deeper understanding into how exogenous perturbations, like doxorubicin
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chemotherapy, alter these associations.

6.3 Clinical implications of tumor adaptation to chemother-
apy treatment

For decades, selecting the course of breast cancer treatment has been largely phenomenolog-
ical and empirical - accumulated knowledge from clinical trials and medical records span-
ning hundreds of thousands of patients have generated insights, rationale, and structure
into courses of treatment [198, 105, 253]. The post-genomic era has led to an explosion in
biological data derived from -omics technologies that reveals the molecular underpinnings
of tumor etiology (4]. Integrative analysis of this data provides for concrete therapeu-
tic strategies that can specifically target the signaling pathways that tumor cells rely on
to survive, proliferate, and disseminate. This thesis has shown that doses of doxorubicin
chemotherapy that fail to induce cell death can have the counterproductive effects of alter-
ing cytoskeletal phosphosignaling regulated by checkpoint kinases that promote changes in
cell shape, migration, and chemo-tolerance. In essence, this work bridges the fields of DNA
damage and cytoskeletal biology. Studies of DNA damage pathways have largely focused
on cell cycle inhibition and apoptosis - this thesis demonstrated a new link between these
pathways and mechanisms of cell shape and motility regulation. Although gene expression
profiling has been largely used to define prognostic and theragnostic signatures [49], the
majority of cellular processes responsible for drug resistance and metastasis are regulated
by protein-level signaling networks. As a result, proteomic and phosphoproteomic assays
will be critical in defining the mechanisms that drive cancer progression and optimizing
therapeutic strategies.

Many studies have focused on the genetic basis of drug resistance, applying experimen-
tal and computational methods to formulate potential therapeutic strategies to counteract
the forces of evolution in cancer progression [204]. These forces remain an important area
of study, but this thesis suggests that, at least for doxorubicin, non-genetic forces may also
play a role. Future work remains to thoroughly understand the contributions of epigenetic
and transcriptional changes induced by doxorubicin, and to what extent these changes con-
tribute to altered cytoskeletal signaling and phenotypic alterations that were observed in
Chapters 3 and 4. Interestingly, the majority of discussions pertaining to resistance to
chemotherapy, as opposed to targeted therapies, lie mainly in the domain of multi-drug
resistance mechanisms and buffering of reactive oxygen through anti-oxidant enzymes [23].
These mechanisms may effectively reduce drug concentrations within tumor cells to sub-
lethal levels, but they do not directly explain the downstream changes in signaling and
phenotype that result in altered morphology, motility, and viability that were characterized
in this thesis. Consequently, the findings in this thesis are not in disagreement with the
current understanding of cellular response to chemotherapy, but expand our knowledge of
the consequences of sub-lethal doses that alter the signaling and phenotypic landscape of
surviving cancer cells following drug treatment. Despite the mechanisms involved, phar-
macokinetic properties inevitably result in heterogeneity of drug dose within the tumor
under almost all scenarios during the course of treatment. Pockets of the tumor with sub-
lethal dose exposure lead to residual survivors, which, as this thesis has shown, may have
important implications on subsequent treatment response and disease progression.

As discussed in Chapter 3, the enhanced chemo-tolerance induced by low-dose dox-
orubicin could constitute an adaptive response to therapy, a form of acquired resistance
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that may influence the course of multi-round doxorubicin monotherapies in the clinic (Fig.

6-1). Sub-lethal doses of chemotherapy could result from reduced drug penetration into a

tumor mass, in which peripheral cells die off while cell at the core survive under low-dose

exposure while still activating DNA damage pathways. Acquired resistance is particularly

problematic because the resistant population often attains additional traits that can make

constituent cells more invasive. This is particularly likely in our system, given altered cy-

toskeletal and actomoysin changes induced by the drug, which directly regulate cell motility.

It is intriguing to speculate that the large body of clinical evidence demonstrating acquired

resistance to doxorubicin, as discussed in Section 1.1, may be in part due to the mechanisms

characterized in this thesis. Much work still remains to assess whether cells that survive

primary doxorubicin treatment become more resistant to subsequent rounds of treatment

to support the clinical evidence showing that patients with prior chemotherapy exposure

are less responsive to secondary treatments with the same drug.
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Figure 6-1: Sub-maximal tumor killing resulting from sub-lethal doxorubicin doses pro-

motes phenotypic changes in cancer cells in vitro that are typically associated with metas-

tasis and disease progression in vivo.

In addition to changes in cytoskeletal signaling, alternative mechanisms not studied

here could also contribute to the phenotypic changes induced by sub-lethal doxorubicin.

Future studies should focus on ROS, which, as discussed in Section 1.1, are increased by

doxorubicin. Sub-lethal ROS levels could activate pro-migratory signaling through p3 8

MAPK or inhibition of tyrosine phosphatases that regulate RTK signal transduction path-

ways. Additional studies should also assess whether sub-lethal ROS levels induced by the

drug result in increased production of antioxidant co-factors and enzymes, such as glu-

tathione, catalase, thioredoxin, among others, which could negate the pro-apoptotic effects

of subsequent chemotherapy.
One promising approach toward addressing drug resistance is to leverage the phe-

nomenon of collateral sensitivity. Collateral sensitivty refers to the hypersensitive state

of cancer cells to a different drug that have acquired resistance to a primary treatment

[253]. Combination therapy with multiple drugs at once could address intrinsic resistance,
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while sequential application could better target acquired resistance. For instance, Lee et
al. have shown that sequential administration of a targeted inhibitor of EGFR and dox-
orubicin enhances cancer cell death compared with simultaneous administration with the
two drugs [146]. More generally, the phenomenon of collateral sensitivity emphasizes the
value of studying the dynamics of tumor cell function to guide optimization of combination
treatment scheduling [297].

Indeed, this thesis has shown the importance of perhaps unintuitive, and complex,
temporal regulation of molecular signaling and the critical role it plays in determining cell
phenotype. Although the phosphoproteomic screen in Chapter 3 showed that pMLC lev-
els increased at 12 hrs following doxorubicin treatment, subsequent site-specific assays in
Chapter 4 showed that pMLC exhibits a biphasic response, with a subsequent decrease in
pMLC levels below baseline by 24 hours. This biphasic response not only suggests a complex
spatiotemporal interplay between DNA damage networks, focal adhesion signaling, and ac-
tomyosin regulation, but a potential temporal "window" of intervention into these processes.
For instance, as discussed in Chapters 3 and 4, sub-lethal doxorubicin potentiates a chemo-
tolerant state to MDA-MB-231 breast cancer cells that makes them less sensitive to subse-
quent doxorubicin chemotherapy treatment. Since an increase in pMLC achieved through
Rho GTPase activation resulted in reduced tolerance to doxorubicin, modulation of the acto-
myosin machinery may be a novel way to counteract doxorubicin-induced chemo-tolerance.
The timing, however, may be critical - re-activation of actomyosin within 12 hours may be
counterproductive, while re-activation following 24 hours could be more effective, as this is
the time point when pMLC levels dropped below baseline. Future studies should explore
in greater detail the signaling mechanisms that regulate the doxorubicin-induced biphasic
temporal response in pMLC, and relate this regulatory machinery to changes in morpholgoy,
motility, and drug tolerance.

6.4 Toward the use of model systems with improved trans-
lational relevance

Although the findings presented in this thesis suggest counterproductive features of sub-
lethal chemotherapy that may exacerbate clinically-relevant characteristics of the disease
like metastasis and drug tolerance, the 2-D ex vivo model system used has clear limi-
tations. Future work should focus on characterizing cellular signaling and phenotype in
more physiologically-relevant systems with more direct translational relevance. These in-
clude 3-D culture systems, co-cultures of cancer cells with stromal cells, and in vivo mouse
models to capture the important roles of extracellular matrix dimensionality and compo-
sition, heterotypic intercellular interactions, and tissue architecture on cellular response to
chemotherapy.

Three-dimensional model systems are increasingly being used in the study of physio-
logical parameters that influence cancer cell response to drugs [133, 291]. First, extracellu-
lar matrix architecture and composition can substantially affect cellular mode of motility
[59, 200, 201]. The 2-D systems used in this thesis constitute an environment in which mes-
enchymal migration dominates, whereby cells rely on cytoskeletal reorganization through
focal adhesion-matrix engagement to migrate. Actomyosin stress fibers, a dominant cy-
toskeletal feature altered by doxorubicin (Chapter 3), are preferentially observed in 2-D,
but are frequently absent in 3-D. Although this thesis has shown that doxorubicin induces
morphological elongation in 2-D and 3-D (Fig. 3-2 and Fig. 4-5) future studies are needed
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to investigate effects of doxorubicin on cancer cell motility in 3-D. In addition to mesenchy-
mal motility, in 3-D environments cells can also migrate through the amoeboid mode, which
relies on the actomyosin machinery to squeeze cellular organelles through matrix pores. As
a result, impairment of actomyosin contraction induced by doxorubicin (Chapter 4) may
block amoeboid migration, which may lead to mesenchymal migration as the dominant
mode. With regard to toxicity, doxorubicin-induced inhibition of actomyosin contraction
could also potentially impair the migration of immune cells, such as neutrophils, which
have been shown to migrate through amoeboid motion [76, 110]. This possibility presents
an exciting direction for future investigation into the effects of chemotherapy on the immune
system.

Additionally, matrix composition and architecture can influence cell survival [27, 218].
Numerous studies have shown that cancer cells in 3-D display reduced sensitivity to phar-
macological treatments, demonstrating the importance of extending signaling and pheno-
typic studies beyond 2-D culture. Moreover, tumor-stroma interactions can substantially
affect cancer cell signaling and behavior through paracrine and juxtacrine engagement. The
contributions of tumor-associated macrophages and mesenchymal stem cells to cancer cell
motility and survival have been extensively studied [235, 137, 210], and are therefore an
important element of fbllow-on work to this thesis.

Finally, breast cancer xenograph mouse models can be used to study the metastatic
process directly [77]. This thesis has shown that sub-lethal doxorubicin enhances survival
of MDA-MB-231 breast cancer cells on both adherent and non-adherent substrates (Fig.
3-6 and Fig. 3-7), suggesting enhanced survival during primary tumor escape and in the
vasculature following intravasation. These findings set the stage for the use of orthotopic
xenograft mouse models to investigate the effects of sub-lethal doxorubicin on survival of
MDA-MB-231 cancer cells in various stages of metastasis to the lung, liver, bone, or brain

(e.g., through tail, portal, intracarotid or intracardiac vein injections of human cells in the
mouse). Additional studies measuring intratumor drug concentration following systemic
drug administration are also warranted, in order to assess whether the in vitro concentra-
tions used in this thesis can be observed at the cores of growing tumors [179]. Furthermore,
it would be relevant to investigate how sensitive doxorubicin pre-treated cells are to sec-
ondary treatment in the mouse model by measuring tumor growth following a doxorubicin
treatment regimen. Xenograft models also provide a useful system for intravital imaging
studies using two-photon microscopy to track fluorescently-labeled cancer cell survival, mor-
phology, and motility under doxorubicin in vivo. The application of 3-D (co)culture systems
and mouse models will contribute critical features of in vivo context to the study of DNA
damaging chemotherapy effects on cancer cell signaling, structure, and function.
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Appendix A

A.1 Materials and Methods (Chapter 2)

A.1.1 Software and image data availability

The files necessary to run SAPHIRE are available as a software package that can be down-
loaded in its latest version at http://saphire-hcs.org. A demo with sample cell image data,
instructions, and scripts is provided for using the trajectory editing GUI tool, time series
modeling, phenotypic profile computation for groups of cells, and visualization of SAPHIRE
outputs.

A.1.2 Generation of fluorescent reporter cells

Cells were generated with fluorescent reporters for both actin to provide for cell shape
and histones to label nuclei. A pBABE-HistoneH2B-mCherry retroviral plasmid was a gift
from Dr lain Cheeseman (MIT Whitehead Institute). LifeAct-eGFP was inserted between
the XhoI-EcoRI sites in pMSCV-puro vector using standard molecular biology techniques.
Replication-incompetent virus was purified from HEK-293T cells using standard protocols.
Supernatants containing LifeAct-eGFP or H2B-mCherry packaged virus were harvested at
48-72 h after transfection, and passed through 0.45 pm filter prior to use for transduc-
tion of target cells (Pall Corp., Cortland, NY). MDA-MB-231 cells were transduced with
LifeAct-eGFP and H2B-mCherry filtered viral supernatants containing 8 pg/ml polybrene
(Millipore). Selection and propagation of transduced MDA-MB-231 cells was performed
by culture in 1 pg/ml Puromycin (Sigma) in complete DMEM media. To make the sta-
ble fluorescent cell population more uniform in the expression of the two reporters, cells
were sorted for double-positive intensities in the 80-90 percentile of the population using a
MoFlo3 flow cytometer (Beckman Coulter, Inc.).

A.1.3 Cell culture, live-cell imaging, and drug perturbations

The triple negative breast cancer cell line MDA-MB-231 (ATCC) stably expressing
LifeAct-eGFP and histone H2B-mCherry was used in all experiments. Cells were cul-
tured in high-glucose Dulbecco's Modified Eagle Medium (DMEM) (Life Technologies)
supplemented with 10% HyClone fetal bovine serum (Thermo Scientific), 1% peni-
cillin/streptomycin (Gibco), and 1% GlutaMAX (Life Technologies) at 37 'C and 5% CO 2.
For drug perturbation imaging experiments, Nunclon Delta 96-well optical bottom plates
(Thermo Scientific) were coated with 5 pg/cm2 pH-neutralized, acid-extracted, nonpepsin
digested collagen I (BD Biosciences) for 1 hour at 37 'C and 5% CO 2 . All wells were then
washed twice with PBS and once with culture media prior to cell seeding. Following plate
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coating with collagen, cells were seeded at a density of 1000 cells per cm2 in culture medium
and incubated at 37 'C and 5% CO 2 for 24 hours. Following the 24 hour incubation, the
culture media was replaced with drug-containing imaging culture media and the plates
were immediately transferred to the microscope for live imaging. The time delay be-
tween drug addition and start of image acquisition was approximately 30 minutes to 1 hour.

Two imaging experiments were performed: for the experiment with the expanded panel
of drugs cells were imaged on an IncuCyte ZOOM system incubated at 37 'C and 5%

CO 2 under a standard scanning protocol (Essen Bioscience) in drug-containing DMEM
growth media (see above). Cells were imaged over approximately 18 hours at 20 minute
intervals, with three wells per drug condition and four fields of view per well, producing
an image data set of 84 fields (4452 time series image frames), from which 293 individual
cell trajectories, with an average of 53 time frames, were obtained for further analyses.
For the other experiment, which contained the experimental controls, cells were imaged in

Leibovitz's L-15 media (Life Technologies) supplemented with the same additives as the
DMEM culture media above, on a Nikon Eclipse Ti microscope equipped with an Andor
Zyla 8CMOS camera. Cells were imaged over approximately 18 hours at 8 minute intervals,
with three wells per drug condition and four fields of view per well, producing an image
data set of 96 fields (16,128 time series image frames), from which 435 individual cell
trajectories, with an average of 100 time frames, were obtained for further analyses. All
inhibitor stocks were dissolved in dimethyl sulfoxide (DMSO) (Sigma), other than Y-27632,
which was dissolved in high-purity water. All final concentrations of inhibitors in culture
media used for imaging were at 0.1% v/v DMSO or lower. In both experiments cells were
imaged using a 0.30 NA Nikon Plan Fluor 10x air objective. The inhibitors used in this work
and their vendor sources were as follows: AZD6244 (MEK inhibitor; Selleck Chem.), ML-7
(MLCK inhibitor; Enzo Life Sciences), Blebbistatin(+/-) (non-muscle myosin II inhibitor;
Enzo Life Sciences); Gefitinib (EGFR inhibitor; LC Labs), PD0325901 (MEK inhibitor; LC
Labs), Y-27632 (ROCK inhibitor; Enzo Life Sciences), PD150606 (Calpain inhibitor; EMD
Millipore).

A.1.4 Image processing

Time series stacks were exported as monochrome images from the red and green channel
for LifeAct-eGFP (actin) and histone H2B-mCherry (nuclei) reporters, respectively. All
images were batch processed using a custom pipeline written in MATLAB (Mathworks,
Inc.). First, time series images were drift-corrected with the StackReg plugin in ImageJ
using the nuclear reporter channel relative to the first time frame and cropped to maintain
identical field of view regions in the nuclei and actin reporter image stacks for each field
individually. Nuclei in each image were then segmented using point-source detection [3].
User-assisted cell body segmentation from the actin reporter channel was performed for the
first frame of each time series stack. Otsu intensity and Canny edge detection thresholds
were set by the user for the first frame of a time series for each field of view, with the cell
masks generated by combining the binary Otsu foreground and Canny edge pixels. The
thresholds were modified through time for each field of view automatically for the second
frame onward using a parameter gradient search that minimized the sum of the difference
in area, perimeter, and solidity of foreground objects between a previous and subsequent
frame. For each connected foreground object, nuclei centers were used to form holes in the
binary object mask that enabled detection of touching cells by computing the Euler number
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for the object. Segmented cell body regions without spatial overlap with segmented nuclei
were removed. Segmented nuclei were tracked over time using the IDL tracking method
implementation [55]. To avoid bias of cell-cell interaction effects on morphology, touching
cells were automatically identified as two or more segmented nuclei within a segmented
cell body region in a given frame, and subsequently flagged for removal. A graphical user
interface was developed to correct cell body segmentation inaccuracies and to label dividing
or dying cells (Fig. 2-2). Continuous cell trajectories with no division, death, or intercellular
spatial interactions were retained for both imaging experiments and subsequent analyses.

A.1.5 Cell shape quantification and shape-space definition

Eighteen whole-cell shape features were computed from the binary masks of each cell at ev-
ery time point in both imaging experiments (Table B.1). Here, we call a temporal snapshot
of a cell a "cell object". For each imaging experiment separately, the raw shape features
from all cell objects were combined into an n x m matrix A, where n is the total number
of cell objects and m is the number of shape features. The matrix was z-score normalized
across cell objects for each feature (along columns). For the imaging experiment where
the expanded panel of drugs was tested, we performed dimensionality reduction using PCA
onto a two-dimensional basis from the covariance matrix of A, making the PCs linear com-
binations of the shape features with points in PC space corresponding to cell objects. The
PCA coefficients derived from cells imaged in the expanded drug panel experiment were
then used to project the shape features from the other experiment (with drug doses and
controls) onto the same two-dimensional PC basis. Reducing data dimensionality using
PCA dampens the effects of features in the model that contribute little to shape variability
across cells and removes correlations between features used for subsequent modeling steps.
With this projection, the shape trajectory of a cell is converted from a T x m matrix, where
T is the number of time points, to a T x 2 matrix, where the two columns correspond to the
two linearly independent PCs. The T x 2 matrices for each cell represent bivariate temporal
trajectories in the two-dimensional PC space that we define as the "shape-space". The
bivariate temporal trajectories are then used for subsequent shape state identification and
time series modeling. GMM using expectation maximization and Bayesian information cri-
terion (BIC) for model selection were used for GMM analyses of simulated and experimental
data and implemented using the mclust package in R.

A.1.6 Probabilistic time series modeling

The methods in this section were adapted from prior work applying time-series modeling to
infer modes of motion for particles in biological systems [184]. For additional mathematical
and methodological details, refer to the PhD thesis of Nilah Monnier cited in [184].
Below I walk through the implementationn of these methods to the annotation of cellular
morphological states.

A bivariate temporal trajectory for an individual cell whose shape dynamics we wish
to model is comprised of T time points each with an (xt, yt) coordinate at each time point
t E {1, ..., T} in two-dimensional PC shape-space. We model the coordinates as emissions et
= (xt, yt) from K number of "hidden" shape states, {sif} , K = {1, 2, 3, ... }. We represent

each shape state as a symmetric, bivariate Gaussian distribution with mean pi = (px,, py,i)
and standard deviation along both PC coordinates, o-i = o-, = -y,i. The covariance matrix

145



of x and y is diagonal, and we write the probability of the point et in shape-space coming
from shape state si as:

Ps, (et) 2 exp (Xt _ -I- (yt - y i)) (A.1)

We next consider the set of points et for the entire cell trajectory (etVt E {1, ... , T}),
resulting in a T x 2 matrix, e. Because the number of hidden shape states, and the param-
eters Ai and o-a for each state si that lead to the emissions e are unknown, we test models
Mk with different numbers of hidden states, k E K, and select the model that best fits the
cell trajectory shape-space data, e. Bayesian model selection is used to evaluate how well
each model fits the data in order to select the best model, inherently penalizing increased
model complexity (i.e., increasing number of states),

P(Mkle) P(eMk)P(Mk) oc P(eMk) (A.2)
P(e)

with the proportionality holding since we consider the prior probabilities of all models
AMk to be equal. Importantly, points in e are not independent as they represent a temporal
evolution in shape of the same cell. A hidden Markov model in the framework is used to
incorporate the temporal dependencies in e and infer parameters that describe the dynamic
properties (state transitions). Therefore, for each model, e ,its full set of parameters that
must be inferred from the data are

9 {p~, y1,a~i,{i=ii { ij 1 (A.3)

where for each shape state (bivariate Gaussian distribution) pi and -i correspond to
the state mean and standard deviation in shape-space, respectively, #ij is the probability
of transitioning from state si to state sj within the state transition probability matrix, 0,
and 7i is the probability of the cell starting in state si at the first time point. Models
are compared amongst each other independent of a particular realization, or values, of
the parameters, as well as of the possible hidden shape state sequences. Therefore, the
likelihood P(e|Mk) is marginalized over all the parameters E and hidden state sequences

Sk {tI for t E 11, ... , T} to obtain the total marginalized likelihood of the model Mk,

T T

P(e|Mk) (w1s1l #1- st-ist 11Pse(et))]Pr(Ek|Mk)dek (A.4)
Sk t=2 t=1

The summation over states in brackets, [-], is the probability, P(eMk, 0k), of the ob-
served temporal sequence of coordinates in shape-space of the cell trajectory, e, conditioned
on a particular model with k hidden shape states, Mk, and its parameters, Ok. Summa-
tion over the hidden state sequences is performed using the forward algorithm. Metropolis
Markov Chain Monte Carlo (MCMC) with importance sampling is used to sample param-
eter space in order to integrate the marginalized likelihood, with the prior probability of
the parameters given the model, P(ek, M), taken as constant [184]. The resulting MCMC
integration yields the total marginalized likelihood of each model, P(e Mk, 0k), and its
maximum likelihood (ML) parameters, $k. The model with the highest marginalized like-
lihood is chosen to describe the shape dynamics of the cell, with the most likely hidden
shape state sequence calculated by the Viterbi algorithm using the ML parameters.
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A.1.7 SAPHIRE model-derived phenotypic profiles for drug comparisons

Annotated shape state sequences of individual trajectories from identically treated cells
were combined to generate a phenotypic profile for that treatment condition. A phenotypic
profile is a 48-element numerical vector composed of four types of histograms that capture
shape dynamics: state radial distances and state dwell times, collectively called "state
location features", as well as state transition magnitudes and state transition dwell times,
collectively called "state transition features". These features are derived as follows (see
illustration in Fig. 2-5A).

For each inferred Gaussian state si in shape-space from a temporally annotated
sequence, we convert the coordinates of the state mean value in the Cartesian PCA axes

(pX,'S, PY'S) to polar coordinates (ir,s, pyo,s,). As a result, r8, becomes the location vector
of the state in shape-space and Jr,, is the radial distance of the state from the origin,
where I - I denotes vector magnitude. 0 is the angle r, makes in the counterclockwise
direction with the positive PCI axis for state si. For each state si the state radial distance

is described by |rs , or equivalently y,. + P . The normalized state dwell time for

si is calculated as ET 1 6t,,/T, where 6t,s= 1 if the state is si in the model-annotated
state sequence at time t, and 0 otherwise, with T equal to the number of elements in the
sequence (i.e. number of time frames in the cell trajectory). For a given cell trajectory,
we derive an angular histogram with twelve bins on the range of 0 to 360 degrees, with
the first bin 0 to 30 degrees, second bin 30 to 60 degrees, and so on until the twelfth
bin that ranges from 330 to 360 degrees. For all states si E S in the cell sequence,
the state radial distance value of each bin is computed as (IrsJ) where (-) denotes the
mean, for all states si with pos, falling within the angular range of the bin, to generate
a histogram of state radial distances. A state radial distance profile for a treatment
condition is then computed as the average within each bin in the twelve-bin state radial
distance histograms for all cells in that treatment condition. The state dwell time profile
of the treatment condition is similarly computed except averaging normalized state dwell
time values for states of each cell instead of the state radial distances for twelve angular bins.

We additionally derive state transition profiles for each treatment condition. Consider
for a given cell a state transition from si to sj. The state transition direction O, for
sj from state si is the angle that the vector r,, - r, makes in the counterclockwise
direction with the positive PCI axis in shape-space. The state transition magnitude for
sj from state si is computed as Irj, - r., scaled by the normalized state transition dwell
time. The normalized state transition dwell time for sj from state si is calculated as
the number of time points a cell spends in state sj after transitioning to it from state
sj, divided by the sequence length, T . The state transition dwell time value of each
of the twelve angular bins is the mean of the normalized state transition dwell times of
all states whose means (Iptr,s yO,s ) are in the bin. For transition directions O, for all
i 7 j and a given cell, the state transition magnitude value of each of the twelve angular
bins is computed as Jrs, - r,,l for all O, falling within the angular range of each bin,
to produce a histogram of state transition magnitudes. A state transition magnitude
profile for a treatment condition is then calculated as the average within each bin in the
twelve-bin state transition histograms for all cells in that treatment condition. A state
transition dwell time profile is similarly computed except averaging normalized state transi-
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tion dwell times across cells for the twelve angular bins instead of the transition magnitudes.

To quantify similarities in effects of treatment conditions on cell shape dynamics,
clustering using average linkage of Euclidean distances between phenotypic profiles was
performed for treatment pairs to generate cluster dendrograms. Internal nodes were
re-sorted into optimal leaf order without dividing the clusters or changing overall tree
connectivity so that treatments with similar profiles are next to each other by maximizing
the sum of similarities (max(dij) - dij, where i is a leaf adjacent to leaf j) between adjacent

tree leaves.

Permutation testing was used to assess significance of Euclidean distances (similarities)
between all pairs of treatments as follows. Dynamic phenotype profiles (48-element vectors)
based on state locations and state transitions and corresponding dwell times (see above)
of individual cells within any two treatment conditions being compared were randomly
reassigned into the two treatments while preserving the number of cells and their signatures.
Signature values were averaged between the randomly-assigned cells for a given treatment
to generate a treatment profile. A permutation test p-value for similarity between two
treatment profiles was quantified by comparing the actual Euclidean distance between the
treatment profiles relative to the null distribution of distances between profiles that were
obtained by repeating the cell assignment randomizations and distance calculations 10,000
times for each pair of treatments.

A.1.8 Drug classification and comparison with existing methods

To compare between various image-based profiling methods for classifying treatment
conditions, we followed an analysis procedure similar to the one described previously [157].
Four existing state-of-the-art methods for generating treatment profiles from fixed-cell
measurements were implemented for comparison with the temporal modeling framework
presented in this work: "Means" [249], "K-S Statistic" [197], "Factor Analysis + Means"
[296], and "Gaussian Mixture" [238], all of which were previously compared in an HCI
drug classification performance study [157]. For each method, all cellular image snapshots
were extracted from the time series movies for all treatment conditions at 1, 4, 8, 12, and
16 hours following treatment addition, as if a researcher would make fixed-cell imaging
measurements at these time points in an HCI experiment.

Briefly, the "Means" approach averages each of the 18 cell shape features for each
treatment condition for the five time points to generate a phenotypic profile for a treat-
ment. For the "K-S Statistic", the cumulative distribution function (cdf) is compared
between the treatment and DMSO control cells for each shape feature separately. A
signed Kolmogorov-Smirnov (K-S) statistic is then computed for each treatment, which is
equal to the maximum distance between the two cdfs and set to positive if the treatment
cdf is above the control cdf and negative otherwise. A "K-S Statistic" profile for a
treatment is a vector of concatenated signed K-S statistics for each shape feature. For
the "Factor Analysis + Means" method we first performed factor analysis on cells from
all treatments at the five time points, selecting the number of factors using the Kaiser
criterion, and then computed the average value of the scores of each factor for the cells
in each treatment condition to generate a profile for that treatment. Finally, for the
"Gaussian Mixture" method, a GMM with no covariance matrix constraints was fit to cell
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observations from all treatments at each time point separately using all shape features
as variables, testing models with 2 to 30 mixtures, and selecting the best-fitting model
using BIC. For each treatment, the posterior probability of each cell under that treatment
belonging to each of the mixtures was computed and averaged across cells for each mixture
to generate a profile at a given time point. The averaged posterior probabilities of all
mixtures and time points were combined to generate a phenotypic profile for each treatment.

Treatment classification accuracy was assessed for each of the profiling methods de-
scribed above, as well as using the profiles derived from the single-cell temporal modeling
using SAPHIRE. To assess the value of the HMM in treatment classification, treatment
profiles extracted from shape-space analyses of cellular dynamics without the HMM anno-
tations were generated identically as for SAPHIRE but by treating each time point in a
cell trajectory as a separate "state" (i.e. no modeling of PCA coordinates from underly-
ing hidden Gaussian states). Treatment condition classification accuracy was assessed by
computing pair-wise Euclidean distances between phenotypic profiles of treatments using
each of the profiling approaches separately. A treatment was designated as being correctly
classified if its phenotypic profile was closest, in terms of distance, to that of the same
treatment at a different dose, compared to the profiles from other treatments [157].

A.1.9 Abbreviations

BIC
EGFR
GMM
HCI
HMM
PC
PCA
MEK
MLCK
ROCK
SAPHIRE

Bayesian information criterion
epidermal growth factor receptor
Gaussian mixture modeling
high-content imaging
hidden Markov modeling
principal component
principal component analysis
mitogen-activated protein kinase kinase
myosin light chain kinase
Rho-associated protein kinase
Stochastic Annotation of Phenotypic Individual-cell Responses
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A.2 Materials and Methods (Chapter 3)

A.2.1 Cell Culture

U2OS, HEK-293T, HEK-293FS, MDA-MB-231, LM2, MCF7, and MDA-MB-436 cells were
maintained in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal
bovine serum (FBS). SUM159 cells were cultured in HAM-F12 medium supplemented with
5% FBS, 5 pg/ml Insulin, 1 pg/ml Hydrocortisone, and 20 ng/ml EGF. HEK-293FS cells
were a gift from Tyler Jacks' lab (MIT, USA). MDA-MB-231 cells, SUM 159 and LM2
cells lines are maintained in the authors' laboratories and re-authenticated (Genetica, Inc.,
Burlington, NC, USA). Other cell lines were purchased from ATCC.

A.2.2 Reagents

Doxorubicin (Catalog# D-1515), hygromycin (Catalog# 10687010), doxycycline (Cata-
log# D-9891), PF-3644022 (MK2 inhibitor; Catalog# PZ-0188), SB202190 (p38MAPK
inhibitor), camptothecin (Catalog# C-991 1), etoposide (Catalog# E-1383), irinotecan (Cat-
alog# 1-1406), nocodazole (Catalog# M-1404), propidium iodide (Catalog# P-4170), and
anti-3-actin (Catalog# A-2228) antibody were purchased from Sigma (St. Louis, MO,
USA). Paclitaxel (Catalog# S-1150) was purchased from Selleckchem (Houston, TX, USA).
Antibodies against pChk1 (S345; Catalog# 2348), pChk2 (T68; Catalog 2661), pMK2
(T334; Catalog# 3007), Chk2 (Catalog# 2662), MK2 (Catalog# 3042), cleaved PARP
(Catalog# 5625), pFLNA (S2152; Catalog# 4761), and pPPP1R12A (S507; Catalog#
3040) were purchased from Cell Signaling Technology (Danvers, MA, USA) and used for
Western blot at 1:1000 dilution. Antibody against Chkl (Western blot, 1:2000; Catalog#
8408) was purchased from Santa Cruz Biotechnology (Dallas, TX, USA). Antibodies against
pFAK (Y397; Catalog# 44-624G) and -yH2AX (S139; Catalog# 05-636) were from Millipore
(Billerica, MA, USA), and FAK (Catalog# 610082) was from BD Biosciences (San Jose,
CA, USA) were used for immunofluorescence at 1:200 dilution. Phalloidin-AlexaFluor488
(Catalog# A12379), Phalloidin-AlexaFluor594 (Catalog# A12381), SYTO60 (Catalog#
S12342) dye, and DAPI (Catalog# D1306) were purchased from Invitrogen (Waltham,
MA, USA), with the Phalloidin conjugates used for immunofluorescence at 1:300 dilution.
AlexaFluor647 AnnexinV (Catalog# 640943) was purchased from BioLegend (San Diego,
CA, USA), and used for live-cell imaging of apoptosis dynamics at 0.25 pg/ml.

A.2.3 Virus production and generation of stable cell lines

For retrovirus production, 293T cells were transfected with GFP-LifeAct and mCherry-H2B
along with packaging and structural vectors VSVG and GAG/POL using Fugene 6 trans-
fection reagents (Promega, Madison, WI, USA, Catalog# E2691) following manufacturer
instructions. Supernatants containing virus were used to transduce target cells in the pres-
ence of 8 pg/ml polybrene (Millipore; Catalog# TR-1003-G) for three rounds of infection.
Successfully transduced cells are selected by sorting GFP- and mCherry-positive cells using
an Aria3 cell sorter (BD Biosciences).

A.2.4 Generation of inducible knockdown cell lines

pSLIK containing Tet-inducible miR30-based hairpins were developed for single viral in-
fection method to conditionally knock down target genes [237]. To generate pSLIK-
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hygromycin-shLuc, pSLIK-hygromycin-shMK2, pSLIK-hygromycin-shChkl and pSLIK-
hygromycin-shChk2, gateway recombination between the pSLIK-hygromycin destination
vector and a pEN-TTmiRc2 entry vector harboring either shLuc, shMK2, shChkl, or
shChk2, were performed using LR clonase (Invitrogen; Catalog# 11791-020) following man-
ufacturer instructions. pSLIK-hygromycin and pEN-TTmiRc2 vectors are obtained from
Tyler Jacks' lab (MIT, USA). Vector information can be found on the Addgene website
(Catalog# 25737 for pSLIK-hygromycin; Catalog# 25752 for pEN-TTmiRc2). shRNA se-
quences were designed using the Cold Spring Harbor web portal:
http://codex. cshl.org/RNAi-central/RNAi. cgi?type=shRNA
and 97mer oligonucleotides were used as templates (see sequences below). For lentivirus
production, 293FS cells were transfected with either pSLIK-hygromycin-shLuc, pSLIK-
hygromycin-shMK2, pSLIK-hygromycin-shChkl or pSLIK-hygromycin-shChk2 along with
lentiviral packaging and structural vectors delta8.2 and GAG/POL using Fugene 6 trans-
fection reagents (Promega) following manufacturer instructions. Supernatants containing
virus were then used to transduce target cells in the presence of 8 pg/ml polybrene
(Millipore) for three rounds of infection. Successfully transduced cells are selected using 50
pg/ml Hygromycin.

MK2, human: GAGCGAAATTGTCTTTACTAAA
Chk1, human: GAGACACTTCCTGAAGATTAAA
Chk2, human: AGCTCTCAATGTTGAAACAGAA
Luciferase: CCCGCCTGAAGTCTCTGATTAA

A.2.5 siRNA oligonucleotides and siRNA transfection

MK2 siRNA and non-targeting control siRNA were purchased from Ambion (Foster City,
CA, USA). siRNA transfection was performed using Lipofectamine RNAiMAX (Invitrogen;
Catalo# 13778150) following manufacturer instructions using a final siRNA concentration
of 10 nM.

A.2.6 SILAC cell labeling and sample preparation for phosphoproteomics

U20S cells were grown in Arginine- and Lysine-depleted DMEM supplemented with 10%
dialyzed FBS (Invitrogen; Catalog# 26400). For Light SILAC amino acid labeling, cells
were labeled with L-Arginine (Sigma; Catalog# A6969) and L-Lysine (Sigma; Catalog#
L5751). For Medium SILAC amino acids labeling, cells were labeled with L-Arginine-U-
13C6 (Cambridge Isotope Laboratories, Tewksbury, MA, USA; Catalog# CLM-2265-H-
0.25) and L-lysine-4,4,5,5-D4 (Cambridge Isotope Laboratories; Catalog# DLM-2640-0.5).
For Heavy SILAC amino acids labeling, cells were labeled with L-arginine-U-13C6;U15N4
(Cambridge Isotope Laboratories; Catalog# CNLM-539-H-0.25) and L-lysine-U-13C6;U-
15N2 (Cambridge Isotope Laboratories; Catalog# CNLM-291-H-0.25). After 5 passages
in SILAC medium, cells were confirmed to have proteins fully converted to SILAC amino
acids. To induce DNA damage, SILAC amino acids-labeled cells were treated with DMSO
or doxorubicin (5 pM) for 12 hrs. Supernatants are discarded, and the attached cells were
washed with PBS and lysed with buffer (20 mM HEPES pH 8.0, 9 M UREA, 1 mM Sodium
orthovanadate, 2.5 mM Sodium pyrophosphate, 1 mM $-glycerophosphate). Lysates were
sonicated and cleared by centrifugation at 17,000 x g for 15 min at 4 'C. Protein concen-
tration was measured using Bradford reagents (Bio-Rad Laboratories, Hercules, CA, USA)
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following manufacturer instructions. The same amounts of protein (5 mg) from cells with
differentially labeled SILAC amino acids were then mixed in a 1:1 ratio. Proteins were
reduced with 1 mM dithiothreitol at 60 'C for 20 min and alkylated with 5.5 mM iodoac-
etamide at room temperature for 15 min. For digestion, protein extracts were diluted in
20 mM HEPES pH 8.0 to a final concentration of 2 M Urea, and protease was then added.
Proteins were digested with endoproteinase Lys-C (Wako Chemicals, Richmond, VA, USA;
Catalog# 129-02541) overnight at room temperature, rather than trypsin, to protect check-
point kinase substrate motif sequences. Complete digestion was subsequently confirmed by
SDS-PAGE. Digested peptides were purified using Sep-Pak C18 columns (Waters, Milford,
MA, USA; Catalog# WAT-051910) and lyophilized.

A.2.7 Enrichment of phosphopeptides using immunoaffinity purification
(IAP) and analysis by LC-MS/MS

To enrich for checkpoint kinase substrates, immunoaffinity purification was performed.
Lyophilized peptides were dissolved in IAP buffer (50 mM MOPS/NaOH, pH7.2; 10 iM
Na2HPO 4 ; 50 mM NaCl; Cell Signaling Technology, Catalog# 9992), and incubated with
bead-conjugated motif antibodies detecting RxxS*/T* sequences, where S* denotes phos-
phoserine and T* denotes phosphothreonine (Cell Signaling Technology, Catalog# 1978).
The immobilized antibody beads were washed three times with IAP buffer and twice with
water, while supernatants were incubated with a secondary bead-conjugated motif anti-
body detecting LxRxxS*/T* sequences (Cell Signaling Technology, Catalog# 5760). The
immobilized antibody beads were washed three times with IAP buffer and twice with water.
Peptides were eluted from the beads by incubation with 0.15% TFA. The eluents were puri-
fied using C18 microtips (Stage Tips; VWR, Radnor, PA, USA; Catalog# 55004-098), and
then digested post-IP with trypsin (Promega, Catalog# V5113) at a final concentration of
25 ng/ml.

A.2.8 Peptide identification

Eluted peptides were loaded onto a C18 resin column and analyzed on an LTQ ion trap
mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Tandem MS spectra
were analyzed using MASCOT software to identify peptides (Matrix Science, London, UK).

Readouts with MASCOT scores below 25 were filtered out, and the remainder of the phos-
phosites identified by MASCOT software are confirmed using PhosphoRS [251]. Only the
phosphosites that were assigned by both MASCOT and PhosphoRS were used for further
analysis.

A.2.9 Gene set enrichment analysis

Enrichment for gene ontology terms was performed on pre-ranked lists of genes from the
phosphoproteomics data sets comparing fold changes between two experimental conditions

using GSEA v2.0 [245]. First, phosphosites detected in at least one of two replicates for both
experimental conditions were taken and gene names were extracted. Phosphosites were then
ranked based on their log2-transformed fold change values between the two experimental
conditions. The rank value for proteins with multiple phosphorylation sites was obtained

by taking the maximum absolute fold change among all sites, while retaining the sign of
the fold change (positive or negative). Because GSEA is agnostic to post-translational
modifications, the identities of the phosphorylation sites were removed, producing unique
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gene names with associated rank values, which were used as input for pre-ranked GSEA
[245]. Enrichment for ontology terms was performed using the C5 GO gene sets from the
MSigDB collections, using the classic enrichment statistic and no gene symbol collapse,
while keeping other parameters at their default values.

A.2.10 Gene ontology singular enrichment analysis

Singular enrichment analysis (SEA) was used to quantify over-representation of phosphopro-
tein "hits" within ontology term gene sets related to molecular function, cellular component,
and biological process. Unlike GSEA, SEA does not take gene list rank values into account,
but assesses statistical over-representation of the input gene list within a GO term gene
set. The degree of over-representation of genes in the input list of hits, A, within each
GO term gene set, B, was computed with the Fisher's exact test using the command-line
version of Lists2Networks that is part of the Expression2Kinases tool suite [43], imple-
mented in headless mode using in-house MATLAB (Mathworks Inc., Natick, MA, USA)
scripts. The SEA p-values derived from Fisher's exact test for over-representation within
each gene set were corrected for multiple hypothesis testing using the Benjamini-Hochberg
method [17] to generate FDR q-values for each gene set tested. To further account for over-
representation of phosphoproteins categorized as "non-hits" that may occur by chance, we
performed permutation testing as follows. Consider all genes in the phosphoproteomic data
set, S, composed of two non-overlapping subsets: hits, A, and non-hits, C, where JAl is
the number of hits. Permutation testing was performed by randomly sampling JAI genes
from gene list C and running SEA on this randomly-sampled gene list of non-hits for over-
representation with each GO term gene set, B. An empirical permutation test p-value was
computed for over-representation of A in each gene set B by generating a null distribution
of over-representation p-values from 1000 random, non-hit gene samples from C for each
set B. The permutation p-value for each gene set B was computed as the fraction of the
1000 random samples that had over-representation p-values smaller (i.e. larger extent of
over-representation) than the SEA p-value of A.

A.2.11 Network visualization of enrichment analyses

GSEA results were represented as enrichment networks, in which nodes correspond to en-
riched GO terms and edges to the similarity between two gene sets. Node sizes correspond
to binned values of the number of genes in the GO term gene sets that also occur in the fold-
change ranked gene input list. The edge weights correspond to binned values of the overlap
coefficients between all pairwise GO term gene set comparisons. For two gene sets A and
B, the overlap coefficient was computed as overlap(A,B) - JA n BI/min(IAI,IBI), where 1.1
represents the number of genes. GSEA results were processed using custom scripts written
in MATLAB to generate .graphml files with specified network properties. Networks were
visualized and arranged using a combination of manual positioning and automated layout
functions in yEd Graph Editor (yWorks GmBH, Tibingen, Germany). SEA results were
visualized in a network format similar to that of GSEA results, with the exception that
node sizes were kept constant with the number of genes in a GO term overlapping with the
phosphoproteomic data set directly specified in node text labels. Nodes were colored based
on the FDR q-value obtained from the SEA testing of "hits" over-representation within
each GO term gene set.
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A.2.12 Immunoblot analysis

Cells were lysed in lysis buffer (20 mM Tris-HCi pH 7.5, 150 mM NaCl, 1 mM Na2 EDTA,
1 mM EGTA, 1% Triton X-100, 1 mM PMSF) containing protease (Catalog# 4693159001)
and phosphatase (Catalog# 4906837001) inhibitor tablets (Roche, Basel, Switzerland). Pro-
tein concentration was measured using BCA kit (Pierce Biotechnology, Waltham, MA, USA;
Catalog# 23225). Cell extracts containing the same amount of protein in every condition
were mixed with 6X reducing sample buffer (34 mM Tris-HCl pH6.8, 7% glycerol, 500 mM
/3-mercaptoethanol, 1.6% SDS, 120 mg/ml bromophenol blue). Samples were boiled at 95
'C for 5 min, and subjected to electrophoresis using the standard SDS-PAGE method.
For LICOR-based blotting, proteins were transferred to nitrocellulose membranes (Bio-
Rad; Catalog# 162-0115) and blocked with Odyssey blocking buffer (LICOR Biosciences,
Lincoln, NE, USA; Catalog# 927-40000) for 1 hr. Membranes were then incubated with
primary antibodies for 2 hrs at room temperature, then incubated for 1 hr at room temper-
ature with secondary antibodies conjugated with LICOR fluorophores. Blots were scanned
with a LICOR/Odyssey infrared imaging system (LICOR Biosciences), and bands quanti-
fied by densitometry using LI-COR ImageStudio. For ECL-based blotting, proteins were
transferred to methanol-activated PVDF membranes (Bio-Rad; Catalog# 162-0177) and
blocked with 5% nonfat dried milk for 1 hr. Membranes were then incubated with pri-
mary antibodies for 2 hrs at room temperature, incubated for 1 hr at room temperature
with secondary antibodies conjugated with HRP, and imaged using enhanced chemilumi-
nescence (ECL reagent kit, PerkinElmer, Waltham, MA, USA; Catalog# NE105001EA).
Bands were quantified by densitometry using ImageJ.

A.2.13 IP kinase assay

Cells were treated with doxorubicin in the presence or absence of inhibitors against
p38MAPK (SB202190, 10 pM) or MK2 (PF-3644022, 10 pM) and lysed in IP lysis buffer
(20 mmol/L Tris-HCl (pH 7.4), 1 mmol/L EDTA, 150 mmol/L NaCl, 1 mmol/L EGTA,
1% Triton X-100, 1 mmol/L /-glycerophosphate, 1 mg/ml leupeptin, 1 mmol/L Na3 VO 4 ,
1 mmol/L phenylmethylsulfonyl fluoride). 500 pg of protein lysates were incubated with
2 pg of antibody against MK2 or Chk1 for 4 hrs, and subsequently with 50% slurry of
protein A/G agarose beads overnight. Immunoprecipitates were washed with wash buffer
(50 mmol/L Tris-HCl pH 7.5, 5 mmol/L EDTA, 150 mmol/L NaCl, 1 mmol/L DTT, 0.01%
NP-40, 0.02 mmol/L PMSF) three times and then resuspended in 50 pL of kinase buffer
(20 mmol/L MOPS pH 7.2, 25 mmol/L $-glycerol phosphate, 5 mmol/L EGTA, 1 mmol/L
Na3 VO 4 , 1 mmol/L DTT). 2 pL of [-y-32P]ATP and 2.5 pL peptide substrate (50 pM final
concentration) were added and the kinase reaction proceeded at 30 'C for 30 min. 10 PL
of reaction mixture was spotted onto p81 paper, air-dried, and washed with 0.5% H3 PO4
three times. After being allowed to air-dry, the blotted p81 paper was submerged in 10
mL scintillation cocktail and radioactivity measured using a scintillation counter (LS-6500;
Beckman Coulter, Brea, CA, USA).

A.2.14 Fluorescence live- and fixed-cell imaging

For live cell imaging experiments, MDA-MB-231 cells stably expressing LifeAct-eGFP and
Histone H2B-mCherry were used (see "Generation of fluorescent reporter cells" in Materials
and Methods section of ref. [96]). Cells were seeded at a density of 1000 cells/well in Nunclon
Delta optical bottom black-wall 96-well plates (Thermo Fisher Scientific) precoated with
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pH-neutralized, acid-extracted, nonpepsin digested collagen I (BD Biosciences, 50 mg/ml
in 0.02N acetic acid, for 1 hr at 37 'C and 5% C0 2) and matrigel (0.2% in serum-free
DMEM media, for 1 hour at 37 'C and 5% CO2 ), and grown overnight at 37 'C and
5% CO 2 . In live cell imaging experiments, Leibovitz's L-15 media ("imaging media"; Life
Technologies, Carlsbad, CA, USA) supplemented with the same additives as DMEM culture
media was used because of its superior buffering ability in the absence of 5% CO 2 . Prior to
imaging, DMEM media was removed from the plates, cells were washed with pre-warmed
imaging media, compounds diluted in imaging media were added to the cells, and cells were
incubated at 37 'C, without CO 2 infusion. Cells were then imaged live on a Nikon Eclipse
Ti microscope equipped with an Andor Zyla sCMOS camera and temperature housing
(37'C, no CO 2 infusion), using a 0.30 NA Nikon Plan Fluor 10X air objective. Processing
and analysis of live-cell imaging data, including fluorescent cell segmentation, tracking,
and shape feature extraction, were performed using the SAPHIRE software package, as
described previously [96].

For tracking apoptosis dynamics, AlexaFluor647 AnnexinV was diluted to 0.25 [g/mL
in imaging media containing experimental compounds and applied to cells immediately
prior to imaging. AnnexinV mean intensity for each tracked cell at every time point was
measured within the segmented nuclei regions defined by the H2B-mCherry signal. The
elbow method applied to the histogram of AnnexinV intensities from all cells and time
points was used to define the threshold to categorize cells as AnnexinV positive (dead) or
negative (alive) at each point in time. Drug-treated cells were classified as "elongated" or
"non-elongated" in live-cell imaging studies by defining a threshold at the 95th percentile
of the major axis length distribution of DMSO-treated (control) cells. Drug-treated cells
with major axis lengths above this threshold were considered "elongated", whereas those
below the threshold were considered "not-elongated".

For fixed-cell analyses, non-fluorescent MDA-MB-231 cells were seeded as described
above for live-cell imaging experiments, except DMEM culture media was used for all com-
pound dilutions and cells were incubated at 37 'C with 5% CO2 . To characterize mor-
phology following treatment, cells were fixed with 4% paraformaldehyde diluted in PHEM
fixation buffer (60 mM PIPES pH 7.0, 25 mM HEPES pH 7.0, 10 mM EGTA pH 8.0, 2

mM MgCl 2 , 0.12 M Sucrose) from a 16% solution (Electron Microscopy Sciences, Hatfield,
PA, USA; Catalog# 15710) for 20 min at room temperature, permeabilized with 0.2% Tri-
ton X-100/PBS for 5 min, and stained with AlexaFluor488 phalloidin (1:300 in 1% BSA in
PBS) for 30 min at room temperature and DAPI (1:1000 dilution in PBS) for 5 min at room
temperature. Cells were imaged on a Cellomics ArrayScan VTI (Thermo Fisher Scientific)
HCS Reader, equipped with a Hamamatsu Orca-ER digital camera (C4742-80) using a 0.30
NA Zeiss Plan-NEOFLUAR 10X air objective. An automated in-house image processing
and analysis pipeline written in MATLAB was used to segment cells; any cell that touched
another cell or the image border was removed and object segmentation quality control for
each image was performed prior to morphology quantification.

A.2.15 Immunofluorescence

Cells were seeded onto glass coverslips in 6 well plates that were coated in the same way
as the 96-well plates for high-throughput imaging. Following compound treatment, cells
were fixed with 4% paraformaldehyde for 20 min at room temperature, and permeabilized
with 0.2% Triton X-100/PBS for 5 min. Cells were blocked with 10% BSA/PBS for 30
min at 37 'C, incubated with primary antibodies (1:300 dilution in 1% BSA/PBS solution)
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for 2 hrs at 37 'C, followed by secondary antibodies conjugated with fluorophore (1:200
dilution in 1% BSA/PBS) for 1 hr. Cells were stained with DAPI (1:1000 dilution in PBS)
for 5 min before mounting onto glass slides, which were then imaged on a Delta-Vision II
microscopy system equipped with an EDGE/sCMOS camera (Applied Precision, Issaquah,
WA, USA). For high-resolution actin imaging (Fig. 3-2a and Fig. 3-9a) and focal adhesion
imaging (Fig. 3-6a,c), a 1.40 NA Plan Apo Olympus 60X oil objective was used. For
lower-resolution -yH2AX imaging, a 0.75 NA U Apo 340 Olympus 20X objective was used.

A.2.16 Cell viability

Cells were seeded in 96-well plates at a density of 0.6 x 104 cells/mL (100 pL/well). After
overnight incubation, cells were treated with compounds for indicated times. Cells were
then fixed with 4% paraformaldehyde for 20 min at room temperature, and stained with
SYTO60 dye (Invitrogen, 1 pM final concentration in PBS) for 1 hr at room temperature.
After washing with PBS, fluorescence intensity was measured with a LI-COR/Odyssey
infrared imaging system (LI-COR Biosciences) using the 700 nm channel.

A.2.17 Anoikis

Poly-HEMA (Sigma; Catalog# P-3932) was dissolved in 95% Ethanol at 37 'C by overnight
incubation at a final concentration of 10 mg/mL. Cell culture plates were coated with poly-
HEMA solution at 37 'C and allowed to air dry. For viability measurements, cells were
seed in either poly-HEMA-coated or uncoated 96-well tissue culture plates at a density of
10 X 104 cells/mL (100 pL/well). After 48 hrs post-seeding, cell viability was measured
using CellTiterGlo (Promega) following manufacturer instructions. Relative luminescence
was measured using a microplate reader (Tecan Inc., Mdnnedorf, Switzerland). For Western
blotting, cells were seeded on polyHEMA-coated plates at a density of 50 x 104 cells/dish
(100 mm dish). Forty eight hours post-seeding, cells are collected and lysed in lysis buffer,
followed by Western blotting and immunoblot analysis as described above.

A.2.18 Focal adhesion disassembly

Cells were seeded onto glass coverslips in 6 well plates that were coated with 50 mg/ml
collagen I and 0.2% matrigel. Cells were then treated with doxorubicin for 24 hrs, washed
with serum-free media, and incubated in serum-free media containing 10 pM nocodazole
for 4 hrs. Cells were fixed after 4 hr nocodazole incubation (no washout), or washed with
serum-free media and released into complete growth media for 15 min, prior to fixation with
4% paraformaldehyde for 20 min. Focal adhesions were visualized by immunofluorescence
staining using antibodies against phospho-FAK (Y397).

A.2.19 Cell cycle analysis

After 24 hrs of drug treatment, cells were trypsinized, fixed with cold 70% Ethanol in PBS,
and stored at -20 'C until analysis. For flow cytometric analysis, fixed cells were washed
with PBS and resuspended in PBS containing 0.5% BSA and 10 pg/mL RNAse A for 30
min at 37 'C followed by the addition of 25 pg/mL propidium iodide. DNA content was
measured by flow cytometry (Calibur, BD Biosciences), and cell cycle profiles analyzed
using FlowJo software.
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A.2.20 Generation of regrown cell populations after doxorubicin treat-
ment

MDA-MB-231 cells were treated with doxorubicin (0.5 pM) for 24 hrs. The drug was washed
out by a media change, and cells incubated for an additional 24 hrs to allow recovery. Cells
were then trypsinized and replated at 50 x 104 cells per 10 cni dish. Growth media was
replaced every 3 to 4 days. Following 1 month of culture, the surviving proliferative cells
had visibly repopulated the culture plate and formed colonies. These cells were then pooled
and used as the regrown population for two-round doxorubicin treatment experiments.
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A.3 Materials and methods (Chapter 4)

Unless otherwise specified in the sections below, experimental and computational procedures
were performed, and reagents were prepared, as described in Appendices A.1 and A.2.

A.3.1 Reagents

Primary antibodies used for immunofluorescence and Western blotting from Cell Signaling
Technology, Inc., were used at the following dilutions (WB = Western blotting, IF = im-
munofluorescence): ROCKI (cat# 4035, WB 1:1000), MLC2 (cat# 8505, WB 1:1000, IF
1:100), pMLC2(S19) (cat# 3671, WB 1:1000, IF 1:200), pMLC2(T18/S19) (cat# 3674, WB
1:1000). /-actin antibody was from Sigma (cat# A1978, WB 1:5000), and pFAK(Y397) an-
tibody was from Life Technologies (cat# 44-624G, WB and IF 1:1000). The inhibitors used
in this work and their vendor sources were as follows: ML-7 (MLCK inhibitor; Enzo Life
Sciences), Blebbistatin(+/-) (non-muscle myosin II inhibitor; Enzo Life Sciences); Y-27632
(ROCK inhibitor; Enzo Life Sciences); Calyculin A (cat# C-3987, LC Labs), lonomycin

(cat# 1-6800, LC Labs). Rho activator II was from Cytoskeleton Inc. (cat# CNO3 and
used at 2pg/mL final concentration). The pH-neutralized, acid-extracted, nonpepsin di-
gested collagen I used for 3D gels and 2D coating was from BD Biosciences.

A.3.2 Immunofluorescence

MDA-MB-231 cells were seeded on glass-bottom (#1.5) 96-well black plates pre-coated
with 5 pg/cm 2 Collagen I, allowed to attach overnight, and then treated with compounds
or DMSO (control). Following 24 hours of treatment, cells were fixed with 4% parafor-
malehyde. Cells were permeabilized with 0.5% TritonX-100 in PBS for 10 minutes, and
then stained overnight with primary antibodies at 4C, followed by secondary antibodies
+ 1:200 phalloidin for 1 hour at room temperature, and finally counterstained with DAPI
(1:1000 in PBS) for 10 minutes at room temperature. Cells were imaged on a Nikon Eclipse
Ti microscope equipped with an Andor Zyla sCMOS camera using a 0.30 NA Nikon Plan
Fluor 1oX air objective.

A.3.3 Imaging and morphology analysis in 3D gels

MDA-MB-231 cells stably expressing LifeAct-eGFP and H2B-mCherry were seeded within
Collagen I gels (2 mg/mL final concentration) and allowed to polymerize at 37'C and 5%

CO2 for 30 minutes according to manufacturer instructions (50 pL of cell+gel suspension
was added per well in a polymer-base optical bottom 96-well plate, 200,000 cells/mL final
cell concentration). Compounds (100 pL) at desired final concentrations (accounting for
the gel volume) were added and cells were incubated at 37'C and 5% CO 2 for 24 hours.
Cells were then fixed with 4% (final) paraformaldehyde and washed once with PBS prior to
imaging. Laser scanning confocal microscopy using a Nikon Eclipse Ti microscope using a
0.30 NA Nikon Plan Fluor 10X air objective was used to acquires approximately 300 pm z-
stacks for each field-of-view. Images were processed and analyzed using a custom MATLAB
script. Briefly, 3D Gaussian filtering was applied to localize cell nuclei in the stacks. Otsu
thresholding was applied to each 2D slice to create a foreground mask of the cells and
reconstruct 3D cell objects. For each connected foreground object, nuclei centers were used
to form holes in the binary object cell body mask that enabled detection of touching cells by
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computing the Euler number for each object. Segmented cell body regions without spatial
overlap with segmented nuclei were categorized as debris and removed.

A.3.4 Gel contraction assay

Tissue culture-bottom 24-well plates were coated with 10% bovine serum albumin (BSA)
PBS solution for 1 hour at 37'C and 5% CO 2 . BSA solution was then removed and wells were
washed once with PBS and allowed to air-dry. Cells were embedded in lmg/mL Collagen
I gels at a cell concentration of 1 million cells/mL and 400 puL of cell+gel suspensions
were added to each well, and allowed to polymerize at 37'C and 5% CO 2 for 90 minutes.
Compounds diluted in growth media were then added to each well (500 pL per well) to
achieve final desired concentration, taking into account gel volume. Gels were gently released
from the well bottom and sides using a sterile metal spatula and floating gels with cells +
compounds were incubated at 37'C and 5% CO 2 . A cell phone camera was used to take
pictures of the gels at designated time points, and contraction area of each gel was analyzed
using ImageJ.

To evaluate endpoint cell viability within the gels, and Trypan-blue assay was used.
Briefly, gels were washed once with PBS and digested with 600 pL per well of Liberase
solution (purchased from Sigma, 6 pL Liberase + 594 pL Liberase Calcium buffer was
used). Gels in Liberase solution were transferred to eppendorf tubes and incubated with
agitation for 90 minutes at 37'C. After dissociation, 300 pL of growth media was added
to each tube and suspension was passed through a 40 pm pore-size cell strainer to remove
undigested gel and cell clumps. Viability was then measured using Trypan-blue on a ViCell
instrument (Beckman Coulter, Inc.).
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A.4 Materials and methods (Chapter 5)

A.4.1 SMCC (succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-
carboxylate) ssDNA conjugation of antibodies and phalloidin

Twenty five nanomoles of thiolated single-stranded DNA (ssDNA) (Integrated DNA Tech-
nologies, Inc., Coralville, IA) was reduced using Dithiothreitol (DTT, 50 mM) for 2 h,
purified using a NAP-5 column (GE Healthcare Life Sciences, Inc., Marlborough, MA),
and quantified using a NanoDrop 2000 (Thermo Fisher Scientific, Inc., Waltham, MA). In
parallel, 100 pg of antibody was concentrated to 1 mg/mL using an Amicon Ultra 0.5 mL
centrifugal column (100 kDa, EMD Millipore, Inc., Billerica, MA) and purified from addi-
tive chemicals such as sodium azide using a Zeba spin desalting column (7 kDa, Thermo
Fisher Scientific). A freshly prepared solution of SMCC with 5% DMF in PBS (Sigma-
Aldrich, Inc., St. Louis, MO) was then added to react for 1.5 h with the antibody solution
at a molar ratio of 7.5:1. Unreacted SMCC was removed using a 7 kDa Zeba column. In a
subsequent reaction, antibodies were mixed in a 1:15 molar ratio with the reduced thiolated
ssDNA strands and incubated overnight at 4'C to form stable thioether bonds. ssDNA-
conjugated antibodies were then purified using an Amicon Ultra 0.5 mL column (100 kDa).
The final protein concentration of the antibody was measured using a Nanodrop 2000 and
the antibodies were stored at -20'C in Ix PBS with 50% glycerol. Amino-modified phal-
loidin (Bachem AG, Bubendorf, Switzerland) was conjugated using the protocol described
above with an extra step of HPLC purification to separate unreacted thiolated ssDNA and
ssDNA-conjugated peptides. See Table S1 in [100] for antibody information.

A.4.2 Site-specific ssDNA conjugation of antibodies

The SiteClick antibody labeling system (Thermo Fisher Scientific) enables site-specific con-
jugation to four conserved glycan sites present on the Fc region of the heavy chains using
copper-free click chemistry. Briefly, 100 pg of each antibody was concentrated to 2-4 mg/mL
in azide-free Tris buffer and treated with /-galactosidase enzyme to modify carbohydrate
domains. In a second step, azide modified sugars were attached to the modified glycan chain
using p-1,4-galactosyltransferase. After overnight incubation and purification of antibod-
ies using an Amicon Ultra 0.5 mL centrifugal column (100 kDa), DBCO-modified ssDNA
docking strands (Integrated DNA Technologies, Inc.) were mixed at a 40x molar ratio with
azide-modified antibodies and incubated overnight at 25'C. ssDNA conjugated antibodies
were then purified using an Amicon Ultra 0.5 mL (100 kDa). Final concentration was mea-
sured using a Nanodrop 2000 and antibodies were stored in 1x PBS (Sigma-Aldrich) with
50% glycerol. For PNA-antibody conjugation, DBCO-modified mini-PEG-y-PNA strands27
(PNA Innovations, Inc., Woburn, MA) were used as the docking strands. See Table S1 in
[100] for antibody information.

A.4.3 Design of ssLNA imaging probes

Same ssDNA sequences used for DNA-PAINT were used for ssLNA imaging probes with
two modification to increase the melting temperatures of the sequences: (1) two adenine
were added the 3' end of each sequence so that the imaging probes to maximize the hy-
bridization of the imaging probes with the corresponding docking strands. (2) Three DNA
nucleotides in each sequence were replaced with LNA nucleotides. Since introducing LNA
nucleotides could possibly introduce unwanted cross-hybridization (or crosstalk) between
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docking strands and imaging probes, an empirical algorithm was used to determine the
optimal positions to replace the DNA nucleotides. Briefly, BLAST was performed for each
docking strand and imaging probe pair to identify the partially complementary regions for
each pair. An empirical cost function was then used to calculate the cost of every possi-
ble LNA substitution scheme with each docking strand. The cost function penalized LNA
substitution in the partially complementary regions, with increasing penalty for more LNA
substitution in the partially complementary regions, and bigger partially complementary
regions. For each LNA substitution scheme, the highest cost within all the costs with dif-
ferent docking strands was assigned as the cost for the given substitution scheme. Finally,
for each LNA sequence, the substitution scheme with the minimal cost was then selected
for our LNA imaging probe sequence design. The algorithm was implemented in Python
3.5. Blast was performed using Biopython 1.66 in Python 3.5.

A.4.4 Fluorophore conjugation of ssLNA imaging probes

3'-amino ssLNA strands were purchased from Exiqon A/S and conjugated with ATTO 655-
NHS (ATTO-TEC GmbH, Siegen, Germany). Briefly, 10 nmoles of ssLNA were mixed with
ATTO 655-NHS in 1:5 molar ratio in 500 pL PBS (Sigma-Aldrich), incubated for 2 h at
room temperature and then overnight at 4C. Prior to purification with HPLC, isopropanol
precipitation was performed to remove free dyes: 50 pL of 3M sodium acetate solution
was first added to the ssLNA solution followed by adding 550 pL of isopropanol (-20'C).
The mixed solution was thoroughly vortexed and incubated for 30 min at -20'C, and then
immediately centrifuged at 10,000 g and 4C for 1 h. The supernatant was delicately
removed from the pellet. 500 pL of cold ethanol (-20'C) was carefully added to the pellet
and centrifuged at 10,000g and 4C for 15 min. The supernatant was removed, and the
pellet was dried at 37'C for 2 h. The pellet was then resuspended in 500 uL PBS (Sigma-
Aldrich), purified with HPLC, and lyophilized. See Table S2 in [100] for ssLNA probe
sequences.

A.4.5 SDS-PAGE and mass spectrometry validation of conjugated anti-
bodies

ssDNA-modified antibody solutions were reduced with 10 mM Tris-HCl complemented with
DTT (20 mM) for 2 h at 37'C. Reduced antibody solutions were then run on an SDS-PAGE
gel (10% acrylamide/bis-acrylamide), for 90 min at 110 V. Staining was performed using
EZBlueTM gel staining reagent (Sigma-Aldrich). SiteClick conjugation efficiency and the
ssDNA to antibody ratio (DAR) were determined using MALDI-TOF mass spectrometry.
Briefly, 20 pL of modified antibody solutions in Ix PBS (Sigma-Aldrich) (0.5-1 mg/mL)
were purified and concentrated using ZipTip pipette tips C4 resin (EMD Millipore) and
then eluted in 10 pL of 80% ACN 0.1% TFA, dried down, and re-constituted in 1 pL of
sinapinic acid matrix solution. The samples were then spotted and analyzed with microflex
MALDI-TOF (Bruker Daltonics, Inc., Billerica, MA).

A.4.6 Primary mouse and rat neuronal cultures

Procedures for mouse neuronal culture preparation were approved by the Massachusetts
Institute of Technology Committee on Animal Care. Hippocampal and cortical mouse neu-
ronal cultures were prepared from postnatal day 0 or day 1 Swiss Webster (Taconic, Inc.,
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Germantown, NY) mice as previously described [104, 135] but with the following modifi-
cations: dissected hippocampal and cortical tissues were digested with 50 units of papain
(Worthington Biochem, Inc., Lakewood, NJ) for 6-8 min, and the digestion was stopped
with ovomucoid trypsin inhibitor (Worthington Biochem). Cells were plated at a density of
10,000 per well in a glass-bottom 96-well plate coated with 50 pl Matrigel (BD Biosciences,
Inc., San Jose, CA). Neurons were seeded in 50 pl Plating Medium containing MEM (Life
Technologies, Carlsbad, CA), glucose (33 mM, Sigma-Aldrich), transferrin (0.01%, Sigma-
Aldrich), Hepes (10 mM), Glutagro (2 mM, Corning, Inc., Corning, NY), Insulin (0.13%,
EMD Millipore), B27 supplement (2%, Thermo Fisher Scientific), heat inactivated fetal
bovine serum (7.5%, Corning). After cell adhesion, additional Plating Medium was added.
AraC (0.002 mM, Sigma-Aldrich) was added when glia density was 50-70%. Neurons were
grown at 37'C and 5% C02 in a humidified atmosphere.

Procedures for rat neuronal culture were reviewed and approved for use by the Broad
Institutional Animal Care and Use Committee. For rat hippocampal neuronal cultures,
E18 embryos were collected from C02 euthanized pregnant Sprague Dawley rats (Taconic).
Embryo hippocampi were dissected in ice-cold Hibernate E supplemented with 2% B27
supplements and 100U/mL Pen/Strep (Thermo Fisher Scientific). Hippocampal tissues
were digested in Hibernate E containing 20 U/mL papain, 1 mM L-cysteine, 0.5 mM EDTA
(Worthington Biochem) and 0.01% DNAse (Sigma-Aldrich) for 8 min, and the digestion was
stopped with 0.5% ovomucoid trypsin inhibitor (Worthington Biochem) and 0.5% bovine
serum albumin (BSA)(Sigma-Aldrich). Neurons were dissociated and plated at a density
of 15,000 cells/well onto poly-D-lysine coated, black-walled, thin-bottomed 96-well plates
(Greiner Bio-One, Inc., Kremsmiinster, Austria). Neurons were seeded and maintained in
NbActivl (BrainBits, Inc., Springfield, IL). Cells were grown at 37'C in a 95% air with 5%
C02 humidified incubator for 21 days before use. All procedures involving animals were
in accordance with the US National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

subsectionImmunostaining and analysis for validation of ssDNA-conjugated antibodies
and phalloidin

To test whether the binding specificities of antibodies were affected by ssDNA conjuga-
tion, immunostaining patterns of unconjugated and ssDNA-conjugated antibodies were com-
pared in each case. Cells were fixed at room temperature for 15 min with 4% paraformalde-
hyde (PFA) (Electron Microscopy Sciences, Inc., Hatfield, PA) and 4% wt/vol sucrose
(Sigma-Aldrich) in PBS (Sigma-Aldrich), and then washed three times with PBS. Cells
were permeabilized for 10 min at room temperature with 0.25% Triton-X100 in PBS and
washed twice with PBS. For staining with unconjugated primary antibody or fluorescently
labeled phalloidin, cells were blocked for 1 hr at room temperature with the regular blocking
buffer (5% BSA (Sigma-Aldrich) in PBS). Cells were then incubated with primary antibod-
ies or fluorescently labeled phalloidin diluted in the blocking buffer overnight at 4C. For
staining with ssDNA-conjugated primary antibodies, the nuclear blocking buffer (5% BSA
and 1 mg/mL salmon sperm DNA (Sigma-Aldrich) in PBS) was used instead of regular
blocking buffer for blocking and antibody dilution. After primary antibody staining, the
sample was then washed three times with PBS, incubated for 1 hr at room temperature
with secondary antibodies in 5% BSA in PBS, and washed again three times with PBS.
For validation of ssDNA-conjugated secondary antibodies, the fluorescently labeled sec-
ondary antibodies of the same species were added to the samples after 30 min incubation
with ssDNA-conjugated secondary antibodies to reduce the competition of binding of flu-
orescently labeled secondary antibodies with ssDNA-conjugated secondary antibodies. See
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Table S1 in [100] for antibody information. Comparison of antibody staining patterns be-
fore and after ssDNA conjugation were performed using the Pearson Correlation Coefficient
(PCC). Colocalization of each antibody being tested with synapsin-I signal was performed
before and after ssDNA conjugation. Specifically, three confocal images were acquired of
neurons stained with unconjugated and conjugated antibodies separately. Each image was
split into four quadrants, and the PCC between the synapsin-I channel and the channel of
the other synaptic antibody for each quadrant was calculated and then averaged to obtain
the mean PCC.

A.4.7 Immunostaining for LNA- and DNA-PRISM

Cells were fixed and permeabilized as described in the previous section. For LNA-PRISM,
cells were additionally incubated in RNase solution (50 pg/mL RNase A (Thermo Fisher
Scientific) and 230 U/mL RNase TI (Thermo Fisher Scientific) in Ix PBS (Sigma-Aldrich))
at 37'C for I h to reduce the fluoresce background caused by ssLNA-RNA binding, and
washed 3 times with PBS. Cells were then blocked for 1 h at room temperature with
the regular blocking buffer (5% BSA (Sigma-Aldrich) in PBS). The following unconju-
gated primary antibodies were diluted in the regular blocking buffer and used for LNA-
or DNA-PRISM: MAP2, VGLUTi, PSD-95, and NMDAR2B (LNA-PRISM); PSD-95 and
NMDAR2B (DNA-PRISM). Cells were incubated in diluted primary antibodies overnight
at 4C, washed 3 times with PBS, and then incubated in the nuclear blocking buffer for 1 h
at room temperature. Next, the following secondary antibodies were diluted in the nuclear
blocking buffer and used for LNA- or DNA-PRISM: goat-anti-chicken-Alexa 488, goat-anti-
guinea pig-Alexa555 and goat-anti-rabbit-pi, goat-anti-mouse-p 12 (LNA-PRISM); goat-
anti-rabbit-pl and goat-anti-mouse-p12 (DNA-PRISM). Cells were incubated at room tem-
perature for 1 h in the secondary antibody solution. Cells were washed 3 times with PBS,
post-fixed for 15 min with 4% PFA and 4% wt/vol sucrose in PBS. This step was used
to prevent cross-binding of the secondary antibodies to the primary antibodies in the fol-
lowing round of staining. Cells were washed 3 times with PBS and incubated again in
the nuclear blocking buffer for 30 min at room temperature. Cells were then incubated
overnight at 4C in the following primary antibody/peptide solution diluted in the nuclear
blocking buffer for LNA- or DNA-PRISM: phalloidin-p2, Tuj-1-p3, cortactin-p4, SHANK3-
p6, ARPC2-p7, bassoon-p8, synapsin-I-p9, Homer-ib/c-piO (LNA-PRISM); phalloidin-p2,
Tuj-1-p3, cortactin-p4, SHANK3-p6, bassoon-p5 (PNA), synapsin-I-p9, Homer-ib/c-pi0
(DNA-PRISM). Cells were then washed 3 times with PBS. For LNA-PRISM, cells were
incubated in diluted DAPI or Hoechst for 15 min. For DNA-PRISM, cells were incubated
at room temperature for 1 h in donkey-anti-goat-Alexa488 diluted in the regular blocking
buffer, washed 3 times with PBS, and then incubated with 10 nM of 100 nm diameter gold
nanoparticle (Sigma-Aldrich) in PBS for 15 min. Cells were then washed 3 times with PBS
prior to imaging. See Table S1 in [100] for antibody information.

A.4.8 Multiplexed confocal imaging of neurons using LNA-PRISM

LNA-PRISM imaging was performed on an Opera Phenix High-Content Screening System
(PerkinElmer, Waltham, MA) equipped with a fast laser-based autofocus system, high
NA water immersion objective (63x, numerical aperture=1.15), two large format scientific
complementary metal-oxide semiconductor (sCMOS) cameras and spinning disk optics. 405
nm, 488 nm and 561 nm lasers were used as excitation for DAPI, MAP2, and VGLUT1
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channels respectively. PRISM images were acquired using a 640 nm laser (40 mW), sCMOS
camera with 1-2 s exposure time, and effective pixel size of 187 nm. Before each imaging
round, the corresponding imaging probe was freshly diluted to 10 nM in imaging buffer (500
mM NaCl in Ix PBS (Sigma-Aldrich), pH 8). Neurons were incubated with 10 nM imaging
probes for 5 min, and then washed twice manually with imaging buffer to remove the free
imaging probe. For each field, a stack of 3 images was acquired with a step of 0.5 pm. After
imaging, cells were washed three times with wash buffer (0.01x PBS), and incubated in the
wash buffer for 5 min after the last wash before the next round of imaging.

A.4.9 LNA-PRISM confocal image processing and analysis

The flat-field correction was performed to correct the uneven illumination in the images due
to the laser beam profile [191]. Briefly, each image was filtered by morphological opening
filter with a disk structural element of 100 pixels to estimate the background of each image.
For each 96-well plate, all background images from the same channel were then averaged to
obtain the illumination profile for each channel for each plate. Note that the illumination
profile can vary across experiments; therefore the illumination profile for each plate needs to
be estimated separately. Images from the same channel were then divided by the illumina-
tion profile of the channel to obtain the corrected images. Next, lateral (x,y) drift between
LNA-PRISM images from different imaging rounds was corrected by aligning the MAP2
channel in each imaging round. The (x,y) drift was estimated by locating the peak of the
spatial cross-correlation function between two MAP2 images. For segmentation of synaptic
punctae, the contrast of the image was first adjusted by saturating the highest and lowest
1% of pixels in the intensity histogram. The image was then denoised using a 5x5 Wiener
filter, and filtered again with a top-hat operator with a disk structural element of 8 pixels
to enhance the punctae in the image. The optimal threshold for each image was deter-
mined using an object-feature-based thresholding algorithm adapted from the thresholding
algorithm previously used for single-molecule tracking [183]. The threshold producing the
maximum number of objects was chosen as the optimal threshold. We found thresholding
based on the features of objects was more robust to the intensity variations across different
channels than the intensity-based approach for synapse segmentation. Connected synapses
in the thresholded image were then separated using a watershed transform to obtain the
final segmentation mask for each image of each synaptic target. Following Micheva et al.
[174], synapses were identified using synapsin-I as the synapse marker. Synapsin-I punctae
in the nuclei were mostly not synapses and therefore excluded from segmentation [174].
Each segmented synapsin-I punctum larger than 0.42 pm2 was considered to be a synapse.
For other synaptic proteins, only punctae that were colocalized (intensity weighted centroid
distance less than 1 pm) with synapsin-I punctae were considered to be synapses and there-
fore retained. For each identified synapse, the average intensity and area of the segmented
punctum in each synaptic channel were measured; zero was assigned when no colocalized
punctum was detected. For non-synaptic targets (MAP2 and Tuj-1), the intensity was
estimated by averaging the intensity within the synapsin-I puncta and no area measure-
ment was performed. The Pearson Correlation Coefficient between each pair of synaptic
intensity measurement was computed for each cell culture batch. The average correlation
coefficients over 3 cell culture batches (total 178,528 synapses) were represented using a
network diagram. An edge was shown between two nodes if the corresponding correlation
was greater than 0.35, with the thickness of each edge representing the strength of the
correlation. t-Distributed Stochastic Neighbor Embedding (t-SNE) was used to visualize
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the distributions of synapses in high-dimensional feature space. 10,000 synapses were ran-
domly subsampled from each replicate. 24 features (intensity levels from 13 channels and
punctae sizes from 11 channels) of single synaptic profiles were used as the input to t-SNE.
Each feature was log-transformed and normalized to have standard deviation of one and
minimum of zero before applying t-SNE. t-SNE analysis was performed using scikit-learn
0.18.1 in Python 3.5 with the exact method, perplexity parameter equal to 40, and PCA
initialization. The resulting t-SNE maps were similar for perplexity of 10-100. Hierarchical
clustering of single-synapse profiles was performed by first normalizing the distribution of
each feature to have a minimum of zero and a standard deviation of one using all synapses
as input. 24 features (intensity levels 13 channels and punctae sizes from 11 channels) were
used as input for the clustering analysis. Clustering was performed using the "clustermap"
function from Seaborn 0.7.1 in Python 3.5 with the Euclidean metric and Ward's linkage.

A.4.10 Multiplexed super-resolution imaging of neurons using DNA-
PRISM

Single and dual channel PAINT imaging was performed on an inverted Nikon Eclipse Ti
microscope (Nikon Instruments, Inc., Melville, NY) with the Perfect Focus System and
oil-immersion objective (Plan Apo TIRF 100x, numerical aperture (NA) 1.49). A 642
nm wavelength laser (100 mW nominal) was used for excitation. Images were acquired
using an Electron-Multiplying Charge-Coupled Device (EMCCD) camera (iXon DU-897,
Andor Technology, Belfast, UK) with 100 ms exposure time, 100 EM gain, and effective
pixel size of 160 nm. Nine-channel DNA-PAINT imaging was performed on an inverted
Nikon Eclipse Ti microscope (Nikon Instruments) with the Perfect Focus System and oil-
immersion objective (Plan Apo TIRF 100x, numerical aperture (NA) 1.49). 640 nin laser
(45 mW nominal) was used for excitation. Images were acquired using a Zyla 4.2 sCMOS
camera (Andor Technology) with 100 ms exposure time, 2x2 binning, and effective pixel size
of 130 nm. Cells were imaged using Highly Inclined and Laminated Optical illumination
(HILO). The same imaging probe sequences labeled with Atto655 (Eurofins, Luxembourg)
and imaging/washing buffer (1x PBS (Sigma-Aldrich), 500 mM NaCl, pH 8) as previously
published [126] were used (see Table S2 in [100]). Probe exchange was performed using a
home-built fluid control system (see Fig. S18 in [100]). Depending on the labeling density,
typically 0.5-3 nM imaging probe diluted in the imaging buffer was used in order to achieve
optimal spot density for single-molecule imaging. 5,000-20,000 image frames were typically
acquired for each target.

A.4.11 Super-resolution image reconstruction and localization analysis

Localization of the center of each diffraction-limited spot corresponding to a single-molecule
in the acquired movies was performed using DAOSTORM [8, 112]. The super-resolution
image was reconstructed by computing a 2D histogram of the (x,y) coordinates of the lo-
calized spots with bin size 5.4x5.4 nm, followed by smoothing with a 2D Gaussian filter.
Non-specifically bound gold nanoparticles were used as fiduciary markers to estimate the
drift and align images of distinct targets. Drift was estimated by fitting splines to the x-
and y-coordinates separately of each fiduciary marker as a function of time using LOESS
regression, and averaging over splines of all the fiduciary markers. ID cross-sectional pro-
files of protein distributions were generated by projecting the 2D (x,y) coordinates of the
localized spots onto the ID coordinates along the trans-synaptic axes, and followed by
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computing a ID histogram of the ID coordinates. All image reconstruction and analysis
procedures except for single-molecule localization were performed using MATLAB R2015a
(The MathWorks, Inc.).

166



A.5 Multivariate analysis of cell shape

A.5.1 Data dimensionality reduction using principal component analysis

The complexity of morphological characteristics attained by cells in different phenotypic
states necessitates a framework for describing shape using morphological features. To
facilitate interpretation and visualization of these shape characteristics requires a sum-
marization method that reduced the space of feature dimensions while maximizing the
variability inherent in the original high-dimensional data. In developing the framework, we
aim to address the following:

1. Standardization of cell shape measurements to account for undesirable batch effects
and inter-experimental variability during cell plating, culture, and imaging.

2. Many of the shape features are correlated (positively and negatively), which leads to
information redundancy and unnecessary complexity.

3. Shape states (see Chapter 2) explored by cells must be uniquely described and
grouped in the shape feature domain. This is challenged by the continuous nature
of morphological state transitions (e.g. for a cell going from round to elongated, it
goes through an "in between" shape), which occur in highly dynamic cytoskeleton-
mediated processes like cell migration.

4. High dimensional feature space is hard to visualize for biophysical interpretation.

Consider n cells imaged at a certain snapshot in time. Each cell can be described by
m shape features. In our case, m = 18 for a set of commonly used shape features that use
the object silhouette (binary shape of foreground pixels) for feature computation (Table
B.1). These features are popular for shape description in high-content screening assays
(HCS). The idea is that each of the m features captures some aspect of cell morphology
that puts a number to properties of shape states. These features do not necessarily capture
unique aspects of shape, and it is not necessary to know a priori if they do, to what
extent, or which aspect of shape they describe. Conveniently, "shape" can be treated as an
overarching unobservable construct that is described by the m observable and measurable
shape features, or indicators. The cell shape data for the population at a given point in
time therefore comprises the m x n data matrix X. Each row of X corresponds to a shape
feature and each column corresponds to a single cell (observation).

Batch effects and systematic, passage-dependent variability in cell populations in exper-
iments performed on different days requires a standardization technique for making shape
measurements directly comparable between experiments. Here, we choose to standardize
shape features in all treatment conditions to the distribution of shape features of cells in
untreated control samples. In brief, each imaged plate contains untreated control wells that
serve as the standardization reference distribution. Consider the vector mi of shape feature
i for all cells in the untreated control, and the same feature for a given cell, ci, in another
treatment condition. We perform the standardization by asking where in the distribution of
mi the sample ci falls. Therefore, we compute a sample z-score using the untreated control
population's distribution for all m features individually as: [ci - mean(mi)] / std(mi). As a
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result, all ci comprising the individual elements of matrix X are standardized to untreated
control such that shape feature matrices X's assembled from different plates and experi-
ments can be directly merged and compared in subsequent analyses. We now replace the
feature matrix X with the standardized values. However, despite the standardization of
shape features relative to untreated control, the features still have different variances. We
therefore re-scale, or normalize, the feature values across the entire set of observation so
that the variances and means of each feature in the cell population in all treatment condi-
tions are identical. This involved calculating the z-score: for each standardized row of X,
mi, we replace the standardized row with its z-score normalized version: [mi - mean(mi)]
/ std(mi), producing the standardized and normalized feature data matrix X. Note that
standardization is necessary to account for batch effects and day-to-day experimental vari-
ability, while normalization is used to bring shape features to similar scale and making all
the features contribute equally, in terms of variance scale, to cell shape description across
the population.

Next, given the standardized and normalized feature matrix X we turn to PCA for
summarizing and visualizing cell shape, with the goal of accounting for the redundancy
among features and reducing the dimensionality of the matrix to facilitate interpretation
and visualization of the shape space. We perform PCA on the matrix X using the eigenvalue
decomposition of the covariance matrix of X (for details see any review on PCA analysis on
normalized data). Briefly, our goal is to transform the basis of X such that individual shape
features are combined linearly into orthogonal (non-redundant) principal components (PCs)
that maximally capture the variability in the features between cells. We wish to find the m x
m transformation matrix P that re-represents the data in X into an orthogonal shape feature
basis Y in a linear fashion: Y = PX. Since our goal is to generate a basis with orthogonal
PCs, implies that the covariance matrix of Y is a diagonal matrix. The matrix P contains
the orthonormal basis vectors, or principal components, of X. The diagonal values in the
covariance matrix of Y correspond to the variance of X along each principal component. A
key utility, and useful assumption, in this transformation is that by transforming the basis of
X into Y we capture the features that contribute to biologically relevant shape information
that dominates the variance in the feature data, while de-emphasizing the variance that
is contributed by measurement noise. A key source of noise in shape feature data often
observed in HCS lies in the segmentation error during image processing to get cell outlines.
However, in our case we manually QC every cell that is processed by segmentation prior
to feature calculation, so the issue of noise from artifactual sources such as segmentation is
negligible.

A.5.2 Polar visualization of principal component space

Recall our original goal of partitioning the shape space so that we can define morpholog-
ical states. One way to describe a state is to discretize the shape space into regions that
define particular morphological classes. One popular approach to do this is through data
clustering, which aims to partition the data into coherent groups minimizing intra-group
distance and maximizing inter-group distance. This approach was taken by Sailem et al. to
define morphological states in 3D PCA space [224]. The authors used silhouette analysis to
define the optimal number of clusters that partitions the data based on different values of
desired clusters k using k-means clustering. Briefly, for each number of clusters k we define
for each cluster i two values: ai and bi, which define the average intra- and inter-cluster
dissimilarity, respectively, using Euclidean distance. The value bi is calculated for points
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in the cluster that is closest to the cluster containing sample i, while ai is the intra-cluster
Euclidean distance between the samples. The silhouette value for each sample is calculated
as si - (bi - ai)/max(ai,bi), with -1 < si < 1. A higher value of si indicates good clus-
tering of a sample in its cluster relative to its closest neighboring cluster, since bi is larger
and ai is smaller. Using this approach, the authors achieve an optimal average silhouette
value of close to 0.8. We performed the same analysis on our shape data, but generally
find monotonic decrease in average silhouette values for morphological of MDA-MB-231
cells, which is considered worse clustering (Fig. 2-3D). The cluster analysis through silhou-
ette values therefore suggests that our data does not partition well into discrete clusters,
or states. This is not surprising, given the continuous nature of morphology for highly
dynamic cytoskeleton-regulated processes like cell migration. Consequently, during shape
state transitions, cells explore in-between morphologies that smoothly transform one mor-
phology into another. This also suggests that cells do not necessarily stay in particular
states very long, as shape space is sampled continuously without many "gaps" in the PCA
scatterplot (Fig. 2-3D).

Given the relatively poor clustering of our data in PCA shape space, we present an
alternative discretization of the shape space using angular partitioning. If we consider the
structure of the data in the 2 PCs shown in (Fig. 2-3A), we can define two useful properties
for an observation: (1) distance a point is away from the mean shape (r), and (2) angle the
point makes with the two PCs (0). This is essentially a polar transformation of the PCI
and PC2 coordinates, which enables us to define discrete "slices" of PC space, as shown
by the polar separating lines in Figures 2-3B and 4-3b. This discretization is convenient
because of the slice relation to the PC axes relative to the mean. For example, the 0' to
300 slice generally captures high positive values of PCI and low to intermediate values of
PC2, which, given their orthogonality, capture different and non-redundant aspects of shape
space.

Given the discretization of the PC space into slices, we can calculate a "morphological
signature" for a given treatment condition j as the fraction of observation fj that fall into
slice s, with the slices starting at angle of 00 along PCI and going counterclockwise (Fig 4-
3c). These fractions can be visualized for each treatment condition to assess the proportion
of cells in a given condition that fall into a particular morphological state using a rose
plot. In the polar visualization of Figures 2-3B and 4-3b we also capture the values of
the PC coefficients, in front of each shape feature, which collectively comprise the linear
combination that produces the PC basis. The lengths of the line ticks next to feature names
indicate the magnitudes of the coefficients and the orientation shows the direction along
which a particular feature increases. This visualization enables us to assess how particular
features contribute to the formation of the PCA shape space and the shape parameters
of cells that drug treatments enrich. We also see that many of the shape features are
correlated, such as Major Axis Length, Geodesic Diameter, and Feret Max for example,
but none of the features points in the same direction as another feature, meaning that each
feature contributes some unique shape information in describing cell morphology.
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Table B.1: List and descriptions of image-derived cell shape features.

Feature # Feature Feature Description
Name

Area
Perimeter
Equivalent
Diameter
Major Axis
Length
Minor Axis
Length
Eccentricity

Solidity

Extent

Convex
Area

Number of pixels in the cell region.
Length of the cell region's boundary.
The diameter of a circle that has the same area as in the cell
region.
Length of major axis of an ellipse that has the same normal-
ized second central moments as the cell region.
Length of the minor axis of an ellipse that has the same
normalized second central moments as the cell region.
The eccentricity of an ellipse that has the same second mo-
ments as the cell region.
The ratio of the area of the cell region to the area of cell
region's convex hull.
The ratio of the area of the cell region to the area of cell
region's bounding box.
The area of the convex hull of the cell region.

Axis Ratio The ratio of the major axis length to the minor axis length
of the cell region.

Circularity For the cell region, computed as: (4* ir * Perimeter)/(Area 2)
Waviness The ratio of the perimeter of the cell region's convex hull to

the perimeter of the cell region.
Geodesic The length of the longest geodesic path between all pairs of
Diameter points on the boundary of the cell region. A geodesic path is

the shortest path that connects two points on the cell region
boundary that cannot traverse outside of the cell region.

Convex Length of the cell region's convex hull's boundary.
Perimeter
Feret Max The maximuni of the Feret lengths of the cell region over 180

directions sampled uniformly 0-360 degrees. Feret length is
the measure of the cell region's size (length) along a specified
direction, as would be measured with calipers.

Feret Min The minimum of the Feret lengths of the cell region over 180
directions sampled uniformly 0-360 degrees.

Feret Mean The mean of the Feret lengths of the cell region over 180
directions sampled uniformly 0-360 degrees.

Feret CV The coefficient of variation (standard deviation divided by
the mean) of Feret lengths of the cell region from 180 direc-
tions sampled uniformly 0-360 degrees.
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