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Abstract

A distributed computation in which nodes are connected by a partial communication graph
is called topology-hiding if it does not reveal information about the graph beyond what is
revealed by the output of the function. Previous results have shown that topology-hiding

computation protocols exist for graphs of constant degree and logarithmic diameter in the

number of nodes [Moran-Orlov-Richelson, TCC'15; Hirt et al., Crypto'16] as well as for
other graph families, such as cycles, trees, and low circumference graphs [Akavia-Moran,

Eurocrypt'17], but the feasibility question for general graphs was open.

In this work we positively resolve the above open problem: we prove that topology-
hiding computation is feasible for all graphs under the Decisional Diffie-Hellman assump-
tion.

Our techniques employ random or deterministic walks to generate paths covering the
graph, upon which we apply the Akavia-Moran topology-hiding broadcast for chain-graphs
(paths). To prevent topology information revealed by the random-walk, we design multiple
graph-covering sequences that, together, are locally identical to receiving at each round a
message from each neighbor and sending back a processed message from some neighbor

(in a randomly permuted order).

Thesis Supervisor: Vinod Vaikuntanathan
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The beautiful theory of secure multiparty computation (MPC) enables multiple parties to

compute an arbitrary function of their inputs without revealing anything but the function's

output [26, 11, 13]. In the original definitions and constructions of MPC, the participants

were connected by a full communication graph (a broadcast channel and/or point-to-point

channels between every pair of parties). In real-world settings, however, the actual com-

munication graph between parties is usually not complete, and parties may be able to com-

municate directly with only a subset of the other parties. There is a lot of work, starting

with Dolev et al.in 1993 [8], generalizing multiparty computation to these incomplete set-

tings. However, these works all assume that the communication topology is public, or

at least does not need to be hidden. In some cases, however, the graph itself is sensitive

information (e.g., if you communicate directly only with your friends in a social network).

A natural question is whether we can successfully perform a joint computation over a

partial communication graph while revealing no (or very little) information about the graph

itself. In the information-theoretic setting, in which a variant of this question was studied

by Hinkelman and Jakoby [17], the answer is mostly negative. The situation is better in the

computational setting. Moran, Orlov and Richelson showed that topology-hiding computa-

tion is possible against static, semi-honest adversaries [22]; followed by constructions with

improved efficiency that make only black-box use of underlying primitives [18]. However,

all these protocol are restricted to communication graphs with small diameter. Specifically,

these protocols address networks with diameter D = O(log n), logarithmic in the number

13



of nodes n (where the diameter is the maximal distance between two nodes in the graph).

Akavia and Moran [1] showed that topology hiding computation is feasible also for large

diameter networks of certain forms, most notably, cycles, trees, and low circumference

graphs.

However, there are natural network topologies not addressed by the above protocols

[22, 18, 1]. They include, for example, wireless and ad-hoc sensor networks (e.g. mesh

networks for cellphones, etc), as in [9, 24]. The topology in these graphs is modeled by ran-

dom geometric graphs [23], where, with high probability, the diameter and the circumfer-

ence are simultaneously large [10, 2]. These qualities exclude the use of all aforementioned

protocols. So, the question remained:

Is topology hiding MPC feasible for every network topology?

1.1 Our Results

In this work we prove that topology hiding MPC is feasible for every network topology un-

der the Decisional Diffie-Hellman (DDH) assumption, thus positively resolving the above

open problem. The adversary is static and semi-honest as in the prior works [22, 18, 1].1

Our protocol also fits a stronger definition of security than that from prior works: instead

of allowing the adversary to know who his neighbors are, he only gets pseudonyms; impor-

tantly, an adversary cannot tell if two nodes he controls share an honest neighbor.

Theorem 1.1.1 (Topology-hiding broadcast for all network topologies - informal). There

exists a topology-hiding protocol realizing the broadcast functionality on every network

topology (under DDH assumption and provided the parties are given an upper-bound n on

the number of nodes).

The formal theorem is stated and proved in chapter 5.

As in [22, 18, 1], given a topology-hiding broadcast for a point-to-point channels net-

work, we can execute on top of it any MPC protocol from the literature that is designed for

networks with broadcast channels; the resulting protocol remains topology-hiding.

'Moran et al. [22] consider also a fail-stop adversary for proving an impossibility result.
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Theorem 1.1.2 (Compiling THC from THB and PKE - Informal). Given topology hiding

broadcast and public key encryption, then for any PPT protocol Fl that is a secure multi-

party protocol for a ftinction f : ({0, 1 }*) - ({O, 1 }*)"l, there exists a PPT protocol 11' that

is a topology-hiding protocol for a function f.

Our MPC model is in the synchronous setting and is secure against a static, passive

adversary that can corrupt an arbitrary number nodes. This theorem, theorem 4.2.1, and

MPC model is formally stated and proved in chapter 4.

Since we have the existence of secure MPC in this model for all efficiently computable

functionalities, [26, 11, 13], we conclude that topology-hiding MPC exists for all efficiently

computable functionality and all network topologies.

1.2 High-Level Overview of Our Techniques

Our main innovation is the use of locally computable exploration sequences - walks, de-

terministic or random, that traverse the graph. We use these sequences to specify a path,

view this path as a chain-graph, and then employ the topology-hiding broadcast protocol

for chains of Akavia and Moran [I]. We discuss two methods for getting these sequences:

random walks and universal exploration sequences. In this overview, we will describe how

our protocol works with respect to random-walks. Extending these ideas to other kinds of

sequences follows naturally.

A challenge we face is that the walk itself may reveal topology information. For ex-

ample, a party can deduce the graph commute-time from the number of rounds before a

returning visit by the walk. We therefore hide the random-walk by using multiple simul-

taneous random-walks (details below). The combination of all our random-walks obeys a

simple communication structure: at every round each node receives an incoming message

from each of its neighbors, randomly permutes the messages, and sends them back, one

along each outgoing edge.

To give more details on our protocol, let us first recall the Akavia-Moran protocol for

chain-graphs. The Akavia-Moran protocol proceeds in two phases: a forward and a back-

ward phase. In the forward phase, messages are passed forward on the chain, where each

15



node adds its own encryption layer, and computes the OR of the received message with

its bit using homomorphic multiplication (with proper re-randomizing). In the backward

phase, the messages are passed backward along the same path, where each node deletes its

encryption layer. At the end of the protocol, the starting node receives the plaintext value

for the OR of all input bits. This protocol is augmented to run n instances simultaneously;

each node initiates an execution of the protocol while playing the role of the first node. So,

by the end of the protocol, each node has the OR of all bits, which will be equal to the

broadcast bit. Intuitively, this achieves topology-hiding because at each step, every node

receives an encrypted message and public key. An encryption of zero is indistinguishable

from an encryption of 1, and so each node's view is indistinguishable from every other

view.

We next elaborate on how we define our multiple random walks, focusing on two view-

points: the viewpoint of a node, and the viewpoint of a message. We use the former to

argue security, and the latter to argue correctness.

From the point of view of a node v with d neighbors, the random walks on the forward-

phase are specified by choosing a sequence of independent random permutations 7r,: [d] -+

[d], where in each forward-phase round t, the node forwards messages received from neigh-

bor i to neighbor 7r,(i) (after appropriate processing of the message, as discussed above).

The backward-phase follows the reverse path, sending incoming message from neighbor j
to neighbor i = r7; 1 (j), where t is the corresponding round in the forward-phase. Further-

more, recall that all messages are encrypted under semantically-secure encryption. This

fixed communication pattern together with the semantic security of the messages content

leads to the topology-hiding property of our protocol.

From the point of view of a message, at each round of the forward-phase the message

is sent to a uniformly random neighbor. Thus, the path the message goes through is a

random-walk on the graph.2 A sufficiently long random walk covers the entire graph with

overwhelming probability. In this case, the output is the OR of the inputs bits of all graph

nodes, and correctness is guaranteed.

We can remove the randomness, and thus ensure our walks all traverse the graph, by

2We remark that the multiple random-walks are not independent; we take this into account in our analysis.
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using Universal Exploration Sequences instead of random walks. These sequences are

locally computable by each node and only require knowing how many nodes are in the

network.

1.3 Related Work

Topology Hiding in Computational Settings. Table 1.1 compares our results to the previous

results on topology hiding computation and specifies, for each protocol, the classes of

graphs for which it is guaranteed to run in polynomial time.

The first result was a feasibility result and was the work of Moran, Orlov, and Richelson

[22] from 2015. Their result was a broadcast protocol secure against static, semi-honest

adversaries, and a protocol against failstop adversaries that do not disconnect the graph.

However, their protocol is restricted to communication graphs with diameter logarithmic in

the total number of parties.

The main idea behind their protocol is a series of nested multiparty computations, in

which each node is replaced by a secure computation in its local neighborhood that simu-

lates that node. The drawback is that in order to get full security, this virtualization needs

to extend to the entire graph, but the complexity of the MPC grows exponentially with the

size of the neighborhood.

Our work is also a feasibility result, but instead builds on a protocol similar to the recent

Akavia-Moran paper [1], which takes a different approach. They employ ideas from cryp-

tographic voting literature, hiding the order of nodes in the cycle by "mixing" encrypted

inputs before decrypting them and adding layers of public keys to the encryption at each

step. In this work, we take this layer-adding approach and apply it to random walks over

all kinds of graphs instead of deterministically figuring out the path beforehand.

Other related works include a work by Hirt, et al.[18], which describes a protocol that

acheives better efficiency than [22], but as it uses similar tactics, is still restricted to network

graphs with logarithmic diameter. Addressing a problem different from topology-hiding,

the work by Chandran et.al. [6] reduces communication complexity of secure MPC by al-

lowing each party to communicate with a small (sublinear in the number of parties) number

17



Graphs families [18, 22] [1] [This Work]
Log diameter constant degree + - +

Cycles, trees - + +

Log circumference - + +

Log diameter super-constant degree - - +

Regular graphs - - +

Arbitrary graphs - - +

Table 1.1: Comparison to previous works. Rows correspond to graph families; columns
corresponds to prior works in the first two columns and to this work in last the column. A
+/- mark for graph x and work y indicates that a topology hiding protocol is given/not-given
in work y for graph x.

of its neighbors.

Topology Hiding in Information Theoretic Settings. Hinkelmann and Jakoby [17] con-

sidered the question of topology-hiding secure computation, but focused on the information

theoretic setting. Their main result was negative: any MPC protocol in the information-

theoretic setting inherently leaks information about the network graph to an adversary.

However, they also show that the only information we need to leak is the routing table: if

we leak the routing table beforehand, then one can construct an MPC protocol which leaks

no further information.

Secure Multiparty Computation with General Interaction Patterns. One of the first

works in a related setting was that of Dwork et al. [8]. In their work, they have a general

network topology, and they show that given an adaptive adversary, and consider both ma-

licious and semi-honest cases. They provide some lower bounds on how many wires these

adversaries can corrupt, and their goal, instead of secure MPC, was secure communication.

Closer to our own goal, Halevi et al.[15] presented a unified framework for studying

secure MPC with arbitrary restricted interaction patterns, generalizing models for MPC

with specific restricted interaction patterns [14, 3, 16]. Their goal is not topology hiding,

however. Instead, they ask the question of when is it possible to prevent an adversary

from learning the output to a function on several inputs. They started by observing that

an adversary controlling the final players Pi, -- - , P, in the interaction pattern can learn the

output of the computed function on several inputs because the adversary can rewind and

execute the protocol on any possible party values xi, - - - , xn. This model allows complete
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knowledge on the underlying interaction pattern (or as in our case, the graph).

1.4 Organization of Thesis

In chapter 2 we describe our adversarial model and introduce some notation. In section 2.4

we detail the special properties we require from the encryption scheme that we use in

our cycle protocol, and show how it can be instantiated based on DDH. In section 2.5,

we discuss the kinds of exploration sequences, sequences that cover the graph, that we

need for our protocol to be correct and secure: in section 2.5.1 we discuss how correlated

random walks fit that description, and in section 2.5.2 we prove that universal exploration

sequences also satisfy the description. In chapter 3, we define our security model, which

is slightly stronger than the one in [1]. In chapter 4, we go over the compilation from

topology-hiding broadcast to topology-hiding computation, using public key encryption.

In chapter 5, we explain our protocol for topology-hiding broadcast on general graphs

and prove its completeness and security. Then, in section 5.3, we go over a time and

communication tradeoff, and explain how we can optimize our protocol with respect to

certain classes of graphs. Finally, in chapter 6, we conclude and discuss future work.

Publication Information The work done in this thesis was presented at Crypto 2017 and

will appear in Advances in Cryptology - CRYPTO 2017, pages 447-467.
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Chapter 2

Preliminaries

2.1 Computation and Adversarial Models

We model a network by an undirected graph G = (V, E) that is not fully connected. We

consider a system with n parties denoted P,..., Pn, where n is upper bounded by poly(K)

and K is the security parameter. We identify V with the set of parties {P1 , . . ., Pj.

We consider a static and computationally bounded (PPT) adversary that controls some

subset of parties (any number of parties). That is, at the beginning of the protocol, the

adversary corrupts a subset of the parties and may instruct them to deviate from the protocol

according to the corruption model. Throughout this work, we consider only semi-honest

adversaries. In addition, we assume that the adversary is rushing; that is, in each round the

adversary sees the messages sent by the honest parties before sending the messages of the

corrupted parties for this round. For a detailed description of the general MPC definitions

and descriptions of the adversarial model we use, see chapter 4, and for a more in-depth

description of these models (which chapter 4 was based on), see [12].

2.2 Notation

In this section, we describe our common notation conventions for both graphs and for our

protocol.
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2.2.1 Graph Notation

Let G = (V, E) be an undirected graph. For every v E V, we define the neighbors of v as

N(v) = {w : (v, w) e E} and will refer to the degree of v as dv = IN(v).

2.2.2 Protocol Notation

Our protocol will rely on generating many public-secret key pairs, and ciphertexts at each

round. In fact, each node will produce a public-secret key pair for each of its neighbors at

every timestep. To keep track of all these, we introduce the following notation. Let pk(2d

represent the public key created by node i to be used for neighbor d at round t; skil) is

the corresponding secret key. Ciphertexts are labeled similarly: c , is from neighbor d to

node i.

2.3 UC Security

As in [22], we prove security in the UC model [4]. If a protocol is secure in the UC model,

it can be composed with other protocols without compromising security, so we can use it as

a subprotocol in other constructions. This is critical for constructing topology-hiding MPC

based on broadcast-broadcast is used as a sub-protocol.

A downside of the UC model is that, against general adversaries, it requires setup.

However, setup is not necessary against semi-honest adversaries that must play according

to the rules of the protocol. Thus, we get a protocol that is secure in the plain model,

without setup. For details about the UC framework, we refer the reader to [4].

2.4 Privately Key-Commutative and Rerandomizable En-

cryption

As in [1], we require a public key encryption scheme with the properties of being homo-

morphic (with respect to OR in our case), privately key-commutative, and re-randomizable.
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In this section we first formally define the properties we require, and then show how they

can be achieved based on the Decisional Diffie-Hellman assumption.

We call an encryption scheme satisfying the latter two properties, i.e., privately key-

commutative and re-randomizable, a PKCR-encryption.

2.4.1 Required Properties

Let KeyGen : {0, 1}* - PK x SX, Enc : PK x M x {0, 1}* '-4 C, Dec : SK x C F-* M be

the encryption scheme's key generation, encryption and decryption functions, respectively,

where PK is the space of public keys, SW the space of secret keys, M the space of plaintext

messages and C the space of ciphertexts.

We will use the shorthand [m]k to denote an encryption of the message m under public-

key k. We assume that for every secret key sk e SW there is associated a single public key

pk E PW such that (pk, sk) are in the range of KeyGen. We slightly abuse notation and

denote the public key corresponding to sk by pk(sk).

Privately Key-Commutative

The set of public keys PK form an abelian (commutative) group. We denote the group

operation B. Given any ki, k2 E PK, there exists an efficient algorithm to compute ki S k2.

We denote the inverse of k by k-' (i.e., k-1 @ k is the identity element of the group). Given a

secret key sk, there must be an efficient algorithm to compute the inverse of its public key

(pk(sk))-'.

There exist a pair of algorithms Add Layer : C x SIC '-- C and DelLayer: C x SIK '-* C

that satisfy:

1. For every public key k e P, every message m e M and every ciphertext c = [m]Ik,

AddLayer (c, sk) = [m]kepk(sk) .

23



2. For every public key k e PK, every message m e M and every ciphertext c = [m]k,

DelLayer (c, sk) = [m]k@(pk(sk))-1 .

We call this privately key-commutative since adding and deleting layers both require knowl-

edge of the secret key.

Note that since the group PK is commutative, adding and deleting layers can be done

in any order.

Rerandomizable

We require that there exists a ciphertexts "re-randomizing" algorithm Rand : C x PK x

{0, 1 }* - C satisfying the following:

1. Randomization: For every message m E M, every public key pk E PW and cipher-

text c = [M]pk, the distributions (m, pk, c, Rand (c, pk, U*)) and (m, pk, c, Encpk(m; U*))

are computationally indistinguishable.

2. Neutrality: For every ciphertext c e C, every secret key sk E S'K and every r E

10,11*,

Decsk(c) = Decs(Rand (c, pk(sk), r)) .

Furthermore, we require that public-keys are "re-randomizable" in the sense that the prod-

uct k S k' of an arbitrary public key k with a public-key k' generated using KeyGen is

computationally indistinguishable from a fresh public-key generated by KeyGen.

Homomorphism

We require that the message space M forms a group with operation denoted -, and require

that the encryption scheme is homomorphic with respect this operation - in the sense that

there exists an efficient algorithm hMult : C x C " C that, given two ciphertexts c = [m]pk

and c' = [iM']pk, returns a ciphertext c" <- hMult(cI, c 2 ) s.t. DecSk(c") = In - M' (for sk the

secret-key associated with public-key pk).
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Notice that with this operation, we can homomorphically raise any ciphertext to any

power via repeated squaring. We will call this operation hPower.

Homomorphic OR

This feature is built up from the re-randomizing and the homomorphism features. One of

the necessary parts of our protocol for broadcast functionality is to have a homomorphic

OR. We need this operation not to reveal if it is ORing two 1's or one 1 at decryption. So,

following [1], first we define an encryption of 0 to be an encryption of the identity element

in M and an encryption of 1 to be an encryption of any other element. Then, we define

HomOR so that it re-randomizes encryptions of 0 and 1 by raising ciphertexts to a random

power with hPower.

function HoMOR(c, c', pk, r = (r, r')) // r is randomness
C <- h Power (c, r, pk) and -' +- hPower (c', r', pk)
return Rand (hMult (, c"), pk)

end function

Claim 2.4.1. Let M have prime order p, where I/ p is negligible in the security parameter;

and M, M' e {0, 1} be messages with corresponding ciphertexts c and c' under public key

pk. The distribution (c, c', pk, M, M', Enc(M v M', pk; U*)) is computationally indistin-

guishable from

(c, c', pk, M, M', HomOR(c, c', pk; U*)).

Proof We will go through three cases for values of M and M': first, when M = M' = 0;

second when M = 1 and M' = 0; and third when M = 1 and M' = 1. The case M = 0 and

M= 1 is handled by the second case.

* Consider when M = M' = 0. Note that Im is the group element in M that encodes

0, so an encryption of 0 is represented by an encryption of the identity element,

m = m' = Im, of M. Consider co and c' both encryptions of IM. After hPower,

both co and C' are still encryptions of Im. hMult then produces an encryption of

1m -1 m = 1M, and Rand makes that ciphertext indistinguishable to a fresh encryption

of 1m. We have proved our first case.
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" Next, let co be an encryption of 0 and c' be an encryption of 1. In this case, 0

is represented again by 1M, but c' is represented by some m' A M (with all but

negligible probability m' # 1). After hPower, So still encrypts 1m, but t' encrypts

rn = m'r' for some r' <- Z,. hMult yeilds an encryption of ^ and Rand makes a

ciphertext computationally indistinguishable from a fresh encryption of ^. Since M

has prime order p and r' <$ Z,, as long as m' # 1, mr is uniformly distributed over

M, and so computationally has a distribution indistinguishable to a fresh encryption

of the boolean message 1.

" Finally, let c1 and c' both be encryptions of 1: c1 encrypts m +- M and c' encrypts
1$M +- M. We will go through the same steps to have at the end, a ciphertext compu-

tationally indistinguishable' from a fresh encryption of mr m" for r, r' < Z,. Again

because the order of M is prime, mr _ m"' is uniformly distributed over Z, , and so the

resulting ciphertext looks like a fresh encryption of 1.

This claim means that we cannot tell how many times 1 or 0 has been OR'd together

during an or-and-forward type of protocol. This will be critical in our proof of security.

Instantiation of OR-homomorphic PKCR-enc under DDH

We use standard ElGamal, augmented by the additional required functions. The KeyGen,

Dec and Enc functions are the standard ElGamal functions, except that to obtain a one-to-

one mapping between public keys and secret keys, we fix the group G and the generator g,

and different public keys vary only in the element h = g'. Below, g is always the group

generator. The Rand function is also the standard rerandomization function for ElGamal:

function RAND(C = (c, c2), pk, r)

return (cI -gr, pkr - c2 )

end function

'In our definition of a PKCR encryption scheme, Rand is only required to be computationally random-
izing, which carries over in our distribution of homomorphically-OR'd ciphertexts. However, ElGamal's
re-randomization function is distributed statistically close to a fresh ciphertext, and so our construction will
end up having HomOR be identically distributed to a fresh encryption of the OR of the bits.

26



We use the shorthand notation of writing Rand (c, pk) when the random coins r are chosen

independently at random during the execution of Rand. We note that the distribution of

public-keys outputted by KeyGen is uniform, and thus the requirement for "public-key

rerandomization" indeed holds. ElGamal public keys are already defined over an abelian

group, and the operation is efficient. For adding and removing layers, we define:

function ADDLAYER(C = (cl, c)), sk)

return (ci, c2 - c'k)

end function

function DELLAYER(C = (c1, c2), sk)

return (cI, c2/c'k)

end function

Every ciphertext [m],I has the form (g', pkr - m) for some element r e Zord(g). SO

AddLayer ([m]Ik , sk') = (gr, pkr.m.gr-sk') = (gr, pkr.(pk')r.m) = (gr, (pk.pk' )r.m) = [m]pk.pk,.

It is easy to verify that the corresponding requirement is satisfied for DelLayer as well.

ElGamal message space already defined over an abelian group with homomorphic mul-

tiplication, specifically:

function HMULT(C = (C 1, c2), C' = (C', c'))

return c" = (c, -c', c2 .c')

end function

Recalling that the input ciphertext have the form c = (gr, pkr - m) and c' = (gr', pkr' -m') for

messages m, ' E Zord(g), it is easy to verify that decrypting the ciphertext c" = (gr+r"', pkr+r'.

M - M') returned from hMult yields the product message Dec,(c") = M - M'.

Finally, to obtain a negligible error probability in our broadcast protocols, we take G

a prime order group of size satisfying that 1/ IGI is negligible in the security parameter

K. With this property and valid Rand and hMult operations, we get hPower and hence

HomOR with ElGamal.
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2.5 Graph Exploration Sequences

A key element in designing our algorithm is an exploration sequence. Informally, it is a

sequence of edges that, when given an edge to start on, traverses the entire graph. Consider

the following way to define a walk on a d-regular graph. Given a sequence T,... , TT E

{0, ... , d - 11 and starting edge eo = (v- 1 , vo), we define the walk v 1 , ... , VT as follows: if

we enter node vi from edge s, we leave vito vi+1 on edge s+ri mod d. If the walk vi, ... ,VT

covers the entire graph (regardless of the starting node), then it is an exploration sequence.

In this section, we will formally define these objects and then provide two methods for

constructing them.

Definition 2.5.1. An exploration sequence for d-regular graphs on n nodes is a sequence

,.. ., TT E 10,... , d - 11 and starting edge eo = (v 1, vo) so that the resulting walk

V, ... , VT covers all d-regular graphs on n nodes.

We can also define an exploration sequence with error and for non-regular graphs, just

based on the maximum degree d, or n for any graph. In this case, our walk is still just

defined by a starting edge and offsets T1, ... , TT E 0, . .. , d}; if the ri's are generated ran-

domly, then there could be some probability that the walk fails. Now, if we enter node vi

from edge s, and node vi has degree di, we take edge s + i mod di to node vi, 1 .

Definition 2.5.2. An 6-exploration sequence for n-node graphs with maximum degree d is

a sequence T, ... , .rT E 10, ... , d - 1) and starting edge eo = (v- 1, vo) so that the resulting

walk v1 , ... , VT covers any n-node graph with max degree d with probability at least 1 - 6

over the randomness used to generate the sequence. 2

To get correctness, we will need to run at least one of these walks per node. For

topology-hiding, we need to have one walk per direction on each edge (so a total of 2-ledgesl

walks). Moreover, at every step in this collection of sequences, we want exactly one of these

walks to be going down a direction of an edge: we do not want the walks to "interfere" with

each other. For instance, imagine that each undirected edge is actually two pipes from each

2Note that the probability that the sequence covers the graph is based on the randomness used to define
the sequence. Some exploration sequences may not be randomly generated; and then they would either cover
all such graphs or have error probability 1.
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of the nodes: one pipe going from the first to the second and the other pipe from the second

to the first and each pipe has the capacity for one walk at each round; there can only be one

walk occupying one direction at each step.

Definition 2.5.3. A non-interfering collection of exploration sequences for graphs on n

nodes with m edges is group of 2m exploration sequences for graphs on n nodes such that if

they run simultaneously the do not interfere: no two sequences ever walk the same direction

down the same edge.

So, a non-interfering full collection of covering sequences has one sequence traversing

down each direction of each edge at every step. Because of this non-interference property,

at each node, we can model each step of the sequences as a permutation on that node's

edges. That is, for every node v in every round t E [T], there exists a permutation 1r,' on

that node's edges. These permutations describe every walk: if a walk enters a node from

edge i at round t, it leaves that node from edge ir,,(i). So, we define the following function:

Seq: V x [T] x [d] -+ Sd,

Seq : (v, t, dv) r*,,

Because our resulting protocol is topology hiding, a node's local view cannot rely on the

topology of the graph to generate its permutation. The function Seq needs to be generated

information-locally. That is, a node needs to be able to compute Seq(v, t, dv) using only

its own local information it has on itself and its neighbors; Seq is an information-local

function.

Definition 2.5.4 ([1]). A function computed over a graph G = (V, E) is information-local

if the output of every node v e V can be computed from its own input and random coins.3

Altogether, we will need a full collection of exploration sequences that is non-interfering

and information-local. Correlated random walks, for example, fit this description. We will

also show that a deterministic, polynomial-time constructible object (universal exploration
3The definition proposed by [1] generalizes this one with k-information-local functions. We only care

about 0-information-local functions for this work.
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sequences) also fit this description. We will analyze and compare how efficient these ob-

jects are in section 5.3 (i.e. how many steps each of them takes).

2.5.1 Correlated Random Walks

Here we will prove that correlated random walks of length O(K - n3) are an example of

a collection of non-interfering negl(K)-exploration sequences, assuming n = poly(K). By

the main theorem, theorem 5.0.3, this will imply an instantiation of our protocol that uses

random walks. In order to prove this, we will first need to prove some qualities about the

random walks. We will rely on the following definition and theorem from Mitzenmacher

and Upfal's book (see chapter 5) [2 1].

Definition 2.5.5 (Cover time). The cover time of a graph G = (V, E) is the maximum over

all vertices v E V of the expected time to visit all of the nodes in the graph by a random

walk starting from v.

Theorem 2.5.6 (Cover time bound). The cover time of any connected, undirected graph

G = (u, v) is bounded above by 4nm 4n3 .

Corollary 2.5.7. Let 'W(u, T-) be a random variable whose value is the set of nodes covered

by a random walk starting from it and taking r - (8n') steps. We have

Pr [W(u, r) = V] 1- .
W 27

Proof First, consider a random walk that takes t steps to traverse a graph. Theorem 2.5.6

tells us that we expect t 4n3, and so by a Markov bound, we have

Pr [t 2 - (4n3)
1 1 2

Translating this into our notation, for any node it e G, Pr[W(u, 1) = V] I

We can represent W(u, -r) as a union of -r random walks, each of length 8n3 : W(ui =

U, 1) U W(u 2 , 1) u ... u 'W(uT, 1), where ui is the node we have reached at step i - 8n3

(technically, ut is a random variable, but the specific node at which we start each walk will
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not matter). 'W(u, T) will succeed in covering all nodes in G if any 'W(ui, 1) covers all

nodes.

So, we will bound the probability that all 'W(ui, 1) # V. Note that each 'W(ui, 1) is

independent of all other walks except for the node it starts on, but our upper bound is

independent of the starting node. This means

Pr [14(ui, 1) # V, Vi e [T]] = Pr [14(ui, 1) # V] .

Therefore,

Pr [W4(u, T) = V] = 1 - Pr [V'(u, r) # V] > 1 - Pr [W(u, 1) # V] > 1 -
27

Lemma 2.5.8. A full collection of correlated random walks of length K -8n3 is a full col-

lection of non-interfering 2-Kexploration sequences.

Proof We already know that correlated random walks are non-interfering by definition.

By corollary 2.5.7, we also know that each walk has probability 2'- = negl(K) of covering

the entire graph. The lemma follows immediately.

2.5.2 Perfect Covering: Universal Exploration Sequences

In this section we will prove that Universal Exploration Sequences (UESs) are also a full

collection of non-interfering covering sequences. Unlike random walks, however, these

are deterministic walks that are guaranteed to cover the entire graph. We will see in sec-

tion 5.3.2 that while these exploration sequences are guaranteed to hit every node in the

graph, we do not have good bounds on the length of polynomial-time computable explo-

ration sequences (only that we can compute them in polynomial time, and they will be

polynomial in length).

UESs are typically just described for d-regular graphs, but that is mostly because any

general graph can be transformed into a 3-regular graph using a transformation by Koucky

[20].
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Definition 2.5.9. A universal exploration sequence for d-regular graphs of size n is a se-

quence of instructions Ti, ... ., .r e {0, 1, . . . , d - 1} so that if for every connected d-regular

graph G = (V, E) on n vertices, any number of its edges, and any starting edge (v_ 1 , vo) ( E,

then walk visits all vertices in the graph.

Work by both Koucky and Reingold show that exploration sequences for any graph

exist, are polynomial in length, and can be computed in polynomial time.

Lemma 2.5.10 ([25]). There exists a polynomial length exploration sequence for any graph

G on n nodes which can be computed in polynomial time.

So, what we have is a sequence that every node in a graph can compute locally and in

polynomial time. We just need to prove that if we run these UESs simultaneously, they will

not interfere.

Lemma 2.5.11. A ftll collection of identical universal exploration sequences (UESs) for

graphs on n nodes is a ftill collection of non-interfering information-local 0-exploration

sequences.

Proof By definition, we know that every one of the exploration sequences in the collection

will explore the entire graph, so they are 0-exploration sequences (have 0 chance of error).

Also note that from lemma 2.5.10, each party can locally compute the identical sequence

in polynomial time.

We only need to prove that these walks will not interfere with each other. We know that

at the first step of the algorithm, no sequences will interfere since they all start at different

edges or directions down an edge. So, consider that no walks have interfered at step t, and

consider node i with degree di. Node i has di walks entering at time t. Each walk has the

same relative instruction at time t: Tt. So, a walk entering from edge e will leave edge e + r,

mod di. For two walks to collide, e + r = e' + r, mod di, implying e = e' mod di. Since

0 e, e' < di, we get that e = e', contradicting that no walks were interfering before this

step. Therefore, none of these walks will interfere. 0
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Chapter 3

A Stronger Simulation-based Definition

of Topology-Hiding

Here we adapt the simulation-based definition of topology-hiding from [22] to be even

stronger: the simulator only needs to know pseudonyms for each neighbor of a party, in-

stead of exactly which parties correspond to which neighbors (in [22]). This definition will

also be in the UC framework, and our discussion of it will be much the same.

The UC model usually assumes all parties can communicate directly with all other

parties. To model the restricted communication setting, [22] define the Tgaph-hybrid model,

which employs a special "graph party," Pgraph. Figure 3.0.1 shows Tgraph's functionality: at

the start of the functionality, Tgraph receives the network graph from Pgraph, and then outputs,

to each party, that party's neighbors. Then, Tgraph acts as an "ideal channel" for parties to

communicate with their neighbors, restricting communications to those allowed by the

graph.

Since the graph structure is an input to one of the parties in the computation, the stan-

dard security guarantees of the UC model ensure that the graph structure remains hidden

(since the only information revealed about parties' inputs is what can be computed from

the output). Note that the Pgraph party serves only to specify the communication graph, and

does not otherwise participate in the protocol.

In our definition, TGraph recieves the graph from Pgraph (as in [22]), but -unlike [22] -

TGraph does not output the neighbors to each party. Instead, Tgaph reveals edge-labels. These

33



Participants/Notation:
This functionality involves all the parties P1,..., P,, and a special graph party
Pgraph-

Initialization Phase:

Inputs: Tgraph waits to receive the graph G = (V, E) from Pgraph, and Fgraph
constructs a random injective function f : E -> [n2], labeling each edge with an
element from [n2].

Outputs: For each node v, Fraph gives the set of edge labels Lv = {f(u, v)

(ut, V) E E}I to Pv.

Communication Phase:

Inputs: Tgraph receives from a party Pv a destination/data pair (t, m) where

f(v, w) = f e Lv indicates to Tgraph neighbor w, and m is the message Pv wants

to send to P,.

Output: Tgraph gives output (f, m) to P., where f(v, w) = [, indicating that the

neighbor on edge [ sent the message m to Pw.

Figure 3.0.1: The functionality Tgraph with edge labels. Note that since the graph is undi-

rected, (it, v) = (v, ut) e E and so f(u, v) = f(v, u).

34



labels act as pseudonyms when one node wants to communicate with another, but without

revealing which party corresponds to which neighbor. So, we leak enough information for

nodes to tell if they share an edge wtih another node, but not enough to be able to tell if

two nodes share a neighbor. We capture this leak information to any ideal-world adversary

in the functionality TgraphInfo, which is just the initialization phase of Tgraph. For any other

functionality T we want to model in the ideal world, we compose T with FgraphInfo, writing

(TgraphInfo lI).

Now we can define topology-hiding MPC in the UC framework:

Definition 3.0.12. We say that a protocol 1I is a topology-hiding realization of a function-

ality T if it UC-realizes (FgraphInfollT) in the ]graph-hybrid model.

Our definition also captures functionalities that depend on the structure of the graph, like

shortest path or determining the length of the longest cycle.

3.1 Differences of this Model: Neighbors of Neighbors

In the first model, proposed by [22], FgraphInfo reveals exactly the neighbors of each party

P,. This means that if an adversary controls two nodes, he can tell if they have a common

neighbor. In this model, we reveal edge labels instead of the explicit edges, and since the

label is only shared between those two nodes that have that edge, corrupted nodes cannot

tell if they have a common neighbor, unless that neighbor is also corrupted.

3.2 Broadcast functionality, FTBroadcast

In accordance with this definition, we need to define an ideal functionality of broadcast,

denoted TBroadcast, shown in figure 3.2.1. We will prove that a simulator only with knowl-

edge of the output of FBroadcast and knowledge of the local topology of the adversarially

chosen nodes 0 can produce a transcript to nodes in 0 indistinguishable from running our

protocol.
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Figure 3.2.1: The functionality FBroadcast-
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Participants/Notation:
This functionality involves all the parties P1 , ... , P,.

Inputs: The broadcasting party Pi receives a bit b E {O, 1).

Outputs: All parties P1,..., P, receive output b.



Chapter 4

From Broadcast to Secure Multiparty

Computation

Our method for proving that topology-hiding computation (THC) is possible involves com-

piling general MPC protocols using UC-secure topology-hiding broadcast (THB) and public-

key cryptography. In this chapter, we will go into detail about the model of MPC we realize

(semi-honest adversaries statically corrupting any subset of nodes with synchronous com-

munication). Then, we will formally prove that UC-secure THB along with public key

cryptography can compile any MPC protocol in this model into a topology-hiding MPC

using our security definition, detailed in chapter 3.

4.1 The MPC and THB models

In this section, we go over our exact security models of what we need to achieve THC. First,

we will describe the standard MPC model which is synchronous and secure against semi-

honest adversaries. Then, we will adapt our definition for what UC-secure THB is, mainly

so that it works well with the proof that our compilation of THB to THC works. Finally, we

note that we need CPA-secure public key encryption (secure against only chosen plaintext

attacks), and provide a definition for it.
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4.1.1 MPC model: Semi-honest adversaries

The material in this section is referenced one of the MPC models described by Goldreich

in [12].

First we will explain some of our notation. The goal will be to compute an n-ary

function f : ((0, 1}*)" -+ ({0, 1}*)", where each of the n inputs correspond to an input from

one of the parties taking part in the computation, and the outputs will correspond to the

output a party receives.

Let 1 denote some protocol for n parties. Fl assumes synchronous communication

and point-to-point channels between each party. Every round, parties send and receive

messages from each other along these channels, and then perform some computations on

them. For a function f with inputs x = (xI,.. . , Xn) respectively from parties Pi, ... , Pn,

U realizes the functionality of f if by the end of the protocol, each party i gets the output

f(X).

Definition 4.1.1. For a protocol H for n parties, the view of a party is

v1Ew (X) = (Xi, r, m1, mT)

and the view of any subsets of parties I c [n] is

vIEw?(X) = (I, (vIEw(X))ie).

The outputs our defined similarly:

OUTPUTi(x) = fi(x), and OUTPUTI(X) = (f(X))iE,

Definition 4.1.2. For a protocol H realizing a functionality f, we say H privately computes

f if there exists a PPT algorithm S (a simulator), such that for all subsets I C [n],

IS(I, (Xi)iEI, fM(X)), f(X)} {vIEw?1(X), OUTPUTH}

This notion of being private computatable states exactly that if a PPT adversary cor-
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rupting some subset I of the parties, but follows the protocol HI (is semihonest), then she

has a negligible chance of distinguishing between the world where she is interacting with

other parties and in the world where she interacts with the simulator S. This is equivalent

to our notion of secure MPC throughout this work.

4.1.2 THC Model

Here we will review what it takes for a protocol to be topology hiding. The formal defini-

tion, from definition 3.0.12, states that we need a protocol that UC-realizes (TgraphInfo lT)

in the Tgraph-hybrid model. Let Tgraphlnfo(I) represent the local graph information of par-

ties in I in accordance with the functionality of Tgraph. So, we say that for a protocol to

be a topology-hiding realization of a function f, there exists a PPT simulator S that only

has access to the local graph information and local computation information to produce

views computationally indistinguishable from views in the real protocol. That is, against a

static, semi-honest adversary, we just need the following distributions to be computation-

ally indistinguishable in order for a protocol to be topology hiding: for any subset of parties

I c [n],

{S(I, TgraphInfo(I), (xli)EI, f(X)), f(X)}XE({O,1}*)n (vIEwI(X), OUTPUTH (X))XE({0,1}*)fl

For an in-depth description of the UC-model and for why this definition is UC, we refer

the reader to Canettti's work on universal-composability [4].

4.1.3 CPA-Secure Public Key Encryption

We will need one more element to go from THB to THC: a public key encryption scheme

secure against plaintext attacks (CPA-secure PKE). For completeness, we have included a

definition here.

Definition 4.1.3. A public key encryption scheme (KeyGen, Enc, Dec) is CPA secure if

any PPT adversary A cannot win the IND-CPA security game with probability greater than

1/2 + negl(K).
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Now we define this security game:

Definition 4.1.4. The IND-CPA security game works as follows:

1. Setup. The challenger C gets public and secret keys (pk, sk) +- KeyGen(K) and sends

pk to 11.

2. Challenge phase. The adversary performs as many encryptions as she wants using pk

and then sends challenge messages Mo and MI. C chooses a random bit b and sends

the ciphertext Enc(pk, Mb) to A(.

3. Output phase. A( outputs b' and wins if b = b'.

4.2 Compiling MPC to Topology hiding MPC with Broad-

cast and Public Key Encryption

In this section we will prove that with THB and CPA-secure PKE, we get a topology-hiding

realization of any MPC protocol H. Since there exist MPC protocols against static, semi-

honest adversaries for all efficiently computable functions, it follows that we get topology-

hiding computation for all efficiently computable functions.

Theorem 4.2.1 (Compiling THC from THB and PKE). Assume UC-secure THB and CPA-

secure PKE exist. Then, for any PPT protocol H that privately computes a function f :

({0, 1}*)_ -> ({o, 1}*)n, there exists a PPT protocol H' that is a topology-hiding realization

of the finctionality of f.

Proof H is a PPT multiparty protocol: instructions are either to run a local computation

or, at each round, to send some messages from one party to another along a point-to-

point channel. H' will operate as H except there will be a setup phase and point-to-point

communication will be handled with broadcast and public-key encryption.

Let # be the topology-hiding broadcast protocol. H' works as follows:

* Setup phase. Every party creates a public-secret key pair (pki, ski). Then, every party

broadcasts their public key pki via $.
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* Point-to-point communication. If party i needs to send a message m to party j in

protocol H, H' dictates the following. First, party i computes ci <- Enc(pk, m).

Then, party i broadcasts ci using # under a session ID corresponding to that channel.

Finally, party j, upon receiving ci, decrypts mi <- Dec(ski, ci).

" Internal computation. Any internal computation run on information gathered from

other parties or from randomness is carried out exactly as in 1i.

Now we have to prove that H' realizes the ideal, topology-hiding functionality of H.

First, H' is correct. This follows from correctness of H in computing the functionality and

from the correctness of encryption and decryption.

Proving that this is topology-hiding is more involved. Since H privately computes f,

there exists a simulator S so that for any adversary controlling I c [n] parties, S can

simulate the views of the adversary without any knowledge of the other parties' inputs.

We will show that there exists a simulator S' simulating an adversary's view of H' and

furthermore that S' requires no knowledge of other parties' inputs or the structure of the

graph beyond the adversary's local neighborhood. This will prove that H' is a topology-

hiding MPC.

First, let's examine the view of any subset I of parties, comparing the view of H and the

view of H':

vIEw?(X) = ((Xi)iEI, r, M 1 , . . . , MT)

viEw? (X) = ((X)iEIr, r', R,... RT)

where each Ri is actually a collection of messages representing the communication at round

i in the original protocol H. So, we can split Ri into the communication for each point-to-

point channel using the session ID's. We will show, with a series of hybrids, that we can

create a simulated view computationally indistinguishable from the actual view of H'.

* Hybrid 0. The simulator S' emulates the real-world view exactly. S requires all party

inputs and the structure of the graph G. Here we will write S' as the simulator that
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emulates the real-world view exactly, so

{(S'(I, TgraphInfo([n]), x, f(x), f(x)) -vIEwI'(X), OUTPUTI(X)}

" Hybrid 1.1 to 1.n. In these hybrids, we examine the setup phase and, instead of hav-

ing our simulator use G to compute the topology hiding broadcast for each key pki for

party i e [n], we replace it with a simulated broadcast from STHB(I, YgraphInfo(I), (xiliE),

f(x) = pkj), which does not require knowing the graph structure beyond TgraphInfo(I)-

Formally, the simulator in hybrid 1.j is identical to the simulator in hybrid 1.(j - 1)

except that it simulates communication in the topology-hiding broadcast for broad-

casting key pkj with STHB-

" Hybrids 2.1 to 2.n. We still need to account for the keys broadcast during the setup

phase: S' still needs to know what public and secret keys each each party has. S' now

replaces the public keys generated by other parties with public keys that S' generates

with KeyGen and ignores the secret keys of all parties j i [I]. More explicitly, for

each j e [n], j I, S' replaces the input pk to the setup phase key broadcast with

a key from KeyGen. Each hybrid in this part corresponds to j e [n] (notice if j E I,

hybrid 2.(j - 1) is equivalent to hybrid 2.j).

Notice now that for the setup phase of our compiled algorithm, S' does not need any

information outside of TraphInfo(I) and the inputs from parties in I.

* Hybrids 3.1 to 3.n2. In these hybrids, S' replaces the real-world communication dic-

tated by the topology-hiding broadcast protocol $ with simulated messages using the

topology-hiding broadcast simulator STHB. That is, for each of the n2 possible chan-

nels representing communication between i and j, we replace the perfectly simulated

broadcast with messages from STHB(I, TgraphInfo(I), (iAEI, fij(X) = Mi j

So, S' no longer requires knowing any of the topological information of the graph

(all information was communicated via broadcast, and now all broadcasts have been

replaced with messages from a simulator that does not need extra topological infor-

mation). So, S' takes as input I, Tgraphlnfo(I), x, and f(x) (notice that 5' still depends
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on inputs from parties not in I).

" Hybrids 4.1 to 4.T. Notice that our simulator in hybrid 3.n2 still requires knowing

each of the messages that every party sends to every other party, so that it can give

the correct input to the broadcast subroutines. For each t e [T], hybrid 4.t will look

exactly like 4.(t - 1) except if m, is encrypted under pk for some j I, we replace it

with an encryption of 0.

* Hybrid 5. In hybrid 4.T, we require knowing all parties' messages so that we can

compute the correct messages for parties in I. In this hybrid, we change all messages

received by parties in I to simulated messages using the simulator S for the multi-

party protocol H, which takes as input S(I, (xi);iE, (f(x))AEI)). This completes the task

of eliminating the simulator's need to see real messages or inputs from parties not in

I. Now, the simulator only needs to take as input S(I, TgraphInfo(I), (x)EIe, (fi(x))iEl).

So, by the end of these hybrids, our simulator only needs local information about the

corrupted parties I. Now we will prove that each hybrid is indistinguishable from its neigh-

boring hybrids, which will finish the proof that Fl' is topology-hiding.

" Hybrid 0 is computationally indistinguishable from hybrid 1. For any subset of par-

ties I, STHB produces a set of messages simulating the broadcast of pkl. The set of

simulated messages will be computationally indistinguishable from the parties of I

interacting with the real world from the definition of topology-hiding.

" Hybrid 1.i is computationally indistinguishable from hybrid 1.(i + 1). This is for

the same reason as before. Replacing the broadcast of public key pki, 1 with simu-

lated messages from STHB is cOmputationally indistinguishable from the real-world

communication for any subset of parties I.

" Hybrid 1.n is indistinguishable from hybrid 2.1. We're just replacing a public key

generated by a party's own randomness with the simulator's randomness. The distri-

bution of public keys will be identical.

" Hybrid 2.i is indistinguishable from hybrid 2.(i + 1). This is true for the same reason

as above.
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" Hybrid 2.n is computationally indistinguishable from hybrid 3.1. Here we replace

one message channel with simulated messages from STHB. Since the message chan-

nel was represented by a broadcast, we get the same functionality, and the output

from simulator STHB will be computationally indistinguishable from the real-world

views by the definition of topology hiding. It is important to note that we are running

many of these broadcasts, one after another, but since we have a broadcast secure in

the UC model against a passive adversary, running multiple of them simultaneously

keeps the topology-hiding and privacy properties.

" Hybrid 3.i is indistinguishable from hybrid 3.(i + 1). This is true for the same reason

as above: changing a channel from real-world communication to the simulated com-

munication from STHB is computationally indistinguishable to any PPT adversary

controlling parties in I.

" Hybrid 3.n2 is computationally indistinguishable from hybrid 4.1. Here we may

replace an encryption of an actual message with an encryption of 0. If mi in the

original protocol 1 is sent to j E I, then there is no change between the hybrids, so

they will be indistinguishable to an adversary controlling parties in I. However, if m,

is sent to j 0 I, then c1 becomes an encryption of 0. The broadcast means that vIEwI

includes c1 . However, because no parties in I have a secret key associated with ci,

even an adversary controlling all parties in I could not distinguish between the two

hybrids without breaking the IND-CPA security of the encryption.

" Hybrid 4.i is computationally indistinguishable from hybrid 4.(i + 1). This is true for

the same reason as above. Either mi, 1 is sent to a party in I, so there is no change

between these hybrids, or mi,1 is sent to a party not in I, and the IND-CPA security of

the encryption allows us to get away with encrypting 0 instead of the actual message.

" Hybrid 4.T is computationally indistinguishable from hybrid 5. This is because LI

privately computes f, so there exists a simulator S for H. The purpose for S is

to simulate views for every party in I during the computation so that the corrupted

parties in I cannot distinguish if they are interacting with a simulator or with other
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parties. So, when we change the perfectly simulated messages for parties to mes-

sages from the simulated views for I using S, we still get that no PPT adversary can

distinguish these two worlds without breaking the privacy-preserving property of H.

So, our simulator S'(I, Tgaphlnfo(I), (Xi)iEI. fl(X)), only requires local knowledge for any

subset of parties and is indistinguishable from the 0 hybrid, where S' was identical to the

real world:

18'(, Tgraph(I), (xAlE1, fI(X)), f(X)) 0 ( ,Trp~f([],X () ()

{vIEwIF(X), OUTPUTH(X))

Therefore H' is a topology-hiding realization of f.

The following corollary is just a formal statement that we can get topology-hiding com-

putation for all efficiently computable functions from THB and CPA-secure PKE.

Corollary 4.2.2. Assume UC-secure THB and CPA-secure PKE exist. Then, for any effi-

ciently computable function f : (10, 1}*)" -> ({0, 1}*)", there exists a PPT protocol H' that

is a topology-hiding realization of the finctionality of f.

Proof For every efficiently computable function f, there exists an MPC protocol H [26, 11,

13]. From theorem 4.2.1, this means there exists a protocol H' which is the topology-hiding

realization of H. 0
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Chapter 5

Topology Hiding Broadcast protocol for

General Graphs

In this chapter, we describe how our protocol works and prove that it is complete and

secure.

The protocol (see protocol 1) is composed of two phases: an aggregate (forward) phase

and a decrypt (backward) phase. In the aggregate phase messages traverse a walk (an

exploration sequence, see definition 2.5.2) on the graph where each of the passed-through

nodes adds a fresh encryption layer and homomorphically ORs the passed message with its

bit. In the decrypt phase, the walk is traced back where each node deletes the encryption

layer it previously added. At the end of the backward phase, the node obtains the plaintext

value of the OR of all input bits. The protocol executes simultaneous walks, locally defined

at each node v with d neighbors by a sequence of permutations r,: [d] -> [d] for each round

t, so that at round t of the forward phase messages received from neighbor i are forwarded

to neighbor 7r,(i), and at the backward phase messages received from neighbor j are sent

back to neighbor 7- 1(j).

Theorem 5.0.3 (Topology-hiding broadcast for all network topologies). If there exists an

OR-homomorphic PKCRand a full collection of information-local non-interfering negl(K)-

exploration sequences of length T = poly(K), then for any network topology graph G on

n nodes, there exists a polynomial-time protocol -IH that is a topology-hiding realization of
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Protocol 1 Topology-hiding broadcast for general graphs. Inputs parameters: n is the
number of nodes; negl(K) the failure probability; di the degree of node i; and bi the input bit
of node i. See section 2.2.2 for an explanation of notation.

1:
2:

procedure BROADCAST((n, K, di, bi))
// The number of steps we take in our random walk will be T

3: T <- K - 8n3

4: Generate T - di key pairs: for t E [T] and d e [di], generate pair (pkt, ski2) -

KeyGen( 1K).

5: Generate T - 1 random permutations on di elements {ir, - , 7r_ 1. Let rT be the

identity permutation.

6: // Aggregate phase
7: For all d e [di], send to neighbor d the ciphertext [bi]pk and the public key pk52.

8: fort= ltoT- ldo

9: for Neighbors d E [di] do
0: Wait to receive ciphertext c) and public key k .

1: Let d' <- 7r,(d).
2: Compute k k 9 pk" )

omute ciphertext under3: Compute cj <-- AddLayer C i sk~t?) and [bilk('+')1 ihrtx ne

14:

15:
16:
17:

18:

19:

20:
21:

22:

23:

24:

25:

26:

27:

28:

29:

30:
31:

32:

key k

Compute c <-- HomOR [bi] (t, .)

Send c(t+) and k ' to neighbor d'.
end for

end for
Wait to receive c j2i and k(T from each neighbor d E [di].

Compute [bi] and let e(T <- HomOR C (T, [bi]kw)

// Decrypt phase
for t = T to 1 do

For each d e [di], send egd, to d' = ' 1(d). // Passing back
for d e [di] do

Wait to receive e(t) from neighbor d.d---i
Compute d' <- 7rt 1 (d).

e (t) <- Dellayer (e , skt) /If t 1, DelLayer decrypts.
end for

end for
// Produce output bit
b <-V\E e( e d()

Output b.
end procedure
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broadcast finctionality Tbroadcast-

Proof Will will show that protocol 1 is the topology-hiding realization of Troadcast. Since

we assume existence of an OR-homomorphic PKCR, we are able to run our protocol. The

rest of this proof is simply combining the results of lemma 5.1.1 and lemma 5.2.1.

To show protocol 1 is complete, lemma 5.1.1 states that for our parameter K, protocol 1

outputs the correct bit for every node with probability at least 1 - negl(K). This means, our

protocol is correct with overwhelming probability with respect to the security parameter K.

To show our protocol is sound, lemma 5.2.1 states that for our input parameter K, an

adversary can distinguish a simulated transcript from a real transcript with probability neg-

ligible in K. Therefore, protocol 1 is sound against all PPT adversaries: they have only a

negligible chance with respect to K of distinguishing the simulation versus a real instantia-

tion of the protocol. 11

In sections section 2.5.1 and 2.5.2, we demonstrate two ways that we can construct

a non-interfering, full collection of 6-exploration sequences (one with negligible 6 and

the other with 6 = 0): correlated random walks, and UESs respectively. So, we get the

following two corollaries for free from the main theorem.

The first simply states that since we get an OR-homomorphic PKCRencryption scheme

from ElGamal using correlated random walks. We could also use UESs, but since the

analysis is less clear for UESs, we have included discussion of them in the next corollary.

Corollary 5.0.4. There exists 2 - (K - 8n3)-round topology-hiding broadcast for any graph

G that succeeds with probability 1 - negl(K).

Proof Lemma 2.5.8 shows that with a collection of correlated random walks of length

K - 8n 3, we get 2--K-exploration sequences. By theorem 5.0.3, we get a 2 - K - 8n3 -round

topology-hiding broadcast from protocol 1 (we have to go forward through the walk and

then back, hence the extra factor of 2). o

There are two sources of error in the construction in corollary 5.0.4: OR'ing Homo-

morphically using our ElGamal construction may fail with negligible (but non-zero) prob-

ability, and some of the random walks could fail to cover the entire graph. We can get rid

49



of this second source of error if instead of using random walks, we use UESs. So, if we

had a perfectly complete OR-Homomorphic PKCR, then we could get a perfectly complete

topology-hiding broadcast protocol.

Corollary 5.0.5. If there exists an OR-Homomorphic PKCR without (even negligible) er-

ror; then there exists a polynomial-round topology-hiding broadcast for any graph G that

always succeeds.

Proof Assume the existence of an OR-Homomorphic PKCRwith no error - decrypting an

encrypted bit will always result in the bit, even after OR'ing many bits together. Note that

ElGamal does not realize this because OR'ing bits has a negligible (but non-zero) chance

of flipping an encrypted 1 to an encrypted 0.

Now let us analyze each walk. Every walk hits every single node in the graph because

it follows a UES. So, the bit produced by every walk is going to be the OR of every node's

bit, including the broadcaster's. Since there is no error in OR'ing bits together, this is

guaranteed from lemma 5.1.1. So, every walk results in the output bit, and hence every

party gets the output bit, so protocol 1 is perfectly complete.

5.1 Proof of completeness

Lemma 5.1.1. Given aftill collection of non-interfering, information-local, 6-Exploration

Sequences for any 6 = negl(K) of length T, Protocol 1 is complete; by the end of the

protocol, every node gets the output bit with all but negligible probability in the security

parameter K.

Proof Consider one sequence, or walk, in the collection of exploration sequences. We will

prove that by the end of our protocol, every node along the sequence OR's its bit and the

resulting bit is decrypted. Then, we will prove that with all but probability n -6 = negl(K),

every node has some walk that gets the output bit, meaning that with high probability, the

bit b at the end of the protocol is the output bit received by each node.

So, consider a single node, uo, with bit bo. In the protocol, uo's neighbors are identified

by pseudonyms: uo just numbers them 1 to du0 and identifies them that way. We will follow
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one sequence that starts at uo with bit bo; ui will identify the ith node in the sequence.

For the sake of notation, pk will denote the public key generated by node ut at step i + 1

for node u,+1 (so pki = pk(t2* ), and ki will be the aggregate key-product at step i (so

ki =pko ®.--pki).

* On the first step, uo encrypts bo with pko into c1 and sends it and public key pko to

one of its neighbors, ui. We will follow c1 on its walk through T nodes.

" At step i e [T - 1], ci was just sent to u, from uit_ and is encrypted under the product

ki-= pko @ pki @ ... pki_ 1, also sent to LtI. ui computes the new public key

pko ®... @ pki = ki, adding its own public key to the product, encrypts bi under

ki, and re-encrypts ci under ki via AddLayer. Then, using the homomorphic OR, ui

computes ci+1 encrypted under ki. ut sends ci+1 and ki to u 1+I = 7r "(til).

* At step T, node IT receives CT, which is the encryption of bo V b, V ... bT-i under

key pko ... -pkr_ I = kT_ I. IT encrypts and then OR's his own bit to get ciphertext

eT = HomOR(cT, [bT]k,,). UT sends eT back to UI1.

* Now, on its way back in the decrypt phase, for each step i e [T - 1], Li has just

received ei from node u+ 1 encrypted under pki @ ... @ pki = ki. ii deletes the key

layer pki to get ki_1 and then using DelLayer, removes that key from encrypting ei to

get ei 1 . ui sends ei1- and ki 1. to Li_ 1 = (7 )-'(ui,1).

* Finally, node uo receives eo encrypted only under public key pko on step 1. LIo deletes

that layer pko, revealing eo = bo V ... V bT.

Now notice that each of these "messages" sent from every node to every neighbor fol-

lows an exploration sequence that covers the graph with probability 1 - 6. Let Su be a

random variable denoting the set of nodes covered by the representative sequence starting

at vertex it - although deg(u) sequences start at node u, we only need to consider one of

these sequences for the proof of completeness. We know that the individual probability of

each of these sequences succeeding in covering the graph is 1 - J = 1 - negl(K), and so the

probability that there exists a node whose representative sequence does not cover the graph
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is

Pr[3u : S1, # V] Pr[S, # V] n - 6 = n -negl(K) = negl(K)
UEV

because n = poly(K), and where the probability is taken over the random coins used in

determining the sequences.

5.2 Proof of soundness

We now turn to analyzing the security of our protocol, with respect to the topology-hiding

security from definition 3.0.12.

Lemma 5.2.1. If the underlying encryption OR-homomorhpic PKCR scheme is CPA-secure

and afidl collection of non-interfering, information-local, 6-Exploration Sequences for any

6 = negl(K) of length T, then protocol 1 realizes the functionality of TBroadcast in a topology-

hiding way against a statically corrupting, semi-honest adversary.

Proof. First, we will describe an ideal-world simulator S: S lives in a world where all

honest parties are dummy parties and has no information on the topology of the graph

other than what a potential adversary knows. More formally, S works as follows

1. Let 0 be the set of parties corrupted by A1. Ai is a static adversary, so 0 and the

inputs of parties in 0 must be fixed by the start of the protocol.

2. S sends the input for all parties in 0 to the broadcast function Troadcast- T roadcast

outputs bit bo, and sends it to S. Note S only requires knowledge of a's inputs and

the output of T
Broadcast-

3. 5 gets the local neighborhood for each P e 0: S knows how many neighbors each

P has and if that neighbor is also in 0, but doesn't need to know anything else about

the topology '.

4. Consider every party P e 0 such N(P) 4 0. S will need to simulate these neighbors

not in 0.

'Recall that from definition 3.0.12, YgraphInfo does not reveal if nodes in Q have neighbors in common. All
8 needs to know is which neighbors are also in 0.
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" Simulating messages from honest parties in Aggregate phase. For every

Q e N(P) and Q Q, S simulates Q as follows. At the start of the algorithm,

S creates T key pairs:

(pk") P, sk -) (pkT) sk (T)<-Gen( K)

At step t = i in the for loop on line 8, S simulates Q sending a message to P by

sending ([ 0 ] Pk, pk(jf p). S receives the pair (cL) Q, k(, C)) from P at this step.

" Simulating messages from honest parties in the Decrypt phase. Again, for

every P E 0, Q E N(P) and Q 0, S simulates Q. At t = i in the for loop on

line 20, S sends [b0 ,] to P. S receives e~') from P.
QP-*

We will prove that any PPT adversary cannot distinguish whether he is interacting

with the simulator S or with the real network except with negligible probability.

(a) Hybrid 1. S simulates the real world exactly and has information on the en-

tire topology of the graph, each party's input, and can simulate each sequence

identically to how the walk would take place in the real world.

(b) Hybrid 2. S replaces the real keys with simulated public keys, but still knows

everything about the graph (as in Hybrid 1). Formally, for every honest Q that

is a neighbor to P e 0, S generates

(pkQ, ,sk ),--- ,(pkQ-, skQ,) <- Gen(lK)

and instead of adding a layer to the encrypted [b]pk that P has at step t, as done

in line 12 and 13, 5 computes b' <- bQ V b and sends [b'] pk, to P during

the aggregate phase; it is the same message encrypted in Hybrid 1, but it is

now encrypted under an unlayered, fresh public key. In the decrypt phase, each

honest Q neighbor to P will get back the bit we get from the sequence of OR's

encrypted under that new public key as well; the way all nodes in 0 peel off

layers of keys guarantees this will still be correct.
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(c) Hybrid 3. S now simulates the ideal functionality during the aggregate phase,

sending encryptions of 0. Formally, during the aggregate phase, every honest

Q that is a neighbor to P E Q 8 sends [0 ]pkg, to P instead of sending [b'] Pkj.

Nothing changes during the decrypt phase; the simulator still sends the resulting

bit from each sequence back and is not yet simulating the ideal functionality.

(d) Hybrid 4. S finally simulates the ideal functionality at the during the decrypt

phase, sending encryptions of b,,,,, the output of TBroadcast, under the simulated

public keys. This is instead of simulating the sequences through the graph and

ORing only specific bits together. Notice that this hybrid is equivalent to our

original description of 8 and requires no knowledge of other parties' values or

of the graph topology other than local information about 0 (as specified by the

TgraphInfo functionality).

Now, let's say we have an adversary](l that can distinguish between the real world

and the simulator. This means A1 can distinguish between Hybrid 1 and Hybrid

4. So, A1 can distinguish, with non-negligible probability, between two consecutive

hybrids. We will argue that given the security of our public key scheme and the high

probability of success of the algorithm, that this should be impossible.

(a) First, we claim no adversary can distinguish between Hybrid 1 and 2. The dif-

ference between these Hybrids is distinguishing between AddLayer and com-

puting a fresh encryption key. In Hybrid 1, we compute a public key sequence,

multiplying public key k by a freshly generated public key. In Hybrid 2, we

just use a fresh public key. Recall that the public keys in our scheme form a

group. Since the key sequence k @ pknew has a new public key that has not been

included anywhere else in the transcript, kopknew can be thought of as choosing

a new public key independently at random from k. This is the same distribution

as just choosing a new public key: {k @ pkne,} - {pkne,}. Therefore, any tuple

of multiplied keys and fresh keys are indistinguishable from each other. So, no

adversary At can distinguish between Hybrids 1 and 2.

(b) Now we will show that no PPT adversary can distinguish between Hybrids 2
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and 3. The only difference between these two hybrids is that Y sees encryptions

of the broadcast bit as it is being transmitted as opposed to seeing only encryp-

tions of 0 from the simulator. Note that the simulator chooses a key independent

of any key chosen by parties in 0 in each of the aggregate rounds, and so the

bit is encrypted under a key that A does not know. This means that if A can

distinguish between these two hybrids, then 91 can break semantic security of

the scheme, distinguishing between encryptions of 0 and 1.

(c) For this last case, we will show that there should not exist a PPT adversary A

that can distinguish between Hybrids 3 and 4.

There are two differences between Hybrids 3 and 4. The first is that for each

sequence S, during the decrypt phase, we send b,,,, = Vi 1e bi, the OR of all of

the node's bits, instead of bs = Vus b, the OR of all node's bits in that specific

length-T sequence.

Recall that each sequence has probability at least 1 - negl(K) = 1 - (5 of covering

the graph. There are two sequences starting at each edge, making for at most

2n 2 simultaneous sequences. So, the probability that there exists a sequence S

so that b,,,, # bs is at most 2n2 .negl(K) = negl(K) by a union bound. Therefore,

this difference in hybrids is undetectable to any polynomial adversary.

The second difference is that our simulated encryption of bo,, is generated by

making a fresh encryption of b,,,,. But, if bo,, = bs (which it will with over-

whelming probability), by the claim 2.4.1, the encryption generated by ORing

many times in the graph is computationally indistinguishable to a fresh encryp-

tion of b,,,,. Therefore, computationally, it is impossible to distinguish between

Hybrids 3 and 4.
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5.3 Complexity and Optimizations

Note that we have two methods for realizing Protocol 1: correlated random walks and UES.

In this section, we will give upper bounds on the communication complexity under the

random walk instantiation of protocol 1 and discuss optimizations for graph families where

tighter cover time bounds are known. We will then discuss communication complexity

when using UES.

5.3.1 Communication Complexity with Correlated Random Walks

We show that the communication complexity is O(BKm) group elements, where B is an

upper bound on the cover time of the graph (for our protocol on general graphs, we have

B = 4n 3). We measure the communication complexity in terms of the overall number of

group elements transmitted throughout the protocol (where the group elements are for the

ciphertext and public-key pairs of the underlying DDH-based encryption scheme, and their

size is polynomial in the security parameter).

Claim 5.3.1 (Communication complexity). The communication complexity of protocol I

using correlated random walks of length T = 2KB is E(BKm) group elements.

Proof The random-walks in protocol 1 are of length T = 2BK, yielding 2T total rounds

of communication including both the forward and backwards phases. At each round, every

node v sends out deg(v) messages. Summing over all v E V, all of the nodes communicate

2m messages every round - one for each direction of each edge (for m denoting the number

of edges in the network graph). By the end of the protocol, the total communication is

4Tm = 9(BKm). 0

We conclude the communication complexity of protocol 1 on input n, K is O(Kn5 ) group

elements.

Corollary 5.3.2. On input n, K, the communication complexity ofprotocol 1 is O(Kn
5 ) group

elements.
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Type of Graph Cover time
Arbitrary graph [21] O(n 3)
Expanders [5] O(n log n)
Regular Graphs [19] O(n2)

Table 5.1: Cover times for specific graphs.

Proof For a graph with at most n nodes, B = 4n3 is an upper bound on the cover time (see

theorem 2.5.6), and m = n2 is an upper bound on the number of edges. Assigning those

B, m in the bound from claim 5.3.1, the proof follows: O(BKm) = O(K. n3 -n2) = ®(Kn5 ).

Better Bounds on Cover Time for Some Graphs

Now that we have seen how the cover time bound B controls both the communication and

the round complexity, we will look at how to get a better bound than O(n 3).

Cover time has been studied for various kinds of graphs, and so if we leak the kind of

graph we are in (e.g. expanders), then we can use a better upper bound on the cover time,

shown in table 5.1.

For example on expander graphs (arising for example in natural applications on ran-

dom regular graphs), it is known that the cover times CG = O(n log n), much less than

0(n3 ) [5]. This means that for expanders, we can run in CG = O(n log n) round com-

plexity, and O(CGKm) = O(Kmn log n) communication complexity. Even assigning the

worst case bound m n2 , we get round and communication complexity O(n log n) and

O(Kn3 log n) respectively-much better than the general case that has O(Kn3) round com-

plexity and O(Kn5 ) communication complexity.

5.3.2 Communication Complexity with Universal Exploration Sequences

Unfortunately, we are less precise when discussing communication complexity of our pro-

tocol when using UESs. This is because known explicit, deterministic, polynomial-time

constructions use log-space, and these works, as far as we could find, do not discuss how

long the resulting sequence is. Moreover, every source with the exception of Koucky's

thesis only discusses d-regular graphs[20] . Koucky's work provides a transformation of
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d-regular graph sequences to general graphs at a cost which requires knowing the number

of edges in the original graph.2 With that in mind, we will discuss what is known and, if

advice is allowed to be given to nodes, about how long these sequences may need to be.

Reingold's paper implies that the algorithm for computing the exploration sequences for

general graphs is log space, meaning the running time of computing such an exploration

sequence and the length of the resulting sequence could be anything polynomial. However,

looking at Koucky's thesis, we can get a generic transformation of a universal traversal

sequence (UTS) on a regular graph of length T to one of length approximately O(n2 - T).

Theorem 5.3.3 ([25]). There exists a log-space algorithm that takes as input V" and outputs

a universal traversal sequence on 3-regular graphs with n nodes.

Log-space implies polynomial time and polynomial length in n, the number of nodes.

So, what is left is to be able to transform a UTS on a 3-regular graph to a UTS on general

graphs if we only know the number of nodes. For this transformation, we will rely on the

following theorem from Koucky's thesis [20].

Theorem 5.3.4 ([20]). Let m > 1 be an integer For any traversal sequence 1, . .. , Tt, that

is universal for 3-regular graphs on 3m vertices, we can compute, with AC0 circuits, an

exploration sequence that is universal for graphs containing m edges.

Lemma 5.3.5. We can produce a UES on general graphs with n nodes of length O(n2 
. T)

where T is the maximum length of a UTS generated by Reingold's algorithm for 3-regular

graphs with 3(n - 1) to 3n2 nodes.

Proof We will essentially be applying theorem 5.3.3 in conjunction with theorem 5.3.4

O(n2) times because we do not know the exact number of edges in our graph.

Let S = () be an empty sequence. For every m e {n - 1, ... , n2}, we will use Reingold's

algorithm to construct a UTS for 3-regular graphs on 3m nodes, and then transform it into

a UES on general graphs with m edges. We then append this sequence to S.

Now, for any connected graph on n vertices, it will have somewhere between n - 1 and

n2 edges (to be connected). Let m* be the number of edges it has. There is some subse-
2The transformation actually takes universal traversal sequences on d-regular graphs and turns them into

universal exploration sequences on general graphs with m = 3d edges
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quence in S that is a UES for general graphs on n nodes with m* edges; that subsequence

is guaranteed to explore the graph.

S has a length equal to the sum of all of the exploration sequences for each m. There

are O(n2 ) such m's, and so we can upper bound the total length using the longest such

exploration sequence (length T): the length of S is O(n2 T). C

It is interesting to note that since UESs are guaranteed to cover the graph, their length

does not depend at all on the security parameter K, unlike the random walk construction.

Therefore, it is more efficient to use UESs in this protocol if n is small compared to K.

However, since we do not have good bounds on how long these constructable UESs are,

we cannot give the exact point at which it becomes better to use this method.
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Chapter 6

Conclusion and Future Work

This work showed that topology-hiding computation is feasible for every network topology

(in the computational setting, assuming DDH), using random walks or UESs. This reso-

lution completes a line of works on the feasibility of topology hiding computation against

a static semi-honest adversary [22, 18, 1]. It leaves open the feasibility question against a

malicious or adaptive adversary.

Although there are impossibility results for even very weak malicious adversaries (fail-

stop) [22], the adversary is able to learn about the topology of the graph because it is able

to disconnect it. So, if we first limit the adversary so that it cannot disconnect the graph,

there is hope that we can get some results (say a (t + 1)-connected graph and the adversary

can abort/control at most t nodes).

Then there is the model of dynamic graphs, which are especially relevant in some mesh

networks. For example, consider the following application: smart cars on a highway com-

municating with their local neighbors about weather, traffic, and other hazards, without

needing to coordinate their information with a third party or reveal their location relative ot

other vehicles. Cars are constantly entering and exiting the highway and changing location

relative to other cars, so the graph, while it remains connected, is not static. If we consider

a passive, static adversary, then we can still get around the impossibility result. Perhaps we

can even adjust this relatively simple protocol to work for these kinds of graphs.

Finally, there is the question of what other cryptosystems are OR-homomorphic PKCR

encryption schemes. For example, assuming that quadratic residues are difficult to dis-
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tinguish from non-resides (the QR assumption), we can get a PKCRencryption scheme

(this is via Cock's IBE [7], but not shown in this thesis). However, this scheme is only

XOR-homomorphic. Lattice-based cryptography may also be viable. Showing that other

assumptions can achieve topology-hiding computation strengthens the result, and in the

case of lattice-based cryptography, we get post-quantum security.

Topology hiding computation is a relatively unexplored subject in cryptography, having

(in the computational setting) its first feasibility result in 2015 [22]. It will be exciting to

see what else can be proved in this model.
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