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ABSTRACT

RELIABILITY OF SHELL BUCKLING PREDICTIONE EASEL

UPON EXPERIMENTAL ANALYSIS OF PLASTIC MODELS

by
wWwilliam A. Litle

Submitted to the Department of Civil Engineering on August 19, 1963 in
partial fulfillment of the recuirements for the degree of Doctor of
Science.

Most problems which confront the structural engineer fall into one
of three categories, namely: 1) stress-distribution problems, 2) ultimate
load or strength problems and 3) stability problems. Thin-shell roof
structures, because of the great efficiency with which they transmit
forces, are quite slender, and consequently, are subject to failure through
a loss of geometric stability. A meaningful analytical prediction of such
a stability loss can presently be obtained only for extremely simple cases.
The possibility of using small-scale structural models to obtain an experi-
mental solution to such problems is most attractive. A few such experimen-
tal design studies have been made, however, several important questions
needed further study. The purpose of this thesis is to examine the relia-
bility of small-scale plastic models in the determination of elastic buck-
ling pressures of thin-shell structures.

Analytical work is presented to show how and to what extent the theo-
ries of probability and statistics can be applied in the experimental
design method. An experimental program - conducted on polyvinyl chloride
spherical domes - is intended to deduce the magnitude of the pertinent
material properties and their possible variations, the repeatability of
buckling pressures from different models, the cffects of shell thickness
and middle surface geometry variations, the effect of geometric scale,
the effect of boundary conditions, and the effect of the means of apply-
ing load.

The experimental results show that reliable buckling predictions can
be made, but that the means of providing boundary support is very critical.

Thesis Supervisor: Robert J. Hansen

Title: Professor of Civil Engineering
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SUMMARY

OBJECT: The experimental method of structural design has a unique and
obvious advantage over the mathematical method in those prob-
lems wherein the structural behavior is not well understood.
One such problem is that of the buckling of thin-shell roof
structures. The purpose of this thesis is to examine the
reliability of small-scale plastic models in the determination

of elastic buckling pressures of thin-shell structures.

SCOPE: Analytical work is presented to show how and to what extent
the theories of probability and statistics can be applied in
the experimental design method. An experimental program is
intended to reveal the consistency of plastic material proper-
ties, the repeatability of buckling pressures from different
models, the effects of thickness and middle surface geometry
variation, the effect of geometric scale, the effect of

boundary conditions, and the effect of the means of applying load.

PROCEDURE: A Type I polyvinyl chloride plastic was used as the model
material. Its elastic properties were thoroughly investigated.
The spherical cgp is one of the most thoroughly investigated
thin-shell structures. Because of the degree of comparison
and control which these previous investigations could afford,
the spherical cap was chosen for the present study. Twenty 18"
radius domes were fabricated from six different, but supposedly
identical, molds. All of these were subjected to air pressure
loading and four of them were loaded with weights. Four 36"
radius domes were fabricated from two different molds whicn
were supposedly twice the size of the 18" radius molds. The

36" domes were loaded only with air pressure.

CONCLUSIONS: 1. Experimental results obtained from structural models can be
used to predict something about the average or mean value of

a particular physical quantity in a prototype structure.

xi



3.

4.

On the other hand, it 1s in general not possible to
determine correct results regarding the dispersion about

this derived mean walue.

If the model result is taken to be the result obtained from
a single model, then it is particularly important that the
investigator be convinced of the absence of blunders and

major systematic errors.

The elastic properties of the polyvinyl chloride plastic
will not vary widely throughout a vacuum-formed shell model
and can be determined within 5%.

Average shell thickness should be taken as the controlling
thickness. In this light, minor (* 10%) thickness variations
do not significantly affect the buckling pressures.

Buckling behavior is mildly affected by middle surface
geometric variations. Although only a narrow thickness

range was studied, the experimental results showed that
buckling pressures were proportional to (1:/11)2"9 instead of
(t/R)2 as predicted by theory. How much of this discrepancy
is due to geometric imperfections is not known. In any case,
the imperfection effect on the imaginary prototype structure
which is being designed cannot be deduced, and therefore, the
extrapolation from model to prototype must incorporate a

safety factor to allow for the effect of imperfection.

Buckling behavior is extremely sensitive to changes in
boundary restraint. If the model loading rig induces initial
edge bending, the buckling behavior will almost certainly be
affected. Any buckling model must reproduce as nearly as
possible the prototype boundary condition, and if the
prototype condition is uncertain, then provision should be
made for alternate model tests in which the possible prototype

conditions are bracketed.

xii



The technique of applying load by hanging weights on a
grid pattern leads to the same buckling pressures as
would be obtained with a continuous load. 1In fact,
pressure loading is not recommended unless the shell is
very flat. This is because the nature of the buckling
action seems to be dependent upon load direction as

well as stress level.

An epoxy-cemented edge apparently did not induce any
initial bending. For all tests made with such edge
restraint the variation in air buckling pressure never
exceeded 20%. For engineering design, such reliability
is considered to be very good and it is concluded that
the sensitivity of a thin-shell to buckling is not so

great as to preclude useful structural model design.

The buckling behavior of the model shells was not affected

by a 100% change in the geometric scale.

xiii



CHAPTER 1

INTRODUCTION

The structural consequences of any building design may be
evaluated by the grace and efficiency with which the forces of nature
are resisted. The class of structures which Nervi refers to as 'form
resistant” are perhaps the most efficient and graceful of all. They are
efficient since their geometric form allows them to carry load with little
or no bending and they are graceful because the magnitude and combination
of curvature can be selected in such a way that the structural unit conveys
an aesthetically pleasing impression. Consequently, it is of interest
to consider why such construction is relatively uncommon. Perhaps there
are three principal reasons. First, our understanding of the manner in
which these structures resist forces is extremely inadequate. The mathe-
matical equations for even the most simple situations are often extremely
cumbersome if, in fact, they can be dealt with at all. Second, it must be
noted that overall economy cannot be measured by minimum weight alone and
hence, one must consider the total construction cost. The need to prepare
formwork for a reinforced concrete thin-shell roof may add 50-100 percent
to the cost of the structure depending upon the complexity of the surface.
Thus because of a temporary construction situation a designer may decide
to utilize another type of construction. Finally, it must be understcod
that there are many situations in which the functional requirements for
the building will not permit the use of shell construction. In fact, one
might seriously wonder whether this third reason - even assuming that the
analysis and formwork problems were completely solved - might, by itself,
preclude a rapid increase in the use of '"form resistant' construction.

There are, of course, many aspects to the problem of understanding
the structural behavior of thin-shell or "form resistant” constructions.

This thesis is concerned only with the aspect of instability.

1.1 THE THIN-SHELL STRUCTURAL DESIGN PROCESS

Once the geometric form and type of construction have been

selected for any building, the only demand on the structure is that it



maintain in equilibrium all of the applied forces without deforming so
much as to interfere with the function of the building. Thus,the structure
must simply possess sufficient strength and sufficient stiffness to resist
the environmental conditions to which it will be subjected. The engineer
has available certain ""tools' which can aid him in establishing the
sufficiency. Generally speaking these "tools" could be either of a mathe-
matical or an experimental nature.

Throughout the course of history it hss been true that the
ploneering structures were designed and constructed without the aid of
applicable mathematical theory. Then, with the passage of time, man would
strive to better understand the behavior of the structures until finally,
he would be able to describe the behavior in mathematical terms. And so
it is today; simple beams long ago fell to the power of the applied
mathematician; the behavior of statically indeterminate planar frameworks
has more recently been solved; and the category of "form resistant"
structures 18 not yet well understood. Doubtless the day will come when
this latter type of structure will yield to the mathematical analysis, but
in the meantime such structures will continue to be built. It is just
this sort of situation in which the experimental design process can play
a significant part. For in those cases where the structural behavior
cannot be described mathematically, a carefully constructed and tested
scale model should be able to reveal it. Of course, it should be realized
that there are different types of physical models and they are intended
to satisfy different objectives. The architects have for many years made
considerable use of the visual model, often constructed of cardboard,
wood sticks, etc. Such models may also permit one to ascertain certain
qualitative information regarding the behavior of the structural system.
By distinction, physical models can be manufactured and tested which will
yield useful quantitative information - be it about mode of failure,
magnitude of stress, magnitude of failure load, etc. It is this latter,
quantitative, model which is of concern here.

1.2 HISTORY OF PREVIOUS SHELL STABILITY STUDIES
Before entering into the main body of this thesis it should be

useful to pause for a minute and outline briefly the history and present



status of the mathematical and the experimental approach to shell
instability. To have a clear picture of the present state of each
approach is of inestimable value because in any actual problem the
designer should bring to bear all of the available resources. Nash(l'z)
has compiled a bibliography on shell structures and 1lists 1455 books and
papers prior to 1954 and 884 between 1954 and 1956 alone. Certainly
many, many more have been written since and so, it would be completely
unreasonable to make any kind of complete survey here.

£&) study in 1858 of the buckling of cylinders under

Fairbairn's
external pressure was one of the first experimental investigations of
shell stability. Stability theory goes back to Euler and Lagrange but
Bryan(4)(1888) gave perhaps the first general discussion of shell
stability. 1In line with the bifurcation concept of buckling he suggested
that the buckling load could be determined from the fact that there would
be no change in the total potential energy as the shell passed from the
unbuckled to the buckled state.

In this century a tremendous effort has been expended on the
shell stability problem. At first, the theoretical workers pursued the
approach which had been experimentally verified for the column and flat
plate buckling problems. Thus, they composed non-linear equilibrium
equations; but then, considering that the deflections would be small,
proceeded to linearize the equations by assuming that the membrane forces
in the buckled configuration would be the same as they had been in the

(5)(1914) and others were concerned with
(6)

unbuckled state. Southwell
cylindrical tubes and Zoelly (1915) concerned himself with the complete
sphere. haturally, experiments were conducted in an attempt to verify the
theoretical developments. The results of these experimental studies

were startling. In some cases, such as the cylindrical tube under external
pressure, the agreement between theory and experiment was satisfactory.

On the other hand, the equally simple problems of the cylindrical tube

under axial load and the radially loaded sphere led to a complete dichotomy.

* Numbers in superscript parentheses refer to entries in
the bibliography.



The set of linearized differential equations for the cylindrical
tube subjected to a general type of loading as given by Flﬁgge(7) are:
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where the notations are explained in Figure 1.1.

The results from a solution of these equations for the case
of a tube with simply supported ends subjected only to external pressure
are shown in Figure 1.2. Experimental results obtained by Sturn(s) are

also shown,and it is seen that the agreement between theory and experiment
is good.

For the case of axial compression,the set of Equations (1.1)

can again be specialized and solved. The type of behavior to be expected

is shown in Figure 1.3. For very short cylinders the behavior is analogous



to Euler buckling of a strip element and for very long cylinders the tube
acts as an Euler column. For intermediate lengths the solution tends
toward the result which corresponds to a symmetrical rippling of the side

walls. The critical stress for this case is given by:

12
Ogn?fca/ L )

i
t

£ ¢
/3(/—4?(»@)

When experiments were made to check the validity of these results, a
behavior was observed which was completely at variance with theory.

(10) and Donnellgll) It is

Figure 1.4 shows the results of Lundquist
apparent that experiments indicate critical stress levels on the order
of 1/3 those given by the classical linear theory.

In searching for an answer as to why there was such a discrepancy

between experiment and theory, Donnell(ll)

(1934) decided to track the
load-deflection relationship of the shell. By starting the solution
with an assumed imperfection and using nonlinear strain-displacement

relationships of the form

_2u , | [aw)e (1.3)
S *2(ax)

small but finite displacements could be treated. Donnell(ll) imposed a

first yield criterion as the limit capacity. The first yield approach
(12)

had no rational basis; but von Karman and Tsien (1939), utilizing
Donnell's approach, made a startling discovery that for loads far below
the classical critical value there were equilibrium positions which
required only small, but finite, displacements. This discovery was a
real breakthrough in the mathematical development. This peculiar load-
deflection behavior is depicted in Figure 1.5 and compared to the
behavior of columns and plate elements. Such a situation almost begs
one to explain differences between experiment and theory by taking into
account initial geometric imperfections.

The governing equations for the elastic stability of the

radially loaded complete sphere which were solved by ZOelly(G) are,



like the cylindrical tube Eqs. (1.1), linear partial differential equations.

As given by Flﬁgge(7) these are
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where the notations are explained in Figure 1.6.

The solution of these two linear partial differential equations

yields for the lowest critical pressure

Per = 3(,__ 2) /E} 1.5)

For the spherical shell loaded by radial pressure, the membrane

stress is everywhere equal to

=13 1.6
T >7 ( )



so that the critical stress is

%, = ﬁ /‘_g_} (1.7

the same as for the axially loaded cylinder. Like the axially loaded
cylinder. experiments consistently yielded pressures of 1/4 to 1/2 of
the theoretical value. In Figure 1.7 the reswlts of a large number of
experiments on spherical caps are compared to this theoretical value.
Again, the theoreticians turned tc he approach of tracking the
load-deflection relationship through the solution of nonlinear
partial differential equations. Further, they considered the spherical
cap rather than the complete sphere. Usually the edge of the spherical
cap was assumed fixed, so that the shell did not remain spherical up to
the critical pressure. In this way, the shell could introduce Lts own
initial imperfection during loading, even though it was a perfect sphere
at the start of loading. To simplify the mathematics, they restricted
themselves to shallow spherical caps (rise less than about 1/16 base
diameter) undergoing axisymmetric deflection. Thus by starting with
one of the simplest of shell problems and assuming the critical load to
be that of the first maximum on tne load-deflection curve, a massive
effort has yielded the result shown in Figure 1.8. These theoretical
results, while identifying the opening angle as an additional parameter,
still fail to explain the low experimental pressures. (It should be
noted that except for the tests reported in this thesis,and those of
Kloppel and Jungbluth,all of the data in Figure 1.7 are for shallow
shells.) 1Initial imperfections have been studied but the magnitudes
required to explain the low test results are unreasonable. Von Karman
and Tsien (1939) proposed an energy jump buckling criterion but this
proposal calls for a changeable result depending upon the stiffness
characteristics of the loading mechanism. Tests do not show any such
variation. The latest thoughts are that the assumption of axisymmetric

buckling overlooks other asymmetric buckling modes which correspond



to lower pressures. Weinitschke(ls)

(1962), in Figure 1.9,has given some
results which would seem to close the gap between theory and experiment,
but other investigators have challenged his results.
Analytical and associated experimental work has also been done
on cones, hyperbolic paraboloids, integrally stiffened shells of various
types, etc. As before, experiments and theory sometimes are in agree-
ment and sometimes not.
In addition to serving as a research tool, physical models have
been used in the design process for thin-shell structures. Figure 1.10
shows a 1/10 scale reinforced mortar model of the Tachira, Venezuela,
sporting club. Torroja and Benito conducted this study at the Central
Laboratory in Madrid. The fallure of the model was caused by a stability
loss which could not have been predicted with the available theory.
Hansen, Holley, and Biggs at M.I.T. used plastic models in the design
process for the thin-shell roof covering the U. S. Post Office in
Providence, R. I. The stability problem was completely solved using 1/80
scale structural models such as the one shown im Figure 1.11. Models were
fabricated to simulate prototype thicknesses of 43, 6, 7% and 9 inches.
With ribs located as in Figure 1.11, the model simulating the 4% inch
thick prototype would not carry the required load. It was found that
the model corresponding to the 6" thickness did have sufficient stiffness.
Minimum rib dimensions were then determined by testing, altering, retest-
ing, etc. , the same model. Like the Tachira Club shell, mathematical
stability theory was non-existent; but the model was a very convenient
design tool.
(19) "

In sum, as Fung and Sechler have stated: The

theory of shells is wrought with difficulties in the complexity of
mathematical formalism, and in the multifarious ways of approximation.
One of the great developments in the last two decades has been the
systematic study and classification of various orders of approximation.
However, little use has been made of these general equations in the
stability theory because one finds soon that one has to face the

difficult barrier of solving nonlinear partial differential equations.



The importance of the nonlinear features in the shell buckling problem
was first pointed out in a most spectacular manner about 20 years ago
by von Karman and Tsien, but the mathematical difficulty is so great
that progress has been slow after the first attempts. Only recently have
serious efforts been made in the analysis of nonlinear systems, and these
were directed toward the simplest of shell stability problems: the
symmetrical buckling of shallow spherical shells.

"On the other hand, experimental studies on the shell buckling
problem are also encompassed with difficulties. The wide scatter and
the nonrepeatability of experimental results attest to the experimental

difficulty and to the demand for careful attention to testing methods.

1.3 OBJECT AND SCOPE

The purpose of this thesis is to study the reliabiliiy of the
information which a small-scale physical model will yield in the area
of the elastic instability of thin shell roof structures. Material is
presented which serves to show how and to what extent statistics and
pcrobability theory can be applied in model programs. An experimental
program is carried out to deduce the reliability of thin-shell polyvinyl
chloride plastic models. In so doing it is intended to consider such
things as repeatability, consistency of material properties, effects of
thickness and middle surface geometry variation, boundary conditions,
scale effect, and the means of applying load.

The problem is approached from the point of view of attempting
to develop the experimental design process, not to aid in the develop-
ment of mathematical theory. It is hoped, of course, that the results

will also be of interest to the theoretician.



CHAPTER 2

THE MODEL PROCESS FOR ELASTIC STABILITY OF SHELL STRUCTURES

The complete process of any structural model analysis falls
naturally into five parts, namely: (1) planning the study, (2) model
fabrication, (3) loading, (4) testing and recording information and
(5) interpreting the recorded data and extrapolating it to the prototype.
These five phases are rather closely interrelated. Consequently it is
mandatory that, prior to the initiation of any project, consideration be
given to exactly how each step of the process is to be accomplished and
that each step is compatible with all others. The intention in this
chapter is to set down the factors which were considered at the out-

set of the project.

2.1 PLANNING THE STUDY

In an actual design study the results obtained from the model
itself must be interpreted or operated upon in light of the prototype; for,
after all, it is the prototype result, not the model result, which is of
interest. The restrictions of time and cost will usually limit the number
of model tests whicn can be carried out. Previous experimental results
have shown a wide scatter. If, then, one were to make only a very few
model tests, what could be said of the extrapolated prototype result?
This question involves many factors. First of all, any model testing
procedure and the results obtained therefrom will incorporate a variety
of errors. Further, the constitution (i.e., geometry, material properties,
etc.) of the prototype and model are not certain in a probabilistic sense.
In such a light, one could ask whetiher, with test data from a limited
number of model tests, it would be possible to state with a certain
confidence level the range within which the still imaginary prototype
result would fall? An error analysis study which is presented in Chapter 3
showed that some matiematical foundations exist for treating random errors.
On the other hand,if the experiment is dominated by sources of systematic
error then the mathematical methods of statistics and probability are of

no use.
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The wide scatter in some of the previous shell buckling tests
raised some question whether the shell instability problem was so sensitive
to sources of random and systematic error as to make experimental design
an unreliable brocess. Several questions were raised. 1Is the internal
constitution (i.e., geometry, material properties, etc.) of a shell so
critical that two adjacent models fabricated and tested in the same manner
will yield widely separated results? Will two adjacent models, fabricated
and tested in the same manner but having a different geometric scale, yield
the same result? How sensitive is the model to variations in boundary con-
ditions? Since any model will have some thickness variation, what is the
thickness which should be assigned to the model when it is compared to
the prototype? Do model thickness variations crucially affect the buckling
pressures? How accurately must the geometric surface in the model be .
controlled? Does the means of loading have a significant effect on tbe
buckling pressure? All previous experimental programs have involved the
variation of some parameters such as R/t which are pertinent to the

theoretical solution. To the author's knowledge no experimental programs

have attempted to answer any of the'above questions - questions which
must be answered if the experimental method is to be used in the shell
design process.

The spherical cap was chosen as the structure to be modeled.

The principal reason for selecting this shape 1is also a factor which
makes the choice an unfortunate one. Thus, the fact that a great
theoretical and experimental efrort had already been expended on this
shape allowed for a measure of control and comparison; however, a shape
such as that used for the Tachira Club shown in Figure 1.10 demonstrates
much more effectively the power of the model approach.

Previous experience in the laboratory had demonstrated the usefulness
of plastics as model materials, and in fact special fabricating equipment
had been installed which permitted rapid fabrication of plastic shell
models with a plan area of up to 20 x 20 inches. Figure 2.1 depicts some of
the consequences of the selection of an R/t ratio for the model spheres,

given a base diameter of 18 inches, a modulus of elasticity of 450,000
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psi and Poisson's Ratio = 0.38. It was planned to use air pressure for
loading and a simple water manometer would show little error if the
buckling pressures exceeded 0.5 psi. Allowing for the previous discrepancy
between theory and experiment,it was decided to restrict R/t to those
values such that the critical theoretical buckling pressure for the complete
sphere was greater than 1.0 psi. Also to be considered was the fact that
stress levels could not be high, otherwise the behavior would no longer be
elastic. Using the Geckler approximation, the maximum stress (at the fixed
edge) was computed for a pressure equal to 1/2 the theoretical buckling
pressure. Keeping the maximum stress below 500 psi was satisfactory.

From the range of now permissible R/t ratios a band was selected which
would correspond to readily available plastic sheet thicknesses. Thus

R = 18 inches and 0.024 < t < 0.030 inches established the geometry of

the models. Figure 2.2 shows the meridional and circumferential stress
levels for the cases of radial and vertical pressure on a shell 0.025

inches thick.

%.,1.1 Dimensional Analysis. The theory which governs and

ties together any model analysis is really based upon the mathematical
theory of dimensions. The theory is well documented(zo'zl'zz’23’24'25'26)
and need not be discussed here.

The governing differential equations, when available, are an

ideal means of identifying the relevant physical quantities. Kaplan and
€17)

Fung's governing nonlinear equations for the radially loaded shallow

spherical cap undergoing axisymmetric deformations are

R A RN ek G o
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(2.1)
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where the notation is the same as that in Figure 1.6. The relevant

quantities as taken from Eqs. (2.1) are then given in Table 2.1.

The solution equation for critical pressure must be of the form

FUE R, o, R, L, ) =0
(2.2)

If the thickness t and the modulus of elasticity E are taken as the
dimensionally independent variables then, according to Buckingham's:

theorem, Eq. (2.2) can be reduced to
t i -
@(?;E—J -rg'; \’) =0 (2.3)

On the assumption that the critical pressure is in fact that of the
first maximum on the load-deflaction curve then Eq. (2.3) can be solved

for p/E in the form

') (2.4)

D [

p-Eé(E

An assumption of this nature is necessary because the criterion for

shell buckling has not yet been agreed upon and the quantity B/E can
be taken outside the functional expression only if the function is
single valued. Eq. (2.4) could be written once for the prototype and

once for the model.

p ¢
Pprototype = Ep ¢ (Eii’ 7§i" VP,)

7 z (2.5)
Pmodel = Enr¢(ii§"ﬁ§;’\&n)
then if
-giin ¢ /ngp (2:6)
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the observed model buckling pressure can be extrapolated to the

prototype by

E
Pr "me,% (2.7)

If Eqs. (2.6) can be strictly satisfied and if the model loading does
in fact simulate the prototype loading then Eq. (2.7) will give the
correct value of the prototype buckling pressure. For all types of
model problems the greatest difficulty encountered lies in the
satisfaction of the particular equations like Eqs. (2.6). When these
are not satisfied, real problems arise in the interpretation and
extrapolation of the test data.

2.1.2 Model Material, Since the predominant state of

stress in the:thin shell is one of pure compression,it is not surprising
that most of the shell roofs for buildings have been constructed of
concrete. Steel reinforcing bars and prestressing wires are used to
control shrinkage and temperature-induced tensile strains as well as
to provide additional strength in certain boundary regions where the
compressive membrane state is considerably altered by bending. Metallic
shells are occasionally employed in civil engineering situations, but
have a much greater application in the aircraft and missile industries.
In a structural model analysis which is intended to simulate
a prototype over the complete loading range, up to and including material
failure, the similitude restrictions which are placed on the model
material are very severe. The stress-strain relations of the model
and prototype materials must be similar throughout the entire strain
range, up to and including failure. Considering only a uniaxial stress
state such restrictions are as shown in Figure 2.3. 1If, on the other
hand, one is interested only in prototype response at strain levels far
below failure, then it may be possible to assume that the prototype
behavior is elastic. The problem of instability in thin-shell roof
structures may often be so approximated. For this elastic case, it is
only necessary that the model also behave elastically throughout the

pertinent strain range. Plastic materials,in addition to being elastic

14



at low strain levels, possess three great advantages as potential model
materials. First, they have a low modulus of elasticity, ranging from

one or two million psi for some glass reinforced materials down to a

few thousand psi for some foamed plastics. The natural resins have a
modulus of about 500,000 psi. Second, plastics are relatively inexpensive
and easy to fabricate. The vacuum-forming technique for fabricating thin-
shell models is particularly attractive. Finally, plastics have a high
strength/stiffness ratio when compared to the common construction materials.
Thus polyvinyl chloride plastic has a yield strength/modulus of elasticity
ratio of approximately 0.02 in comparison to 0.0013 for concrete and steel.
As a consequence of this fact, one can often extend the load-response
function beyond that corresponding to the prototype and in this way reduce

"

the errors due to "noise' in the experimental program. This technique

is often used in obtaining load-deflection or load-strain curves. Of
course, the extension feature is of no direct use in an elastic stability
study, but there is an indirect benefit. Thus, if there is no material
yielding even in the post-buckled condition, then the shell model can be
used again and again. The experimental program of this thesis could not

otherwise have been carried out.

Plastics - General

The family of plastic materials can broadly be divided into

two groups, thermoplastic and thermosetting. Thermosplastic resins are

those which undergo no permanent change on heating. On continued heating
above room temperature their tensile strength decreases and at temperatures
of 150-300°F they become quite rubbery. At even higher temperatures they
melt. This situation is shown qualitatively in Figure 2.4. At the elevated
temperatures they can easily be formed into a variety of shapes which they
retain on cooling. Of course, the process can be repeated and the plastic
can be remolded into some new shape. By distinction, a thermosetting

resin is one which does not possess this property of being able to be
reformed at will under elevated temperatures. Once the thermoset has

achieved its rigid form it maintains that shape. A very general grouping
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of the common plastic materials might be as follows:

Thermoplastics

Polyethylene

Polystyrene

Cellulosics (cellulose nitrate, cellulose acetate, etc.)
Vinyls (polyvinyl chloride, polyvinyl acetate, etc.)
Acrylics (methyl methacrylate)

Thermosets

Phenolics

Epoxies

Pol yesters

Silicones

Amino plastics (urea, melamines, etc.)

"All of the aforementioned materials are, in a sense, organic
chemicals. Their chemistry is similar in many respects to that of other
organic chemicals such as sugar, dyes, or aspirin. The unique properties
of these resins, and the properties which they have in common, result
from the fact that their component molecules are tremendously large.
These very large molecules are, however, made up of relatively simple
repeating units. If the polymer contains perhaps 500 or more repeating
units, it becomes known as a "high" polymer. It is these polymers which
in general comprise the resin molecules.

"Molecules of the thermoplastic resins are characteristically high
polymers with long, continuous carbon-atom chains for a molecular frame-
work. The chemical formula for the resin becomes the formula for the
monomer, but multiplied by some number representing a degree of polymeriza-
tion. Essential differences between thermoplastic resins are associated
with the specific chemical groupings attached to the carbon-atom chain.
These groupings may vary considerably, and this variation permits the
production of tailored molecules designed to give resins for specific
purposes.

"Molecules of the thermosetting resins are usually quite similar
to those of the thermoplastic resins before molding. But the
setting process is accomplished by binding together chemically adjacent
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molecular chains into a complex three-dimensional network. The molecules
thus become even larger and still more complex. Indeed, it has been
observed that all of the atoms in an individual thermoset specimen may
be bonded tegether chemically, and a specimen may thus conform to the
classic definition of a single molecule.” (27
When there are so many plastic matéerials it is not at all
sufficient to say that one is golng to use plastic as a model material.
The choice of a specific type must be based upon a rational consideration
of the engineering properties of the various types, because these
engineering properties do vary significantly from one plastic to another.
To speak of the tensile strength or the modulus of elasticity
of a certain plastic material without first specifying the applicable
conditions of temperature, relative humidity, rate of loading, etc., is
to speak without meaning. The mechanical properties of plastics may
be significantly affected by the aforementioned factors. However, for
any particular set of conditions it is true that tests run on various
samples of a commercially produced plastic such as Plexiglas will yield
consistent results.  In Figure 2.5 the uniaxial stress-strain diasgrams
are shown for several plastics. The deformations involved may rather
arbitrarily be divided into three types. First, there 1s a straighten-
ing of valence bond angles between the atoms of any molecule. This
type of deformation is nearly instantaneous and is linearly elastic.
The second type of deformation is associated with coiling or uncoiling
of the molecular chains. There is no permanent change in intermolecular
arrangement and, consequently, it would seem that these deformations
are all recoveirable although perhaps not instantaneously. This type
of deformation if particularly prevalent in thermoplastics that have
been heated above their glass-transition temperature. Thus the vacuum-
drawing operation and the so-called ''memory effect'', whereby a vacuum-
formed part returns to its original shape upon reheating, depend upon
such uncoiling and coiling respectively. The third and last type of
deformation actually involves intermolecular slippage. Such deforma-

tion cannot be recoverable.
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Temperature and relative humidity may have a significant

effect upon the mechanical properties of plastic materials. Figure 2.6
and 2.7 show typical effects. Strain rate also influences the stress-
strain curves and although data is lacking in this respect, Figure 2.8
indicates the type of behavior to be expected. As might be expected,
increasing the strain rate has the same effect as lowering the temperature.
Yet another factor which must be considered is the orientation effect of
the molecular chains. In their natural state the plastic resins are
relatively isotropic; however, certain forming operations may appreciably
alter the elastic properties. For example:

1) Axilrod, et. al.(zg)

found that the modulus of elasticity
and tensile strength of methyl methacrylate (Plexiglas)
vacuum-stretched 50% biaxially were no different from
unstretched samples.

2) Northrop Alrcraft, Inc.(so)

found that uniaxial vacuum-
stretching increased the tensile strength along the flow
lines and decreased the strength across the flow lines

for methyl methacrylate.

3
3) Baileyf 1)with polystyrene, had the same experience as
Northrop but, unlike Axilrod, found that the strength of

biaxially stretched material increased.

Of vital cohcern, whenever a plastic is to be used as a model
material, is a consideration of the creep characteristics of the plastic.
By comparison with other common construction materials, plastics are very
creep-sensitive. The mechanism of creep in plastic materials is not well
understoodgaz) but it is generally agreed that creep involves a rupture
or slippage of certain secondary bonding forces, this occurring by a
sliding of one molecule past another or by an uncoiling (coiling) of the

molecular chains.
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Generally:

1. Thermoplastics are subject to greater creep than thermosets.
This is so because the thermoplastics have a linear polymer

structure which is conducive to the intermolecular slippage.

2. Creep of linear polymers is reduced if large bulky atoms are
attached periodically along the molecular chain. The
chlorine atoms in polyvinyl chloride would be one example.

3. Plasticizer (flexibilizer) additives are intended to provide
a more flexible plastic. This is accomplished by separating
the molecular chains and, consequently, lowering the secondary
bonding forces. As a result, the plastic is more creep-

sensitive.

Based only on what has been presented here, the stress-strain-time
relations in plastic materials are quite complex. Furthermore, it may
be said that varying the "mix" of any plastic material will produce
additional changes. That is, amounts of plasticizers, filler materials,
etc., affect properties as well as the basic resin itself. Finally,
even for the same "mix",mechanical properties may depend on the method
of manufacture. The experimenter must very carefully select his parti-
cular plastic material.

Various plastics have been used for model analysis with methyl
methacrylate (Plexiglas, Lucite and Perspex) perhaps being used the most
in recent years., A Type I polyvinyl chloride was selected as the model
material for this thesis. It was apparently first used in structural
model analysis by Hansen, Holley and Biggs in their 1959 study for the
Providence Post Office shell referred to in the introduction. As a model
material for studying the elastic stability of thin-shell structures it

possesses the following advantages:

1. It is a thermoplastic and therefore can be vacuum-formed,
1ts forming characteristics are better than methyl

methacrylate but not as good as some of the newer ABS
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(acrylonitrile - butadiene - styrene) plastics.,

® Its stress-strain characteristics are quite linear up to the
2000 psi level. Further, the quality control of the manu-
factured sheets is very good and the vacuum-forming operation

does not induce large changes in the modulus of elasticity.

3. The thickness variation in any one sheet is * 5% maximum which
is considerably better than in Plexiglas. The reason for the
better thickness control is that FVC sheets are calendered

while the Plexiglas ones are cast between two plates.

4, At room temperature and 1000-2000 psi stress levels, creep
strains in one hour are on the order of 5% of the initial
strain. In the thermoplastics this is gquite low, although
Plexiglas also has relatively good creep properties,

5., Its cost is modest - certainly not the controlling cost factor

in a model study.

6., Sheet thicknesses are available down to 0.010 inches, although
for Boltaron 6200, the specific material used in this study,
minimum sheet thickness is 0.030 inches. Plexiglas is not

available in such a range of thicknesses.

The reasons for selecting PVC over Plexiglas are noted in points 1, 3 and
6 above. Of course, all thermosetting plastics were ruled out because
it was desired to vacuum-form the model shells., Polyethylene and the
cellulosics must be ruled out because of their creep characteristics,
the polyamides (nylon) are not suitable for vacuum-forming even though
they are thermoplastics and the new acetal resins (Dupont's Delrin) are
noet available in sheet form. Still it is not possible to state without
qualification that Type I PVC is the best choice. A medium impact ABS
resin (Boltaron 6500) would have better forming characteristics, a lower
modulus of elasticity (320,000 psi), but more creep. Lexan, a poly-
carbonate resin developed by General Electric in 1958, is reported to
have a lower modulus of elasticity (375,000 psi) and excellent creep
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characteristics, although the cost was initially much higher than PVC.
What can be sald is that Type I PVC does not have any serious disadvan-

tages when compared to the other plastics. Perhaps, with another
material, a gain could be had in achieving slightly improved molding
characteristics, a slightly lower modulus and/or slightly improved creep
properties, but that is all.

Vinyl chloride monomer has the chemical formula CHg = CHCl.

The pure polymerized resin which is known as unplasticized polyvinyl
chloride is brownish clear and rigid. Figure 2.9 illustrates the effect
of temperature on the tensile strength of unplasticized polyvinyl chloride.
It would appear that a relatively broad temperature range exists over
which vacuum-forming would be successful; however, the fact is that only
a narrow range exists wherein the material elongates sufficiently to make
possible the forming of a broad range of parts. Additionally, unplasti-
cized polyvinyl chloride has a low impact strength. To improve forming
ease and to increase impact strength it is customary to incorporate in
the polyvinyl chloride resin as little as 5 to 15% of a "rubberlike"
material. Common additive materials have been vinyl acetate

CHp = CH - C3 H3 Oz ; acrylonitrile, CHy = CHCN and vinyl stearate,
Ci, = CH (C12 Hyna 0y). The resulting mixtures are ordinarily available
in two grades, 2 Type I normal impact grade and a Type II high impact
grade. The mix of these grades would ordinarily be about 95 PVC to 5

and 85 PVC to 15 respectively,and it is common for each of them to be
referred to as rigid polyvinyl chloride.

The particular Type I material used in this investigatior is
manufactured by Bolta Products, Division of General Tire and Rubber Co.
It is sold under the trade name- of Boltaron 6200 and incorporates
acrylonitrile - butadiene - Styrene (a synthetic rubber known as an
ABS plastic) as the copolymer. Table 2.2 compares some of the proper-
ties of Boltaron 6200 with other formulations made by Bolta Products.
Thus the "mix" for Boltaron 6200 consists of pure unplasticized PVC and
ABS resin in the ratio of 95 to 5. As stated previously the unplasticized
PVC is clear whereas the addition of the ABS resin leads to a yellow
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translucent plastic. Actually carbon black and titanium oxide are also
included as pigments and the finished product is actually opaque and
grey in color. About 1% calcium stearate is included as a lubricant to
keep the resin from sticking to the calendering rolls. Finally, 1 or
2% of a thermal stabilizer is included. Figure 2.10 gives a diagramatic
insight into the reasons why Boltaron 6200 is not as good for vacuum-
forming as some other Bolta formulations. The decrease in ultimate
elongation which occurs above 230°F requires that temperature control
during forming must be very good to prevent tearing in places where
large stretch is occurring. The 6100 and 6500 formulations maintain
their deformability over a large temperature range.

In Figure 2,11 a unlaxial stress-strain curve in tension
and compression is given for Boltaron 6200. It should be pointed out
that this curve should not be relied upon for any and all Boltaron 6200
applications. Tensile strengths range from 13000 to 7000 psi depending
upon technique of manufacture. Calendered sheets, for example, will rumn
around 9000-10000 psi as shown in the diagram. Figure 2.12 shows an
untested sample in comparison to a severely necked down specimen.
Figure 2.13 gives some other properties for rigid polyvinyl chloride.
The graph for modulus of elasticity vs. temperature shows a slope of
about 1000 psi per °F in the room temperature range. No quantitative
data could be found on the effects of relative humidity but it is not
as sensitive w8 Plexiglas, the characteristics of which are shown in
Figure 2.7.

In order to evaluate Boltaron 6200 PVC af a model material
for studying the elastic stability of prototype structures, one must
consider the stress-strain relations of the prototype materisl. If
the prototype material is concrete, the prototype material stress-strain
curves might be as shown in Figure 2.14. If the strain levels at failure
are small enough, plastic will satisfactorily simulate concrete. Of the
twenty 18" radius shells tested under air pressure and reported in
Chapter 4, shell 5-1 underwent the largest strains prior to buckling.
If this godel result were to be extrapolated to a prototype, the similarity
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in material properties would be as shown in Figure 2.15 if the 5000 psi
concrete from Figuré 2.14 is imagined as the prototype material. When

it is considered that the twenty model shells buckled at pressures of
from 0.50 to 1.07 psi one could extrapolate these results to an imaginary

concrete prototype by

Ep 3,500,000 .
Pprototype = Pmodel e =144 (0.50 fo LO?)W =560 1o /200 psf

Of course, one might wish to use a long time modulus of elasticity for
the prototype, but still it becomes apparent that buckling of thin-shell
roof structures is not usually a problem unless the shell is quite flat

or very large and thin.

2.2 FABRICATION

There are several ways in which thin-shell plastic models
could be made. In a model analysis the experimenter is usually
interested in fabricating only one or at most a few models. This fact
is responsible for his rejection of what in one sense are the most
powerful molding techniques available. Commercially, millions of pounds
of plastic resins are compression, transfer and injection molded into
every conceivable shape and, within limits, size. These three general
techniques employ very high pressures and temperatures in conjunction
with very elaborate molds (pressures reach 4000 pounds per square inch
of mold surface in compression molds and 25,000 pounds per square inch
of plunger area in injection molds, temperatures reach 600°F, and molds
may cost $10,000 apiece). Clearly then, these commercial operations
are not suited to the fabrication of a single or even a few items.
For shells of constant thickness the process of vacuum-forming rigid

thermoplastic sheet materials is feasible and economical. This

technique, which consists of heating the plastic sheet above its glass
transition temperature and then pressing this sheet against a prepared
mold, was used for the fabrication of every model shell. The most

important step in the fabrication process is the making of an accurate
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mold. Metal, wood, plaster, certain plastics, etc. are suitable mold
materials, however, only hardwood and gypsum plaster were considered.

A natural question that might be asked is whether the thickness
changes that must be a consequence of the vacuum-pressing operation are
tolerable. This is a two-sided question. First, what sort of thickness
variations result from such pressing and second, how do shell thickness
variations affect the structural behavior that is to be investigated?
With regard to the first part, preliminary experimentation showed that
models of the selected spherical cap could be manufactured such that
less than + 10% maximum thickness variations could be achieved. This
was considered satisfactory. The experiments themselves are to throw
some light on the second part of the question.

After the shells would come from the vacuum-forming machine,

only trimming would be required to give the finished model.

2.3 LOADING

The loading system for a structural model incorporates the
means of boundary support as well as the actual provision for load
application. In studies involving an elastic instability failure there
are several factors which must be considered. Of critical importance
is the fact that the loading system must not restrain the model. In
addition the load must be applied simultaneously, this being true
whether or not the load is symmetrical or unsymmetrical. Finally, since
the behavior is to be elastic and models are to be recovered for further
testing, some provision must be made to ''catch' the model before it is
destroyed.

One of the heretofore unmentioned reasons for the choice of
the spherical cap as a vehicle to study the model reliability was that
its continuously supported edge makes air pressure loading particularly
easy. The pressure loading will give a uniform loading, will not restrain
the model and will compare with previous theoretical and experimental
results.

Of course, radial pressure does not simulate a gravity loading

unless the shell is very flat. On steep slopes it would be necessary to
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provide vertical load and this is most easily accomplished by hanging
weights. When weights are used to apply load, several potential
difficulties arise, namely: 1) a discrete loading is substituted for a
continuous loading, 2) the loading system may restrain the model and
3) provision must be made for applying the loads simultaneously. To
evaluate the effect of these three factors,a series of weight loading
tests on shells previously loaded by air pressure were planned.

The model shsll geometry .was selected in order that the critical
buckling pressures would be of the order of 1/2 to 1 psi. Air pressures
of 1/2 to 1 psi can be accurately measured using a water manometer. An
adequate vacuum system was available and the apparatus depicted in
Figure 2.16 was planned. For the weight loading tests holes were drilled
through the model on a 1" surface grid and weights were hung from each
string. On the 18 inch radius domes this meant 241 load points. One-
half inch diameter steel weights were available in nominal sizes of 1,
1/2, 1/4 and 1/8 pounds. For smaller increments, tire chain monkey
links weighing approximately 0.026 pounds were used. The handling of
200 pounds in weight loading is tedious and time-consuming but entirely
feasible.

For the boundary supports, the initial thought was to vacuum-
form the domes with &« planar flange around the edge. This edge could
then be clamped between two aluminum rings as shown in Figure 2.17. The
test results with clamped flanges indicated the deleterious effect of
flange clamping; consequently,the flanges were removed and the tests

repeated with the edges encased in a bed of epoxy cement.

2.4 INSTRUMENTATION

Instrumentation was not one of the controlling considerations

in the experimental program. Three things were to be determined: 1)
measurement of the critical pressure, 2) visual observation of the
buckle position and 3) certain attendant geometric measurements such as
shell thickness and shell geometry. A water manometer can accurately
measure the air pressures and for the weight loading one merely counts

the weights. Shell thicknesses were measured with the Ames dial gage
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apparatus shown in Figure 2.18. Edge thicknesses were also measured with
a micrometer and they checked the Ames dial readings. It is difficult to
measure the geometric shape of the model shells. Although it was not used,
a photogrammetric technique would be the most accurate procedure and more
importantly would establish the entire surface. The technique used in

this thesis involved placing an accurately machined template over the
shell until it rode on the high spots. The gap between the template and
the shell was then measured to the nearest 0.001 inch. This was done

along two great circles oriented at 90° to each other.

2.5 INTERPRETATION

The experimental studies contained herein are not intended to
yield information which can be extrapolated to any particular prototype.
Rather, this is a research study to investigate some factors which could
influence the reliability of any single model test. The interpretation
will then be to evaluate the data in light of the questions asked in the

first paragraph of Section 2.1.
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CHAPTER 3

ERROR ANALYS IS

The purposes of this chapter are to point out that any structural
design problem is really probabilistic in nature; to indicate how certain
elementary principles of statistics and probability can be applied in the
experimental design process; and to conclude that, though the statistical
theory is a very powerful tool, the major effort in an experimental
design study should be directed toward eliminating systematic errors
from the experimental result. The emphasis which is placed upon systema-
tic error elimination arises because the theories of probability and
statistics have been developed for random phenomena and experience shows
that many model studies are dominated by systematic errors rather than

random ones.

3.1 STRUCTURAL DESIGN AS A PROBLEM IN PROBABILITY

The basic problem of the structural design engineer is to combine

structural forms and materials in such a way that the resulting structure
wild "safely' resist the environmental influences to which it is sub-
Jjected. Although the concept of safety lies at the very heart of the
design process, it would seem that structural engineers nave not properly
taken account of the fact that the resultant response of a structure

when subjected to various environmental conditions is really a probabilis-
tic problem incorporating the random characteristics inherent in loading,
material strength, structure geometry, etc. Thus if two supposedly
identical structures were constructed, the engineer would not expect
their response characteristics to be identical but rather would expect

to notice some variation in their response. Suppose, for example, that
one was concerned with an ordinary reinforced concrete cantilever retain-
ing wall which was to be placed at various locations along & highway.

The engineer prepares a single design calling for certain heel and toe
lengths, stem thickness, stem reinforcing steel, concrete strength, etc.
and the wall is constructed at seven locations along the highway.
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Table 3.1 describes in & hypothetical way some final conditions at each
location. Several things can be noted with regard to this table. The
stem thickness is not constant, there being relatively small deviations
around what seems to be an average value of about 12 1/8 inches. Likewise
there is variation in concrete strength sbout an average value of 3300
pei. The overturning force which the wall must resist is a function of
the properties of the backfill materials, method of placement, provision
for drainage, etc., snd one should expect from the table that the magni-
tude and distribution of the pressures which are exerted on the seven
walls are perhaps considerably different. The support or boundary condi-
tions are a function of the foundation materisls which again differ rather
widely.

Suppose that a ghort distance further along this highway an
overpass bridge was to be constructed, the abutments of which were to be
faced with an expensive stons facing A retaining wall 18 to join with
this abutment and the architect is quite concerned with regard to the
detzils of the joint. As the engineer, you are asked to estimate the
outward deflection of the retaining wall at this joint. The customary
procedure would be to assume values for the series of pertinent physical
quantities, i.e., stem thickness, concrete modulus of elasticity, steel
medulus of elasticity, magnitude and distribution of applied pressures,
etc. Then a computation would be made using a postulated mathematical
model and a certain specific deflection would be determined - say 3/4
inch. The engineer might then predict that the deflection would be
between 1/2 and 1 inch, where the dispersion about his computed value
of 3/4 inch was rather arbitrarily estimated in such a way as to satisfy
his fears that some of his assumpticns may have been in error. The fact
that the engineer feels the need to state a range implies that he real-
izes the probabilistic nature of the problem even if he doesn't know
how to deal with this nature formally. Alternatively, suppose that the
deflection of the walls of Table 3.1 have been measured. One would
surely not expect that all seven walls would deflect the same amount.

In fact wall 3 would likely fall flat on its face on account of the
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blunder of the construction workers who for some strange reason placed
the main stem reinforcing steel in the front face. The other six walls
might deflect in varying amounts depending upon the factors listed in
Table 3.1 and many other factors not listed. The engineer might attempt
in some way to relate the wall at the abutment to the six remaining
measured walls and in this way predict a deflection based upon the six
previously observed values. If a logical quantitative answer can be
given, then this answer is directly tied to the random (and systematic)
deviations associated with the observations recorded on walls 1, 2, 4,
5, 6, 7 and hence the quantitative answer must necessarily be of the
form that with a 95 or 90 or 60 percent chance of being correct the
deflection will be between 0.6 and 0.8 inches.

To close this introductory discussion, it should be noted that
the model engineer is faced with additional difficulties. Suppose that
he has been asked to determine, by small scale model studies, an estimate
of how much prototype wall number 8 will deflect. He must first decide
what he is going to try to reproduce in the model. Having done this, he
proceeds to make a number of model studies and arrives at a table similar
to Table 3.1, only this time the entries are for model walls -not prototype
walls. He is now faced not with the problem of estimating the deflection
of another as yet unconstructed model wall, but rather with the problem
of estimating the deflection of the prototype wall.

Two points should be made in this regard. First, it has been
mentioned in Chapter 2 that one of the prime advantages of the model or
experimental method of design lies in the fact that one does not need to
know the complete analytical formulation of the problem in order to
proceed with a meaningful model design. For the general model problem
(i.e., including those where the mathematical solution is not known) it
will be shown that the behavior of the prototype cannot be predicted
on a probabilistic basis. On the other hand it is still of great interest
to be able to deduce a ''best" estimate of the prototype outcome, and in
this respect careful model studies can be extremely valuable. Secondly -

and with the previous point in mind - the model counterpart to Table 3.1
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again will be subject to blunder, random and systematic errors. For
design purposes, a result within 10 or 15% would be quite acceptable.
It is particularly important that every effort be made to eliminate
blunder and systematic errors from the model study, for it is these

types of error which may affect results by a factor of 100 or 200%.

3.2 ERRORS IN STRUCTURAL MODEL INVESTIGATIONS

In Chapter 2 it was noted that the structural model analysis
can be considered as incorporating a sequence of five steps, namely:
1) planning, 2) fabrication, 3) loading, 4) recording the data and
5) interpretation and/or extrapolation to the prototype. Errors
may enter in each of these five steps and the following list of
possible error sources is given not with the intention of being

exhaustive but merely illustrative.
Planning

1. Mistake in dimensional analysis
2. Failure to recognize a relevant variable

Fabrication

1. Geometry: thickness, length, etc.
2. Material properties

a. Poisson's Ratio, e.g. V plastics =

3-0.5 whereas
V concrete 2

0.
0.

b. Modulus of Elasticity
(o Complete stress-strain-time characteristics
d. Coefficient of thermal expansion
e. Density
f. Microscopic and macroscopic structure
g. Creep characteristics
h. Initial stresses
Loading
1. Boundary conditions
2. Magnitude of load
3. Direction of load
4. Distribution of load
5. Time history cf load
6. Errors associated with hanging weights at discrete

points to make up gravity load deficiency.
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Recording

1. Electric resistance gages

Incomplete bonding of adhesives

Chemical attack on plastics by bonding adhesives
Temperature compensation

Calibration errors

Inherent recording instrument error

Gage factor error

Transverse sensitivity

Current heating effect on plastic materials

Gage stiffening of plastic materials

-

L= T T =R o T i ]

2. Displacements

a. Judgment errors in smallest division of instrument

b. Support system of recording device not compatible
with magnitude of displacements

Co Ditto circuitry, calibration, etc. errors listed
under electric resistance gages

3. Pressure

a. Meniscus corrections in a liquid manometer

Interpretation

1. One generally measures surface strains and then after
mak ing some assumption such as plane stress, plane
strain, etc., interprets the surface strains in a
two-dimensional way

2. Slide rule error in reduction of data

This listing includes a wide variety of errors, some integration
of which determines what is commonly referred to as experimental error.
In a more specific sense, however, each of the errors listed above may
be considered to fall into one of three general error categories:

1) blunders, 2) random errors and 3) systematic errors.

3.2.1 Blunders. This type of error has no place in
a scientific experiment. They are outright mistakes and should be
eliminated by care and repetition of measurements. Examples of
blunders would be:
Incorrect logic in dimensional analysis
Misreading an instrument

Mistake in dimensional units
Mounting a strain gage in incorrect position
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3.2.2 Random Errors. It is impossible to give a rigorous

operational definition of random; however, the nature of the

concept is associated with the fact that a-random phenomenon is an
empirical phenomenon characterized by the property that its observation
under a given set of circumstances does not always lead to the same
observed outcome but rather to different outcomes in such a way that
there is 'statistical’’ regularity between these different outcomes. In
view of this vagueness, it is not surprising that several meanings have
been advanced for random errors. The differences 1n such meanhings are
rather subtld,however,and one can think of a random error as the
difference between a single measurad value and the "best' value of a
set of measurements whose variation is random. What constitutes the
"pest'' value depends on one's purpose but here the best value will
always be taken as the arithmetic mean of all the actual trial measure-
ments. It should be noted that the algebraic sign of a random error
can be either positive or negative.

Random errors may arise in two rather different contexts.
First, there are mmndom phenomena associated with the statistical
nature of the physical model or the property being measured. For
example, the depth of 1000 18 WF 50 steel beams would not each be
expected to equal the nominal value of 18.00 inches. 1In fact the
steel companies specify a tolerance of = 1/8"90 that one might expect
to find a range of depths, perhaps the great majority lying between
17.9 and 18.1 inches but with an exceptional one falling outside these
limits. Similarly, the yield stress in a certain portion of each of
the 1000 beams would vary over a range of values, perhaps between
28,000 and 48,000 psi. Second, random errors may be introduced directly
as a part of the measuring process. Examples of these errors would be
the variation inherent in estimating the smallest division on some
measuring instrument or the fluctuation in apparent strain due to random

supply voltage changes in an electric resistance gage circuit.
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3.2.3 Systematic Errors. Suppose now that the "best’ nuk .

value of the depth of the 18 WF 50 beams is 17.99 inches. Now
someone comes along with an old ruler graduated in hundredths of an
inch, but the ruler has been used so much that the ends have been worn
very considerably. He measures the 1000 beams and finds a range of
depths between 17.56 and 17.81 inches. It is seen that in addition to
the inherent random error, an error that always has the same algebraic
sign (in this case about - 0.32 inches) has been inserted. Such an
error is called a systematic error.

If the systematic error is always of constant magnitude it
merely shifts the entire range of values either up or down the scale.
If it changes in magnitude during the course of the experiment, the
relation of the measurements, one to another, are altered and little
can be said. In the 1limit, as the changes become more and more chaotic,
systematic error may be considered random.

Other examples of systematic error would be:

1. Improper bonding of electric resistance strain gage

2, Support which offers moment restraint when a hinge is
desired

3. Incorrect calibration of a measuring instrument

4, Use of radial pressure in place of vertical pressure

5., Effect of unknown residual stresses on the buckling of
a compression element

3.3 STATISTICS OF MEASUREMENTS

A rather extensive mathematical theory has been formulated
which enables the engineer to make logical quantitative statements
concerning the behavior of a structural system which is influenced by
random fluctuations. It has already been stated that’'many of the
errors involved in an experimental small scale model study may be of
a systematic nature and hence the model results may not be amenable to
statistical argument. Nevertheless, there are many experimental
phenomena which are random and the model engineer should certainly be
aware of the basic techniques for the statistical treatment of random

phenomenon. More complete treatments of this subject will be found in
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36,37,38,39
numerous books and papersg 33708 a8}

3.3.1 Measurements in Model Testing. Almost all of the experi-

mental data which is collected in a structural models laboratory is
described by a numerical magnitude and as such is“discrete. On the other
hand,structural engineering problems seldom encompass situations wherein
the possible outcomes are discretely distributed. For example, if one
were making a measurement of buckling pressure on some particular thin-
shell model, that pressure is not by nature restricted to have a magnitude
equal to some one of a number of discrete values. It may be that the
measuring system is capable only of determining from among the discrete
values such as 0.254, 0.255, 0.256, 0.257 psi for example, but in fact
the actual magnitude may have been closer to- 0.2554327 or 0.255432756789
or even 0.255432756892742784, etc.. Such problems lie in the domain of a
continuously distributed variable.

If one were to manufacture twenty seemingly identical thin-shell
plastic models and then measure a buckling pressure on each model, one
would not always obtain the same buckling pressure. A typical set of
measurements might be as indicated in Table 3.2. This table can easily
be transformed into a histogram as shown in Figure 3.1 where the block
type of diagram is used to indicate that the measurements came from a
continuous system. It is of ccnsiderable use to be able to quantitatively
describe such a series of measurements with as few terms as possible.
Various possibilities exlist, but the most common and most useful consists
of computing the mean value and the variance. The mean value 1s deter-

mined as
» X
X= =5 (3.1)

and provides a measure of central tendency. The variance is defined

to be the second moment about the mean. Thus the variance
n -

Z (x,-%)2

L=/

rn

se = (3.2)
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provides a quantitative measure of the dispersion of the measurements
about the mean value. The standard deviation is merely the square root

of the variance.

n =no
s (xi-X)
L=t
S§= (3.3)
n

From these definitions one can compute for the measurements of Table 3.2:

4
]

0.250 psi

0.00806 psi

If one were to make more and more models and at the same time were able
to continuously reduce the magnitude of the smallest interval (here
0.005 psi), the histogram of. Figure 3.1 would approach some kind of a
smooth curve. The exact nature of this continuous curve depends upon
the process which is generating the measurements. It is at this point
that the experimental model engineer encounters a real difficulty.
Seldom will he want to make a large number of measurements or tests;
however, tﬁis very lack of a large number of tests makes it difficult
to predict the true probability density function from which the measure-
ments are being drawn. It has been found that many of the experimental
measurements in science and engineering seem to approximate rather well
a law known as the normal probability density function: If it can be
reasonably assumed that a set of measurements has come from a population
governed by the normal probability density function,then many statistical
inferences can be drawn with regard to the phenomenon. On the other
hand, it may be very difficult to establish the likelihood of similarity
between an observed set of measurements and a normal probability density
function. In these cases,it may be useful to employ certain known facts
which are valid regardless of the statistical distribution.

It is hoped that the following two questions can be answered:
1) Of course the mean value X = 0.250 psi of the 20 measurements is

merely the mean value of the small sample of measurements which were
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drawn from all possible measurements. What can be said about the
relation of the mean of all possible measurements (population mean)
to i,and similarly,what about the relation of the population standard
deviation to s and 2) If a 21st measurement were to be taken, can
its magnitude be predicted? To answer these questions one can proceed
from two points df view.

First, it may be desirable to bhe as specific as possible
when extrapolating the finite set of sample measurements to predict the
nature of the universe. In this case it is desired to select specific
values of population mean and standard deviation which are "best". No
truly satisfactory procedure has been devised for accomplishing this
purpose since at some stage it naturally becomes necessary to define
what "best" implies. Ordinarily any procedure for determining what is
"best" is required to yield the true value when the sample size n
increases without limit and to yield the true value on the average when
the number of samples of size n 1s made large. The result most generally
agreed upon states that the '"best' values of the mean and standard
deviation of the entire population cr universe of measurements are given

by

yr ~ X (3.4)

& (3.5)

With these values of A and 0 it is possible to determine, for any
desired probability level, the range within which the 21st measurement
would lie. First, of course, one must make some assumption regarding
the nature of the probability demsity function which is generating

the measurements. If the number of measurements is large, certain
useful tests exist for determining whether the megsurements are likely
to have come from a normal density function; however, such is rarely

the case in experimental design programs. Ordinarily one must simply



assume that the density function is normal or is not normal depending
perhaps on the shape of the histogram. If normality is taken, Table 3.3
permits the determination, for any desired probability level, of the
range within which the 21st measurement would lie. With 95% probability

2 / Xi-X)? _
Xg) =X £/96 —22—‘!—}— = 0.250 £ 0.0/6 psi

If one is not willing to make the normality assumption then
it is always possible to use Chebyshev's Inequality. It is valid
regardless of the governing probability density function and states
that

/
Probability /-/X—/u/ N hd‘]é /—773 (3.6)

where h is any constant greater than 1.

For 95% probability
Probability //Xs,- /€A (000827)]2 e
el /b( he
Thus h = 4.47 and

Xo,= 0250 £ 4.47(0.00827)= 0.250 0037 ps/

It is seen that the bounds given by the Chebyshev Inequality are more
conservative than the bounds which were obtained in accordance with
the assumption that the buckling pressures were governed by the normal
density function. Figure 3.2 indicates the overall nature of the
conservatism afforded by the use of the Chebyshev Inequality and in
particular shows the situation just considered.

When the sample size is small, one can intuitively imagine
that an extra measurement could considerably alter the ''best” estimates
of /u and 0 since X and s' can vary rather significantly for small

n. Since the model engineer will perhaps most often be congerned with
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small samples, the use of "best” estimates should be regarded with
skepticism.

A second alternative which can be pursued in attempting to
answer the two questions employs the concept of confidence limits (or
confidence intervals). As an introducticon, suppose that the assumption
of normality is taken and that one had prior knowledge of (@ . Then
using Table 3.3 it would be possible to determine limits within which a
single measurement would fall as a function of the mean value U. For
example, with a probability of 0.95,a single measurement will fall within
M r 1.96 0 regardless of the value of M. In view of the linearity
of this relationship it must also then be true that the true mean must
lie within x i 1.96 0 , where x is the value of a single measurement.
Figure 3.3 describes the preceding phenomenon graphically. This result
can be extended to the case when the sample consists not a single

measurement but rather of n measurements.
single measurement M=Xt kT (3.7)

n measurements M =X * il f8)
“In

One seldom knows the standard deviation ¢ , however, and consequently
Egqs. (3.7) and (3.8) may be of 1ittle use. In this situation a single
measurement cannot be interpreted, however, two or more measurements
will show some spread about a2 sample mean. This spread can be inter-
preted in terms of a standard deviation s which must bear some relation-
ship to the unknown ¢ . It has been shown in various statistical

books that confidence limits in the aforesaid case can be given by

o ks
n measurements M =) % - (3.9)
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where values for k are given in Table 3.4 and s8' is determined

according to

J S
g,(»\’z-x) (3.10)
n-=1

s'=

It should be noted in Table 3.4 that the values of k listed for n = oo
are in fact the k1 values which would appear in Eqs. (3.7) and (3.8).
Equation (3.9) permits one to specify a confidence limit for
the universe mean as opposed to the "best' estimate procedure which
yielded only a single value. The confidence limits for the 21st
measurement are obtained by adding the limits from the "best'" estimate
procedure to the upper and lower ends of the limiting range just
determined for the mean value. As applied to the 21st measurement, one

obtains for 95% confidence.

ﬁi 207(000827) +00/6 = 0.250 £ 0.020 ps/

It is also possible to take into account, through the Chebyshev
Inequality, the fact that the universe mean may not be the same as the

sample mean. This is done by considering the sample mean, X, as a

random variable and setting

Probability /-/)?_/,4/ < bj; /- (_%nl)z (3.11)

where Sm= = standard deviation of the mean X.
b

= some positive constant greater than §,,

The right hand side can be expressed in terms of s' and it is then
possible to determine, for any desired probability, absolute bounds

on the universe mean. Of course, this additional variation spreads



the final bounds in relation to those obtained by the "best estimate"

approach. Thus

b fist 2 G008 87 e
/n(b) fzo/ : } 0.95

b=0.00827

Xz =[X tb] + 0037 = 0.250 * 0.045

The Chebyshev Inequality provides a conservative bound. The magnitude
of this conservatism increases sharply for high confidence levels.

In summary

"Best estimate'' approach @ 95% probability

X9y {normal)

0.250 + 0.016 psi

Xo1 (Chebyshev) 0.250 * 0.037

96% Confidence Level approach

(normal) 0 250 * 0.020

X2y

X

I

1 (Chebyshev) 0.250 + 0.045

2

3.4 PROPAGATION OF RANDCM ERRORS

In Section 3.3 the concern was with the statistics of
measurements, i.e., with determining the nature of the probability
density function from which the sample of measurements was drawn and
further with determining in a probabilistic way the likely outcome of
an additional, as yet unmeasured, event. There are many cases, however,
in which it is not enough merely to know something azbout the measured

phenomenon. For example, if one wanted tc measure the modulus of
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elasticity of a certain material a customary procedure would be to
measure the load and corresponding strain on a tensile specimen. From

the load, the strain, and the cross-—-sectional area

P

E = Fyx: (3.12)

The question now arises as to whether it is possible to determine
statistical relationships regarding E, where in fact there are no
measurements of the quantity itself. Of course, the intent is to
answer this question for a much more general class of situations than
the simple product relationship in Eq. (3.12).

Suppose that one has a derived quantity which is related
to the directly measured values of several random variables. The

functional relationship might have the general form

Vo= (5 Wy ey X ) (3.13)

It is shown in textbooks that if X1, Xg,..., X, are independent
random variables which are closely distributed about their mean values

then

Vaf (X, Xo,..%Xn) (3.14a)
Dyav e . »

) | (3 14b)
S /5” Bxc) Sxi

where the partial derivatives in Eq. (3.14b) are to be evaluated at
the mean values X;, X2, ... X, and consequently are constants. It
should be noted that the derivation which led to Eqs. (3.14) does
not require a specification of the probability density functions

of the independent random variables. However, having the knowledge

of the mean and standard derivation of the derived variable does not
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imply knowledge of the probability density function of the derived
variable even when thc density functions of X1, X2, ... X are known.
If one wants to know Liiis additicnal information then une must resort
to the use of convolutions, or generating functions or other less
elementary techniques cf the thecry of probability. It may be stated
here that if each of the independent random variables X1}, Xg2,.+:Xp
are normally distributed then it is true that the derived random
variable of a sum or difference of Xl, Xz, e++ Xn is also normally
distributed. A similar statement cannot be made when the derived
variable is a product, logarithm, square root, etc. of the variables
Xyy X9y +++ Xn. On the other bhand it is always possible to fall back
on Chebyshev's Inequality when one cannot easily determine the exact

nature of the probability density function of the derived variable.

3.5 EXAMPLE

Suppose that it is desired to check the design of a slender
prismatic column. The column, which is to be of a linearly elastic
material, is subjected to a compressive force P and it is of interest
to determine the buckling load.

3.5.1 Analytical Solution. The mathematical formulation of

this problem is well known to be expressible as

EET
Feps =

(3.15)
It is seen that the buckling load is a function of three explicit

variables and the constant k depends upon the end restraint. If these
variables are considered to be random variables with known means and

known standard deviations it would be possible to determine the mean

and standard deviation of E.. by utilizing Egs. (3.14). Of course,

it would be highly desirable to be able to readily obtain the probability

density function of P but such information cannot be obtained from the

cr?
theory of error propagation embodied in Eqs. (3.14). Thus Egs. (3.14)
can be used in th's example problem even if the random variables E, I

and 1 each have different types of probability density functions, but
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the equations yield no information regarding the specific probability

density function of Pgp even in the case where E, I and 1 all are normally

distributed. With these limitations in mind one can write

£e %ﬂ. (3.16a)
e 2 = . — o
L ET e (kE 2.2 [2kET )2
r,) ‘/(__52)02- e ) G A ) 7;° (3.16b)

A quantitative probabilistic prediction regarding the critical load
could now be made through the use of the Chebyshev Inequality.

3.5.2 Experimental Solution. If one were tco undertake an

experimental investigation on a small-scale structural model column

as a means of determining the critical load, a dimensional analysis

of the problem should be performed first. It is known that F,., E, I

and 1 are pertinent physical variables whereas the value of the constant
k depends upon the rotational and translational end restraint (T and F
having dimensions of force x length/radian and force/length respectively.)

Consequently, the problem solution must be in the form

EfBer, B L4, T, £ ] =0 (3.17)

By selecting E and 1 as the dimensionally independent quantities

Eq. (3.17) can, according to Buckingham's theorem, be reduced to

P i T F ).
g(#} 44’513’51)'0
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or in the solved form to

i
Pc,--Eéesé(;)El_g ,H)

Of course, in this simple problem it is known that
¢(L A 0N RO
(A ER T EL (4

however, such information cannot be obtained from the dimensional
analysis alone. Thus the model engineer may freely select the model
column length and the modulus of elasticity of the column material. Then

the model restrictions and model to prototype extrapolation are given by

iz g
(_lz-)hvode/ i (L_(')/bror‘ofgpe
T
(E(—s)h?ode/ B (E_{E prototype (3.18)

(ﬁ)mode/ ) (E'L:)/orofofype

(

2
2 prototype © protofype

(P .
£ cdel L mouel (3.19)

profotype = (Fer mode/

Suppose that a polyvinyl chloride plastic model is carefully constructed
according to Eqs. (3.18), If several tests (say 3) are conducted, there
will be some variation between the individual measurements. This
variation is certainly not due to variations in I or 1, but could come
about because of changes in E due to random temperature or relative
humidity changes or because of slight changes in the end conditions, etc.
If a second model were constructed which as nearly as possible duplicated

the first model, three new test results would again show some dispersion
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about a mean value, but in all likelihood the mean value would not be
the same as the mean value obtained from the first model column. If
this procedure were repeated ten times a possible set of results might
be as indicated in Figure 3.4.

The question arises as to how such a set of data can and
should be interpreted, remembering that the real point of interest is
the buckling load of the prototype column. Further, is it possible to
deduce quantitative probabilistic results with regard to the prototype
critical load in the same way that Eqs. (3.16) and Chebyshev's Inequality
allowed in the analytical solution?

First, it is apparent that the results from model number five
must be influenced by some blunder or systematic error. One must be very
cautious about rejecting data but it is assumed here that this model should
be rejected. It is felt that some of the variation within any one of the
remaining nine models may be due to errors in the measuring system (which
have no counterpart in the prototype) and a more realistic determination
of (Pcr)model could be obtained by taking the mean and standard deviation
of the individual mean values of the 9 acceptable models. Of course,
there may be a systematic error present in all models which causes an
equal error throughout. Such an error cannot be suspected merely by

inépcction of the experimental data.

Now it should be noted that Eq. (3.19) was deduced by setting

FPer . /pcr
Fl2 Prafofype— \E(z mode/

But, in light of the equalities of Egqs. (3.18), Eq. (3.19) is certainly
not a unique extrapolation equation. It could be written in several

ways. For example,

: Ep 5 Eplp L5 LbF)
(Per )o "(%r)mz.im =:Pcr/mg-’:;ITf§“ = (Pcr)m{_m'_/_-'i— = efc. (3.20)
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It is clear that all of the terms in the various right hand sides of

Eq. (3.20) are in fact random variables and at this pointi only

(Pcr)podel ha8 been discussed. In this connection it must be assumed that
the relevant information regarding the prototype variables Ep, Ip, lp,

Tp and Fp have been known since the start. With regard to the model
variables one can ask what particular value or magnitude of Ep, Ip, etc.
is to be scaled? Should one attempt to scale the mean value of the
prototype quantity, the most probable value, the value which is exceeded
99% of the time, etc.?

If the scaling laws are applied to the mean values of the prototype
and model quantiti es then Eqs. (3.18) become

(.i - (4
(*/modle/ (4/ prototype

S _ fd

(E[3),,,ode/ 5 (Ef’)pmfo@pe (3.21)
E £

(E[)ﬁmde/ (5-[ )profofype

Now if a single value of the mean of all the quantities except

(pcr)prototype
then all of the possible extrapolation equations i.. Eq. (3.20) will

were known, it is clear that if Egs. (3.21) are satisfied

yield the same result for the mean value of (pcr)protptype'

As far as obtaining a measure of the dispersion of the critical
prototype load about its mean value there is no uncertainty. In
fact it can be seen that even if exact values of the mean and standard
deviation of(Per)m, Em, Imy lm)» Tms Fms ---, Tp and Fp were all known,
the use of Eq. (3.14b) with the various forms of Eq. (3.20) would lead
to differing values for the standard deviation of (Pcr)p. Further, none
of these values would agree with Eq. (3.16b) which is-known to be
correct. Even the second right hand side of Eq. (3.20), which would
seem to be of the correct form, would not lead to a proper measure of

the dispersion of the prototype critical load. This fact can be seen
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by considering the following hypothetical example:

Prototype pin ended column
E = 29,600,000 ps1i . = 002K
I e 34dn r.oo= 0.04 1
I = 150 in. U"l = (O ST

Model
E = 450,000 psi T, = 0.07 E
I = 0.00262 in.” T; = 0.051I
1 = 251 T = 0.021

1
From Eqs. (3.16)
P -
(Pcyr) S ain e 44,100 pounds

U_(Pcr) brototrpel = 2,160 pounds
On the assumption that thousands of models are tested and that the
experimental technique introduces no errors except the random ones

concerning E, I, and 1, the mean value and standard deviation of

(Pcr)model will alsc be given by Eqs. (3.16). Thus

( = 18.6 pounds

P
cr)model

0-l(Pcr) model 1.64 pounds
0f the various possible forms of Eq. (3.20), the second would seem to

be the most proper. Thus

Ey I 12
p ‘p R
= (Pcr)

)

cr

prototype model E“E‘“I”g
m m p

(P



Using this relationship in conjunction with Eqs. (3.14), and ignoring

that (Igr)model is not statistically independent of Ep, Iy and lp, one
obtains

(P..)prototype = 44,100 pounds

O—(Pchprototype = 5,090 pounds

and it is seen that the standard deviation is more than twice what is

known to be correct. If only a few tests had been made and they had been
affected by other experimental errors, the discrepancy would have been

even larger. Since the notion of a confidence limit for the mean value

of any measured quantity depends upon a knowledge of the standard deviation,
such confidence limits for the mean value of the prototype critical load

are subject to the lack of knowledge about the standard deviation.

3.6 CONCLUSIONS REGARDING THE USE OF PROBABILITY THEORY

It has been shown that while experimental results obtained from

structural models can be used to predict something about the average or

mean value of a particular physical quantity in a prototype structure, it

is in general not possible to determine correct results regarding the

possible dispersion about this derived mean value. Thus from one's "best”

estimate of the mean value of the various physical quantities a "best"
estimate of the mean value of the prototype guantity of interest can be
found. Since a correct, or in most cases even an approximately correct,
value for the standard deviation of the prototiype quantity cannot be
obtained, one cannot make reliable probabilistic predictions regarding
the outcome of the one prototype structure which is going to be built.
Ideally, it would be useful to utilize both the mean values and
the standard deviations of the measured quantities in the model. Using
these two pieces of information, confidence limits on the mean value of
the quantity could be determined for each model quantity. When the
engineer satisfies himself (i.e., makes sufficient tests) that these
limits are all sufficiently small, then the "best estimate' mean values

should be used in the extrapoclation equation.

48



Of course, all of the discussion in Section 3.3 -.3.5 has!rather
assumed that at least 3 or 5 or 15 tests have been conducted. Although
such a number of tests is certainly to be desired, perhaps the.,most
serious immediate problem facing the experimental designer is that the
time and cost involved in even a single model may be prohibitive. What
if in the column buckling problem only one model had been tested? What
if it had been column model number 5?7 It has been shown that the only
advantage of fabricating and testing more than one model is to obtain a

better approximation of the true model mean. If the mean is taken to be

the result cbtained from a single model then it is particularly important

that the investigator be convinced of the absence of blunders and major

systematic errors in that single model study. Such systematic errors

can enter into the model results through a variety of means, e.g.,
through the physical means of providing for the boundary supports, through
incomplete bonding of a strain gage, through cementing a strain gage to a
plastic material which is not resistant to the solvents in the cement,
through switching circuits incorporating large switching resistances,
through battery decay in a recording device, througﬁ the use of radially
applied loads in place of actual gravity loads, etc. Blunder and system-
atic error are sometimes indicated by trends in the data, jumps in the
data, a periodicity in the data or changes in precision of the data;
however, when only one or two models are to be studied; such indicators
can seldom be used. Some systematic deviations from the proper course
are knowingly permitted and occasionally the effects of these deviations
can be predicted mathematically. For exampie, it is seen in Figure 2.15
that the assumption of linearly elastic behavior for the instability of

a concrete thin-shell roof may not be completely reasonable. Pah1(40)
has developed a simple mathematical technique with which one can obtain

a bound con the error that could be introduced by the assumpticn of
linearity. On the other hand, many systematic error sources may be
difficult to find. All pessible partial checks should be taken to
uncover systematic errors. For example, it may be poséible to provide

for several static checks within a model. Also, points of known symmetry



and antisymmetry should be checked. Finally, it would be extremely useful

to know that an extensive set of tests had been successfully carried out

on a similar problem using techniques of fabrication, loading and instrumenta-
tion similar to those proposed. Thus, the great background of experience
underlying the use of electrical resistance strain gages on metallic mater-
ials leads one to have confidence in such results whereas results obtained

on foamed plastic materials might be suspect.

Although the example problem of the previous section was concerned
with column buckling, the conclusions regarding model to prototype extra-
polation are equally valid for the thin-shell buckling problem. The
objective of the experimental progrem of this thesis is directed to the
question of whether or not reliable model results can be obtained in thin-
shell buckling problems. Sources of systematic error will receive the
most attention, for all the statistical and ‘probabilistic operations which
have been discussed in this chapter are meaningless if the model result is

in error by a faetor of two or three due to some gross error.
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CHAPTER 4

EXPERIMENTAL INVESTIGATION

The experimental program which is described in this chapter

consisted of:

1,

Fabricating twenty models of an 18" radius spherical cap
from six different molds, and buckling these models
using air pressure loading. Two types of edge restraint

were employed and compared.

Buckling four of the 18" models with a vertical discrete
weight loading. The load grid spacing and edge restraint

conditions were varied.

Fabricating four models of a 36" radius spherical cap from
two different molds, and buckling these models using air

pressure loading.

Making various tests to establish the modulus of elasticity
and Poisson's Ratio of Boltaron 6200 PVC under a variety

of pertinent conditions,

The results of these experiments do provide a basis for answering the

questions posed in Section 2.1.

4.1 PROPERTIES OF BOLTARON 6200 PVC

The uniaxial stress-strain curve for Boltaron 6200 PVC, as

indicated by the manufacturer, is shown in Figure 2.11, As can be seen

in Figure 2.11, the tension and compression behavior of PVC are not

alike even to the extent of having different tensile and compressive

initial moduli of elasticity. From such considerations it can be

imagined that the modulus in bending will be still different, and, in

fact, that is the case. Further, the precise value of the modulus

corresponding to each of the three stress conditions depends upon the

stress level,

temperature level, relative humidity, previous strain

history, previous temperature history, rate of loading, age, etc., In
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view of the very large number of parameters involved, it was not clear at
the start of the experimental investigation whether it would be possible
to state with assurity that the buckling behavior of the model depended
upon a value of modulus of elasticity reasonably close to that which
could be predicted. Plus or minus 5% is meant to be reasonable. Testing
samples under a variety of conditions was required in order to be

certain that variations of modulus in the models were small.

4.1.1 Testing Procedure for Determining Modulus of Elasticity. Since

the modulus does vary depending upon the state of stress, one must first
establish what state of stress should be considered in determining a
numerical value. The bending modulus is the controlling ohe in a buckling
study. For purposes of comparison, however, preliminary tension tests
were conducted, although all control specimens from the model shells
were tested in bending.

It has been explained previously that the maximum stress levels in
the actual tests were expected to be about 500 psi, so one is justified
in seeking an initial modulus of elasticity. Three different testing
techniques were employed in the tension modulus tests, namely: 1) measuring
longitudinal strain with SR~4 foil strain gages, 2) measuring longitudinal
strain with a special extensometer and 3) using a constant rate-of-cross-
head movement tensile tester, and then computing an average longitudinal
strain over the grip length. These three techniques gave values for
modulus ranging from 280,000 tc 666,000 psi.

The tests utilizing electric resistance strain gages were very
simple. Two 1/4" gages were cemented to opposite sides of 8" x 0.66" x 0.032"
and 8" x 0.69" x 0.065" specimens ana the tests were run as shown in
Figure 4.1. Assuming that the strain in the gages is the same as that in
the plastic,one might think that the mdulus of elasticity could be ob-
tained directly from the stress-strain curves which are shown on Plates A-1
and A-2 in Appendix I. Accordingly, values of E = 666,000 psi and 596,000
psi are obtained for the .032" and .065" specimens respectively. Now it

happens that these two specimens were especially chosen such that their
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bending moduli, as determined by a cantilever beam test to be discussed
later, were the same (475,000 psi). From the resulting discrepancy,
from the fact that the manufacturer claims a modulus of 400 - 500,000
psi, and from the previous experience of other investigators, it is
clear that the metallic strain gages significantly stiffen the plastic.
It might be assumed that the SR-4 instrumented system behaves according
to

£ e-["‘plasﬁc Eplastic * (Af)gages-] (3-1)

By testing two samples with different plastic areas, two independent
Eqs. (4.1) can be obtained. Assuming E pjgastic to be the same for the
two samples,the resulting equations can be solved for E pjastic Since
Eplastic and (AE) gages are the only two unknowns. Such a procedure
yields E = 536,000 psi for these two specimens. It is felt that this
value is still too high.

Other tests,such as the one reported on Plate A-9, confirm
the severe stiffening afforded by the SR-4 gages. Scme previous
investigators have attempted to evaluate the stiffening effects4l’42)
but their efforts have been narrow in scope. Although strains are not
to be measured in the buckling model tests of this thesis, it is clear
that stress distribution studies of thin plastic shells by means of
SR-4 measurements may be considerably in error due just to gage
stiffening.

The second technique employed a special extensometer developed
and used in the M.I.T. Plastics Research Laboratory. The extensometer,
which is shown in Figure 4.2, is used in conjunction with the prototype
Instron Tensile Tester in the Plastics Research Laboratory. Stress-
strain curves were obtained on 6 specimens, three oriented psrallel to
the direction of calendering during. manufacture and three perpendicular.

These curves are shown on Plate A-3 from which it is seen that the

initial modulus is approximately 650,000 psi.
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The final tensile testing technique employed the Instron Tensile
Tester shown in Figure 4.3 without any gage. A constant rate-of-
crosshead movement can be converted to an average strain over the grip
length. A typical raw data sheet from such a test is shown in Plate A-4,
It is apparent that the grip length is critical since apparent moduli
vary from about 280,000 psi for a grip length of 2 inches up to about
450,000 psi for a grip length of 20 inches. A summary of the results
from six test samples is shown on Plate A-5. Assuming that the local
end effect would be insignificant if a grip length of infinity were
used, one could extrapolate the given results back to the infinite sample
length. A modulus between 400,000 and 500,000 psi results from such an

extrapolation.

As a means for obtaining the bending modulus, the deflection of a
cantilever beam was measured., Figure 4.4 shows the clamping of the
specimens. The procedure for testing was established after considering

the effects of:

1. Poisson's Ratio (since beams 0,03 inches thick were used,

plate action must be present)

2. nonlinearity (when deflections exceed the thickness

nonlinearity may be important)
3. end fixity

Plate A-6 presents results of cantilever beam tests on 0.698" x 0.0304",
0.372" x 0.0306" and 0.296" x 0.0302" specimens. The smaller specimens
were obtained by splitting the 0,698 inch specimen. A load was applied
at 3 inches and the deflection measured at 2 inches with a 0.001 inch
micrometer. A Poisson's Ratio effect was observed. As a result of

this test, and other similar tests, it was concluded that the modulus

as determined from a specimen 0.7 * inches wide should be multiplied

by a factor.of.0.96.
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In order to obtain deflections which were large enough to

be an order of magnitude larger than the inherent error in the micro-

meter measurement, the domain of large deflection is entered. Euler§43)
in his original studies of elastic curves, employed the exact curvature
expression, which for the cantilever beam leads to the governing load-

deflection equation

"

2T SR
ET (1 + %)% = Px (4.2)

where P = concentrated load
= distance measured from concentrated load, positive
in direction back toward the fixed end
y = deflecticon, positive downward

/A' = end deflection

Euler integrates Eq. (4.2) by series and shows that

6Era’ = pL2 (2l -34') (4.3)

Of course, if the 3A' on the right hand side were neglected;, Eq. {(4.3)
would reduce to the well-kncwn cantilever beam deflection formula.
When deflections of 0.075 inches are induced at a distance of 2 inches,
Eq. (4.3) would predict that the nonlinear effect is approximately
5%,and then the computed modulus is 5% too high. Plate A-7 shows the
results of tests which were conducted to investigate nonlinearity {(as
well as end fixity). It is seen that deflecticns varying from 0.20

to 0.03 inches did not appear to lead to different computed moduli.
Surely Eq. (4.3) must be correct,but it is important to note that in
Eq.(4.3) £§ is the vertical deflection of a certain point. A
horizontal movement accompanies this vertical deflection. Experimentally
A' was not measured,but rather a deflection A corresponding to the

vertical distance between a certain point in the undeformed beam



and some other point directly below it in the deformed beam. /A must be
larger than A' and, consequently, it tends to cancel the 5% nonlinear
effect predicted by Eq. (4.3). For engineering purposes,it is felt that
the proposed procedure is satisfactory No compensation is made for the
nonlinear effect.

Finally, it remains to consider whether absolute end fixity can be
obtained. No test could be devised which would prove that full fixity was
provided. Plates A-7 and A-8 and the generally consistent results obtained
throughout all the control specimen testing for the model shells (see
Figure 4.5) would indicate that full fixity was obtained. Henceforth, full
fixity was assumed.

In summary, the bending modulus for the model control specimens was
to be computed from the deflection at 2 inches on a 3 inch cantilever
beam. The applied load was 5.93 and 47.1 grams for the 1/32 and 1/16 inch
samples respectively. A value of E was computed using the elementary
beam theory, and then this value was multiplied by 0.96 in order to
account for the Poisson's Ratio effect.

It should be mentioned that the 5.93 grams,acting at 3 inches on a
0.7 x 0.03 inch specimen,causes a maximum stress of 445 psi,or of the
same order of stress magnitude to be expected in the model just prior to
buckling.

4,1.2 Summary of Modulus Test Samples Taken for Shell Models. For

each shell model,four test samples were made and tested as cantilever
beams. These samples were taken from the edges of the vacuum-formed
sheet, two in each direction. Figure 4.5 brings all these tests on to
one graph. It is apparent that the manufacturing quality control of the
PVC sheets is very good.

4.1.3 Directional Properties of Manufactured Sheets. Since Boltaron

6200 PVC sheets are manufactured by a calendering process, the mechanical
properties may vary with direction. The stress-strain curves obtained
using the M.I.T. extensometer (Plate A-3) show a definite orientation
effect,but fortunately there appears to be only about a 3% difference
between the modulus of elasticity parallel to the calendering direction
and that perpendicular to it. Figure 4.5 indicates the orientation
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effect which was noted in the cantilever beam tests. The errors in the
cantilever beam tests sometimes exceed the orientation difference, so
that in only 9 of the 20 model shells do both of the parallel moduli
exceed the perpendicular moduli. On the other hand, the 40 parallel
samples gave an average modulus of 454,000 psi compared to 447,000 psi
for the 40 perpendicular samples. The average values thus differ by
only 2%.

Perhaps it should be indicated that one cannot visually determine
which direction is the calendering direction. Such a determination can
be made by heating the samples to about 350°F, which is considerably above
the desired vacuum-forming range. At such high temperatures a significant
shrinkage occurs in the calendering direction. Thus, one does not know
which direction is which until after the tests have been completed.

4.1.4 Effect of Annealing Temperature on Bending Modulus. To

determine the effect of annealing on the bending modulus, samples were
heated in an oven up to a temperature of 400°F. The results of these
tests are shown in Figure 4.6. They indicate a slight relaxation as the
annealing temperature increases, but the change from no annealing to the
extreme of 400°F causes only a 15-20% decrease in the modulus. Over the
vacuum-forming range, the modulus variation is only about 3%.

4.1.5 Effect of Vacuum-Stretch on Bending Modulus. In the model

domes formed over a male mold, it was observed that the plastic underwent
no stretching at the top. As the plastic was pulled down over the mold,
the amount of stretch increased very gradually as the distance down a
meridian increased. Around the edges the stretch was nearly biaxial and
approximately 12%. To investigate the possible effects of such stretching,
a model was vacuum-formed over a 4" x 4" x 7" high block of Plexiglas. From
this model, samples could be taken which had undergone various amounts
and directions of stretch. The results of these tests are shown in
Figure 4.7 and are self-explanatory. Applying the results to the model
domes, the edges of the domes formed on a male mold and the center of
those formed on the female mold may have an effective modulus of elasti-
city 5 to 10% lower than that existing in other parts of the shell.

The modulus test samples for the shell models were taken from the

corners of the plastic sheet and therefore did not undergo any stretching.
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4.1.6 Effect of Aging on Bending Modulus. To investigate whether

the bending modulus might change with time,the modulus samples for model
shell 4-1 were placed in the laboratory and tested from time to time over
a period of 311 days. From the results in Figure 4.8 it can be concluded
that for the period of time over which tests were conducted there was no
significant change in the bending modulus of elasticity.

Visual observations indicate a reduction in ductility with time.
However, since ductility is not important in an elastic stability study,
no quantitative measurements were taken.

4,1.7 Effect of Environmental Conditions on Modulus. The dependence

of modulus of elasticity on temperature which is shown in Figure 2,13 has
been furnished by the manufacturer. In the 70 - 90°F temperature range
the modulus of elasticity decreases at the rate of about 1000 psi/°F. The
Laboratory for Structural Models in the Civil Engineering Department does
not have temperature control and so there was usually a temperature change
between the time when the modulus of elasticity specimens were tested and
the time when the model shells were buckled. From all temperatures
recorded in the test data tables of Appendix B it is seen that the maximum
temperature difference between modulus test and buckling test is 11°F,
Even though the modification would be at mst 3%, the values of modulus
of elasticity obtained from the bending tests were modified by 1000 psi/°F
for the differences between temperature at the time of modulus determina-
tion and that at the time of buckling test.

The effect of relative humidity on the modulus of elasticity is
unknown, although it is felt to be small. There was no control of a
measurement of relative humidity during the buckling tests.

The Instron Tensile Tester afforded a means of obtaining data on the
effect of strain-rate upon the modulus of elasticity. No pattern of
strain-rate influence upon the modulus of elasticity could be noted from
all of the data leading to Plate A-5. Any effect must be small.

4,1.8 Creep Characteristics. In Section 2.1.2 some consideration

has already been extended to the problem of creep strains. It is often
assumed in model tests utilizing plastic materials that the plastic
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2
exhibits an effective modulus that decreases with time.( 6) For tests

involving strain readings,it is customary to take readings 10 or 15
minutes after load application. Buckling tests offer no such possibility.
In a buckling test that does not allow the entire critical load to be
applied instantaneously, the test is really one of creep buckling. Any
time delay can only decrease the magnitude of critical load.

Experimental investigations aimed at deducing creep characteristics

(44)

demand extreme care. O'Conner and Findley have studied tensile and
compressive creep characteristics of Geon 404, a rigid PVC manufactured
by Goodrich Rubber Co. At stress levels of 1000 and 2000 psi they found
creep strains equalling 5% of the initial strain after 1 hour and 17%
after 500 hours. In a buckling study, where the loads are applied in 2
or 10 or 60 seconds, it would appecar that the effects of creep are slight
indeed.

To lend credence to O'Conner and Findley's tests,a crude tensile
creep test was performed. Using the same specimens which served for the
Poisson's Ratio tests to be discussed later,creep tests at approximately
1000 psi were conducted for 200 minutes. Although "noise"” in the
recording system made precise readings difficult, the results shown in
Figure 4.9 show that the creep strains in 1 hour were less than 4% of the
initial strain.

Since air pressure loads were to be applied in less than 30 seconds
and weight loadings almost instantaneously, creep strains should not be
important. Air pressure tests,with time to critical pressure varying from
10 to 180 seconds,showed no pattern of pressure change, so a time to
buckling of 15 to 30 seconds was adopted and maintained in all air pressure
tests. After the buckling pressure had been determined,it was possible to
load a model to slightly less than the critical pressure and then to wait for
buckling to occur. Buckling times were erratic, indicating that variables
such as temperature, relative humidity, air currents, etc. would have to
be very carefully controlled in order tc use plastic models in studies of

creep buckling.

(4]
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4.1.9 Poisson's Ratio., Poisson's Ratig for engineering materials

varies from about 0.18 for concrete up to 0.50 for some rubber materials.
Plastic materials have Poisson's Ratios varying from about 0.35 to 0.50.
Since Poisson's Ratio is a pertinent physical quantity in an elastic
buckling study, a test was conducted to obtain a reasonable value for
Boltaron 6200 PVC in the 0-1000 psi stress range. Using specimens such

as that in Figure 4.10,and a test setup such as that in Figure 4.1, the
data for indicated longitudinal vs. transverse strain is shown on Plate A-9.
Using these results, a value of J = 0.38 was used for the interpretation

of all shell model tests.

4.2 18" RADIUS DOMES SUBJECTED TO AIR PRESSURE

Twenty shell models from six molds were fabricated and tested. The
experimental procedure and results obtained are included in this section.
For identification purposes, shell 3-2 indicates that the model was the
second one pressed on mold #3.

4,2,1 PFabrication and Testing Procedure. Six molds were made for

this series of tests. Mold #1 was of wood,with an epoxy paint coating,
and was made in a pattern shop. The intention was to compare such a
"professionally” finished mold with later homemade plaster molds. The
plaster molds were constructed using gypsum plasters. Hydrocal A-1l1,
Hydrocal B-11 and Ultracal 30 were used, the changes being made only
because of successively better tooling characteristics. The holding base
and screed are shown in Figure 4.11,and a finished mold in Figure 4.12 .
The finished mold is placed in a vacuum press shown in Figure 4.13.
Figure 4.14 shows diagramatically the steps involved in this vacuum-
forming process. A shell model as it comes from the vacuum-forming
machine is shown in Figure 4.15.

In the first tests, the edge restraint was obtained by clamping the
flange as shown in Figure 2.15. This procedure was later abandoned, and
the edge restraint was made by embedding the shell edge in an epoxy glue
(EP-F Epoxy Cement, Schwartz Chemical Co., New York). A model with the
edge flange is shown in Figure 4.16, while one with the flange removed
is shown in Figure 4.17. A typical glued edge after removal from the
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test equipment is shown in Figures 4.18 and 4.19. In order to get a
quantitative measurement of the edge restraint furnished by such a glue
fillet, cantilever beams were fixed in a similar manner. By comparing
the deflections with those which had been observed in the "standard"
cantilever beam tests, a measure of end restraint could be determined.
The samples were glued, tested, removed, reglued and tested again. The
data is recorded on Plate A-10. It was concluded that essentially full
fixity is obtained by the gluing procedure. It should be noted, however,
that the epoxy was flexible, having a modulus of elasticity of perhaps
50 - 100,000 psi,as opposed to the rigid epoxies with their moduli of
500-700,000 psi. The one convenlent fact regarding the flexible epoxy
glue was that it wasn't a very good glue and could be removed without
damaging the model shells.

Model shell thicknesses at 41 different surface points were measured
with a micrometer and the Ames dial arrangement shown in Figure 2.18, .

It was noted in Figure 2,15, and will be seen again later, that the
membrane compressive stresses at the point of shell buckling were of the
order of 250 psi. In the theoretical column buckling problem, residual
stresses are of no consequence unless the sum of the residual and applied
stresses exceeds the linearly elastic stress range, If such reasoning
is directly applicable to the shell buckling problem, then residual
stresses in the plastic model shells would have to be very large in order
to have any appreciable affect. On the other hand, there is really no
reason to suspect that residusl stresses affect shell buckling in the
same way as they affect column buckling. In order to get an impression
of the possible magnitude of residual stresses in the plastic shell
models, three of the tested shells were cut along a great circle, and no
shape change was noticed. The half-shells fitted snugly onto the uncut
shells. For & quantitative measure, SR-4 rectangular rosettes were
glued to the top and bottom surfaces of shell 6-1 at the crown and at
one position along the edge. The rosettes were then cut out and the
strain changes were recorded. The resulting data is recorded in

Plate A-1l. Preliminary experimentation indicated that gage heating,

61



cutting, and handling problems would limit the accuracy of the strain
readings to * 30 microinches/inch. Although the observed strains were
of the order of the inherent error, it can be said that the residual
stresses are of the order of 50 psi or less. Thus, residual stresses
may be of the order of 10% of the stresses induced by the buckling load.
The test equipment which was described in Figure 2.14 is shown in
Figure 4.20. Just prior to testing, the geometry was checked with a
template as discussed in Section 2.4. Figures 4.21 and 4.22 show a model
just prior to buckling and just after buckling. No high-speed photographs
of the buckling process were made - Kloppel and Jungbluth(ls) and Schmid%45)
having already presented such information. Temperatures were measured at
the time of each test, but no measurement was taken for relative humidity.
The loading time varied between 15 and 30 seconds. For each test condi-
tion the shell was buckled, was relieved and allowed to rest for 30
minutes or longer, was buckled again, was relieved and allowed to rest
for 30 minutes or longer, and was buckled again. The three buckling
pressures, without exception, repeated almost identically. Then the model
was removed from the testing fixture.

4.2.2 Data. A summary of factors attendant to each of the twenty

model shells and the data regarding the buckling capacity of the shells
is presented in Appendix B.

4,2.3 Results and Conclusions. The results from the twenty shell

models are shown in Tables 4.1-4.3 and Figures 4.23, 4.25, 4.26 and 4.27.
Table .1 merely summarizes some of the data. Without exception the
buckle position was near the top. The location and repeatability of
buckle positions are shown on the shell thickness diagrams in Appendix B.
The classical theory for the complete sphere states that pcp/E is
proportional to the second power of t/R. Even if one goes over to the
classical theory as applied to shallow spherical caps, it is seen that

for the twenty shells

7
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Thus, even if one thought that such shells as are tested here could be
treated as shallow, the predicted critical pressure would likely be very
close to that predicted for the complete sphere.

Figure 4,23 compares the correlation of the data for the epoxy
cemented edges when the shell thickness is taken to be that in the
vicinity of the buckle position and to be the average thickness over the
entire surface area. Theoreticians in the past(12’14) have felt that,
since the buckling of the dome occurs by a local dimpling in one isolated
spot, the entire phenomenon was a local one. If this were true, the
correlation of Figure 4.23 should be better for the thickness in the
vicinity of the buckle. Since this correlation is poor relative to that
for the average thickness, it is clear that the restraint which the
remainder of the shell offers to the local buckled area is important.

Of more importance to this study is the fact that Figure 4.23 sheds some
light on the question of what thickness should be used in the model-
prototype scaling relationships dictated by dimensional analysis. There

is a danger, of course, in attempting to apply the results of this res-
tricted study to all thin-shell buckling situations; but it does seem reason-
able to conclude that, for those situations governed by so-called local
buckling, the average shell thickness should be used in the scaling relation-
ships.

Another curious fact regarding Figure 4.23 is that the data for aver-
age thickness plot on a slope of 2.9/1 Thus, Pcr/E is more nearly pro-
portional to the 2.9 power of t/r than to the second power as predicted
by theory. Some people would try to explain this by saying that imperfec-
tions are what cause experimental buckling pressures to be lower than
theoretical pressures, and then surmising that the imperfections present
were less significant the thicker the shell.

When the test data of all investigators of cylindrical tubes and
spherical caps is plotted, there is a definite trend of increasing
discrepancy between classical theory and experiment the larger the R/t

ratio. 1In 1934 Donnellcll)

had postulated that the difference between
experiments and classical theory was due to initial imperfections. He

later ex*tended this concept by using a relationship between the initial

63



imperfection and the buckle geometry. This combined relationship, which
he named the ''unevenness' factor, Uo, allowed the derivation of a rela-
tionship between pcr/Pclassical 8nd UgR/t¢ . Donnell found it necessary
to determine U, 1in order to fit his theory to any test result, but his
theory did lead to larger deviations from classical linear theory for
larger and larger R/t ratios. Gerard and Becker(46) extended the
"unevenness" concept to spnarical shells by empirically fitting a curve

17
to the test results of Kaplan and Fung(. ) They propose that

Up = AoS

where U, = 'unevenness" factor

Ao = ratio of the amplitude of the equivalent
imperfection sine wave to the shell
thickness. This theoretically includes
not only geometric imperfections but
also residual stresses, material aniso-
tropy, and loading eccentricities.

S = '"sensitivity" factor which measures the
sensitivity of the imperfection in terms
of the buckle wave lengths.

and compute Uy for each of Kaplan and Fung's test shells. Then the
empirical curve shown in Figure 4.24 can be drawn. On the assumption
that the "unevenness'' concept is valid, the present test results are
compared to the ''unevenness' theory in Figure 4.25. It is seen that any
test result can be "explained" by choosing the proper value for Ug. On
the other hand, no single value of Up fits the trend of the experimental
result. It must be pointed out that the first tests conducted were for
the thinner shells, and then, progressively thicker shells were tested.
Perhaps the experimental technique did improve throughout the course of
the program, but it is felt that this technique did not improve by the
factor of 2 (0.000040 < Up < 0.000075) which would be required to explain
the trend line on Figure 4.25.

In a design study, the ultimate goal is to extrapolate the model
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result to the prototype. If the '"unevenness" concept is correct, it
would be proper to have the same unevenness in the model as would be
encountered in the prototype. Due to the nature of the "unevenness"
factor, it would be impractical to predict its prototype magnitude even
for the spherical cap,let alone some complex form. Any amount of error
involved in going from a model result to a prototype would be indetermi-
nate and dependent upon factors beyond the control of the engineer. At
the present time it would have to be incorporated into the safety factor.

The test results are also shown in Figure 1.7b where they can be
compared to the results of other investigators. Again, it is noted that
for the thicker shells the results more nearly approach the theoretical
value.

Now the primary reason for making these tests was to clarify whether,
and to what extent,the critical elastic buckling pressure is repeatable.
As mentioned previously, the pressure is almost exactly repeatable for
any model if the support condition is absolutely identical. If the model
is removed from the test equipment and then remounted and tested again,
the pressures do not repeat identically. Table 4.2 shows the results of
successive tests. The results for the clamped flange tests on shells 1-1
and 1-3 are included since the clamped edge for the series 1 shells seemed
to give results in close agreement with the tests incorporating epoxy
edges. For the tests with epoxy cemented edges, the maximum change occurs
for shell 5-1 where, between July, 1962 and March, 1963, the critical
pressure increased 13%.

Figure 4.26 deals with repeatability from one shell to another and
from one mold to another. With the exception of shell 5-1, the repeata-
bility is very good not only within any one mold but also from mold to
mold. The apparent trend of increasing values of the experimental/theoreti-
cal pressure ratio from mold #1 up to mold #6 is felt to be due primarily
to the variation in shell thicknesses.

In sum, it can be concluded that for any one shell, the buckling
pressure is repeatable to within 1% if the boundary conditions are abso-

lutely identical. If a shell is removed from the testing rig and then
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remounted and tested again, the buckling pressure is usually repeatable
to within 1% although variations of 15% are possible (see Table 4.2).

In passing from one shell to another made from the same mold, variations
of 0-10% could be axpébted (see Figure 4.,26). Finally, in passing from
a shell made from one mold to another made on a different mold, pressure
variations of 0-20% are encountered (see Figure 4426  and discount thick-
ness variation effect or see Figure 4.23). If it had not been for shell
5~1 (and later shell 101-2), the maximum variations would have been much
smaller. On the other hand, there was nothing about shell 5-1 (or 101-2)
which would indicate that it was unreliable, and therefore, it must be
included.

To be sure, the phenomenon of elastic instability of thin-shell
structures is very delicate. The scatter in Figure 1.7b attests to this
fact. On the other hand, the results just stated indicate that the sen-
sitivity is not so great as to cause wide scatter in repeated tests, It
is felt that much of the scatter obtained by some investigators and that
existing from one investigator to another is the result of systematic
errors - the most important being in the end restraint conditions. Almost
all previous experiments with spherical caps were conducted on very shallow
shells. 1In such shallow shells, edge disturbances penetrate throughout
the entire shell. Even though the present shells are not shallow,

Figure 4,27 shows what serious changes can be effected by a change in edge
restraint conditions. Obviously, flange-clamping introduced a significant
edge bending which caused a premature instability to arise at the shell
edge. All of the series 2, 3 and 4 flange-clamped shells buckled at the
edge. The edge effect was due to a small fillet that occurred at the
shell-flange junction of the models formed over green, relatively cold,
plaster molds. The wooden mold #1 did not cause such rapid cooling of the
plastic, and as a result, the transition from flange to shell was sharper.

One final observation concerns the question of whether thickness
variation has a significant influence on the critical pressure. Table 4.3
summarizes thickness data, Series1l, 2, 4, 5 and 6 shells, being formed
on & male mold, had maximum thicknesses near the top. On the other hand,

the series 3 shells were formed into a female mold,and maximum thicknesses
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occurred near the edges. Restricting one's attention to the behavior of
the matched mold series 2 and 3, some important points should be noted.
The buckle position always occurs near the top, in series 2 at a
place having a thickness greater than the average thickness and in
series 3 at a place with a less than average thickness. It is not clear
why some of the series 2 shells (and others which were thinnest at the
edges) did not buckle at the edge. The first explanation is that the
epoxy edge condition prevented the buckling. On the other hand, later
vertical weight loading tests led to edge buckling in all cases. For the

vertical weight loading condition, the meridional membrane stress result-

ant at the shell edge is 7% greater than that at the top; however, the
edge membrane stresses in the radially loaded series 2 shells are about
15% greater than those at the top.

In spite of the lack of understanding about the buckle position,
the magnitude and distribution of thickness variation in the series 2
and 3 shells did not have an effect upon the correlation of buckling
pressures and average thickness. The magnitude of the total thickness
variation in the series 2 shells is about twice that in the series 3
shells and the nature of the variations are reversed, i.e., where the
series 2 shells are the thickest, the series 3 shells are the thinnest,
and vice versa. These results indicate that thickness variations are not

the controlling factor in thin-shell buckling models and this fact is of

great importance to the model fabricator.

4.3 AIR PRESSURE VS. DISCRETE WEIGHT LOADING

For the laboratory test, fluid pressure loading is relatively easy
to mobilize and measure. Unfortunately, a normal pressure loading is
most unusual in practical thin-shell roof constructions. Of course, if
the shell is flat enough, then one can perhaps approximate a gravity
loading by a normally directed one. In another vein, the mobilization
of fluid pressure loadings on structural models demands either that the
boundary be continuously supported or that the shell shape be compatible
with the use of an air bag system. Therefore, the model requirements

often demand a departure from the pressure concept. Even though the
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amount of, and tedium of, the work involved becomes larger, the use of
hanging weights has several advantages. Hanging weights do simulate
gravity load, they do not demand any particular type of boundary support,
they permit unsymmetrical and partial loadings to be applied and they will
not restrain the model. On the other hand, hanging weights imply a dis-
crete loading rather than the desired continuous system and require some
kind of attachment mechanism which could influence the structural behavior.

Four of the twenty 18" radius air pressure models were loaded by
hanging weights in order that the buckling behavior under air pressure and
discrete vertical weight loading could be compared. Consideration was
also given to conducting an intermediate test with discrete radial loads.
Difficulties in devising and constructing an appropriate radial system led
to the abandonment of this step.

4.3.1 Weight Loading Testing Technique. The primary difficulties in

designing an acceptable support system for a hanging weight test arise
from the fact that there must be a load on - load off device. The time and
spatial discontinuities inherent in the addition of load increments must
not be allowed to influence the model. Further, it is greatly to be
desired that some provision be made to ''catch” a buckled model before it
is destroyed.

To meet the above requirements, the wooden mold #1, which was used to
form the series 1 models, was adapted to support the models before loading
and to “catch' them after buckling. Figure 4.28 shows the mold, with holes
at a 1" surface grid, as it fit into the testing structure. Raising and
lowering of the mold was accomplished through two oil-hydraulic jacks.
When the mold was in the raised position, the model would bear directly
against the mold and be supported by it. When in this position, load
increments could be added or taken away. To load the model, the jacks
could be lowered at the rate of about 1/2 inch per minute. The load would
be gradually and uniformly transferred to the model. If the model buckled
under the load, it would simply follow the mold down. If buckling was
observed, the mold was raised again until the load was removed from the

shell., The 3/4" plywood, to which the model edges were epoxy cemented,



merely separated from and beared upon the supporting structure when the
model load was off and on respectively. Figure 4,29 shows the entire

systen.

4,3.2 Results and Conclusions. The information obtained from these

tests concerned three things, namely: 1) the effect of load grid spacing,
2) the effect of boundary condition changes and 3) the manner in which the
buckling behavior compared to the air pressure tests. Weight increments
of 0.525, 0.264, 0.136 and 0.026 pounds were used. An account of the
tests and data from them are contained in Appendix C. Buckle positions
are shown on the shell information sheets in Appendix B.

Load application corresponding to three different grid spacings was
applied. First, 241 holes, 0.043 inches in diameter, were drilled through
the models on a 1 inch surface grid. Strings were passed through the holes
and connected to one of the three-legged loading pads shown in Figure 4.30.
The rubber legs are sufficiently flexible so that the loading pad does not
stiffen the model. Loading shell 1-1 through the 241 load pads, as shown
in Figure 4.31,1led to a critical load of 0.536 pounds per string. The
loading pads were then removed, and with the string knots bearing directly
on the shell as in Figure 4.32, the same critical load was obtained.
Finally, when the load was applied over a two inch grid, the deflected
shape prior to buckling was so distorted that the shell no longer corres-
ponded to a spherical dome. These deformations are shown in Figure 4.33.
Surprisingly enough, this load pattern sustained 2,247 pounds for each
of the 61 strings - or more per unit area than the two previous load
conditions., It is felt that the number of load points must be sufficient
to insure that severe local dimpling does not occur prior to buckling.

For the present R/t ratio (= 650), both the direct 1" grid and the 1" grid
with loading pads are satisfactory. Larger grid spacings could be used
for smaller R/t ratios.

For the air pressure tests, a significant buckling pressure change
was noted when the technique for supporting the edge was altered from
flange clamping to epoxy encasement., On the other hand, with epoxy

encasement, variations in the size of the epoxy fillet had no effect on
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critical pressure. Since all buckle positions were near the top of

the shell in the air pressure tests, there was no assurance that
variations in the size of the epoxy fillet would not be crucial when
the buckle position was at the edge - as was the case for the hanging
weight tests. Results with shell 1-1 confirmed the doubt. The "normal"
epoxy fillet which was used for all air pressure tests (except those
where deliberate changes were made to see if the results would change)
is shown in Figure 4.18. Using a 1" grid spacing with loading pads,and
a slightly smaller than "normal"” fillet, shell 1-1 buckled at the edge
under a load of 0.400 pounds per string or psi. The top or exposed
portion of the fillet was then carefully stripped away, and then, a
retest yielded a critical pressure of only 0.264 psi. The shell was
removed and recemented with a slightly larger than "normal” fillet.

The buckle position remained the same, but now the shell would hold
0.536 psi. Thus, the edge condition is extremely critical. Like any
two part epoxy, the stiffness of the cured resin depends upon mix
proportipns and environmental conditions during cure; consequently,
epoxy hardness variations could also affect the result.

Table 4.4 summarizes the test data. Comparison of the membrane
stress state for radial and vertical pressure (Figure 2.2) shows that,
unlike the radial case, vertical pressure leads to a varying meridional
stress. At the apex of the dome, the meridional stress for radial and
vertical pressure are equal, but the vertical pressure stress becomes
relatively larger as one goes down the sphere. For the particular
opening angle of the tested shells, the increase is 7% at the shell
edge. On the assumption that the meridional stress is much more signi-
ficant then the circumferential stress, the air pressure critical loads
are "normalized" by the factor 1.07. Comparing the vertical weight and
alr pressure results on this basis, the weight tests gave pressures 21,
6, and 1 percent larger and 12 percent smaller.

All four of the tested shells buckled, initially, at the thinnest
spot around the shell edge. As the ''catching' mold sank lower and lower,
separate buckles would occur cver the entire shell. Figure 4.34 shows

the buckle as the shell follows the '"catching'" mold.
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According to the behavior of shells 1-3 and 3-1, the degree of edge
restraint has a much more significant effect on buckling pressures than
do thickness variations. Shell 1-3, which is thinnest at the edge, buckled
at the edge under a load 21% greater than the radial critical pressure.
Shell 3-1, formed into a female mcld, was thicker at the edge than at the
top, yet shcwed only a 6% increase over the radial pressure. Likewise,
shells 1-3 and 4-1 have similar thickness variations, yet shell 1-3 showed
a 21% increase while shell 4-1 showed a 12% decrease.

In order to see if the drilled holes had any effect in reducing stiff-
ness, shell 4-1 was retested under air pressure. The holes were filled
with plasticene clay as shown in Figure 4.35. The resulting air critical
pressure was even higher than it had been before, increasing from 0.792
psi up to 0.862 psi. A second retest gave 0.897 psi. Thus, if the holes
caunse a significant stiffness reduction, this reduction was masked by
unknown factors.

Two important conclusions can be drawn from the hanging weight tests.
First, it is apparent that buckle position is sensitive to load direction.
How,and to what extent, the buckle position affects critical buckling
pPressure is unknown, but it is recommended that prototype gravity loads be
reproduced as gravity loads in a model unless the shell is very flat. In
this way the model behavior will at least be occurring in the right place,
and this behavior may alert the model investigator to possible sources of
systematic error.

Secondly, the scatter in the results of the hanging weight tests is
far greater than that experienced for the ailr pressure tests. This scatter
is surely caused by the variaticn in edge restraint. An apparently defec-
tive can of epoxy glue was used for the weight tests, and relatively large
variations in epoxy hardness resulted. This situation, coupled with the
fact that the shell wanted to buckle right at the edge, was serious. In
the weight tests, then, the edge condition is even more critical than in
the air pressure tests - and in the air pressure tests it will be remem-
bered (Figure 4.27) that pressure changes of almost 100% were caused by
changes in edge condition. The conclusion is that any buckling model
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must reproduce as nearly as possible the prototype boundary condition;
and 1f the prototype condition is uncertain, then provision should be
made for alternate model tests in which the possible protatype condi-

tions are bracketed.

4.4 36" RADIUS DOMES SUBJECTED TO AIR PRESSURE

Four shell models from two molds were fabricated and tested. These

models were completely similar to the 18" domes, but double in size.
The experimental procedure and results obtained are included in this
section. For identification purposes shell 101-1 indicates.that the
model was the first one pressed on mold #101.

4,4.1 Fabrication and Testing Procedure. Two plaster molds were

constructed using Ultracal 30 gypsum plaster. The manufacturing process
was the same as that used for the 18" domes. An accurately machined
screed was rotated about a 1/2" Plexiglas base as shown in Figure 4.36.
A semi-rigid plastic foam filler material was used to lighten the first
mold, but was not included in the second mold. After screeding, the
mold would look as shown in Figure 4.37. A finished mold is shown in
Figure 4.38. Vacuum-forming was accomplished on a commercial 42 x 72
inch machine.

The testing procedure was exactly the same as that used in the 18"
radius domes, except that all tests incorporated epoxy glue edge res-
traint. The test equipment is shown in Figure 4.39. It perhaps should
be noted that the auxiliary air chamber tank which is shown in Figure
2,16 was used for both the 18 and 36 inch radius tests, but its presence
or absence had no effect upon any buckling pressures.

4.4.2 Data, A summary of the factors attendant to each of the
four model shells and the data regarding the buckling capacity of the
shells is presented in Appendix D,

4.,4.3 Results and Conclusion. The results from the four model
shells are included with the 18" radius model results in Tables 4.1-4,3
and Figures 4.23, 4.25 and 4.26. The behavior of the large models was

completely analagous to that of the small models.

A comparison of the buckling pressures of the two series 101 models
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and the two series 102 models does lend credence to the imperfection
theory. Mold 101 cracked during the forming of shell 10l1-1, and these
cracks became even worse when shell 101-2 was pressed. The resulting
models had crack marks in several places. The marks started at the
shell edge and worked their way approximately halfway to the top. In
model 101-2 the change in elevation from one side of a mark, to the
other, was about 0.005 inch. Under ordinary circumstances, these

models would have been rejected; however, because of the monetary invest-
ment in them, they were tested anyhow. The fact that the buckle posi-
tion on both of the models occurred at the top, unmarked portion was the
only reason why the test : results were not rejected.

In spite of the mold cracking problem, it can still be concluded
that changing the geometric scale by a factor of two did not significant-
ly affect the model behavior. The time and cost associated with a model
study is significantly affected by the geometric scale, and hence, it
is important to know whether the chosen model-prototype scale ratio will

influence the result.

4.5 SUMMARY OF EXPERIMENTAL CONCLUSIONS

1. Small-scale plastic models offer a reliable means of obtaining
information concerning the elastic stability of thin-shell

structures.

2. At the strain levels encountered in thin-shell buckling
problems, the properties of Boltaron 6200 PVC can be taken
as elastic. Further, these elastic properties will not
vary widely throughout a vacuum-formed shell model and can

be determined within 5%.

3. Creep will not be a controlling factor at the strain levels
encountered in buckling studies with Boltaron 6200 PVC shell

models.

4, Average shell thickness should be taken as the controlling
thickness quantity in a shell buckling study. In this

light,minor thickness variations (i.e., X 10% or less) can



6.

7.

be tolerated since they seem to have little influence on

critical pressures.

Buckle position is influenced by factors other than thickness
variation. Thus all radially loaded models buckled near the

top while all weight loaded models buckled at the shell edge.
On the other hand, all edge buckles occurred at the thinnest

spot around the edge.

Buckling pressures were proportional to (1;/R)2'9 instead of
(t/R)2 as predicted by the classical theory. This difference
may be due to "unevenness' in the models. To account for such
"unevenness'' in a design program would be impractical if not
impossible. The experimental stress analyst should manufacture
his model as carefully as possible, but beyond that,he cannot
worry that the subsequent buckling behavior of his model (and
the as yet imaginary prototype) is being controlled by
imperfections which he simply cannot control. Such uncertainties
must presently be accounted for in the safety factor.

Soosaar(47) has shown that, for shell stress-distribution

studies, the replacement of a continuous loading by a grid of
discrete loads will lead to very large systematic errors.
Experience with ultimate strength studies of microconcrete shell
models again indicates that discrete loadings may lead to
erroneous results (e.g., punching shear failure). On the other
hand, the substitution of a discrete load pattern does not
affect the buckling pressure if the grid spacing is small enough.
For all practical cases of R/t ratios it should never be nec-

essary to use less than a 1" grid spacing.

The buckling behavior of any thin-shell model may be very
sensitive to changes in boundary condition. Thus, any buckling
model must reproduce as nearly as possible the prototype bound-
ary condition; and if the prototype condition is uncertain,
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then provision should be made for alternate model tests in

which the possible prototype conditions are bracketed.

The buckling behavior of the shells was not affected by a 100%

change in the geometric scale.



CHAPTER 5

A SUMMATION

Two examples of the use of small-scale design models were noted in
Chapter 1. The problem of instability, or buckling, was predominant in
each of these studies., Other examples could be cited wherein the concern
lay not with buckling but rather with questions concerning stress-distri-
bution, or ultimate strength, or both, or all of them, Most commonly,
economic factors prohibit the testing of more than one or two models;
and so, the engineer does not have the chance to check his results by
repeated testing., There are many references in the literature to model
tests on thin-shell structures wherein the data obtained could not be
interpreted satisfactorily. These difficulties arose because of the
incorporation of systematic errors at some stage of the experimental
program.

One of the ironies of a mathematical model is that the distortions of
truth which are introduced by improper assumptions or inaccurate modzls
remain seclygded in the mist of one's imagination. With a physical model,
the results of such improprieties are dramatically exposed. The philo-
sophical effect of this distinction between the mathematical and experi-
mental methods of design is, on the one hand, a detriment to the experi-
mental approach, but at the same time, can be one of its salient features.
Thus, meaningful model results are just as dramatic in a positive way as
erratic ones are in a discouraging way.

Successful experimental shell buckling studies have been made, and
this thesis supports the proposition that small-scale plastic models
should yield reliasble results in this regard. The fact that PVC material
properties can be closely determined, that creep is not a serious problem,
that minor thickness variations are not significant, that there is no
scale effect, and that discrete load systems can be substituted for con-
tinuous ones, lead one to have faith in a model result. The fact that
there is very little or no instrumentation involved in a buckling model
study elim nates the myriad of potential error sources associated with

any instrumentation system. The sensitivity of thin-shell buckling to
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initial imperfection demands that the model be carefully fabricated, but
surely a physical model is better able to deduce such sensitivity than
our present mathematical models, On the other hand, it should be possible
to improve upon our present means of having to account for imperfection
effects by a safety factor. Such research should incorporate the use of
photogrammetric means for establishing the surface geometry of the test
shells, Finally, it must be noted that a thin-shell buckling study may
be extremely sensitive to the means of providing boundary support. The
experimental designer should make every effort to reproduce, exactly,
the prototype conditions.

It is hoped that an increased use of physical models will be seen
in the coming years. They have not received the attention which they

deserve, and too often, their use has been maligned by results obtained

by incompletely informed engineers.
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E = Modulus of elasticity
V = Poisson's Ratio

p = Applied pressure
R

= Shell radius

L
L

Shell thickness

r = A measure of the horizontal extent,

use I‘o

Table 2.1 Relevant Physical Quantities for Elastic

Buckling of Radially Loaded Spherical Cap
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Trade Tensile Tensile Ranked Ranked Ranked
Name PVC - ABS Modulus of Strength Creep- Vacuum- Cost
Elasticit forming
% y (psi) Sensitivity Ease
Boltaron (psi)
6200 95-5 420,000 7500 Best Worst 3rd Lowest
7200 B5-15 250,000 6000 2nd Best 3rd Best Highest
6500 50-50 260,000 5800 3rd Best 2nd Best 2nd Lowest
6100 0-100 200,000 3500 Worst Best Lowest

Table 2.2 Comparisons of Different Boltaron Formulations

(34)




08

Wall Stem Concrete Foundation Distance of
Thickness Strength Type of Backfill Material Main Stem
(inches) ( psi) Reinforcing

Steel from
Rear Wall
Face,(in.)
1 12 3300 Granular Dense silty sand 3
200 Compacted 0 it d 3
2 12 3/8 0 silty sand ense silty san
Compacted A
3 12 1/8 3100 Siliy san: Dense silty sand 9
no drainage
4 11 3/4 2900 Dense sand Loose sand 3
5 11 7/8 3600 Sandy silt Dense sandy silt 3 1/4
6 12 1/2 4100 Dense sand Clayey sand 31/2
7 12 1/4 3200 Granular Miscellaneous 3
Fill
Table 3.1 Hypothetical Prototype Retaining Wall Conditions




Measured Measured

Trial Pressure Trial Pressure
1 0.255 11 0.250
2 0.250 12 0.245
3 0.240 13 0.255
4 0.260 14 0.235
5 0.255 15 0.250
6 0.250 16 0.250
7 0.240 17 0.255
8 0.250 18 0.240
9 0.245 19 0.260
10 0.270 20 0.245

Table 3.2 Measurements of Buckling Pressure

on Twenty Thin-Shell Models
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Table 3.3 Area Under Normal Density Function Curve

82




Number of CONFIDENCE LEVEL

Observations 0.50 0.80 0.90 0.95 0.99

e e
2 1.00 3.08 6.31 12,71 63.66
3 0.82 1.89 2.92 4.30 9.93
4 0.77 1.64 2.35 3.18 5.84
5 0.74 1.53 2.13 2.78 4.60
6 ©.73 1.48 2.02 2,57 4.03
7 0.72 1.44 1.94 2.45 3.71
8 0.71 1.42 1.90 2,37 3.50
9 0.71 1.40 1.86 2.31 3.36
10 0.70 1.38 1.83 2.26 3.25
11 0.70 1.37 1.81 2.23 3.17
12 0.70 1.36 1.80 2.20 3.11
13 0.70 1.36 1.78 2.18 3.06
14 0.69 1.35 1.77 2.16 3.01
15 0.69 1.35 1.76 2.15 2,98
16 0.69 1.34 1.75 2.13 2.95
oo 0.67 1.28 1.65 1.96 2.58

Table 3.4 Coefficients k for Use in Calculating

Confidence Limits
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ClassicaJ

Bending Thickness
ggggigied at buckle Average Pér Per o R buckling pcr Itr
Shell Radius to Model posLuion shell | elamped) epoxy pressure
Test Temp-| for epoxy| thickness| flange joint 2tgve Pe1l E pcl
erature edge
(in) (psi) (in) (in) (psi) | (psi) | (psi) | (psi) 1076
1-1 18 455,000 0.0255 0.0253 | 0.517 0.600 | 213 1.12 1.32 0.54
1-2 18 478,000 0.0250 0.0253 | 0.521 - 186 1.18 1.09 0.44
1-3 18 461,000 0.0250 0.0252 | 0.523 0.514 | 184 1.13 1042 0.46
2-1 18 437,600 0.0265 0.0252 | 0.305 0.527 | 188 1.07 1.20 0.49
2-2 18 435,000 0.0270 0.0254 | 0.327 0.563 | 200 1.08 1.29 0.52
2-3 18 437,000 0.0270 0.0261 | 0.383 0.617 | 213 1.15 1.41 0.54
3-1 18 449,000 0.0255 0.0267 | 0.510 0.610 | 206 1.23 1.36 0.50
3-2 18 463,000 0.0230 0.0241 | 0.456 0.498 | 186 1.04 1.08 0.48
3-3 18 458,000 0.0235 0.0242 | 0.345 0.522 | 194 1.04 1.14 0.50
3-4 18 453,000 0.0240 0.0251 | 0.460 0.555 | 199 1.10 1,99 0.50
3-5 18 461,000 0.0220 0.0239 | 0.393 0.533 | 201 1.02 1.15 0.52
4-1 18 445,000 0.0300 0.0289 | 0.521 0.792 | 247 1.43 1.78 0.55
4-2 18 444,000 0.0300 0.0284 | 0.486 0.793 | 251 1.38 1.79 0.57
4-3 18 436,000 0.0290 0.0289 | 0.495 0.829 | 258 1.41 1.90 0.59
5-1 18 451,000 0.0305 0.0298 - 1.07 323 1.55 2.37 0.69
5-2 18 460,000 0.0280 0.0281 - 0.755 | 242 1.40 1.64 0.54
5-3 18 469,000 0.0275 0.0277 - 0.790 | 257 1.39 1.68 0.57
6-1 18 475,000 0.0320 0.0304 - 1.01 299 1.70 2.13 0.60
6-2 18 459,000 0.0315 0.0303 - 0.997 | 296 1.63 2.17 0.61
6-3 18 457,000 0.0320 0.0310 - 1.02 296 1.69 2,23 0.60
101-1 36 407,000 0.0615 0.0616 = 0.875 | 256 1.49 2.15 0.59
101-2 36 415,000 0.0600 0.0617 - 0.757 | 220 .52 1.83 0.50
102-1 36 411,000 0.0630 0.0621 = 0.978 | 283 1.53 2.38 0.64
102-2 36 417,000 0.0645 0.0629 = 1.02 292 1.59 2.44 0.64

Table 4.1 Summary of Test Data for Domes Loaded

by Air Pressure

(sez next page for note)




Note regarding Table 4.1

Column

Column

Column

Column

Column

Four test samples were taken, two in each direction,
from the edge of the vacuum-formed she=zt. The
average value from these tests was modified by

1000 psi/°F for the difference between modulus test
and model test temperatures.

This is the thickness at the place where buckling
initiated. For shell 1-2 the flange-clamped buckle
position was used.

This is an average thickness over the entire surface
area, not just the average of the 41 measured points.

This is the average of the test results for the
flange-clamped edge condition. The series #l1 results
are included in Appendix B. Similar data is not
given for series #2, 3 and 4, but the values given
here are the average from two or more separate
clampings.

This is the average of the test results for the epoxy
glued edge condition. Shell 1-2 was not tested in
this manner since it was desired to retain one model
with an intact flange. For subsequent interpretation,

T
was assumed equal to 5



Shell

Date

Type of Ed%e

Buckle Position

Restrain cr

6/20/62 Flange Clamped 0.49 Near Top
6/20/62 a 0.53 )

- 4/11/62 ! 0.53 Mid Height
4/11/63 " 0.48 Mid Height
4/11/63 " 0.55 Indifferent
4/11/63 - 0.52 Mid Height
4/12/63 Epoxy Cement 0.60 Near Top
4/12/63 i 0.60 kL
6/21/62 Flange Clamped 0.50 Near Top

1-3 6/21/62 " 0:52 "
7/ 7/62 " 0.53 "
7/ 1/62 ik 0.55 i
7/11/62 Epoxy Cemented 0.51 "

3-1 7/15/62 Epoxy Cewented 0.61 Near Top
7/16/62 0.61 ¥
7/14/62 : 0.79 Near Top

4-1 4/5/63% 0.86 "
4/7/63% W 0.90 -
7/27/62 " 0.99 Near Top

s 3/11/63 " 1.11 | New Spot Near Top
3/12/63 " 1.%1 "
3/13/63 b 100 "

e 7/31/62 " QL7 Near Top
9/ 7/62 " 0.84 N
5/ 7/62 b QLT &

5 6/23/63 " 1.00 Near Top

= 6/24/63 i 1.01 ‘

6-2 6/21/63 x 1.00 Near Top
6/25/63 1.00 "
6/20/63 " 1.02 Near Top

6-3 6/26/63 ” 1.02 | New Spot Near Top
6/27/63 L 1.01 Same as 6/20/63
6/28/63 S 0.85 Near Top

LAt 7/ 4/63 " 0.90 "

101-2 Z; gﬁgg 3 8';; 4t b
7/ 7/63 ! 0.78 i

* To check the effect of holes for hanging weights

Table 4.2 Repeatability for any One Model
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BReLL s i s m:min’% Cinniegy || GaocEle
1-1 0.0240 0.0260 8 0.0253 0.0255
1-2 0.0235 0.0260 11 0.0253 0.0250
1-3 0.0235 0.0265 13 0.0252 0.0250
2-1 0.0225 0.0275 22 0.0252 0.0265
2-2 0.0220 0.0280 27 0.0254 0.0270
2-3 0.0225 0.0285 27 0.0261 0.0270
3-1 0.0255 00,0285 12 0.0257 0.0255
3-2 0.0230 0.0255 11 0.0241 0.0230
3-3 0.0230 0.0255 11 0.0242 0.0235
3-4 0.0240 0.0270 11 0.0251 0.0240
3-5 0.0215 0.0250 12 0.0239 0.0220
4-1 0.0260 0.0310 19 0.0283 0.0300
4-2 0.0250 0.0305 22 0.0284 00,0300
4-3 0.0260 0.0310 19 0.0289 0.0290
5-1 0.0275 0.0310 13 0.0298 0.0305
5-2 0.0250 0.0300 20 0.0281 00,0280
5-3 0.0250 0.0300 20 0.0277 0.0275
6-1 0.0280 0.0325 16 0.0304 0.0320
6-2 0.0280 0.0320 14 0.0303 0.0315
6-3 00,0290 0.0335 16 0.0310 0.0320
101-1 0.0600 0.0630 5 0.0616 0.0615
101-2 0.0600 0.0635 6 0.0617 0.0600
102-1 0.0585 0.0640 9 0.0621 0.0630
102-2 0.0605 0.0650 7 0.0629 0.0645

Table 4.3 Shell Thickness Data
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Shell

Radial critical pressure

3-1

4-1

(psi) 0.570 0.522 0.610 0.792

Radial critical pressure 0.531 0.487 0.570 0.740
1.07
Vertical critical
pressure (psi) 0.536 0.588 0.606 0.663

Thickness @ Rad. Buckle

(top) 0.0255| 0.0250| 0.0255| 0.0300
Thickness @ Vert. Buckle

(edge) 0.0240| ©.0240| 0.0263 | 0.0270
Average Thickness (in.) 0.0253] 0.0252 | 0.0267 | 0.0289

Table 4.4 Summary of Test Data for Domes Loaded

by Hanging Weights
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—
Ny

v=  Displacement Along Generator, + in Direction
of lncreasing X

v= Displacement Along a Circle of Radivs R+z,
+in Direction of Increasing

w=  Radial Displacement, +Qutward

Radial Pressure

>

O
]

Axial Force [Unit Length Along Circurmference

7 = Shear Force/Unit Length Along Circumference

Figure .l Notation for Cylindrical Shell Theory.
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Experimental Results by Sturm &

o R/t =497
S e T
s BRIt =22l2 5

\ .
.001000

.000500

s]

\

i

Pep R (1-VE)

000100
\\ \\ L esus
.000050 < ¢
9/ 2
v
= \ /44
000010 \
\\ —+— 204
000005 \
~———— 89
ittt 510 50 /00

Figure l.2 Elastic Buckling of Cylindrical Shells

L/e

Cylinder Ends Simply Supported

Under External Pressure 7
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0500 \\
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| 912 e
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oW 289 N
0010
0005
V="
.000/
0.05 0./ 05 5 /0 50 100
7
/e

Cylinder Ends Simply Supporfed

Figure 1.3 Elastic Buckling of Cylindrical Shells
Under Axial Cormpression’
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Classital Theory |
10 I :
x Lundquist (Aluminum|—
| o ponnell (Steel/d¢Brass)____|

b

-
o
>
]
o 3 (VS
N L3
LEEY x o
05 e o
w & L £ i x
g X AR X
[+ [+ g 5
4 ot 2 ol L 3
%O o
8 Qéfs & a 0o ® o k x ;
b i 80°u
75 500 J000 /500
2
/¢

Figure 1.4 Discrepancy Between Experiment
and Theory for Axially Loaded
Cylindrical Shells
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Load

s
_-""/  perfect Column

\-\.\

I Initial Imperfection

Deflection

Figure 1.5 Stability Behavior of Different

Geomeftric _Forms
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W = Displacement Along a Circumferential Circle,
+in Direction of /ncreasing €@

V= D/isplacerment Along a Meridional circle,
+ in Direction of /ncreasing ¢

w= Radial Displacement, +Oufward

, _ 3l )
().-“5(“@*}
()='53"

p = Radi/al Pressure

Figure 1.6 _Notation for Spherical Shell Theory.
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Figure I.7a  Comparison of Experiment and Theory for Buckling of Spherical Shells
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Figure 1.7 b Comparison of Experiment and Theory for Buckling of Spherical Shells




Example : Concrefe' Dorme
t =4 Inches

Io
P L =50 Feet

Rise =42 Feet

e E =300 Feet
v =028
4 600
A=VIE O ) e =Gy 2
(-96) V3600 (4)
10 Classical Theom Complete Sphere
Pce B
2E %}2..
V.3(/-v2) o
o5
" 1 & A i ] A i i 1 i i L e l L
00 5 10 15
4
A=Vig(-vZ) Lo
/ Vet
Figure 1.8 Calcylated Buck/ing Pressyres of

Initiglly_Perfect Champed Shallow
2pherical Shells
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Figure |.9 Theoretical Pressures for Asymimelric Buckling_ of Shallow

1.0

as

L, K‘in =N
. puS e
Classical Theory for Y Cormplete Sphere

A=V (1-ve)

Spherical Shel/ls




Figure 1.10 Keinforced Mortar Model of 7Tachirga
Sporting Club _Thin -Shel/l Loof
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Figure 1.11

Buckl/ing Models for Providence Post Office



“srrver (%)

Orvax = ’\;"” + 5;;’" (Geckler)

E= 450,000 psi
V =0.38

T

0.060

0.050}

@)
o
~
o
=

0,030+

Shell Thickness, /nches
g S
™
Q
T

0.0/0

O o B L | i
0 /0 co 30 40 50

Shell Radiuvs, Inches

Figure £.1 Some Consequences of the Kt Selection
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——— Gy /Including Bending
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Radial Pressure Case V=038

. — —
—
e

. W

e Membrarne Stress (g
Membrane Stress 0;5

Gy /ncluding Bending
——=—= Og /ncluding Bending

Vertical Pressure Case V=038

Figure 2.2 Stress Distributions in Model She/l
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Figure 3 Necessary Conditions for Complete
Similarity of Materials

’ Liquid Viscous Melt
L) Rubber
x_

o

b, 9

g Plastic
Q Gla

5 Solid

I~

Molecular Chaln Length

Figure 24 Temperature Sensitivity of
Linear Polymer Materials
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Figure &5 Siress -Strain Diagrams for Some Plastic
Materials at _Room Temperatureis
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(Plexiglas, Lucite, Perspex)

9 Methyl Methacrylate
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Figure 2.8 Representalive Effects of Strain Rate
on Tensile Strength €733
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Figure 29 Behavior of Unplasticized Polyvinyl Chloride &il
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Figure 210 Vacvum-Fforming Character/stics
of Boltaron Plastics
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Figure /2 Pre and Post -Testied Boltaron 6200

/ensile Specimens
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Bol/taron 6200 PVC

Nature Thermo Plastic
cor Unplasticized PVC /s Clear
e 6200 /s Opaque and Grey
Specific Gravity .43
Calendered Sheets (35 )15,
Avarilable Shapes I
3% ) -é—, é—, é— )J Rods , Tubes
Thickness Variation + 45 8
g | /n Preformed Sheets R Ie o e
:,Q; =" -%o055 /2
0 &~ 090
@ COSf e
3{% ‘- 2o
& b E-W ;;’ 1'5(,0/ ; PVC
o oy arn be Welded Usin
Jointing Characteristics Pods ard theiiodiccrl tas
Shrinkage [ @ Z270°F
Water Absorption (ASTM D570 0.15 % in 24 Hours
Order of Magn/tyde 9500 psi @ Upper Yield
Tensi/le Properties Strain @ Upper Yield =3.2 %
5 (A‘Z’TM 06/1348) ?f °F Ultimate Elongation =50 %
Order of Magnitude 12000 F @ U vield
O ; . oS/ pper Yie
S COmpression rreeciies | siraih @ dpper Yisid s5
< Uniaxial Creep 0.000400 7 ~1500 psi @73 °F, 24 hrs
Y| Modulus of Elasticit £30.00 '@ 730
X | (ASTM D638 D695 D390) | 460,000£30,000 psi @ 73° F
Poisson's Raltio ~0,38
vacuum-Forming _
E Temperature (07 o0 n
: BTU (IN)
& 2] ! Conductivit 1/
g Thermal Conductivity 6 (Hour ) (FF2] (°F)
N [ Coefficient of Expansion 3.7x10°% /n/fin/°F @ 70°F
§ Refractive [ndex 1.55 for Unplasticized PVC
= Luminous Dependent on Composition
S Transmittance 6200 /s Opague

Figure 213b Some Properties of Boltaron 6200 PVC
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Figure /16 Schematic Diagram of Vacuum Loading
System.
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Figure €17 Flange Clamped £dge Support
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Figure 218 Thickness Measuring Apparartus
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Frgure 3.4 Possible Results of Model Tests
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Figure 4./ Experimental Sefup for
SE-4 Gage Tens/le 7esls

Figure 42 MIT U-Bar Extensometer
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Figure 4.3  /nstron  Tensile Tesler

Figure 4.4 Cantilever Bearn Test tor Bending.
Moadu/us
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121

Bending Modulus, ps/
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400000

300000
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/100000
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/) 4 Samples (& in Each Direction) Taken for Each Mode/
2] Modulus Determination by Cantilever Beam Test
3) Test Temperature Varied 72-83°F

4) x Implies Parallel to Calendering Average =454,000
« I/mplies Perpendicul/ar fo Calendering Average =447,000
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Model/ Number Corresponding to 7Test Samples

Figure 4.5 Summary of Bending Modulus for Test Sampl/es

frorm /8" Radius /Model!/ Shells




Pare ¢ July 20,196& anda March 7, /963

Specimens Samples Taken [nitially from Flat
as Manuvfactured Sheets of Bol/taron 6200
Procedure : /) 8x&" to 88" Pieces Placed /n Oven

at the Annealing Temperature and
Allowed to Rernairz for 10 minules.

2) Pieces Removed from Oven fo Cool
al Roorm Temperature.

3) 7est samples Parallel fo Calendering
Direction Machined from the Annealed
Pieces.

4) Bending Modulus Determined by

, Cantilever Beam Method.

Testing Temperature : 78°F July 20, /1962 ; 74 °F March 7 /963

Rel/alive Humidity : Unkrown

T

500000

T
x

400000

X Series *| July /1962

5 200000 o Series *2 March /1963

-

Bending Modulus , ps/
S
S
S
=

T

100000

Vacuum Forming Range
sl

1 1

100 200 300 400

Annealing Temperature, °F

Figure 4.6 £ftect! of Annealing Temperature on
Benaing Modulus of Boltaron 6200 PVC
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Date

Test Temperature
Relative Humidity

July 20, 1962
78 °F
Unkrnown

Spec/mens Test Samples Takern from Vacvum-formed
Par?t of Boltltaron 6200 as Follows:
Oorientation rn Linear Strefchr| Linear Strefch
Sample Preformed Sheet |in Lorngitudinal | in Transverse
Re : Calendering Directior: Direction
la Perpendicular 80 % -15 %o
/b " 80 % -15 %
2a Parallel Q 0
2b " (8] 0
S1 Perpendicular 0 g
3b " 0 0]
Ve Parallel 15 Yo /0 Yo
5 Perpendicular 10 % /5 %
ba Parallel 0 80 %
6b " 0] 80 %
Procedure | Cantilever Bearm T7Tesls
500000
~ 400000 s x %
(%)
J
b
N
g 300000
by
[0 )
S 200000
Iy}
“QJ /00000
@Q
4]
0 / 7z £ 4 & 6

Sample Number

Figure 4.7 Effect of Vacuum-Strefch on Bending.

Modulus of Boltaron 6200 PVC
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Bending Modulus , psi

Bending Modulus , psi

Date : Plastic Delfvered June 29,1962
7ests Conducted July 6, /1962 - May 6 ,1963
Procedure : Canftilever Beam Tests
Temperature: Varied from 72-79 °F

500000} 500000}
x

ok K ) ® b x x
400000} 400000 *
300000 300000}
200000} Test 5amp/e &4-1-A 200000} Test Sample L-|-8
100000 100000

o i 1 i 0 1 L i
0 100 200 300 0 100 200 300
Age , Days Age, Days

500000} 500000+

r“ i x x P * x x
Lo0000- * 400C00}
300000+ 300000}
200000} Test Sample 4-1-C pppp0ol Test Sample &4-/-D
100000 100000 |

& 9 0 100 200 300

0 00 200 300
Age , Days

Age, Days

Figure 4.8 Effect of Age on Bending Modulus

of Bo/taron 6200 PVC
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G2t

Date : May &4, /963

. Q
Ealativ ereg’zfg;‘;re; .;/0 02 MIT. Textile Division Constant Tempef"afure Lab.
Specimens : Test Samples 4-/-8 and 4-/-D as Shown in Figure 4./

Strain Indicator : BLH Type N Serial/ No. 65/76/
Comment : These Teslts are /Infended Only to Yield Oroler of
Magnitude Creep Characteristics of Bol/taron 6200 PVC,

Stiffening Effect of the Strain Gages /s Severe.

Test Sample 4-1-8 Test Sample 4-/-D
P65 ps/ Q97 pS/
.002}4 002 |
c
8 e i ot o < b
< s ]
> :
o .00/t G .00/}
-
N U]
Y =
0 N
- Q
0 L L L 0 e
0 100 200 300 GER 100
Time, Minutes Time, Minutes

Frgure 4.9 7ension Creep Characteristics of Boltaron 6200 PVC




Figure 4.10 Specimen for Poisson’s Ratio Test

Frgure 4.1/ Mold Base With Screed for
/18" Radius Domes
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Figure 4/2 Typical Finished /8" Radrus Mold

Figure 413 Vacvurm - forming Machirne
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8cT

Movable Hearter

[ecc 0o e 0 0 06 ¢ o] (68 6 o0 o 6 o o o]

{

g, T BN
4 o 2 -\ 2 p

Compressed ﬂ
Air Cylinder

* 7o Vacuum

(a) (6) (c) (d)
Heat Plastic Raise Mold Apply Vacvurmn

Figure 414 Schemaltic Vacvum Orape Forming Sequence




Figure 415 Model Shell Before Trimming

Figure 4./6 Model Shell with Edge Flange
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Frgure 4./17 Model Shell without £doe Flange

Figure 4.18 Epoxy Cement Edge Condition
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Frgure 419 Epoxy Cement £dge Conditiorn

Figure 4.20 _Air Pressure Test EFouipment for

—
IE" Padius Dormes

e
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Figure 4.2/

Figure 4.22

Mode/ Fre-Buckled

e

TEsgsEV N e

LARS B e® wee

Mode/ Post-Buckled
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Pexp

1.0
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Figure 4.24

50

25 2

0 10 20 .30 L0
U=
Empirical Curve Fitted Throvgh Spherical

Shel/l Test Data of Kaplan and Fung.
fo Obtarn Relation Between Crrtical
Pressure and "Urnevenness” Faclor 45

10
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Pexp
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0.4

0-2

0

Classical Theory for Complete Sphere

Experimental
Trend
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e
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Figure 4.25 Buckling Pressures vs. R/t as Derived from

Figure 4.24. Fresent 7est Resulls Compared
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9ET

L0

Pexprimental

.
305 (7

e« Represents Results from Tests with [ntegral Flanges Clamped Between

Aluminum Rings. Shells /-/, /-2 and /-3 Buckled at or Near the Center;

All Others Buckled at or Near the fdge.

x Represents Results from rhe Same Shel/ls but With Flanges Rermoved

and Suppor! Provided by Encasing the Edge inan Epoxy Fillet
All Shells Now Buckled al! or Near the Center.

Shells I-1,1-2 and /-3 Were Vacuvurm-formed Over a Wood Mold;
the Remainder Over Plaster Molds. The Flange-Shell Junction was
More Distinct in Shells /-1, /-2 and /-3 Since Wood Molds (Unlike Plaster)

do no! Rapidly Cool/ the Healed Plastic.

=] /=3 e-/ e-é 2-3 3-/ sz g J-4 3-5 4-/
Specimerr Nurmber

Figure 4,27 Flange Clamped vs, Epoxy Cemented £Edge

4-2

4-3




Figure 428 Supporting and Catching Mold
for Weight Tesrts

Figure 4.29 Testing Equipment for Weight Tests
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Plexiglas Disk

\\—Mode/

3 Neoprene Rubber Legs weighits

Figure 430 Detai/l of loading Pad

Figure 4.3/ Loading Pads at /" Grid Spacing
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Figure 4.32 ["Loading Grid Without Pads

Figure 4.33 &'Load/ng Grid Withou! Pads
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Figure 434 Buckled Shape for Vertical
weight Loading

Figure 435 A/r Pressure Test After Filling
String Holes

140



Figure 436 Screed for 36" Radrus Mold

Figure 4.37 Screeded 36" Radius Mold
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Figure 4.38 Finished 26" Radius Mold

Froure 4539 Aip Pressure Jesr Equipmenrl

for 36" Radrius Domes
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APPENDTIX A

MISCELLANEOUS DATA REGARDING MODULUS TESTS POISSON'S

RATIO TESTS, EDGE RESTRAINT TESTS AND RESJIDUAL STRESSES
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Date: July 6, 1963

Temperature: 79°F
Relative Humidity: Unknown
Specimen: Test Sample 6-1-A width = 0.699"
Thickness = 0.0315"
Selected such that Ebending = 475,000 psi
Active and 1 vertical gage attached to each face

Dummy Gages: Baldwin-Lima-Hamilton FA - 25-12 S-6

G.F. = 2.03 % 1%
R = 120.0+ 0.2.0
Cement: Baldwin-Lima-Hamilton EP 150

Strain Indicator: Baldwin-Lima-Hamilton, Type N, Serial No. 651761

One Gage in Arm 1 of Opposite Gage in Arm 1)|Gages in
a Half Wheatstone of a Half Wheatstone Arms 1&3
Load Stress Bridge Bridge lof a Full
Wheatstone
Run #1 Run #2 Run #3 Run #4 Bridge
zero 0 0- 8-1285 0- 8-1295 0- 8-1080 0- 8-1085 | O- 8-1005
5 1lbs. | 241 psi 0- 8-1650 0- 8-1660 0- 8-1435 0- 8-1435 | 0- 8-1730
10 483 0-10-0615 0-10-0025 0- 8-~1795 0- 8-1790 | 0-10-0450
15 724 0-10-0380 0-10-0390 0-10-0150 0-10-0150 | 0-10-1190
20 966 0-10-0750 0-10-0760 0-10-0515 0-10-0515 | 0-10-1925
15 0-10-0390 0-10-0400 0-10-0160 0-10-1190
10 0-10-0030 0-10-0030 0- 8-1810 0-10-0455
5 0- 8-1670 0- 8-1670 0- 8-1450 Yy 0- 8-1720
zero G- 8-1305 0- 8-1305 0- 8-1095 0- 8-1095 | O0- 3-0995
1000 T
o
2 so0 4
=
E 600 4+
+ . .001455 "/n and .001425 "/
2 400 from half bridge readings and
~ .001465 "/ from full bridge
2 200 + reading. Use .001450 "/n
& o ¢ }
9
0 0.001 0.002 | g - —2%€ __ _ 466,000 psi
Unit Strein -001450

Plate A-1 SR-4 Gage Tests for Tensile Modulus
of Boltaron 6200 PVC
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Date:

Temperature:
Relative Humidity:

Specimen:

July 6, 1963
79°F

Unknown

An available 1/16" piece

width

Thickness

0.691"
= 0 . 0647"

Selected such that Ebending = 475,000 psi

1l vertical gage attached to each face

Active and

Dummy Gages:

Cement:
Strain Indicator:

Baldwin-Lima~Hamilton FA -
G.F.

R

25-12 S-6
2,03 1%
120.0 ¥ 0.2 v

1

!

Baldwin-Lima-Hamilton EP 150
Baldwin-Lima-Hamilton,Type N, Serial No. 651761

One Gage in Arm 1 of Opposite Gage in Arm 1 Gages 1in
a Half Wheatstone of a Half Wheatstone Arms 1&3
Losg Btrees Bridge Bridge of a full
Wheatstone
Run #1 Run #2 Run #3 Run #4 Bridge
zero 0 0-10-1490 0-10-1495 0-12-0975 0-12-0970 0-12-1085
5 1lbs. | 112 psi 0-10-1680 0-12-1155 0-12-1150 0-12-1460
10 224 0-10-1875 0-12-1335 0-12-1330 0-12-1840
15 335 0-12-0065 / 0-12-1520 0-12-1515 0-14-0220
20 447 0-12-0255 0-12-0260 0-12-1705 0-12-1700 0-14-0605
15 0-12-0070 0-12-1520 | 0-12-1515 0-14-0220
10 0-10-1880 0-12-1335 | 0-12-1330 | 0-12-1840
5 0-10-1685 v 0-12-1155 0-12-1150 0-12-1470
zero 0-10-1500 | 0-10-1500 | 0-12-0970 | 0-12-0970 0-12-1090
e J
glsoo S
@ 600 }
u
= 400 |— — .000760 "/n and .000735 "/n from
5 1 ' half bridge readings and
o 500 ‘r’ﬂ—fE;‘-—_—ﬂ— .000760 "/n from full bridge
@ T reading. Use .000750 '/"
)
- 05/, 0001 E 3 596,000 psi
2 — o e e — » ps
Unit Strain 1890180
Plate A-2 SR-4.Gage Tests for Tensile Modulus of

Boltaron 6200 PVC
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DAL o -+ v » s % = s s @ e s e s @ April 1, 1962

Temperature . . . . « o « « + « » 12°F

Relative Humidity e a e e e e . 90%

Specimens . . . . . « s+ s+ « « « BSix specimens (3 in each direction)
cut from the edges of a vacuum
formed part. Specimens machined
to ASTM D638 - 60T specifications

Width at grips = 0.751 * 0.001"
Width at gage = 0.501 *
Thickness = 0.065 * 0.001"

Apparatus . . . . . « « « « « . . . Prototype Instron Testing Machine
Plastics Research Laboratory, M.I.T.

Gage . . . . . . « « « s +« « BSpecial M.I.T. Plastics Research
Laboratory Gage for Low Modulus
Materials. See Figure 4.2

12000 +
Tensile strain parsllel to
direction of calendering
10000 T e e St o
L ]

- 8000 4 o

a 5/\\vTensile strain perpendicular

w to direction of calendering

n

& 6000 ¢t

e

w0

()

~

Lol

& 4000 + .

& 53" grip

separatiocn, ::t_iu gage
—e | 0.2"/min. length
0 " : : B :
0 1 2 3 4
Tensile Strain, %
Plate A-3 Stress-Strain Curve from Mechanical Gage

on Boltaron 6200 PVC
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2SI

lensile Modulus, psix10°

O

Tensile Modulus, psixio®

RS

W

M

~—

Test Sample 5-/-D

5 . ’
Test Sample 5-/-8 Test sample S-/-C
width = 0.696" width = 0.6%96"
- Thickness = 0,0304" Thickness = 003/2"
1 I | 1 1 ! 1 1 L )
Yo Ys Yn U3 W2 iz 13 Wy 3 e

1%

xe
aox

X

Test Sample 5-2-A

T

Test Sample 5-/-A
width = 0.697"
Thickness = 0.0298"

Width = 0698" width = 0697
- Thickness = 0.0304" Thickne€ss = 0.0293"
Vo Us Yy 2 s Uy 3 Z
Lnch / inch
Grip Length Grip Length

1 1 1 1 1
Yoo Y7 s Wy Y3

Test Sample 2-/-8
Width = 0698
Thickness = 002%9/"

1 1 | 1

Y s s
[inch
Grip Length

Plafe A-5 £Effect of Grip_Separation _on Tensile Moduvl/us of Bo/taron 6200 PVC
as Determined from an /nstron JTesting Machine




Date: February 19-20, 1963; May 6, 1963
Temperature: 73°F ; 82°F
Relative Humidity: Unknown 3 Unknown
Specimen: Test Sample 4-1-A
P= 5.93¢g M
Test Sample 4-1-A Width = 0,698
4 Al i Thickness = 0.0304"
T +--
T~ This coupon was tested a number of
o | times between July 6, 1962 and
| February 19, 1963 and A . = 0.078"
3H
14 | E = 474,000 psi
EIN ® -=2%
3
Sample was then split longitudinally
yielding specimens 0.372" and 0.296" wide.
P=2,30g

Test Sample 4-1-Aa

T

1]

2/20/63
"

2

3

4

5 5/6/63
6 fe

7

0.372"

width =
= 0.03086"

thickness
A,
0.057"
0.058
0.055
0.055
0.059
0.058
0.056

Use 0.057"

E

= 467,000 psi

Test Sample 4-1-Ab

Run #1 2/20
"

S b W

5/6/

0.296"

width =
= 0.0302"

thickness

by

0.080"
0.075
0.074

0.076
0.076
63 0.076

/63

Use 0.076"

E

= 457,000 psi

Plate A-6 Effect of Poisson's Ratio on Bending Modulus of

Boltaron 6200 PVC as Determined from Cantilever

Beam Tests
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Date: March 10, 1963
Temperature: 73°F
Relative Humidity: Unknown
Specimen: Cut from as manufactured sheet
(i.e, unannealed)
width = 0,644"
Thickness = 0.0313"
P = 5,93 Grams P= 2,30 Grams
P 8 b
A Run #1 0.2¢86" Run #5 0.083"
= 2 0.208 6 0.084
" (s 3 0.211 7 0.083
3 I 4  0.210 |
4" 27 5.93 1 1 27 2.30 1 1
-~ | B= =5 e 00765 205 | BT 5 9558 000006 J0R3
27
EI& = 7 P E = 512,000 psi E = 500,000 psi
P A '; a
af § | rRmm  o0.a3" Run #3 0.053"
4 === | 2 0.132 4 0.052
1)
o 25 o 28 BUEa ) 1 | ._25 2,30 T
3.5 3 453.6 .00000165 .143 | 3 453.6 .00000165 052
25
ElI&= 3 P E = 500,000 psi E = 492,000 psi
e e e | i - -
P A f A
Ay} | . ¥
=y | Run #1 0.072 Run #3 0.027
2 0.073 4 0.028
14 5.93 1 1 g 14 2.30 1 1
3 453.6 .00000165 .073 3 453.6 .00000165. 028
E = 506,000 psi E = 511,000 psi

Plate A-7

Effect of Nonlinearity on Bending Modulus of

Boltaron 6200 PVC as Determined from

Cantilever Beam Tests
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Date:
Temperature:
Relative Humidity:
Specimen;
P =
1.5
2"
1
3"
t
45

=
L
]
g
]
&l
g

™
»

HH

D
[ ]

|

[

|

-]

These results by themselves are not conclusive.

additional results given in Plate A-6

May 6, 1963
82°F
Unknown
Test Sample 4-1-A After Longitudinal Cutting
4-1-Ab 4-1-Aa
Width = 0.296" width = 0,372"
Thickness = 0.0302 Thickness = 0.0306
4-1-Ab 4-1-Aa
2.30g
Run #1 0.046" 0.076" Run #1 0.036" 0.059"
2 0.036 0.058
3 0.034 0.056
E3, = 456,000 psi E3/z = 459,000 psi
E, = 457,000 psi Ey = 459,000 psi

However, with the

and the uniformly consistent

results obtained throughout the course of the work, it is concluded

that an effective fixed support was provided.

Plate A-8

Effect of End Restraint on Bending Modulus of

Boltaron 6200 PVC &s Determined from Cantlilever

Beam Tests.
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Date: June 2, 1963
Temperature: 80°F
Relative Humidity: Unknown
Specimen: Test Sample 4-1-D widta = 0.699"
Thickness = 0,0298"
1 vertical and 1 horizontal gage attached to
each side
Gage: Baldwin-Lima-Hamilton FA - 25 - 12 5-6
G.F. = 2.037% 19
R 120.0 + 0.2
Cement: Baldwin-Lima-Hamilton EP 150
Vertical Gages Horizontal Gages
Load Stress In Arms 1&3 of a full In Arms 1&3 of a full
Wheatstone Bridge Wheatstone Bridge
Run #1 Run #2 Run #3 Run #4
Zero 0 0-6-1600 0-6-1645 0-8-0850 0-8-0825
5 1bs. 240 psi 0-8-0280 0-8-0345 0-8-0590 0-8-0550
10 480 0-8-0980 0-8-1045 0-8-0310 0-8-0280
15 721 0-8-170C 0-8-1765 0-8-0035 0-8-0020
10 0-8-1000 0-8-1065 0-8-0295 0-8-029C
5 0-8-03C0 0-8-0360 0-8-0560 0-8-055C
Zero 0-6-161¢ 0-6-1660 0-8-0830 0-8-082%
1 L300
)]
0]
F ©
0 —_— — —d ; _____
0
9 1 0 ge'
W
| ¥ T » ~ E = 683,000 psi
c £ v
| ) 0 o
| e -lél y = 0.38
| [+ |
-9.000402 > 0.001055 .
e T =),
=5 001 V) L00% .002
Unit Streain
Plate A-9 ©SR-4 Gzage Tests for Poisson's Ratio of

Bcltarcon 6200 PVC
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Specimens: Test Samples 5-3-A and 5-3-8

Thickrness 0.0290"
Width 0.695"

Standard 7ests

L

0.0298"
0.696"

15.93 Grams

—+ -—-.#\\
4, Az

=

\\

5-3-A
4, A,
7/3/1/62 @ 76°F 0.08¢9"

5/15/63 @ 76°F 0027 0.095"

Tests ‘o Simulate Shell £dge Fixity

0.079"

0.022" 0.080"

r’. 93 Grams

)

b cras
et —

~
=~

it 4, g

S5//8]63 @®@F6°F @O25" 0.093"
Removed anad Regl/ued

5/31/63 @ 8/°F 0.026" 0.088"

4, 4z
0.023" 0083"

o022
No [ncrease in & Minutes

Plate A-/10 Jest Data for Determining Degree

of Model! Shell Edge

Lkestraint
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Date: July 24725, 1963
Temperature: 85-90°F
Relative Humidity: Unknown
Specimen: Shell 6-1
Gages: BLH AR-2 Rosettes

G.F. = 2,00 + 1%

R 120.0 + 0.5

Strain Indicator: Budd Model A-110 Serial No. 172
10 Channel,digital readout

Procedure: Rosette gages were glued to the top and
bottom surfaces of the shell at the apex and at one edge position.
The half-Wheatstone bridges were balanced. The gages were cut gut
from the shell and the changes in strain were recorded.

With only one dummy gage, there was a gage heating
problem,and it was necessary to make the initial balances and
subsequent readings after two-minute warming periods. The drift
in this time was about 30 micro-inches/inch.

Initial balances were made with the shell edge resting
on a table top. The actual readings were taken with the shell segment
suspended by the lead wires. Different means of suspension changed
readings by up to 30 micro-inches/inch. The recorded values are
averages.

Strain
Gage Readings E = 450,000 psi
1 top | + 40 u"/" V= 0.38
E 2 top | + 90 S
3 top + 30 \\
21 1 bot | - 110 -
i si\T
18 3 % 2 bot | - 100 >
B d 3 bot | - 10 44 psi T
4 top | + 10 1 psicC
i %
X 5 top - 15 Z'psi C
6 (&
4 ;22 . gg Top Surface
Gage Plan
Sfen - BN B bot | - 15 —~
6 bot + 20 23 psf\g
___%,#— 64 psi C
28 psi C
+ /
-1 psi C

Bottom Surface

PRINCIPAL STRESSES

Plate A-11 Residual Stresses in Model Shell 6-1
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APPENDIX B

DATA FOR AIR PRESSURE LOADED 18" RADIUS SHELLS
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SERIES 1 18" RADIUS SPHERICAL DOMES

Mold: Male wooden mold manufactured by F. W. Dixon Co.,
Cambridge, Mass. at a cost of $75. Hardwood mold
was ordered, but through their error it was made of
white pine. To kill the grain they resanded the mold
and finished the surface with an epoxy paint. The
mold was extremely smooth but contained a relatively

flat spot at the top.

Iz e /2"

.

bou
-
/2"
]
Plastic: Boltaron 6200 PVC purchased April 2, 1962

Vacuum-Forming: Three models formed June 13, 1962 on the machine

in the Laboratory for Structural Models
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Template

1798 Radius

f Template Ef'di:;g
the High Spots

the Shell

Maximum Thickness = 0.0260"
Minimum Thickness = 0.0240
Average Thickness = 00253
Thickness @ Alr Pressure Buckl/e Position = 00255

O Air Pressure Buckle Pos/tion

( -‘) Air Pressure Buckle Posltions
~° of Shells /-2 and |-3

@ Hanging Weights Buckl/e Position

Data sheet for Shell /-/

161



0242 -Thickness Data

Q245

0245

0250

0860

=l Shell 0.003" Below 17.98° Radlus
Template

17.98" Radius
' Template Eiding
the High Spots o
the Shell

Maximum Thickness = 0.0260"

Minimum Thickness = 00235

Average Thickness = 0.0253
Thickness @ Alr Pressure Buckle Position = 0.0250

Air Pressure Buckle Pos/tion
( -‘) Air Pressure Buckle Posltions
~° of Shells /-] and [-3

heet for Shell (-2
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Q|

.0250

0240 _Thickness Data
0250

&

B

3-' Shell 0.003" Below 17.98° Radlus
Template

1798° Radius

Template Biding

the High Spots o
the Shell

Maximum Thickness = 0.0265"

Minimum Thickness = 0.0235

Average Thickness = 00252
Thickness @ Alr Pressure Buckl/e Position = 0.0250

O Air Pressure Buckle Position

C) Air Pressure Buckie Posltions
of Shells /-] and /-2

@ Hanging weights Buckle Position

Data Sheet for Shell /-3
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SERIES 2 18" RADIUS SPHERICAL DOMES

Mold: Male plaster mold homemade. This was the first mold
made with the gypsum plasters. The specific type used
was Hydrocal A-11 of the U. S. Gypsum Co. The plaster
was not removed from the aluminum holding platform

before vacuum forming.

%" 18.0" 78"

L

.

L B =1798"% o
2 [ PO

%m«;e \ S ==Y /%
i

’ 19%4" ;

Plastic: Boltaron 6200 PVC purchased April 2, 1962

Vacuum Forming: Three models formed May 9, 1962 on the machine
in the Laboratory for Structural Models
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0225

022,
e “c-Thichkness Data

0eas

0230 0240
0230

-'S-I Shell 0.003" Below 17.98° Radlus
Template

) T&mplafe Bidfng
the High Spots o

the Shell
Maximum Thickness = 0,0275"
Minimum Thickness s 0.0225
Average Thickhess = 0.0252
Thickness @ Alr Pressure Buckle Position = 00265

Air Pressure Buckle Pos/tion

( ﬁ) Air Pressure Buckle Poslitions
~° of Shel/ls 2-2 and 2-3

Data Sheet for Shell 2-/
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0230
0230-Thickness Data

0834,

0220

023~ __| 0230
0235

s Shell 0.003" Below 17.98" Radlus
Template

17.98° Radius
' Template E:’dt‘ng
the High Spots o
the Shell

Maximum Thickness = 0 0280"

Minimum Thickness = Q.0220

Average TRickness = 0.0254
Thickness ® Alr Pressure Buckle Position = 00270

O Air Pressure Buckle Poslition

’-‘) Air Pressure Buckle Positions
of Shells 2-/ and 2-3

Data Sheet for Shell 2-2
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0235
0230 -Thickmness Data

0240,

0235

0BG

024o™ Weso
0845

:l Shell 0.005 Below 17.98° Radlus
Template

17.98" Radius

Template .Eidir;g

the High Spots
the Shell

Maximum Thickness = 0.0285"

Minimum Thickness = 00225

Average Thickness = 0.026/
Thickness ® Alr Pressure Buckle Position = 0.0270

Air Pressure Buckle Pos/tion

( q) Air Pressure Buckle Posltions
=" of Shells &/ and 2-2

Data sheet for Shell 2-3
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Mold:

SERIES 3 18" RADIUS SPHERICAL DOMES

Female plaster mold matched to the male mold used for
Series 2. Plaster type was Hydrocal B-11l. One 1/16"
diameter hole was placed in the center of the mold

to provide for an air escape during vacuum-forming.

/" /8.0" ol

4l

Plastic:

Vacuum-Forming:

Zoh

Boltaron 6200 PVC purchased April 2, 1962

Five models formed June 13, 1962 by the Gregstrom

Corp., Cambridge, Mass. I was not present for the

forming.
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R
& A
02652 [

W B
X 0?.’\

0875
0275

0280

ciiind 0285
l0275
0265

-

0265

0260

0275 ~Thickness Data

Shell 0.003"8elow 17.98" Radlus
Template

17.98" Radius

Template .Eid/ng

the High Spots o
the Shell

Maximum Thickness
Minimum Thickness

Average

TRickness

0.0285"
Qo255
0.0267

Thickness @ Alr Pressure Buckle Position

g.oes5

Air Pressure Buckle Posi/tion

)

’
_/

Y Air Pressure Buckle Poslitions
of Shel/ls 3-2 1o 3-5

@ Hanging weights Buckle Position

Data Sheet for Shell

3=/
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%)
0250 Thickness Data

0250

0255

0250

e ' REF 0250
$f lcC
0850 -&) L0250

024 5P 55’/

024 0845

Shell 0.002" 8elow 17.98° Radlus
Template

17.98" Radius

Template Ridin og

the High Spots
the Shell

Maximum Thickness = 00255
Minimum THhickness = 0.0230
Average Thickness = 0024]

Thickness ® Alr Pressure Buck/e Position = 0.0230

Air Pressure Buckle Pos/tion

(‘} Air Pressure Bucklie Poslitions
~° of Shel/ls 3-/ and 3-3 fo 3-5

heet for /Il 3-
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0250 -Thickness Data
0845

O2YE
024 e e 0250

0/0

050

0250 0285
0250

Shell 0.002"8elow 17.98° Radlus
Template

17.98" Radius
' Template Ez‘dfng
the High Spots o

- < the Shell
ti
Maximum Thickness = 0,0255"
Minimum Thickness = 00230
Average Thickness = 00242
Thickness ® Alr Pressure Buckle Position = 0,.0235

Air Pressure Buckle Pos/tion

l

Air Pressure Buckl/e Posltions

/7
\
of Shells 3-/, 3-2,3-4, and 3-5

S

N

Data Sheet for Shell 3-3
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0233 -Thichkness Data
025

0260

Shell 0.003"8elow 17.98° Radlus
Template

1798 Radius

¥ Template Eid/rorg
the High Spots

the Shell

Maximum Thickness 00270"

Minimum THhickness = 0.0240

Average Thickness = 0025/
Thickness ® Alr Pressure Buckl/e Position = 0.0240

O Air Pressure Buckle Position

( —‘) Air Pressure Buckl/e Posltions
~" of Shells 3-/, 3-2,3-3and 3-5

Data sheet for Shell 3-4
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0235

0240 _Thichness Data
02254

DE3S

17.98" Radius

Template E:’dir;g

the High Spots
the Shell

Maximum Thickness = 0 0250"

Minimum Th{ckne.s.s = 0.02/5

Average Thickness = 0.0239
Thickness ® Alr Pressure Buckle Position = (0,0220

O Air Pressure Buckle Position

(") Air Pressure Buckie Positions
=" of Shel/ls 3-/ to 2-4

Lata sheet for Shell 3-5
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SERIES 4 18" RADIUS SPHERICAL DOMES

Mold: Male plaster mold homemade. Plaster type was Hydrocal
B-11. Unlike the Series 2 mcld the plaster was

removed from the aluminum supporting elements.

Yo" 18.0" Yo"

24!
—_—1 I/e.

R=/7.98"+

e

Plastic: Boltaron 6200 PVC purchased June 29, 1962

Vacuum Forming: Three models formed July 3, 1962 on the machine
in the Laboratory for Structural Models
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_'SJ Shell 0.003" 8elow 17.98° Radlus

Template

17.98" Radius

Template Bidh;g

the High Spots
the Shell

Maximum Thickness = 0.0310"

Minimum THhickness « 00260

Average Thickness = 0.0289
Thickness @ Alr Pressure Buckl/e Positiaon = 0.0300

O Air Pressure Buckle Position

C) Air Pressure Buckie Poslitions
of Shells #-2 and 4-3

@ Hanging Weights Buckle Position

Data Sheet for Shell 4 -1
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0270

0270

e g G R 0275
(2 Wi
02% 10280
HE T 0265

e

0255 -Thichness Data

0e60
0250

0265

o}

0285

0270

0875

Shell 0.003"8elow 17.98° Radlus
Template

17.98" Radius
F Template Br‘dlr;g
the High Spots

Thickness @ Alr Pressure Buckl/e FPositian

)

7

N

the Shell
Maximum Thickness = 0.0305"
Minimum Th{cxness = 00250
Average Thickness = 00284

= 0.0300

Air Pressure Buckle Pos/tion

( ) Air Pressure Buckie Positions
of Shells 4-/ and 4-3

Data Sheet for Shell 4-2
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.0e70

0260 -Thichnes ta
oBs ichness Da

025 0f

Q265

51 Shell 0.003" 8elow 17.98° Radlus
Template

17.98" Radius
Template .Eidf'ng
the High Spots o

the Shell
Maximum Thickness = 0,.03/0"
Minimum Thickness = 0.0260
Average Thickness = 00289
Thickness @ Alr Pressure Buckl/e Position = 00290

Air Pressure Buckle Pos/tion

)

Air Pressure Buckle Positions
of Shells 4-/ and 4-2

N

’
{

S

Data sheet for Shell 4-3
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SERIES 5 18" RADIUS SPHERICAL DOMES

Mold: Male plaster mold homemade. Plaster type was Hydrocal
B-11. The plaster was removed from the aluminum

supporting elements.

Yo" /8.0" Yo

241"
—

/9

Plastic: Boltaron 6200 PVC purchased June 29, 1962

Vacuum-Forming: Three models formed July 25, 1962 on the machine
in the Laboratory for Structural Models.
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0885
0855 —Thickness Data

0298,

0280

0280 0280

Template

~I17.98" Radius
» Template Br'dfr;g
the High Spots

e the Shell
Maximum Thickness = 0.03/0"
Minimum THhickness = 0.0275
Average Thickness = 0.0298

Thickness @ Alr Pressure Buckle Position = 0 0305

O Air Pressure Buckle Position

C) Air Pressure Buckie Positions
of Shells 5-2 and 5-3

Lata Sheet for Shell S5-1
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Thickness Data

0265

0250

0278 270 ,/

Shell 0.0/0" Below 17.98° Radlus
Template

1798 Radius
Template Eiding
the High Spots o

the Shell
Maximum Thickness = 0,0300"
Minimum Thickness = 0.0250
Average Thickness = 0028/
Thickness @ Alr Pressure Buckl/e Position = 0,0280

O Air Pressure Buckle Pos/tion

(") air Pressure Buckie Positions
=~ of shells 5-/ and 5-3

Data Sheet for Shell 5-2
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0265

s Thickness Da

sl Shell 0.003"Below 17.98° Radlus
Template

17.98" Radius

Template .eiding

the High Spots o
the Shell

Maximum Thickness = 0.0300"
Minimum Thickness = 0.0250
Average Thickness = 00277
Thickness ® Alr Pressure Buckl/e Position = 0.0275

Air Pressure Buckle Pos/tion

)

( ) Air Pressure Buckie Positions
~" of Shells 5-] and $-2

Data Sheet for Shell 5-3
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SERIES 6 18" RADIUS SPHERICAL DOMES

Mold: Male plaster mcld homemade. Plaster type was Ultracal
30. The plaster was removed from the aluminum

supporting elements.

e 18.0" be'
, 240"
k= 798 £ 1 /
\ : /2"
|
I 1
Plastic: Beoltaron 6200 PVC purchased June 22, 1962

Vacuum Forming: Three models formed June 18, 1963 on the machine

in the Laboratory for Structural Models.
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Thickness Data
,0285

:l Shell 0.007"'8elow 17.98° Radlus
Template

1798 Radius

Template Er'dir;g

the High Spots
the Shell

Maximum Thickness = 00325"

Minimum THhickness = 0.0280

Average Thickness = 00304
Thickness ® Alr Pressure Buckl/e FPosition = 0.0320

Air Pressure Buckle Pos/tion

)

(;) Air Pressure Buckie Positions

of Shel/ls 6-2 and 6-3

heet for 1 6=7
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083 —Thichness Data
0295

0.280

0.295

i el e " AR s 0

0ERS

5’ Shell 0.0058elow 17.98° Radlus
Template

17.98" Radius
"Template Eidir;g
the High Spots
the Shell

Maximum Thickness = 0,0320"

Minimum TRickness = 00280
Average Thickness = 00303
Thickness @ Alr Pressure Buckl/e Position = 0,03/5

Air Pressure Buckle Pos/tion

) Air Pressure Buckle Positions
of Shells 6-/ and 6-3

)

4

Data Sheet for Shell 6-2
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Y
0305
0392 _Thickmess Data
i B
0895 e . Jend
0305
.0300 J
b |
o
0300
o

M~

O

(&)

0300 ;
N,
030D 290 &

0295
ﬂ -Shell 0003 "8elow 17.98° Radlus
Template
1798 Radius

‘Template Ridin
the High Spots o
the Shell

Maximum Thickness = 0.0335"
Minimum Thickness = 0.0290
Average Thickness = 0.03/0

Thickness ® Alr Pressure Buckle Position 0.0320
O Air Pressure Buckle Posi/tion

(") Air Pressure Buckie Positions
=" of Shel/ls 6-/ ana 6-2

Data Sheet for Shell 6-3
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981

Bending
Modulus | Modulus, Model M tel ol W EIREN , o
) : FA WL 2 SOmTnVE
Shell Test Average from| Test Lot Support cr
Temg. four camples| Date ‘Temp.
(°F) (psi) (°F) (psi)
=..—.~F —— e #
Flange clamped Buckled twice. Pressure
1-1 80 449, 0G0 6/20/62 70 See Figure 2.17 0.49 and buckle pesition near
top repesat.
" Buckied twice at same spot
6/20/562 70 2 0.53 near top. Pressures were
0.52 and 0.55 psi.
Buckled midway between edge
4/11/63 72 5 D.53 and top, not @ €/20/62
place.
Agaln buckled midway
4/11/63 74 £ 0.48 between edge and top
but 18C degrees away.
Buckle position indifferent
4/11/63 75 " 0.55 in three tests. Pressures
were all the same,
Buckled twice same place as
4/11/63 76 " 0.52 4/11/63, 74° test.
Pressures were same,
Epoxy cemented Buckled twice near top 45
4/12/63 75 up level with 0.60 degrees away from 6/20/62
aluminum ring tests. Pressure same.

(continued on next page)



L8BT

Bending

Modulus Modulus, Model Model
nt
Shell Test Average from Test Test Sﬁdgert pcr Comments
Temp. four samples Date Temp. ppo
(°F) (psi) (°F) (psi)
Epoxy cemented Buckle position and pressure
1-1 80 449,000 4/13/63 74 only enough to 0.60 repeat 1in two tests.
seal the edge.
Flange clamped Buckled twice. Pressures
of 0,50 and 0.52 psi.
1-2 80 469,000 6/21/62 70 See Figure 2.17| 0.51 Bugile posttioriacine,
Buckled twice., Pressure
6/21/62 72 o 0.53 repeats and buckle posi-
tion same as before.
Buckled twice. Pressure
1-3 | 80 457,000 | 6/21/62 | 72 - 0,50 - e RORE NGRSO
top repeat..
Buckled twice at same
6/21/62 73 H 0,52 spot as before. Both
pressures 0.52,
7/ T/62 76 " 0.53 Again buckled at same spot.
Buckled twice at same
7/ 7/62 79 ) 0.55 spot as before. Pres-

sures were 0.55 and 0.56.

(continued on next page)




88T

Benalng
Modulugz Modulus, Mugal ¥odel . 7 :
Shell Test Aversge from| Test Tzast Sidijr* pcr L REE
Temp, | four samples| Dste Texp. gLty
(°F) (psi) (°F) {pal)
Epoxy cemented Buckled five times at
1-3 80 457,G00 7/11/62 79 up leval with Q.5L same =pot as before.
glumintm ring Pressurss all the same.
Buckled four times
e 1 an > "7 2 o .
9.1 72 446,000 /12/62 81 J.33 Picssiic ana broite
pesitlion mear top repeat.
Buckled four times,
2-2 72 438,000 7/23/62 5 " 0.56 Presszure and buckle
position near top repeat.
Buckled four times. Buckle
2-3 72 432,000 7/24/62 74 & 0.82 position near top repeats.
Pressure from 9.61-0.62 psi.
Buckled four times. Pres-
3-1 83 439,000 7/15/62 T2 " Q.61 sure and buckle position
near top repeat.
G X =
7/16/62 75 & 0.81 Buckie positicon and pressure
repeats in three tests.
Buckled three times. Pres-
3-2 83 454,000 7/25/62 74 = 0.50 sure and buckle position
near top repeat.

(continued on next page)




68T

Bending

Modulus Modulus, Model Model Ed b .
Shell Test Average from| Test Test Su gert CT
Temp. four samples Date Temp. PPo
(°F) (psi) (°F) (psi)
Epoxy cemented Buckled four times. Pres-
3-3 83 448,000 7/17/62 73 up level with 0.52 sure and buckle position
aluminum ring near top repeat.
Buckled three times. Pres-
3-4 83 446,000 7/26/62 76 " 0.56 sure and buckle position
near top repeat.
Buckled five times.
3-5 83 450, 000 7/18/62 72 " 0.53 Pressure and buckle
position near top repeat.
Buckled once at one place,
4-1 74 449,000 7/14/62 78 i 0.79 three times at another
All near top and at same
pressure.
Buckled five times. Buckle
4-2 78 444,000 7/20/62 78 " 0.79 position near top repeats,
pressure from 0.76-0.82.
Buckled five times. Pres-
4-3 74 440,000 7/22/62 78 " 0.83 sure and buckle position
near top repeat.
Buckled four times. Pres-
5-1 75 450,000 7/27/62 72 " 0.98 sure and buckle position

near top repeat.

(continued on next page)
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Bending
Modulus Modulus, Model Model Edee c 55
Shell Test Average from| Test Test Sukgjr* Por SRS
Temp. | four samples| Date Temp. s
(°F) {pei) {°F) (psi)
Epaxy cemented Bucklag.three times near
5-1 75 452, 000 3/11/863 77 iup level with 1,11 top but 180° frem 7/27/62
aluninam ring test. Pressure always 1.11.
Py . Buckled three times at
3/12/63 73 1.1l 7/27/62 position. Pressure
repeats.
Buckled three times at
3/13/¢ 74 " 1.13 3/11/53 position. Pressure
repeats.,
Buckl@d four times. Pres-
5-2 76 460,000 8/ 1/62 75 N 0.76 sure sad buckle position
near tocp repeat.
1 Buckled four times. Buckle
5-3 76 465,000 7/31/62 75 q.727 position near top repeats.
Pressure from C.76-0.77.
Buckled twice at the same
9/ 7/62 66 " 0.84 position as before, pressure
always 0.84,
" Buckled three times at same
5/ 7/62 76 0.77 positicn as before, pressure
always 0,77,

(continued on next page)




I61

Bending

Modulus Modulus, Model Model Edge D Comments
Shell Test Average from| Test Test Snnport cr
Temp. four samples Date Temp.
(°F) (psi) CoF) (psi)
Epoxy cemented Buckled three times. Pres-
6-1 80 470,000 6/23/63 74 up level with 1..00 sure and buckle position
aluminum ring near top repeat.
» Buckled two times at the
6/24/63 77 1.01 same position as before,
but at 1.01 psi pressure.
Buckled two times. Pres-
6-2 80 456,000 6/21/63 74 - 1.00 sure and buckle position
near top repeat.
Buckled two times at
6/25/63 81 i 1.00 the same pressure and
position as before.
Buckled three times.
6-3 80 459,000 6/20/63 80 " 1.02 Pressure and buckle
position near top
repeat.
Buckled two times at
6/26/63 82 1.02 same pressure as before,
but 90° around the shell.
, Buckled once at the same
6/27/63 84 " 1.01

pressure and position
as 6/20/63 test.

Test Data for Air Pressure Loaded 18" Radius Domes




APPUEUNDTIRK C

DATA FOR WEIGHT LOADED 18" RADIUS SJELLS
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MAY 1963

HIGH

AVE

238.8 grams 119.5 grams
238.9 118.8
238.0 120.0
239.0 119.4
237.8 11979
239.8 119.5
238.8 119.1
237.4 119.2
238.8 119.3
238.1 119.2
238.3 119.4
239.1 119.9
238.4 120.5
238.3 121.2
237.5 120.3
238.6 119.4
236.4 119.8
239.6 120.0
235.9 119.7
239.0 121.2
239.8 grams 121.2 grams
235.9 grams 118.7 grams
238.3 grams 119.8 grams

=0.525 pounds

WEIGHT DATA FOR 20 SAMPLES OF EACH WEIGHT USED IN

=0.264 pounds

62.0 grams
61.4
61.8
61.0
60.7
61.4
61.5
61.9
61.3
62,2
61.4
6l.4
61.9
61.5
62.2
62.5
62.1
61.7
61.4
60.7

62.5 grams
60.7 grams
61.6 grams
=0,136 pounds

DEAD WEIGHT TESTS
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11.6 grams
11.6
11.6
11.6
11.6
11.7
11.8
11.7
12.0
12,3
11.9
11.6
11.6
11.8
11.7
11.7
11.6
12.3
11.6
11.6

12.3 grams
11.6 grams
11.7 grams
=0.026 pounds



¥61

Air Model Model Edge Load '_Lng Weignt
Ghell | Pressure| Test Test Suppert Grid Loading Comments
pﬂr,psi Date Tenp.,“F Poo, PSL
Epoxy Joint | 1" surface Buckled at thinnest
smaller grid with place around the edge.
i-1 0¢.370 5/7/63 84 than usual loading 0,400
and did not pads
cure
properly
Removed Buckled st same edgc
exposed i 0.264 position as before,
portion of
epoxy fillet
Epexy Jjoint
up level T "
5/9/63 84-38 with alum- 0.536
inum ring
1" surface
grid without | 0.536 b
loading pads
2" surface Sh=ll surface grossly
grid without 0.562 distorted due to
loading pads local bending.
Epoxy joint 1" surface Buckled at thinnest
up level grid with place around the edge,
1-3 0.522 4/9/63 =
2 (376 with alum- loading 2sSER
inum ring pads
Epoxy Jjoint 1" surface Buckled at thinnest
" up level grid with . place zround the edge,
3-1 0.61C — 0.
2/51/63 with alum- loading pelo
inum ring pads

{continued on

next page)
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Air Model Model Loading Weight
Shell Pressure | Test Test X Sﬁgggrt Grid Loading CoiientE
pcr'pSi Date Temp.“F Per, psi
Epoxy joint | 1" surface Buckled at thinnest
4-1 0.792 3/25/62 — up level grid with 0.661 Place around the edge.
with alum. loading Removal of 0.136#
ring pads from one string in
center of buckle
position permitted
the addition of 70#
distributed over the
central portion of
the shell.
2" surface | Shell surface grossly
grid with (0.663 | distorted due to
loading local bending.
pads
Epoxy joint The string holes filled
0.862 4/ 5/63 77 up level Air with plasticene clay
with alum. Pressure and shell retested
ring under air pressure.
Buckle position near
top as in previous air
pressure tests
0.897 4/ 7/63 79 " Air Buckle position near
Pressure top as before

Test Data for Weight Loading Tests, 18" Radius Domes




APPENDIX D

DATA FOR AIR PRESSURE LOADED 36" RADIUS SHELLS
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Series 101 36" Radius Spherical Domes

Mold: Male plaster mold homemade. Plaster type was
Ultracal 30. In order to make it lighter, the
mold was filled with pieces of semi-rigid urethane

foam plastic.

37"
Plastic fo be Trimmed to 36"

Screen Wire

R=3597"+ Plaster

ep'| \ wood Base

42" Square

Plastic: Boltaron 6200 PVC purchased June 24, 1963.

Vacuum-Forming: Two models formed June 26, 1963 by the Gregstrom
Corp., Cambridge, Mass. I witnessed the forming
and noted that the mold cracked at several placed
around the edge on the first model. Far too much
heat was applied to the first model and still too

much to the second.

19%



625
0620 -Thichkness Data

0623,

.06/0

062 D620

Template

3597"Radius
' Template B:’ding

L )8 the High Spots o
e the Shell
£
Maximum Thickness = 0.0630"
Minimum Thickness = 0.0600
Average THhickness = 006/6
Thickness ® Alr Pressure Buckle Position = 0.06/5

Air Pressure Buckle Pos/tion

)

/7 : .
( Air Pressure Buckle Poslitions
=~ of Shel/l 0/-2

N

Data Sheet for Shell |01 -/

108



0630 Thichness Data

.063Q

0630

062 0630
0628

Ej Shell 0.0/0" 8elow 3597 Radlus
Template

35.97"Radius
¥ Template Eidfr;g
the High Spots

the Shell
Maximum Thickness = 00635"
Minimum Thickness = 00600
Average Thickness = 006/7

= 0,0600

Thickness ® Alr Pressure Buckle Position

O Air Pressure Buckle Pos/tion

C) Air Pressure Buckle Positions

of Shell 10/-]

pData Sheet for Shell 10!/-2

199



Mold:

Series 102 36" Radius Spherical Domes

litle pluasics mold homemade. The mold was of

sulad Ultiacal 30 plasier.

, CyTd
Plastic to be Trimmed to 36"

Screen Wrre

B 235.97"* Plaster i

et

Plastic:

Vacuum-Forming:

42" square

Boltaron 6200 PVC purchased June 24, 1963.

Two models formed July 17, 1963 by the Gregstrom
Corp., Cambridge, Mass. I witnessed the forming
and there were no difficulties.

200



0605
0600 -Thichkmess Data

.06/0

059

0615

. 06/0

.0603%

0620

Shell 0.030" 8elow 35.97" Radlus
Template

3597 Radius
¥ Template Et’ding
the High Spots o

the Shell
Maximurm Thickness = 0.0640"
Minimum Th{cxne.ss = 00585
Average Thickness = 0062/
Thickness ® Alr Pressure Buckle Position s 00630

O Air Pressure Buckle Position

/ﬂ
@,

Air Pressure Buckl/e Poslitions
of Shell /102-2

Data Sheet for Shell |102-/
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0615
06/0 -Thichness Data
{06/5

06/0

062 [06/5
06/0

51 Shell 0033 " 8elow 35.97" Radlus
Template

3597 "Radius

F Template Ridir;g
the High Spots

the Shell

Maximum Thickness = 0.0650"

Minimum Thickness = 00605

Average Thickness = 00629
Thickness ® Alr Pressure Buckle Position a 00645

Air Pressure Buckle Pos/tion

)

( ) Air Pressure Buckl/e Positions
=~ of Shell /0&-]

Data Sheet for Shell 102-2
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Bending
Modulus Modulus, Model Mcdel
Shell Test | Average froum Ee HEETS Sidgzrt Por Comments
Temp. | Four samples Date Temp pp
(°F) (psi) (°F) (psi)
Epoxy cemented Buckled three times. Buckle
101-1 86 403, 000 6/28/63 | 82 up level with 0.85 | Position near top repeats,
1/4" masonite pressure from 0.84-0.85.
ring
Buckle position at top for
7/ 4/63 81 n ¢.90 first test at 6/28/63 posi-
tion for 2nd and 3rd tests.
Pressure always 0.90
Buckled two times. Buckle
101-2 85 410,000 7/ 2/63 91 " 0.71 position at top and pressure
repeat,
Buckled three times. Buckle
7/ 5/83 | 75 3 0.78 position same as 7/2/63 test,
pressures from 0.77 - 0.79.
Buckled two times. Buckle
7/ 7/63 74 " 0.78 positicn and pressure repeat
7/5/63 test.
Buckled four times. Buckle
102-1 83 411,000 7/18/63 | 85 n 0.98 position repeats. Pressure
varies 0,96 - 0.53 psi.
Buckled three times. Buckle
= 89 415,000 7/20/63 e - 1.02 position repeats. Pressure
varies 1.02-1.03 psi.

Test Data for Air Pressure Loaded 36" Radius Domes




Personal
Born:
Parents:
Married:
Children:

Education

B.S.C.E.
M.S.

Honors:

Experience

1957-1960

1960-1962
1962-1963

Professional

Member:

Publications

BIOGRAPHICAL NOTE

November 25, 1934, Washington, Pennsylvania
William M. and Sara A. Litle

Martha Louise Ludwick, July 6, 1956

Karen Louise, age 5; Linda Anne, age 3

Duke University, 1956
Massachusetts Institute of Technology, 1957

Magna cum laude
Phi Beta Kappa
Tau Beta Pi
Sigma Xi

Engineer with Gannett, Fleming, Corddry and
Carpenter Engrs., Harrisburg, Pa,

Teaching Assistant, M.I.T.

Instructor, M.I.T.

American Society of Civil Engineers
American Concrete Institute

Litle, W. A., and Hansen, R. J., '"'The Use of Models in
Structural Design', Journal of the Boston Society of
Civil Engineers, Vol. 50, No. 2, April 1963.

Litle, W.A., '"Designing Structures Through Models",
Architectural and Engineering News, September 1962.

Hansen, R. J., and Litle, W. A., '"Models Aid Tomorrow's
Builders", Technology Review, June 1962
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