COMPUTER AIDED MACRO-MODELING OF THE ELECTROMECHANICS
OF THE TILTING ELASTICALLY SUPPORTED PLATE

by

Lynn Daniel Gabbay

B.S., Applied and Engineering Physics
B.S., Computer Science
Cornell University, 1993

Submitted to the

Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

Massachusetts Institute of Technology

May, 1995
© 1995 Massachusetts Institute of Technology
All rights reserved
Signature of Author .) _ P
Department of Electricﬁingineerimg and Com r Science
ay 19, 1995
Certified by e g e
Pfofessor Stephen D. Senturia
Barton L. Welier Professor of Electrical Engineering
Thesis Supervisor
Accepted by

Tofe%%‘f'ﬁéi@ R. Mgrg}mhaler

Chair, Department{Committee raduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL171995 ~ ARCHIVES

e -

COMPUTER AIDED MACRO-MODELING OF THE ELECTROMECHANICS OF
THE TILTING ELASTICALLY SUPPORTED PLATE

by
Lynn D. Gabbay

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 1995 in partial fulfillment of the requirements
for the Degree of Master of Science
in Electrical Engineering and Computer Science

Abstract

Simulation of the non-linear dynamics of electrostatically actuated deformable
MEMS structures involves the computationally expensive task of self-consistently
determining the distribution of charges and the structure deformation that its
forces cause. However, there is a class of deformable MEMS structures for which
computation time can be reduced significantly by approximating the structure as
a network of macro-models, which supply the potential and kinetic energies of
the system as functions of a reduced set of degrees of freedom. This paper reports
techniques for taking a macro-modeled electromechanical system from concept to
dynamics simulation. These techniques are applied to the case of an
electromechanical circular plate suspended by idealized springs above an infinite
ground piane. First, software is developed that uses pre-existing tools available in
the MIT MEMCAD package in order to numerically extract capacitance and
stored potential energy as a function of the position and orientation of the plate.
Second, an algebraic model of capacitance is constructed for the suspended
circular plate using an approximate theoretical model, and a nen-linear curve
fitting algorithm is used to fit a parameterized version of the algebraic model to
the capacitance data. Finally, a suite of tools is developed that use the
parameterized model in order to simulate and characierize the non-linear
dynamics of the suspended circular plate. The dynamics of the macro-modeled
suspended plate, as an illustration of the results of this approach, is simulated
under a variety of applied voltage waveforms.

Thesis Supervisor: Stephen D. Senturia
Title: Barton L. Weller Professor of Electrical Engineering

Acknowledgments

I would like to thank the numerous people without whom this work could
not have been accomplished. First and foremost, I want to thank Professor
Stephen Senturia for the endless support he provided, not only through the
opportunity he gave me to work on this project, but also through his stellar
guidance. His feedback always forced me to look at the task at hand with a
different perspective, and invariably I would discover something new; his
contribution to this work is unquestionable. Another great thanks must go to
Professor Jacob White, whose Numerical Algorithms course better equipped me
for this research than any other source. I want to thank Dr. John Gilbert for his
support with the MEMBase library. In dealing with MEMBase, John was an
encyclopedia of knowledge, a genius of programming technique, and a magician
of bug fixing. Thanks must also go to Peter Osterberg, who flattened the learning
curve of the ['DEAS macro language for me. Also, I need to thank Eckart Jansen
and Professor Jeffrey Lang for making the design and code of PostCap publicly
available. Most of all, I would like to thank ARPA for supporting my research
(Contract No. J-FBI-92-196).

I would like to extend a special thanks to Scotti Fuller for her tremendous
assistance with everything from graphics embedding to administration details.

Finally, I would like to thank my dearest friends and family. A warm
thanks goes to Lucy Tsirulnik for proof-reading this document far more times
than I think she wanted to. I also want to thank my sister, Sherri, and my mother,
whom I have never referred to by any name other than Mom. They have always
pushed me to excel, and for that I am eternally grateful. I dedicate this thesis to
the memory of my father, Professor Edmond J. Gabbay.

Table of Contents

N < T 5 1o S 3
Acknowledgmentscciiiiiiiiiiiiiiiiiiiiiiiii e, 5
TableofContentso, 7

Listof Figuresottt 9

Listof Tablescooiiiiiiiiii it 11

Chapter1 Introduction..............ciiiiiiiiiiiiiiiiiiiiiiiiiiinn., 13
Chapter2 Capacitance Extraction................cooiiiiiiiiiiiin,, 17
2.1 Single State Capacitance Extraction erererereteter et snsasasaebena 18
2.2 Multiple State Capacitance Extraction..........cccoveeeeceieieiicceniniee. 19
221 Process A-Manual.........inccc 19

2.2.2 Process B- AutoGen and AZ...........cooovveiiimniiiniiceec 21

2.2.3 Process C - ChUIM. ... 22

23 Suspended Circular Plate Multiple State Capacitance Extraction......... 23
2.3.1 State Space Sample POINtScccocevmieirinieteieinincteicee 23

2.3.2 Mesh ConStruCHON. ...ttt 24

2.3.3 Extracted Capacitance Information..........c..covveioieierenninnieniinininnnns 26
Chapter3 NumericalModel ...ttt 29
3.1 Algebraic Model........meieiiiicriicctc e 29
3.1.1 Parallel Plate Approximation............ceceuevimrenereeeneieciccens 30

3.1.2 Wedge Approximation..........cccceueeiueieieeninreneiniseeeseiecsieseesesecaes 31

3.1.3 Relationship Between Parallel Plate and Wedge Approximations .32

3.1.4 Suspended Circular Plate Algebraic Model...........ccccooorirriinrninnnns 33

3.2 Fitting an Algebraic Model to Numerical Data...........cccocoeuviriviniiiiiicennes 35
Chapter4 Dynamics Simulation................cooiiiiiiiiiiiiiiaa. 43
41 Modularizing the Equations of Motion ..o 44
42 Modular Equations of Motion for the Suspended Circular Plate........... 46
4.2.1 Electrostatic Contribution..........ccevieicrneeieiicniic s 47

422 Mechanical Contribution ..o 48

4.2.3 Inertia MatriX....cocoemmmieiriii 51

4.3 Equilibrium and Normal Modes ..o, 52
4.3.1 Equilibriumu........coimii 52

4.3.2 Normal Modes..........ccoeimuimciiiriciniiciiie e 53

44 Suspended Circular Plate Simulation ... 54
Chapter5 Conclusion...........cciiiiiiiiiiiiiiiiiiiiiiiienrennennn,s 61
Appendix A Code.......covviiiiiiiiiiiiiiiii i ittt i 63
A1 Capacitance EXtraction..........ccoocuieiiiniciiciniiiciiictnccceccceeenee 63
ALl AULOGEN .ottt e 63

ALZ AZ et 66

LECAD . Cruuvrreerrreesseeeseraesssassasasteesstesssstesee s sas s st tosasse s ane s saassabs s s baessnarasesbanis 66

FCATIEO . Hureeeeeeeeeseeeeeeeeeeeeeeeeeeesssssssssssssssassssnnsssasassasasssssseesssssnnssnnsnsessnsesesnnnen 72

MA T A c Huurnveieereerersrssessssenenssensssnsesssnsnsssesasasasssosssssasnsssssnsnonsnsosssnsssssansosnssss 74

AT CIRUIT coeeeeeeeeeeeeeeeeeee et eete e e e et e e s sesastaasssasssaaessaaan saneesatesesueennsssnsnsnsessans 80

Fod o 105 = » W o PUT RN ORI 80

CRUTTL FNS . Nureiiiieeeieeeereeiseeseeesseseeeeesseesseeesesssanssenateesaaeesaaesssnassssnsassnns 82

[0) 2108 3 s TR 3 + 1= T 2N UUN R SRRSO 82

A2 NUMETiCal MOAEl....oooeiieieeeeeeeeie ettt et e e s ae s snaesssasessane 85
A.2.1 Non-Linear FittiNgccccooiimciiinniiie e 85
N1fit . Moveereeereeen feteeeuetesteeeiseeeeaseesheeeaseerateensaeeesteeeteeeateeabaeearaeeasaeeensnenas 85

MY QIMETL . Mleeeenererennerernsiriemnusierssssoeressnsessssssssesnsessenssessansssssansosusnssosssssssasssesnsns 86

1S e (oo} 00 1 FOU U UUUUUUR R ULULI PP UULURNR RO RSP 86

DIC Mlererrseensessnsreeeeeeiemmiasissssssnsnnessssasissssssnsssssssssnsssestessetsssaassssstassssssanes 87

[oT=) 23 2 + W 1 TR UUU POV PO PO P PP P PP 87

Y EAACAD - Muueuerriruratrunrantaieatessrertstanssetsarnernstosssstossossstesssmsssssessesrassosascersossonses 88

A3 Dynamics SIMUlation ..o 88
A.3.1 INIHAIZALION ceeeueieeeieeeeee et et e et e et e et e et e et eeesne e nesesseeseseesannae 88

(B Re) oT- 0 H-T0 | ST U R Pr RN 88

10AA_ALL . Mlvrreeeeereeersreersreeisresssseesresssessssassssassossesessessasaessssessssusssssresesnsseess 88
JCT-To HR oD -1 ot -0 | DO OO LU OIS P PSRN PPN 88
10AA_SPTANGS . Muvereerrerereriserssesssesssessresssesseessssssstsssesssesssssssssesssessssessssensses 89

A.3.2 Acceleration FUNCHON.....o.eoveiieeieteceeteeeeereeecree et b s 89
A2XAE2 . Muereveereraereriseeesiseeesssaseressseesssssesesssnsssssusssssissssssessssssesestasensssssssons 89
CAPACIEOT_CONETID . Muutririerierieecrtesiisiesiessnesseestesssessassasssassasssasssesseeanes 90

G _CBD e Mluuueeereienreeserseessusssncesersrssssssssesssnassnsosssenssssssnemsassssstsssuismsetioisseetiiones 90

CAPACE LAMNCE . Maurrrererrernrereensensieseessiasiosiasscsssessses iesssesssessassnasssnssanssesssassaesses 90

VO L EAGE . Muuerueeriiirinirienisiuiirsnirtrusernrssnnmemussersreraesstsstesstnossssssasmsossssssssssensaes 91
SPTAiNG_CONEIID . Muutiiiirierieriieecererieesiesisiisiesistesseisssessresesnsesssesssesssssssansns 91

S PT e Mlaceeenusnssenusssseeanesiessssorssnsssessnsssssssseresasassesssssnnaresssssessrsosssssetsassssssssnes 92

A.3.3 Equilibrium Determination ... 92
EQUA LI DT UM . Mlrrererrerrerreiesesieestesiesstsstessestsssesstesbnesesasessesnssensesssannsasseas 92

F o Illeuseeeessseessesssesesssessssssesasssessssssssesssssesasssesesssssssssssasssssssesssssssnesssssnssessesosns 92

A FNEWEON . IMeuuuriciiiiiiciinirraieirrisrsriersusresserassersirnrissssstasersessasenestassesssssssses 93

A.3.4 Normal Mode Determination.......ccccceeeeerecieeeiennieeneeeeeseeeeseeesseeeenees 94
INOA S . Mluururerernenerenerotrosnsesssscnsssnssssosssssossssscasssssnsssesssessasssssssssasessssnnasnssnarsansas 94
Appendix B SimulationResults.............oooviiiiiiiiiiiiinannl 95
B.1 Structure Specification..........ceeeieriiinieeincii 95
B2 Experiments and Results.......coeimmnmnineieeiiiicciiccines 97
B.2.1 Near Equilibrium Dynamicsc.coveeremenininninciininessccees 97
B.2.2 Voltage Ramp ...ttt 119
B.2.3 Varied Voltage Ramp Rate ..o 140

R OI@NCES. ¢ ottt eeeeseerenssnoassssssssassasessasessnsosld3

List of Figures

1. Suspended Circular Plate Structure cooveinioninieinininincniieieceesinn 15
2. Parameters for the Suspended Circular Plate.........cooouoveniininnrniirie 15
3. Path from Structure Concept to Capacitance..........cccoeeeeeeinincresnicieienscseenen. 19
4. Process A - Manual ...ttt 20
5. Process B- AutoGen and AZ...........inieioieeiniiieeessse s 21
6. Process C = ChUIM......cccoinniniiccciiitetetctnesise bbb 23
7. Capacitance Extraction Sample Points in State Space

for the Suspended Circular Plate.........coouoieioriniirinis 24
8. Circular Plate Meshccoiiiiiiiciiiiiicncc e 25
9. Ground Plane Mesh.......cccciiiiiiniiiiitee e 25
10. Assembled Plate and Ground Plane FEM.........ccooiiininiiiiee, 26
11. Suspended Circular Plate Extracted Capacitanceocoooevinciieinicininncincnes 27
12. Paralle] Plate ApproxXimation........cccceueieemsieinesininineietsi e 30
13. Wedge ApProxXimation........cceeeeueiiueisseniniieeseeienit et 31
14. Suspended Circular Plate - Diagram for Determining

Algebraic Model of Capacitance.........c.ourueinrinionicininien e 34
15. Comparison of Theoretically Based Algebraic Model

with Capacitance Data Extracted by FastCap.......c.oeoeninenniinniiin 36
16. Comparison of Unfitted and Fitted Algebraic Models

with Capacitance Data Extracted by FastCap........cccooeoevreeeienininninccine 40
17. Translational Beam Deflection............ccceciviinieneiniiriniiieeea 49
18. Rotational Beam Deformation...........cecvueveveeereieinieiernieniestsinicse e 49
19. Simulated Suspended Plate Structure Diagram..........cccoooevvnieinninnrncrninnnnnn, 55
20. Sample DYNAmICS........coovieeemireciiieteieieiee ettt 56
21. Sample Dynamics - Mode Projection ..., 58
22. Simulated Suspended Circular Plate Structure Diagram........cccccocevveerirerernnnen. 96
23. Near Equilibrium Dynamics - 1D Structure - goooeeveineninicicen 99
24. Near Equilibrium Dynamics - 1D Structure - Normal Modes 100
25. Near Equilibrium Dynamics - 2D Structure - g ..o 102
26. Near Equilibrium Dynamics - 2D Structure = @ ...c.ccovvevvneinieiie 103
27. Near Equilibrium Dynamics - 2D Structure - Principle Tiltccccooeneeneenen. 104
28. Near Equilibrium Dynamics - 2D Structure - Normal Modesc.c..c........ 105
29. Near Equilibrium Dynamics - 2D+ Structure - g.......cooeveeeeennnnninisnns 107
30. Near Equilibrium Dynamics - 2D+ Structure - @y....ccceoveeeinnniniieieee 108
31. Near Equilibrium Dynamics ~ 2D+ Structure - @y ..., 109
32. Near Equilibrium Dynamics - 2D+ Structure - Principle Tilt.............cccc..... 110
33. Near Equilibrium Dynamics - 2D+ Structure - Normal Modes........................ 111
34. Near Equilibrium Dynamics - 3D Structure - gccoevevevevniniccnen 113

35. Near Equilibrium Dynamics - 3D Structure - @ oo 114

10

36. Near Equilibrium Dynamics - 3D Structure - @y ..o 115
37. Near Equilibrium Dynamics - 3D Structure - Principle Tiltcccooooo... 116
38. Near Equilibrium Dynamics - 3D Structure - Normal Modes 117
39. Voltage Ramp Dynamics - 1D Structure - g ..o.ocevevneneinieicneees 120
40. Voltage Ramp Dynamics - 1D Structure - Normal Modesccovevriennnen. 121
41. Voltage Ramp Dynamics - 2D Structure - gcocoeveernenininininincciniiniicnen, 123
42. Voltage Ramp Dynamics - 2D Structure - @y .coocovveeveiviniiinie 124
43. Voltage Ramp Dynamics - 2D Structure - Principle Tiltc.ccccooevirrnnnnn. 125
44. Voltage Ramp Dynamics - 2D Structure - Normal Modescccccucueene. 126
45. Voltage Ramp Dynamics - 2D+ Structure - g.......occvvevevnenieneccce, 128
46. Voltage Ramp Dynamics - 2D+ Structure - @y ..cooveveevivnierece 129
47. Voltage Ramp Dynamics - 2D+ Structure - @ ..o, 130
48. Voltage Ramp Dynamics - 2D+ Structure - Principle Tilt.........cccocoevenii. 131
49. Voltage Ramp Dynamics - 2D+ Structure - Normal Modes...........ccccoueeeenee. 132
50. Voltage Ramp Dynamics - 3D Structure = gccoeeveevveenininininine 134
51. Voltage Ramp Dynamics - 3D Structure - @,ccccouvvivininininiiiiiies 135
52. Voltage Ramp Dynamics - 3D Structure - @,ooceevveieescnieiiiice 136
53. Voltage Ramp Dynamics - 3D Structure - Principle Tiltccoooeervnrriernnnnee, 137
54. Voltage Ramp Dynamics - 3D Structure - Normal Modescccooviunnnnn. 138
55. RAMP TIME 107 = guvvvvvvevvveeeemesmmsssisssseereneeesessssssssseesssssssnasssessessoesssssssasssesssssene 141
56. Ramp Time 1073 2 Py everrrreriseeesieeee e 142
57. Ramp Time 1073 - Dy eovrrenreneset s sttt st 143
58. Ramp Time 107 - Prnciple Tilt.......ooocecvvveeemmcerevreiomsccsseveesnsecseenessossesnssessessans 144
59 Ramp Time 10> - NOrmal MOeSccucrrrmmmmmmnerersesmesscsssaesssessassesiassanes 145
60. RAMP THME 107 = goeooverrrreerereceveiseesssssseeessesessissssssesseescssesssssesesesresessseesssesssas 147
61. RAMP TIINE 107 = @y cevevvverernorrrereesesemsssnsessessessssssssmssesssssssssssassssssssessssessessesesssseee 148
62. RAMP TIINE 107 = () vovvvvversrnenrerreesesssssssssreeseesessssssssasesssssssessssssessssssssasssssssssennes 149
63. Ramp Time 107 - PHNCIPIE Tiltcrrrreeeerseneeriieesssesecsesssssessssesseesssesesesess 150

64. Ramp Time 107 - NOTMal MOAESuuuvveermrreverrerecsiseesessssssessssssssssessssssssessnns 151

11

List of Tables

SARN LIl ol A o

NON-LINE@AT Fit RESULLS .ottt eete et e et ee e e e ss e e e snss e e sssesssaeennnanns 39
Equilibrium State for 1D, 2D, 2D+, and 3D Structures at 150 Volts.................. 97
Mode Information for 1D Structure at 150 VOItS.....cocvecveeieceeeieeeeeeeeeeeee 97
Mode Information for 2D Structure at 150 VOItS.......coeeoeeieeeieeieeeeeeeeeee, 98
Mode Information for 2D+ Structure at 150 VOItSccooceveiiricrviriieieieecee, 98

Mode Information for 3D Structure at 150 VOItS......coevemvieeeeeeereeeeeeecivireeeen 98

12

CHAPTER 1 Introduction

Technology benefits from computer aided design (CAD); however, the
appropriate CAD tools are not always available or well developed. This is the
case for the field of microelectromechanical systems (MEMS) [1-4]. MEMS
structures are machined on semiconductor wafers using existing VLSI
technologies. The types of structures can range from gears and motors to
deformable thin membranes. The dynamics of electrostatically actuated MEMS
structures involves the tight coupling of electrostatic and mechanical forces. In the
quasi-static limit, the distribution of charges and the effect of its forces upon the
deformation of the structure must be determined self-consistently. In general, this
solution only addresses stable states, where potential energy is minimized and
kinetic energy is neglected. To extend to the non-linear dynamics case, kinetic
energy must be included. Unfortunately, however, the numerical simulation of
the general distributed non-linear dynamical system is computationally difficuit.

In some cases, it may be practical to model a system as a network of
lumped-element macro-models, each having only a small number of degrees of

freedom. Each macro-model should be an analytical function that exhibits the

14

correct dependence upon structural dimensions and material properties while
still agreeing with full three-dimensional physical simulation. The macro-model
paradigm has three levels [5]. At the lowest level, there is the full three-
dimensional physical simulation. In the approach taken here, the capacitance and
mechanical stored energy of the system are simulated as functions of a restricted
set of displacement and orientation coordinates. The resulting numerical data
must then be synthesized intc an algebraic form. Therefore, the next level is the
development of a functional form for the system. The approach used here is to
start with a simplified analytical expression derived from a physical model and
enhance the functional form with additional parameters that permit a fit to the
three-dimensional simulation. The highest level is full dynamical analysis of the
system, which involves the construction of the dynamical equations of motion
using the analytical representations of the capacitance and stored energy, and the
direct integration of the non-linear equations of motion in order to simu.ate the
dynamics of the system.

The goal of this research is to apply this macro-model paradigm to a
particular case, and thus glean insight into the issues that concern the macro-
modeling of MEMS structures. This research applies the paradigm to the case of a
tilting, circular, capacitive plate suspended by compliant beams that are modeled
as linear springs above an infinite ground plane, as depicted in Figure 1. Each
beam is treated as having two modes of energy storage: bending and torsion. A
voltage is applied between the plate and the ground plane and causes an
electrostatic attractive force that draws the plate toward the ground plane. The
plate is assumed to be rigid, and therefore the deformation of the system at any
given time can be described by three parameters. The first is the distance from the
ground plane to the center of the bottom face of the plate; this is referred to as the
gap g. The remaining two parameters describe the tilt of the plate relative to an x-
y axis projected up to the plane z = g; these are referred to as the tilt angles ¢, and
¢, For any combination of ¢, and ¢, an axis can be found that remains in the
plane of the untilted plate. Thus, the tilting can be characterized alternately by a

principle tilt angle ¢, and a principle axis angle ¢, All of these parameters are

15

/4@
%f -

Figure 1: Suspended Circular Plate Structure

1

Figure 2: Parameters for the Suspended Circular Plate

depicted in Figure 2. The state of the system at any given time can be expressed by
six parameters: g, @,, ¢, and their time derivatives. Throughout this report, the
term “state” is used to refer to only the position parameters g, ¢,, and ¢, in order
to illustrate the dependence of the energy domains upon position, even though
there are a total of six state variables, the positive coordinates and their time
derivatives, as explained below.

In the suspended circular plate system, there are five energy storage

16

elements, four beams and one capacitor. These elements contribute to the number
of state variables; however, there are two constraints to the system that restrict the
independence of the storage elements. The first is the rigidness of the suspended
plate. The energy stored in each of the beams is a function of the four coordinates
of attachment of the beams with the plate. Because the plate is rigid, one of these
coordinates can be determined by the other three. Thus, there are only three
independent energy storage elements among the four beams. The second
constraint is the fact that the capacitor is attached to a voltage source. The
electrostatic energy in the capacitor is determined by the charge on the plate, but
the attached voltage source fixes that charge. This eliminates the independence of
the capacitor storage element. Thus, the remaining independent energy storage
elements are the three beams, each of which contributes one state variable for
position and one for an associated inertial term. This yields six state variables for
the suspended circular plate system.

This paper presents the techniques for carrying the concept of a system
through the various levels of macro-modeling using the suspended circular plate
as an example. In Chapter 2, an efficient process is described that is designed to
perform full three-dimensional simulation of the capacitance of the structure over
a range of deformations in g and ¢@,. In Chapter 3, an algebraic model is
constructed that represents the capacitance of the suspended circular plate as a
function of g and @,. In Chapter 4, a simulator is implemented that uses this

algebraic model to predict the dynamics of the suspended circular plate.

CHAPTER 2 Capacitance Extraction

In order to macro-model the electrostatic nature of an electromechanical
structure, a numerical model must be constructed that represents the electrostatic
energy of the system as a function of the deformational state of the structure. For a
linear capacitor connected to a voltage source V, the electrostatic energy is
equivalent to %CV’ , where the capacitance C is the only state dependent parameter
in the function. Thus, the stored electrostatic energy can be completely described
by modeling the capacitance as a function of state.

In order to model the capacitance of a structure, the capacitance is
determined by three-dimensional simulation over a range of possible states. Then,
a numerical model can be constructed to agree with this data. The process of
extracting the capacitance of a structure at a single state can take an hour or more.
This time comes not only from the actual three-dimensional simulation but also
from the preparation of a model of the structure for simulation and the post-
processing of the simulation output. It is therefore necessary to devise an efficient
technique that will repeat the single state capacitance extraction process over

multiple states.

17

18

This chapter presents the design of a multiple state capacitance extraction
process using existing tools in the MIT MEMCAD package [6]. First, the single
state capacitance extraction process is described. Then, three successive designs of
a multiple state capacitance extraction process are presented. Finally, the last of
these is used to perform multiple state capacitance extraction for the suspended

circular plate structure.

2.1 Single State Capacitance Extraction

There are three tools from the MIT MEMCAD package that are used in the
single state capacitance extraction process. The first is I-DEAS, a commercial CAD
package, capable of constructing three-dimensional solid models and meshed
models (FEMs) from these solid models [7]. The second is FastCap, a three-
dimensional capacitance extraction program that, given a finite element model
with a surface mesh of a set of conductors, determines the capacitance matrix for
the conductors [8]. The third is MEMBase, a suite of tools and a library of C++
functions that enables the in-memory manipulation of meshed structures [9].

The process of single state capacitance extraction is outlined in Figure 3.
First, a solid model of the structure is constructed in I-DEAS. This model is then
surface meshed, creating a meshed model of the structure, which will be referred
to here as a finite element model (FEM). This FEM is written to disk, and I-DEAS
may be exited. I-DEAS can write an FEM according to several file formats.
However, it is incapable of writing in a format that FastCap accepts. MEMBase
includes an executable that can translate an I-DEAS Universal (UNV) FEM file
format to the Patran Neutral File (PNF) FEM file format, which is accepted by
FastCap. This executable is used to translate the FEM, and then the new FEM is
passed to FastCap.

FastCap returns a capacitance matrix that describes charges in terms of
applied voltages measured relative to a ground at infinity. This capacitance matrix
must be post-processed, because the electrostatic forces on the structure are

derived from the capacitance with voltagez measured between conductors,

19

I-DEAS
Structure I Construct
Solid Model

Mesh Model

Translate
for FastCap

FastCap

PostCap

]

C

Figure 3: Path from Structure Concept to Capacitance

subject to the constraint of zero charge at infinity. Jansen and Lang presented a
discussion of this issue and developed a program, called PostCap [10]. This
program performs this post-processing and returns the desired capacitance

matrix. Thus, PostCap is used to obtain the desired capacitance information.

2.2 Multiple State Capacitance Extraction

Three designs of a multiple state capacitance extraction processes are
presented: a manually performed process, an automated version of the manual
process, and an optimized automated process. The optimized automated process
is used later for the multiple state capacitance extraction of the suspended circular

plate.

2.2.1 Process A - Manual

The first multiple state capacitance extraction process is outlined in Figure

20

I-DEAS

Structure Construct
» Solid Model

|<——— X
Mesh Model

Translate
for FastCap

l

FastCap

PostCap

\

Ck)
Figure 4: Process A - Manual

o(n)

4. First, a solid model of the structure is constructed in an arbitrary state x. This is
followed by repeating the rest of the capacitance extraction process for the desired
set of states. In each pass through the loop, the solid model is deformed to a new
state x, the FEM is generated, and the rest of the single state capacitance extraction
process is completed, yielding the capacitance at x.

Each step in this process must be executed manually. One advantage of this
is that the mesh can be refined for each state of the structure. Overall, however,
the manual process is unnecessarily slow and time consuming, taking weeks to
extract the capacitances at tens of state points. Therefore, it is imperative that the
bulk of this process be automated. Another disadvantage of this technique is that
if there are n states for which capacitance is to be extracted, then nearly all of the
steps must be repeated n times. In order to optimize this process, not only must it
be automated, but the amount of O(n) work, i.e. the number of steps that are
repeated for each extraction state, must be reduced. This can accomplished by

introducing the dependence upon state at a later point in the process.

I-DEAS

Structure Construct
Solid Model

AutoGen

Mesh Model

AZ

O(n)

Translate
for FastCap

FastCap

Recap

C(x)
Figure 5: Process B - AutoGen and AZ

2.2.2 Process B - AutoGen and AZ

The next design is an automated version of the previous process. Three
programs were written for this purpose. The first is an I-DEAS macro, called
AutoGen, that for each desired state in state space deforms the given structure to
that state, meshes the deformed structure, and saves the FEM to disk. The second
is a UNIX shell script, called AZ, that takes the generated FEMs and passes them
through the rest of the capacitance extraction process. However, because PostCap
requires user input, it cannot be incorpcrated directly into an automated process.
In order to enable automation, a clone of PostCap was written, called ReCap.
ReCap is identical to PostCap in function except that it can be controlled entirely
by command line options. Furthermore, it can be used as a filter to the FastCap
output. Effectively, FastCap and ReCap can be used in the same command,
extracting the desired capacitance in one step. The code for AutoGen, AZ, and
ReCap is presented in Appendix A.

Figure 5 depicts the path of this process. In spite of the improvement over

22

the manual method, there are still several disadvantages to this technique. First,
because of the inflexibility of the I-DEAS macro language, AutoGen must be
written specifically for each class of structure; e.g. the version of AutoGen
developed for this research is written specifically for the suspended circular plate
model. Next, there is no communication between AutoGen and AZ; e.g. it is not
possible to dynamically choose the state points for capacitance extraction based
upon the previous results. Finally, although the process has been automated, the
amount of O(n) work has not been reduced. While the dependance upon human
interaction is eliminated, the process still takes several days of computation time
to generate the FEMs and then several more days to extract the corresponding
capacitances. In order to optimize this automated process, the amount of O(n)
work is reduced by removing the dependence upon I-DEAS for model

manipulation, as explained below.

223 Process C - Churn

In the third and final design of a multiple state capacitance extraction
process, the dependence upon I-DEAS as a model manipulator is eliminated by
transferring the task to a new MEMBase application called Churn. The code for
Churn is given in Appendix A. Churn is designed to accept any number of I-
DEAS Universal files of named finite element models, assemble them into one
internal FEM, and deform the internal model repeatedly, writing each
deformation to a Patran Neutral File and passing it through FastCap and ReCap.

The process is depicted in Figure 6. By delaying the dependence upon
state, the amount of O(n) work is significantly reduced. Only one model needs to
be generated for each part of the structure. Churn translates the FEMs only once
as the files are read. Because all structure deformation is done in memory, the
models never have to be re-read. Although this version of Churn is written with
the assumption that a circular plate and a ground plane base will be submitted,
and although the only structure deformations that it performs are the translation

and rotation of the plate, MEMBase has the capacity to apply complex

23

I-DEAS
Structure I Construct
Solid Model

Mesh Model

Chum

Read I-DEAS
FEM

[———— x

Write FastCap
FEM

O(n)

FastCap

Recap

A/
C(x)

Figure 6: Process C - Churn

deformations to meshes. Thus it will be possible to construct an advanced version
of Churn that will allow multiple state capacitance extraction for arbitrary

structures with arbitrary state complexity.

2.3 Suspended Circular Plate Multiple State Capacitance
Extraction

In order to develop the macro-model for the electrostatic component of the
suspended circular plate structure, Churn is used to perform the multiple state
capacitance extraction. In this section, the state space sample points, the plate and
ground plane FEM meshes, and the extracted capacitance information are

presented.

23.1 State Space Sample Points

The model of the suspended circular plate system assumes that the plate is

constrained to translation in gap and rotation (tilt). Although the plate is allowed

24

0.10

0.08 - -l

x x

0.06 :

a.

¢ (rad)

0.04 -

22 XM XK XN
xn
=
x X
x

REXRRRN

0.02 -

0.00 4— ‘m!”
1

0

WORK MM N NN MMM N NKNN

XXX X X M ONXNXXNXDNX
X X X X XN N X

x
]
L]
"

T ¥ T Lol I 1

T
3 4 5

N —exuxxxxx

g (um)

Figure 7: Capacitance Extraction Sample Points in State Space for the
Suspended Circular Plate

two degrees of freedom in tilt, the capacitance sees them as being degenerate. This
effect is due to the circular symmetry of the plate, which makes the capacitance
independent of ¢; and dependent only upon ¢,. Thus, the extracticn spans over
two state parameters: the gap g and the principle tilt ¢,. The points in state space
at which capacitance is to be extracted are shown in Figure 7. The plate cannot tilt
beyond the point of contact with the ground plane, restricting the states by
Rsing < g. Because capacitance changes more rapidly as gap decreases, the
density of state sample points is increased as gap is decreased in order to insure

an accurate representation of the capacitance.

232 Mesh Construction

For the case of the suspended circular plate, two meshes are created. The
first is the circular plate shown in Figure 8. This surface mesh contains 2756
triangular elements whose side lengths range from 2.5um to 5um. The plate has

dimensions of a radius of 50um and a thickness of 5pum. For the second mesh, it is

25

T 13 1T ISBEBANESEEE T T
T T T T IS BEESES T
T i T } T T S
IR T TTITTT T T T v) T
T T T T * DS RS) "
1T T — n T T YT Tt BSOS ¢
+r ' -t ISBS BN = T T
™ Tt T 'v T
t T+ 1 T t T : T
- ! ISESNES NS I 1 T +
—t RS | DESDDBEE S + T Y
ISESNEE DN T T T ISP ESENBE!
' T T T TTTTT Y T T SISt RS A
—t IREE 1 4 T T ESSSESNEEEE NS
= : ISSASSS 0SS! T ST
i T BeN! ot 1 T ISESSSREEI T
$——t + 11 SBESRERS! T =+ +rtrrt 4
A 1 DS RE! 0 S IS SDEE NN B!
T S RSEASESEINESSSSEN! 1 T
I DEE RS SRS : IBREE! T BESS!
T v vt t T T MERUSESS! 1 JIt L1 :
T 1T ? T T T + 1 .
! -+ I SENSSASSREES] T+ + t +
T ISASENSES! INSSANES D
Tt T T ! ¥ 14 4
vt T e 1 SASSESESESNE ST t —
T T T T T T T T
T IS BEESEERN IEESAEEESESEESESNEN! T T
IS AReS! T JEERERERSS ISESSSSSESISNNSRA! 1 .
T 184 T 1t t T Tt T3
T I SESEREEDEH 4t 1 e t 1
& Tt T T T+ IS SESSBERNS! * T
jseesessesassan: IBna T T IS RS 181 i 1SS
s T 1T t T 1 4 1 1
r S SNBASES 1S5 B T t t
IS S8R 1 T T ISNasS] 1
IS8SS8aN! T T T 1 T
iy IRRRSS ! T i IR EDES
ISHENNE : s b S 38 : 13
|8 S88Sst — i : bt — H I
———t T 14 B : 1 ISR RNNE
r T ’ Y T et Tt
v)R —— —+ — Ty . PR
r Tt T T t ++ T it ey T
T i T T e 181 T L
INNEESENSTTeEINEEa 1. Tt T t ;
TTYTTITY 1 T T T T B9 t
I ; T 1 e T
MR s 0 T T : T
jons; 1 T T IS DOE! T 11T 1RO
T ISSSENESESNEN : 1 T I
1T INESSSES0ES DN T TIYT I t
ISSEESSESSS08 SR T M T T3 T))
b T 1 T I R
r 18 B0 ! It T Y : : :
it RSS! T I ! 1 B
1 1 I SESSuana! — 1 :
T T i IS BNNERE! L DY
10 B iy it H + H
L ISEN IS ESE BNE 1 1 DRSS N 14 :
T+ * T deps T) * + 1T
I 888t 1 i 181 I 1 — e
r T 1 I T AN 1 i Ty
i J B INSEESSENEAS 11 IRSEEEENSEN)i i E R Tr 1
T 11T IBRBEN 1 IS ASEREEGN! IRERENal 1 111

Figure 9: Ground Plane Mesh

impossible to construct an infinite ground plane, so a finite ground plane is
constructed with dimensions of 200x200um. The mesh of this structure contains
4225 (65x65) square shell elements with side lengths of about 3um as shown in
Figure 9.

When constructing finite element models for FastCap, it is important to
refine the mesh sufficiently to obtain an accurate representation of the

capacitance, yet it must be coarse enough to minimize computation time. The

26

refinements of the plate and ground plane meshes are chosen by searching for the
coarsest combination of refinements such that a slight increase in either
refinement does not change the extracted capacitance by more than 1%. An
example of an assembled plate and ground plane FEM created by Churn is shown

in Figure 10.

2.3.3 Extracted Capacitance Information

Figure 11 presents a sample of the capacitance extracted through Churn.
This multiple state capacitance extraction for over 500 data points took one and a
half days. In the following chapter, this data is cornpared to an approximate
algebraic model and used to fit a parameterized form of that model, thereby
creating a sufficiently accurate mathematical model of the capacitance of the

suspended circular plate as a function of state.

A\
p <t oo i s e’ o G S G SO (o St St i G S B SRS S S S S G S & T T D S S e S, S b, . B s i
xxxxxxxxxxxxxxx D S o w— v V" ——

Figure 10: Assembled Plate and Ground Plane FEM

C (fF)

C (fF)

150

100

50

220
210
200
190
180
170
160

150 |

140

0.000

T T T I T T T T I T T I T 7 1

C .]
L . 4
8 . : : H . 7]
C :]
- e i b
C ? . :
- A :
L : ¢ H p
i ; . ; .

: Poe i B
- ! te b
o : H : ® e
@ =0 H H i 4
- P : . .
C 1 I 1 1 1 1 A I i 1 l N S -

o
—
N

g (pm)

r T T LA S B T La—
: e " E
g : e T E
:_
L :
L e e OSSO SR ORUOUTOUOTOU e O -
. : : : . p
. P]
S H : 3]

: . n

...... . oo

L . o ! : . ig=05um J
1 1 L l) 1 | 1 l 1 1 1 i 1 2 M-

0.002 0.004

0.006
?, (rad)

0.008 0.010

Figure 11: Suspended Circular Plate Extracted Capacitance

27

28

C (fF)

C (fF)

60

55

50

45

40

T 1T 1T L LI LR L LIRS A B R N A e | LIRS LB
™ L]
- .
. .
o -
o L] -
. 1

a.
L
- .
- L3
.
L]
~ L
®
. . :
..
T e eie o g =2.0um -
lllllllll i lllIIlIl llllllllllllll

0.000 C.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

27

26

25

24

23

22

21

20

@, (rad)

1.1 1.1 L1 11 ll’LlIlll

TY 1 1 TIi1i70 Trr1JrirryrrrTy Trrryprvrruorry

l. 1

1 1

1 1

g=4.7um

| S W S | 11 1 L

0.000

0.020

0.040
?, (rad)

0.060

0.080

0.100

Figure 11 (cont): Suspended Circular Plate Extracted Capacitance

CHAPTER 3 Numerical Model

In order to simulate the dynamics of a macro-modeled system efficiently,
each component of the system must be described by a quickly calculable function.
These functions should be based upon physics and be modified to correspond
with experiment or simulation. In this chapter, a numerical model of the
capacitance of the suspended circular plate is constructed. First, an algebraic
model is derived based upon an approximation of tilted plate capacitance. Then,
this model is parameterized and fit to the data obtained in the multiple state

capacitance extraction process performed in the previous chapter.

3.1 Algebraic Model

Two approximations are presented for calculating the capacitance of a flat
tilted structure suspended above a ground plane; these are the parallel plate and
the wedge approximations. These approximations are then shown to be related by
a factor dependent only upon tilt. Finally, the wedge approximation is applied to

the suspended circular plate to produce an algebraic model of its capacitance.

29

30

Figure 12: Parallel Plate Approximation

3.1.1 Parallel Plate Approximation

The parallel plate approximation is applied to an arbitrarily shaped flat
conductor suspended above a ground plane. The x-z cross-section of this such
system is shown in Figure 12. The coordinate system is chosen so that the plate is
tilted about the y axis and the ground plane lies in the x-y plane. In this
approximation, every differential element Ax of the plate is treated as a parallel
plate capacitor, because all of the electric fields are perpendicular to the ground
plane.

The capacitance is obtained by calculating the total stored energy in the

electric fields. The energy is given by:

Up = 5eof [[E2av (1)

where E is the electric field strength. Assuming that the length of the plate in the y

direction is given by L (x), where L (x) goes to zero at the limits x; and x;, the

integral becomes:
x, xtang, L.(x)
1 2
UE=§sojdx [dz | E'dy)
X 0 0

In the parallel plate capacitor approximation, the electric field is constant between

the plates, and its magnitude is given by:
=Y
E =)

where d is the distance between the plates. In this approximation, d = xtang . It

31

follows that

xyxtan@, L (x)

Up =35 [| (m;’(p)zdydzdx @)
x, 0 0 p

Evaluating the two innermost integrals yields

X

-L
Ug = %"2[o ‘(X)dx] ©

tang,) x
1

In this expression, the term in square brackets represents total capacitance
between the plate and ground plane in the parallel plate approximation limit:

X3

g L(x
C,p = ang, | —dx (6)

31.2 Wedge Approximation

The wedge approximation is also applied to an arbitrarily shaped flat
conductor suspended above a ground plane. The wedge approximation is that all
electric fields are perpendicular to the plate and curve downward to meet the

ground plane perpendicularly. The x-z cross-section is shown in Figure 13. Again,

Figure 13: Wedge Approximation

the coordinate system is chosen such that the plate is tilted about the y axis and
the ground plane lies in the x-y plane.
The capacitance is obtained by calculating the total stored energy in the

electric fields. Assuming that the length of the plate in the y direction is given by

32

L,(r), where L (r) goes to zero at the limits r; and r,, the integral becomes

| rn 9, L)
2
Ug = i.s(,jarrjde j E’rdy 7)
rh 0 0

For the wedge approximation capacitor, the electric field is uniform along the
path of the field lines. The distance that the field line travelsis d = ro p Thus, the
integral becomes:

r¢,L(r)

Up = 52 | j(—-) rdyd8dr (8)

rn0 0O

Evaluating the two innermost integrals yields:

T
1,8 L(r)
Ug = 2V |:‘Pp . dr 9

m

where the term in square brackets represents total capacitance between the plate

and ground plane in the wedge approximation limit:

1’ (r)

(10)

3.1.3 Relationship Between Parallel Plate and Wedge Approximations

The capacitance of a flat plate suspended above a ground plane in the

parallel plate approximation has been shown to be

_ & ?Lx(x)dx
pp tan(pp x

Xy

(11)

Similarly, the capacitance of such plate in the wedge approximation can be

expressed as

e, 2L ()
,
O ar

w
[r
Pr'

(12)

These two approximations differ only by a constant factor. The relationship

33

between x and r is given by

X = recosQ, (13)
Thus, the differential elements are related by
dx = drcoscpp (14)
By definition,
L(x) = L(r) (15)
and their limits of integration correspond:
X; = 1 cosQ, and x, = r,cosQ, (16)
Therefore,
2L oy L
£ —dx j —dr (17)

Thus, the parallel plate and wedge approximations for the capacitance of a tilted

flat plate suspended above a ground plane are related by

(tang,)C,, = (¢,)C, (18)
In the examples considered here, @, never exceeds 0.1 radians, so these models
differ by less than 0.4%.

314 Suspended Circular Plate Algebraic Model

The wedge approximation is chosen to determine the algebraic model of
the capacitance of the suspended circular plate. The plate is oriented according to

the wedge approximation as depicted in Figure 14. L(r) is given by

L(r) =2 /Rz_ ("""0)2 for ry-R<r<ry+R (19)

and is zero elsewhere. Thus, the capacitance is expressed by

ey e

(20)

34

> x
Figure 14: Suspended Circular Plate - Diagram for Determining Algebraic
Model of Capacitance
The change of variables of r — r + r,, yields
e 2
c, == j 2R -1, (21)
r+r,

Another change of variables of r — Rr yields

EOJ‘A/‘I:_ ,

r+ (ro/R) (22)

According to Gradshteyn and Ryzhik [11]

L 2
(=X gr = tnp-p?—1] for p21 (23)

xtp
-1

Using this identity, the capacitance becomes

g.R (’0) (r0)2
Cw = 2-(—p;1tl: R - E -1 (24)
Substituting r, = g/ (sin@,) into this equation yields the final expression for
capacitance:
L (8)- (&) s
C=2n m— =]- ié - sin (Pp (25)

This is used as the algebraic model of the capacitance of the suspended circular
plate, which is the starting point for the macro-model.

It should be noted that this capacitance function cannot be evaluated
numerically at ¢, = 0 because of the division by zero. Although this function has
a limit as ¢ p 0, the @, terms in the denominator cause extreme numerical error

for small values of ¢,. In order to reduce this error, the first few terms of a Taylor

35

series expansion of the capacitance about ¢, = 0 are used to represent the
capacitance for small values of ¢,. In this limit, the capacitance becomes

g,RR° | €,mR%(2g2 - 3R2)

C(pp -0~ g 12 g3 (plz, + 0(([):) (26)

The threshold at which the small @, limit for capacitance is applied is determined

by trial and error to be (pp=10'4 radians.

3.2 Fitting an Algebraic Model to Numerical Data

An algebraic model based upon approximations does not necessarily
match the data that would be obtained by experiment or three-dimensional
simulation. Figure 15 depicts the algebraic model of the suspended circular plate
capacitance alongside the multiple state capacitance extraction data obtained
from the three-dimensional simulation of the plate by FastCap. It can be seen that
although the algebraic model of Equation 25 has the same form as the data, the
model has inaccuracies.

In order to improve the accuracy of Equation 25, fitting parameters are
incorporated into the algebraic model. These parameters are chosen to have
physical meaning. For the suspended circular plate model, three parameters are
defined. The first two parameters are used to define an effective gap g = a,,g and
an effective plate radius R = a,R. The third parameter is used to account for the
fringing of electric fields. A fringing term based upon approximations of the
capacitance per unit length of a parallel plate capacitor, (1+ a3(%)) is multiplied to

the algebraic model [12,13]. The parameterized model becomes

-k [[Tomfad) @

and in the small @, limit:
g, TR? Z\) 1 E&mR?*(282-3R?) :
C%_’0 == (1 "'0‘3(1‘}))"{5 =3 (l+a3(%))cpr2)+0(¢?,) (28)
The Levenberg-Marquardt non-linear fitting algorithm is used to find the

150 N T I. T ¥ l T 1 T T I T L T v ! i T T T ! T T T T i
F | | « FastCap
- algebraic model § :
100 __ B O S _
g f
v X]
50 ; -
: (pp=0 : : : s]
0 C o 4 [T l T R SRR
0 1 2 3 4 5
g (um)
220 T T T l I T T I T T 1 T T T T T T
I . I]
i . FastCap : /]
200 |- algebraic model
180 | / |
3 -
Y 160
140 |
i g =05um j
120 PR S — —t Lt
0.000 0.002 0.004 0.006 0.008 0.010
?, (rad)

Figure 15: Comparison of Theoretically Based Algebraic Model with
Capacitance Data Extracted by FastCap

« FastCap
i algebraic model §™

60 Illl'l!lllIllllIIITIrTIIIIT‘I—[ITIf]TIII

55

50

ljllllllllllll

45

C (fF)

11 1 1

40

IIITVTI"7TTIITI|I‘IIII

1.1

35

- g=20um
30 |111illllillllillllillllillll 1111i1111—

0.000 0.005 0.010 0.015 0.02C 0.025 0.030 0.635 0.040
¢_(rad)
P

28 T T ¥ l ¥ T T | T 1 1 l 1 T T T T T

| - [FastCap]
algebraic model ‘)

26

Illllll

24

22

C (fF)

20

rrrryTird L
»
L]

18 [

16 S
L g=47um

F
14 1 1 1 TE 1 ' 1 ! ! ! 1 L 11

0.000 0.020 0.040 0.060 0.080 0.100
?, (rad)

Figure 15 (cont): Comparison of Theoretically Based Algebraic Model with
Capacitance Data Extracted by FastCap

38

optimum values for these alpha parameters. A MATLAB script of this algorithm
is written by porting the code presented by Press, Flannery, Teukolsky, and
Vetterling [14]. The MATLAB code for this non-linear fitting algorithm is
presented in Appendix A. This program requires that derivatives of the function
to be fit are taken with respect to the fitting parameters. Two variables are defined

to simplify the expressions for these derivatives:

r

(29)

i
ot

and

s= ,fr? - sin? ®, (30)

Differentiating the capacitance with respect to the fitting parameters yields

1
)

d - -
oo,) o%(r(l-g)(l +0,y7) +a3r(r—s))
0 gR 17!
—|C = 2x T | r (31)
a0, ¢,5nQ, a—(r(1 -»;)(l +0,r) +0yr(r—s)
2
d
Yo, i r(r-s)]
and in the small @, limit:
[5] 1(| 2r2-60,r-9)]
2| R LN 2
Jo, o\ 123 P
%C%_)O = g TR _1_(2+a3r_2a3r3+4r2_9a3r—12(p2) (32)
2 o, r 12,3 p
d
— 2"2—3 2
80(3 _ 1- TR _

This non-linear fitting algorithm also requires that each data point be
assigned a standard deviation that represents its significance in the fitting. The
multiple state capacitance extraction data for the suspended circular plate are

assigned uniform standard deviations.

39

The fitting parameters are found to be:

Table 1: Non-Linear Fit Results

04 1.097
L7) 1.056
O3 3.847

Figure 16 shows the parameterized model using these results plotted
alongside the capacitance data extracted by FastCap and the unparameterized
model. This fit corresponds sufficiently for the purposes of this demonstration,
and thus it is used as the numerical model of the suspended circular plate
capacitance.

In the next chapter, it will be shown that the derivatives of the capacitance
with respect to g and ¢, are also needed to determine the electrostatic forces.

These derivatives are

53_ . a,((l-g)(uay) +0L3(r—s))

ag ¢= 2n(p si(r)x(p sin@_cos® 1 (33)
= PP IR (1 4 0yr)| —2—22 "-(r-s)(—+ !)

¢, I s ¢, tang,))

and in the small @, limit:

o =

k] o (__1_+2r2—6a3r-9(p2)
d I 2 4 P
al ™ (1+05r) (2r2-3)

a(pp R 6r3 (pp

150

T l T T T ‘ T T T T l T T T T

L4 1

- FastCap
--------- before non-linear fit

- after non-linear fit
100 +

lllllllLllll

C (fT)

220 T T l T T T]

I 1 I T T]

i + FastCap]

200 |- before non-linear fit §.......... i -
- after non-linear fit Ao

180

C (fF)

160

140 ;__4 |

120 1 1 1 i A L 1 é I 1 1 l; J 1 L ; i 1 i |
0000 0002 0004 0006 0008 0010
9, (rad)

Figure 16: Comparison of Unfitted and Fitted Algebraic Models with
Capacitance Data Extracted by FastCap

60 [T 7 7 1 [T T 1771 I T 17 1 T] T 1 177 I v 1 17 ! T 7 TT ! L ! T .l l-

. F FastCap /)

55 4 i before non-linear fit :]

" after non-linear fit -]

& h
&) N
: : : : g=2-0ﬂm]

30 1 1 1.1 i 4 L 1.1 l L1 .1 1 i 1.2 1 1 j 1 1 1 1 i L1 4.1 {1t 1 1 i 4.1 1 1]

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
¢_(rad)
P

28 1] T ¥ l A] A ! T T 1 ! T T T ! t T T
- FastCap /]

_ ------- before non-linear fit .]
. — after non-linear fit .)

26

24

[2 S S S N SR S

£ I]

v 2 ’_ RS OO SRRSO SRS SV 4
18 Fo S T -

14 N L { | . 1 1 1 1 ! 1 ' 1 I L

0.000 0.020 0.040 0.060 0.080 0.100
®, (rad)

Figure 16 (cont): Comparison of Unfitted and Fitted Algebraic Models with
Capacitance Data Extracted by FastCap

42

CHAPTER4 Dynamics Simulation

In the preceding chapters, a numerical model of the capacitance of the
suspended circular plate was developed. In this chapter, a suite of tools is
developed that use this model to simulate and analyze the dynamics of
suspended circular plate structures under arbitrary driving voltages. First, the
theory of a modular dynamics simulator is presented. This theory is then applied
to the suspended circular plate by the implementation of a simulator that
depends upon modules that describe the system: the algebraic model of
capacitance, a function of voltage with respect to time, and the dimensions and
material parameters of the suspended plate and its beam supports. Next, a
technique for determining the equilibrium state and normal modes about
equilibrium of the system is presented. Finally, the dynamics simulator is used to

simulate the complex dynamics of the suspended circular plate.

43

44

4.1 Modularizing the Equations of Motion

The dynamical equations of motion can be expressed as
¥ = f(x,%,1) (35)
where x is a vector that describes the displacement of the system as a function of
time, and f is a vector function that returns the acceleration of the displacement
as a function of position, velocity, and time. It is a misnomer to describe these as
vectors, because the term implies that a common unit system exists among their
components. For example, a macro-modeled system could have displacement
coordinates in terms of position, angle, or bending, each of which wouid be
defined in terms of a different dimensional unit. In actuality, these are arrays or
multivalued variables, but for simplicity they are here referred to as vectors.
Solving the equations of motion on a computer is done by numerical
integration. First, the second order differential equations of motion are reduced to

standard state-equation form, where now both position x and velocity ¥ appear

d|x X
el = 36
dt u [/(x, ¥, t)] (36)

If the acceleration function f(x,%,f) can be implemented on a computer, this

as true state variables:

equation can be integrated numerically to solve for the motion of the system.
Here, an acceleration function that contains only stored energy terms is
discussed; however, the functionality for including friction and driving forces
exists. The force applied by stored energy is determined by linearizing the
potential energy about the state of the system. Thus, the acceleration of each state
component is derived from the derivative of the potential energy function with

respect to that state component. The acceleration of the state can be written as

Kl
1 dx,
x=| |=-M Ux, 1) (37)

9
0x

45

where M is a matrix containing the inertial terms for the respective displacement
coordinates, and U(x,t) is the stored energy.
The above formulation implies that state acceleration is proportional to

force by some inertial constant. This is true for the case of a force on a particle

=, dx
Fegi=rg=m2 (38)

The force and state acceleration are proportional by the mass. However, torque
and angular acceleration are not separated easily. For the case of a torque on an
object with moment of inertia tensor {I},

= 9L
di

d .
= {1}6 (39)
The torque N and angular velocity 0 carry associated coordinate systems that
must be transformed to the coordinate system of the object. By including matrices
A;; that transform the coordinate system from j to i, the torque becomes
2

do

09 7,2

dhoedd

007 dt+lNOI A

do\ _ dA do
N = -—(kNol Moogs) =" Toghog e + ol (40)

The angular acceleration 3 5 ;

is not proportional to torque, because the transforms
are functions of state. For this dynamics simulator implementation it is assumed

that the tilt angles are in the small deflection limit, and torque is approximated as

4o
N =Ty (41)

In the determination of forces by the differentiation of potential energy, it is
not necessarily convenient to differentiate U with respect to the state variables.
The chain rule is applied to alleviate this problem by separating the

differentiation vector into the product of a derivative matrix and a new

46

differentiation vector taken with respect to a preferred coordinate basis x:

(5] ox, %[3
ox, ox, " dx,||9x,
=1 (42)
9| lox, %9
dx == .- 3| |0x;
) _ax,, axn_ el
This is expressed more simply by introducing a shorthand notation
d _ox d
% " ax %)
Thus, the acceleration function for a system of potential energy functions are
expressed by
;. oU,
_M-!
¥=-M Z ox 0x, (44)

The preceding formulation describes a process for constructing a modular
dynamics simulator. First, a set of parameters is chosen that fully describes the
state of the system, x. Second, the components of the potential energy, U,, are
defined. Third, a set of preferred coordinates, x;, is chosen for each potential
energy function. Fourth, each potential energy function is differentiated with
respect to its preferred coordinates, ;;". Fifth, a derivative matrix of the preferred
coordinates with respect to the state coordinates is implemented, %E;‘ Finally, the
inertia matrix M is constructed and inverted. These modules combine to form a
numerical model of the equations of motion, which can then be numerically

integrated to yield the simulated dynamics.

4.2 Modular Equations of Motion for the Suspended Circular
Plate

A dynamics simulator that solves for the motion of the macro-modeled
suspended circular plate is implemented by following the process outlined above.

The code developed for this simulator is presented in Appendix A.

47

First, the positional state of the system is defined in terms of three

parameters:

4
x =09, (45)

Py
where g, ¢ , and ¢, are the gap and tilt angles of the suspended circular plate.
Next, the potential energy of the plate is classified into two modules: an
electrostatic and a mechanical energy component. These modules, in combination

with the inverse of the inertia matrix, comprise the simulator.

421 Electrostatic Contribution

The potential energy stored in a linear capacitor attached to a voltage

source is given by

1 ..2
Ug = ECV (46)

where C is the capacitance and V is the voltage across the capacitor. The only
state dependent term in the energy equation is the capacitance; the voltage is
purely time dependent. Thus, the voltage can be seen as a time dependent scaling
factor to the energy, which is characterized by C.

Two preferred coordinates are inherent within the macro-model of the
suspended circular plate capacitance: the gap g and the primary tilt angle @,. The

preferred coordinates thus become

g
(x) = | 8| = (47)
[‘PJ atan,| (tang,)” + (tang,)”

48

and the derivative matrix becomes

_1 0 -
2
tan@, sec @,
gﬁ = tan(ppsecz(pp (48)
tan (pysecchy
tan(ppsecztp P

The electrostatic energy must be declared carefully before it is
differentiated. Although %cv2 is equivalent to the energy stored in the electric
fields, it actually represents the co-energy [15]. The energy is written in terms of
the charges on the conductors Q:

2
Up = 3% (49)
Because the electrostatic forces originate from charges and not voltage, the charge
dependent formula is used for differentiation. Differentiating this with respect to
the preferred coordinates yields

e _ _1g70c _ _1aaC (50

dx 22x 2 ox

This derivative is exactly the negative of that which would be calculated if

Equation 46 were interpreted as the energy instead of the co-energy. Thus,

attention to the energy versus co-energy is important, even for linear capacitors.
The numerical model developed in the previous chapters is used toc supply

the derivative of the capacitance. Thus, the electrostatic contribution to the force

on the plate is specified completely.

4.2.2 Mechanical Contribution

Each support beam is assumed to have two modes of energy storage,
bending and torsion. The spring constants for each deformation mode are
determined by applying beam theory in the linear regime to the dimensions and

material parameters of the beams. Beam theory is a well documented field,

49

having linearized the restoring forces for many beam designs under various
loads. The translational spring is treated as a linearized beam in pure bending
that is fixed at one end but is free and guided with a concentrated load at the
other, as depicted in Figure 17. The decision to have the support beam guided by

Figure 17: Translational Beam Deflection

the plate comes from the assumption that the plate is rigid, which implies that the
plate will clamp the support beam. The rotational spring is treated as a linearized
beam fixed at one end with concentrated torque at the other, as depicted in Figure

18. It is important to note that the rotational model does not take into account the

Figure 18: Rotational Beam Deformation

simultaneous deflection of the beam, and neither does the translational model
take into account the twisting of the beam. Furthermore, neither model accounts
for the minute stretching and shearing that occurs. To simplify this
implementation, however, these issues are ignored.

The potential energy stored in the linear springs is given by
U = %k(Az)2+%K(A9)2 (51)

where Az is the distance by which the tip of the beam is deflected, and A8 is the
angle by which the tip is rotated. Clearly, Az and A@ are the preferred coordinates

50

of this energy function. The spring constants ¥ and k are defined from pre-
existing models determined by beam theory [16]. For a beam of length L, width
w, thickness ¢, Young’s modulus E, and Poisson ratio v, the spring constant k for
a beam that is fixed at cne end and free and guided at the other, with a
concentraied load at the guided end, is given by

k= =22 (52)

The spring constant k for a beam fixed at one end with concentrated torque at the

other is given by
b R0 40
K= 5+wI3 16wl "2l (53)
The energy is differentiated with respect to the preferred coordinates to
yield
ou
ox U KAG
949

Defining Az and A8 in terms of the state coordinates can yield complicated
formulas, in particular, A8 for a beam whose axis is not parallel or perpendicular
to the direction of principle tilt. For simplicity, only beams placed along the x or y

axes are considered here. For the case of the tx axis,

, - Rt
£ = [2;] i [@ g0) F ampy})
P
and for the case of the ty axis,
- R
A 9,

where g, is the initial gap between the plate and the base, and R is the radius of

51

the plate. The derivative matrices are respectively

o 1 0

x 2 57)

el 0 1 (
TR (secq,) 20
and

3%, r 0

35 = |tR(sec)?20 (58)
0 1

Thus, the spring contribution to the force on the plate is specified completely.

423 Inertia Matrix

In order to model the inertia of the suspended circular plate system, only
the mass of the rigid circular plate is considered; the mass of the beams is
neglected. The circular plate is treated here as a uniform cylinder with radius R

anc. thickness ¢. The mass of the plate is
m = pn:th (59)

where p is the mass density of the plate. The moment of inertia about an axis

along the face of the plate through the center of the face is given by
2 g2
1= m(842) (60)

Therefore, the inertia matrix is given by

m0O0
M=lor10 (61)
0017
This matrix is inverted easily and construction of the dynamics simulator is

concluded.

52

4.3 Equilibrium and Normal Modes

It is desirable to be able to determine the equilibrium state and normal
modes about equilibrium in order to characterize the behavior of macro-modeled
systems. Numerical techniques are developed to determine the equilibrium and
normal modes. The code that implements these techniques can be found in

Appendix A.

43.1 Equilibrium

By definition, equilibrium occurs in a system when the accelerations for all
of the state variables go to zero simultaneously. Unless the acceleration functions
are readily available in an easily solvable form, finding equilibrium requires a
relatively sophisticated zero searching algorithm. Of the many such algorithms
available, the damped matrix-free Newton method is chosen.

Newton techniques use an initial guess and an estimated slope of the
function in order to extrapolate to more exact guesses repeatedly. It follows that
the initial guess passed to the Newton method determines which zero will be
found. There are both stable and unstable equilibrium points in this class of
electromechanical systems. The type of point the Newton method discovers
depends upon the initial guess. The rest state, i.e. the undeflected state at zero
voltage, is a good initial guess, because this state is closer to any stable
equilibrium state than to any unstable equilibrium state. This is so because the
unstable equilibrium states divide stable dynamics and pull-in. Thus, the rest
state is used as the initial guess for the Newton method.

The Newton method may have difficulty converging, because the state
coordinates and their corresponding accelerations have varied units and
magnitudes. Newton methods applied to a function are most effective when the
function output has the same order of magnitude as its input and when the
individual coordinates share a common magnitude. The gap is recorded on the
computer in units of meters, yielding magnitudes on the order of 10°%. However,

the tilt angles, recorded in radians, have magnitudes on the order of 103,

53

Furthermore, the accelerations have significantly greater magnitudes, with gap
acceleration on the order of 10 and iilt accelerations on the order of 10%. The
solution to this problematic magnitude variation is to precondition the state and
acceleration function. Two diagonal matrices, P and Q, are defined to normalize

the magnitudes of the state and acceleration respectively to be of order 1:

X = Px (62)
J@.x) = Qf @, x) (63)

A new acceleration function is defined whose inputs and outputs are of order 1:
gt %) = Of 1, P'¥) (64)

This normalization enables the Newton solver to converge for g(¢, £) more easily.
The initial guess passed to the Newton solver on g(z,) must be precorditioned
by:

%, = Px, (65)
and the equilibrium state £, that the algorithm returns must be reconditioned to
its original units:

1. i
x, =P %, (66)
From this theory, a preconditioned acceleration module can be written around the
original acceleration function, and an equilibrium determination module can be

written to use the preconditioned acceleration module with a damped Jacobian-

free Newton solver to find the equilibrium state [17].

4.3.2 Normal Modes

Normal modes are calculated by first expressing the acceleration function,

¥, as a Taylor series expansion about some x,;:

%= o) = fog+(s, J-x +... (67)

At equilibrium, ¥ = 0. Thus, by expanding about equilibrium and by neglecting

54

higher order terms, it is found that

. (d
£=(Lre), -2 (68)
This equation is modified to match the equation for a simple harmonic oscillator:
2
d d
?(x"xe) "’(Z;f(x)lx') (x-x,) (69)

The eigenvectors v; of the matrix %f(xnx determine the normal modes of the
dynamical system about equilibrium, and the frequencies of those modes can be

determined from the eigenvalues §; by

g, = o (70)

The zd;[(x)h_‘ matrix is not Hermitian because, as previously stated, the state
vector components do not share a common unit system. A metric would have to
be constructed and applied to the state coordinate system before it would become
Hermitian. Thus, the eigenvectors are not orthogonal by dot product. In order to
extract the contributions of each mode to the total state, a contravariant

eigenvector basis v' to the covariant basis v ; must be generated. By definition,

vi-vj = 5; (71)

where 8; is the Kronecker delta. Thus, by placing the contravariant vectors in the
rows of a matrix V" and the covariant vectors in the columns of another matrix

Vo it follows that

fow

Vv, =1 (72)
and thus the contravariant vectors are determined by

v = v (73)
Therefore, the projections of the state onto each mode are determined by the dot

product of that state with the corresponding contravariant vector of the mode.

4.4 Suspended Circular Plate Simulation

In Appendix B, the developed simulator is used to explore the dynamics of

55

100x10x2 /
S

100x10x2 . 997 100x10x1.85

-)
100x10x1.9

L.

Figure 19: Simulated Suspended Plate Structure Diagram

the suspended circular plate in detail; a sample of the results is presented here.
The simulated structure is depicted in Figure 19. A rigid circular plate with radius
50pm and thickness 5um is suspended 5pum above a ground plane by four thin
beams. Each beam has length 100um and width 10um. Two beams have thickness
2um, one has thickness 1.85um and the last has thickness 1.9um. The plate starts
at rest at a gap of Sum with voltage 0. Voltage is then linearly increased to 150
volts over 10 seconds, after which voltage is held constant at 150 volts.

Figure 20 shows the motion of the plate, and Figure 21 shows this motion
projected onto the calculated normal modes about equilibrium at 150 volts. The
dots on each plot represent the integration steps taken, and the horizontal lines
represent the calculated equilibrium value at 150 volts. The non-sinusoidal
behavior in modes 2 and 3 demonstrates the energy transfer between normal
modes due to large displacements about equilibrium. This is an example of the
complex non-linearity of electromechanical motion.

For an extended set of dynamical simulations, see Appendix B.

56

gap (m)

| NANAN S
1 VVVVVY

1 2
tis) x 107

.3
25X10 . : . . : : . .
o} I/\ m /\ /\ /\
1.5}]
o
£
>
pa
&
1—
05t]
0 1 ' 1 i 1 1 1 1
o 02 04 06 08 1 12 14 16 18 2
tis) x10™

Figure 20: Sample Dynamics

1.2 1.4 1.6

02 04 06 08 1
t(s)

Figure 20 (contj: Sample Dynamics

N

1.8
x16™

57

58

T ANRARAA
VRRTATATAI

-6 1 1 1 1 1 3 B 1 1 1
0 02 04 06 08 1 12 14 16 18 2
tis) x10™
-4
16219 . . : : : : : :
~ |
[+
B
€ |
0 AANAAANANNAAS
v v VV ¥y VvV - VvV
_2 1 1 L 1 1 1 1 1 1
o0 02 04 06 08 1 12 14 16 1e8 2
t(s) x10™

Figure 21: Sample Dynamics - Mode Projection

4
10
2x T T T T T T T T T
0 n_A AA AN -
A AN A
-2t -
4t i

mode 3

0 0.2 0.4 0.8 0.8 1.2 1.4 1.6 1.8

N

1
tis) x 107

Figure 21 (cont): Sample Dynamics - Mode Projection

59

60

CHAPTER 5 Conclusion

In this research, the ability to carry a structure concept through the macro-
modeling process has been demonstrated. The suspended circular plate has
undergone full three-dimensional simulation via the multiple state capacitance
extraction process. A physically based algebraic model has been fit to the
simulation data. Finally, this model has been used to predict and characterize the
dynamics of a suspended circular plate system.

Several issues regarding this macro-modeling process remain untouched.
One is that the multiple state capacitance extraction process can be further
optimized by incorporating MEMBase into FastCap, thereby eliminating the time
taken to write out FEM files for FastCap to read. Another is that developing an
approximate theoretical model of a physical system is not always possible. It
might be beneficial to derive some curve fitting scheme that will construct a
functional form for the system using only the obtained data without any
approximate function to base it on. It might be further possible to combine the
capacitance extraction tools with the numerical modeling tools, thereby

permitting a numerical modeling routine to dynamically control what data is

61

62

obtained via capacitance extraction. A final issue is that the inertia of the system
relative to the state coordinates is treated as being constant, although it can
depend upon state. Some thought must go into deriving a general way for
extracting the state dependence from the inertia of the system.

The tools developed in this paper are far from being able to construct
macro-models of a given structure automatically. However, they do provide the
functionality to simulate the dynamics of a suspended plate systern with arbitrary
plate shape. These tools also provide a framework within which specialized tools
for particular structures can be constructed. In particular, the various modules
which automate highly repetitive tasks reduce the total time required to construct
an accurate macro-model by several orders of magnitude. Thus, a promising start
has been made in the practical linking of three-dimensional numerical simulation
of meshed structures to corresponding lumped-element dynamical macro-

models.

APPENDIX A

Code

A.1 Capacitance Extraction

A1l AutoGen

This code is written in the I-DEAS program file language.

#input “Enter Gap start: *“ GapStart
#input “Enter Gap step: “ GapStep
#input "Enter Gap stop: “ GapStop
#input “Enter Thick start: ™ ThickStart
#input “Enter Thick step: " ThickStep
#input “Enter Thick stop: “ ThickStop
#input “Enter Phi start: * PhiStart
#input “Enter Phi step: *“ PhiStep
#input “Enter Phi utop: “ PhiStop

Turning off forms...
/opp 2

fd of
OKAY
OKAY

Leave part parameters on after update...
/up uo ap no OKAY

OXOORRRARXRXRROOQORRAIAARARARREIARAR

63

Loop 1 (Gap)
Loop 1 Init
#Gap = GapStart

Leocop 1 Test

#L1TEST:

#if (NOT (Gap LE GapStop)) then goto L1FAIL
Loop 1 Block

Edit parameters...

/mo e

lab

Til

: pt

di
v
Here is the gap (lphi, 2thick, S5gap)

Loop 2 (Thick)

Loop 2 Init

#Thick = ThickStart
Loop 2 Test
#L2TEST:

#if (NOT (Thick LE ThickStop)) then goto L2FAIL
Loop 2 Block

Edit parameters...
/mo e

lab

Til

: pt

?ﬁOO'xO000?@7-‘NN%O%NNNNNOOO?@?@OOROOOONNNXNONNNNNNOOONXOOXOO

di
v
Here is the thickness (1lphi, 2thick, 5gap)
2

EQ Thick
OKAY

Loop 3 Test
#L3TEST:

-~

MR RARXOOAORRRIOAARRROOARIRIAORAIAARNRRARAAOROAORARRNRAROQAORRARRARRXRNN 00

. #if (NOT ((Phi LE PhiStop) AND (50*SIN(Phi) LT Gap))) then goto
L3FAIL

Loop 3 Block

Edit parameters...

/mo e

lab

Til

pt

di

v

Here is the phi (1lphi, 2thick, S5gap)

i

EQ Phi
OKAY

#Filename = “g*+Gap+”t”+Thick+”p”+Phi+”.unv”
Here is where you update

/up p

Here is where you save the file
/f exp s 1

OKAY

EU 3

FN Filename

Y

OKAY

Loop 3 Incr

#Phi = Phi+PhiStep
#goto L3TEST
#L3FAIL:

Loop 2 Incr

#Thick = Thick+ThickStep
#goto L2TEST

#L2FAIL:

Loop 1 Incr

#Gap = Gap+GapStep
#goto LI1TEST
#L1FAIL:

Turning forms back on...
/o pp 2

fd on
OKAY
OKAY
x END OF SESSION ****

€6

Al2 AZ

This code is written in the UNIX tcsh shell script language.

#! /usr/local/bin/tcsh
unalias rm cp mv

set TARGETDIR = ~/tilted_plate
source ~/bin/HP_rsh
foreach i ($*)
echo “Analyzing $i”
set SOURCEDIR = $i:h
if(“$SOURCEDIR” == “$i”) then
set SOURCEDIR =
endif
set ROOT = $i:t:r
if('(-r $TARGETDIR/archive/$SROOT.tgz)) then

rm -f $TARGETDIR/S$ROOT.unv

rm -f S$STARGETDIR/S$SROOT.pat

rm -f S$TARGETDIR/S$ROOQT. fc

rm -f STARGETDIR/S$ROOT.cap

cp -f $SOURCEDIR/$ROOT.unv $TARGETDIR

echo “Unv2Pnf”

RSH gatekeeper “unalias cp rm mv; cd /usr/local/scratch/
ldgabbay; \

cp STARGETDIR/SROOT.unv .; \
STARGETDIR/unv2pnf.sun $ROOT.unv $ROOT.pat; \
rm SROOT.unv; \

mv -f $ROOT.pat $TARGETDIR” >& /dev/null

ccho “FastCap”

RSH memcad3 “cd STARGETDIR; fastcap.alpha $ROOT.pat > $ROOT.fc”
>& /dev/null

echo “ReCap”

RSH blofeld “cd $TARGETDIR; (recap.hp -e -15 -r 1 -F 1 0 -1i
$ROOT.fc -0 -) | tee $ROOT.cap cap/$ROOT.cap”

echo “Spawning Archiver...”

RSH madonna “cd S$TARGETDIR; tar cvf - $ROOT.unv S$ROOT.pat
$ROOT.fc SROOT.cap | gzip -9 > archive/$ROOT.tgz; rm -f
SROOT.*"” >& /dev/null &

endif
echo "“Done! ($i)”
end

A13 ReCap

This code is written in C++.

recap.C

#include <stdio.h>
#include <string.h>

#include <fstream.h>

#include "Matrix.H”
#include “FCinfo.H”

FCinfo fci;

Matrix<double> C(0);

Matrix<int> I_floating(C), I_£fixed(9);

int N_conductors, N_floating, N_fixed, ref, preferredExponent;

int isExponent=0;

int isInputSet=0;

int isOutputSet=0;
int isReferenceSet=0;
int isFloatSet=0;

int isFixedSet=0;

char infile[35];
char outfile(35];
istream *is;
ostream *0OS;

void processArgs(int argc, char *argv(])
{

int current_arg = 1;

while(current_arg<argc) {
if (argvicurrent_arg] [0] == ‘-')
switch!argv(current_arg++] [1]) {

case ‘e’:
isExponent=1;
preferredExponent = atoi(argv(current_arg]l):
current_arg++;
break;

case ‘r’:
isReferenceSet=1;
ref = atoi(argv(current_arg]);
current_arg++;
break;

case ‘f’': { // fixed
isFixedSet=1;
isFloatSet=0;
I_floating.zero();
N_fixed = atoi(argv(current_arg++]);
int 1i;
I_fixed.resize(l,N_fixed);
for(i=0;i<N_fixed;i++)

I_fixed(0,1i) = atoi(argv[current_arg++]);

break;

}

case ‘F’: { // float
isFloatSet=1;
isFixedSet=0;
I_fixed.zero();

N_floating = atoi(argv(current_arg++]);
int i;
I_floating.resize(l,N_floating);
for(i=0;i<N_floating;i++)
I_floating(0,1i) = atoi(argv([current_arg++]);

break;

}

case ‘i’:
isInputSet=1;
strcpy(infile,argv({current_argl);
current_arg++;
break;

case ‘o’:
isOutputSet=1;
strcpy (outfile,argv([current_argl);
current_arg++;
break;

}

inline int isPipe(char *str)
{

return ((str{0)l=='-')&&(str[1l]=="\0"));
}

void securelnput ()
{
if(!'isInputSet) {
printf (*Enter fastcap output filename: "“);
gets(infile);
}
if (isPipe(infile))
is = new istream{(cin);
else
is = new ifstream(infile);

void secureFCinfo()
{

(*is) >> fci;

N_conductors = fci.getNumberOfConductors();
}

void securePreferredExponent ()

{
if (!isExponent)
preferredExponent = fci.getUnitExponent();
)

void secureReference()
{
if (!isReferenceSet) (

69

char refs(2];

printf (*Reference conductor? "“};
gets(refs);

ref = atoi(refs);

}

void secureFloatFixed()
{
#ifdef DEBUG
cerr << "“[secureFloatFixed()” << endl;
#endif
int i, 3, k;
if(isFixedSet) {
N_floating = N_conductors - N_fixed;
I_floating.resize(l,N_floating};

for(i=0,k=0; (i<N_conductors) &&(k<N_floating);i++) {
for(j=0;j<N_fixed;j++)
if(I_fixed(0,3j)==1)
break;
if (j==N_fixed)
I_floating(0,k++) = i;
}
} else if{isFloatSet) {
N_fixed = N_conductors - N_floating;
I_fixed.resize(l,N_fixed);

for(i=0,k=0; (i<N_conductors) && (k<N_£fixed) ;i++) {
for(j=0;j<N_floating:j++)
if(I_floating(0,3j)==1)
break;
if(j==N_floating)
I_fixed(0,k++) = i;
}
} else {
N_floating = 1;
I_floating.resize(1l,N_conductors);
I_floating(0,0) = 0;

N_fixed = 1;
I_fixed.resize(1l,N_conductors);
I_fixed(0,0) = ref;

char flofixs(1];
for (i=1; (i==ref?++i:1)<N_conductors;i++) {
do {
printf(*Is conductor %d’'s potential floating or controlled
(£,c)? ~,1i);
gets(flofixs);
} while((flofixs{0])!='c’)&&(flofixsl0}!="£f"));
if (flofixs[0] == ‘£’)
I_floating(0,N_floating++) = 1i;
/* “controlled” == “fixed” */

70

if (flofixs{0] == ‘c’)
I_fixed(0,N_fixed++) = 1i;
}

}
#ifdef DEBUG

cerr << “] secureFloatFixed()"” << endl;
#endif
}

void secureOutput()
{
if (!isOutputSet)
printf (“*Enter output filename: “);
gets(outfile);
}
if (isPipe(outfile))
os = new ostream(cout);
else
os = new ofstream(outfile);

}

void floatConductor{int f, Matrix<double>& C)
{
#ifdef DEBUG

cerr << “[floatConductor()” << endl;
#endif

int i, 3J;

for(i=0; (i==f2++i:1)<C.getM();i++)
for(j=0; (j==£2++j:j)<C.getN();j++)
C(i,j) -= C(i,f)*C(£,3)/C(£,£);
for(i=0;i<C.getM() ;i++)
C(i,£) = C(£,1i) = 0;
#ifdef DEBUG
cerr << C << “] floatConductor()” << endl;
#endif
}

void processData()
{
#ifdef DEBUG
cerr << “[processData()” << endl;
#endif
irt i, 3, k;

C = fci.getCapacitanceMatrix();
for (i=0;i<N_floating;i++)
floatConductor(I_floating(0,i),C);

int N_out;
N_out = N_fixed;
for(i=0;i<N_fixed;i++)
if(I_fixed(0,1i)==ref)
N_out--;

Matrix<double> S(N_conductors,N_out});
for(i=0,3=0; (i<N_fixed)&&(j<N_out) ;i++)
if(I_fixed(0,1i) !=ref)
S(I_fixed(0,1i),j++) = 1;

C = S.transpose()*C*S;

#ifdef DEBUG
cerr << C << “] processData{)” << endl;
#endif

}

double powlO(int i)
(

if(i) o
if(i<0)
return 1i/powl0(-i);
else
return 10.0*powl0O(i-1);
} else {
return 1;
}
}
void exportData()
{
int i = fci.getUnitExponent() - preferredExponent;

double a = powl0(1i);
(*os) << a*C << “* 107" << preferredExponent << “ farads” <<
endl;

)

void initialize(int argc, char *argv(]) {
processArgs(argc, argv);
securelnput();
secureFCinfo();
securePreferredExponent () ;
secureReference();
secureFloatFixed () ;
secureOutput () ;

}

int main{int argc, char *argv(]) {(
initialize(argc, argv);
processData();
exportDatal() ;
delete is;
delete os;
return 0;

71

72

FCinfo.H

#include <iostream.h>
#include <math.h>

class FCinfo
{
int number_of_conductors;
int unit_exponent;
Matrix<double> capacitance_matrix;
public:
FCinfo() : number_of_conductors(0), unit_exponent(0),
capacitance_matrix(1l) ({}
void setNumberGfConductors{int nc)
{
number_of_conductors = nc+l;
capacitance_matrix.resize (number_of_conductors);
}
int getNumberOfConductors()
{
return number_of_conductors;

}

void setUnitExponent (int ue)
{
unit_exponent = ue;
}
int getUnitExponent ()
{
return unit_exponent;

}

Matrix<double>& getCapacitanceMatrix() { return
capacitance_matrix; }

friend istream& operator>>(istream&, FCinfo&);
friend ostream& operator<<(ostream&, FCinfok);

}:

int getUnits(const char *unitString)
{
switch(unitString{0]) (
case ‘a’: // atto
return -18;
case ‘f’: // farad, femto
switch(unitString(1l]) {
case ‘a’: // farad
return 0;
case ‘e’: // femto
return -15;
}
case ‘m‘’: // micro, milli
switch(unitString(2]) {

case ‘c’: // micro
return -6;
case 'l’: // milli
return -3;
}
case ‘n’: // nano
return -9;
case ‘p’: // pico
return -12;
default: // i don’t know
return 0;

}

#define FCLINE (30)
#define FCEOL {is.get(buf,FCLINE, ‘\n‘); is.get(buf[0]);}

#define FCSKIP (is.get(buf,FCLINE, "’ ‘');}
istream& operator>>(istream& is, FCinfo& fci)
{

char buf [FCLINE];

int foo;

FCSKIP;

is >> foo;
fci.setNumberOfConductors (foo);
FCEOL;

fci.getCapacitanceMatrix () .zero();
int i, 3;
double maxfoo = 0.0;
for (i=1;i<fci.getNumberOfConductors();i++) {
FCSKIP;
for (j=1;j<fci.getNumberOfConductors();j++) {
is >> (fci.getCapacitanceMatrix())(i,3);
if (fabs(fci.getCapacitanceMatrix() (i, j))>maxfoo)
maxfoo = fabs(fci.getCapacitanceMatrix() (i,3));
{fci.getCapacitanceMatrix()) (0, 3)
-= (fci.getCapacitanceMatrix())(i,j);
(fci.getCapacitanceMatrix()) (i,0)
-= (fci.getCapacitanceMatrix()) (i,3);
}
(fci.getCapacitanceMatrix()) (0,0)
-= (fci.getCapacitanceMatrix()) (i,0);
FCEOL;
}

int newfoo = (int) floor(loglO(maxfoo));
fci.setUnitExponent (-6+newfoo);

fci.getCapacitanceMatrix() = fci.getCapacitanceMatrix()*pow(10, -
newfoo) ;

#ifdef DEBUG
cerr << fci;

73

74

#endif
return is;

}
#undef FCLINE
#undef FCEOL

ostream& operator<<(ostream& os, FCinfo& fci)

{
0s << “Conductors: * << fci.number_ of_conductors << endl
<< "“UnitExponent: ™ << fci.unit_exponent << endl
<< “Capacitance Metrix: “ << endl
<< fci.capacitance_matrix;
return os;
}
Matrix.H

#include <iostream.h>
#include <stdlib.h>

template <class T>
class Matrix
{
int m, n;
T** matrix;
T dummy_element;
int isExist() const { return (m&&n); }

void initialize{int, int);

void copy(const Matrix<T>&);

void destroyl();

void swap(int, int);

public:

Matrix{(int _m, int _n) (initialize(_m,_n); }

Matrix(int _m) { initialize(_m,_m); }

Matrix(Matrix& A) : m(0), n(0) { copy(A); }

~Matrix() { destroyl(); }

T& operator() (int, int) const;

void zero():

void resize{int, int);

void resize(int _m) { resize(_m,_m); }

friend ostream& operator<<{ostream&, const Matrix<T>&);

Matrix<T>& operator=(const Matrix<T>& x) { copy(x); return
*this; }

friend Matrix<T> operator+(const Matrix<T>&, const Matrix<T>&);
friend Matrix<T> operator-(corst Matrix<T>&, const Matrix<1>&);
friend Matrix<T> operator*(const Matrix<T>&, const Matrix<T>&);
friend Matrix<T> operator* (T, const Matrix<T>&);

friend Matrix<T> operator*{const Matrix<T>& A, T c) { return c*A;
}

Matrix<T> inverse() const;

Matrix<T> transpose() const;

int getM() const { return m;)}

75

int getN{() const { return n; }

};

template <class T>
inline T& Matrix<T>::operator() (int i, int 3J)
{
if((i<m)&&(j<n))
return matrix{i) {(j);
else
return dummy_element;

template <class T>
inline void Matrix<T>::initialize(int _m, int _n)
{
#ifdef DEBUG
cerr << “[Matrix::initialize(“ << _m << “,” << _n << “)”" <<
endl;
#endif
m = _m;
n = _n;
if(isExist ()} {
int i;
matrix = new (T*) [(m];
for (i=0;i<m;i++)
matrix[i] = new T[n];
zero();

#ifdef DEBUG

cerr << “] Matrix::initialize("® << m << “,” << n << “)” << endl;
#endif
}

template <class T>
inline void Matrix<T>::copy(const Matrix<T>& x)
{
#ifdef DEBUG
cerr << “[Matrix::copy” << endl;
#endif
resize(x.m,x.n);
if(isExist{()) {
int i,3;
for (i=0;i<m;i++)
for (j=0;j<n;j++)
(*this) (i,3) = x(i,3);

#ifdef DEBUG

cerr << “] Matrix::copy” << endl;
#endif
}

template <class T>

inline void Matrix<T>::destroy()
{
#ifdef DEBUG
cerr << “[Matrix::destroy{(" << m << “,” << n << *)" << endl;
#endif
if(isExist()) {
int 1i;
for(i=0;i<m;i++)
delete[] matrixf{i];
delete[] matrix;
}
m=n = 0;
#ifdef DEBUG
cerr << *] Matrix::destroy(® << m << “,”" << n << “)* << endl;
#endif
}

template <class T>
inline void Matrix<T>::resize(int _m, int _n)

{
if((mt=_m) || (n!'=_n)) (
destroy() ;
initialize(_m,_nj;
}
zerol();

template <class T>
inline void Matrix<T>::swap(int i, int j)
{
if (isExist()) {
T *temp = matrix{i];
matrix[i] = matrix[j];
matrix[j] = temp;

}

template <class T>

void Matrix<T>::zero()

{

if(isExist()) {
int i, 3;
for{(i=0;i<m;i++)
for(j=0;j<n;j++)
(*this) (i,3) = 0;

template <class T>
ostream& operator<<{ostream& os, const Matrix<T>& x)
{
#ifdef DEBUG
cerr << “[operator<<(ostream&,Matrix<T>&)” << endl;
#endif

77

if(x.isExist()) {

int i, 3;
os.setf{ios::fixed,ios::floatfield);
os.precision(10);
for(i=0;i<x.m;i++) ¢

for (3=0;j<x.n;j++)

0s << x(i,3j) << * %;
os << endl;

}
#ifdef DEBUG
cerr << “] operator<<(ostream&,Matrix<T>&)" << endl;
cerr.flush():
#endif
return os;

template <class T>
Matrix<T> operator+(const Matrix<T>& a, const Matrix<T>& b)
{
if((a.m!=b.m) || (a.n!=b.n)) {
cerr << “Matrices cannot be added\n*;
exit(1);

Matrix<T> new_matrix(a.m,a.n);

if (new_matrix.isExist()) {
int i, J;
for(i=0;i<a.m; i++)
for(j=0;j<a.n;j++)
new_matrix(i,3j) = a(i,j) + b(i,j);

return Matrix<T>(new_matrix);

template <class T>
Matrix<T> operator-{const Matrix<T>& a, const Matrix<T.< b)
{
if((a.m!=b.m}||(a.n!=b.n)) {
cerr << “Matrices cannot be subtracted\n”;
exit(1l);

Matrix<T> new_matrix(a.m,a.n);

if (new_matrix.isExist()) {
int i, 3j;
for(i=0;i<a.m;i++)
for(j=0;i<a.n;j++)
new_matrix(i,3j) = a(i,j) - b(i,j);

78

return Matrix<T>(new_matrix);

template <class T>
Matrix<T> operator* (const Matrix<T>& a, const Matrix<T>& b)
{
#ifdef DEBUG
cerr << “[Matrix::operator* (M&,M&)” << endl << a << b;
#endif
if(a.n!'=b.m) {
cerr << “Matrices cannot be multiplied\n”*;
exit(1);

Matrix<T> new _matrix(a.m,b.n);
if(new_matrix.isExist()) {
int i, 3, k;
for(i=0;i<a.m;i++)
for(3=0;j<b.n;j++)
for(k=0;k<a.n;k++)
new_matrix(i,j) += a(i,k)*b(k,j);

#ifdef DEBUG

cerr << new_matrix << “] Matrix::operator* (M&,M&)” << endl;
#endif

return Matrix<T>(new_matrix);

template <class T>
Matrix<T> operator*(T a, const Matrix<T>& b)
{

Matrix<T> new_matrix(b.m,b.n);

if(new_matrix.isExist()) {(
int i, j;
for(i=0;i<b.m;i++)
for(j=0;j<b.n;j++)
new_matrix(i,j) = a*b(i,j);
}

return Matrix<T> (new_matrix);

template <class T>
Matrix<T> Matrix<T>::inverse()
{
if(m!=n) {
cerr << "Matrix cannot be inverted\n”;
exit(l);
}
if(!isExist()) (
#ifdef DEBUG

cerr << “Matrix 0x0 faking inversion\n”;

79

#endif
return Matrix<T>(0);

)
int i, 3j, k;:

Matrix<T> inv(m);
for(i=0;i<n;i++) (
for(j=0;j<n;j++)
inv(i,j) = 0;
inv(i,i) = 1;

}

Matrix<T> lu{m);
lu = *this;

for(i=0;i<n-1;i++) (
for(j=i;j<n;j++)
if(lu(j,i)>1le-15)
break;
if{j>i) (
lu.swap(i,j);
inv.swap (i, j);
}

for(i=i+1l;j<n;j++) {(

lu(j,i) /= lu(i,i);
for(k=i+1;k<n;k++)
lu(j.k) -= lu(j,i)*lu(i,k);

}

for(k=0;k<n;k++) {
for(i=0;i<n;i++)
for(j=0;3j<i;j++)
inv(i,k) -= lu(i,j)*inv(j, k);:
for(i=n-1;i>=0;1i--) (
for(j=i+1;j<n;j++)
inv(i,k) -= lu(i,j)*inv(j,k);
inv(i,k} /= lu(i,i);

}

return Matrix<T>(inv);

}

template <class T>
Matrix<T> Matrix<T>::transpose()

{

Matrix<T> new_matrix(n,m);
if(isExist()) {(
int i, J;
for(i=0;i<m;i++)

80

Al4

for(j=0;j<n;j++)

}

return

new_matrix(j,i) =

Matrix<T> (new_matrix);

Churn

This code is written in C++.

churn.c

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#include

<stdio.h>
<unistd.h>
<stdlib.h>
<sys/times.h>
global_defs.h
“PNF.h"
“UpdateNodes.h”
“transform.h”
“transforms.h”
“PNF_node_list.h”
“elementTempList.h*
“C_funcs.h”

“churn_£fns.h*

(*this) (i,3);

struct tms timestuff;

long timecount = 0;

#define SUMTMS(t)
((long)(t.tms_utime+t.tms_stime+t.tms_cutime+t.tms_cstime))

#define CLK_TCK (sysconf(_SC_CLK_TCK))

4define STARTTIME (times(×tuff);
SUMTMS (timestuff) ;}

#define STOPTIME {times(×tuff);
SUMTMS (timestuff) ;)

#define TOTALTIME (((double)timecount) /CLK_TCK)

#define CURRENTTIME
(times (×tuff), ((double) (timecount+SUMTMS (timestuff)))/
CLK_TCK)

#define PRINTTIME(t)

timecount -=

timecount +=

{(printf(*\t\t\ttime: %8.2f\n”", (t));}

int main(int argc, char *argv(])
#define OQUTPUT_FN “output.pat”
{

STARTTIME;

PRINTTIME (CURRENTTIME) ;

PATRAN_ _neutral_file *structure;

if (! (structure = assembleNewPNF(argc-1l,argv+l))) {

showUsage (argv({0]):;
exit(1l);
}
STOPTIME;
Name *plateName = chooseName(structure);
STARTTIME;

PRINTTIME (CURRENTTIME) ;

printf (*copying old nodes starting\n”);

PNF_Node_List *oldNodes = structure->getlistOfNodes()->copy();
printf (“copying old nodes done\n”);

PRINTTIME (CURRENTTIME) ;

structure->setFileName (“output.pat”);

FILE *outfile = fopen(“testdata”,”a”);
{
int 1i;
fprintf(outfile, "#files: “);
for(i=1;i<argc;i++)
fprintf (outfile,” %s”,argv(il);
fprintf (outfile, "\n”");
fflush(outfilej;

double gap;

int gCount;

double phip:;

int phiCount;
double phir;

double cap:

char capstring([80];

FILE *capfile;
PRINTTIME (CURRENTTIME) ;
printf (“*beginning to churn\n”);
simulateExtractFacesl (structure) ;
phir=0;
for{gap=0.5;gap<=5;cap/=25*gap,gap+=0.33/sqrt (l1+cap*cap))
for (phiCount=0, phip=0;phiCount<10;phip=atan(gap/
50) * (++phiCount) /10)
{
double innerlooptime = CURRENTTIME;

structure->getlistOfNodes () ->updateCoordsFrom(oldNodes) ;
plateTransform(plateName, gap,phip, phir) ;
simulateExtractFaces2 (structure);
structure->writeSurfaces();

unlink(“fastcap.cap”);
system(“memcap output.pat”);
unlink(“output.pat.gs”);

82

unlink(“output.cap”);

system(*rememcap.hp -e -15 -r 1 -F 1 0 -i fastcap.cap -o -
| tee output.cap”);

capfile = fopen(“output.cap”,”r”);

fscanf (capfile, "%s",capstring);

fclose(capfile);

if (phip==0)

cap = atof(capstring);

fprintf(outfile, *$13.10£\t%13.10£\t%13.10£f\t%s\n",gap,phip,phi
r,capstring);
fflush(outfile);

PRINTTIME (CURRENTTIME-innerlooptime) ;
PRINTTIME (CURRENTTIME) ;
}

unlink(“*assembled.pat”):;
fclnse(outfile);
return 0;

churn fne.h

PATRAN neutral_file *assembleNewPNF (int numFileNames, char
*FileNames(]);

void showUsage(char *executable};
Name *chooseName (PATRAN_neutral_file *structure);

void setM_plate(double mat(4][4], double gap, double phip, double
phir);

void plateTransform(Name *nameToTransform, double gap, double
phip, double phir);

void simulateExtractFacesl (PATRAN neutral_file *structure);

void simulateExtractFaces2 (PATRAN neutral_file *structure);
churn_£fns.c

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/times.h>
#include “global_defs.h”
#include “PNF.h”

#include “UpdateNodes.h”
#include “transform.h”
#include “transforms.h”
#include “PNF_node_list.h”

#include *C_funcs.h”

PATRAN_neutral_file *assembleNewPNF(int numFileNames, char
*FileNames|[])

83
#include “elementTempList.h”
if (!numFileNames)
return NULL;
\

PATRAN_neutral_file *mainPNF;

mainPNF = new PATRAN_neutral_file;
mainPNF->setFileName(FileNames(0]);
mainPNF->readFile() ;

if(numFileNames > 1) (

PATRAN_neutral_file **PNFs;

PNFs = (PATRAN neutral_file **) malloc((numFileNames-
1) *sizeof (PATRAN neutral_file *));

int count;

for (count=0;count<numFileNames-1;count++) {
PNFs[count] = new PATRAN neutral_file;
PNFs [count]->setFileName (FileNames [count+1]);
PNFs [count] ->readFile();

}

mainPNF->addFiles (PNFs, numFileNames-1, RENUMBER) ;

for (count=0; count<numFileNames-1;count++)
delete PNFs|[count];
free(PNFs) ;

mainPNF->setFileName(“assembled.pat”);
mainPNF->writePNF(0);

delete mainPNF;

mainPNF = new PATRAN neutral_file;
mainPNF->setFileName (“assembled.pat”);
mainPNF->readFile() ;

return mainPNF;

}

void showUsage(char *executable)

{
printf (*syntax:\t%s <fem-file> [<fem-file>]*\n",executable);

}
Name *chooseName (PATRAN neutral_file *structure)
{

Name *aName;

int nameCount;

84

for (aName = (Name *) structure->getlistOfNames()-
>setCurrentToBeginning(), nameCount=1;
aName;
aName = (Name *) structure->getlistOfNames()->Next(),
nameCount++)
printf(*\t%2d. \”“%s\”\n”",nameCount, aName->getNameString());

int whichCount;

whichCount=0;

while((whichCount<1l) | | (whichCount>=nameCount)) {
printf (*\nSelect plate name: “);
scanf (“%4d”, &whichCount) ;

}

for (aName = (Name *) structure->getlistOfNames()-
>setCurrentToBeginning (), nameCount=1;
nameCount<whichCount;
aName = (Name *) structure->getlistOfNames()->Next(),
nameCount++) ;

printf(“*%s chosen\n”,aName->getNameString());
return aName;

}

void setM_plate(double mat[4][4], double gap, double phip, double
phir)
(
double rotr([4]1([4];
double rotp([4][4];
double tran(4](4];
double temp([4](4];
double A[3];

phip *= 180/3.1415926;
phir *= 180/3.1415926;

id_mat(tran);
A[0}=0; A[1]1=0; A[(2]=gap;
makeTranslate(tran,A);

id_mat (rotr);
A[0)=0; A[1]1=0; A[2]=1;
makeRotate(rotr,phir,A);

id_mat (rotp);
Af0]=0; A[1l]l=1; A[2]=0;
makeRotate (rotp,phip,A);

multM(temp, rotp, rotr);
multM(mat, tran, temp);

}

void plateTransform(Name *nameToTransform, double gap, double
phip, double phir)

double mat (4] (4];
Transformation *trans = new Transformation;

setM_plate(mat,gap,phip,phir);
trans->setmatrix(mat);
nameToTransform->applyNodeTransformToName (trans) ;

}

void simulateExtractFacesl (PATRAN_neutral_file *structure)
{
structure->getFaces();
structure->removelnteriorFaces();
structure->organizeFaces () ;

}

void simulateExtractFaces2 {PATRAN_neutral_file *structure)
{
structure->checkFacePlanarity(1l.0e-3);
structure->tagSubPatchesbyNormal () ;

A.2 Numerical Model

This code is written in the MATLAB script language.

A.21 Non-Linear Fitting
nlfit.m

function []=nlfit

data = readCap(‘testdata.circ.55');
N = size(data,l);

bld
Y

data(:,1:2)*diag([le-6 1]);
data(:,4) *le-15;

sig = 0.0l1*ones(N,1);
a0 = [1;1;0];

a = mrgmin(x,a0,y,sig, ‘capfn’);
y0 = capfn(x,a0);
yfit = capfn(x,a);

fid = fopen(‘output’,’'w’);
for i=1:length(a),
fprintf(fid, ‘a(%d) = %15.13e\n’,i,a(i));
end
fprintf (fid, ‘gap\tphi_p\tfastcap\tideal\tfit\n'};

85

86

for i=1:N,

fprintf(fid, '$12.8e\t%12.8e\t%12.8e\t%12.8e\t%12.8e\n’,x(i,1),
x(i,2),y(1),y0(1),yfit(i));

end

fclose(fid);

mrgmin.m

function [a]) = mrgmin(x,a0,y,sig, funcs);

a = al;
[alpha,beta,minchisq] = mragcof(x,a,y,sig, funcs);
lambda = 0.001;

fprintf(1l,‘initial Chi~2 = %12.8f\n’,minchisq);
for i=1l:length(a),

fprintf(‘*a(%d) = %15.13e\n’,i,a(i));
end

da = 1;

while norm(da)>le-8,
alphap = alpha + diag(lambda*diag(alpha));
da = prec(alphap,beta);

{alpha,beta,chisq] = mrgcof(x,a + da,y,sig, funcs);

if (chisq < minchisq),

a = a + da;

minchisq = chisq;

lambda = lambda * 0.1;
else

lambda = lambda * 10.0;
end

fprintf(1l,’Chi”2 = %12.8e Min(Chi~2) =
%$12.8e\n’,chisq,minchisq);
for i=1:length(a),
fprintf(‘a(%d) = %$15.13e\n’,i,a(i));
end;
end

mrgcof.m
function [alpha, beta, chisqg] = mrqgcof(x,a,y,sig, func);

$alpha: #param x #param
$beta: #param x 1
$chisqg: 1 x 1

[ymod,dyda] = feval(func,x,a);
dy = y - ymod;
sig2i = 1.0./(sig.”2);

wdyda = diag(sig2i) *dyda;

alpha wdyda’ *dyda;
beta = wdyda’*dy;
chisqg = sum(dy.”"2.*sig2i);

prec.m

function [x] = prec(A,b);

P diag(l./sqrt(diag(A)));
X = P*((P*A*P)\ (P*b));

capfn.m

function [C,dCda] = capfn(g,a);
$capfn:

% assumes g = [gap(m) phi_p(rad)]
% returns [C,dCda]

1l

N sizel(q,1);
C zeros(N,1);
dCda = zeros(N,3);

eps0 = 8.8541878162e-12;
R = a(2)*50e-6;

for i=1:N,
g = a(l)*q(i,1);
phi = q(i,2);
r = g/R;

if abs({phi)<=le-4,

Cc(1) = epsO*pi*R * ((1l+a(3)*r)/r - (2*r~2-
3}*(1+a(3) *r) *phi~2/(12*r*3));

dcda(i,1l) = epsO*pi*R * (-1/r + (2*r"2-6*a(3)*r-9)*phi~2/
(12*r~3))} / a(l);

dcda(i,2) = epsO*pi*R * ((2+a(3)*r)/r - (4*r"2+2*a(3)*r~3-
9*a(3)*r-12) *phi~2/(12*r"3)) / a(2);

dCda(i,3) = epsf*pi*R * (1 - (2*r"2-3)*phi~2/(12*r"2));

else
s = sqgrt(r*2-sin(phi)"2);
C(i) = 2*pi*epsO0*R/(phi*sin(phi)) * (r-s)*(1l+a(3)*r);

dCda(i,l) = 2*pi*epsO0*R/(phi*sin(phi)) * (r*(l-r/s)*(l+a(3)*r)
+ a(3)*r*(r-s))/a(l);
dcda(i,2) = 2*pi*eps0*R/(phi*sin(phi)) * ((r*2/s-s)*(l+a(3)*r)
- a(3)*r*(r-s))/a(2);
dCda(i,3) = 2*pi*eps0*R/(phi*sin(phi)) * r*(r-s);
end
end

87

88

readCap.m

function [result] = readCap(file)

N = 0;
fid = fopen(file,'r‘);
fgetl (fid);
while 1
line = fgetl(fid);
if ~isstr(line), break, end

if length(line) ~= 0,
N =N+ 1;
stuff = sscanf(line, ‘$1f $1f $1f %$1f’);
result(N,:) = stuff’;
end
end

A.3 Dynamics Simulation

This code is written in the MATLAB script language.

A.3.1 Initialization

globals.m

global PLATE_INV_M PLATE_R PLATE_GAP;
global SPRING_CONST SPRING_AXIS SPRING_NUM;
global DRIVE_MAX V DRIVE_MAX T;

load_all.m

function (] = load_all
globals;

load_plate;
load_springs;
DRIVE_MsX_V = 150;
DRIVE_MAX T = le-4;

load_plate.m

function [] = load_plate
globals;
plate_density = 2331;

%
plate_radius = 50e-6; $ m
plate_thickness = 5e-6; $ m

plate_mass = plate_density*pi*plate_radius”2*plate_thickness;
plate_i = plate_mass*(plate_radius~2/4+plate_thickness"2/3);

PLATE_INV_M = inv({(plate_mass 0 0
0 plate_i 0
0 0 plate_i]);

PLATE_R = plate_radius;
PLATE_GAP = Se-6;

locad_springs.m

function [] = load_springs
globals;
if (size(PLATE_R)==0)
load_plate;
end
% L W t axis(x=1,y=2)?
springs = [100e-6 10e-6 1.8e-6 1
100e-6 10e-6 2e-6 -1
100e-6 10e-6 2e-6 2
100e-6 10e-6 1.9e-6 -21;

SPRING_NUM = size(springs,l);

L = springs(:,1);

w = springs(:,2);

t = springs(:,3);

E = 155e9; % Young’s modulus
nu = 0.3; % Poisson ratio

I = w.*t."3/12;

k = 12*E*T./L."~3; $ z axis translation spring constant

G = E/(2*(1+nu));

K = w.*t.~3.%(1/3-(3.36/16)*(t./w).*(1-((t./w)."4)/12));
kappa = G*K./L; % beam axis rotational spring constant
SPRING_CONST(1,:) = k‘;

SPRING_CONST(2,:) = kappa’;

SPRING_AXIS(:) = springs(:,4);

A.3.2 Acceleration Function
d2xdt2.m

function [d2xdt2] = d2xdt2(t,x):;
globals;

d2xdt2 = -PLATE_INV_M * (capacitor_contrib(t,x) +

90

spring_contrib(t,x)};
capacitor_contrib.m
function {cc] = capacitor_contrib(t,x);
globals;

{q.,dqdx] = g _cap(x);
(C,dCdq] = capacitance(q);
V = voltage(t);

dudg = -(1/2)*dcdg*v~2;

cc = dgdx*dudg:;

q_cap.m

function [q,dgdx] = q_cap(x);
$ x = { g phi_x phi_y]

q = zeros(2,1);
dgdx = zeros(3,2);

x{1);
atan(sqgrt(tan(x(2))"2+tan(x(3})"2));

q(l)
a(2)

if (tan(qg(2)) <= eps)
dg2dx2 = 1;
dg2dx3 1;

else
dqg2dx2
dgz2dx3

end

tan{x(2))*sec(x(2))"2/(tan(qg(2)) *rec(q(2))"2);
tan(x(3))*sec(x(3))"2/(tan(qg(2))*sec(g(2))"2);

dgdx = [

=

0
dg2dx2
dg2dx3];

[l e

capacitance.m

function ([C,dCdq] = capacitance(q)
$capfn:

% assumes ¢ = {gap(m) phi_p(rad)]
% returns [C,dCdal

globals;

N size(q,2);
C = zeros(l1l,N);
dCdq = zeros(2,N);

a = [1.0974241404426e+00 1.0558692307271e+00 3.8474147762451e+00];

epsC = 8.8541878162e-12;
R = a(2)*PLATE_R;

for 1i=1:N,
g = a{l)*q(l,i);
phi = q(2,1);
r = g/R;

if abs(phi)}<=le-4
C(i) = eps0*pi*R * ((l+a(3)*r)/r - (2*r"2-
3)*(1+a(3)*r)*phi~2/(12*x"3));
dCcdqg(l,i) = epsO*pi*a(l) * (-1/r"2 + (2*r"2-6*a(3)*r-9)*phi~2/
(12*r~4));

dcdg(2,i) = - epsO*pi*R * (2*r~2-3)*(1+a(3) *r) *phi/ (6*r"3);
else

s = sqrt(r~2-sin(phi)"2);

C(i) = 2*pi*epsO0*R/(phi*sin(phi)) * (r-s)*(l+a(3)*r);

dcdg(l,i) = 2*pi*epsO/(phi*sin(phi)) * a(l) * ((1-x/
s)y*(l+a(3)*r)+a(3)*(r-s));
dcdq(2,i) = 2*pi*eps0*R/(phi*sin(phi)) *
(1+a(3)*r)* (sin(phi) *cos(phi)/s-(r-s)*(1/phi+cot(phi)));
end
end

voltage.m

function (V] = vcltage(t);
globals;

V = zeros(size(t));
for i=1:length(V),
if t(i)<=0,
V(i) = 0;
elseif t(i)<=DRIVE_MAX_T,
V(i) = DRIVE_MAX V*t(i)/DRIVE_MAX_T;
else
V(i) = DRIVE_MAX_ V;
end
end

spring contrib.m

function [sc) = spring_contrib(t,x);
globals;

sc = zeros(3,1);

for i=1:SPRING_NUM,
[q,dgdx] = qg_spr(x,SPRING_AXIS(i));
dUdg = SPRING_CONST(:,i) .* Q:
sc = sc + dgdx * dudqg;

end;

92

g_spr.m

function [q,dqdx] = q_spri(x,axis);
$ x = (g phi_x phi_y]
% g = dz dth }

globals;

q = zeros(2,1);
dgdx = zeros(3,2j;

if (abs(axis)==1),
r = sign(axis) * PLATE_R;

qg(l) = (x(1)-PLATE_GAP)-r*tan(x(3));
qg(2) = x(2);
dgdx = | 1 0
0 1
-r*sec(x(3))”2 0 1;
else

r = sign(axis) * PLATE_R;
g(l) = (x(1)-PLATE_GAP)+r*tan(x(2));

q(2) = x(3);
dgdx = | 1 0
r*sec(x(2))"2 0
0 1 3
end

A3.3 Equilibrium Determination
equilibrium.m

function (x] = equilibrium(x0);

% = djfnewton(x0~=0,'F’,x0).*x0;
F.m

function [a] = F(x,x0);
globals;

if any(x0~=0),
a0 = d2xdt2(DRIVE_MAX_T,x0);
end

for i=1:length(x0),
if x0(i)~=0,
x(i) = x(i).*x0(i);
end
end

a = d2xdt2 (DRIVE_MAX T, x);

for i=1:length(al),
if x0(1i)~=0,
a(i) = a(i).sa0(i);
end
end

djfnewton.m

function [x] = djfnewton(x0,F_£fn, fixed});

tol_abs = le-6;
damp_frac = 0.5;
jf_alpha=0.001;
jf_tol_rel=0.001;

N = length(x0);

k = 0;

x = x0;

dx = zeros(N,1l);
p = zeros(N,N);

Ap = zeros(N,N);

fprintf('start djfnewton...\n’);
while 1,

f = feval(F_fn,x, fixed);

norm_f = norm(f);

fprintf(‘|F| = %16.12f\n’,norm_f);

if(norm_f < tol_abs),

break;
end;

r = -f;
dx = 0*dx;

for i = 1:N,
p(:,1) = r;
Ar = (feval(F_fn,x+jf_alpha*r,fixed)-f)/jf_alpha;

Ap(:,1i) = Ar;
for j=1:1i-1,
beta = Ap(:,i)’ * Ap(:,3):
p{:,i) = p(:,i) - beta * p(:,]);
Ap(:,i) = Ap(:,1i) - beta * Ap(:,3):
end;
norm_ap = norm{Ap(:,i),2);
p(:,i) = p(:,i)/norm_ap;
Ap(:,1i) = Ap(:,1)/norm_ap;

aipha = r’ * Ap(:,1i);
dx = dx + alpha * p(:,1i);
r = r - alpha * Ap(:,1);

94

if(norm(r) < jf_tol_rel*norm_£),
break;
end;
end;
if (norm(r) >= jf_tol_rel*norm_f),
fprintf(*\nJF Newton GCR didn’‘t converge!\n’);
end;

damp_alpha = 1;

damp_norm = norm(feval (F_fn,x+dx, f£ixed));

fprintf(*|damp_F| = %$16.12f\n’,damp_norm) ;

while damp_norm >= norm_f,
damp_norm = norm(feval(F_fn,x+damp_alpha*dx, fixed));
fprintf (' |damp_F| = %$16.12f\n’,damp_norm);
damp_alpha = damp_frac*damp_alpha;

end;
x = x + damp_alpha*dx;
k =k + 1;
end;
$fprintf('...end djfnewtonin’);

A.3.4 Normal Mode Determination

modes.m

function [w,v,k] = modes(x);
globals;

J = zeros(3,3);
for i=1:3,
h=zeros(3,1):
h(i)=x(i)*0.001+1le-8;
old_dx = (d2xdt2(1l,x+h)-d2xdt2(1,x-h))/(2*h(1i));
h=h/2;
dx = (d2xdt2(1l,x+h)-d2xdt2(1,x-h))/(2*h(i});
while norm(old_dx-dx)>le-3*norm(dx),
old_dx = dx;
h=h/2;
dx = (d2xdt2(1,x+h)-d2xdt2(1,x-h))/(2*h(i));
end;
J(:,1) = dx;
end

{v,d]l=eig(J);
w = sqrt{-diag(d));
k inv(v)’;

APPENDIX B Simulation Results

In order to demonstrate the functionality of the dynamics simulator
developed in this report, the simulator was used to determine the motion of the
suspended circular plate system with a variety of support beam thicknesses and

voltage inputs. The results of those simulations are presented in this appendix.

B.1 Structure Specification

The structure simulated is shown in Figure 22. The structure is a rigid
circular plate suspended 5pm above a ground plane by four thin beams placed
along the x and y axes. The plate and beams are composed of polysilicon, which is
assigned a density of 2330kg/m3, a Young's modulus of 155GPa, and a Poisson
ratio of 0.3. The circular plate has a radius of 50pm and a thickness of 5um. Each
beam has a length of 100pm, a width of 10um, and a thickness that varies between
experiments but is usually 2um.

Depending upon how the beam thicknesses are chosen, motion can occur

with different numbers of degrees of freedom and within any of the three

95

96

’ (um) \
I| 5 5 Jl 100x10x2 / //
//
100x10x2 .~ 100x10x2
— /\

a /

://f 100x10x2 /

Figure 22: Simulated Suspended Circular Plate Structure Diagram

simulated parameters g, @,, and ¢, Names are given to four structures with
specially chosen beam thicknesses, each structure permitting more complex
motion than the previous. For the simplest structure, henceforth called the 1D
structure, all of the beam thicknesses are equal to 2um. The symmetry of this
structure prevents an applied voltage from causing any tilting motion. Thus, all
motion is exhibited within g. For the second structure, henceforth called the 2D
structure, the -y axis beam is weakened by reducing its thickness to 1.8um.
Symmetry prevents tilting about the y axis, but allows it about the x axis. Thus, all
motion occurs within two degrees of freedom exhibited within g and @,. The third
structure, henceforth known as the 2D+ structure, is that for which the -y and +x
axis beam thicknesses are reduced equally to 1.9um. The structure is symmetric
about the y=-x axis; therefore an applied voltage will induce identical tilting about
the x and y axes. Thus, two degrees of freedom are exhibited within all three
simulated parameters, g, ¢,, and ¢,. The fourth structure, henceforth known as
the 3D structure, is that for which the -y and +x axis bearn thicknesses are reduced
unequally to 1.9um and 1.85um respectively. This structure permits three degrees

of freedom of motion exhibited within g, ¢,, and ¢,.

97

B.2 Experiments and Results

Three experiments are presented. The first experiment is the simulation of
dynamics about equilibrium at constant voltage. The second experiment is the
simulation of dynamics induced by a linear voltage ramp. The final experiment is
the simulation of dynamics induced by linear voltage ramps for varying ramp

rates.

B.21 Near Equilibrium Dynamics

In this first experiment, the 1D, 2D, 2D+, and 3D structures are held at a
constant voltage of 150 volts. Each structure is displaced initially from its
calculated equilibrium by 1%. The results of these simulations are given in
Figures 23 through 38. The straight line across some of the plots indicates the
equilibrium value as estimated by the implemented Newton method, and the
dots depict the integration steps of the simulation. Table 2 presents the

equilibrium states estimated for the 1D, 2D, 2D+, and 3D structures. Using this

Table 2: Equilibrium State for 1D, 2D, 2D+, and 3D Structures at 150 Volts

Equilibrium at 150v 1D 2D 2D+ 3D

g component (um)|| 3.997 3.787 3.793 3.708
¢, component (rad)|| 0.000 3433103 | 1.733103 | 1927103
¢, component (rad)| 0.000 0.000 1.733103 | 2.87410°

estimation of equilibrium, the normal modes, frequencies, and periods of small
oscillation about equilibrium are calculated. The results are presented in Tables 3

through 6.

Table 3: Mode Information for 1D Structure at 150 Volts

1D Modes at 150 Volts mode 1 mode 2 mode 3
g component (m)|| 1.000 0.000 0.000

¢y component (rad)| 0.000 1.000 0.000

98

Table 3: Mode Information for 1D Structure at 150 Volts

1D Modes at 150 Volts mode 1 mode 2 mode 3
¢, component (rad)l 0.000 O.OOLO 1.000
angular frequency (rad/sec)| 5.19510° | 1.10610° | 1.10610°
period (sed)| 1.20910° | 5.68310° | 568310

Table 4: Mode Information for 2D Structure at 150 Volts

2D Medes at 150 Volts mode 1 mode 2 mode 3
g component (m)l| 220410 | 2.87410° | 0.000
¢, component (rad)|| -1.000 1.000 0.000
¢, component (rad)|| 0.000 0.000 1.000
angular frequency (rad/sec)| 4.16210° | 1.01710% | 1.05210°
period (sec)| 150910° | 6.18010° | 5.97310°

Table 5: Mode Information for 2D+ Structure at 150 Volts

2D+ Modes at 150 Volts mode 1 mode 2 mode 3
g component (m)|| -3.11410* | 2.03410° | 9.81610"3
¢, component (rad)| 7071107 | 7071107 | -7.071 107
¢, component (rad)l 7071107 | 7071107 | 7.071107
angular frequency (rad/sec)| 4.22710° | 1.03310° | 1.03110°
period (sec)| 1.48610° | 6.08210° | 6.09710°

Table 6: Mode Information for 3D Structure at 150 Volts

3D Modes at 150 Volts mode 1 mode 2 mode 3
g component (m)|| -2.30610% | 1.88710° | -1.984 10
¢, component (rad)| 5535101 | -2.248101 | -9.757 107!
¢, component (rad)| 832810 | 9.744101 | -2.191 10!
angular frequency (rad/sec)| 3.773 10° 1.0(;‘;.5;- W
period (sec)| 1.66510° | 6.26110° | 6.20410°°

|||||||||

xxxxxxx

T T T T

Figure 23: Near Equilibrium Dynamics - 1D Structure - g

99

Be——
PR
———

mode 1

-1t

-2} L

0 0.2 0.4 0.6 08 1.2 1.4 1.6 1.8

N

1
tis) x10™

08r-

0.6 1

0.4

0.2+

mode 2
o

1.2 14 16 1.8 2
x10™

0 02 04 06 08 1
t(s)

Figure 24: Near Equilibrium Dynamics - 1D Structure - Normal Modes

101

1 T T T T T T T T T
0.8r 1
0.6} 1
0.4} .
0.2F 1
™
g o
£
-02} .
-0.4} 1
—o0.6f .
~08f 1
) 02 04 06 08 12 14 16 18 2
t(s) x10™

Figure 24 (cont): Near Equilibrium Dynamics - 1D Structure - Normal Modes

102

Y
383710 :
382\{\’\” ﬂﬂﬁﬂﬂ/\ﬂ“ﬁ
3.81 \
a8l
33.79”
[+
3378t
377+
376} \J b \} U U U U v U
3.75r U B
374 0.2 0.4 0.6 08 1 1.2 1.4 1.6 1.8 2
t(s) x 107
0.02
0.015} n [{\ ﬂ
001}
0,005}
(7]
E
3 0
a
)
hel
-0.005}
-0.01 U v !
-0.015} \
-0.02 ’e 1 1 1 1 1 4 1
o 02 04 056 08 1 12 14 16 18 2
ts) x10™

Figure 25: Near Equilibrium Dynamics - 2D Structure - g

103

x 10
T

NI L Bl

0 02 04 06 08 1 12 14 18 18 2
t(s) x10™

300

200 ! ﬂ ﬂ

ol f A

d(phi_x)/dt (rad/s)
g8 o
e §

i |
” AN

A1 A I 4 i i 1 1 1
0 02 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
tis) x10™

g

4

Figure 26: Near Equilibrium Dynamics - 2D Structure - ¢,

104

08

0.6

0.4r

0.2}

phi_I (rad)
o

1.2 1.4 16 1.8
x 10

0.2 0.4 0.6 G.8

b o

1
t(s)

0.2 0.4 0.6 08 1.2 1.4 1.6 1.8

N

1
t(s) x107™

Figure 27: Near Equilibrium Dynamics - 2D Structure - Principle Tilt

_.
- 3
BSRsusee-
DRSS
Raabee=2N

mode 1

0 0.2 0.4 0.6 08 1 1.2 1.4 1.6 1.8 2
t(s) x 10~

mode 2
=)

x 10~

Figure 28: Near Equilibrium Dynamics - 2D Structure - Normal Modes

105

106

0.8t

0.4+ h

0.2 k

mode 3
o

-02f :

0.4} 1

-08} 1

-1 1 L L It . n it 1 1

0 0.2 04 0.6 08 12 14 16 1.8 2
x10™

1
t(s)

Figure 28 (cont): Near Equilibrium Dynamics - 2D Structure - Normal Modes

........
5555555555555555555
x @ ¢} ~ ~ : : ™~ < py Q o

33333

2
-4
h

2
4

x 10

1.2 14 1.6 1.8

1
t (s)

0.6 0.8

0 0.2 0.4

U SRS = . 1.
g =2 ¥ % § @ g o g g &

108

Y L T)
E——
[=} ———
e -
— e x p——
[e @© —
vt -
[== SRR —
—_——r
EDRRERS—————
B e = ©
- —
—
T T JS—
— o
R W < —
- ———
S——
"
SRR e——— =
———
-~z o~ —
pe——_ —
- D
%QI’\QI\II»“'I&IA Tre
—
? —_
- 2
e - - -
- - =
Tt e
-l — i o e
PR ———] °
—-rm T —r
——p T
Sm— < =
-
— -
T
R < -
— o -
s
s . paene-tar—
B e I
—————— e e o o~ -———
e 1Y T e
—— *
s G, ——t T
Dl
~—
N ree ° L —I

(pes) X yd (sypes) 1p/(x"1yd)p

~150
Figure 30: Near Equilibrium Dynamics - 2D+ Structure - ¢,

109

x 10~

N
— I T
D st P
R e
e
-t ©
———— 1w
N we—
- ~
U SRl
ll."ll"l'.!‘c‘l’l‘ J «hv.
- -
IR i
—
.{‘1
CTemtve B 4-
o -
JEREsassss o
R ﬁ”.hlllfl.’&l
il S |
—rT |
= -
eI
P i
-
e -
T
2
R _—
R ©
o~ T S
e e T ©
R e
g e w0
[ES Sanampaiig
—r=tem
———
- .
gk =npiee S <
-t v 8
B o e I @
et T -
I R et
B e <2 o
T o
et 2H
gﬂuﬂkll“kllvl! T
[ER 2 S i hapaen G
e S S O R s dtbuniniy ¥ (=]
@ g e w0~ T
- ! - ~ - d - L2 -
- - -

b a0 ™ T N
o —
- P ——
= —
e
— @
] -
—
Tt
—~—
pes o]
—o [7e)
4=
—r -
-
—
e
—t
= i=
——c -
= IE
—
— T S S e e e e b e ~
——ETITTY 4 N
-
e
—s e
— eI
i ————
- —
w —lTIT -
-~ o ry—
- ——
—v—
- c——
-t
S @
—— VT o
pemm—gere
—r2ITD
== o
—r T
—— @«
-~ 1o
-— =
— e T T L T . .
T Op——
— e e f e
— T T LT
—
— « <
= = Tw—— o
—F T
A e e ITTT S e
- LTI I
PR ———— e o
o g 8 e e ~
it ama 1
— IS IO - °©
NN SRS S g
—r ey T T T T
TIIT T e
- T b
S U TR L o
b3 8 3 © b 8 b
- - \ - -
1

(s/mei) 10/(A 7 1yd)p

v

x 10

t(s)

Figure 31: Near Equilibrium Dynamics - 2D+ Structure - ¢,

110

i5+
i)
3
—t
s
o
05r
I
o ,
02 0 6 08 2 6 2 2
) 107
3
10
28

phi_p (rad)
N [\ n
wn [+2]
-t;“::’____‘:—'w ==
Essnse— - _J
T
e
-c‘__._—q——o——.-‘w
prm——
e T T
- e
———
T Tiee
m_._;'-
-—— T T
T -4
-
—=-lve
PR es—
et T 1
e
PSR —————
- e .
e T
— TN
%
T T
PP
-
- e
e
X
e
-
PR ———

-, ..

n !
w
u P v

Figure 32: Near Equilibrium Dynamics - 2D+ Structure - Principle Tilt

051

mode 1
o

~0.5h

A

0.8

1
t(s)

1.2

1.4

1.6

1.8

n

x 107

0.5

mode 2
o

-0.2H

~1H

Figure 33: Near Equilibrium Dynamics - 2D+ Structure - Normal Modes

0.2

04

0.6

0.8

1
t(s)

1.2

1.4

1.6

1.8

LS

x 10

112

-14

10
2 x T T T T T T T T T
1 1
™
20
£
~1H
2 . . , . . \ :
0 0.2 04 0.6 08 1 1.2 1.4 1.6 1.8 2
t(s) X 10-‘

Figure 33 (cont): Near Equilibrium Dynamics - 2D+ Structure - Normal Modes

113

mmm

3.72f

371t
3

3.7

3.69f

VUL

3.67
0

Rmmm

- |

d(gap)/dt (m/s)
(=]

-0.005

-0.01

<

-0.015 i ' s '
o 02 04 06 08 1
t(s) x 107

Figure 34: Near Equilibrium Dynamics - 3D Structure - g

114

22F

2.15

21

205

2F

phi_x {rad)

1.9

1.85[

1.8

1.75F

1.7

200

g

.s.

8

1.95¢

i
|

|

-———

i

|

HH:

|

"o 02 04 06 08

1.2 14 1.6 1.8

2

x 10~

d(phi_x)/dt (rad/s)
]
3 o

T

8

g

-200

ﬁ

d

i

I

H

0 0.

2 04 0.6 08

1.2 14 1.6 1.8

2

x10™

Figure 35: Near Equilibrium Dynamics - 3D Structure - ¢,

115

FR T T A T “J_

2'50 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

250

o) b .
ssot]| | 1 F | 1 1 | ﬂ
100} 5 ﬂ A i ﬁ ﬁ H F ﬁ

50+ H

0

so[! u]
AR A

d(phi_y)/dt (rad/s)

ALY

Figure 36: Near Equilibrium Dynamics - 3D Structure - ¢,

116

1.03

1.02}

101 g 1

0.99r !

phi_l (rad)
o
&

0.97+

0.96} b U u J L H

0.95}

0.94}

0.93 02 04 06 08 1 12 14 16 18 2
tis) x10™

x 1
3.9¢

38t a H

34 v
3.3 E J i
32 M h H “ L
a1 . X
02 04 06 08 1 12 14 16 18 2
t(s) x 107

Figure 37: Near Equilibrium Dynamics - 3D Structure - Principle Tilt

117

1.5: ﬂ

mode 1
=)

1.2 1.4 16 1.8 2
x 10

0o 02 04 06 08 1
t(s)

-4
1.SX10 T T T T T T T T
1
05
N
3 o0
£
!
~1H
-1'5 1 J 1 L 1 A i 1 A
0 02 04 06 08 1 12 14 16 18 2
tis) x10™

Figure 38: Near Equilibrium Dynamics - 3D Structure - Normal Modes

118

0.5H b

mode 3
[=)

-05 '

-1

0.2 0.4 0.6 08 1 1.2 14 1.6 18 2
tis) x10™

Figure 38 (cont): Near Equilibrium Dynamics - 3D Structure - Normal Modes

119

B.2.2 Voltage Ramp

In the second experiment, a time dependance upon voltage is introduced.
At time =0, the plate is at rest and no voltage is applied. After time =0, the
voltage is linearly increased over 10 seconds to 150 volts. The voltage is then
held at 150 volts in order to observe the oscillation of the state around the new
equilibrium of the system. The results of these simulations are given in Figures 39
through 54. The equilibrium and mode information given in the previous section

holds for this experiment, because the final voltage level is the same.

120

gap (m)

. ANNNANNANNN
VVVVVV VYL

3% 02 04 06 08 1 12 14 16 18 2
t(s) x10™

0.04 T T T T i " ' j !

003} W H ﬁ n h q m N

0.02}

o0t}

d(gap)/dt (m/s)
o

-0.01+

-0.02f

-0.03+ “

1 12 14 16 18
t(s) x 10

LN

Figure 39: Voltage Ramp Dynamics - 1D Structure - g

121

12)(10 . . . ’ ' . . .
10_\ .
8t]
_ st i
[
B
£
4— H
2r B
o ANNNNAN /\\ JANAY
VVVVV VYV
2 02 04 06 08 1 12 14 16 18 2
ts) x10™
1 . .
o8}]
0.6})
041 4
0.2} -
~N
2 o
£
-0.2r g
04}
-0.6F .
-o08}
) 02 04 06 08 1 12 14 16 18 2
t(s) x104

Figure 40: Voltage Ramp Dynamics - 1D Structure - Normal Modes

122

08+ i

04r k

mode 3
o

1.2 14 1.6 1.8 2

0 0.2 04 0.6 08 1
t(s) x10™"

Figure 40 (cont): Voltage Ramp Dynamics - 1D Structure - Normal Modes

123

ANAANA.
R ATAVAVATAY

38

36

0.06 T T T T T

c.04r ﬂ

0.02- b

d(gap)/dt (m/s)
o

-0.02} -

R 11111

o o02 04 06 08 1 12 14 18 18 2
t(s) x10™

Figure 41: Voltage Ramp Dynamics - 2D Structure - g

124

I
\/\/\/\f\/\/:

w
n

phi_x (rad)
[
N wn w

-
W
T

-
Y

0.5¢

9 02 04 06 08 1 12 14 16 18
t(s)

N

x 10~

100

d{phi_x)/dt (rad/s)
=

200} | '

0.2 04 0.6 0.8 1.2 1.4 1.6 18

1
t (s)

Figure 42: Voltage Ramp Dynamics - 2D Structure - ¢,

08

0.6

04

0.2

phi_l (rad)
o

-0.2

-0.4

-0.6

-1

phi_p (rad)

Figure 43: Voltage Ramp Dynamics - 2D Structure - Principle Tilt

0.2

0.4

0.6

0.8

1
t(s)

1.2

14

1.6

18

x 10

o

0.2

04

0.6

0.8

1
t(s)

1.2

14

1.6

18

LY

x 10

125

126

o AANANAN
VYUY

-1 1 It i 1

0 0.2 04 0.6 08 1 R . .. 2
t(s) x 0™
10°
25~ - , : . r
N
o -
3
£
v v v T v VvV
_0.5 1 1 1 1 1 1 1 1 1
0 0.2 04 06 08 1 1.2 14 1.6 1.8 2
t(s) x 107

Figure 44: Voltage Ramp Dynamics - 2D Structure - Normal Modes

127

0.8 4

0.6+ B

0.2r 4

mode 3
(=)

-0.2

-0.6

T
i

o8}]

-1 1 I i I : i i N

0 02 04 06 08 12 14 16 18 2
x10™

1
t(s)

Figure 44 (cont): Voltage Ramp Dynamics - 2D Structure - Nermal Modes

128

N AAAAAA;
TAVAVATAVATAY

3'60 0.2 04 0.6 0.8 . 1.6 1.8 2
t(s) x10™

0-06 T T L) T T T n’ T “ T ﬂ ﬂ
0.04 W N {\ 1

0.02 A

d(gap)/dt (m/s)
o

-0.02}f

11

-0.06 1 1 1 A 1 1 1 1 1
0 0.2 04 0.6 08 1 1.2 1.4 1.6 18 2
t(s)

xt0™

Figure 45: Voltage Ramp Dynamics - 2D+ Structure - g

129

25

N
T

AAAAAN
A VYUYV

phi_x (rad)

0.5

1.2 1.4 1.6 18

N

1
ts) x10™

150 T T T T T T T T

N
"

50t

d(phi_x)/dt (rad/s)
=)

12 1.4 1.6 18 2
x 10

0 02 04 06 08 1
t{s)

Figure 46: Voltage Ramp Dynamics - 2D+ Structure - ¢,

130

I AANAAA
N VUV VY

phi_y (rad)

05

1.2 14 1.6 1.8
x 10

0 0.2 04 0.6 08

L Y

1
t(s)

150

d(phi_y)/dt (rad/s}
o

501

1.2 14 16 18

0 0.2 0.4 0.6 0.8 1
t(s) x 10

Figure 47: Voltage Ramp Dynamics - 2D+ Structure - ¢,

phi_i (rad)

0.5+

04

c.6

0.8

1
t(s)

1.2

14

1.6 1.8 2

x 10

251

phi_p (rad)
wm

0.5+

Figure 48: Voltage Ramp Dynamics - 2D+ Structure - Principle Tilt

0.2

04

0.6

0.8

1
t(s)

1.2

1.4

1.6 1.8

b

x 10

131

132

x 10

T MAAAAA
ARTA

-1

~-1.5

-2.5 |
-3 4
-35 4

_a N . \ . .
1 1.2 14 1.6 18 2
tis) x10™

-
1
1629 : . . .

mode 2

4

AAMAAA—AAAM

0 A\ 4
-2 i Jl L A L L d 1 1
0 o0z 04 06 08 1 12 14 16 18 2
t(s) x10™

Figure 49: Voltage Ramp Dynamics - 2D+ Structure - Normal Modes

133

13 T T T T T T T T T

16; .

14+ -

mode
[« J

s.
ar 1
2t 4
0 ANAA_AANANNA - ANAA_A
LAA A A'A"AAAA"AY
_2 1 1 i L 1 1 1 1 A
0 0.2 04 0.6 0.8 1 1.2 14 16 1.8 2
«(s) x10™

Figure 49 (cont): Voltage Ramp Dynamics - 2D+ Structure - Normal Modes

134

d{gapy/dt (m/s)

. NN
J TATATATATAY

34
0

0.2 04 0.6 0.8 2
tis) x 10

N ey
0ozl ’ \ |

-0.02+

e
1 1

—0.04

0. . . . L
060 0.2 04 0.6 08

1 12 14 16 18 2
tis) x10™

Figure 50: Voltage Ramp Dynamics - 3D Structure - g

135

-3
25X10 . , . - : . . T
A

_ 18} \j v)}
ko)
£
A
&

1+ 4
0.5+

0 1 1 1 4 L

0 02 04 06 08 1 12 14 16 18 2

t(s) x 107

200 .

d{phi_x)/dt (rad/s)
o 8
»—..._._______‘_‘__.__ -
[

12 14 16 18 2
x10™

0 0.2 0.4 0.6 0.8 1
t(s)

Figure 51: Voltage Ramp Dynamics - 3D Structure - ¢,

136

x 10

| M
VUV

\

1.5+ 1

25¢

phi_y (rad)
N

05

N

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
ts) x 107

100

d(phi_y)/at (rad/s)
[~]

|
o N

-300

N

1 1.2 14 1.6 1.8
t(s) x 10~

Figure 52: Voltage Ramp Dynamics - 3D Structure - ¢,

137

0.984 - . . —_— ; . . .
p\ 4
0.982+ ! p \
|

09af \

B
0.978}

U

0976 (

o
)
[e
n

phi_! (rad)

0.974 -

0.972

0.97! : n . s o

1.2 14 1.6 18

n

x10™

phi_p (rad)
- N
- wn n o

et
)

0.2 04 0.6 0.8 1.2 1.4 1.8 1.8

N

1
t(s) x107*

Figure 53: Voltage Ramp Dynamics - 3D Structure - Principle Tilt

138

L NAAAAAN
WARAR

-1t
'_-2' i
i
E
=3 4
vy -
-5F

t(s) . ‘ x10™

mode 2

o AANNSANASNANAS
vV VvV v VvV—V

-2 i 1 1 4 1 1 1 I 1

0 0.2 04 0.8 08 1 1.2 14 1.6 1.8 2
te) x 107

Figure 54: Voltage Ramp Dynamics - 3D Structure - Normal Modes

139

2 T T T T T T T T T

o A A AA-AN A ANAA~A
\VAGAVATA=AVAVASAVA A VAV

mode 3

1.2 1.4 1.6 1.8

0.2 0.4 0.6 0.8

N

1
tis) x10™

Figure 54 (cont): Voltage Ramp Dynamics - 3D Structure - Normal Modes

140

B.2.3 Varied Voltage Ramp Rate

The preceding voltage ramp situation demonstrates that momentum of the
plate build as voltage is ramped, causing the plate to overshoot equilibrium and
conceivably past pull-in. It follows that the rate at which voltage is ramped affects
this overshoot. The third experiment repeats the 3D structure voltage ramp
experiment, using ramp time values of 10 and 10 seconds. The results of these
simulations are given in Figures 55 through 64. Notice that the 10 second ramp
results in pull-in, yet the 103 second ramp brings the plate very close to
equilibrium and only small oscillations occur. This implies that momentum has a
significant effect upon the success of moving an electrostatically actuated
suspended plate from one equilibrium position to another. The rate of voltage

ramping must be chosen so as not to pull the plate past pull-in.

36 . ‘ . .
o 02 04 06 08 1 12 14 16 18 2
tis) x 10~

0-01 L] L S T T 1 T T T T

0.008} l

0.006} |

0.004- : %

_ ki
%) 0002[’ i " ’1“
s S
B il
: ¢ i
) 1" " “u.

, it l ! l |
—0.004} ‘
-0.006}]
-0.008}

_0.01 1 1 1 1 1 1 L 1 1

0 02 04 06 08 12 14 16 18 2
tis) X 104

Figure 55: Ramp Time 103-¢

141

x 10

0.4 0.6 0.8 1.2 1.4 1.6 18
t(s)

0.2

2x1o“’
1.8¢
1.6f
1.4}

o

142

v~

- P
(pes) x"1yd

0.6}

0.4}

0.2r
25
201

w0

{s/ped) ip/(xudip

x 10

1.2 14 1.8 1.8
t(s)

08

Ramp Time 103 - ¢,

0.4 0.6
Figure 56

0.2

-10f
~15}
_20}
-25

1 . .
t(s) x10°

40

30

20

10

ll.[

tJ"xll

I .MV
.' iy

d(phi_y)/dt (rad/s)
o

. J' i
'f”ﬁ:ﬂgh |

el | fl ?
'l.l I{ |f

W

02

0.4 0.6 0.8 1 1.2 1.4 1.6 18 2
tie) x 10~

Figure 57: Ramp Time 103 - @y

143

0.982

0.98

0.978§

0.976

phi_l {rad)

0.974

0.972

0.97

25

phi_p (rad)
N

1.5

T

0.2

0.4

0.6

0.8

1
t(s)

1.2

14

1.6

18

n

x10”

Figure 58:

02

0.4

Ramp Time 103 - Principle Tilt

1.8

x 10

145

x 10

-50 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t(s) x10~°
—4
1

1 6 x 0 T T T T T T T T T
~ J
E 4
4

_2 1 1 1 ne 1 L A ' 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.8 1.8 2
t(e) X 10°

Figure 59: Ramp Time 10" - Normal Modes

146

0.2 0.4 0.6 0.8

1 1.2 14 1.6 18
t(s)

Figure 59 (cont): Ramp Time 10" - Normal Modes

x 10

o

55

4.5

1.5
0

-0.5

-1

d(gap)/dt (m/s)

-2

0.2 04 0.6 0.8
t(s)

Figure 60: Ramp Time 10°5-¢

x107°

147

148

phi_x (rad)

0.018 T T T T T T T T

0.016

0.014

0.0121

0.01

0.006

0.004

T
s

0.002

0 02 04 06 08 1 12 14 16
tis) x10°°

w
1)
T
A

W
T

d(phi_x)/dt (rad/s)
n_ o

-
4]
T

[} 0.2 04 0.6 0.8 1 12 14 1.6
t(s) x10°

Figure 61: Ramp Time 105 - Oy

149

0.03 T T T T T T T —

0.025

0.015 b

phi_y (rad)

0.01f b

0.005¢ / 1

tis) x10°

4

x 10

d(phi_y)dt (rad/s)
& W

w
T

() 0.2 0.4 0.8 0.8 1 12 14 18
ts) x 1078

Figure 62: Ramp Time 107 - Py

150

0.988~

0.986

0.984+

0.982f

0.98~

0.978

phi_l (rad)

0.976

T

0.974

0.972

b

0.97

t(s)

16
x10°

0.035

0.031

0.025+

phi_p (rad)

0.015

0.01r

&

8
t(s)

Figure 63: Ramp Time 107 - Principle Tilt

mode 2

16

0 0.2 04 0.6 0.8 1 12 14 1.6

!) x10™°

1) x '10'5

Figure 64: Ramp Time 10" - Normal Modes

151

152

mode 3
&

02 04 06 08 1 12 14 16
t(s) x107

Figure 64 (cont): Ramp Time 10°° - Normal Modes

References

153

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

(%]

[10]

H. C. Nathanson, W. E. Newel], R. A. Wickstrom, and J. R. Davis, Jr., “The
Resonant Gate Transistor”, IEEE Transactions on Electron Devices, Vol. ED-
14, No. 3, March 1967, pp. 117-133.

K. E. Petersen, “Dynamic Micromechanics on Silicon: Techniques and
Devices”, IEEE Transactions on Electron Devices, Vol. ED-25, No. 10,
October 1978, pp. 1241-1250.

K. E. Petersen, “Silicon as a Mechanical Material”, Proceedings of IEEE,
Vol. 70, No. 5, May 1982, pp. 420-457.

K. E. Petersen, “Silicon Sensor Technologies”, Proceedings of IEDM, May
1985, pp. 2-7.

S. D. Senturia, “CAD for Microelectromechanical Systems”, to be presented
at the International Conference on Solid-State Sensors and Actuators,
Transducers '95, Stockholm, June 26-29, 1995.

S. D. Senturia, R. M. Harris, B. P. Johnson, S. Kim, K. Nabors, M. A.
Shulman, and J. K. White, “A Computer-Aided Design System for
Microelectromechanical Systems (MEMCAD)”, Journal of MEMS, Vol. 1,
No. 1, March 1992, pp. 3-13.

I-DEAS Master’s Series Version 1.3c software, SDRC, Milford, Ohio.

K. Nabors and J. White, “FastCap: A multipole-accelerated 3-D capacitance
extraction program”, IEEE Transactions on Computer-Aided Design, Vol.
10, No. 10, November 1991, pp. 1447-1459.

J. R. Gilbert, R. Legtenberg, and S. D. Senturia, “3D Coupled Electro-
mechanics for MEMS: Applications of CoSolve-EM”, Proc. MEMS '95,
Amsterdam, the Netherlands, January 29 - February 2, 1995, pp. 122-127.

E.Jansen and J. Lang, private communication.

154

[11]

[12]

[13]

[14]

[15]

[16]

(17]

L. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 4th
edition, Academic Press, Inc., 1980.

E. R. Morgenthaler, “Theoretical Studies of Microstrip Antennas, Vol. 1:
General Design Techniques and Analyses of Single and Coupled
Elements”, U. S. Department of Transportation, Federal Aviation
Administration Report No. FAA-EM-79-11, Sept. 1979, pp. 32-34.

H. B. Palmer, “The Capacitance of a Parallel-Plate Capacitor by the
Schwartz-Christoffel Transformation”, Electrical Engineering, Vol. 56, No.
3, March 1937, pp. 363-366.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes in C: The Art of Scientific Computing, Cambridge University Press,
1988, pp. 542-547.

H. A. Haus and J. R. Melcher, Electromagnetic Fields and Energy, Prentice
Hall, 1989.

J. R. Roark and W. C. Young, Formulas for Stress and Strain, S5th edition,
McGraw Hill, 1975.

J. White, lecture notes for MIT 6.336: Introduction to Numerical Algorithms,
Fall 1994.

