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Abstract

General relativity, though widely accepted in the weak-field limit, is difficult to test
in the strong-field regime. Millimeter wavelength VLBI offers a unique opportunity
to resolve the black hole structure on event-horizon scales. The ability of millimeter
wavelength VLBI observations of Sgr A* to constrain black hole parameters such as
mass, spin, and deviation from general relativity was considered. Realistic simula-
tions of Sgr A* were performed using the MAPS software. Image reconstructions were
made using MACIM and image-based parameter extraction using the Hough trans-
form was considered. Non-imaging techniques using least-squares fitting of a simple
ring and gaussian model to VLBI amplitudes and closure phases were considered.
The Hough transform is not able to place strong constraints on black hole parame-
ters. Least-squares fitting techniques indicate possible sensitivity to deviations from
general relativity and prove able to extract the photon ring radius to within 5-7%
of the expected value. It is concluded that VLBI observations of Sgr A* represent a
promising opportunity for testing general relativity in the strong-field regime.

Thesis Supervisor: Richard P. Binzel
Title: Professor of Planetary Sciences
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Chapter 1

Introduction

The theory of general relativity is one of the best-tested and most widely accepted

theories in modern physics. However, due to experimental practicalities, the majority

of the experiments testing relativity have been performed in the weak-field limit

and not in regions with strong gravitational fields. Only recently have observational

experiments in astrophysics begun to probe the strong-field regime and thus provide

a test of general relativity in extreme cases. One such method for testing general

relativity lies in the use of very long baseline interferometry (VLBI) at millimeter

and submillimeter radio wavelengths to image black holes on event horizon scales.

VLBI uses a global network of radio dishes which can be combined to form an Earth-

sized interferometric imaging array. To better constrain the utility of this technique in

answering questions of physical behavior in regions with extreme gravitational fields,

it is necessary to explore the abilities and limitations of such observations through the

use of realistic simulations. The work presented in this thesis will attempt to place

bounds on how realistic observations of Sgr A* using sub-millimeter radio astronomy

and subsequent image reconstruction can be used to determine black hole parameters

such as mass and spin. Additionally, this work attempts to constrain the utility of

testing for evidence of deviation from a spacetime described by Einstein's theory of

general relativity using these techniques.
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1.1 A history of testing general relativity

Experimental tests of general relativity have been performed since Einstein's publi-

cation of his theory in 1916. However, it was not until the 1960s that technological

advances based on quantum mechanics, such as semiconductors and lasers, as well

as the development of the computer, made possible the kind of sensitive experiments

necessary to thoroughly and precisely verify the theory's correctness [28].

1.1.1 Weak-field confirmation of general relativity

A set of weak-field experiments have proven that Einstein's theory of general relativity

successfully describes a wide variety of observed phenomena. The first such evidence

was given by general relativity's ability to successfully explain the perihelion shift of

Mercury and the observed deflection of light passing near the Sun [29].

The perihelion shift of Mercury had been an unresolved problem since 1859 when

Le Verrier announced that after accounting for the perturbing effects of the other

planets on Mercury's orbit and the precession of the equinoxes, there was still a mea-

surable advance in Mercury's perihelion that could not be explained [29]. Einstein's

theory of relativity yielded the first successful explanation of the observed perihelion

advance without requiring the introduction of any new physical parameters. This

represented a strong argument in favor of general relativity because it proved to be a

simple and elegant framework for understanding observed experimental results.

The gravitational bending or lensing of light was proposed as early as 1704 by

Newton; however, it was not until 1979 when D. Walsh, R.F. Carswell, and R.J.

Weymann detected a double image of a distant quasar. This doubled image was shown

to be the result of light from the star being gravitationally lensed around a galaxy [25].

Early classical (non-relativistic) predictions of the amount of light bending due to

gravity underestimated the observed angular perturbation by a factor of 'y/2, where

- is the parametrized post-Newtonian parameter measuring the magnitude of space-

curvature generated by a unit rest mass [29]. In general relativity, the value of 7 is

found to be equal to 1 [29]. Einstein's prediction was first verified during a total solar
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eclipse following WWI; however, the experiment itself was not particularly accurate,

and it was not until the 1960s that more significant evidence could be acquired. Today,

high-precision experimental techniques, such as Shapiro time-delay measurements

using spacecraft, yield agreement with general relativity to within 0.001 percent [29].

Shapiro time-delays are caused when radio signals are sent past a massive body before

being reflected back toward Earth. The gravitational interaction between the light

and the massive body induces a time delay that is a function of the signal's closest

approach to the Sun.

1.1.2 Strong-field tests of general relativity

Unlike the weak-field limit, the strong-field limit of general relativity has remained

largely untested, owing to the difficulty of observing systems in the strong-field regime.

Generally, a strong-field system is taken to be one in which a simple first order approx-

imation of the parametrized post-Newtonian framework is no longer appropriate [29].

Such systems contain very massive and dense objects such as black holes and neutron

stars. Possibilities for testing general relativity in the strong-field regime involve sys-

tems with highly relativistic orbital motions such as late-stage massive inspiralling

binary systems. This thesis explores the use of radio astronomy techniques to test

general relativity.

Currently, several observational techniques at x-ray wavelengths are being used to

probe general relativity in the strong-field regime including spectroscopy and quasi-

periodic oscillations in emission intensity. Recently, x-ray spectroscopy has been used

to explore the physics of disk accretion in regions near black-holes [23]. Relativistic

effects have been found to distort the x-ray spectrum emitted by material accreting

onto the black hole. This distortion is a function of black hole parameters such

as inclination and spin. Thus, x-ray spectroscopy can be used to constrain these

parameters; however, uncertainty in the physics governing accretion near a black hole

causes these results to be model-dependent.

Another possibility for studying general relativity in the strong field regime is

through quasi-periodic high-frequency x-ray oscillations emitted by stellar-mass black
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hole binary systems [20]. In some of these systems, the oscillations exhibit resonances

at frequencies which scale as a function of the black hole mass. This relation suggests

that general relativity may be able to explain these oscillations; however, scientists

have not yet developed a theory to explain these oscillations using general relativ-

ity. Therefore it is unclear if general relativity can provide an explanation for this

phenomena.

1.2 Testing general relativity using the Event Hori-

zon Telescope

The Event Horizon Telescope (EHT) is a global network of radio telescopes being

used simultaneously to observe the environment near the black hole at the galactic

center, Sgr A*, with angular resolution on event horizon scales. The goal of this thesis

is to use simulation to explore the ability of the EHT to use direct imaging of the

black hole to test general relativity in the environment near Sgr A*.

1.2.1 Defining the photon orbit and the black hole shadow

To understand how direct imaging of the region surrounding a black hole might enable

tests of general relativity, it is first necessary to understand some key features of a

black hole. A black hole is an object whose gravity is so strong that even light is

pulled into it. The radius that divides the region in which light can escape the black

hole's gravity and that it which light cannot is the black hole event horizon.

The photon orbit is the radius at which photons can stably orbit the black hole.

Because photons near the photon orbit will likely orbit the black hole many times

before potentially escaping out to the observer, these photons will make a significant

contribution to the total disk emission and can be observed as a bright ring near the

event horizon using millimeter-wavelength VLBI [1].

The black hole shadow is caused by gravitational lensing of light from sources

behind the black hole. Only photons that do not cross the event horizon of the black
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hole can be observed by a detector. Furthermore, the probability of such an escape

decreases rapidly with proximity to the event horizon. Thus, the scarcity of photons

escaping the black hole's gravity to reach the observer from regions near the event

horizon creates an observable shadow which, while larger than the actual black hole

event horizon, approximately preserves its geometric shape [11].

By observing the black hole shadow and photon ring, strong constraints on the

shape of the event horizon can be made. Recent work by Johannsen and Psaltis [18]

has shown that the shape of the bright photon ring can be used to investigate any

potential deviations in the black hole spacetime from the expected Kerr solution.

1.2.2 The no-hair theorem, the Kerr metric, and perturba-

tions of general relativity

In general relativity the no-hair theorem proves that the spacetimes of black holes

are characterized by their masses and spins [18]. This theorem is based on three

important assumptions: gravity is really described by general relativity; the black

hole is isolated from other significant sources of gravity; and the spacetime is perfectly

vacuum outside the black hole [7, 24]1. While no black hole is perfectly isolated

from other sources of gravity and the spacetime is not perfectly vacuum, in realistic

astrophysical situations the impact of these deviations from the canonical black hole

assumptions is negligible. Therefore, given these assumptions, the no-hair theorem

determines that black holes are uniquely characterized by the first two moments of

their external spacetimes (i.e. by their mass, M, and spin, J) [18]. All higher order

moments can then be defined as a function of M and J (and in units where G =c 1)

by:

M, + iS = M(ia)', (1.1)

where a = J/M is the spin parameter and 1 indexes the order of the moment [18]. The

moment M, describes how matter and energy are distributed in the spacetime, and

'Scott Hughes, personal communication, March 28, 2012
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moment Si describes how the flow of matter and energy is distributed [13, 15, 27]2.

Thus, the no-hair theorem can be tested simply by measuring any moments of order

greater than two. Any deviation of these higher order moments from the predicted

values given by Equation 1.1 will violate the no-hair theorem and demonstrate that

the object is not a Kerr black hole.

In their paper, Johannsen and Psaltis [18] parametrize any deviation from the ex-

pected quadrupole moment, given by Equation 1.1, with the parameter C and suppose

a quadrupole moment, M2 = Q, of the form:

Q = -M(a 2 + CM2 ). (1.2)

For reasonable distributions of matter near a black hole, c should be zero within

general relativity. A non-zero value for c must therefore represent a deviation from

general relativity.

1.2.3 Shadow shape as a function of perturbations on general

relativity

Johannsen and Psaltis [18] demonstrate how perturbations from general relativity can

be observed using VLBI at sub-millimeter wavelengths. In their paper, they consider

how the shape of the bright photon ring changes with varying spin, inclination, and

deviation from general relativity. The photon ring is a good observable because

its shape depends significantly on the black hole spacetime but is not distorted by

features in the accretion flow. For Schwarzschild and Kerr black holes in agreement

with general relativity, the photon ring is nearly spherical. Any small perturbation

from Einsteinian general relativity results in a change in the shape of the photon ring,

as shown in Figure 1-1. Nonzero deviations from general relativity can be observed in

the oblateness or prolateness of the photon ring. The black hole mass can be measured

using the photon ring diameter, and the black hole spin can be measured using the

displacement of the centroid of the photon ring from the geometric center of the
2Scott Hughes, personal communication, March 28, 2012
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FIGURE 1-1: Photon ring shape as
relativity. This figure shows dependence

a function of deviation
of photon ring shape on the

from general
violation of the

no-hair theorem. (Left) corresponds to a zero spin Schwarzschild black hole, while
(right) describes a Kerr spacetime with spin parameter a = 0.4M. In both cases the
observer's inclination is taken to be cos(i) = 0.25. Note how violation of the no-hair
theorem causes the shape of the (otherwise circular) photon ring to become ellipsoidal.
For a spinning black hole (right) the photon ring exhibits additional asymmetry in
cases of nonzero deviation from general relativity. Source: Johannsen and Psaltis [18

black hole's spacetime. However, this result is not particularly helpful experimentally

because of the difficulty of identifying the geometric center of the spacetime from

observations. Thus, this work demonstrates imaging to be a powerful tool for probing

general relativity in the strong-field regime.

1.2.4 Photon ring radius as a function of black hole mass and

spin

The size of the black hole shadow and photon ring are functions of the black hole

mass and spin. The photon ring radius, Rp can be expressed as a function of the

black hole mass using:
27GM

-, = -9 (1.3)

Rp can also be calculated from an image, using the circle radius given in pixels, the

image pixel scale (0.00159 mas/px), and the distance from the observer to the black
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hole via:

Rp = Dsgratan(O). (1.4)

In the above calculation, the black hole is assumed to have spin a = 0, for which

Rp = V27Rg. While Rp depends linearly on the black hole mass, it depends only

weakly on spin. For a black hole with spin a = 1 the photon ring radius is less than

that for a spin a = 0 black hole and is given by Rp = 4.5Rg [5].

The distance to the galactic center, Dsgra, is assumed to be 8.3 kpc in the original

theoretical models. This value is in agreement with current best estimates of the

distance to the galactic center found using observations of the orbital motions of the

star S2, known to orbit around the black hole at Sgr A* [14]. Gillessen et al. [14]

found Dsgra = 8.28 0.151stat + 0.291sy, kpc.

1.2.5 Technological advances necessary to test general rela-

tivity

To date 1.3 mm VLBI has been used to observe structure near the event horizon

of black holes at Sgr A* and M87, yielding exciting results. In 2008, observations

using a 3-station radio telescope array detected structure on scales of ~ 4 Rch,

where Rch = 2GM/c2 denotes the Schwarzschild radius of the black hole. These

observations also yielded a size estimate for Sgr A* of 36_+ pas [91. If the black hole

mass and distance from the observer are known, then the angular size of the black

hole can be converted to a linear size using:

tan 0 Rch 2GM (1.5)
Dsgra Dsgrac2

VLBI observations from 2011 have detected time-variable emission on event horizon

scales [12]. This growing network of radio telescopes being used to observe Sgr A*

comprises the Event Horizon Telescope (EHT).

With current technology, only interferometric amplitudes have been measured.

However, with planned increases in array sensitivity in the next few years, inter-
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ferometric phase measurements will soon be possible, allowing for the possibility of

image reconstruction. Important technological developments require the inclusion of

the Atacama Large Millimeter Array (ALMA) as a phased array. This inclusion will

increase EHT sensitivity by an order of magnitude and double angular resolution [8].

Furthermore, the addition of new EHT sites in coming years, such as the Plateau de

Bure Interferometer (PdBI) and the Institute for Radio Astronomy in the Millimeter

Range (IRAM) 30-m telescope, will increase baseline coverage in the (u, v)-plane and

allow for greater imaging fidelity, sensitivity, and temporal coverage [8].

Crucial to these efforts is the work laid out in this thesis pertaining to the ex-

ploration of imaging algorithms and in testing the ability of VLBI techniques to

distinguish between different black hole spacetimes.
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Chapter 2

Methods

2.1 Observing astrophysical sources using VLBI

Radio interferometric techniques in astrophysics take advantage of the use of interfer-

ence patterns to improve angular resolutions beyond those achievable using a single

dish [3]. When using a single dish, the angular resolution is a function of both the

observing wavelength and the telescope diameter, d [3]:

Omin ~ . (2.1)

However, when observing using an interferometric array, the minimum angular res-

olution decreases with increasing baseline length, allowing for much greater angular

resolution:

Omin A , (2.2)

where B represents the length of the longest baseline in the array [3]. Thus, in the

limit of large B, an interferometric array can achieve much greater angular resolution

than could be achieved with a single-dish telescope [3]. It is this exceptionally high

angular resolution that makes VLBI with the EHT so promising for studying general

relativity in the vicinity of the black hole at Sgr A*.

In interferometry, the spatial separation of the telescope antennas causes a geo-
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(a)Coounrctive (b)Desuuctive (c)Comnactive
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Al A4

FIGURE 2-1: A simple two element interferometer. A diagram of a simple
two-element Michelson interferometer. The diagram illustrates how various geometric
time delays cause either constructive or destructive interference in the interferometer
output signal. Source: Bradt [3]

metric time delay in the reception of signals from a given source (see Figure 2-1).

By combining the signals received at both telescopes, the time delay results in points

of constructive and destructive interference in the total signal, resulting in a fringe

pattern. Information about the brightness distribution of the source necessary for

image reconstruction is encoded in the amplitude and phase of this fringe pattern [6].

Because of the periodic nature of the interference response of the array, it is natural

to define the response as a complex function having both amplitude and phase, known

as the complex visibility function. The complex visibility represents the fundamental

observable of radio interferometry [6]. Considering this function in the Fourier or

(u, v)-plane, each point in the (u, v)-plane represents interference along a particular

baseline at a given time and is a function of the source sky brightness distribution.

When successive observations are taken in time, these points begin to trace out curves

in the (u, v)-plane, acting to fill in the plane (see Figure 2-2). Interferometric data

collected in the Fourier domain can be used to produce images via the inverse Fourier

transform; therefore, the (u, v)-coverage of the array directly influences the quality of

the reconstructed image.

24



By the Van Cittert-Zernike Theorem [31], the visibilities are related to the sky

brightness distribution by a Fourier transform. With complete sampling of the (u, v)-

plane, the image could be reconstructed simply by taking an inverse Fourier transform.

Real VLBI arrays, however, only sparsely sample the (u, v)-plane. Mathematically

this can be described by multiplying the visibilities by a windowing function whose

value is 1 where measurements are obtained and 0 where no data are taken. Since

multiplication in one domain becomes convolution in the Fourier conjugate domain,

radio astronomers typically produce images by Fourier transforming their visibilities

and deconvolving the effects of the widowing function from the dirty image. However,

image reconstruction by this method does not necessarily produce a unique image and

will fail entirely if the visibility domain is not adequately sampled, as is presently the

case for the EHT. Thus, it is necessary to consider alternate imaging algorithms that

do not employ deconvolution but are instead based on maximizing the likelihood of

the image distribution given the visibility data obtained. One example of such an an

algorithm is MACIM, described in 2.3.

Because telescope antennas are so far apart in VLBI arrays, the signals at each

telescope are recorded separately and combined after the observation has been com-

pleted. Thus, the relative phase between telescopes is unknown and must be recovered

during data analysis [6]. Furthermore, for large telescope separations the phase con-

tributions from the Earth's atmosphere may differ at different locations, introducing

a random phase difference between the signals received at two antennas. These ef-

fects cause instability in the phase of the complex visibility and therefore observations

along any single baseline may yield only uncertain information about the sky bright-

ness distribution. The phase information is particularly important because it encodes

most of the source structure information [21]. Luckily, when multiple antennas are

combined in an array this uncertainty decreases, because the phases around any tri-

angle can be added together in a way which is independent of phase shifts caused by

instrumentation or atmospheric effects. This quantity is called the closure phase, #ijk
and is given by:

Oik ij + /jk + O/ki, (2-3)
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FIGURE 2-2: (u, v)-coverage of the EHT array used in this thesis. This
figure shows the coverage in the (u, v)-plane for the 8 telescopes used in simulating
models of Sgr A*. Each point in the (u, v)-plane represents a Fourier component of
the sky brightness distribution. Adapted from: Broderick et al. [4]

for a group of antennas designated i, j and k. The quantity #g represents the inter-

ference phase along the i-j baseline.

2.2 Interstellar scattering and its effect on obser-

vation of Sgr A*

Radio waves received from Sgr A* have been observed to be scattered by interstellar

plasma (free electrons) along the line of sight between Earth and the galactic center [2].

The effect of this scattering on the observed size of Sgr A* goes as A2 , and is therefore

important at long wavelengths. However, for the purposes of this thesis interstellar

scattering effects have been neglected, because at the 1.3 mm wavelengths considered,

the measured size is not expected to be dominated by the scattering size [9]. However,

this is not necessarily a safe assumption, and scatter broadening effects are expected

to be significant on longer baselines. To properly account for interstellar scattering
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effects, all theoretical model images should have been convolved with an elliptical

gaussian (with parameters in agreement with those produced by interstellar scatter

broadening) prior to simulation in MAPS.

2.3 Simulating VLBI observations using MAPS soft-

ware

As a first step in image reconstruction, it is necessary to create synthetic VLBI data

sets from which to attempt a reconstruction. The MIT Array Performance Simulator

(MAPS) software, developed by researchers at the MIT Haystack Observatory, is a

tool for realistically simulating observations of astrophysical sources with interfero-

metric arrays. The MAPS software uses input information such as a theoretical sky

brightness distribution, array geometry, and antenna noise to compute realistic inter-

ferometric visibility amplitudes and phases. By using these simulated visibilities it is

possible to investigate the ability of the EHT to test general relativity using VLBI

observations of Sgr A*.

To successfully accomplish these simulations, theoretical models of the sky bright-

ness distribution around Sgr A* are observed using MAPS. In this thesis, a set of 798

models created by Avery Broderick was sampled to provide the input theoretical sky

brightness distributions when running MAPS. These models assume a radiatively

inefficient accretion flow (RIAF), meaning that very little of the energy generated

during mass accretion by the black hole is radiated away, allowing greater rates of

mass accretion to remain in accordance with the observed luminosity of Sgr A* [10].

The spacetime is assumed to be quasi-Kerr, with the c parameter representing devia-

tion from general relativity, as described in the Introduction. The space of all possible

models is parametrized in terms of black hole spin parameter, a; inclination angle on

the sky, i; orientation angle, 0; and deviation from a Kerr spacetime, C. A sample of

one of these input images is given in Figure 2-3.

Additionally, it is necessary to supply information about antenna geometry and
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FIGURE 2-3: A sample image from Broderick's models. Here the expected
black hole shadow and luminous accretion disk are visible. This particular model has
a, i, C = 0.

sensitivity (see Table 2.1). For the purposes of radio VLBI, telescope positions are

specified using an earth-centered coordinate system (see Figure 2-4 for telescope lo-

cations). Antenna sensitivity is input in terms of system equivalent flux density

(SEFD), the source flux density necessary to contribute antenna output equal to the

system noise of the antenna [26]. Other necessary input includes information regard-

ing the observation itself, such as source right ascension and declination (taken to be

the center of the field of view (FOV)), observation start time and duration, channel

bandwidth and integration time. In these simulations the observation is assumed to

last 24 hours. These values are tabulated in Table 2.2.

Using the input array information, source information, and theoretical sky bright-

ness distribution, MAPS simulates a realistic observation including thermal noise.

These data can then be input into image reconstruction software such as MACIM.

This process produces an image comparable to what would be obtained if an actual

observation was made.
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FIGURE 2-4: Telescope positions of EHT array. This figure shows the locations
of the eight telescopes which comprise the array used in the MAPS simulation.

TABLE 2.1: Input values for each of the eight telescopes included in the
EHT array used in this project.

Antenna X (m) Y (m) Z (m) Elev Min(0 ) Max SEFD(Jy)
Hawaii -5464523.400 -2493147.080 2150611.750 15 85 3300
SMTO -1828796.200 -5054406.800 3427865.200 15 85 11900

CARMA -2397431.300 -4482018.900 3843524.500 15 85 7500
LMT -768713.9637 -5988541.7982 2063275.9472 15 85 4000

ALMA 2225037.1851 -5441199.1620 -2479303.4629 15 85 110
PV 5088967.9000 -301681.6000 3825015.8000 15 85 2900

PdBI 4523998.40 468045.240 4460309.760 10 85 1600
SPT 0.0 0.0 -6359587.3 15 85 10000

TABLE 2.2: The observation specifications input into MAPS simulations.
Right Ascension - FOV center 17:45:39.96

Declination - FOV center -29:00:28.1181
FOV size (arcsec) 0.000159974

Integration time (s) 600.0
Bandwidth (MHz) 500
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2.4 Image reconstruction using MACIM

Image reconstruction in the sparse (U, v)-coverage regime is difficult because a large

class of images can fit a single interferometric data set [17] since "invisible" sky

brightness distributions may be added in regions where the (u, v)-plane is unsampled.

The sky brightness distribution in these regions is unconstrained by observation. The

MACIM software uses a Monte-Carlo, Markov chain algorithm to find the global

minimum of a regularized X2 statistic in image space [17]. MACIM uses Bayes'

Theorem to calculate the probability of an image being correct given the data set;

however, due to the high dimensionality of an image reconstruction problem, it is

impossible to evaluate this probability function explicitly. Instead, MACIM takes a

statistical approach to sample in only those regions of the total possible image space

where the probability is highest.

Re-constructed images are formed from a number of total flux elements, which

can be moved between pixels to create new images [17]. There are two ways in which

the algorithm considers moving flux elements. The first method is to move a flux

element in a random way. If the computed probability for this new arrangement of

flux elements is higher than that of the original image, the flux element remains in

its new location; if not, the flux element is moved back to its original position. The

second method is to introduce new flux elements, or to remove existing flux elements

from the image, changing the total number of flux elements present.

Using these stepping techniques, the software iterates though possible arrange-

ments of the flux elements in the image until an image of greatest probability has

been identified. There are many different ways of constraining the resulting image,

but for the purposes of this project only the standard maximum entropy regulariza-

tion is considered. Introducing a regularizer acts to constrain the types of images the

software looks for. In this thesis, the program was set to search for the most probable

solution by maximizing the configurational entropy of the image.

For all models, image reconstruction from simulated MAPS output data was per-

formed using MACIM with the input parameters listed in Table 2.3. Figure 2-5 shows
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TABLE 2.3: Parameters used on all model image reconstructions in
MACIM.

Pixel scale (mas) 0.00159
Image width (px) 100

Entropy multiplier alpha 10
Max (initial) flux elements 5000

FIGURE 2-5: Comparing original input models with re-imaged MACIM
results. (Left) The original model used as input for simulations using MAPS. This
model has spin parameter a = 0, inclination i = 300, and zero deviation from general
relativity (i.e. c = 0). (Right) The reconstructed image produced from simulated
observation data with realistic thermal noise.

a sample reconstructed image alongside the original theoretical model.

2.5 Fitting for photon ring size using a Hough

transform

Following image reconstruction, the size of the photon orbit was extracted using

a circular Hough transform. Since size is a function of the black hole mass (see

Equation 1.5), this technique allows for direct measurement of the black hole mass.

Currently, best estimates of the black hole mass at Sgr A* are provided by the orbital

dynamics of stars in close orbits around the black hole as in Gillessen et al. [14]. Since,

there may be mass interior to the orbits included in these mass estimates which is

not a part of the black hole mass, orbital dynamic techniques can only place an upper
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bound on the mass of the black hole. However, it is not unlikely that this mass is

negligible compared to the mass of the black hole.

2.5.1 Understanding the Hough transform

The Hough transform was initially developed by Hough in 1962 as a tool for detecting

lines in images. It was not until 1975 that Duda and Hart extended the transform to

be used for circle detection [19]. The Hough transform can be used to search for a

generalized curve in an image, so long as the curve can be expressed as a parametrized

equation [16]. To understand the Hough transform, first consider the simple example

of line detection.

Following [16], a set of image points, (x, y), which lie on a straight line can be

defined by a function, f:

f((rh, 6), (x, y)) = y - x- , (2.4)

where f and 6 are the two parameters (slope and intercept) which characterize the

line. This relation maps colinear sets of points (x, y) in the image plane to a single

point in (fin, 6) parameter space. The Hough transform considers the parameters of all

possible lines which pass through a given image point (x, y). In the linear case, the set

of all possible lines passing through each image point define a single line in parameter

space as illustrated in Figure 2-6. Using this approach, points which are colinear

in image space (i.e. those having the same fn and 6) intersect at a single common

point in parameter space. Since determination of the point of intersection is a local

operation rather than a global one, this approach is significantly less computationally

intensive than trying to identify the line in the original image space.

The Hough transform reduces the hard problem of shape detection in an image

into the comparatively simple problem of vote-counting [16]. The total parameter

space is sub-divided into a number of finite-sized regions, which are represented as

elements in the accumulator array [16]. Image points vote for all possible parameter

combinations that could have produced themselves by incrementing the values in the
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accumulator array every time a transformed image point passes through that region

of parameter space [16]. After adding up the votes of every point in image space, the

totals in the accumulator array indicate the relative likelihood of the shapes being

found with the corresponding parameters [16].

2.5.2 Finding circles using the Hough transform

Extending the Hough transform to detect circles is simply a matter of finding a

parametrized equation for a circle in terms of the circle center, (xO, yo), and its radius,

ro, by the familiar equation [22]:

(x - O)2 + (y - yo)2 = r. (2.5)

Using this parametrization, each point in parameter space corresponds to the center

and radius of a circle or circular arc. A circle in image space corresponds to a right

circular cone in parameter space [22]. The common circle between the points on the

image plane is then determined by the intersections of the cones in the 3D parameter

space.

Prior to the Hough transform, edge detection was performed on the images using

the native MATLAB package as follows:

edge(im, 'log', 0.0007);

where im is the input image after being read into MATLAB using f itsread. The

Ilog' option specifies the Laplacian of Gaussian method of edge detection, and the

0.0007 threshold value was chosen experimentally to appropriately regulate the sen-

sitivity of the edge detection. Edge detection is important because it serves to dra-

matically decrease the number of points considered in the Hough transform by first

identifying which points define shape boundaries.

The edge detection returns a binary image containing only the detected edges, and

can be used as input into the Hough transform MATLAB package. In this thesis, the

"Hough transform for circles" MATLAB package created by David Young [30] was
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FIGURE 2-7: An example best circle found using the Hough transform.
The result of using the Hough transform to identify and find the size of the photon
ring. The model used has a = 0, i = 300, and e = 0.

used to determine the radius of the photon ring in the images resulting from simulation

and re-imaging of the theoretical models. The code takes a range of possible radii,

which was chosen to be 14-20 px, inclusive. The circle finding code is called with:

h = circle-hough(e, radii, 'same', 'normalise');

where e is the edge-detected image, radii is the vector of possible radii, 'same' forces

the code to return only parts of the accumulator array corresponding to circle centers

located inside the image, and 'normalise' scales elements in the accumulator array

by 1\Ro so as not to weight results in favor of large circles.

After this processing, peaks are found in the accumulator array using:

peaks = circle-houghpeaks(h, radii, 'npeaks', 1);

where h is the accumulator array and 'npeaks' tells the program to return only the

circle with the highest number of counts in the accumulator array. The output peaks

is a vector containing (xO, yo, ro). An example of the circle returned by this process

is shown in Figure 2-7.
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2.6 Least-squares fitting of models in the (u, v)-

plane

Least-squares model fitting of simulated VLBI data in the (u, v)-plane was also con-

sidered as a possible method for gaining traction on general relativity. These fitting

techniques represent a non-imaging way of investigating the data and can potentially

provide different insights into the ability of the EHT to test general relativity. In this

thesis, least-squares fitting of a simple analytical model was investigated.

The model used consists of a circular ring of uniform brightness superimposed

with a circular gaussian (see Figure 2-8). This model was chosen because it was

expected to be fit high-inclination models well. At high inclinations Doppler-boosting

of material orbiting the black hole causes a crescent shape, with a bright region on

the approaching side of the accretion disk, and a dim region on the receding side.

Thus, a ring+gaussian model, with the added flux due to Doppler-boosting modeled

by the gaussian, was thought to be a simple model likely to be well fitted.

2.6.1 Fitting of a ring+gaussian model to simulated datasets

C code developed by Shep Doeleman (MIT Haystack Observatory) and myself uses

the simulated VLBI data output from MAPS and compares the simulated visibility

amplitude and closure phase data with theoretical data generated from the perfect

ring+gaussian model. The y2 difference between these two sets of visibilities is then

computed. The code searches through a 4D parameter space to determine the best-

fitting ring+gaussian model for the MAPS VLBI dataset. Available free parameters

are zsp, theta, radius, and size, which describe the zero-spacing flux density of

the ring, the angle of the gaussian, the inner radius of the ring, and the FWHM of

the gaussian, respectively. Because the total flux of the image is constrained to be 2.5

Jy, the zero-spacing flux density parameter really indicates the distribution of flux

between the ring and the gaussian in the model.

For the purposes of simplification, the thickness of the ring is fixed as a function

36



FIGURE 2-8: Illustrating the ring+gaussian model. This theoretical model
consists of a perfect ring superimposed with a circular gaussian. The free parameters
in the model are the brightness of the model, the radius of the ring, the size of the
gaussian, and the angle of the gaussian, measured from the right of the image.

of the radius so that the outer diameter of the ring is defined to be outer = 2.4*R

while the inner diameter is at inner = 2*R. The visibilities contributed by the ring

are defined by subtracting an inner disk from a larger outer disk. These disks are

represented mathematically as Bessel functions given by:

diski = (2.0/(1-(inner*inner)/(outer*outer)))*zsp*

bess j1(PI*base*outer*4.848e-6)/(PI*base*outer*4.848e-6)

disk2 =(2.0/(1-(inner*inner)/(outer*outer)))*zsp*

((inner*inner)/(outer*outer))*bessjl(PI*base*inner*4.848e-6)/

(PI*base*inner*4.848e-6),

where base = 9u/2 + v2 and 4.484e-6 converts MA*pas to A*radians. The Bessel

function definition used is the standard bessj 1 function taken from Numerical Recipes

in C.

The visibilities contributed by the offset circular gaussian are found via:

gamp=(2.5-zsp) * exp(-8.367e-11 * base*base*size*size)

gphase = 2.0 * PI * 4.848e-6 * (xg * ulam[i] + yg * vlam[i])

where xg, yg represent the coordinates of the center of the gaussian (fixed to be in

the center of the ring and at an angle theta, measured from the right of the image).
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From these definitions, the real and imaginary components of the visibilities are

computed using:

im-vis = gamp * sin(gphase)

re-vis = gamp * cos(gphase) + diski - disk2

Before the total x2 for the visibility amplitudes was calculated, 10% calibration

errors were also included:

sig-sq-amp = 0.1

*chi-sq-amp += (amp[i] - ampcomp)*(amp[i] - ampcomp)/sigsqamp

In calculating the x2 for the closure phases, a - = 0.5 rad was assumed. The

difference between the simulated closure phase (from MAPS) and the calculated the-

oretical closure phases is found by:

temp-diff = fmod(cphs[i] - cphs-comp, 2*PI);

if (temp-diff > PI) phase-diff = temp-diff - 2*PI;

else if (temp-diff < -1.0*PI) phasediff = temp-diff + 2*PI;

else phasediff = temp-diff;

where the if statement accounts for appropriate wrapping of the phase around 27r.

Once the phase difference has been found, the closure phase contribution to the x 2

fit is:

*chi-sq-cph += phasediff * phase-diff / sig-sq-cph

where sig-sq-cph = 0.5*0.5 is the assumed uncertainty in the theoretical calcula-

tion.

A number of different possible combinations of the available free parameters are

tested and the total chi-squared (amplitude and closure phase) is calculated for each.

The set of parameters yielding the minimum value of this total chi-squared are re-

turned.
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Chapter 3

Results

3.1 Re-imaged models from MACIM

Re-imaged models from MACIM are displayed in Figure A-1. All original model im-

ages are included, each with its resulting MACIM output image tiled to the right of

the original model in cases where a MACIM result was produced. However, because

MACIM only outputs an image if it can find a flux element configuration with a

reduced X 2 < 1, not every theoretical model has an associated re-constructed image.

If no such image is found, MACIM returns the average of all the flux element distri-

butions considered in its search. These MODE output images often look very little

like their original input models (see Figure 3-1) and therefore have been disregarded

in all further analysis.

The images in Figure A-1 represent a 133 model swathe through the total 798-

model grid. The models given here all have spin a = 0; however, all possible inclina-

tions, i, and deviations from general relativity, c, are considered. For these models,

the possible inclinations are: 30' < i < 90' in steps of 10'. The possible 6 consid-

ered are: -0.8 K c K 1.0 in steps of 0.1. This slice through the available parameter

space was chosen to test for the ability to differentiate between models with different

spacetimes, while controlling for spin and inclination.

In addition to this set of models across c and inclination, a further swathe of 70

models across all spins and inclinations for c = 0.4 was imaged. This set of models
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FIGURE 3-1: Comparing MACIM MODE results with original models.
(Left) The original theoretical model of the black hole sky brightness distribution.
(Right) The MODE output from MACIM caused by the program failing to find a
brightness distribution with a reduced x2 < 1. The MODE image is clearly very
different from the original model.

was selected because it provided a full range of spins, 0.0 < a < 0.9 in steps of 0.1,

across all inclinations, but for a single value of c. These models were then used to test

for trends as a function of spin. Since the black hole radius is a function of the mass

and the spin, this set of models can be used to test for the sensitivity of the methods

presented in this thesis to variations in black hole parameters. Plots of these images

alongside the original theoretical models are given in Figure A-2.

3.2 Fitted circles using Hough transform

After simulating observations in MAPS and reconstructing images using MACIM, the

resulting images were then searched for circles using Hough transform methods. No

further analysis was performed on those models for which only a MODE result was

produced. The radii of the circles found in images for which MACIM did produce a

statistically likely (x2 < 1) result are tabulated in B.1.

To determine if the Hough transform method could detect deviations from general

relativity, circles were found in images with the same spin (here a = 0) across all

available inclinations, i, and spacetimes, c. To determine if there was any influence of

c on the size of the circle fitted, the data were binned at each inclination into regimes
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FIGURE 3-2: Mean Hough transform radius for binned c regimes. This
figure shows the mean and standard deviation of the radii found using the Hough
transform after begin binned into regimes of large negative, small, and large positive
c. The inclinations have been spread along the c axis to improve readability.

of large negative deviation (-0.8 < E < -0.3), small deviation (-0.2 < c < 0.4),

and large positive deviation (0.5 < c < 1.0). In each of these regimes the mean

and standard deviation of the circle radii was computed. The results are given in

Table C.1 and plotted in Figure 3-2.

Data from the set of images with varying spin and inclination but constant f = 0.4

were also searched for circles using the Hough transform methods. The value of 6 = 0.4

was chosen because all spins were available at this value of C. The goal of this analysis

was to determine if the Hough transform was sensitive to changes in shadow size as a

function of black hole spin. Again, the raw data were binned into regions of low spin

(0.0 < a < 0.4) and high spin (0.5 < a < 0.9) spin. Data points for which detected

circles clearly found part or all of the outer edge of the accretion disk (see Figure 4-1)

were excluded to better constrain sensitivity. A mean radius and standard deviation

were computed in each bin at each inclination. These results are given in Table C.2

and plotted in Figure 3-3.
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have been spread along the spin axis to improve readability. Points with no error bars
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3.3 Ring+Gaussian least-squares fitting results

Least squares fitting of the simple ring+gaussian model was performed on simulated

VLBI amplitude and closure phase data output from MAPS. One advantage of this

approach is that because it is a non-imaging technique, it is not dependent upon

MACIM finding a statistically good image, but can be performed equally well for any

input model.

In this method, an ideal ring+gaussian VLBI dataset is generated and compared

with the simulated MAPS output amplitude and closure phase data. The inner radius

of the ring, the size of the gaussian, the angle of the gaussian around the ring, and

the relative brightness of the gaussian and the ring were fit. Because the technique

calculates and compares VLBI amplitude and closure phase data separately, two x 2

values are returned.

To investigate the sensitivity of this simple model to deviation from general relativ-

ity, the ring+gaussian model was first fitted across all inclinations and all spacetimes

(all values of e), for for spin a = 0. In Figure 3-4, the variation in the X2 values from
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FIGURE 3-5: Results from fitting using ring+gaussian model for all spins.
Here the X2 resulting from fitting VLBI amplitudes and closure phase data is plotted
against spin for all inclinations.

fitting the amplitudes and closure phases is plotted as a function of deviation from

relativity (c) for all inclinations 30 < i < 900 and for spin a = 0.

Next, least-squares fitting was performed across all spins for each inclination at

fixed c = 0.4. Again, the value of E = 0.4 was chosen because all spins were available

at this value. The resulting x 2 values are plotted as a function of spin, 0.0 < a < 0.9,

in Figure 3-5. Plots are included for the X 2 values resulting from fitting both the

VLBI amplitudes and the closure phase data.

In addition to these x 2 plots, it is instructive to consider the ring radius as a

function of both spin and c. These radius plots are given in Figure 3-6 and help to

illustrate how sensitive this least-squares fitting approach is to changes in the photon

ring size as a function of spin and spacetime.
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Chapter 4

Analysis

4.1 Analysis of Hough transform data

4.1.1 Determining sensitivity of Hough transform methods

to changes in E

To test for sensitivity of the Hough transform method to variations in the value of

C, circles were found in the MACIM images and the resulting data were binned into

regimes of large negative, small, and large positive deviations from general relativity.

The results of this analysis (see Table C.1 and Figure 3-2) show that between the

different c regimes, the mean radii in each regime fall within l- of each other. This

indicates that the Hough transform technique is not sensitive to deviations in general

relativity between models with the same spin and inclination.

The likely cause of this insensitivity is two-fold. First, the noise in the data

contributes greatly to the error bars and is largely a result of the Hough transform

finding all or part of the wrong circle. In a number of cases the Hough transform

finds all or part of the outside edge of the accretion disk when searching the image for

the best circle. Unfortunately, this renders the resulting circle information useless,

as the outer edge of the accretion disk is not related to the black hole parameters.

When all or part of the outer edge is detected, circle radii are found to be 18-20 px.

This introduces a significant amount of noise into the results. The second difficulty
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with the Hough transform technique is that the changes in the shape of the photon

ring appear to be below the sensitivity threshold of the method. Because the Hough

transform code has only single-pixel resolution and the image is generally fuzzy, the

Hough transform is unable to detect any variation in photon ring size or shape as a

function of changing c. These issues suggest that a circular Hough transform is not

sufficient for resolving changes in c.

4.1.2 Determining spin sensitivity

An investigation into the ability of the Hough transform to detect changes in size of

the photon radius as a function of black hole spin was conducted in a similar manner

to the test for c sensitivity. However, in this analysis all circle radii which were found

to have fitted any part of the outer edge of the accretion disk were eliminated. This

was done to prevent these points from anomalously skewing the data, as they had a

more significant impact on the smaller spin data sets than they had had in considering

the e analysis.

Raw radius data from the Hough transform was binned into regions of high and

low spin, and the mean radius and standard deviation was computed. The resulting

data given in Table C.2 and plotted in Figure 3-3 show that the Hough transform is

not sensitive to differences in photon ring size as a function of spin since mean radii

in the high and low spin regimes at every inclination fall within lax of each other.

However, in every case, except for i = 700, the mean found in the high spin regime

is smaller than that found in the low spin regime. While this is in agreement with

the expected difference between the two regimes, any potential difference between the

two is too small for this method to differentiate between high and low spin regimes

with confidence.
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TABLE 4.1: Results of computing the mean and standard deviation of
detected circle radii across all c at a given inclination.

Spin (a) Inclination (i) Mean (px) Std Dev (px)
0 90 15.4 0.7
0 80 15.7 1.4
0 70 16.1 1.9
0 60 15.5 1.6
0 50 15.3 2.0
0 40 14.9 0.8
0 30 15.5 1.4

4.1.3 Black hole mass determination from Hough transform

methods

MACIM imaging and Hough transform methods can potentially be used to measure

the mass of the black hole directly since the black hole mass is a function of the photon

ring radius. To test the ability of these methods in measuring the black hole mass, the

mean radius was compared with the radius derived from the known theoretical values

input into the original models.aging and Hough transform methods can potentially

be used to measure the mass of the black hole directly since the black hole mass is a

function of the photon ring radius. To test the ability of these methods in measuring

the black hole mass, the mean radius was compared with the radius derived from the

known theoretical values input into the original models.

Because the Hough transform method is not sensitive to deviations in C, all c values

were subsequently treated together and the mean and standard deviation across all c

at each inclination was computed. The results are given in Table 4.1 and show that

the average radius found across all inclinations (rounding to the nearest pixel) is 15

px. This result is likely skewed slightly toward larger radii because an examination

of the raw data shows that the Hough transform code found at least one circle at

every inclination that was all or partially along the outside edge of the disk emission

(see Figure 4-1). Thus, the uncertainties could be improved by excluding those data

points which clearly fit all or part of the outer edge of the accretion disk. However,

even without excluding these data points it is clear that the mean circle radius is
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FIGURE 4-1: An example of the Hough transform finding the outer edge
of the accretion disk. Here the Hough transform has clearly detected the outer
edge of the emission for most of the circle. This model has a = 0, i = 700, c -- 0.6

15 pixels.

This is interesting because the expected radius for these models can be calculated

using the black hole mass and distance to Sgr A* which were assumed in the theo-

retical models: Dgra= 8.3 kpc and Msgra= 4.5 x 106 Msu, [14]1. Using these values

as input into Equations 1.3 and 1.4, allows the "real" radius of the photon ring to

be calculated. Using this approach the photon radius is calculated to be 17.4 pixels,

demonstrating that the Hough transform results show a bias toward smaller circle

radii.

This discrepancy between the average circle radius and the expected theoretical

photon radius can be understood to be a result of the fuzziness of the images. Because

the Hough transform is highly sensitive to edges and the emission from the photon ring

defines a blurred ring-shaped region, the Hough transform is biased toward finding

the innermost edge of this feature. However, the photon ring is actually represented

by the circle of maximum brightness in the accretion disk, not the inner edge where

the shadow begins. Thus, this technique consistently underestimates the size of the

photon radius, resulting in the fitted radius being only about 88% of the expected

'Avery Broderick, Personal communication, April 27, 2012
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radius.

4.2 Analysis of ring+gaussian fitting results

4.2.1 Testing for goodness of fit

Testing the goodness of fit of the ring+gaussian model to the high-inclination data

was performed in two ways. First, a simple reduced x2 was calculated for both the

amplitude and closure phase results. This was determined to yield X2,amp 0.4 - 1.0

and X2cphs 5 - 10. From this we can see that while neither the amplitude or

the closure phase fits have the xi ~ 1.0 that signifies a good fit, the amplitude

data is fitted better than the closure phase data. Furthermore, the X2,amp values

are understood, because in assuming 10% calibration errors the error has likely been

overestimated, resulting in a Xamp < 1.0. However, the X2 values are harder to

explain and may be indicative of more serious problems with fitting the ring+gaussian

model to these high-inclination results.

The problem of goodness of fit can be further tested by plotting the measured flux

density as a function of baseline in the (u, v)-plane (see Figure 4-2). This figure shows

a discrepancy between the best-fit ring+gaussian model and the simulated VLBI data

even at high inclinations, indicating that the ring+gaussian model does not fit well on

all baselines even at high inclinations. This is thought to be a result of the gradient

brightness in the input model due to Doppler boosting being poorly modeled by the

ring+gaussian approximation. A possible solution is to consider an analytical model

which can better account for this gradient brightness, as mentioned in 5.1

4.2.2 Understanding the x2 trends

Sensitivity of the ring+gaussian least-squares fitting methods to deviations from gen-

eral relativity can be understood though the best fit x 2 values. The same set of

models were used as in the Hough transform analysis, sampling across all C at each

inclination for spin a = 0. This allows changes in the X 2 values as a function of c to
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FIGURE 4-2: Comparing flux density vs. baseline for the best
ring+gaussian model and the the simulated VLBI data. Here the best-fit
ring+gaussian model is plotted in red, and the simulated VLBI data in black. The
discrepancy between the red and black curves indicate that the ring+gaussian model
does not fit well on all baselines even at high inclinations.
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be observed when plotted (see Figure 3-4). Understanding the trends in x 2 as a func-

tion of c helps to explain the ability of least-squares fitting techniques to differentiate

between models with different c values.

There are several trends worth considering in the x 2 plots of Figures 3-4 and 3-5.

First, consider the X2mp plots as a function of E. Looking at the value of X2mp across all

inclinations demonstrates that the high-inclination models (i > 700) are better fit by

the ring+gaussian model than low-inclination models. This is unsurprising because

the original low-inclination models look very little like a ring+gaussian. Additionally,

for these high-inclination models the X2mp as a function of e shows a decrease in

regions of small c. This dip seems to suggest that the X2mp may be sensitive to

deviations from the expected circular shape of the model ring. However, to get a

clear indication of the significance of this change in Xamp amp 30), it would be

important to re-calculate the reduced x 2 after more properly estimating the expected

calibration errors. This would help to determine if the ring+gaussian models are

fitting well, and how much statistical significance to assign to the feature. Clearly

this dip does not appear at lower inclinations for the ring+gaussian model, but it

is possible that a new analytical model could be developed that would be similarly

sensitive at lower inclinations. Unfortunately, there is no similar trend in XCphs as

a function of c; instead, X2phs seems to decrease only slightly as c increases. This is

potentially problematic because visibility amplitudes can only be calibrated to within

a few percent. Therefore, any test that depends sensitively on fitting the amplitude

data may be inconclusive when used on real VLBI data. However, this may be an

indication that considering closure amplitudes (an amplitude quantity independent

of atmospheric effects akin to the closure phase which can be defined between any

4 telescopes in an array) may be fruitful in constraining the observed black hole

spacetime.

The X 2 data as a function of black hole spin exhibits the opposite behavior. In

this case, Xiphs demonstrates a clear increase with increasing spin, while X2mp remains

nearly constant as a function of spin. Thus, the phase information seems to be most

important in differentiating between models with different spins using least-squares
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fitting, and could indicate the potential for differentiating between models of different

spins using closure phases.

4.2.3 Determining black hole mass from ring+gaussian fit-

ting

Considering only those high-inclination (i > 700) models for which the ring+gaussian

model seems to fit better, the mean radius across all c at zero spin is between 29.5

and 30 pas. Using the same calculations for the photon ring size as a function of

black hole mass at zero spin as in 4.1.3 (Equations 1.3 and 1.4), the theoretical

radius of the photon ring is calculated to be 27.9 pas. Thus, the least-squares fitting

technique appears to slightly over-estimate the size of the photon ring, unlike the

Hough transform methods which were found to underestimate the radius. The least-

squares fitting methods more correctly identify the size of the photon ring, with only

5-7% error, as opposed to the 22% discrepancy found when using the Hough transform

methods. It is possible that the ring+gaussian model does a more accurate job of

fitting for the size of the photon ring because of the fixed width of the ring in the

model. The fixed width could cause the best fit to occur when the brightest part of

the accretion disk is found within the model ring.

4.2.4 Determining sensitivity to photon ring size as a func-

tion of black hole spin

Based on the ring+gaussian fitting results given in Figures 3-5 and 3-6, there does

not appear to be any evidence to indicate sensitivity to changing photon ring size as a

function of black hole spin. The plot in Figure 3-6 as a function of spin is particularly

compelling, as it shows no evidence of the expected decreasing trend. Instead, the

plots show that the fitted radius does not depend on either spin or E, while the

radius does seem to depend somewhat on inclination. This dependence on inclination

is likely the result of the ring+gaussian model being a poor approximation at low

inclinations. Therefore, it must be concluded that the ring+gaussian least squares
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fitting technique is unable to differentiate between models with different black hole

spins by fitting for the radius of the photon ring.

53



54



Chapter 5

Discussion

This thesis explores the feasibility of testing general relativity in the strong-field

regime using millimeter wavelength VLBI of Sgr A*. Using theoretical models and

simulating realistic VLBI observations with MAPS allows for the creation of VLBI

datasets which can be used to explore techniques for testing relativity. Both imaging

and non-imaging techniques are considered to determine if non-imaging methods are

more or less effective than imaging techniques in constraining black hole parameters

such as spin and spacetime.

5.1 Summary of important results

Image reconstruction from the VLBI data was performed using statistical algorithms

in MACIM. The resulting images were then analyzed using a Hough transform to

identify the best circle in each image. This approach proved to be largely unsuccessful

in constraining black hole parameters such as spin and E. The technique also showed

consistent bias with radii found to be on average 22% smaller than the expected

photon ring radius. This result was attributed to the blurred quality of the image.

Nevertheless, if the bias were well characterized, this method could perhaps be used

to measure the black hole mass directly using millimeter wavelength VLBI.

The non-imaging technique considered in this thesis uses least-squares fitting of

a simple parametrized ring+gaussian model to the raw VLBI amplitude and closure
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phase data in the (u, v)-plane. Analysis of the method concludes that the simple

ring+gaussian model is not a great approximation to the structure of the accretion

disk even at high inclinations (i > 700), possibly due to the gradient brightness of

the disk emission caused by Doppler boosting. Thus, further study of least-squares

techniques should develop new analytical models that work well all inclinations. One

possible model is a ring of gradient brightness, were flux is distributed across the

ring in a linear or quadratic manner. The development of new analytical models is

particularly necessary in light of analysis of the most recent VLBI data which indicates

the most probable values of the black hole parameters to be a = 0.0+0.64+0.85 and

68= 68 +9 [4]. Thus, high inclination models are not favored by existing VLBI

data from past observations of Sgr A*.

The X2mp data plotted against E seems to indicate that the least-squares fitting

techniques may be sensitive to deviations from circularity of the photon ring in high-

inclination cases were the accretion disk emission is most similar to the analytical

model. Although visibility amplitudes may be difficult to calibrate precisely enough

to detect non-circularity in the shape of the photon ring, closure amplitudes, which

are robust against calibration uncertainties, may be a promising substitute in future

investigations. Thus, further research is necessary to determine if the observed change

in X2mp as a function of c can be used to constrain the black hole spacetime. Although

the ring+gaussian model is unable to distinguish between large positive and large

negative deviations from general relativity, it is possible that this least-squares fitting

approach could be developed into a tool for distinguishing between these regimes.

This would be an exciting result which could enable observers to constrain possible

deviations from general relativity using VLBI observations of Sgr A*.

The least-squares fitting approach proves to be more reliable than the Hough

transform in measuring photon ring size. This is possibly because parameters which

place the brightest part of the accretion disk inside the model ring are statistically

favored, rather than the transition from shadow to disk emission which appears to be

favored using the Hough transform. With results only 5-7% larger than the expected

radius for high-inclination cases in which the ring+gaussian model does well, this
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method does considerably better than the 22% underestimate found using the Hough

transform. Neither method appears to be able to detect changes in the photon ring

size as a function of black hole spin.

5.2 Possibilities for future work

Based on these results of this thesis, there are several areas for future work. This work

has demonstrated the existence of trends in X2 as a function of black hole parameters

which could potentially be exploited to study general relativity near Sgr A*. More

investigation is required to determine if the magnitude of these trends is significant

as well as to develop better analytical models for least-squares fitting of theoretical

models. These analyses will determine if changes in photon ring shape as a function

of the black hole spacetime can be constrained using least-squares fitting.

Additionally, while the circular Hough transform methods considered in this thesis

proved to be largely unsuccessful in extracting black hole parameters, it is not un-

likely that there exist other imaging methods for investigating black hole parameters.

Therefore, it is worthwhile to continue to explore techniques for extracting black

hole parameters from simulated and re-imaged models of Sgr A*. Possibilities for

such exploration include an elliptical Hough transform or a different shape-detection

algorithm.

Another important consideration for future work is interstellar scattering. While

interstellar scattering was not considered in this study, it is expected to have an effect

on the results, and a truly realistic simulation of VLBI observations of Sgr A* would

need to properly account for these effects.

5.3 Conclusions

The opportunity to observe the black hole at Sgr A* on event horizon scales using

millimeter wavelength VLBI represents an unprecedented opportunity to study gen-

eral relativity in the strong field limit. The work done in this thesis represents a first
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attempt at using new imaging and non-imaging different techniques to constrain the

black hole parameters based on realistic simulations of VLBI observations. Previous

research in this area has focused on using exiting VLBI data from observations of Sgr

A* to place bounds on the black hole parameters. This thesis seeks to identify to

constrain the full potential of the EHT for extracting black hole parameters. These

results demonstrate the promise of such an approach and indicate several directions

for future work.
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Appendix

Original

images

and MACIM output
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(a) Models with a =0,i = 900, -0.8
right

(b) Models with a = 0, i = 800, -0.8
right

< E < 1.0 in steps of 0.1 from left to

< c < 1.0 in steps of 0.1 from left to
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(c) Models with a = 0, i = 50', -0.8 < f < 1.0 in steps of 0.1 from left to
right
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(a) Models with a =0, i =40', -0.8 < E < 1.0 in steps of 0. 1 from left to
right
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N.E
I.E
I.E
(a) 0.0 < a < 0.9 in steps of 0.1

I.E
I.E
I.E
(b) 0.0 <aK< 0.9 in steps of 0.1

from left to right, i =900, E = 0.4

I...
I...
I...
from left to right, i = 80', c = 0.4
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I.E

(a) 0.0 < a < 0.9 in steps of

(b) 0.0 < a < 0.9 in steps of

I.'
I..
I.'
(c) 0.0 < a < 0.9 in steps of

0.1 from left to right, i = 700

0.1 from left to right, i = 60*, E = 0.4

0.1 from left to right, i = 500, E = 0.4
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(a) 0.0 < a < 0.9 in steps of 0.1 from left to right, i = 400, c = 0.4

a,-,
(b) 0.0 < a < 0.9 in steps of 0.1 from left to right, i = 30', E = 0.4

FIGURE A-2: Theoretical models vs. MACIM results for all inclinations
and spins. Here the re-imaged MACIM output images are shown to the right of
their corresponding theoretical model. In a few cases, when MACIM was unable to
produce a suitable reconstructed image, the MODE output image is printed.
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Appendix B

Raw data from finding circles using

the Hough transform

Recall, the pixel scale of the images is 0.00159 mas/pixel. The assumed mass of and

distance to Sgr A* are taken to be: Msgra = 4.5 x 106 M,,, and Dsgra = 8.3 kpc.

TABLE B.1: Data from finding circles in MACIM images using the Hough

transform.

Spin (a) Inclination (deg) GR Deviation (c) Circle Radius (px)

0 90 0.3 15

0 90 0.4 16

0 90 0.5 15

0 90 0.6 15

0 90 0.7 15

0 90 0.8 15

0 90 0.9 17

0 90 1.0 15

0 80 -0.1 16

0 80 0.2 16

Continued on next page

67



TABLE B.1 - continued from previous page

Spin (a) Inclination (deg) GR Deviation () Circle Radius (px)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Continued on next page
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TABLE B.1 - continued from previous page

Spin (a) Inclination (deg) GR Deviation (c) Circle Radius (px)

0 60 -0.7 17

0 60 -0.4 15

0 60 -0.3 16

0 60 -0.2 19

0 60 -0.1 15

0 60 0.0 15

0 60 0.1 14

0 60 0.2 15

0 60 0.3 15

0 60 0.4 15

0 60 0.5 15

0 60 0.6 14

0 60 0.7 15

0 60 0.8 19

0 60 0.9 14

0 60 1.0 14

0 50 -0.8 14

0 50 -0.7 14

0 50 -0.6 14

0 50 -0.5 15

0 50 -0.4 19

0 50 -0.3 14

0 50 -0.2 14

0 50 -0.1 15

0 50 0.0 14

0 50 0.1 19

Continued on next page
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TABLE B.1 - continued from previous page

Spin (a) Inclination (deg) GR Deviation (c) Circle Radius (px)

0 50 0.2 16

0 50 0.3 19

0 50 0.4 14

0 50 0.5 14

0 50 0.6 15

0 50 0.7 14

0 50 0.8 19

0 50 0.9 14

0 50 1.0 14

0 40 -0.8 15

0 40 -0.7 15

0 40 -0.6 16

0 40 -0.5 16

0 40 -0.4 17

0 40 -0.3 15

0 40 -0.2 15

0 40 -0.1 15

0 40 0.0 15

0 40 0.1 14

0 40 0.2 15

0 40 0.3 16

0 40 0.4 14

0 40 0.5 14

0 40 0.6 15

0 40 0.7 14

0 40 0.8 14

Continued on next page
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TABLE B.1 - continued from previous page

Spin (a) Inclination (deg) GR Deviation (6) Circle Radius (px)

Continued on next page
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0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.0

0.1

0.7

0.0

0.1

40

40

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

90

90

90

80

80

0.9

1.0

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.4

0.4

0.4

0.4



TABLE B.1 - continued from previous page

Spin (a) Inclination (deg) (GR Deviation (C)] Circle Radius (px)

0.2

0.9

0.0

0.1

0.2

0.3

0.5

0.6

0.7

0.8

0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0

0.1

0.2

0.3

0.4

Continued on next page
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TABLE B.1 - continued from previous page

Spin (a) [Inclination (deg) GR Deviation () Circle Radius (px)

0.5

0.6

0.7

0.8

0.9

0.0

0.1

0.2

0.3

0.7

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50

50

50

50

50

40

40

40

40

40

40

30

30

30

30

30

30

30

30

30

30

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

14

18

14

14

16

15

18

14

19

19

14

17

15

15

14

18

14

15

14

14

17

73



74



Appendix

Binned Hough transform data
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TABLE C.1: Results of binning
and large negative c.

data into regimes of small, large positive,

TABLE C.2: Binned radius data for
ine~i~tios

high and low spin regimes at different

76

Spin (a) Inclination (i) E Regime Mean (px) Std Dev (px)
0 90 small 15.5 0.7
0 90 pos 15.3 0.8
0 80 small 16.5 1.7
0 80 pos 15.2 1.0
0 70 neg 16.5 3.5
0 70 small 17.1 1.6
0 70 pos 14.7 0.5
0 60 neg 15.8 1.5
0 60 small 15.4 1.6
0 60 pos 15.2 1.9
0 50 neg 15.0 2.0
0 50 small 15.9 2.3
0 50 pos 15.0 2.0
0 40 neg 15.7 0.8
0 40 small 14.9 0.7
0 40 pos 14.3 0.5
0 30 neg 15.8 2.0
0 30 small 15.6 1.5
0 30 Pos 15.0 0.0

Spin Regime (a) Inclination (i) GR Deviation (c) Mean (px) Std Dev (px)
low 90 0.4 15.5 0.7
high 90 0.4 14 undef
low 80 0.4 15.7 0.6
high 80 0.4 15 0
low 70 0.4 14.7 0.6
high 70 0.4 14.6 0.5
low 60 0.4 14.6 0.5

high 60 0.4 14.5 0.6
low 50 0.4 14 0
high 50 0.4 14.5 1
low 40 0.4 14.5 0.7
high 40 0.4 14 undef
low 30 0.4 14.6 undef
high 30 0.4 14.3 0.5
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