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ABSTRACT

The cbject of this thesis is to develop a procedure
for calculating the dynamic displacement response of
the platform of a fixed offshore structure acted upon by
a regular wave train. The structure considered has four
legs 1n a square configuration, with the waves impinging
normal to one side of the 8quare. The procedure may be

manipulated for use with other leg configurations and wave
directions.

The thesis is written in a manner useful to a designer
of fixed offshore structures. An iterative procedure may

be used to arrive at the critical wave-displacement
combination.

The types of waves considered are those for which Stokes'
3rd approximation applies. A modified version of Morison's
theory 1s used for drag forces. Families of curves are pre-
sented for use in predicting these forces and their centroids.
The curves, plotted in dimensionless form, show the limits
of applicability of Stokes' 3rd approximation. MacCamy -
Fuchs diffraction theory is used for inertia forces.

To calculate the dynamic response of the platform the
authors fit the vibration problem of the structure to the
classical theory for a linear, single-degree-of -freedom
system. The wave forces are expressed in terms cof a Fourier
Series. Displacements are calculated for twelve positions
in one wave cycle, and a displacement curve 1s drawn. A

simple tabular form is presented for calculating these dis-
placements.

Computer programs (in FORTRAN) are given for performing
the bulk of the force and displacement calculations men-
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tioned above. The theoretical procedure for unbraced and
braced leg configurations is tested by experiment for 32
cases. For these tests the ratio of maximum theoretical
to experimental displacements varies from about 0.5 to 1.7.

It 1s concluded that the designer shculd incorporate
a factor of ignorance of 3 in his design.

The authors show that the largest waves are not
necessarily the most critical for the structure. Rather,
the critical design wave 1s a function of the frequency
ratio (wave frequency/structure natural frequency). The
designer must consider a range of significant waves which
give frequency ratios of about 1.1 or less.

It 1s recommended that calculations be performed for
some real structures in ocean waves. From a comparison
of the results with observed data a revised factor of ig-
norance might be obtained.

In appendix I an approach to the soiution for vortex
shedding forces and frequencies in a train of surface
waves 1s presented. Existing vortex theories are modified
to apply to a vertical cylinder in finite amplitude waves,
and boundaries are set on the predicted maximum forces.
Experiments are conducted from which vortex forces are seen
to fall within the boundary limits set by theory. The ex-
periments also validate the proposed theory that the shedding
frequency is a predictable integral multiple of wave fre-
quency. It is recommended that a procedure be developed for
determining platform displacements due to these forces.

Thesis Supervisor: Donald R.F. Harleman

Title: Assoclate Professor of Hydraulics

111



TABLE OF CONTENTS

-]

R

l_

P

Abstract ?2 2204000040680 003000005000000000s000000.ea0. i
Table of Contents ©© 90 5608 0000000000005a000000000.0.a iv
List of Figures 9900006500000 600000100 000000060.s0e. vi
List of Tables ©etecoceccs o000 ccc0ccasscaeasesess YLLL
List of Symbols © 99000060500 00000 60000000 e00000eoc0ae.e.e ix
Acknowledgements 00060000000 eeros000s000000000ce.s xiv

[

Io IntrOduCtion ooooooeeooo-ooooooooooooooecooo

& e

II\: Procedure ooooaoooooaovoooqcoeoooocuouoo.coo
A e Theoret 1cal 990000 9200002000600004000006s6o0 3
B o Experimental € 0 0000000000 O0CO0CGO0O O © 2 92 0 00 0 0 0O 42

4=

III. ReSULLS o .oociiiinsonooonoooooonvonsnnnsnnas 54
Iv, Discussion of Results ............censunnn.. 71
V. Conclusions . ....cccuvuosnoonononenenonnn,..., 76
VI, Recommendations 2060 000000000000 00a0600000s0s 77

VII. Appendix 5 0 6 6 5 090000 0000 ananoccsooooessenoen 79

A. Detalls of Theoretical Procedure ..... 80
B Sample Theoretical Calculations ... 91
C Summary of Theoretical Calculations .. 100
D. Computer Programs © 000000000 0a0ac000ee 103
E

. Sample Calculations for Experimental
Data aoooaooo:oaooooaooa:aoaooqcouno llu

F. Summary of Calculations for Experi-
mental Data ....vcevoncsonononeocean. 117

G. Supplementary Discussion of Results .. 124
1. Theory and Experiment .......... 124
2. COmMPULer . ..cuvrevnnonoeoonsnnas 127

iv



H.
I.

TABLE OF CONTENTS
(continued)

Original Experimental Data .o

Vortex Shedding on a Vertical

Cyllinder in a Wave Train
Literature Citations .....



III

<}

Vi
VII
VIII

XIIa-
XIIp

XIII

LIST OF FIGURES

Title

Definition Sketch of a Wave

Steady State Drag Coefficient versus
Reynold's Number for Circular Cylinder

Drag Force Centroids fcr Wave Height/
Wave Llength (H/L) and Weter Depth/Wave
Length (d/L) Ratios

Drag Force Multiplier (A) - Crest Region
Drag Force Multiplier (B) - Trough Region
Influence Fraction

Photograph of Wave Tank

Photograph of Braced Structure Model

Photograph of Single Cylinder in Position
for Measuring Transverse Forces

Photograph of Braced Structure Model in
Position for Measuring Displacement

Photcgrapn Showing Scheme for Recording
Platform Displacement

Theoretical and Experimental Platform
Displacements

Ratio of Maximum Positive Theoretical and
Experimental Platform Displacements vs.
Frequency Ratiocu/ban for Each Run of the
Thesis Results

Simple Beam Representation of One Leg

Portal Representation of Unbraced
Structure

vi

10
15

18

19
20

35
4y

4y
bt

49

49

55-70

7>

80
86



XVIIa-
XVItd

XVITI
XIX

XIIa-
XXIIa

LIST OF FIGURES
(continued)

Title

Tabular Calculation for Platform Dis-
placement

Theoretical and Experimental Longi-
tudinal and Transverse Forces,i"
Cylinder

Typical Wave Gage Calibration
Typical Force Gage Calibration

Typical Sanborn Recorder Longi' udinal
Force and Wave Profile Traces

Typical Sanborn Recorder Transverse
Force and Wave Profile Traces

Experimental Transverse Forces, 1"
Cylinder

vii

Page
97

119-122

133
134
135

135

159-162



Table

II
IIT

VI

VIX
VIII
IX

XIT
XITI

LIST OF TABLES

Title
Magnification Factors
Phase Angles
Experimental Wave Characteristics
Wave Characteristics

Various Coefficients for Drag Force
Determination

Theoretical Forces and Force Centroids
on a Single Leg

Structure Natural Frequencies
Experimental Wave Characteristics
Experimental Wave Forces, 3" Cylinder

Experimental Damping and Structure
Natural Freguencies

Trough Velocities Associated with
Critical Wavs Parameters

Water Tsmperatures

Expzrimental Data for Free (Natural)
Os:1llations of the Structure Model

Wave Periods and Period Parameters

Wave Parameters for Transverse Force
Determination

Comparison of Theoretical and Experi-
mental Transverse Force Results

viii

29
29
51
10C
101

101

102

117
118

123

129

132
137

156
157

158



B

LIST OF SYMBOLS

dimensionless drag force multiplier in crest
region (14)

dimensionless drag force multiplier in trough
region (15)

wave celerity, ft./sec.

damping coefficient as fraction of critical

drag coefficient associated with R
drag coefficient associated with 'Rtrough

1ift coefficient associated with vortex
shedding

leg diameter, ft.

bracing diameter, ft.

Young's modulus, lbs,/in.a

general force, 1bs.

maximum drag force on a leg in crest region, 1bs.
maximum drag force on a leg in trough region, 1lbs.
maximum inertia force on a leg in crest region, 1bs.
maximum inertia force on a leg in trough region, 1bs,

maximum transverse force on a vertical cylinder
caused by vortex shedding, 1bs.

force defined by (50), 1bs.
force defined by (52), 1bs.

ix



F3 =
H =
T S
I =
J -
L -
M -
N -
i
N ™
P -
PO =
IR -
IR'crougﬁ
S -
!
S =
S =
SI =
1
St -
(S¢)op®
S =
(e}
T =
Tgly =

force defined by (54), 1bs.
wave height measured from crest to trough, ft.
theoretical 1limit on wave height, ft.

momant of 1nirtia assoclated with bending of
one leg, 1in.

ard/L (1)

wave length, ft.

general moment, ft.-1b.

number of legs

number of legs in one row (parallel to wave crests)

general force on one leg, 1lbs.

force applied at level of platform, lbs.

Reynold's number associated with wave crest (18)

Reynold's number associated with wave trough (19)
istance from bottom to mean particle position, ft.

distance from bottom to actual particle position, ft.

distance from bottom to point of application of
F £t
D’ )

distance from bottom to point of application of
F ft.
I’

distance from bottom to point of application of
(FD)t, ft.

defined on p. 128, ft.
cylinder Strouhal number (88)
wave period, sec.

time required to shed one vortex in wave crest
(94), sec.



Vnax =
Utrough-
W =
a -
d =
g =
h -
k -

o
]

T -
r; -
r. -
t -
u -

time required to shed one vortex in wave trough
(95), sec.

horizontal component of particle velocity at
surface, ft./sec.

ct

horizontal component of particle velocity
crest surface, rt./sec.

£

horizontal component of particle velocity at
trough surface, ft./sec.

platform weight, 1bs.

height at which P acts, ft.

water depth, ft.

gravitational constant, normally 32.2 ft./bec.a
leg spacing, ft.

spring constant, 1bs./in.

leg length, ft.

cumulative length of all bracing below the still
water level, f¢t,

vibrating mass, slugs

number of vortices shed during crest passage
number of vortices shed during trough passage
damped natural frequency of structure, rad./sec.
drag force ratio defined by (63)

inertia force ratio defined by (65)

mass ratio defined by (59)

time, sec.

horizontal component of particle velocity, ft./sec.

xi



ubottom

max

ytrough

= horizontal component of particle velocity

at ocean bottom under wave trough, ft./sec.

horizontal component of particle velocity
under wave crest, ft./sec.

defined on p. 157, ft,/sec.

= horlizontal component of particle velocity

under crest at bottom of cylinder, ft./sec.

root mean square of velocity distribution
in wave crest, ft./sec.

horizontal component of particle velocity
under wave trough, ft./sec.

root mean square of velocity distribution
in wave trough, ft./sec.

weight/unit length of leg, 1bs./ft.

platform longitudinal displacement, in
direction of wave propagation, in.

dx/dt
amplitude of platform longitudinal displacement, in.

longitudinal platform displacement if force is
applied statically (39), 1in.

vertical displacement of particle from mean
position, ft.; in Appendix I, distance of
bottom of cylinder above tank bottom, f¢.

distance above tank bottom to point where period
parameter is 12.5 (p. 148), ft,

vertical displacement of particle from mean
position under wave crest, ft.

= vertical displacement of particle from mean

position under wave trough, ft.

xii



2 Q.

A ¢ o

w ‘o

specific weight, lbs./'rt.3

logarithmic decrement of damped free
oscillations (42)

distance to wave surface from still water
level, ft.

height of wave crest above still water
level, ft.

wave phase angle (=90° at crest), degrees
kinematic viscosity, ft.2/sec.

3.14159 .....

mass density of water, sluge/Tt.3

phase angle by which displacement liags force
(40), degrees

general lag angle for forces acting on rear
legs (48), degrees

wave frequency; general frequency of applied
force, radians/sec.

vortex shedding frequency in crest region,
radians/sec.

undamped natural frequency of structure,
radians/sec.

general vortex shedding frequency, radians/sec.

vortex shedding frequency in trough region,
radians/sec.

xiii



ACKNOWLEDGEMENTS

The authors particularly express their appreciation
to theilr Thesis Supervisor, Associate Professor Donald
R.F. Harleman, for his interest and assistance in the pre-
paration of this thesis.

Appreciation is also expressed to Professor Robert
J. Hansen, the Thesis Advisor.

Discussion with Mr. Robert A. Vanstone of Brewer
Engineering Laboratories, Inc., Marion, Massachusetts,
concerning mainly his work in measuring platform motions
on Texas Tower Number Four, was especlally helpful at the
time when the authors were formulating their thesis.

Appreciation is expressed to the Civil Engineering
Branch of the United States Coast Guard for supplying
plans and design computations for Buzzards Bay and Brenton
Reef Light Stations.

Several friends of the authors have expressed an
interest in this thesis and a willingness to be helpful
in any way possible. These persons remain anonymous,
but thelr support is deeply appreciated.

The thesis computations were done in part on the
IBM 7090 Computer at the Computation Center of Massachusetts
Institute of Technology, Cambridge, Massachusetts.

xiv



I. INTRODUCTION

The problem of wave-induced vibrations in fixed
of fshore structures suddenly was cast into the public
news focus when on January 15, 1961, the United States
Air Force Texas Tower Number Four collapsed 80 miles
off the New Jersey coast in a heavy storm with the at-
tendant loss of 28 11ves[l]f

Prior to that incident, and since, no one has
computed the dynamic displacements of such a structure
acted upon by wave forces, to the best of the authors'
knowledge. The design approach has been to make the
natural frequency of the structure relatively high
(about 50 cycles per minute ) and then simply treat the
wave force as if i1t were statically applied. This
method 1s crude at best, and can be very misleading.

During the winter of 1958-59Q a platform motion
study [2] was made of Texas Tower No. 4. It was ob-
served that the tower platform displacements were
greater for 10 and 11 ft. waves (about +3 in.) than
for 30 ft. waves. Obviously the highesf wave was not

the most critical for this structure.

r—

* Numbers in brackets refer to literature citations,
Appendix J.
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The Alr Force was interested in platform motions
of Texas Tower No. 4 because they wantéd to know what
eérrors might be introduced into the installed alrcraft-
tracking radar system. (For this particular situation
it was felt that rotational motion would probably be
more of a problem than translational motion.)

This thesis develops a method of calculating the
dynamic translation displacements of a fixed offshore
Structure in a regular wave train., The theory developed
has been experimentally checked by the authors. The
experimental model was patterned somewhat similar to the
United States Coast Guard's Buzzards Bay Light Station,
located off the coast of Massachusetts 13].

The Coast Guard has initiated a long range pro-
gram of replacing ;ightships by flxed offshore structures.
The two completed to date (Buzzards Bay-and Brenton Reef
Light Stations) are braced structures wlth four legs.
The U.S. Navy built a similar but considerably larger
structure at Argus Island, near Bermuda. The U.S. Air
Force buillt three Texas Towers, which were three-legged
structures. Many other fixed offshore structures have
been built in the past also, particularly in connection
with drilling and miring operations in the Qulf of Mexico.
The potential exists [Fj] for many more offshore oil-
drilling rigs to be built around the world in the years

to come.,



There has been at least one case reported [5]
in which vortex shedding was important in waves. 1In
that case after a one week storm a two foot diasmeter
plle suffered a fatigue failure caused by transverse
vibrations of 2.5 seconds period in 12 feet high
waves of 13 seconds period. The authors of this thesis
suspected that vortex shedding forces might have a
noticeable effect on offshore structures. Some investi-
gation of this subject has been included in this thesis,
The authors concluded from their literature survey that
no previous work has been done on the auestion of vortex
shedding forces on a stationary verttcal cylinder in a

wave train.



iI. PROCEDURE

A. Theoretical Procedure

1. Hydrodynamics

General

This section deals only with those forces on a
cylindrical pile acting in a direction parallel to that
of wave propagation. These forces are termed longitudinal
forces to distinguish them from the transverse or "1ift"
forces caused by vortex shedding. The transverse forces,
although requiring consideration in a practical structure
design, caused such small displacements of the model under
study that it was not feasible to obtain experimental
verification of an analytic approach. Because of this,
the transverse force investigation, both theoretical and
experimental, 1s included as Appendix I and is not dis-
cussed further in this section.

The ultimate design procedure would be to make use
of a sfatistical analysis of ocean wave and energy
Spectra in the development of the input forcing functions

for the structure displacement problem.



Steps have been taken in this direction, for example
[6), although the problems encountered, not only in ob-
taining a sufficient 8cope of reliable data.[?], but also
in applying this data to the development of a useful de-
sign criteria, have yet to be solved. For this reason
the authors are restricting the investigation to a
regular train of surface waves whose forces are capable
of relatively simple mathematical superposition.

In the past a typical design procedure has been to
decide upon a "design wave," which is the largest wave
to be expected (within specified confidence limits) over
the planned lifetime of the structure. Using applicable
wave theory, one may then determine the wave forces and
moments acting over an incremental length. These may be
Summed up in a tabular form to give the total force and
moment, /8, 3]. Some designs, also, have considered
a breaking wave of size somewhat smaller than the design
wave [9, 10].

If the dynamics of the problem are considered it
is obvious that this design wave may not be the wave
which causes the greatest excursions (or stresses) in
the structure. Rather it 1is to be expected that a wave
(of significent height) whose fundamental or some low
order harmonic corresponds closely to the natural fre-
quency of the structure may be the eritical wave from

a design standpoint. This possibility has been indicated



where, over an extended period of observation, a 7.5 foot
wave caused greater platform motion of Texas Tower No., 2
than much larger waves did.[?] A similar observation
is cited in the Introduction for Texas Tower No. 4.

A serious situation also may exist when the wave
length is approximately equal to the leg spacing, for
in this case the fundamental wave forces (and possibly
some harmonics) will be in phase.

The proposed procedure, therefore, presents a
method whereby several waves of various lengths and
steepness may be considered over the range of possible
water depths. The critical displacement-wave combination
is then arrived at by an iterative process, To allow for
a solution by this method within a reasonable length of
time families of curves are developed such that total
force and moment may be determined by a simple multi-
plication. This is intended to supplant the tedious in-
cremental tabulation and summation mentioned previously.
The curves (Figures III, IV, V) are presented in terms
of dimensionless parameters such that they may be applied
to any situation for which the proposed theory is appli-
cable.

A plle spacing greater than 10 plile diameters has
been found experimentally to be large enough such that
proximity effects are negligible. [117] This spacing

1s exceeded, not only in the vast majority of offshore
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structures of the type considered, but also for the
model which was the object of the authors!' experi -

mental study.

Wave Theory

H = wave height, measured from
crest to trough.

L = wave length.
d = water depth.

= height of wave crest above
8till water level.

™o

Several theories on wave motions have been developed
and tested experimentally with varying degrees of
Success. These theories are found to be applicable
over finite ranges of wave parameters and water depths,
with no one theory satisfying all conditions. Since
the waves of interest in this study are of the re-
latively shallow water finite amplitude type, two
theorlies seem to be of particular interest - namely,
Stokes' third approximation and the Solitary wave theory.
These theories are discussed in detail elsewhere (for
example [4, 12, 13, IQJ)and will not be repeated here.
However, for purposes of evaluating this study, the
following limits of applicability may be noted from

these references.



Stokes' 3rd approximation:

a.) (7 /H) £ 0.625
b.) (H/L) £ 0.142

Solitary wave:

a.) waves at or near breaking point

b.) (&/L) — o0
Theoretical 1limits on ocean wave parameters:

a.) (476/H) < 0.75

b.) (H/L) < 0.142

c.) Hpgx = 0-78 (d-(H-'ﬁg)) for shallow water
.)

d from the above, (H/d) £ 0.653

Using the maximum value of (/VO/H) from Stokes'!'
theory and the value of Hmax above, one sees that
(H/a)max is 0.603 by Stokes' theory. There is a
gap between this value and 0.653 for which the soli-
tary wave theory would appear to be more applicable.
However, waves have been observed breaking on Martha's
Vineyard with values of H/d = 0.588. [15]

Because this present investigation must be limited,
i1t was declded to use only Stokes' 3rd approximation. For
the solitary wave and other theories the mefhod of approach

in determining forces and force centroids basically would



be the same, with the curve families of this thesis en-
larged to include their particular ranges. Bretschneider
[14] has developed graphs which appear to be a good start-
ing point for determining the range of applicability of
the several theories, as well as values of H, L, q&vand
maximum crest velocity (U, ) for design waves. These
values could serve as first trial inputs for the pro-
cedure to be presented here. For a conservative estimate
of the force exerted by a breaking wave on a piling a
value of 4 times the force as determined from Stokes'
theory for a wave of the same height may be used. [16]
For reference purposes the applicable formulas
from Stokes' 3rd approximation are included here in
dimensionless form. [1Zj The reader is referred to
the list of symbols at the beginning of this thesis and

Figure I for use with these equations.

Let C = wave celerity, ft./sec.
J = 2xd/L (1)
The vertical displacement of a particle from

its mean position is given by (2)

1 inn(J d p) inh(2J S/d
%.m{[s siéﬁj)]sine-[ T ssinh 7 ]cos 29}
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S S/d
&= aim [ HRREH] v - [3 B SRR o0 )
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Qm270° Q=m360° directian of
wave travel
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yotas WARSE JeVeld

L Bottom

Flgure I. Definition Sketch of a Wa'e

At the wave crest (2) becomes

A gy s

and at the trough,

Ve h 1 -sinh(J S/d 3 inh (2J S/d
P -k [ SRR L s(:‘i‘rf“)ﬁ’}(u)

At the still water level (S/d = 1), (2) gives the wave
profile
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At the wave crest (2) becomes

y 1
<=~ Tam {812?r(1§ ¥+ 2 O ———(—-{—lst:’i‘nfj a f (3)

and at the trough,

Ytrough 1 (( -sinh(J S/d) ., 3 w_ sina(2J S/d)
- + 4
d 2 d/H sinh J 8 L/H (sinh J)u } (%)

At the still water level (S/d = 1), (2) gives the wave
profille
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7- m5m {sm o -[g oo e)) 29)2 (5)

(sinnh J)

From (5), with 6 = 90° the height of the crest above the
still water level is

B rdnls iy 2

(sinh J)

and for © = 270° the distance to the trough is

"7'H inh (2J)
: EC “e(-l * 8 um 8zsmn J) (7)

The wave celerity is

c_ _\/1 2(cosh 27)%+ 2cosh 245
Ny \/J tanh J{l + (g7m) I 8 (simn )7 J} ®)

The particle velocity at any depth S/d is

A, ¥ € ([cosh(Js/d)]n o 1 1.3 cosh(2J S/4
][sd m VE([ sinh J 8in [L/H (sinh J) ( 2+E (sinh J)2

)) cos 26 + W'}—I%[ cosh(2J yd) ]} (9)

(sinh J)

At the wave crest (9) becomes

11



Y max - X _C cosh(Jg§/a) L 1 3 cosh(2J 8/4)
o PR - g e

v 1 sh(2J S/4)
¥ 171?'2[ ‘Z:mh J)° ]? (10),

At the wave trough (9) becomes

.
trough _ t cosh(J;j[a) v 1 _ 1.3 cosh(2J 8/4)
Ve ﬁ{ sinh 7 " /K (sinh J)E( 28 (s1an 7) )
T 1 cosh(2J S/d)
+omes [ (ston 7)2 ,75 (11)

Force Theory

Using Stokes' 3rd approximation for wave motions,
D.R.F. Harleman and W.C. Shapiro of the Massachusetts In-
stitute of Technology Hydrodynamics Laboratory have de-
veloped a force theory which shows good agreement with ex-
periment. [ 17]) In developing this theory they applied
certain modifications to Morison's Force Theory for drag
and the MacCamy-Fuchs Diffraction Theory for inertia forces.
In this thesis the authors will utilize the approach as pre-
sented by Harleman and Shapiro. FPamilies of curves willl be
developed from their equations, these curves to be used for

the iterative design procedure mentioned previously.

12



As will be shown the only forces of interest are
the maximum values of the drag and inertia components for
both crest and trough regions.

FD = maximum drag force in crest region

(FD)t = maximum drag force intrough region
FI = maximum inertia force in crest region

(FI)t = maximum inertia force intrough region

D = cylinder diameter

2C
e ¥ DAd° "D A
RD 2 (12)

2 C .
- D 4 D trough B p
(Fp)y == e (13)

where A

W
\:
c
g n

;Ea——. a(s'/d) (14)

[ —t“°—“51‘- d(s'/d) (15)

and S' is the vertical distance to the actual particle
positlion and is therefore equal to the mean particle

position S plus or minus the vertical displacement y,.

i3



For the crest S' =S +y .. (16)

' -
and for the trough S!' w 8 Y¢rough (17?
It can be seen that (14) and (15) do not lend themselves
to regular integration, but must be solved grapnhically or
by some other means. The steady state drag coefficients

Cp and C to be used in (12) and (13), respectively,

D trough
are determined as functions of Reynolds numbers, defined

as follows:

R = mD_QV_% (18)
D D 1l + A
/‘?
trough D = D g d B (19)

Horougn © v YV s (’V—T{}T)

[~Z 2
where u and u trough are the root mean squares

of the velocity distributions for the crest and trough,

respectively.

2
2 A d
\) Y max < )/:i;i—o"?; (20)
B d
V trough ijd +§(q%-H) (21)

In (18) and (19), A and B are determined from (14)
-H
and (15), respectively, and /70/d, 23—— from (6) and (7),

14



wABREIi

pd

31

P
\

" MR B

'mmomsm R

°ILH1'

|
: ! ! J
2 34568107 2 3456 810° 2 3 456 6 100 2 3 456 &

Flgure II, Steady state drag coefficient versus
Reynolds number for circular cylinders,

[17, 137.

respectively. Filgure II is a plot of steady state CD vs. R

for circular cylinders.

2

FI =7 i;:hDJ H sinii I cos € (22)

y #D°H )

(FI) Tooen 57— Sinn I cos @ (23
where I = J + f;ﬁ sin o (24)
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and © is that angle of wave position (0° < @ < 180°
for (22), and 18005 9 « 360b for (23)) such that Fr and
(FI)t are maximized, respectively. Because 9 will be
very nearly equal to 0° and 180° for these situations,
it can be seen from (24) that little error (and great
simplification) 1is introduced. by letting o = 0° and

180° in (22) and (23), respectively.

2
This gives Fr = --(FI)t -t 'HD H tanh g (25)

Let S' = center of action of the force Fp, and

(§')t = center of action of the force (FD)t

1-+4Zy/d .
1 : u
Then g-- J, s'/a —;Lg—x—d(§'/d) (26)
. ]
A
g
< »
(%_).‘.G.. sv/dt‘%g&l‘_ d(s'/d) (27)
(o]
&

§I = center of action of force F;

2
¥ D° L
5, = o J[1+Jsith-coshJ_7 (28)
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Harleman and Shapiro have shown that S' can be
assumed constant for 0 <@ < 180°, and (5'). can be
assumed constant for 180° £ @ = 360° with little loss in
accuracy. Also, with the assumption that 3 r 18 equal
for crest and trough by (28), it 1s reasonable to assume
that it 1s constant for any value of ©.

By use of (5,7,10,11,14,15,26,27) values of A and
B for (12,13,18,19) and gl and igélg for (26) and (27)
were computed for famillies of the parameters H/L and 4/L
on an IBM 7090 digital computer.

The results are plotted in Figures II1, IV, and V
in dimensionless form. Values of H/d equal to 0.603,
which was mentioned as the approximate limit of applica-
tility of Stokes' theory, and 0.653, which is the meximum
value this parameter may obtain (page 8 ), are also
shown in these figures. These values indicate the boundary
for use of the figures, as well as the boundary up to which
- the solitary wave theory could be used to extend the range
of applicebility. The couputer progfam, representative
output, and comments are included as Appendix D. In ad-
dition to A, B, gl , and (gl)t, the following are given

as outputs:
‘70
a

H-17
q



(_S_l

1.0

0.9

/4)

C.3

tron
0.2

0.1

“ H/d = 0.653
/d = 0.603 H{L
\ 2> 14
- ] ‘—"""013
\' /</\/ ' .12

.11

/4 = 0.603 (1limit
of Stokes' theory)

H/d = 0.653 (tneoretical
‘ ‘ 1imit)
5 /d) Figure III '
Drgg'Force Centroids for Wave Height/Wave Length
(H/L) and Water Depth/Wave Length (d/L) Ratios.
Giz/d) = centroid/depth ratio for cresat
(8 troughi /d) = centroid/depth ratio for trough
| .
I l d/L I JCN 4/13/62 l
05 0.10 0.15 0.20 0,25 0.30
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Qmax U mex
at surface =

Jed Ved

u U
_trough at surface = —trough

J &8 e

Velocity profiles are also given for u"max » max
u, Jgd
u
trough trough St
=3 and -735—— ve. -

Design Force Procedure

It hes been shown [17] that drag force is a
function of sin 29, while, for the assumption that FI
occurs at © = 0°, 180°, inertia force is a function
of cos 0. The forcing functions for use in the d4if-
ferential equations of platform displacements will there-
fore te of the following form:

0° £ 9 = 180°

F = F sin %0 + Fy cos © (29)

180° £ @ & 360° 2

F = (Fy), sin®e + F; cos @ (30)

I

For convenience the formulas and procedures used
in the determination of these forces and thelr points of

application are summarized t->elow°
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. ¥ Dpa®%a
2

Fy (1é)

: 2 G o
(Pp); = ¥y Dpd 21) trough B (13)

2
P = -&]{—H— tanh J (25)

Cp from Figure II for R = Dy _gd4A (18)
1+ %/d
D g dB
CD trough from Figure II for IR = = V "?o'}r (19)
R )

A from Figure IV

B from Figure V

?'2‘317}1?1*%5}}'{ e 2J1)‘; (6)

8
(sinh J)

or from computer output (not plotted)

-} )

g—' and S')t from Figure III

- Y p° LH

sI.BTc—osh——J[l+Jsith-coshJ] (28)
I
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2. Vibrations

General

Once the wave forces on the legs have been deter-
mined the next problem is to calculate the resulting
displacement of the platform as a function of time, or
wave position © with respect to the front‘(upstream)
legs of the structure.

This thesis considers only the longitudinal dis-
placement x of the platform, taken as positive in the
direction of wave propagation. It has been observed
that the transverse vibrations in the experimental runs
were relatively negligible, with an amplitude of perhaps
three percent of that of the longitudinal vibrations:
For the dimensions of real structures the transverse
vibrations may be as important as the longitudinal
vibrations.

This thesis dces not consider wind force and its
effect on platform displacement. Certainly with large
waves there will also be high wind, and the wind-caused
displacement must be added to that induced by the waves.
In a steady wind the problem is one of statics, not
vibrations, unless vortex shedding is important. A useful
discussion of wind loads is given in [4] . Water currents

can be treated in the same way.
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The structure considered has & square platform of
weight W, supported on four (N=4) legs of length A and
diameter D, arranged in a square configuration of leg
spacing h on a s8ide. The case of no leg bracing is con-

sidered first, after which the case of added bracing 1is

considered.

The investigation is limited to the case of the
waves impinging normal to one face of a square con-
figuration of legs. Once the reader understands the
concept of this procedure he should be able to manipulate
the procedure to fit any practical leg configuration and
a limited number of angles of wave impingement. When the
direction of wave propagation is not parallel to an axis
of symmetry of the braced leg configuration, the calcu-
lations become complicated by the facts that generally
the platform translation is not in the direction of the
applied force and that rotation of the platform may be-
come significant.

The legs of the thesis model are fixed at the base.
This condition was assumed for the Argus Island structure
E;9] . In the case of Texas Tower No. 4 the footings
beneath each leg were 25 feet in diameter filled with
cement, and sunk or embedded into the ocean floor to a
depth of 18 feet. After the collapse divers reported
that ths footings were apparently in good condition with-

24



out any evidence of fracture, movement, or scour [20] .
The opinion was that the footings were not cocked out of
a perpendicular plane with the ocean floor [21] . In
other words, the assumption of fixed footings was valid
for Texas Tower No. 4,

The legs of the thesis model are fixed at the plat-
form. This assumption was made in the design of Texas
Tower No. L. Later investigation [2] indicated that the
actual restraint condition was closer to being pin-ended
than fixed.

As a practical matter in the consideration of
vibrations, it should be poilnted out that large quantities
of surging oil or water in tanks may amplify tower motion.
This problem generally can be reduced by installing
several small tanks in lieu of one large tank and by in-
stalling internal baffling in the tanks.

Reference { 20] on the collapse of Texas Tower No. 4
provides much useful and interesting food-for-thought
for the designer of fixed offshore structures.

The reader interested in experiments with models
should realize that it 1s not possible to scale model
results to fit the prototype. The problem is that drag
and inertia components of the wave force do not scale
in the same manner. Consequently the reader should

center his interest in the concept of this thesis, and
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not on the numerical results for any particular

run.

Classical Vibration Theory

The approach considered will be to fit the
vibration problem of the structure to the classical
theory for a linear, single-degree-of-freedom system.
There are many sources in the literature where one
may find this theory. The authors have chosen to
follow the notation of Den Hartag [ 22].

From Newton's Law one can arrive at the follow-

ing differential equation of forces:

mX + CX + kX = P, sin wt (32)

where

"

= velocity
= acceleration

mass with single degree of freedom
damping coefficient
spring constant
magnitude of applied force
clrcular frequency of applied force
time

/placement a function of time

.
3

& x a3

The steady state solution to (32) can be written as:
x = x_  sin(wt - g) (33)

where x and g are as yet unknown,and:
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X, = displacement amplitude
# = phase angle by which x lags P, sinwt

Insert (33) into (32) to obtain:

P
x, = 2 = (34)
/(cw)2 + (k - mw?)
4 = arc tan ﬁ (35)

From consideration of free vibration without damp -

ing one can find that the undamped natural frequency

wn = /% (36)

From consideration of free vibration with damping

W, is:

one can define critical damping Cc as:

C, = 2 [mk = 2nw (37)

For values of damping C less than Cc the free
vibration is truly oscillatory. For values of C
greater than C, the free "vibration" is not oscillatory,
but rather the mass creeps back exponentially to its

equilibrium position from an initial displacement.

27



Insert (36) and (37) into (34) and (35) to obtain:

X

o - 1 (38)
Xsraric ’ 2 ; 27 :
1- (&2 [t
[ “h .J [ Ceo u%y}
Py
where Xqn.nro = > (39)
C w
2 E—.Wn
4 = arc tan —< (40)
1- ()2
“h

It will prove useful to have numerical tables for
expressions (38) and (40) for entering arguments of %
and small values of c/bc. Table I 1s presented for

x

values of —>———. Table II is presented for values of #.
*sTATIC

Unbraced Structure

Mass m must repreasent the mass of the platform
and a certain portion of the mass of the legs. By
applying Reyleigh's Energy Method to this case {Appendix
A) it 1s possible to compute:

1 13Nw{
ma S +3% ) (41)
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TABLE I - MAGNIFICATION FACTORS (38)
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where g = gravitational constant, normally
32.2 ft/sec.2
W = welght/unit length of leg
N = number of legs

If the configuration had been such that the legs
were considered to be pinned to the platform the
fraction to be used in the second term of (41) would
he 33/140 (Appendix A).

It is shown in Appendix A that the added mass
effect (of accelerated water mass) is negligible in
still water. For forced vibrations there is the further
consideration that the water particles are moving with
wave orbital velocities. For this latter situation it
1s simply assumed that added mass is negligible. Later
in the experimental results (Appendix G) it will be
seen that this assumption is valid.

For damping C 1t is necessary to resort to experi-
ment to determine values of %— for the plastic model of
this thesis. The damping congists of structural damping
in the plastic and visccus damping by the water. Again
from Den Hartog E22 ]for the case of free vibrations with

viscous damping one finds that the logarithmic decrement

J fits the following relationships:
X

J—z log, % (42)
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where x, and X, are two successive positive (or

negative) decaying displacement amplitudes.

S - ¢ (43)

// L (g;)2 c

For values of C/'cc up to 8%, and somewhat larger,

the following approximation is "exact" within sliderule

accuracy:
cC .. 1
E: §qu (44)

With this expression one can calculate values of
structural damping by observing free vibrations in air,
assumlng that the air causes negligible damping.

For completeness at this time it is noted that:

W = 9 (#5)

2j
/1 - &)
c

where q = damped natural frequency

With this expression one can calculate experimental

; values of U)n.

It is shown in Appendix A that in still water for

these particular experiments <he theoretical viscous
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damping is 11% maximum of the structural damping. In
the steady state vibrations there is the further con-
sideration that the veloclity assoclated with viscous
damping is not x but 18 the velocity relative to the
water particles, which are moving with wave orbital
velocities. For these reasons viscous damping by the
water 1s neglected. The experimental results (Appendix
F) support this action.

In Appendix A the following expression is derived

for spring constant k:

K = l%%gl (46)
where E = Young's modulus
and I = moment of inertia associated

with bending of one leg

Actually k must be determined experimentally for
the plastic model of this thesis because a unique
value of E cannot be obtained from a handbook for the

plastic.
From (36,41,46):

(47)

w - 12gNET
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The forcing function in (32} is P° sinw t,

The expression for the wave force 1s not this simple,
but 1f it can be represented by a series of terms

of the form Po sinw t one can find an equal number
of terms for x, each with its own phase angle. By
superposition of these terms one can calculate the
platform displacement x.

The forces acting on each leg are equal in magni-
tude. The forces on the front legs are in phase
(because of the direction of wave impingement on the
structure). The forces on the rear legs are likewise
in phafe with each other, but they lag the forces on
the front legs by a lag angle ﬂﬁL’ which one can deduce
to be:

ﬂhL - zég h degrees - 2£h radians (48)

For the drag force acting on one leg it has been

stated (29,30) that in the range 0° & 6 £ 180°

2

the force can be expressed as Fp 8in“w t, At 6 = 90°

the line of action of this force is at a height 8' above

the bottom. For 180° < 6 £ 360° the drag force is

2

(FD)trough 8in®w t, which acts at a height (8').. The

inertia force acting on one leg can be expressed as FI

cosS W¢t, acting at a height s, when © = 0°, 180°,.

I
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Only a frection of these forces can be considered
to act dilrectly on the platform. Let P° represent
the force required at the level of the platform to
produce the same static deflection as force P acting
at height a on a leg of length [ . An influence
fraction Po/'P has been computed in Appendix A, with
the numerical results given in Figure VI.

It has been stated earlier that F. can be con-

D
sidered to act at 8' throughout the range 0° < ¢ £ 180°.

This means that in this range:

%-%- (49)

Use Figure VI, and write

PO

With similar reasoning:

;r - 1%%12 (51)
P
Fa = ~(Fply g, (52)

(F2 1s a positive number.)

34



FIGURE VI - INFLUENCE FRACTION

3 — ==
Fraction Fﬂ of Force P to be Considered Acting On
Platform When P Acts-ai Height a on an Unbraced

Leg of Length .

Theory
1.0 Experiment ooo

’Ulo"d

1.0

>oiw

35 VCH 4/13/62



%-% (53)
Py = o (54)
3= F1°F;

Now one can write expressions for the force acting

on the platform due to the force acting on one frcnt

leg.
force = F, sinlwt + Py COB @ t (0% wt £ 180°)  (55)
forcs = -F281n2wt +PycoBwt (180°% wt % 360°)  (56)

. A Fourier series 1s calculated in Appendix A to re-
pr2eent this force. For the cases considered in this
thesis only five terms are significant. The following

expression results:

F, - F
F(t) = _1_11__2_ +-§7'r-(Fl +F,) sinwt

N
- 11-5?(1?l + F2) sin3wWt + F, coswt

- (FL;‘—F—ZJ cos2 Wt (57)

The angle @;; has been defined (48) for a harmenic
force varying as wt. One can deduce that 1f the force
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varies as n Wt the appropriate lag angle is
nﬁRL.

lag angle = nﬁhL (58)

At this point all of the necessary theory is avail-
able for computing displacement x as a function of ©
at the front legs. One has eimply toc set up a con-
venlent method for a hand numerical calculatilon.
Fortunately a simple tabular method can be found. For
purposes of i1llustration it seems best to show this
method 1in conjunction with a sample calculation. The
reader 1is therefore referred to Appendix B.

The numerical calculation can also be perforxmmed
on a digital computer. Such a program was used in the
preparation of the Results, Section III. The program

is given in Appendix D.

Braced Structure

The solution to the problem for a braced
structure may be approached by applying rough modifi-
catlions to the solution for the unbraced structure.

For mass m it was found previously (41) by
Rayleigh's Energy Method that 13/35 of the mass of the
legs should be added to the mass of tﬁé platform.
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Assume that the same ratio holds for the bracing and

legs of the braced structure. Define the ratio rm as:

r = Mass of legs + mass of bracing (59)
m mass of legs

The assumption is:

W + 1

38
R+

Nwf) (60)

S
U\

From (36,46,60):

1 NEI ! 6
/P(w+ S ERTT)) o)

in the design of the Argus Island structure the

fraction % was used in lieu of 13 23] It appears
that this fraction was assumed, not derived.

Damping for the plastic model must be determined
experimentally, as before (44).

"In most metal Structures, nearly
all the damping observed can be
attributed to the technique of
fabrication. For example, a good
weld can be distinguished from a
poor one by its effect on the part's
ringing after impact: the poorer the
Joint, the more damping. Riveted
Joints generally contribute more
damping than welded ones, and bolted
Joints more than riveted ones." *

* Hamme, R.N., [24, p. 37-2]
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"Bare steel structures, particularly
welded rather than riveted, have very
low damping ranging from perhaps 1.0
to 3.0 per cent of critical damping.” *

If a designer is in doubt as to what damping exists
in his structure he will generally be well advised to
assume the smallest reasonable value in order to be on
the "safe side."

Stiffness k remains as expressed in (46) for the thesis
model because no bracing was added in planes where it would
have stiffened the structure for resistance to longitudinal
forces. 1If such bracing had been added, experimental dis-
placements would not have been large enough to be ob-
servable.

For a normal braced structure onc must compute ap-

propriate values for stiffness k and influence fraction

P
5. A good textbook on this matter is [25] . Probably

two values of Po will be sufficient to fair a curve, be-
cause the curvz_;ill be very similar in shape to that §f
Figure VI.

The case of Texas Tower No. 4 provides an interesting
lesson in engineering with regard to stiffness furnished
by the bracing. On this tower the bracing consisted of
pin connected tension members. It was concluded [ 2]

that the underwater bracing was essentially ineffective

% Housner, G.W.,: 24, p. 50-29]
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for platform excursions up to +> inches because of the
large clearances in the pin connections. The lesson is
that joints should be Welded, which is the method usually
used,

It 1s seen in (12,13) that drag force varies directly
with leg diameter D. It 1s seen in (25) that inertia
force varies directly as D2. For each of these forces
the line of action is independent of D. Assume that if
bracing existed whose long dimension was parallel to
the direction of wave propagation the wave forces on
this bracing would be negligible compared to the forces
on the bracing wnoge long dimension was parallel to the
wave crests, Let‘fB be the cumulative length of all of
the hydrodynamically significant underwatepr bracing
(below the still water level), of diameter Dg-
simplicity assume that the wave forces on a length

For

4(d = water depth) of bracing are the same as if the
bracing were uniformly distributed in one additional leg
cf diameter DB° These assumptions lesd to the following

relatlonships for forces acting on the braced structure:

(Fplg = Tp-Fps (Fi)g = Tp.Fp, (Fo)p = rp-Fo (62)
wnere P QB (D_B) (63 )
D Na~'\p .
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for platform excursions up to +3 inches because of the
large clearances in the pin connections. The lesson is
that Jjoints should be welded, which 1is the method usually
used.

It 1s seen in (12,13) that drag force varies directly
vith leg diameter D, It is seen in (25) that inertia
force varlies directly as D2. For each of these forces
the line of action is independent of D. Assume that if
bracing existed whose long dimension was parallel to
the direction of wave propagation the wave forces on
this bracing would be negligible compared to the forces
on the bracing whoge long dimension was parallel to the
wave crests. Let‘fB be the cumulative length of all of
the hydrodynamically significant underwater bracing
(below the st1l1l water level), of diameter DB' For
simplicity assume that the wave forces on a length
d(d = water depth) of bracing are the same as if the
bracing were uniformly distributed in one additional leg
cf diameter D_,. These assumptions lead to the following

B
relationships for forces acting on the braced structure:

(FD)}3 = Tp.Fy, (Fl)B = r,.F, (Fa)B = rp.F, (62)
where rD -1 +‘§§§(ﬁ;) .(63)
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- . = .F
(Fr)g = Tp-Fp (Falg = rpeFy (64)
where - 1 + }ZB (65)
I a
With these modified values for the forces to be
used in (57) one can make a hand calculation for dis-

placement x as in Appendix B, or a computer caleculation

a3 in Appendix D.

Vibration Stresses

Up to this point no mention has been made of
stresses. It should be obvious that 1f platform dis-
placement is greater for the dynamiz situation than for
the static situation the sttendant vibration stresses
throughout the structure will also be greater by the
;ame ratic. (Deflections are "small," and the stress-
strain relationship is linear elastic.)

The maximum dynamic displacement has been ob-
tained from the plots of x vs © that resulted from
carrying out the foregoling procadure. As a result of
the calculation for stiffness k there is available a
moment (and force) distribution (which is simply re-
lated to a stress distribution by simple beam theory).

The stress distribution is for a selected force, which
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results 1n a calculated platform displacement. This
statlic displacement is the denominator of the sought-
for ratio. All values in the static stress distri%
bution are multiplied by this ratio to arrive at the
vibration stress distribution.

In addition to the vibration stresses one must
also take into account static stresses due to such
causes as wind forces, currant forces, column loads,
thsrmal effects, fabrication, ete. These stresses
can be superposed to arrive at the total stress at any

point.

B. Experimental Procedure

The experimental work of this thesis was carried
out in the Wave Tank of the Hydrodynamics Laboratory
of Massachusetts Institute of Technology in Mareh 1962,
The primary obJjective of the experiments was to
measure platform displacement of a model of a fixed off-
shore structure under the influence of a regular train
of waves. Thirty-two runs were made. In addition, runs
were made to measure the longitudinal and transverse
wave forces on a single vertical cylinder. More will be

sald later about the various runs and the data that was

collected.
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Most of the equipment used, with the exception of
the models, was in existence prior to these particular
experiments and has been described in detail in

several references [17,26,27,28] )

wave Tank and Wave Generator

Figure VII 1is a photograph of the wave tank,
which 18 90 feet long, 21 feet wide, and 3 feet deep.
Basically it is a steel structure, but the walls and
40 feet of the bottom are plate glass.

At the near end of the tank there is a hinged
plate wave generatof, hinged to the tank bottom. A
rod connects the uppef end of the plate to an eceentrie
point on a rotating wheel. Wave height i1s governed by
adjusting the eccentricity. Wave period is governed
by adjusting the speed of rotation of the wheel. The
speed can be determined by a photocell arrangement
wiréd to an electronic counter.

At the far end of the tank there is a 35 foot
long beach arrangement, whose purpose is to absorb energy
and prevent (or reduce) undesireble wave reflections.

For these experiments, however, it was decided to avoid
wave reflection altogether by starting the wave generator

for each run and recording data before the refleeted wave
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Figure VII - Photograph of

Wave Tank

Figure VIII - Photograph of Braced Structure Model
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had time to return to the model. After some tria; and ‘
error with the waves to be used it was decided that data
would be recorded between the passing of the eighth

and ninth wave crests at the test stand for all runs.

Teat Stand

The test stand is seen in Figure VII. It is
located approximately 40 feet downstream from the wave
generator. It consists of a triangular frame of steel
angles supported by three legs of 3-inch pipe straddling
the tank. The stand is guyed to the floor by steel
cables to inerease 1ts rigidity. A steel angle was
added to ceconnect the stand to the laboratory wall to
improve transverse rigidity, with a consequent improve-

ment in the rigidity previously suppllied by the cables.

‘Models

Figure VIII is a photograph of the -model of a
braced structure. It was fabrieated of plexiglas by
Forest Produets, Inc., of Cambridge, Mass.

The legs are 4 inch (actually 0.505 inch average)
rod 42 inches long, with 16 inrches on a side between

leg centers. The leg diameter was decided upon as a
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compromise between the requirments for a large diameter
for adequate experimental forces and for a small diameter
for adequate flexibility in order to observe deflection.
The bracing is ¢ inch rod, with horizontal members

located 14 and.28 inches above the base. The platform

is 5/8 inch thick (actually 0.610 inch average) by

18-1/16 inches square. A 3/8 inch bolt in the center

of the platform serves as a pointer for displacement
measurements and holds the weights (to be discussed later).
The base of the model 1s % inch thick by 30-1/8 inches
by 22 inches, with beveled leading and trailing edges.

The model also was used in the unbraced condition.

Single Cylinders

In order to measure longitudinal and transverse
wave forces two different aluminum cylinders were used.
They were attached to the portal gage by a flange ar-
rangement, as seen in the photograph of Figure IX. The
3 inch cylinder cleared the tank bottom by 1/8 inch.
The 1 inch cyllnder cleared the tank bottom by 12-5/8

inches.
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Figure IX - Photograph of Single Cylinder in Position

for Measuring Transverse Forces
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Movie Equipment

A 16 mm Bell and Howell movie camera was used
to record platform motion and time, as seen in the
photographs of Figures X and XI. Camera speeds of

24 and 48 frames/second were used.

Recorder

A four-channel direct writing model 150 San-
born recorder was used to record wave profiles and
force traces. A paper speed of 25 mm/sec was found
to be most satisfactory. Time marks could be made
in the paper margin upon signal from a manual push-

button.

Wave Profile Measurement

Wave profiles were measured by a resistance
wave gage, which can be seen in Figures IX and X.
The gage consists of two platinum wires (0.008 inch
diameter) insulated from each other and oriented
vertically with a spacing between them of 1 inch.
When the wires are partially immersed in water an al-
ternating current flows which 1s essentially directly

proportional to the depth of immersion. The current
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Figure X - Photograph of Bracead Structure Model

in Position for Measuring Displacement

Figure XI - Photograph Showing Scheme for Recording

Platform Displacement
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produqes a signal which is amplified and recorded by
the Sanborn recorder. _

The gage can be raised and lowered by a graduated
rack and pinion arrangement. It is calibrated statically
by raising and lowering it through known distances in
still water.

Two gages are used to determine wave length. The
gages are raised until their probes are immersed about
% inch in the wave crest. The distance between the
gages is adjusted by trlial and error tc one wave length,
at whilch time two crest marks will be made simultaneously

on the Sanborn recorder.

Force Measurement

Horizontal forces were measured by a portal
gage, seen in Figure IX directly above the cylinder
flange and oriented in this case to measure transverse
forces. The gage measures horizontal force in terms of
shear deflection., 1Its design is such as to make the out-
put essentlially independent of the distance to the point
of application of the force, or bending moment. A
Schaevitz linear varlable differential transformer is
used to convert the shear deflection of the bottom plate
of the gage into an electrical signal, which is amplified

and recorded by the Sanborn recorder.
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The force gage can be calibrated in the positive
and negative directions by the use of weights suspended
on a string which 1s run over a pulley. Two pulleys
are seen in position on the sides of the tank in

Figure IX.

Model Runs

Water depth was maintained at 27 inches through-
out the experiments.
Four different waves were used, with the charac-

teristics as listed in Table III.

TABLE III

Experimental Wave Characteristics

Wave Hgfeetz Lgfeetz d(L HZL

A 0.240 15.23 0.148 0.0158
B 0.313 10.86 0.207 0.0289
c 0.361 8.82 0.255 0.0409
D 0.404 T7.33 0.307 0.0552

The model was used in two configurations, un-
braced and braced. For each configuration and wave com-

bination four structural natural frequencies were in-
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vestigated by adding weights to the platform. The
weights used were 0,3,6, and 10 pounds.

A total of 32 model runs was made. For each run
platform displacement and time were recorded by the
movie camera, and wave profile was recorded by the
Sanborn recorder. A time mark was made on the re-
corder paper at a known time as read on the clock that

appeared in the movie.

Single Cylinder Runs

Single cylinder runs were made for each wave
on a % inch cylinder to measure longitudinal and trans-
verse forces. Runs were made for each wave on a 1 inch
cylinder to obtain additional data on transverse forces.
For each run wave profile and force trace were

recorded.

Miscellaneous Measurements

Movies were taken of the free oscillations of
the unbraced and braced structures in air and in water
for all combinations of the four added welghts. Dis-

placement and time were recorded for three cycles.
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An experimental value of spring constant k was

determined.
Experimental values of the influence fraction
p .
FQ (Figure VI) were determined as a function of %.
The weight of the plastic in the model was re-

corded.

Water temperature was recorded.

53




III. RESULTS

Figure XII presents the theoretical and experi-
mental results for platform longitudinal displacement x.

The terminology "Run AO" indicates a run with
wave A and O 1b. of added weight on the platform of the
unbraced model. The letter "Z" specifies the braced
model.

Experimental wave characteristics are given in

Table III.
Values of structural damping %* used in the cal-

. . c
culations are given in Table X.
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Pigure XIIe - Platform Displacements for Wave B
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Figure XIIg - Platform Displacements for Wave B
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Flgure XIIh - Platform Displacements for Wave B
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Figure XII1 - Platform Displacements for Wave C
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Figure XIIJj - Platform Displacements for Wave C
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Flgure XIIk - Platform Displacements for Wave C
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IV. DISCUSSION OF RESULTS

The plots of Figure XII indicate that the results
of this thesis are good, in the opinion of the authors.
The procedure set forth in the thesis is judged to be
sound. '

The reader will notice that in all cases the
theoretical curve of displacement has the same shape
as the experimental curve (which i1s not actually faired
in). Of particular note are the curves of runs A0 and
AOZ (Figure XIIa), for which both the theoretical and
experimental curves have an extra dip in the positive
portion of the curve.

An attempt was made during the experiment to re-
late some reference time in the movie and on the San-
born recorder paper. The procedure involved pushing
a manual push-button as the second hand of the clock
(one rotation = 10 seconds) passed some known time.

Any human error would appear as an error in the experi-
mentally determined phase angles O at the front legs.
The resulting data showed that the human error was so

large that the data had to be discarded. Consequently
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the phase relationships of the experimental points in
Figure XII were adjusted to give the best fit to the
theoretical curve.

1f one follows a particular structure con-
figuration (for example, 6Z) through its four runs
he willl see that the greatest displacements occur for
those waves which give frequency ratios %i'or about 1.1
or smaller. (Note that two different displacement scales
are used for the plots.) ‘

Figure XIII contains one point for each run. Each
point represents the ratio of the maximum positive
theoretical displacement, plotted as a function of fre-
quency ratio %% for the particular run. The figure is
intended to indicate the magnitude of the dirference be -
tween the theoretical and experimental thesis results.
It 1is seen that the displacement ratio is generally quite
different from its ideal value of 1.0. Values greater
than 1.0 indicate a conservative design, or overdesign.
Values less than 1.0 indicate that the theory 1is in-
adequate and that the structure designed according to
the theoretical procedure would be too weak. It is in-
ferred in the previous paragraph that the designer 1s
interested in waves for which ﬁi is about 1.1 or 1less.

Consequently the right-hand portion of Figure XIII 1is

of no further concern, as a practical matter. For runs
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in which %g;is less than 1.1 multiplication of the
theoretical displacements by 1.5 would insure that the
displacement ratios were always 1.0 or greater.

The theoretical solution for displacement is very

sensitive to errors in the structural natural fre-
quency. Computer calculations (not submitted), using
both the theoretical and experimental values or(uh
obtained in this thesis (Appendix C), indicate that
in some cases the maximum displaceménts so calculated
differ by a factor of 2. The computer results show
that, given two frequency ratios with all other variables
the same, one may not expect that the frequency ratio
nearer 1.0 will generally give the larger theoretical
displacement. If a designer is in doubt about the ex-
act natural frequency of his structure, as will be the
general case in design work, he should apply a factor
of ignorance of 3 to his calculated displacements.
Under certain circumstances this may be extremely con-
servative (by a factor of about 5), but at other times
it may be barely adequate. (The designer may wish to
apply an additional conventional factor of éarety.)

The authors desired that the theoretical calculations
should test the method of determining wave forces on the

structure and the method for predicting the consequent
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vibrations. The calculation of theoretical U)n was
felt to be of secondary importance in testing this thesis.
In order to reduce the sources of errors in the Results,
therefore, the theoretical calculations were made using
the experimental values of w, (as determined in air).
Theoretical values were used for—wave frequency w,
however.

Additional discussion of results is given in

Appendices G and I.
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V. CONCLUSIONS

1. The procedure set forth in this thesls provides
a sound method of calculating the dynamic displace-
ment of a fixed offshore structure acted upon by a

passing train of regular waves.

2. The dynamic displacement of the platform may be
of interest per se (p. 2). More generally, how :ver,
the dynamic displacement 1s required for the design
stage determination of the vibration stresses through-
out the structure (pp. 41-42).

3. Field test data on Texas Towers No. 2 (pp. 5-6)
and No. 4 (p. 1) shows that the highest wave encountered
does not necessarily produce the greatest platform dis-
placement. Consequently, for design purposes one might
not design an adequate structure simply by considering
only the largest wave to be encountered, as has been the
general past practice. One must consider several waves
of various lengths (or periods) and steepnesses over the
range of possible‘water depths. The critical displace-
nent-wave combination must be arrived at by an iteratilve

process.
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4. For a particular structure with its particular
natural frequency the greatest displacements occur
for those waves which givé frequency ratios %i;of
about 1.1 cr smaller. For these waves the theoretical
solution for displacement is generally conservative,

with some exceptions.

5. A designer should apply a factor of ignorance
of 3 to his calculated displacement. Under certaln
circumstances this may be extremely conservative

(by a factor of about 5), but at other times it may
be barely adequate. (The designer may wish to apply

an additional conventional factor of safety.)
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VI. RECOMMENDATIONS

1. This thesis advances a procedure for obtalning a
"safe'" design of a fixed offshore structure. At
times the procedure may lead to a considerably over-
designed (excess strength) structure, thch is gen-
erally poor from a cost viewpoint. It is recommended
that future workers attempt to refine the procedure
in order to reduce the amount of overdesign that may

be involved.

2. It is recommended that some calculations be carried
out for some real structures in the ocean and that the
results be compared with observed data. From this work
one might confirm the validity of this procedure for
design purposes, and a revised factor of ignorance

mignt be obtalined. For example:

a. Were the results of the design calculations
for Texas Tower No. 4 adequate? Could one predict tower
collapse for‘the wave and wind conditions that existed
when the tower did collapse? How do calculated displace-

ments compare for some of the observed data available

in (2] 2
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b. Perform a design calculation for the
Argus Island structure and compare the results with

those of [19] .

c. Perform a design calculation for the
Buzzards Bay Light Station structure and make a
conclusion regarding the adequacy of structural

strength.

3. Broaden the scope ot the design data by extending
the limits of Figures III, IV, and V to include soli-
tary and breaking wave theories.

4, ‘Develop an analogous procedure for calculating
platform translation and rotation for an arbitrary

angle of wave impingement.

5. Continue the investlgation of vortex shedding on
a vertical cylinder in a wave train (Appendix I). In
a manner similar to that of this thesis calculate a
Fourier series representation of the vertex shedding
force and establish a procedure for calculating trans-

verse platform displacement.
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VII. APPENDIX

79




A. Detalls of Theoretical Procedure

Spring Constant k

Apply simple beam theory [29] to one leg

(Figure XIV) to determine the static deflection Eurve

for a force Po acting at the level of the platform.

O(Q_Z _ é
ET'2 5
y = PO(QZZ _ Zj)
EI''F "~ &
P>
- .0
Ymax" TZET
y _x:f_ 2
Ymax {2 P
P
By definition: k -f ° {fgl
12NET (16)

For N legs: k = .23

r¥777viq+ //15/;1
—~————

Figure XIV - Simple
Beam ReEresentation
91 .0ne .Leg

Rayleigh's Energy Method Applied to the Unbraced Structure

Apply Rayleigh's Energy Method [22,30] to the unbraced

fixed offshore structure to determine the undamped natural
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frequency W n' Assume simple harmonic motion for the
N-legged structure. Use the static deflection curve

for the elastic curve.

2 2 2
Maximum kinetic energy = 2g wn ymax + N f —-wn yma.x

2
2

| P P2 93
M~ dz No
Maximum potential energy = N BT - —SIRT

(]

Equate the maximum kinetic and potentlal energies to

obtain:

W = log NEI
RS RS+ 22N wl) (47)
Use (36) and (46) to find:

m-é(w +%%Nw2) (lu?
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If the configuration had been such that the legs
were considered to be pinned to the platform the fraction
to be used in the second term of (41) would be different
from that calculated above. A calculation for this new
value would proceed in a manner exactly analogous to
that above. One can deduce that in calculating the
spring constant k he would start with:

2 P
Eegr-ep(d-2)

The calculation would give a fraction of 33/140

to be used in the second term of (41).

Still Water Added Mass for the Unbraced Structure

Assume that the added mass for any elemental
length of leg 18 equal ﬁo the mass of the water dis-
placed by that leg [3#], measured in terms of weight
Wy per unit length. Calculate the maximum kinetic energy
K.E. of this water for a condition of free vibratién;
Then calculat; how much of this added mass unit mubt be
placed at the level of the platform.(ww) to give the same
maximum K.E.

d

: 2 y

2 2 2 3 W2 2

Vo, ¥ 32 2 4z = wWw_ y
% “[R 3] e

>o

o
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Use thils expression to calculate ww for 4 = 27 1in.

~

and /Q- 42 1in.:
W, = 0.03 N wwjl

By comparing this quantity with those of (41) one
sees that the added mass effect is small. Added mass

willl therefore be negleccted.

Still Water Viscous Damping for the Unbraced Structure

A numerical exanple must be used for this cal-
culation. Use run O-W, which is the free vibration of
the unbraced structure in still water with zero pounds
added to the platform in the experiment. Legf?%?denote
the root mean square velocity of the leg maximum velocity

profile. Assume simple harmonic motion.

D = 0.505 in. d = 27 in. A= 42 in.
~d .
L2 1 . 2|32° | 22 dz = 0.1292 y
o

y5 = 0.359 ¥
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This occurs at Z = 17.0 in., which can be found
when one realizes that maximum velocity at any point 2
on the leg is related to maximum displacement at that
point by the constant cnn. 'Enter Figure VI with
a = 17.0 in., a/f = 0.406, and find To/P = 0.360.
For run O-W the average of the observed amplitudes
for the decaying exponential displacements was 0.66 1in.
The experimental natural frequency was u)n = 6.13 rad/sec.
Assume q andcuh to be numerically equal, which 1is very
nearly true at the small values of damping which are of

concern. With these numbers one can compute an average

0. 66)

Yax = Pn- Ymax = (6:13)(Fpz=) = 0.337 ft./sec.

.. {ya = (0.359)(0.337) = 0.121 ft./sec.

(0. 121)( § )
which gives a Reynold's number IR = - = 442,
(1.15 x 10 )

Enter Figure II to find steady state cD = 1.2,

The maximum damping force acting on the platform 1is

=2
o N Cp ! Ay Vo

¥ 3 where AR = D.d and N = 4,

This maximum damping force is calculated to be
0.0023%2 1b. At the low Reynold's number involved one can

assume that the product of drag coefficilent CD and velocity
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is constant, which means that the damping force varies
directly as the first power of velocity rather than the
second power. This assumption means that the maximum

damping force equalsC Fg 8o thet

From (41) find m = 0.272. From (37) find

C, = 2mw = 3.34. One can calculate viscous g— = 0.0057,
(]

which happens to be exactly the value that was obtained
experimentally. It is 11% of the observed structural damp-
ing (Table X).

With expressions for C and C c one can write:

P
'F?' N(const. )%D.d. (wn.yo}

c m Wy,

OlQ

For the experimental runs all variables in the right
hand side of this expression are fixed except y o and m.
((,un cancels out.) If a situation is considered in which
Yo 1s held constant, and m is varied, it is seen that

viscous g—- should decrease as m is increased. This trend

c
was observed experimentally.
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P
Influence Frsction 39

Suppose that the force P acting as shown
(Figure XV) on a two-legged structure causes the plat-
form deflection ymax' The problem is to find what Po

acting at the platform level will cause the same Ymax®

aelonl

Figure XV - Portal Representation of Unbraced Structure

From (46) it can be shown that:

I\)"U
o

-P°RB and P, =
Ymax = ZUEY 2
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From Figure XV the reader can deduce that:

P
P, =P - 2-9 (sum of forces = 0)
P a
and Pa =M, +M, + 1‘3— (sum of moments = 0)
Z £ - -
For 0< 2 £ a M(Z) = M, - P.Z
M 1
y" - 2 ﬁ(Ml - plz)
2
y''= é—I Mlz - Plz )
2
2 3
- Mlz ) PIZ |
EI 2 o
For a < 2 <4 M(Z) = M; - P,Z + P(Z-a)

" - é_f Ml - PlZ + P(Z-a)

2
R S (i +r( -a2) +¢C
y BT 1 T 3

' 2
, ‘ - Fa
Equate expressions fory' at Z = a to find CB ET
2 3
1 M2 Plz z> aza) L%
y=F T *RE- 2 4
-Pa’

Equate expressions for y at 2 = a to find ch = TET

P
-1 - - o
Let y' = O for 2-= { and use P, =P -5

87



POQ

= -8 .
to find M) = Pa(l - 35) - =

Substitute these values for Py and M1 into the ex
pression for y and evaluate y ; at 2 -,? to find:

_1 | r _pa® B 43
Ymax = ET | B " g - —an

Equate this to the previous value ‘for Yy from
P max

(46) and solve for 32

o - 32  2a°

F ']"2'73

This expression is plotted in Figure VI.

Fourier Series Representation of Force Acting
on Platform

The following two expressions have been developed

theoretically to represent the force acting on the plat-

form:
F(t) = Flsinewt + F3coswt (0°2wt £« 180°) (55)
F(t) = -Fasinawt + Fcosw0t (180°4 wt & 360°) (56)

Many textbooks, such as [22,30], discuss Fourier

series.
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let F(t) = ay sinwt + aesinewt + ... + ansin nwt

e o @ wt
+b° + blcoswt + b20082wt + + bncos n

(0°£ wt £ 360°)

on /w

5
o
e ]
o
o
L]
LK

F(t) [sin nwt] dt
(o]

ox /v

9|

F(t) [cos nw t] at

o)

o 2w/
b =5 F(t)dt

(o)

One can deduce that O = a2 - au = a6 = ,,,

and 0 = by = by = Dy = ...
WF T/ OF r/w \
a, = —* sinPwt at - —=2 sin’Wwt at = 3o (Fy+ Fy)
° W
or
/o /oo
) F WF :
-le [sinaw 'c][sinzwti-} at - 73 {sinewt][sin)wt]dt
le) L TT/(A)
m
= - 755 (F) + Fp)
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T/ 2n/w
N 2 @wF, 1n2
2 ™ %+ sin"w¢t (| cos2wt|dt - —= 8 nwt] cosamt]dt
o ‘l’/w
- (P - Fp)

LI _ [ 21 /e

- 1 2 =
b sin“wt 4t - - sin“wt 4t T

y

o J T/

F, - F
. F(t) = L[‘.__Q -5-1%(1?1 + 5 )sinwt

4
- Ts?(Fl + Fa)sinawt + F5y coswt

F. - F
e Sl LR (57)



B. SAMPLE THEORETICAL CALCULATIONS

The calculations performed to determine theoretical

displacements caused by the B wave are given below.

Gilven:

pile diameter D = 0.5 in. (0.0417 ft.)
water depth d = 27 in. (2.25 ft.)
wave height H = 0.313 ft.
wave length L = 10.86 ft.

therefore  d/L = 0.207 and H/L = 0.0289

Sample Calculation:

1. Hydrodynamics

a.) Calculate maximum drag forces and centroids on

a single leg.

0° £ 9 = 180°

¥ D a° 3
drag force = F = ——%—— C A  where Y = 62.4 1bs/ft

(12)

Fp = 6.58 CpA

from computer program results (Appendix D) or by in-

terpolation of Figure IV, A = 0.00421

9l




D dA
R =3 )/1—?1—,7;73 (18)

for water temperature = 61°F, V= 1.21 x 1072 ft.e/s'ec.

H 1l + 31r sinh (2J
5'62'55[ ]

(sinh J)

2rd
J = f=130

sinh (2J) = 6.69 , s8inh J = 1.698

%3 o aoézég [1 + 3(3.14) (0.0289 %(6 69)] 0.0715

8 (1.698)

1l + Q{d—o also could be read directly fram the com-
puter program results (Appendix D),

L4

1+ o

SI
2 = G hpgy = 10715

IR = —0:0417 V22°2(§'g§% (0.00421) _ 1504
1.21 x 107° -O715

from Figure II for |R = 1804, Cp = 0.9
therefore Fp = 6.58(0.96)(0.00421) = 0.0266 1bs.

drag force centroid = §!

g2




From computer program results (Appendix D) or by
1
interpolation of Figure III, S:i— = 0,685

S' = 0.685(2.25) = 1.542 ft.

i80° £ 9 = 360°

2
drag force = (FD)t = _-_J’_éul_ p trough B (13)
(FD)t =76.58 cD trough B

from Figure V (or Appendix D), B = 0.00276

Rirough = 5~ - H (19)

H
d d ~ d (1)

- H
S 0.313 _ _
LT' = 0,0715 - 55 0.0677

- H
or from Appendix D, 1+ (1-.%—) = 0,9323

- 0.0817 [32.2(2.25)(0.00276) _
’Rtrough 1.21 x 1072 0.9323 1591

from Figure II for 'Rtrough = 1591, CD trough ~ 0.925
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therefore (Fp), = -6.58(0.925)(0.00276) = -0.01702 1lbs.

drag force centroid = (E?')t
from Figure III (or Appendix D), dg')t = 0.559
—

(§'), = 0.559(2.25) = 1.258 ft.
b.) Calculate maximum inertia force and centroid on a
single leg.

2 .

for J = 1.30 , tanh J = 0.862

2
62.4(0.0417)° (3.14)(0.313)(0.862) _ 4 9nags

- ¥ p° 1y [1+Jsth~cthJ
T

8 F, cosh J
I F, cos

sinh J = 1.698 s cosh J = 1.971

5 _ 62.4(0.0417)%(10.86)(0.31 [t +1302.698) - 1.97{]
; = g 2 =

§_a=1.2 .
I 1.26 ft

o4




c.) Calculate wave period.

L d tanh J{1+, x \2/ 2(cosh(2J))%+2cosh (23)45
T =g Where C -}/5‘—'7—— (i7ﬁ) [ 8 (sinh J)

(8)

c _‘/32.2(2.25)(0.862) 1+(3.1u(o.0289))2[ 2L6.7712+2&6.77)¢5_]
+.20 - 8(1.698)

C =6.98 ft./sec.

Therefore T = l%f%g = 1,558 sec.

W = %1 = 4,03 rad./sec.

C is determined internally in the computer program
(Appendix D) but is not one of the outputs. A simple
addition to the "WRITE OUTPUT," "DIMENSION," and "FORMAT"

statements would include C as an output.

Summary of steps a,b, and c:

F, = 0.0266 1bs. S' = 1,542 ft.
(Fp)y = -0.01702 (8'), = 1.258 ft.
F; = 0.02295 1bs. 's"I = 1.26 ft.

W = 4,03 rad./sec.
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Enter these riguges in the upper left-hand corner
of the tabular calcuiation‘sheet, Figure XVI. (Actually
in this sample calculation the numbersy@o not égree ex-
actly with those of Figure XVI, which were determined at
another time, but the slight differences are negligible
for purposes of illustration.)

2. Vibrations

Consider run B6. This is the unbraced model
with 6 1b. of added weight on the platform, in wave B.

The reader should trace the steps on Figure XVI
as he reads the following explanatory notes.

Values of w %:, and k are taken from
Appendix F. Otherwise they would be determined as ex-
plained in the Procedure, Section II. '

Values of the influence fraction ;9 are read
from Figure VI.

The values of © at the front legs are simply
reference values. Values of platform longitudinal
displacement are calculated for these twelve reference
values of 9, and a curve is faired tarough tae points
(as was done in the preparation of Figure XII).

Below the values of 90 the corresponding re-

ference angles for each of the signiflcant terms in
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the Fouriler series (57) are listed. It 1is apparent that
a cosine varying force term leads the sine varylng force
term of the same frequency by a 90° time phase angle.
In order to fit the cosine terms to the classical dif-
ferential equation of forces (32) 90° is added to each
of the cosine term reference angles, after which the
term is treated as a sine function.

In the middle portion of the table the actual
va.ues of the angles for each of the terms are listed.
For the front legs the angle @ is determined from (40)

or Table II for each value of -3)—“-), where n is8 the co-

efficlent of wt. The angle @ 12 subtracted from the
reference angle for each case, because dlsplacement
lags force (33%). At the rear legs the force lags the
force at the front legs by the lag angle nfp; (58).
For each specific case the angle at the rear legs 1s
found by subtracting nﬂhL from the corresponding angle
at the front legs.

In the lower portion of the table the values of
Xq (33) are calculated for each term of the Fourier
series for displacement. The expression for the force
coefficients F are given in (57). Values of the mag-
nification factor _To are determined from (38)

XSTATIC
or Table I.

38



The reader is cautioned that linear interpolation

of Tables I or II may be poor in the immediate vicinity

of resonance (52— = 1.0).
wn
In each of the twelve columns the value of xo is

multliplied by the sine of the appropriate angle from
above, and the result is recorded. These results are
added in each column to give values of platform longi-
tudinal displacement x.

For this sample calculation the ratio of the maxi-
mum positive theoretical displacement to the maximum

positive experimental displacement is 1.17.
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C. Summary of Theoretical Calculations

Forces and Force Centroids

Table IV describes the 4 waves used in tnis thesis.

'97§219 is read

The values H and L are measured, while
directly from the computer output in Appendix D (or from
(6)). For all runs d = 2.25 ft. Frequency (radians/
second) is calculated from (8) by use of the relation

W = 21C/L. .

TABLE IV - Wave Characteristics

Wave H(ft.) L(ft.) d&/L H/L J=2wd/L d*;% d+(3‘7°°H) o)

0.240 15.23 0.1476 0.01575 0.928 1.0557 0.949 3.10
0.313 10.86 0,207 0.0289 1.300 1.0715 0.932 4.00
0.361 8.82 0.255 0.0409 1.603 1.0817 0.921 4,60
0.404 T.33 0.307 0.0552 1.930 1.0908 0.911 5.13

o o w w

Table V lists parameters used for computing drag
forces. The multipliers A and B are read directly from
the computer output (or from Figures IV and V, re-
spectively), R and Reprough 27¢ computed from (18) and
(19), respectively, while C, and Cp trough &Fe read from
Figure II.
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TABLE V - Various Coefficients for Drag Force Determination

Wave A B R Cp R rough °D trough
A 0.00272 0.00191 1410 0.846 1188 0.846
B 0.00421 0.00276 1804 0.925 159 0.885
c 0.00538 0.00318 2070 0.925 1720 0.925
D 0.00674 0.00342 2290 0.962 1795 0.925

Table VI lists the theoretical forces and force
centroids on a single leg of the structure. Fp and (FD)t

are computed from (12) and (13), respectively, while Fr
is computed from (25). The centroids S' and'(§')t are
read directly from the computer output (or from Figure III),
and §i is computed from (28). Centroidal distances are

measured from the bottom of the tank.

TABLE VI - Theoretical Forces and Force Centroids on a

Single leg .-

Wave FD(lbs) St (ft) (FD)t(lst G§')§(ft) FI(lbs) gi(ft,)
A 0.01755 1.375 -0.01242 1,180 0.01485 1.200
B 0.0266 1.542 -0.,01702 1.258 0.02295 1,260
C 0.0337 1.680 -0.0203 1.330 0.0283 1.328
D 0.0425 1.813 -0.0216 1.408 0.0329 1.380
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Structure Natural Frequencies

Theoretical natural frequencies_ of the structure
are computed by (47) and (61), using numbers from
Appendix E. In Table VII run 3, for example, designates
the unbraced model with 3 pounds of added welght on the,
platform. The letter Z designates the braced model.
Experimental values of wn (Appendix F) are also given
in Table VII for convenience of comparisocn. The units

of all frequencies are radiens/second.

TABLE VII - Structure Natural Frequencies

Run __ “n theoretical “n exp. in air  “n exp. in water
0 5,25 6.01 . 6.13
3 4,53, 4.67 4.79
6 4,05 4,00 4. 02

10 3.59 3.21° 3.27

oz 5.20 - 5.97 6.09

3Z 4,50 4.95 5.00

62 4,02 4.10 4,11

10Z 3.57 3.25 3,44

i 102




D. Computer Programs

Two separate IBM 7090 FORTRAN computer programs were
written for use with this thesis. Part 1, "MAX DRAG
FORCE MULTIPLIER AND DRAG CENTROID," was used bothvto
develop the curves families of Flgures III, IV, and V,
and to supply exact values for force and centroid de-
termination for the 4 waves studied.

Part 2, "TOWER DISPLACEMENTS," was used to supply
the theoretical platform displacements for the 32 ex-
perimental runs of this thesis. The output from this
proéram 18 shown plotted as Figures XIIa-p. The output
from Part 1, although comprising data for 76 waves of
différing characteristics, 1s included in this Appendix
only for those waves which were the object of experi-
mental study in this thesis. (The remaining output data
has been submitted to the Thesis Supervisor under
separate cover.)

Because the designer may want to make use of the
programs, a brief description of their characteristics

1s included.

Part 1

This program was developed to facilitate solutions

of drag forces and drag force centroids for crest and
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trough regions. It is applicable only for those wave

parameters for which Stokes' 3rd approximation applies.

Its primary use is for development of curve familles

3!

such that A, B, I and igéli in the formulas listed

below may be read directly by the designer if no com-

puter 1s available.

. ¥ a2 Cpa

Fp 2
2
(F), = 4D 3% S trough B
Dt 2
1+ Mo/a 5
-— a
5t _ s' “max a(s'/a)
d d gd
(]
A
14 o-H
5 st h (s1/a)
S')t trough d4(S°
_(_d)_. 3. __sgg_
[0)
B
1+70/4
2
vhere A = Ymax.d (S'/d)
gd
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1+ %O-H
d
2
u 1
wSﬁ t;gggh.d(s /da) (15)
o

Integration of (26,27,14, and 15) is performed
by the trapezoldal rule with 21 unequally speclal
stations.

The curve families developed (Figures 111, IV,
V) show lines of constant H/L on graphs whose co-
ordinates are the desired values vs. 4/L.

Alsecondary function of the program is to supply
) norizontal-component velocity profiles at wave angles
0 = 90° and 270°. Two uses of these profiles are to
give specific indication of the 1limit of applicabillity
of the authors' design procedure and to supply required
information for an analysis of transverse vortex
shedding forces (Appendix I).

Supplementary information which may be read directly

from the output includes:

a+ % 4+ (”70 - H), Unax , Ut pough
d 2 /— J——
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Wave celerity c, although determined internally as

if_EJ i8 not included in the output. However, the
g

simple inclusion of this parameter (called "T" in the
prosram)\in the WRITE OUTPUT TAPE, DIMENSION, and out-
put FORMAT statements would cause it to be written
output.

Variables to be read into the program on data

cards are defined as follows:

X = /4
Y = L/H

The above data for each run is put on the same
card in accordance with FORMAT statement 10. Variables

written as output are:

X = d/H
Y = L/H

A

CENTC = gl

B

)t
CENTT -

PC = (S'/d)n n=0, 20

u
UC = (La‘x) N = O, 20
e—— n
Y gd
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u 2
max
uesQ = (4g)n
SI
PT - (—LEQUER) n =0, 20

u
UT = (_trough
( VEcT)n

u 2
UTSQ = (t—r;’g&)n ne=0, 20

Values of PC, UC, UCSQ, PT, UT, and UTSQ are given
in incremental steps of 5/d (not S'/d) of 0.05 from
the bottom to the still water level. At n = 20 it is
seen that the following result:

d + 7
BC = S

2
U mns
UTSQ = trough
gd
The output is written in accordance with FORMAT state-

ments 90 and 100, and is included in this appendix for
the A, B, C, and D waves only.
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If other than 36 input data cards are to be used,
the program must be run separately for each set of
36, with blank cards being used to fill out any set
not comprising 36 data cards. A card with éeros
punched in the x columns should be used to separate
the data from the blank cards.

Some of the interesting aspects of the output used
to develop Figures III, IV, and V are discussed in
Appendix G. -
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* M1¢33-1568,FMS,DEBUG,2,4,1000,0

b3

XEQ
* LIST

W. C. NOLAN. AND V. C. HONSINGER

WAVE INDUCED VIBRATIONS IN FIXED OFFSHORE STRUCTURES
PART 1, MAX DRAG FORCE MULTIPLIER AND DRAG CENTROID

DIMENSION X(36), Yé36) ,A(36),B(36),CENIC(36), cnm(;ég ,PC(21,36),
1PT (21,36 ),UC (21,36 ), Ur(21,36),0c5Q (21,36),UTSQ (21,36
READ INPUT TAPE 4,10, (X(I),¥(I),I=1,36)
10 FORMAT (2F10.4)
DO 60 I=1,36
TR (X(1))
IF (X(1)) 70,70,20
20 2=6.2 32*x(1$/Y(Ig
D-EXPF(Z)-EXPF(-Z
E=TANHF (Z )
F=EXPF (2. *Z ) +EXPF (-2.%Z)
T-SQRTF((E/Z)*(1.+(9.869Z/Y(I)**2 Y* (Pe%2 42, #F+10. )/D**4 )
R=0O
DO 50 J=l,21
GF=EXPF z*n;+wwif-7*n}
GM=EXPF (Z *R ) -EXPF (-Z*R
HP=EXPF (2.*Z*R)+EXPF (-2.*Z*R
HM=EXPF (2. *Z2*R )-EXPF (-2.%Z*R
PP<R+9., 42UB*HM/ (2. *X (I ) *Y (1 )*D**4. )
UU= (9.8697#T/ ( (Y (L )*#*#2, )*D**2, ))*( 2.46.*HP/D*#*2, +HP)
PC;J I{-PP+GM/ 2.%X(1)*D)

aaa

«PP-GM/(2.X(1)*D)
J,T )=UU+3. 1416*T*GP/(Y(I)*D)
| UCSQ(J I)=UC (J I%
J,Ii-UU -3, 1&1 *T*GP/(Y(I)*D)
Q(J I)=sUT(J,1)%**2,
IF(J-1) 30,20,k40
30 A(I)=0
B(I )=0
WC=0
W=
GOTO 50
40 A(Ig-A Ig+§UCSQ$J,Ig+UCSQ§J-1
B(I )=B(I)+(UTSQ(J,I)+UrsQ(J-1
WC=WC + UCSQEJ,I;+UCSQ§J-1,I§3
WT=WT +(UTSQ(J,I)+UTSQ(J-1,1
50 R=R+.05
CENTC (I )=sWC/A(I)
60 CENTT (I )=WT/B(I)
70 DO 80 Mwl,N
WRITE OUTPUT TAPE 2,90,X(M),Y(M),A(M),
1PC (1,M),UC (1,M),UcsQ{1.M),PT (1,M),UT (1,
§RITE OUTPUT TAPE 2, 1oo (pPC (J,M),UC (J,
UTSQ(J,M), Jw2,21”")
80 CONTINUE
90 FORMAT (2F10.6,10F9.6)
100 FORMAT (56X,6FS. 6)
CALL EXIT
END(1,1,0,0,0,0,0,0,0,0,0,0,0,0,0) 109

;; éJ ,I -PCéJ 1,1))/2.
PT(J,I)-PT(J-1,I))/2.

PC(J,I)#*2, -PC{J-l,I *%2 )/l

PT

I
I
i J,I)**2,.-PT(J-1,I **2 AR

’
)
*
*

CENTC (M), B(M ,CENTT (M),
§) UTSQ(

,0Cc8Q(J, M) PT(J,M),UT(J,M




S
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PART 2

This program performs the tabular calculation of
Figure XVI. It is written for the specific case of
N =4 legs and k = 0.625 1b./in. In the expressions
for S, T, U, V, and W the constants are recognized
to be N or -, For airferent values of N or k the
constants may be changed by substituting new values
in the program. _

Variables to be read into the program on data

cards are defined as follows:

y = run number

A= w/wn

B= c/cc

C= ¢hL (radians)

DD = oL Fa, (1bs.)

P = %; (P, +F,) (1bs.)
Q= - %5' (Fy +_F2) (1bs.)
’ 1 3

R= F3 (1bs.)

The above data for each run is put all on the

same card in accordance with FORMAT statement 10.
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Variables written as output are:

y = run number

x = platform longitudinal displacement (in.)

Thic output is written on a single line for each run,
in accordance with FORMAT statement 100. For each in-
put data card 12 values of platform displacement are
computed, these values corresponding to the 12 angular
wave positions © indicated at the top of Figure XVI.
If more then 32 runs are to be used, the program
must be run separately for each set of 32, with blank

cards being used to fill out any set not comprising
32 data cards.
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*M1933-1598,FMS,DEBUG, 2,4,500,0

* XEQ
* LIST

W.C.NOLAN AND V.C.HONSINGER

c WAVE INDUCED VIBRATIONS IN FIXED OFFSHORE STRUCTURES
C PART 2, TOWER DISPLACEMENTS :

1D{2§N§%gg §é§2),A(32),B(32),C(32),DD(32),P(32),Q(32),R(32),THETA(4
2 14 14
1R§2? INPUT TAPE 4,10, (Y(I),A(I),B(1),c(1),DD(1),P(I),Q(I),R(I),I=1
10 FORMAT (IF 3.0,7F8.5)
DO 90 I=1,32
D=2, #C (I
Ew=3, *C (I
FFw2 *A(I)*B(I)/(1.-(A(T))**2.)
IF (FF)_20,30,30 -
20 FF=FF+3.14159
30 CONTINUE
F=ATANF (FF)
GGl . *A(1)*B(I)/(1.-4.#(A(L))**2,)
IF(GG) 40,50,50
40 GG=GG + 3.14159
50 CONTINUE
G=ATANF (GG)
HHh6.*AéI)*B(I)/(1.-9.*(A(I))**2.)
IF (HH) 60,70,70 .
60 HHeHH + 3.14159
70 CONTINUE
H=ATANF (HH)
AA=1./SQRTF ((1.-A(T)*#2, )#%2, + (2.%A(I)*B(I))**2,
BB=1./SQRTF 1.-#.*2A{I; w2 YRe2, 4+ (4 #A(I)*B I;
CCm1./SQRTF((1.-9.%(A(T))**2.)#%2, 4+ (6.%a(I)*B(I
S=6 . 4%DD (1) . :
T-}.2*P§I *AA
Us3 . 2%Q (I )*CC
V=3.2%R (I)*AA
W=-3,2%DD (I ) *BB
DO 80 J=1,12
ZwJ
THETA§1,J§-0.52}6*Z

*82
*82

THETA (2,J )=1.5708%2
THETA (3,J)=1.5708 + 0.5236%2
THETA(4,J)=1,5708 + 1,0472%2
X(I,J)=S + T*SINF(THETA(1,J)-F) + U*SINF(THETA(2,J)-H) + V*SINF(TH
1ETA(3,J)-F) + W*SINF(THETA(4,J)-G) + T*SINF(THETA(1,J)-F-C 21)) +U
2*S§NF(T§ETA(2,J)-H-E) + V#SINF(THETA (3,J)-F-C(I)) + W*SINF(THETA (4
3,J)-G-D ~ -

80 CONTINUE

90 CONTINUE

100 FORMAT (1F6.0,12F7.3)
DO 110 I=1,32
WRITE OUTPUT TAPE 2,10Q0¥(I), (X(I,J),J=1,12)

110 CONTINUE
CALL EXIT
END(31,1,0,0,0,0,0,0,0,0,0,0,0,0,0) 113




E. Sample Calculations for Experimental Data

B wave

Wave period T:
Sanborn recorder speed = 25 mm/sec.
Wave length as measured on recorder = 40 mm.

Therefore T = 40/25 = 1.60 sec.

Wave circular frequency w:
ar 2r
We = =F =3.9 radians/sec.

Wave height H is read from the experimental wave profile
(Figure XVIID).

Wave forces:
Wave drag and inertia forces are read directly from
the experimental force record (Figure XVIIb).

F. (0 = 90°) = 0.044 1bs.

D
(Fp), (0 = 270°) = -0.039 1lbs.

Fr (0 = 180°) = 0.017 1bs.

Properties of the Structure Model

Consider run 6 and calculate the structural
damping by (42) and (44).
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. . - x » o ) ’ .
averagex—laé(—:-g?; +f§-§+%+-§§+:“)-1.u-{

2
o = log, (1.47) = 0.385 (42)
& = 23% . 00613 (44)
(o]

Damped natural frequency:

q= 3?7%l§%§%(2r) = 3.99 radians/second

From (45):

w, = 2:39 = 4.00 redians/second
/1 - (0.0613)2

The volume of plastic in the unbraced model (in-
cluding base) is:

2 1 1 1
[(18%'6)2 ) %(%6)2][0'610}+ u%(o.sos) (42) + (305 - ) (22) (3)

= 199 + 33.6 + 329 = 561.6 in’

For one leg:

WA - ) @2%) (222) w0340 10,
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For the platform:

The bolt weighs 0.200 1b.

W= (%8%76)(22%)/*}0#2002698;25.Ib.t;.

Calculate the following non-dimensional ratios.
From (59):

4)(0.340) + 0.4
o = Hfiiogmy - 229

From (63):

1
ens [ﬁ‘;;;,”% 165
2

From (65):
2

1
14 0
2
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F. Summary of Calculations for Experimental Data

Wave Characteristics

Wave profiles for waves A-D are:shown in Figure XVII
a-d, respectively. The crest is in all cases the 8Sth
wave crest to pass the cylinder. Wave phase angle o

is set equal to 90° at the crest.

TABLE VIII - Experimental Wave Characteristics

Wave H(ft.) L(ft.) d(re.) (ssc.) (radftgq/bec)
A 0.240 15.23 2.25 2.00 3.14
B 0.313 10.86 2.25 1.60 3.93
c 0.361 8.82 2.25 1.40 4.49
D 0.404 7.33 2.25 1.26 4.99

Longitudinal Wave Forces

Experimental and theoretical longitudinal forces
associated with waves A-D are shown in PFigure XVIIa-d,

respectively. The forces are read as follows:

F,at 6 = 90°

(-]

(FD)t‘at 0 = 270
Fp at O = o°



Figure XVIIa also shows experimental transverse
forces caused by vortex shedding in the A wave.
The experimental longitudinal forces read from

Figure XVII are given in Table IX.

TABLE IX - Experimental Wave Forces, 3 Cylinder

vave Fp (aws.) plt (bs.)  F1 (bs.)
0.014  -0.019 ~0.017
B 0.044 -0.039 0.023
C  0.060 ~0.055 0.022
D  0.085 -0.039 0.032

118



Figure XYIIa °1; ;». f”.

Loqgitudinal.andumransverse Forces .

im ey nem e e s

;/2“ Cylinder - A.ﬂave U

H
.....-‘.ﬁt... D S e R

_Theoretical Longil- .

... .. ... ... TT tudinal Force

| ~boo ..... Experimental Longi-
‘ tudinal Force

E i_ \1iA' ) ﬁ -io-o-o Experimental
S : - Transverse Forces
: A% R Wave Proﬁle - _A Wave
Hj“q1%< o - .
e OB| i

Wawe R
Profileo

1h"Feet

‘w;;w:;os.u,;“;.;,,

1,10

o oas|

0-0-0 Experimental

Phase Angle in Degrees WCN 3/13/62

. s )

119



- | - s ;' - _ Theoretical
B ' 'o‘o o BExperimental
08| - SRS T R
»iééigtagu”w-~L~ - TIPS '~<Wawerrrorile=-:B:Hawef‘
_7 75415 - N\
)
o ...05| - R _
Wave'
Profile
in Feet- 0
i;;os BT B}
a0l
s )

.20

)

0-0-0 Experimental

Phase Angle in Degrees WCN 4/13/62

.o 120



e LongitudinaLForces
1/2" Cylinder»- c Have '

R

1

S

f

i i

Lo 2% o 0o Experimental

0-0-0 Experimental

Phase Ansle in Degreee WCN 4/13/62

40 8o ;go__;ﬁg_gog__am_Lo -5oo 260 no 80 120
121




a0

L Figure XVIId _
I ,Lomrrunmu mcxs
S _%'1/2" Cylinder =D wave

’fl‘he‘ére,iz'ical
00 rpkrAErqurimgptal

‘Wave Profile - D Wave

« 20

0-0-0 Experimental

Phase Angle in Degrees. WCN 4/13/62




Properties of the Structure Model

TABLE X - Experimental Damping and Structure Natural Frequencies

Run Total Structural Viscous Damped Undamped
Damping damping damping Natural Natural
(as fraction C (as fraction Frequency Frequency
of critical) T, of critical) q(rad/sec) &), (rad/sec)
0 0.0501 0.0501 0 6.00 6.01
3 0.0548 0.0548 0 4.66 4.67
6 0.0613 0.0613 0 3.99 4.00
10 0.0748 0.0748 0 3.20 3.21
0-W 0.0558 0.0501 0.0057 6.12 6.13
3-W 0.0580 0.0548 0.0032 4,78 4.79
6-W 0.0655 0.0613 0.0042 4.01 4,02
10-W 0.0748 0.0748 0 3.26 3.27
0z 0.0501 0.0501 0 5.96 5.97
3Z 0.0559 0.0559 0 4,94 L.95
6Z 0.0613 0.0613 0 4,09 4.10
102 0.0738 0.0738 0 3.24 3.25
0Z-wW 0.0547 0.0501 0.0046 6.08 6.09
32 -W 0.0592 0.0559 0.0033 4,99 5.00
6Z-W 0.0645 0.0613 0.0032 4.10 4.11
102 -W 0.0730 0.0738 -- 3.43 3.44

Spring constant k (46) was determined experimentally:

k = 0.625 pounds/inch
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G. Supplementary Discussion of Results

1. Theory and Experiment

Longitudinal Forces

A glance at the longitudlnal force plots of
Figures XVII a-d shows conslderable disagreement be-
tween theory and experiment. Theoreticél forces (drag
and inertia) are tabulated in Table VI, and experimental
forces ere in Table IX. These tables show close agree-
ment of inertia forces, with the drag forces differing
by a factor of 2, in cases.

Prior users of the force gage have indicated that
the dynamic response of the gage to exciting forces
may indicate forces greater than the actual [éB].
However, the authors conclude that for the frequencies
associated with the waves used in this thesis any magni-
fication factor applied to force gage displacements .
would in all cases be less than 1.1l.

The proposal to use the T™ms: veloclty in the Reynolds
numbers }or drag coefficient determination is based upon

the assumption that cD and C are independent of

D trough
depth [17]. For the waves studied the lowest velocity

encountered in the crest region is (theoretically) at the

124



bottom of the tank for the D wave. From Appendix D

1t is seen that "max = 0.0369 for this situation.
Therefore, Ved Upox ™ 0.315 ft./sec. and |R =
1092 for this region. When this value 1s compared with
the Reynolds numbers listed in Table V, a glance at
Figure II shows that the above assumption is valid for
the waves studied in this thesis. However, if a local
(R at the bottom of a structure leg becomes less than
about 100 in ocean waves, the assumption will lead to
inaccuracies.

The drag and lnertia components were of the same
order‘of magnitude for the experimental runs of this
thesis. Harleman and Shapirol:27] have found that for
this particular situation agreement is not good between
the proposed theoretical forces and the experimental
forces. Because the thedretical and experimental inertia
forces of this thesis agree quite closely, (Tables VI
and IX), 1t is suspected that the discrepency 1is due to
the method of eveluating the drag force component. Ex-
periments cepnducted by Wiegel, Beebe, and Moon[:SJ to
determine average values of CD in a wave train show
much scatter, with CD varying between 0.2 and 2.5 for
Reynolds numbers of around 104° They suggest that a
factor of between 2.0 and 2.5 be applied to the drag

force 1f an average value of C; is used.

125



R

Keulegan and Carpenter [ 32 ], in their work with
horizontal cylinders, have related CD to the period
parameter umax? rather than to some Reynolds number.

-5
If the drag coefficient is to be averaged over the
height of a vertical cylinder, the authors suggest that
Cp and (cD)troush be included with A and B in the com-
puter program (Appendix D). A look-up table for drag
coefficient, based upon the curve of cD Vs umax.T

in [32], would have to be included in the program.

Free Oscillations and Natural Fre uencies
of the Structure Model

In Appendix H it will be seen that the free os-

cillation data 1s somewhat odd in that when the structure
swings from a negatlve peak to a positive peak the ampli-
tude of displacement oftén increases. Theoretically for
the damped system this amplitude must decrease[??].
When the authors saw this result they immediately sus-
pected unequal spring constants in the two directions,
but a test showed that the sSpring constants were the
same. The authors are unable to explain this oddity.

It 1s seen in Appendix F (or C) that in all con-
figurations the natural frequency of the model is higher

in still water than in air. One expects just the reverse,
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because of viscous damping by the water and the added
mass effect. The authors cannot explain this result,
but they conclude that the added mass effect is
negligible.

It is also seen that for all runs with the added
weights the frequency of the braced structure model is
higher than that for the unbraced structure model, both
in air and in water. Theoretically spring constant k
was not changed when the model was braced. Consequently,
the addition of}the bracing mass should have lowered the
natural frequency ‘9n( -'JE7E). Because the frequency
is higher, however, for the braced model, 1t 1is probable
that the bracing increased the stiffness k slightly. The
authors did not suspect this result at the time of the
experiment, however, and consequently stiffness k was

not measured for the braced model.

2. Computer

It is mentioned in Appendix D that velocity profiles
at crest and trough regions were written as output for
the computer program used to develop Figures III, IV and
V. These profiles, most of which are not submitted in
this thesis (see cbmment, p. 103), show some interesting

aspects relative to the boundary limits on Figure V. The
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profiles of particular interest are thcse for the

trough region. The computer output gives values of

'
Ysrough vs S trough
Vsd d

For certain critical values of wave parameters

d/L and H/L, the peak value of Ftroughl is shown to
occur at some level other than at the surface, some-
times at the ocean bottom. In the extreme situation

p at the surface (= U, ) becomes positive.

utroug rough

Table XI gives the values of “trough associated with
these critical parameters. 'I‘h.e'sd dimensionless

velocity Utroggh refers to the velocity at the surface,

and  &d Y ottom refers to the velocity
at the ocean bottom V84  nder the wave trough.
S! .
The dimensionless parameter (°_trough) refers to
max S'trO" h
the surface elevation of the trough, and (___TTJ§1')crit

refers to the elevation at which the absolute velocity
is either a maximum or zero, as appropriate. Values of
d/H and L/H are included in Table XI because the com-
puter output is identified by these terms.
The authors suggest that the reader refer to
Figure V while interpreting the information in Table XI.
First, for d/L = 0.07 and H/L = 0.04, it is seen
from Table XI that the predicted height of the trough is

above the still water level. This result, then, can be
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TABLE XI - Trough Velocities Associated with Critical
Wave Parameters

U S' 5 ub S|
a/L H/L a/H L/H trough ( trough ottom ( trough

JE&' d )ma.x m d )crit

0.20 0.10 2.000 10.00 -0.1809 = O.777 -0.1636 0.680
0.25 0.14 1.786 7.14 -0.1937 0.739 -0.1592 0.650
0.10 0.03 3.333 33.33 -0.0960 - ~0.1057 -

0.15 0.083 1.875 12.50 -0.1588 -- -0.1904 --

0.07 0.04 1.750 25.00 +0.1269 1.030 +0.0021 1.030
0.08 0.05 1.600 20.00 40.0788 0.976 -0.0646 0.650
0.10 0.08 1.250 12.50 +0.0685 0.901 -0.1686 0.775

discarded as being outside the range of possibility. It
1s interesting to note that this situation is reached when
Stokes' 3rd approximation predicts positive velocities in
the trough region from surface to bottom.

If the remainder of the data is compared with the
curve families of Figure V, the following observations

are noted:

1. Each curve of the curve families reaches a peak
value, which occurs approximately where Stokes'

3rd approximation predicts a posiltive veloclty
Sl
trough
for trough reglons above some (_——E'Es_)cp1t°
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2. Values of the parameters corresponding to the

above situation are seen to fall approximately

on line H/d = 0.653, which has been stated to

be the theoretical limit for wave characteristlcs
in the ocean. The profile of positive velocity,
beginning at the surface and extending down as
a/L is decreased, is a result of the increasing
significance of mass transport in Stokes' 3rd

approximation.

3. Values of the parameters for which utrough is
never positive (and for which its peak value
does not occur at the surface) are seen to fall
approximately on the line for which H/d = 0.603.
This line corresponds to the limit of applica-
bility of Stokes' theory.

With regard to the statements made above, it i1s
tc be noted that, when plotted on the curve families
of Figures III, IV, and V, lines of constant H/d& converge
for low values of d4/L. Also, in explanation of ob-
servation number 1 above, it must be remembered that in

solving for the force multiplier B from (15) 1t is
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Y
E) !

, 5 frougn
assumed that Uepougn LS Negative for all -——?r—ii- .
If the proposed procedure is to be extended to regions
for walch this is not true, then |utrough' Ut pough

2
shculd be substituted for ¢ nough in (15).
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H. Original Experimental Data

Water temperatures (°F) for the various runs

are given in Table XII.

TABLE XXI. Water Temperatures (°F)

Wave Unbraced Braced Forces on .
Structure Structure Single Cylinder
A 62 57 63
B 62 61 63
c 62 61 6%
D 62 61 63

A typical wave gage calibration curve is shown 1in
Figure XVIII. A typical force gage calibration curve
is shown in Figure XIX. "Record reading' on these curves
refers to the deflection of the stylus needle on the San-
born recorder. The wave gage 1s calibrated about the
still water level, while the force gage is calibrated
about the zero force position. Typical Sanborn recorder
wave profile traces are shown in Flgures XX and XXI.

The demped natural frequency of the 0.5 in. dia.
cylinder/force-gage combination was 4.8 cps, while for
the 1 in. dia. cylinder/force-gage combination (used

for transverse forces) it was 17.85 cps,
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_ : Figure XVIII .
Typical Wawe Gage Calibration

. (For B Wave Profile)
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“ Figure xx R
TYPICAL FORCE GlﬂF~ClLIBRAmION ST

075J ,

: - Force in 1bs.

10 15-

1.5- - 10 . 5"
' Record Reading inmm. . .
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Properties of the Structure Model

Experimental data for free (natural) oscillations
of the model is given in Table XIII. Run 3, for example,
designates a run in alr with the unbraced model with 3
pounds of added weight on the platform. The letter Z
deslgnates the braced model. The letter W indicates runs
with the model in still water. The tabulated numbers are
peak displacements as obtained from moQies. A number may
not represent the actual peak, which might have occurred
between frame exposures. After viewing the movies the
authors deduced that in those few cases in which an error
could exist it could be only about 0.01 inch. The elapsed
time listed is between the first and last recorded peak-
displacements.

The weight of plastic in the unbraced model (in-
cluding base) is 22-3/4 1b. The weight of plastic bracing
is about 0.4 1b. The weight of the bolt is 0.200 1b.

The total length of bracing is 186 inches. The
length of bracing ‘QB below the still water level is
149 inches.
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TABLE XII1I- Experimental Data for Free gNaturall
scillations o e ructure Model

Run: 0 3 6 10 oW 3W 6-W 10-W
Time: 3.14 4,04 4.73 5.8 3,08 3.94 4,70 5.79
Peak -.89 -.90 -.92 -.81 -.98 -.9% - %0 -.89
Displ. .98 .99 .93 .83 .95 .91 .89 487
-.68 -.66 -.64 -51 -,70 -.68 -.60 -.56

Run: (674 3Z 62 102 0Z-W 32-W 6Z-W 10Z-W
Time : 3,16 3.82 4.61 5.81 3.10 3.78 4.60 5.49
Peak -.67 -.69 -84 -8% -.97 -.94 -.88 -.T78
Displ. T4 67T .98 .92 .71 .93 .87 .T4

-.48 -,48 -.58 -.50 -.67 -.65 -.59 -.49

'
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I. Vortex Shedding on a Vertical Cylinder in a Wave Train

General

It has been mentioned in this thesis that
in the development of a practical offshore structure de-
sign transverse or "lift" forces caused by vortex shedding
may be included. It is to be expected that these reactive
forces are periodic in nature, with magnitudes and fre-
quencies being functionally related to the horizontal com-
ponent of wave orbital particle velocity u. Furthermore,
Since u = 0 at discrete values of wave phase angle o, it
may also be expected that this periodicity in vortex
shedding is repetitive with the passage of each wave in
a regular train.

As an 1llustration let
Fij = Eagnitude of transverse Soice caused by a vortex

eing shed

gij = wave phase angle corresponding to Fij'

where i=1,2,...n = sequential number of a wave
in a regular wave train (1 = 1
for the first wave, etc.)

J=1,2,...m = sequential number of the vortex
shed during the passage of one
wave (J = 1 for the first vortex
shed duri the passage of each
wave, etc.
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Then

F. . = constant (i = 1,n)

1

gij = constant (1 = 1,n)

but since Fij is a function of uij’

Fiy ¥ constant (j = 1,m)

Thus it is seen that, because of the repetitive
nature of these forces, if tﬁeir magditudes and fre-
quencies can be predicted a Fourler series representation
could be utilized in developlng a procedure for calcu-
lating transverse platform displacements. This procedure
woﬁld not differ appreciably from that presented 1n this
thesis for longitudinal wave forces. It is the intent of
this appendix to present an approach for the determination
of these vortex forces and shedding frequencies and to
show the results of experiments performed by the authors

to substantliate this approach.

A. Theory

Transverse Forces

Before the transverse forces are discussed,
it might be well first to make some qualitative remarks
concerning the significance of considering these forces

in a structure design. Mention has been made (Introduction)
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of the reported failure, due to fatigue, of a plling sub-
Jected to transverse vibrations in ocean waves.

It 1s to be noted also that the frequency of this
force will be at least equal to wave frequency, and fer
very long ocean waves 1t could be many times greéter
than wave frequency. It 1s possible that this force
could create a resonance situation in an offshore
structure.

Nothing has been found in the literature relative
to the magnitudesAof these forces as a vertical cylinder
in a wave train, and, to the authors' knowledge, no
meaaurementsnof the forces have been made in surface
waves. However, if one relates the magnitude of this
force to the maximum drag force by applying other type
measurements and steady state theory, some interesting

observations can be made.

Let
Fy = maximum transverse force acting
on vertical cylinder of length A
FD = maximum longitudinal drag force acting
on vertical cylinder of length {
Then 5
dF; = Cp fé— D “max 44 (66)
2
aFy = ¢ % D Ymax ad (67)
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In steady state flow Landweber [3}] deduced tbat

Cp, = 3.44 2 4 Cp» While for a vertical cylinder moving
longitudinally with simple harmonic motion in a stationary
liquid Laird [3&] found C; = 0.37 by measurement. Laird's
measurement was for a cylinder diameter of 1" and with
u,.. = 1.7 ft./sec.  Laird, Johnson, and Walker [ 35]
found experimentally that C -:0.3 Cp for a 2" diameter
cylinder moving under the same circumstances as mentioned

above. If C,. 18 taken as approximately equal to 1, this

D
observation substantiates the value of CL - 0.37.' The
above values of CL represent the extremes which the
literature gives as bases for comparing transverse and
drag forces.

It is suspected that the value of,CL given by
Laird most closely approximates the real situation.
However, two important factors must be considered. First,
the artifice employed by Laird in approximating a vertical
cylinder in surface waves 1is deficlient in that the water
velocity past his cylinder is not a function of the distance
from the water surface. In the real situatlion not only is
Unax ¢ontinually varying from bottom to surface, but also,
as a wave crest passes a cylinder, the length over which

any force acts is not the water depth d but rather d +7o
(7o = height of wave crest sbove the still water level).
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Secondly, the experimental value of C, = 0.37 was for a

L
given cylinder diameter D and glven u . It 1s to be

max
expected that CL’ like CD, is a variable with dependence
on some defined Reynolds number.

From (66) it 1s seen that dF; = f(umai). From the
definition of Unax it is seen then that dFL is that in-
cremental force which would result if a vortex were shed
at the instant that the crest passed_the cylinder. Gen-
erally the vortex is not shed exactly under the crest.
However, 1; one is 1pterested in the maximum force which
might o;cur, as is the designer, he can justify an as-
sumption that the vortex is shed under the crest, where
the particle horizontal velocities are maximum. There-
fore, 1t 1s assumed that a vortex is shed when 0 = 90°,

Because waves cof finite height are being considered,
it must be noted rurther that the design force for the
crest region will not be equal in magnitude to the design
force for the trough region.

As a further complication it was noted by the authors
in the experimental phase of this thesis that some
vortices shed in the crest region were swept back over the
cylinder by velocity reversal during trough passage. These
cause significant additional forces on the cylinder, but

how they add; detract, or interfere with new vortices about
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to be shed is a matter of conjecture. By the time these
vortices arrive back at the cylinder, some of their vorticity
has been diffused out of the vortex street. Thus it is
difficult to determine if the reduction in force in the
trough region is the result of new vortices being shed
in a region of lower orbital velocity or if the re-
duction is caused by vorticity diffusion of the swept-
back vortices. Visual observation muét be made at . the
same instant that force 1s recorded to resolve this issue.
In the ocean, where for long waves u 18 in the
same direction for a relatively iong period of time, it
1s proposed that most forces reéulting in the wave trough
will be caused by new vortices being shed, with only re-
latively few crest-shed vortices being swept back by
velocity reversal - these few belng immediately after
© = 180°. The circumstances imposed by laboratory
techniques where short wave periods are used make it im-
practical to verify predicatlions on transverse forces
in way of wave troughs. The authors feel that field tests
msB t be employed for this type of verification.
For this reason, 1t 1s suggested that if a value
for FL for the wave crest region is predicted and
verified experimentally, then a value for the trough region
equal in magnitude.to KF, (K < 1) could be used in the
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design stage. It is proposed further that for the
structure displacement solution a forcing function

of the following type be used.

0° & @ <« 180°

F=F si.nu)c t (68)

180° £ © < 360°

F=KF sinw t (69)

where We ™ vortex shedding circular frequency in
crest region.

Wy = vortex shedding circular frequency in
trough region. '

K = constant (K <« 1) whose value is dependent
upon the assumed origin of the force.

More will be said about shedding frequencies later.
The sine function results from the assumptlon [22] that
a vortex shedding force is varying sinusoidally.

The remainder of this section on forces will be
concerned with the prediction of FL and K, where K will
be that value based upon the assumption of new vortices
being shed in the trough region. Several references may

be cited (for example [ 33,34,36,37] which can be used to
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‘ /7
derive values of Cy, by the steady state Von Karman

vortex street analysis, and this procedure will not be
repeated here. Rather, the previously specified values
of C; = 3.44 and C; = 0.37 will be used to place 1imits
on the predicted force in formula (66). C; = 3.44 must
be considered to be very conservative, however, since

its value 1s based upon the assumption that u = u

max
for 0° € 9 <£180°.

From (66), ¥, =fc, L Dpu 2 al (70)

where the limits of integration are as yet un-
specified. Before attempting to solve this equation
for FL’ 1t might be well to first consider what criterion
may be used to indicate the béundaries for which vortex
shedding forces are to be considered. TFor steady flow
a regular Karman vortex street in the wake of cylinders
has been observed only in the range of Reynolds numbers
R (= %2) from about 60 to 5000. At lower values of R
the flow is laminar, and no vortices are shed. For
higher [R there 1s complete turbulent mixing [18;’.

For the non-steady flow assocliated with wave
passage, Keulegan and Carpenter [32_7 have developed a
more realistic dimensionless parameter called the period
parameter. From experiments with horizontal cylinders

located at various depths in a sinusoidal wave train,
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they found that the lower boundary for vortex street
development was coincident with a value of the

"period parameter" between 12.5 and 15.

umaiT
where period parameter = —§5— (71)
u __ = horizontal particle veloclty under

crest at the cylinder depth

T = wave perlod

‘ The significance of the period parameter lles in
the critical distance a particle must travel in one
dinection for a given velocity in order to produce a
vortex. For a complete discussion of this approach

the reader is referred to the original work [32].
YnaxT
D
wiil be used for the lower boundary of vortex shedding,

In this thesis the conservative value of

- 12.5

while it is noted that Keulegan and Carpenter observed
regular shedding for Emgéf as high as 110.

Two alternatives are therefore proposed for supplying
the limits of integration to (70). Pirst, 1t may be con-
sidered that the vortex extends from the surface down only
to the depth where EE%EE = 12,5, Secondly, it may be con-

sidered that the vortex, once started on the surface,

extends all the way to the bottom of the cylinder. This

u T
second proposal presupposes that mgx = 12.5 1s the

eritical value for starting a vortex on the surface, but,
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once the starting inertia 15 overcome, the period para-
meter 1s no longer critical in cutting off the vortex
at a specified point along the cylinder.

Regardless of which proposal 18 followed, Eﬁ%gz = 12.5
(Umax - at surface) affords the limliting boundary
below which no vortices are shed. Intultively the
authors feel that the true solution is a compromise be-
tween the two proposals outlined above; However, both
proposals will be tried for the specific waves of this
thesis.

For descriptive purposes the solutions proposed

thus far are designaﬁed as follows:

(a) vertex extends to cylinder bottom.

a +7%o

- s 2 44
Fp Cr, 5D Yax d4 for crest region (72)
Yy
d- (H- ”70)
- Y .
FL - Cy, 2 D utrough o for trough

region (73)

where y is the distance of the bottom of the cyliinder

above the bottom of the tank (or ocean).
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u T
(b) vortex extends only to a depth where mgx = 12.5

u T
and —EE%EEE— = 12.5 for crest and trough regions, respectively.

d+‘70
Pou 2

F = /[‘ CL 5 D "max d;’ for crest region (74)

y'

a-(H- 7o)
- -~ £ 2 2N

Fr, } L5 D Yrough d‘f for trough region  (75)

;.

u T
where y' 1s that depth where —EEE- = 12.5 and

u, .7
—32%333— = 12.5 for (74) and (75), respectively.

(1) Cy = 3.44  (Landweber - steady flow) (76)

(2) Cy, = 0.37 (Laird - simple harmonic motion) (77)

As an example,

solution (a-2) refers to (72) and (73), using a value
of C; from (77). As mentioned previously, it is expected
that the true soluticn lies between (a-2) and (b-2) with
solutions (a-1) and (-1) being the conservative extremes.

The solutions of (72,73,7L,75) are of the followlng

form: '
Py = Cp 5 TN (78)
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wnere

T is the mean square velocity over the length to
be considered. If the vortex and the cylinder extend
to the bottom of the water G2 can be determined directly

from (20) and (21).

2
"_H%ax -ABd (20)

d +°fo

-2 __Bgd®
trougn da + (70 - H)

(21)

where A is determined from Figure IV and B, from Figure V.

inh (2Jg
%9'2—?1171?{14'%57!" 8(sinh J) } (6)

The parameter 2?13 may also be read from the computer out-
put (not plotted), Abpendix D. If the vortex does not
extend to the bottom the following simplification may be
used. Reference [ 17] shows that for distances removed
from the bottom u2 vs. S is approximately linear, where S
is the distance above the bottom. A conservative value

of T2 may then be taken as

52 .U +u (u'g/D 12.5) (79)
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This equation requires use of (10) and (11) or the com-

puter output in Appendix D only two times to get ﬁe,

The authors feel that any loss of accuracy 18 justified

when the procedure as a whole is viewed.

The proposed solutions therefore reduce to the

following forms:

(a-1) crest:
trough:
(a-2) crest:
trough:

(b-1) crest:

trough:

(b-2) crest:

trough:

Fp = 3.uu{-D ﬁgu[d + '70 - y] (80)

Fp = 3.44 % troughl:d - n?o) B y} (81)
FL=0.37£Dﬁeax[d+"70-y] (82)

F = 0.37 é w2, ougn[ & = W - W - y] (83)
Fp = 3.41&£D -6.2 [d + 70 - ya] (84)

P, = 340§D g @0 (B -) - y'] (85)
F, = 0.37 % D a‘iax[d + - y'J (86)

Fp = o.37€- D ﬁirough[d - H -7, - y'j (87)

= distance of bottom of cylinder above water
bottom

y* = distance from bottom to point where 8. 12.5

and the 5215 refer to the mean square veloclty over the

vortex length.
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The-force centroids are exactly the same as the drag
force centrolds (Figure III) if the vortex extends to the
bottom,and for any other vortex length the centroids may

be assumed in a manner analogous to the assumed umax and

Shedding Frequencies

Let Sc = cylinder 8trouhal number for steady flcw

Ws D
Sc " 2r u (88)

where LDS is the vortex shedding circular frequency and
u 15 the steady state velocity. For values of [R between
10° and 10% experiments by Roshko [3_6_‘_] show an:-average
value of S, of about 0.206. This 1s the range of concern
in the experimental work of this thesis. For other ranges
of Reynolds numbers, one 18 referred to the reference
cited ebove.

Using S, = 0.206, one obtains for Lds,

w0, = 220 u (2r) (89)
From (89) it is seen that 1n a wave train the

shedding ffequency (and number of vortices shed per wave

cycle).is a functioh of the orbital particle velocity on
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The force centroids are exactly the same as the drag
force centroids (Figure III) if the vortex extends to the
bottom,and for any other vortex length the centroids may

be assumed in a manner analogous to the assumed u and

Shedding Frequencies

Let Sc = cylinder Strouhal number for steady flow

Ws D
5, - 422 @)

where u)s is the vortex shedding circular frequency and

u 15 the steady state velocity. For vealues of [R between
10° and 10" experiments by Roshko [35] show an-average
value of S, of about 0.206. This is the range of concern
in the experimental work of this thesis. For other ranges
of Reynolds numbers, one is referred to the reference
cited ebove.

Using S, = 0.206, one obtains for .,

0.206 er ‘
= -——jy-ii (ar) (89)

Wg

From (89) it is seen that in a wave train the
shedding ffequency (and number of vortices shed per wave

cycle) is a function of the orbital particle velocity on
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the surface of the water (U). This statement 1s made

because vortex shedding is initiated at the surface.

The question next arises as to what value to asgign to U.
Laird [;u] " found that for his cylinders moving

in simple harmonic motion no vortices were shed until

the velocity reached 70% of the peak velocity. If this

result 1s to be considered it seems reasonable that (89)

may be written as

U U U
w, __“0.206(0.7 max + “max)(2r) _ 0-206(0].)85 ma",)y(z’l (90)

(0.7 "max_+ max) _
2

where "gverage velocity" at the
surface during vortex
shedding in the crest
region
and u
0.206(0.8
wt - ( 5 troush) (2'_) (91 )

for the trough region.

Keulegan and Carpenter [ 32], on the other hand, in their
work on horizontal cylinders in sinusoidal waves propose
that the shedding frequency be related to the average
veloclty over a half cycle. If this reasoning 1is applied
to (89) the result is

0.206(0.5 Umax)(evr)
w (jﬁ (92)
c ™ - for the crest
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and . ,
w. = 2:206(0.5 trough) (ar)
t v for the trouvgh

(93)

The authors feel that 1t would be reasonab.e to.use

(90) and (91) for laboratory work and for steep waves
in the ocean; while (92) and (93) may be used for long,
low ocean waves where the period is long enough to per-
mit many vortices to be shed. Equations (90) and (91)
are used by the authors to obtailn shedding fbequency.
The designer may want to modify this selectioﬁ,'however,
when it is realized that the worst frequency to use 1is
that frequency which most closely approaches the natural
frequency uon of the structure. 1In any case the vortex
force, of this frequency, would be applied to the legs
of the structure only for the time duration between gg
beingequal to 12.5 on either side of the crest'gnd
trough. The forcing function proposed by the authors

assumes the force to be active for the entire wave

passage.
Let (Té)c = time required to shed 1 vortex in
the crest = 2w (94)
2(00 S

(Té)t = time required to shed 1 vortex in the
. trough = 21 (95)
200t
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Then from (90) and (91)

. D 2.86 D
(Ts)e = 352067108500 = U, (56)
and
2.86 D
1), = 22D
(g0, = 358 (7)

% = time for passage of wave crest or wave trough.

Let
n, = nunber of vortices shed during crest passage.
n, = number of vortices shed during trough passage.
Then u
nc"e_(%’):-g'%‘% (98)
T T Ufro h
nt=2—(m-577-2—b£— (99)

Because nc and nt must be integral numbers, it 1is pro-

posed to accept the next lower whole numbers in lieu
of the values computed from (98) and (99). These inte-

gral values of n, and n, then give

U)c = ncu) (100)

where ) is thz wave circular frequency.
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The proposed theoretical procedure 1s to use (80)
through (87) to determine transverse forces, and (98)

through (101) to determine the forcing frequencies.

B. Results, Theoretical and Exgerimental

For the experimental runs the same waves (A, B,
C, and D) were used that were used for longitudinal
force determination. Transverse force measurements
were attempted by using the 0.5 1in. dié. cylinder
described in Section 1I-B. However, it was found that
the B, C, and D waves caused resonant vibrations of the
cylinder/force-gage combination in the transverse
direction, with the A wave being the only wave which
gave usable results. For comparative purposes the
transverse forces caused by the A wave are plotted with
the longitudinal forces and the results are shown in
Figure XVIla.

As a consequence of these results it was decided
to center investigation on a 1 in. dia. cylinder.
This cylinder cleared the bottom of the tahk by
12-5/8". Therefore, in (80,81,82,83) y is taken as
12-5/8" = 1.052 ft. By measurement the damped natural

frequency of the 1 in. dia. cylinder arrangement was
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17.85 cps, as compared to 4.8 cps for the 0.5 in. dia.
cylinder arrangement.

Before the results are presented it would be in-
teresting to predict whether or not vortex shedding 1s
expected for the various runs. Table XIV 1lists values

U T U T
of wave period, as well as -3%?5- and —33%353—, for

the 4 waves of the experiment. Wave periods are de-
termined from (8), while the velocities are taken
directly from the computer output (Appendix D). All
other values in the following analysis are taken from

Appendix D, unless a particular equation is specified.

TABLE XTV- Wave Periods and Period Parameters

U T U T

Wave T (sec.) mgx -35%359-
A 2.015 13.75 -11.13
B 1.558 15.45 -12.00
C 1.350 17.07 -12.53%
D 1.200 18,90 -12.90

Since the critical value cof %2 is considered
to be 12.5, it is doubtful that the trough region
can support vortex shedding. In fact, all forces in
the trough region were observed to be caused (in part

at least) by crest-shed vortices being swept back to
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the cylinder during velocity reversal. Hence, trough-
shed vortices are not considered further, except to
state that for the runs performed by the authors,

Wi = ti%.

Parameters used in the solutipn of (80, 82, 84,
86) are shown in tabulated form in Table XV. The
parameter'(umax)crit refers to the veloclity for which
the period parameter 1is equal to 12.5 and 1s used as
the entering argument in Appendix D to determine y'.

The parameter (umax)y i3 the velocity under the crest

at the bottom of the cylinder. The parameter ('Gmai) .

1s for use with (80) and (82) and is equal to

2 2
max_+-(“max )y
2 .

The parameter (Ehai)b is for use
with (84) and (86) and 1s equal to

U 2 u 2

-max X (%max)crit. Velocities are in ft./sec.

TABLE XV - Wave Parameters for Transverse Force Determination

Wave "VO(ft) Umax (umax)crit (umax?l y'(re) (aﬁai)a (—ﬁai)b
A 0.120 0.568 0.518 0.399 2.09 0.241 0.2%
B 0.173 0.825 0.669 0.452 2.00 0.442 0.563
C 0.200 1.050 O.774 0.462 1.97 - 0.657 0.879
D 1.334

0.227 1.310 0.870 o.453 1.95 0.958

157



The transverse forces (FL) as determined experi-
mentally are shown plotted with the corresponding wave
profiles in Figures XXII a-d. Table XVI compares
theoretical and experimental results for values of FL
and n, (number in parenthesis is integral value). The
value of ), (w W, for reasons mentioned) is deter-
mined from (100). The theoretical values of n. are
determined from (98), and the various F 's from the
appropriate formulas (80, 82, 84, 86), with inputs

from Table V.

£ = 1.94 slugs/ft.° d = 2.25 ft.

TABLE XVI - Comparison of Theoretical and Experimental
Transverse Force Results

L | ong /Erices)
Method Theory Exp il Theory Exp.
Wave|| a-1 a-2 b-1 b-2 |Exp.
A 1{0.0883{0.0095 |0.0230|0.00248] 0.014|l2.4(2) 2|} 0.993 10.953
B 0.1680 [0.0181 0.065410.0070u 0.072ll2.7(2) 2] 1.283 |1.283
c 0.2550 0.027u10.1167i0.01255 0.128{{3.0(2) 2] 2.220 p.482 .
i !
D |l0.3800 |0.0408 0.1950 |0.02100}0.088}{3.3(2)] 2]l 2.500 h.667
C. Discussion of Results
From Table XVI and Figures XXII a-d it 1s seen

that the assumption of vortex shedding frequency

being equal to an integral multiple of wave frequency is

15
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valid. Laird [3#] found experimentally that vortex
shedding appears to occur in pairs, and this may be
why the experimental values of n, for the C and D waves
are equal to 2 rather than,j; For all experimental

runs trough shedding frequency w, was equal to crest

t
she@ding frequency Q)c, as expla;ned previously.

The vortex forces in the trough region were not
determined analytically, because, for the experimental
runs of this thesis, these forces are caused (in part)
by back-sweeping crest-shed vortices from which some
of the vorticity has been diffused out of the street
From FigureXVIIa forthe O. 5 in. dia. ¢ylinder, it 1is
seen that the experimental maximum vortex force is
43 4% of the experimental longitudinal total force and
90% of the experimental longitudinal drag force. This
90% value 1is considerably higher than the 30% value
found experimentally by Laird, Johnson, and Walker Eﬁﬂ.

From TableXVI it is seen that method (b-1) agrees
most closely with the experimental force results. Method
(b-1) refers to (84), where Cp, 18 taken as 3.44, and
the vortex length terminates where umax: = 12.5. Methods
(a-2) and (b-2), which assume C; = gjg;: are seen to give
forces which are far too small. It is seen, therefore,
that a method of solution between (a) and (b) together

with a method between (1) and (2), would give analytical
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results most closely approximating the experimental re-
sults of this thesis. The 90% ratio of C, /C, determined
experimentally for the 0.5 in. dia. cylinder (Figure XVIIa),
may indicate a basis for selection of CL' More experil- |
mental tests are required to narrow the boundaries for

the analytical forces, as shown in Table XVI, but

it 1is reassuring that the experimental forces lie

within the range defined by the proposéd theories.

D. Conclusions and Recommendations

1. The propdseﬁ method of determining a design vortex
shedding frequency 1s valid. It 1s suggested that
the designer pick a value of nc which is on the
side of the computed value to cause w, (vr a>t)

to approach the structure natural frequency “Dn'

2. Until a more accurate prediction may be made of
the vortex shedding forces, a safe design 1is to

assume CL o CD'

3. It is recommended that field tests be conducted
with ocean waves of long period to verify the
authors' procedure for the case of trough-shed

vortices.
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L, If platform rotation is considered, vortex

shedding forces will assume added importance.
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