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The use of machine learning methods for accelerating the design of crystalline materials usually requires
manually constructed feature vectors or complex transformation of atom coordinates to input the crystal
structure, which either constrains the model to certain crystal types or makes it difficult to provide chemical
insights. Here, we develop a crystal graph convolutional neural networks framework to directly learn material
properties from the connection of atoms in the crystal, providing a universal and interpretable representation
of crystalline materials. Our method provides a highly accurate prediction of density functional theory
calculated properties for eight different properties of crystals with various structure types and compositions
after being trained with 104 data points. Further, our framework is interpretable because one can extract the
contributions from local chemical environments to global properties. Using an example of perovskites, we
show how this information can be utilized to discover empirical rules for materials design.
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Machine learning (ML) methods are becoming increas-
ingly popular in accelerating the design of new materials by
predictingmaterial properties with accuracy close to ab initio
calculations, but with computational speeds orders of mag-
nitude faster [1–3]. The arbitrary size of crystal systems
poses a challenge as they need to be represented as a fixed
length vector in order to be compatible with most ML
algorithms. This problem is usually resolved by manually
constructing fixed length feature vectors using simple
material properties [1,3–6] or designing symmetry-invariant
transformations of atom coordinates [7–9]. However, the
former requires a case-by-case design for predicting different
properties, and the latter makes it hard to interpret the models
as a result of the complex transformations.
In this Letter, we present a generalized crystal graph

convolutional neural networks (CGCNN) framework for
representing periodic crystal systems that provides both
material property prediction with density functional theory
(DFT) accuracy and atomic level chemical insights. Recent
advances in “deep learning” have enabled learning from a
very raw representation of data, e.g., pixels of an image,
making it possible to build general models that outperform
traditionally expert designed representations [10]. By
looking into the simplest form of crystal representation,
i.e., the connection of atoms in the crystal, we directly build
convolutional neural networks on top of crystal graphs
generated from crystal structures. The CGCNN achieves
similar accuracy with respect to DFT calculations as DFT
compared with experimental data for eight different proper-
ties after being trained with data from the Materials Project
[11], indicating the generality of this method. We also

demonstrate the interpretability of the CGCNN by
extracting the energy of each site in the perovskite structure
from the total energy, an example of learning the contri-
bution of local chemical environments to the global
property. The empirical rules generalized from the results
are consistent with the common knowledge for discovering
more stable perovskites and can significantly reduce the
search space for high throughput screening.
The main idea in our approach is to represent the crystal

structure by a crystal graph that encodes both atomic
information and bonding interactions between atoms,
and then build a convolutional neural network on top of
the graph to automatically extract representations that are
optimum for predicting target properties by training with
DFT calculated data. As illustrated in Fig. 1(a), a crystal
graph G is an undirected multigraph which is defined by
nodes representing atoms and edges representing connec-
tions between atoms in a crystal (the method for determin-
ing atom connectivity is explained in the Supplemental
Material [12]). The crystal graph is unlike normal graphs
since it allows multiple edges between the same pair of end
nodes, a characteristic for crystal graphs due to their
periodicity, in contrast to molecular graphs. Each node i
is represented by a feature vector vi, encoding the property
of the atom corresponding to node i. Similarly, each edge
ði; jÞk is represented by a feature vector uði;jÞk correspond-
ing to the kth bond connecting atom i and atom j.
The convolutional neural networks built on top of the

crystal graph consist of two major components: convolu-
tional layers and pooling layers. Similar architectures have
been used for computer vision [22], natural language
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processing [23], molecular fingerprinting [24] and general
graph-structured data [25,26], but not for crystal property
prediction to the best of our knowledge. The convolutional
layers iteratively update the atom feature vector vi by
“convolution” with surrounding atoms and bonds with a
nonlinear graph convolution function,

vðtþ1Þ
i ¼ Conv

�
vðtÞi ; vðtÞj ; uði;jÞk

�
; ði; jÞk ∈ G: ð1Þ

After R convolutions, the network automatically learns the

feature vector vðRÞi for each atom by iteratively including its
surrounding environment. The pooling layer is then used
for producing an overall feature vector vc for the crystal,
which can be represented by a pooling function,

vc ¼ Poolðvð0Þ0 ; vð0Þ1 ;…; vð0ÞN ;…; vðRÞN Þ ð2Þ

that satisfies permutational invariance with respect to atom
indexing and size invariance with respect to unit cell
choice. In this work, a normalized summation is used as
the pooling function for simplicity, but other functions can
also be used. In addition to the convolutional and pooling
layers, two fully connected hidden layers with the depths
of L1 and L2 are added to capture the complex mapping
between crystal structure and property. Finally, an output
layer is used to connect the L2 hidden layer to predict the
target property ŷ.
The training is performed by minimizing the difference

between the predicted property ŷ and the DFT calculated

property y, defined by a cost function Jðy; ŷÞ. The whole
CGCNN can be considered as a function f parametrized
by weights W that maps a crystal C to the target property
ŷ. Using backpropagation and stochastic gradient
descent (SGD), we can solve the following optimization
problem by iteratively updating the weights with DFT
calculated data:

min
W

J(y; fðC;WÞ) ð3Þ

the learned weights can then be used to predict material
properties and provide chemical insights for future materi-
als design.
In the Supplemental Material (SM) [12], we use a simple

example to illustrate how a CGCNN composed of one
linear convolution layer and one pooling layer can differ-
entiate two crystal structures. With multiple convolution
layers, pooling layers, and hidden layers, the CGCNN can
extract any structure differences based on the atom con-
nections and discover the underlaying relations between
structure and property.
To demonstrate the generality of the CGCNN, we train

the model using calculated properties from the Materials
Project [11]. We focus on two types of generality in this
work: (1) the structure types and chemical compositions for
which our model can be applied and (2) the number of
properties that our model can accurately predict.
The database we used includes a diverse set of inorganic

crystals ranging from simple metals to complex minerals.
After removing ill-converged crystals, the full database has
46 744 materials covering 87 elements, 7 lattice systems,
and 216 space groups. As shown in Fig. 2(a), the materials
consist of as many as seven different elements, with 90%
of them binary, ternary, and quaternary compounds. The
number of atoms in the primitive cell ranges from 1 to 200,
and 90% of crystals have less than 60 atoms (Fig. S2).
Consideringmost of the crystals originate from the Inorganic
Crystal Structure Database [27], this database is a good
representation of known stoichiometric inorganic crystals.
The CGCNN is a flexible framework that allows

variance in the crystal graph representation, neural network
architecture, and training process, resulting in different f in
Eq. (3) and prediction performance. To choose the best
model, we apply a train-validation scheme to optimize the
prediction of formation energies of crystals. Each model is
trained with 60% of the data and then validated with 20% of
the data, and the best-performing model in the validation
set is selected. In our study, we find that the neural network
architecture, especially the form of convolution function in
Eq. (1), has the largest impact on prediction performance.
We start with a simple convolution function,

vðtþ1Þ
i ¼g

��X
j;k

vðtÞj ⊕uði;jÞk

�
WðtÞ

c þvðtÞi WðtÞ
s þbðtÞ

�
; ð4Þ

FIG. 1. Illustration of the crystal graph convolutional neural
networks. (a) Construction of the crystal graph. Crystals are
converted to graphs with nodes representing atoms in the unit cell
and edges representing atom connections. Nodes and edges are
characterized by vectors corresponding to the atoms and bonds in
the crystal, respectively. (b) Structure of the convolutional neural
network on top of the crystal graph. R convolutional layers and
L1 hidden layers are built on top of each node, resulting in a new
graph with each node representing the local environment of each
atom. After pooling, a vector representing the entire crystal is
connected to L2 hidden layers, followed by the output layer to
provide the prediction.
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where ⊕ denotes concatenation of atom and bond feature

vectors, WðtÞ
c , WðtÞ

s , and bðtÞ are the convolution weight
matrix, self-weight matrix, and bias of the tth layer,
respectively, and g is the activation function for introducing
nonlinear coupling between layers. By optimizing hyper-
parameters in Table S1, the lowest mean absolute error
(MAE) for the validation set is 0.108 eV=atom. One
limitation of Eq. (4) is that it uses a shared convolution

weight matrix WðtÞ
c for all neighbors of i, which neglects

the differences of interaction strength between neighbors.
To overcome this problem, we design a new convolution
function that first concatenates neighbor vectors

zðtÞði;jÞk ¼ vðtÞi ⊕ vðtÞj ⊕ uði;jÞk , then perform convolution by

vðtþ1Þ
i ¼ vðtÞi þ

X
j;k

σ
�
zðtÞði;jÞkW

ðtÞ
f þ bðtÞf

�

⊙ g
�
zðtÞði;jÞkW

ðtÞ
s þ bðtÞs

�
; ð5Þ

where ⊙ denotes element-wise multiplication and σ
denotes a sigmoid function. In Eq. (5), the σð·Þ functions
as a learned weight matrix to differentiate interactions

between neighbors and adding vðtÞi makes learning deeper
networks easier [29]. We achieve MAE on the validation
set of 0.039 eV=atom using the modified convolution

function, a significant improvement compared to Eq. (4).
In Fig. S3, we compare the effects of several other hyper-
parameters on the MAE which are much smaller than the
effect of the convolution function.
Figures 2(b) and 2(c) show the performance of the two

models on 9350 test crystals for predicting the formation
energy per atom. We find a systematic decrease of the
MAE of the predicted values compared with DFT calcu-
lated values for both convolution functions as the number
of training data is increased. The best MAEs we achieved
with Eqs. (4) and (5) are 0.136 and 0.039 eV=atom,
respectively, and 90% of the crystals are predicted within
0.3 and 0.08 eV=atom errors. In comparison, Kirklin et al.
reports that the MAE of the DFT calculation with respect to
experimental measurements in the Open Quantum
Materials Database is 0.081–0.136 eV=atom depending
on whether the energies of the elemental reference states
are fitted, although they also find a large MAE of
0.082 eV=atom between different sources of experimental
data. Given the comparison, our CGCNN approach pro-
vides a reliable estimation of DFT calculations and can
potentially be applied to predict properties calculated by
more accurate methods like GW [30] and quantum
Monte Carlo calculations [31].
After establishing the generality of the CGCNN with

respect to the diversity of crystals, we next explore its
prediction performance for different material properties.
We apply the same framework to predict the absolute
energy, band gap, Fermi energy, bulk moduli, shear moduli,
and Poisson ratio of crystals using DFT calculated data
from the Materials Project [11]. The prediction perfor-
mance of Eq. (5) is improved compared to Eq. (4) for all six
properties (Table S4). We summarize the performance in
Table I and the corresponding 2D histograms in Fig. S4.
As we can see, the MAEs of our model are close to or
higher than DFT accuracy relative to experiments for most
properties when ∼104 training data are used. For elastic
properties, the errors are higher since less data are available,
and the accuracy of DFT relative to experiments can be
expected if ∼104 training data are available (Fig. S5).

(b)(a)

(d)(c)

FIG. 2. Performance of CGCNN on the Materials Project
database [11]. (a) Histogram representing the distribution of
the number of elements in each crystal. (b) Mean absolute error as
a function of training crystals for predicting formation energy per
atom using different convolution functions. The shaded area
denotes the MAEs of DFT calculations compared with experi-
ments [28]. (c) 2D histogram representing the predicted for-
mation per atom against DFT calculated value. (d) Receiver
operating characteristic curve visualizing the result of metal-
semiconductor classification. It plots the proportion of correctly
identified metals (true positive rate) against the proportion of
wrongly identified semiconductors (false positive rate) under
different thresholds.

TABLE I. Summary of the prediction performance of seven
different properties on test sets.

Property
# of train

data Unit MAEmodel MAEDFT

Formation
energy

28 046 eV=atom 0.039 0.081–0.136 [28]

Absolute
energy

28 046 eV=atom 0.072 � � �

Band gap 16 458 eV 0.388 0.6 [32]
Fermi energy 28 046 eV 0.363 � � �
Bulk moduli 2041 log(GPa) 0.054 0.050 [13]
Shear moduli 2041 log(GPa) 0.087 0.069 [13]
Poisson ratio 2041 � � � 0.030 � � �
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Recently, Jong et al. [33] developed a statistical learning
(SL) framework using multivariate local regression on
crystal descriptors to predict elastic properties using the
same data from the Materials Project. By using the same
number of training data, our model achieves root mean
squared error (RMSE) on test sets of 0.105 log(GPa) and
0.127 log(GPa) for the bulk and shear moduli, which is
similar to the RMSE of SL on the entire data set of 0.0750
log(GPa) and 0.1378 log(GPa). Comparing the two meth-
ods, the CGCNN predicts properties by extracting features
only from the crystal structure, while SL depends on crystal
descriptors like cohesive energy and volume per atom.
Recently, 1585 new crystals with elastic properties have
been uploaded to the Materials Project database. Our model
in Table I achieves MAE of 0.077 log(GPa) for bulk
moduli and 0.114 log(GPa) for shear moduli on these
crystals, showing good generalization to materials from
potentially different crystal groups.
In addition to predicting continuous properties, the

CGCNN can also predict discrete properties by changing
the output layer. By using a softmax activation function
for the output layer and a cross entropy cost function, we
can predict the classifications of metal and semiconductor
with the same framework. In Fig. 2(d), we show the
receiver operating characteristic curve of the prediction
on 9350 test crystals. Excellent prediction performance is
achieved with the area under the curve at 0.95. By choosing
a threshold of 0.5, we get metal prediction accuracy at 0.80,
semiconductor prediction accuracy at 0.95, and overall
prediction accuracy at 0.90.
Model interpretability is a desired property for any ML

algorithmapplied inmaterials science, because it can provide
additional information for material design which may be
more valuable than simply screening a large number of
materials. However, nonlinear functions are needed to learn
the complex structure-property relations, resulting in ML
models that are difficult to interpret. The CGCNN resolves
this dilemma by separating the convolution and pooling
layers. After the R convolutional and L1 hidden layers, we

map the last atom feature vector vðRÞi to a scalar ṽi and
performa linear pooling to predict the target property directly
without the L2 hidden layers (details discussed in SM [12]).
Therefore, we can learn the contribution of different local
chemical environments, represented by ṽi for each atom, to
the target property while maintaining a model with high
capacity to ensure the prediction performance.
We demonstrate how this local chemical environment

related information can be used to provide chemical insights
and guide thematerial design by a specific example: learning
the energy of each site in perovskites from the total energy
above hull data. Perovskite is a crystal structure typewith the
form ofABX3, where the siteA atom sits at a corner position,
the site B atom sits at a body centered position, and site X
atoms sit at face centered positions [Fig. 3(a)]. The database
[34] we use includes the energy above hull of 18 928
perovskite crystals, in which A and B sites can be any

nonradioactive metals and X sites can be one or several
elements from O, N, S, and F. We use the CGCNN with a
linear pooling to predict the total energy above hull of
perovskites in the database, using Eq. (4) as the convolution
function. The resulting MAE on 3787 test perovskites is
0.130 eV=atom as shown in Fig. 3(b), which is slightly
higher than using a complete pooling layer and L2 hidden
layers (0.099 eV=atom as shown in Fig. S6) due to the
additional constraints introduced by the simplified pooling
layer. However, this CGCNNallows us to learn the energy of
each site in the crystal while training with the total energy
above hull, providing additional insights formaterial design.
Figures 3(c) and 3(d) visualize the mean of the predicted

site energies when each element occupies the A and B site,
respectively. The most stable elements that occupy the
A site are those with large radii due to the space needed for
12 coordinations. In contrast, elements with small radii like
Be, B, and Si are the most unstable for occupying the A site.
For the B site, elements in groups 4, 5, and 6 are the most
stable throughout the periodic table. This can be explained
by crystal field theory, since the configuration of d
electrons of these elements favors the octahedral co-
ordination in the B site. Interestingly, the visualization
shows that large atoms from groups 13–15 are stable in the
A site, in addition to the well-known region of groups 1–3

(a) (b)

(c)

(d)

FIG. 3. Extraction of site energy of perovskites from total
formation energy. (a) Structure of perovskites. (b) 2D histogram
representing the predicted total energy above hull against DFT
calculated value. (c),(d) Periodic table with the color of each
element representing the mean of the site energy when the
element occupies A site (c) or B site (d).
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elements. Inspired by this result, we applied a combina-
torial search for stable perovskites using elements from
groups 13–15 as the A site and groups 4–6 as the B site.
Because of the theoretical inaccuracies of DFT calculations
and the possibility of metastable phases that can
be stabilized by temperature, defects, and substrates, many
synthesizable inorganic crystals have positive calculated
energies above hull at 0 K. Some metastable nitrides
can even have energies up to 0.2 eV=atom above hull as
a result of the strong bonding interactions [35]. In this work,
since some of the perovskites are also nitrides, we choose to
set the cutoff energy for potential synthesizability at
0.2 eV=atom. We discovered 33 perovskites that fall within
this threshold out of 378 in the entire data set, amongwhich 8
arewithin the cutoff out of 58 in the test set (Table S5).Many
of these compounds like PbTiO3 [36], PbZrO3 [36], SnTaO3

[37], and PbMoO3 [38] have been experimentally syn-
thesized. Note that PbMoO3 has calculated energy of
0.18 eV=atom above hull, indicating that our choice of
cutoff energy is reasonable. In general, chemical insights
gained from the CGCNN can significantly reduce the search
space for high throughput screening. In comparison, there
are only 228 potentially synthesizable perovskites out of
18 928 in our database: the chemical insight increased the
search efficiency by a factor of 7.
In summary, the crystal graph convolutional neural net-

works present a flexible machine learning framework for
material property prediction and design knowledge extrac-
tion. The framework provides a reliable estimation of DFT
calculations using around 104 training data for eight proper-
ties of inorganic crystals with diverse structure types and
compositions. As an example of knowledge extraction, we
apply this approach to the design of newperovskitematerials
and show that information extracted from the model is
consistent with common chemical insights and significantly
reduces the search space for high throughput screening.
The code for the CGCNN is available from Ref. [39].
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