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Search for Higgsino pair production in pp collisions at
ffiffi
s

p
= 13 TeV

in final states with large missing transverse momentum
and two Higgs bosons decaying via H → bb̄
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*

(CMS Collaboration)

(Received 14 September 2017; published 8 February 2018)

Results are reported from a search for new physics in 13 TeV proton-proton collisions in the final state
with large missing transverse momentum and two Higgs bosons decaying via H → bb̄. The search uses a
data sample accumulated by the CMS experiment at the LHC in 2016, corresponding to an integrated
luminosity of 35.9 fb−1. The search is motivated by models based on gauge-mediated supersymmetry
breaking, which predict the electroweak production of a pair of Higgsinos, each of which can decay via a
cascade process to a Higgs boson and an undetected lightest supersymmetric particle. The observed event
yields in the signal regions are consistent with the standard model background expectation obtained from
control regions in data. Higgsinos in the mass range 230–770 GeVare excluded at 95% confidence level in
the context of a simplified model for the production and decay of approximately degenerate Higgsinos.
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I. INTRODUCTION

The discovery of a Higgs boson [1–3] at the electroweak
scale, with a mass mH ≈ 125 GeV [4–6], provides a new
tool that can be used in searches for particles associated
with physics beyond the standard model (SM). Particles
predicted by models based on supersymmetry (SUSY)
[7–14] are expected in many cases to decay into Higgs
bosons with significant branching fractions, and in some
cases, the presence of a Higgs boson can become a critical
part of the experimental signature [15–19].
We perform a search for processes leading to Higgs

boson pair production in association with large missing
transverse momentum, pmiss

T . Each Higgs boson is recon-
structed in its dominant decay mode, H → bb̄, which has a
branching fraction of approximately 60%. Such a signature
can arise, for example, in models based on SUSY, in which
an electroweak process can lead to the production of two
SUSY particles, each of which decays into a Higgs boson
and another particle that interacts so weakly that it escapes
detection in the apparatus. In this paper, we denote the
particle in the search signature as H because it corresponds
to the particle observed by ATLAS and CMS. However, in
the context of SUSY models such as the minimal super-
symmetric standard model (MSSM), this particle is usually

assumed to correspond to the lighter of the two CP-even
Higgs particles, denoted as h. The search uses an event
sample of proton-proton (pp) collision data at

ffiffiffi
s

p ¼
13 TeV, corresponding to an integrated luminosity of
35.9 fb−1, collected by the CMS experiment at the
CERN LHC. Searches for this and related decay scenarios
have been performed by ATLAS [19,20] and CMS [15–17]
using 7 and 8 TeV data. The analysis described here is
based on an approach developed in Ref. [15].
While the observation of a Higgs boson completes the

expected spectrum of SM particles, the low value of its
mass raises fundamental questions that suggest the exist-
ence of new physics beyond the SM. Assuming that
the Higgs boson is a fundamental (that is, noncomposite)
spin-0 particle, stabilizing the electroweak scale (and the
Higgs boson mass with it) is a major theoretical challenge,
referred to as the gauge hierarchy problem [21–26].
Without invoking new physics, the Higgs boson mass
would be pulled by quantum loop corrections to the cutoff
scale of the theory, which can be as high as the Planck
scale. Preventing such behavior requires an extreme degree
of fine tuning of the theoretical parameters. Alternatively,
stabilization of the Higgs boson mass can be achieved
through a variety of mechanisms that introduce new
physics at the TeV scale, such as SUSY.
The class of so-called natural SUSY models [27–31]

contains the ingredients necessary to stabilize the electro-
weak scale. These models are the object of an intensive
program of searches at the LHC. In any SUSY model,
additional particles are introduced, such that all fermionic
(bosonic) degrees of freedom in the SM are paired with
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corresponding bosonic (fermionic) degrees of freedom in
the extended theory. In natural SUSY models, certain
classes of partner particles are expected to be light.
These include the four Higgsinos ( ~H0

1;2, ~H�); both top
squarks, ~tL and ~tR, which have the same electroweak
couplings as the left- (L) and right- (R) handed top quarks,
respectively; the bottom squark with left-handed couplings
( ~bL); and the gluino (~g). Of these, the Higgsinos are
generically expected to be the lightest. Furthermore, in
natural scenarios, the four Higgsinos are approximately
degenerate in mass, so that transitions among these SUSY
partners would typically produce only very soft (i.e., low
momentum) additional particles, which would not contrib-
ute to a distinctive experimental signature.
In general, the gaugino and Higgsino fields can mix,

leading to mass eigenstates that are classified either as
neutralinos (~χ0i , i ¼ 1–4) or charginos (~χ�i , i ¼ 1–2).
If the ~χ01 is the lightest SUSY particle (LSP), it is stable
in models that conserve R-parity [32] and, because of its
weak interactions, would escape experimental detection.
Achieving sensitivity to scenarios in which the Higgsino
sector is nearly mass degenerate and contains the LSP
poses a significant experimental challenge because the
events are characterized by low-pT SM decay products and
small values of pmiss

T [33–35]. Searches based on signatures
involving initial-state radiation (ISR) recoiling against the
pair produced Higgsinos have already excluded limited
regions of phase space for these scenarios [36–40].
However, achieving broad sensitivity based on this strategy
is expected to require the large data samples that will be
accumulated by the HL-LHC [41].
An alternative scenario arises, however, if the lightest

Higgsino/neutralino is not the LSP, but the next-to-lightest
SUSY particle (NLSP) [42]. The LSP can be another
particle that is generic in SUSY models, the goldstino ( ~G).
The goldstino is the Nambu–Goldstone particle associated
with the spontaneous breaking of global supersymmetry
and is a fermion. In a broad range of models in which
SUSY breaking is mediated at a low scale, such as gauge-
mediated supersymmetry breaking (GMSB) models
[43,44], the goldstino is nearly massless on the scale of
the other particles and becomes the LSP. If SUSY is
promoted to a local symmetry, as is required for the full
theory to include gravity, the goldstino is “eaten” by the
SUSY partner of the graviton, the gravitino (J ¼ 3=2), and
provides two of its four degrees of freedom. In the region of
parameter space involving prompt decays to the gravitino,
only the degrees of freedom associated with the goldstino
have sufficiently large couplings to be relevant, so it is
common to denote the LSP in either case as a goldstino. In
these GMSB models, the goldstino mass is generically at
the eV scale.
If the lighter neutralinos and charginos are dominated by

their Higgsino content and are thus nearly mass degenerate,

their cascade decays can all lead to the production of the
lightest neutralino, ~χ01 (now taken to be the NLSP), and soft
particles. Integrating over the contributions from various
allowed combinations of produced charginos and neutra-
linos (~χ01 ~χ

0
2, ~χ01 ~χ

�
1 , ~χ02 ~χ

�
1 , ~χ�1 ~χ

∓
1 ) therefore leads to an

effective rate for ~χ01 ~χ
0
1 production [45,46] that is signifi-

cantly larger than that for any of the individual primary
pairs, resulting in a boost to the experimental sensitivity.
The Higgsino-like NLSP would then decay via ~χ01 → γ ~G,
~χ01 → H ~G, or ~χ01 → Z ~G, where the goldstino can lead to
large pmiss

T . The branching fractions for these decay modes
vary depending on a number of parameters including tan β,
the ratio of the Higgs vacuum expectation values, and the
branching fraction for ~χ01 → H ~G can be substantial. As a
consequence, the signature HH þ pmiss

T with H → bb̄ can
provide sensitivity to the existence of a Higgsino sector in
the important class of scenarios in which the LSP mass lies
below the Higgsino masses.
This article presents a search for Higgsinos in events

with pmiss
T > 150 GeV and at least three jets identified as

originating from b quark hadronization (b-tagged jets). In
each event, we reconstruct two Higgs boson candidates and
define search regions within a Higgs boson mass window.
The background is dominated by tt̄ production at low and
intermediate pmiss

T , and by Z → νν̄ production in associa-
tion with b quarks at high pmiss

T . The background is
estimated entirely from data control regions corresponding
to events with two b-tagged jets and events with three or
four b-tagged jets outside the Higgs boson mass window.
Systematic uncertainties on the background prediction are
derived from both dedicated data control regions for tt̄,
Z → νν̄ and QCD multijet production as well as from the
simulation of the background events in the search regions.
Results are interpreted in the simplified model frame-

work [47–49] using the model shown in Fig. 1, hereafter
referred to as TChiHH. In this model, two ~χ01 NLSPs are
produced, each decaying via ~χ01 → H ~G. The cross section is
calculated under the assumption that at least one of the ~χ01

FIG. 1. Diagram for the gauge-mediated symmetry breaking
signal model, ~χ01 ~χ

0
1 → HH ~G ~G (TChiHH), where ~G is a goldstino.

The NLSPs ~χ01 are not directly pair produced, but are instead
produced in the cascade decays of several different combinations of
neutralinos and charginos, as described in the text.
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NLSPs is produced in a cascade decay of ~χ02 or ~χ�1 , as
described above. This situation arises when the mass
splittings among charginos and neutralinos are large
enough that the decays to ~χ01 occur promptly [50], while
also small enough that the additional soft particles fall out
of acceptance.

II. THE CMS DETECTOR

The central feature of the CMS detector is a super-
conducting solenoid of 6 m internal diameter, providing a
magnetic field of 3.8 T. Within the solenoid volume are the
tracking and calorimeter systems. The tracking system,
composed of silicon-pixel and silicon-strip detectors, mea-
sures charged particle trajectories within the pseudorapidity
range jηj < 2.5, where η≡ − ln½tanðθ=2Þ� and θ is the polar
angle of the trajectory of the particle with respect to the
counterclockwise proton beam direction. A lead tungstate
crystal electromagnetic calorimeter (ECAL), and a brass
and scintillator hadron calorimeter (HCAL), each com-
posed of a barrel and two endcap sections, provide energy
measurements up to jηj ¼ 3. Forward calorimeters extend
the pseudorapidity coverage provided by the barrel and
endcap detectors up to jηj ¼ 5. Muons are identified and
measured within the range jηj < 2.4 by gas-ionization
detectors embedded in the steel flux-return yoke outside
the solenoid. The detector is nearly hermetic, permitting the
accurate measurement of pmiss

T . A more detailed description
of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic varia-
bles, is given in Ref. [51].

III. SIMULATED EVENT SAMPLES

Several simulated event samples are used for modeling
the SM background and signal processes. While the
background estimation in the analysis is performed from
control samples in the data, simulated event samples are
used to estimate uncertainties, as well as to build an
understanding of the characteristics of the selected back-
ground events.
The production of tt̄þ jets, W þ jets, Z þ jets, and

quantum chromodynamics (QCD) multijet events is simu-
lated with the Monte Carlo (MC) generator MADGRAPH5_
aMC@NLO 2.2.2 [52] in leading-order (LO) mode [53].
Single top quark events are modeled with POWHEG v2

[54,55] for the t-channel and tW production, and
MADGRAPH5_aMC@NLO at next-to-leading order (NLO)
[56] for the s-channel. Additional small backgrounds, such
as tt̄ production in association with bosons, diboson
processes, and tt̄tt̄, are also produced at NLO with either
MADGRAPH5_aMC@NLO or POWHEG. All events are gen-
erated using the NNPDF 3.0 [57] set of parton distribution
functions. Parton showering and fragmentation are per-
formed with the PYTHIA 8.205 [58] generator with the
underlying event model based on the CUETP8M1 tune

[59]. The detector simulation is performed with GEANT4

[60–62]. The cross sections used to scale simulated event
yields are based on the highest order calculation avail-
able [54,55,63–71], which for the most part correspond to
NLO or next-to-NLO precision.
Signal events for the TChiHH simplified model are

generated for 36 values of the Higgsino mass between
127 and 1000 GeV. The mass points are denoted as
TChiHHðm~χ0

1
; m ~GÞ, where m~χ0

1
is the Higgsino mass and

m ~G is the mass of the LSP, both in units of GeV. While the
value ofm ~G is fixed to 1 GeV in the simulation for technical
reasons, the resulting event kinematics are consistent with
an approximately massless LSP such as the goldstino
in GMSB. The yields are normalized to the NLOþ
next-to-leading logarithmic (NLL) cross section [45,46].
The production cross sections are calculated in the limit of
mass degeneracy among Higgsinos, ~χ01, ~χ02, and ~χ�1 . All
other supersymmetric partners of the SM particles are
assumed to be heavy (100 TeV) and thus essentially
decoupled, a simplification that has a very small impact
on Higgsino pair production (e.g., the cross section changes
less than 2% when the masses of the gluino and squarks are
lowered down to 500 GeV). Following the convention of
real mixing matrices and signed neutralino masses [72], we
set the sign of the mass of ~χ01 (~χ

0
2) to þ1 (−1). The lightest

two neutralino states are defined as symmetric (antisym-
metric) combinations of Higgsino states by setting the
product of the elements Ni3 and Ni4 of the neutralino
mixing matrixN toþ0.5 (−0.5) for i ¼ 1 (2). The elements
U12 and V12 of the chargino mixing matrices U and V are
set to 1. All chargino and neutralino decays in the
simplified model are taken to be prompt, although the
lifetimes of particles in a physical model would depend on
the mass splitting between the Higgsinolike states, which
become long-lived in the limit of degenerate masses. Both
Higgs bosons in each event are forced to decay to bb̄, which
is accounted for by scaling the signal event yields with the
branching fraction of 58.24% [73]. The signal contribution
from Higgs boson decays other than H → bb̄ is small in
this analysis and is ignored. Signal events are generated in a
manner similar to that for the SM backgrounds, with the
MADGRAPH5_aMC@NLO 2.2.2 generator in LO mode using
the NNPDF 3.0 set of parton distribution functions and
followed by PYTHIA 8.205 for showering and fragmentation.
The detector simulation is performed with the CMS fast
simulation package [74] with scale factors applied to
compensate for any differences with respect to the full
simulation.
Finally, to model the presence of additional pp collisions

from the same beam crossing as the primary hard-scattering
process or another beam crossing adjacent to it (“pileup”
interactions), the simulated events are overlaid with multi-
ple minimum-bias events, which are also generated with the
PYTHIA 8.205 generator with the underlying event model
based on the CUETP8M1 tune.
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IV. EVENT RECONSTRUCTION

A. Object definitions

The reconstruction of physics objects in an event
proceeds from the candidate particles identified by the
particle-flow (PF) algorithm [75], which uses information
from the tracker, calorimeters, and muon systems to
identify the candidates as charged or neutral hadrons,
photons, electrons, or muons. The reconstructed vertex
with the largest value of summed physics-object p2

T, with
pT denoting transverse momentum, is taken to be the
primary pp interaction vertex (PV). The physics objects
used in this context are the objects returned by a jet finding
algorithm [76,77] applied to all charged tracks associated
with the vertex under consideration, plus the corresponding
associated pmiss

T .
The charged PF candidates associated with the PV

and the neutral PF candidates are clustered into jets
using the anti-kT algorithm [76] with a distance param-
eter R ¼ 0.4, as implemented in the FASTJET package
[77]. The jet momentum is determined as the vectorial
sum of all particle momenta in the jet. Jet energy
corrections are derived based on a combination of
simulation studies, accounting for the nonlinear detector
response and the presence of pileup, together with
in situ measurements of the pT balance in dijet and γ þ
jet events [78]. The resulting calibrated jet is required to
satisfy pT > 30 GeV and jηj ≤ 2.4. Additional selection
criteria are applied to each event to remove spurious jet-
like features originating from isolated noise in certain
HCAL regions [79].
A subset of the jets are “tagged” as originating from b

quarks using DEEPCSV [80], a new b tagging algorithm
based on a deep neural network with four hidden layers
[81]. We use all three of the DEEPCSV algorithm working
points: loose, medium, and tight, defined by the values of
the discriminator requirement for which the rates for
misidentifying a light-flavor jet as a b jet are 10%, 1%,
and 0.1%, respectively. The b tagging efficiency for jets
with pT in the 80–150 GeV range is approximately 86%,
69%, and 51% for the loose, medium, and tight working
points, respectively, and gradually decreases for lower
and higher jet pT. The simulation is reweighted to
compensate for any differences with respect to data
based on measurements of the b-tagging efficiency and
mistag rate for each working point in dedicated data
samples [80].
The missing transverse momentum, pmiss

T , is given by
the magnitude of p⃗miss

T , the negative vector sum of the
transverse momenta of all PF candidates [82,83], adjusted
for known detector effects by taking into account the jet
energy corrections. Filters are applied to reject events with
well defined anomalous sources of pmiss

T arising from
calorimeter noise, dead calorimeter cells, beam halo, and
other effects.

Since the targeted signature is fully hadronic, contami-
nation from final states involving leptons in the search
region is suppressed by vetoing events with reconstructed
lepton candidates. Electrons are identified by associating a
charged particle track with an ECAL supercluster [84] and
are required to have pT > 10 GeV and jηj < 2.5. Muons
are identified by associating tracks in the muon system with
those found in the silicon tracker [85] and are required to
satisfy pT > 10 GeV and jηj < 2.4.
To preferentially consider only leptons that originate in

the decay of W and Z bosons, leptons are required to be
isolated from other PF candidates using an optimized
version of the “mini-isolation” [86,87]. The isolation
Imini is obtained by summing the transverse momentum
of the charged hadrons, neutral hadrons, and photons
within ΔR≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔϕÞ2 þ ðΔηÞ2
p

< R0 of the lepton
momentum vector p⃗l, where ϕ is the azimuthal angle in
radians and R0 is given by 0.2 for pl

T ≤ 50 GeV,
ð10 GeVÞ=pl

T for 50 < pl
T < 200 GeV, and 0.05 for

pl
T ≥ 200 GeV. Electrons (muons) are then required to

satisfy Imini=pl
T < 0.2ð0.1Þ.

As described in Sec. V, the dominant background arises
from the production of single-lepton tt̄ events in which
the lepton is a τ decaying hadronically, or is a light lepton
that is either not reconstructed or fails the lepton selection
criteria, including the pT threshold and the isolation
requirements. To reduce this background, we veto events
with any additional isolated tracks corresponding to lep-
tonic or hadronic PF candidates. To reduce the influence of
tracks originating from pileup, isolated tracks are consid-
ered only if their closest distance of approach along the
beam axis to a reconstructed vertex is smaller for the
primary event vertex than for any other vertex.
The requirements for the definition of an isolated track

differ slightly depending on whether the track is identified
as leptonic or hadronic by the PF algorithm. For leptonic
tracks, we require pT > 5 GeV and Itrk < 0.2, where Itrk is
the scalar pT sum of other charged tracks within ΔR < 0.3
of the primary track, divided by the pT value of the primary
track. For hadronic tracks, we apply slightly tighter require-
ments to reduce hadronic (non-τ) signal loss: pT > 10 GeV
and Itrk < 0.1. To minimize the signal inefficiency due to
this veto, isolated tracks are considered only if they are
consistent with originating from a W boson decay, spe-
cifically, if the transverse mass of the track and the missing
transverse momentum satisfy

mTðp⃗trk
T ; p⃗miss

T Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ptrk

T pT
miss½1 − cosðΔϕp⃗trk

T ;p⃗miss
T
Þ�

q
< 100 GeV; ð1Þ

where p⃗trk
T is the transverse momentum of the track and

Δϕp⃗trk
T ;p⃗miss

T
is the azimuthal separation between the track

and p⃗miss
T .
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The majority of QCD multijet events containing high
pmiss
T have at least one jet with undermeasured momentum

and thus a spurious momentum imbalance. A signature of
such an event is a jet closely aligned in direction with the
p⃗miss
T vector. To suppress this background, we place the

following requirements on the angle Δϕi between the ith
highest pT jet and p⃗miss

T for i ¼ 1, 2, 3, 4: Δϕ1 > 0.5,
Δϕ2 > 0.5, Δϕ3 > 0.3, and Δϕ4 > 0.3. These conditions
are hereafter collectively referred to as the high Δϕ
requirement.
The number of jets satisfying the criteria described above

is denoted as Njets, while the numbers of these jets tagged
with the loose, medium, and tight b tagging working points
are labeled as Nb;L, Nb;M, and Nb;T, respectively. By
definition, the jets identified by each b tagging working
point form a subset of those satisfying the requirements of
looser working points.

B. Definition of b tag categories

To optimize signal efficiency and background rejection,
we define the following mutually exclusive b tag
categories:

(i) 2b category: Nb;T ¼ 2, Nb;M ¼ 2, Nb;L ≥ 2,
(ii) 3b category: Nb;T ≥ 2, Nb;M ¼ 3, Nb;L ¼ 3, and
(iii) 4b category: Nb;T ≥ 2, Nb;M ≥ 3, Nb;L ≥ 4.
The 2b category is used as a control sample to

determine the kinematic shape of the background. Most
of the signal events lie in the 3b and 4b categories. This
categorization is found to have superior performance with
respect to other combinations of working points. For
instance, the simpler option of only using medium b tags
results in a 2b control sample that has a larger contri-
bution from QCD multijet production and a 4b sample
with smaller signal efficiency.
To study various sources of background with higher

statistical precision, we also define the following b tag
categories with looser requirements:

(i) 0b category: Nb;M ¼ 0,
(ii) 1b category: Nb;M ¼ 1.

We will use Nb as a shorthand when discussing b tag
categories as an analysis variable, and Nb;L, Nb;M, and Nb;T

when discussing numbers of b-tagged jets for specific
working points.

C. Higgs boson pair reconstruction

The principal visible decay products in signal events are
the four b jets from the decay of the two Higgs bosons.
Additional jets may arise from initial- or final-state radi-
ation as well as pileup. To reconstruct both Higgs bosons,
we choose the four jets with the largest DEEPCSV dis-
criminator values, i.e., the four most b-quark-like jets.
These four jets can be grouped into three different pairs
of Higgs boson candidates. Of the three possibilities,
we choose the one with the smallest mass difference

Δm between the two Higgs boson candidate masses mH1

and mH2
,

Δm≡ jmH1
−mH2

j: ð2Þ

This method exploits the fact that signal events contain two
particles of identical mass, without using the known value
of the Higgs boson mass itself. Methods that use the known
mass to select the best candidate tend to sculpt an artificial
peak in the background.
Only events where the masses of the two Higgs boson

candidates are similar, Δm < 40 GeV, are kept. We then
calculate the average mass as

hmi≡mH1
þmH2

2
: ð3Þ

As discussed in Sec. VI, the search is then performed
within the Higgs boson mass window defined as
100 < hmi ≤ 140 GeV.
After selecting the two Higgs boson candidates, we

compute the distance ΔR between the two jets in each of
theH → bb̄ candidate decays. We then define ΔRmax as the
larger of these two values,

ΔRmax ≡max ðΔRH1
;ΔRH2

Þ: ð4Þ

In the typical configuration of signal events satisfying
the baseline requirements, ΔRmax is small because the
Higgs bosons tend to have nonzero transverse boost and,
thus, the two jets from the decay of a Higgs boson tend to
lie near each other in η and ϕ. In contrast, for semi-
leptonic tt̄ background events, three of the jets typically
arise from a top quark that decays via a hadronically
decaying W boson while the fourth jet arises from a b
quark from the other top quark decay. Therefore, three of
the jets tend to lie within the same hemisphere while the
fourth jet is in the opposite hemisphere. One of the Higgs
boson candidates is thus formed from jets in both hemi-
spheres, and ΔRmax tends to be larger than it is for signal
events.

V. TRIGGER AND EVENT SELECTION

The data sample was obtained with triggers that require
the online pmiss

T value to be greater than 100 to 120 GeV, the
applied threshold varying with the instantaneous luminos-
ity delivered by the LHC. This variable is computed with
trigger-level quantities, and therefore has somewhat worse
resolution than the corresponding offline variable. The
trigger efficiency measured as a function of offline pmiss

T , in
samples triggered by a high-pT isolated electron, rises
rapidly from about 60% at pmiss

T ¼ 150 GeV to 92% for
pmiss
T ¼ 200 GeV and to over 99% for pmiss

T > 300 GeV.
The systematic uncertainty in the trigger efficiency is
obtained by comparing the nominal efficiency with that
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found in different kinematic regions, with various reference
triggers, and with the simulation. This uncertainty is
about 7% for pmiss

T ¼ 150 GeV and decreases to 0.7%
for pmiss

T > 300 GeV.
Several data control samples are employed to validate

the analysis techniques and to estimate systematic uncer-
tainties in the background estimates. The control sample
for the principal background from tt̄ events requires
exactly one electron or one muon, while the Z → νν̄
background is studied with a control sample requiring
two leptons consistent with a Z → lþl− decay. These
data samples were obtained with triggers that require at
least one electron or muon with pT greater than 27 or
24 GeV, respectively.
Signal events have four b jets from the decay of two

Higgs bosons and no isolated leptons, with any additional
hadronic activity coming from initial- or final-state radi-
ation. Thus, we select events with four or five jets, no
leptons or isolated tracks,Nb;T ≥ 2, pmiss

T > 150 GeV, high
Δϕ, Δm < 40 GeV, and ΔRmax < 2.2. These selection
requirements, listed in the top half of Table I, are referred
to as the baseline selection, while the bottom half of that
table shows the further reduction in background in increas-
ingly more sensitive search bins. The distributions of Δm,
ΔRmax, and hmi in the 4b category are shown in Fig. 2 in
data and simulation. The actual background prediction,
however, is based on data control samples, as described in
the next section.

Based on the simulation, after the baseline selection,
more than 85% of the remaining SM background arises
from semileptonic tt̄ production. Approximately half of this
contribution corresponds to tt̄ events with an electron or a
muon in the final state that is either out of acceptance or not
identified, while the other half involves final states with a
hadronically decaying τ lepton. The contributions from
events with a W or Z boson in association with jets
(V þ jets) are about 10% and are dominated by Z → νν̄
decays. The background from QCDmultijet events after the
baseline selection is very small due to the combination of
pmiss
T , Δϕ, and Nb requirements.
As shown in Fig. 2, the pmiss

T distribution of the signal is
highly dependent on the Higgsino mass. To further enhance
the sensitivity of the analysis, we therefore subdivide the
search region into four pmiss

T bins: 150 < pmiss
T ≤ 200 GeV,

200 < pmiss
T ≤ 300 GeV, 300 < pmiss

T ≤ 450 GeV, and
pmiss
T > 450 GeV. The background estimation procedure

described in Sec. VI is then applied separately in each of the
four pmiss

T bins.

VI. BACKGROUND ESTIMATION

A. Method

The background estimation method is based on the
observation that the hmi distribution is approximately
uncorrelated with the number of b tags. As shown in
Fig. 3, the hmi shapes for the three b tag categories agree

TABLE I. Event yields obtained from simulated event samples scaled to an integrated luminosity of 35.9 fb−1, as the event selection
criteria are applied. The category “tt̄þ X” is dominated by tt̄ (98.5%), but also includes small contributions from tt̄tt̄, tt̄W, tt̄Z, tt̄H, and
tt̄γ backgrounds. The category “V þ jets” includes Z þ jets and W þ jets backgrounds in all their decay modes. The category “Other”
includes ZZ, WZ, WW, WHð→ bb̄Þ, and ZHð→ bb̄Þ processes. The event selection requirements listed up to and including ΔRmax <
2.2 are defined as the baseline selection. The trigger efficiency is applied as an event weight and is first taken into account in the
pmiss
T > 150 GeV row. The uncertainties in the “Total SM bkg.” column is statistical only. The columns corresponding to the yields for

three signal benchmark points are labeled by TChiHHðm~χ0
1
; m ~GÞ, with m~χ0

1
and m ~G in units of GeV. The simulated samples for TChiHH

(225,1), TChiHH(400,1), and TChiHH(700,1) are equivalent to 10, 100, and over 1000 times the data sample, respectively, so the
statistical uncertainties in the signal yields are small.

TChiHH TChiHH TChiHH
L ¼ 35.9 fb−1 Other Single t QCD V þ jets tt̄þ X Total SM bkg. (225,1) (400,1) (700,1)

No selection � � � � � � � � � � � � � � � � � � 10 477.0 1080.3 84.0
0l, 4–5 jets � � � � � � � � � � � � � � � � � � 4442.0 544.9 44.6
Nb;T ≥ 2 � � � � � � � � � � � � � � � � � � 2509.3 308.9 23.9
pmiss
T > 150 GeV 122.3 1847.0 13 201.4 2375.8 26 797.7 44 344.2� 778.5 509.5 204.2 20.4

Track veto 91.4 1130.1 12 251.8 1987.0 16 910.1 32 370.5� 770.5 476.9 196.3 19.9
High Δϕ 62.3 688.4 1649.0 1466.6 12 027.0 15 893.4� 482.6 267.2 162.3 17.5
jΔmj < 40 GeV 35.9 366.0 831.9 745.5 7682.3 9661.6� 440.8 191.8 119.4 12.2
ΔRmax < 2.2 14.2 138.2 147.0 336.9 3014.2 3650.5� 90.2 98.3 79.6 10.1

100 < hmi ≤ 140 GeV 3.8 42.3 14.0 75.2 992.0 1127.3� 10.1 72.9 61.0 8.3
3bþ 4b 0.1 3.4 3.2 7.1 109.0 122.9� 3.9 54.9 46.5 6.3
4b 0.1 0.7 3.2 1.5 27.3 32.8� 3.4 38.1 32.8 4.6
pmiss
T > 200 GeV 0.1 0.3 3.2 1.1 9.4 14.1� 3.3 16.2 27.4 4.3

pmiss
T > 300 GeV 0.0 0.1 0.0 0.4 1.1 1.7� 0.2 2.0 11.5 3.5

pmiss
T > 450 GeV 0.0 0.0 0.0 0.1 0.1 0.1� 0.1 0.0 1.1 2.0
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within the statistical uncertainty in the simulated samples.
This behavior can be understood by noting that the back-
ground in all three b tag categories is dominated by events
containing only two b quarks, with the additional b-tagged
jets in the 3b and 4b categories being mistagged light-
flavor or gluon jets. The background simulation indicates
that only 20% (37%) of the events in the 3b (4b) selection
have more than two b quarks. As a result, the four jets used
to construct hmi in the 3b and 4b categories arise largely
from the same fundamental processes as those with two
b-tagged jets, and thus the shape of the average mass
distribution is independent of Nb for Nb ≥ 2.
Taking advantage of this observation, we estimate the

background contribution to each signal bin with an ABCD
method [87] that employs hmi and the b tag categories as

the two ABCD variables similarly to the 8 TeV analysis
[15]. We define the Higgs boson mass window (HIG
region) as the events with hmi within 100 to 140 GeV,
and the Higgs boson mass sideband (SBD region) as the
events with 0< hmi<100GeV or 140 < hmi < 200 GeV.
The mass window is chosen to optimize the signal
sensitivity, taking into account the background distribution
and the asymmetry in the Higgs boson mass resolution. The
3b and 4b SBD regions, together with the shape of the hmi
distribution in the 2b category, are then used to determine
the background in the signal-enriched 3b and 4b HIG
regions independently for each pmiss

T bin as follows:

μbkgHIG;3b ¼ RμbkgSBD;3b and μbkgHIG;4b ¼ RμbkgSBD;4b: ð5Þ
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FIG. 2. Distributions of Δm, ΔRmax, hmi, and pmiss
T for data and simulated background samples, as well as three signal benchmark

points denoted as TChiHHðm~χ0
1
; m ~GÞ, withm~χ0

1
andm ~G in units of GeV. All figures include baseline requirements (except on the variable

being plotted in the case of Δm and ΔRmax). The Δm, hmi, and ΔRmax distributions also include the 4b selection. The simulation is
normalized to the observed data yields. The gray shading indicates the statistical uncertainty in the total simulated background. The
vertical dotted lines indicate baseline requirements in the top row figures, the search region mass window in hmi in the bottom left figure,
and the pmiss

T binning in the bottom right figure. The last bin includes overflow.
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Here, μbkgSBD;nb and μbkgHIG;nb are the background rates for
each b tag category (n ¼ 2, 3, 4) in the SBD and HIG
search regions, respectively, and R is the ratio of the
background rate in the HIG region to that in the SBD
region. In the limit that the b tag category and hmi are
uncorrelated, R is the same for the three b tag categories:

R≡
 
μbkgHIG

μbkgSBD

!
2b

¼
 
μbkgHIG

μbkgSBD

!
3b

¼
 
μbkgHIG

μbkgSBD

!
4b

: ð6Þ

The closure of the background estimation method, that
is, the ability of Eq. (5) to predict the background rates in
the signal regions, is quantified with the double ratios

κ3b ¼
 
μbkgHIG

μbkgSBD

!
3b

, 
μbkgHIG

μbkgSBD

!
2b

and

κ4b ¼
 
μbkgHIG

μbkgSBD

!
4b

, 
μbkgHIG

μbkgSBD

!
2b

: ð7Þ

These κ factors measure the impact of any residual
correlation between the b tag category and hmi.
Figure 4 shows that the κ factors in simulation are
consistent with unity for both the 3b and 4b regions across
the full pmiss

T range, demonstrating the validity of the
fundamental assumption of the ABCD method. In
Sec. VII, we study the closure of the method in data
control samples and estimate the associated systematic
uncertainties in the background prediction.

B. Implementation

The method outlined in Sec. VI A is implemented with a
likelihood function that incorporates the statistical and
systematic uncertainties associated with the background
prediction and the signal model, and also accounts for
signal contamination in all control regions.
The terms in the likelihood function corresponding to the

observed yields in all analysis regions, reflecting the
parameterization of the ABCD method and the signal
contributions to each bin, can be written as the following
product of Poisson probability density functions (pdfs):

LABCD

¼
Y4
m¼1

Y4
n¼2

PoissonðNdata
SBD;nb;mjμbkgSBD;nb;m þ rμsigSBD;nb;mÞ

×
Y4
m¼1

Y4
n¼2

PoissonðNdata
HIG;nb;mjRμbkgSBD;nb;m þ rμsigHIG;nb;mÞ:

ð8Þ
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FIG. 3. Distribution of hmi after the baseline selection, showing
the agreement between the hmi shapes among the three b tag
categories. The comparison is based on simulation including all
backgrounds except QCD multijet production, for which the
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multijet events account for less than 5% of the total yield. The
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Here, the index m runs over the four pmiss
T bins, the index n

runs over the three b tag categories, Ndata are the observed
data yields, μsig are the expected signal rates, and r is the
parameter quantifying the signal strength relative to the
expected yield across all analysis bins. The four main
floating parameters describing the fitted background for
each pmiss

T bin m are the three sideband background rates
μbkgSBD;nb;m and the ratio R.
The full likelihood function is given by the product of

LABCD, Poisson pdfs constraining the signal shape and its
statistical uncertainty in each bin, and log-normal pdfs
constraining nuisance parameters that account for the
systematic uncertainties in the closure and the signal
efficiency. These nuisance parameters were omitted from
Eq. (8) for simplicity.
Following the approach in Ref. [87], the likelihood

function is employed in two types of fits: the predictive
fit, which allows us to more easily establish the agreement
of the background predictions and the observations in the
background-only hypothesis, and the global fit, which
enables us to estimate the signal strength.
The predictive fit is realized by removing the terms of

the likelihood corresponding to the observed yields in the
signal regions, (HIG, 3b) and (HIG, 4b), and fixing the
signal strength r to 0. As a result, we obtain a system of
equations with an equal number of unknowns and con-
straints. For each pmiss

T bin, the four main floating param-
eters μbkgSBD;2b, μ

bkg
SBD;3b, μ

bkg
SBD;4b, and R are determined by the

four observations Ndata
SBD;2b, N

data
SBD;3b, N

data
SBD;4b, and Ndata

HIG;2b.
Since the extra floating parameters corresponding to the
systematic uncertainties are constrained by their respective
log-normal pdfs, they do not contribute as additional
degrees of freedom. The predictive fit thus converges to
the standard ABCD method, and the likelihood maximi-
zation machinery becomes just a convenient way to solve
the system of equations and to propagate the various
uncertainties.
Conversely, the global fit includes the observations in

the signal regions. Since in this case there are six obser-
vations and four floating background parameters in each
pmiss
T bin, there are enough constraints for the signal

strength r to be determined in the fit. The global fit also
properly accounts for the signal yields in the control
regions, using the signal shape across control and signal
regions from the simulation.

VII. SYSTEMATIC UNCERTAINTIES IN THE
BACKGROUND PREDICTION

The background estimation procedure described in
Sec. VI relies on the approximate independence of the
hmi and Nb distributions. In Sections VII A, VII B, and
VII C we study this assumption for individual background
processes in data and simulation by defining dedicated
control regions for tt̄, Z þ jets, and QCD multijet

production. The overall level of closure in these control
samples, better than 13% in all cases, is assigned as a
systematic uncertainty for each of the main background
sources separately. Additionally, these samples validate the
closure in the simulation as a function of pmiss

T .
If the background estimation method is valid for each

separate background contribution, then it would also be
valid for the full background composition as long as the
relative abundance of each background component is
independent of Nb. In Sec. VII D, we use these data
control samples to quantify the validity of the simulation
prediction that the background composition is independent
of Nb in each pmiss

T bin by examining the modeling of the
pmiss
T and Nb distributions for each background source.
Finally, in Sec. VII E, we describe the prescription for

assigning the total systematic uncertainty in the back-
ground prediction binned in pmiss

T and Nb, taking into
account both the findings from the data control sample
studies and the closure of the method in the simulation. The
latter is the dominant systematic uncertainty in this
analysis.

A. Single-lepton tt̄ control sample

To test whether the background estimation method
works for tt̄ events, we define a single-lepton control
sample, which, like the search region, is dominated by
single-lepton tt̄ events and represents a similar kinematic
phase space. Because the lepton is a spectator object as far
as the ABCD method is concerned—it is neither involved
in the construction of the hmi variable, nor correlated with
the presence of additional b tags—this control sample
should accurately capture any potential mismodeling of the
hmi-Nb correlation that may be present in the signal region.
While this control region does not specifically probe
semileptonic tt̄ events involving a hadronically decaying
τ lepton, the simulation shows that their hmi distribution in
the signal region is the same as that of semileptonic tt̄
events involving light leptons. This is expected because in
most cases the τ lepton in these events is either out of
acceptance or reconstructed as the jet with the smallest
b-discriminator value and, as a result, it does not enter the
hmi calculation.
For each of the four pmiss

T search bins, we construct a
corresponding ABCD test in a single-lepton control sam-
ple, defined by the same selection requirements except for
removing the lepton and the isolated track vetoes and
instead requiring exactly one lepton with pT > 30 GeV (to
reach trigger efficiency plateau) and mTðp⃗l

T; p⃗
miss
T Þ <

100 GeV (to avoid poorly reconstructed events). Given
that the contamination from QCD multijet production in
the single-lepton region is small, the Δϕ requirement is
also removed to further improve the statistical power of
the control sample. Since the lepton provides a way to
trigger on events with lower pmiss

T , we add two additional
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pmiss
T bins, pmiss

T < 75 GeV and 75 < pmiss
T ≤ 150 GeV,

allowing us to study the pmiss
T dependence of the closure in

a wider range. In this control region, tt̄ production accounts
for over 90% of the events, except for the two highest pmiss

T
bins, where the total contribution of single top quark and
V þ jets production can be as high as ∼25%. Figure 5 (top)
shows the comparison of the hmi shapes between the data
and the simulation.
As described in Sec. VI, since the 3b and 4b categories

are dominated by events with two true B hadrons and one or
two additional mistagged jets, similar jet topologies con-
tribute to all b tag categories and thus the hmi distributions
of the reconstructed b tag categories converge. We validate
this assertion in the single-lepton control sample by

examining the value of the κ factors. Figure 6 shows the
overall closure of the method across bins of pmiss

T , both in
the simulation and in data. We observe agreement within
the statistical uncertainties, with κ values being consistent
with unity across the full pmiss

T range for both data and
simulation. This observation is also confirmed with larger
statistical precision by repeating the test in a more inclusive
sample obtained by removing the ΔRmax requirement.
An overall uncertainty in the validity of the method in

tt̄-like events is assigned based on the larger of the
nonclosure and the statistical uncertainty in the closure
test in data performed after integrating over the full pmiss

T
range. The results, shown to the right of the solid line in
Fig. 6, correspond to an uncertainty of 3% and 6% in the 3b
and 4b bins, respectively.

B. Dilepton Z+ jets control sample

As shown in Table I, the second-largest background is
Z þ jets, with the Z boson decaying via Z → νν̄. Similarly
to the tt̄ case, we can validate the background estimation
method for Z þ jets events by constructing a closure test in
a representative data control sample rich in Z → lþl−

decays. However, given the small branching fraction of
Z → lþl− decays and the large tt̄ contamination associ-
ated with a high-Nb selection, we validate the method by
constructing ABCD tests at lower b tag requirements,
namely 1b=0b and 2b=1b.
The Z → lþl− control sample is constructed in a similar

manner to the search region. Events with 4 or 5 jets are
selected, and the reconstruction of a pair of Higgs bosons
proceeds as described in Sec. IV. We require two opposite-
charge same-flavor signal leptons in the Z boson mass
window, 80 < mðlþl−Þ ≤ 100 GeV, with the pT of the
leading and subleading lepton required to be greater than
40 and 20 GeV, respectively. We remove the lepton and
isolated track vetoes and, since the dilepton selection
makes the contamination from QCD multijet events neg-
ligible, we remove the Δϕ requirement. Since we do not
expect genuine pmiss

T in Z → lþl− events, we additionally
require pmiss

T < 50 GeV, which reduces the contamination
from other processes from 20% to 10%.
We divide the sample in bins of pTðlþl−Þ, ensuring

kinematic correspondence with the Z → νν̄ decays present
in the various pmiss

T bins employed in the search region.
Similarly to the single-lepton sample, the presence of
leptons allows us to extend the closure test to lower values
of pTðlþl−Þ. Figure 5 (bottom) shows both the high purity
of the sample and the excellent data-to-simulation agree-
ment in the hmi shape.
The validity of the extrapolation of the method to a

sample consisting of lower b tag multiplicities is supported
by the observation that all jets in Z þ jets events come from
ISR, and thus their kinematic properties are largely inde-
pendent of the flavor content of the event. This expectation
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is confirmed in data by examining the overall closure of the
method in bins of pTðlþl−Þ for the 1b=0b and 2b=1b
ABCD tests. The 1b=0b test, which has greater statistical
power compared to the 2b=1b test and thus allows a better
examination of any potential trends as a function of
pTðlþl−Þ, is shown in Fig. 7 for illustration.
Since we do not observe that the closure of the method

has any dependence on pTðlþl−Þ, we proceed to combine
all the pTðlþl−Þ bins into one bin and repeat the closure
test with improved statistical precision. In the 1b=0b
ABCD test, we observe a statistically significant non-
closure of 11%, which may be due to higher order effects
beyond the precision of this search. The 2b=1b ABCD test
shows good closure but with a higher statistical uncertainty
of 19%. We assign the larger uncertainty of 19% as the
systematic uncertainty in the closure of the background
estimate method for Z þ jets events. The robustness of this

result is further corroborated by similar checks in a more
inclusive selection without the ΔRmax requirement.

C. Low Δϕ QCD multijet control sample

Finally, to examine the validity of the ABCD method for
QCD multijet events, we define a control region enriched
with such events by inverting the Δϕ requirement. The
high b tag multiplicity region of this control sample has a
limited event yield and high tt̄ contamination. To overcome
these limitations, we exploit the fact that QCD multijet
events, like Z þ jets events, have similar kinematic proper-
ties regardless of their flavor content. We thus check the
hmi − Nb independence in lower b tag multiplicity regions
by constructing the 1b=0b and 2b=1b ABCD tests. We
observe good agreement between the data and the simu-
lation for all pmiss

T bins. The maximum measured deviation
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of κ from unity in the inclusive bins equals 13%, which we
assign as the systematic uncertainty in the closure of the
background estimation method for QCD multijet events.

D. Impact of the background composition

Having evaluated the closure of the method for each
individual background, we proceed to study the impact of
mismodeling the relative abundance of the different back-
ground sources.
Since the hmi shape varies among background types, as

shown for tt̄ and Z þ jets in Fig. 5, significant differences
in the process admixture in the 2b category with respect to
the 3b or 4b category will result in hmi-Nb correlation and
lead to the nonclosure of the method. From simulation, the
background composition is expected to be independent of
the b tag category. The validity of this prediction relies on
the ability of the simulation to model the shape of the b tag
category and pmiss

T distributions equally well for each
background contribution.
From comparisons in the respective control samples, we

indeed observe that the Nb distribution for each of tt̄,
Z þ jets, and QCD multijet production is similarly well
modeled by the simulation. The pmiss

T distribution in
simulation is found to overestimate the data for large
values of pmiss

T for tt̄ and Z þ jets events, while the opposite
is observed for QCDmultijet events. To provide an estimate
of the impact of mismodeling the background composition,
we reweight the simulation based on the data-to-simulation
comparisons and then calculate the κ factors with the
reweighted simulation, assigning 100% of the shift with
respect to the nominal values as the uncertainty in the
modeling of the background composition. The resulting
uncertainty is found to be at most 4%.

E. Total systematic uncertainty determination

Based on the data control sample studies described in
Secs. VII A–VII D, we assign a set of systematic uncer-
tainties in the background prediction for each search bin as
follows:
(1) The closure uncertainty for each background process

obtained in data control regions is propagated to the
background predictions by varying the closure of the
particular background in simulation in bins of pmiss

T
and Nb. The resulting shifts on the predictions,
ranging from 1% to 10% increasing with pmiss

T , are
assigned as systematic uncertainties with a 100%
bin-to-bin correlation.

(2) The level of nonclosure due to the relative abun-
dance of each background component as a function
of Nb is estimated by comparing the change in κ in
simulation before and after correcting the Nb and
pmiss
T distributions of each background source ac-

cording to measurements in the data control sam-

ples. Its overall impact is 1–4% and it is taken as
100% correlated across the different analysis bins.

(3) The closure studies in the data control samples with
more inclusive selections show no evidence of pmiss

T
dependence, but have insufficient statistical power at
high pmiss

T using the default selection. Given this
limitation and the extensive validation of the sim-
ulation in all control samples, we assign the larger of
the statistical uncertainty and the nonclosure for
each bin in the simulation as the systematic un-
certainty in the background prediction as a function
of pmiss

T and Nb. As seen in Fig. 4, this uncertainty
ranges from 8–15% in the lowest pmiss

T bin to
59–75% in the highest pmiss

T bin, and is assumed
to be uncorrelated among bins.

Each of the listed uncertainties is incorporated in the
background fit as a log-normal constraint in the likelihood
function as described in Sec. VI B, taking into account the
stated correlations. Because of the robustness of the back-
ground prediction method, evidenced by the high-statistics
data control region studies integrated in pmiss

T , the final
uncertainty is dominated by the statistical precision of the
simulation in evaluating the closure as a function of pmiss

T ,
described in the third item.

VIII. RESULTS AND INTERPRETATION

The observed event yields in data and the total predicted
SM background are listed in Table II, along with the
expected yields for three Higgsino mass scenarios. Two
background estimates are given: the predictive fit, which
does not use the data in the signal regions and ignores
signal contamination in the other regions, and the global fit
with r ¼ 0, which incorporates the observations in the
(HIG, 3b) and (HIG, 4b) regions, as described in Sec. VI B.
Since for pmiss

T > 450 GeV we observe no events in the
(SBD, 4b) region, the parameter μbkg4b;SBD is fitted to be zero,
pushing against its physical boundary and leading to the
underestimation of the associated uncertainty. We account
for this by including an additional contribution that makes
the uncertainty on μbkg4b;SBD for pmiss

T > 450 GeV consistent
with having observed one event. The event yields observed
in data are consistent with the background predictions for
all the analysis bins and no pattern of deviations is evident.
Figure 8 shows the distributions in data of hmi

in the 3b and 4b bins for 150<pmiss
T ≤200GeV and

pmiss
T >200GeV. In each plot, the hmi histogram corre-

sponding to the 2b category is normalized to the integral of
the overlaid high-Nb category distribution. The shapes of
the hmi distributions are consistent and no significant
excess is observed in either the 3b or the 4b HIG regions.
The absence of excess event yields in data is interpreted

in the context of the Higgsino simplified model discussed
in Sec. I. Table III shows typical values for the systematic
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uncertainties associated with the expected signal yields for
three models with different Higgsino masses. The ranges
correspond to the full variation of the uncertainties across
all search bins. The uncertainty due to the pileup modeling
is given by the difference between the signal efficiencies
evaluated in samples with the mean number of recon-
structed vertices found in the simulation and in the data,
with the latter efficiencies obtained by extrapolation. The
evaluation of the pileup uncertainty for very low Higgsino
masses is limited by the statistical power of the simulated
samples. The remaining uncertainties are determined by
comparing the nominal signal yield for each search region
to the corresponding yield obtained after varying the scale
factor or correction under study within its uncertainty. In

the case of the ISR uncertainty, the variation is based on the
full size of the ISR correction derived by comparing the
transverse momentum of the jet system balancing the Z
boson in Z → lþl− events in data and in simulation. The
largest uncertainties arise from the jet energy corrections,
jet energy resolution, pileup modeling, and the pmiss

T
resolution in the fast simulation. These uncertainties can
be as large as 30% for low Higgsino masses, but their
impact is smaller for larger values of the Higgsino mass.
Uncertainties associated with the modeling of the b tagging
range from 1% to 13%. The uncertainties in the trigger
efficiency range from 6% in the lowest pmiss

T bin to < 1%

for pmiss
T > 300 GeV. Uncertainties due to the modeling

of ISR and the efficiency of the jet identification filter are

TABLE II. Event yields for all control regions—(HIG, 2b), (SBD, 2b), (SBD, 3b), and (SBD, 4b)—and the two signal regions—(HIG,
3b) and (HIG, 4b)—in each of the four pmiss

T bins. The second column shows the background yields predicted by the global fit which
uses the observed yields in all control and signal regions, under the background-only hypothesis (r ¼ 0). The third column gives the
predicted SM background rates in the signal regions obtained via the predictive fit which only takes as input the observed event yields in
the control regions. The expected signal yields for three signal benchmark points denoted as TChiHHðm~χ0

1
; m ~GÞ, with m~χ0

1
and m ~G in

units of GeV, are also shown for reference.

Search region Global fit Predictive fit Observed yields TChiHH (225,1) TChiHH (400,1) TChiHH (700,1)

150 < pmiss
T ≤ 200 GeV

SBD, 2b 1560.1þ39.7
−38.5 � � � 1559 5.8 1.3 0.0

HIG, 2b 656.2þ25.2
−24.6 � � � 658 11.5 2.4 0.1

SBD, 3b 140.3þ10.8
−10.3 � � � 145 5.1 0.9 0.0

HIG, 3b 57.7þ5.5
−5.2 61.2þ8.4

−7.7 53 10.9 2.5 0.1
SBD, 4b 48.1þ6.4

−5.8 � � � 45 5.8 1.1 0.0
HIG, 4b 21.9þ3.5

−3.2 19.0þ4.6
−3.9 25 21.8 5.4 0.2

200 < pmiss
T ≤ 300 GeV

SBD, 2b 588.0þ24.2
−23.5 � � � 585 3.0 3.2 0.1

HIG, 2b 333.1þ17.9
−17.6 � � � 336 6.0 6.6 0.3

SBD, 3b 55.3þ6.5
−5.9 � � � 61 2.2 2.6 0.1

HIG, 3b 30.6þ3.9
−3.6 35.1þ5.9

−5.5 25 5.0 6.2 0.3
SBD, 4b 15.6þ3.8

−3.1 � � � 13 2.4 3.3 0.1
HIG, 4b 11.4þ3.0

−2.5 7.5þ3.8
−2.7 14 14.3 15.7 0.8

300 < pmiss
T ≤ 450 GeV

SBD, 2b 72.4þ8.7
−8.1 � � � 74 0.0 1.9 0.2

HIG, 2b 40.6þ6.3
−6.0 � � � 39 0.4 4.9 0.7

SBD, 3b 5.7þ2.2
−1.8 � � � 4 0.1 1.6 0.2

HIG, 3b 3.3þ1.4
−1.1 2.1þ1.4

−1.0 5 0.9 4.6 0.5
SBD, 4b 1.9þ1.4

−0.9 � � � 2 0.2 1.5 0.2
HIG, 4b 1.1þ0.8

−0.5 1.1þ1.0
−0.6 1 2.0 10.3 1.5

pmiss
T > 450 GeV

SBD, 2b 5.4þ2.5
−2.1 � � � 5 0.0 0.1 0.2

HIG, 2b 4.6þ2.2
−1.9 � � � 5 0.0 0.4 0.9

SBD, 3b 0.6þ0.8
−0.4 � � � 1 0.1 0.1 0.2

HIG, 3b 0.4þ0.6
−0.3 1.0þ1.6

−1.0 0 0.0 0.4 0.7
SBD, 4b 0.0þ0.3

−0.0 � � � 0 0.0 0.1 0.2
HIG, 4b 0.0þ0.3

−0.0 0.0þ1.2
−0.0 0 0.0 1.1 2.0
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1–2%. Finally, the systematic uncertainty in the total

integrated luminosity is 2.5% [88].
The 95% confidence level (CL) upper limit on the

production cross section for a pair of Higgsinos in the
context of the TChiHH simplified model is estimated using
the modified frequentist CLS method [89–91], with a one-
sided profile likelihood ratio test statistic in its asymptotic
approximation [92]. Figure 9 shows the expected and
observed exclusion limits. The theoretical cross section
at NLOþ NLL [45,46] as a function of Higgsino mass is
shown as a solid red line and the corresponding uncertainty
as a dotted red line. The upper limits on the cross section at
95% CL for each mass point are obtained from the global fit

method, which takes into account the expected signal
contribution in all of the bins. Higgsinos with masses
between 230 and 770 GeV are excluded.
The sensitivity at low Higgsino mass is limited by the

acceptance of the pmiss
T triggers employed in this analysis.

As a result, final states corresponding to other Higgs boson
decays that can be triggered independently of pmiss

T , such as
H → γγ [93] or H → WW [94], become more important in
the low-mass region. For high Higgsino mass, most of the
signal events contribute to the highest pmiss

T bin, which has a
negligible amount of background, so the sensitivity is
mainly limited by the cross section for Higgsino pair
production.
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FIG. 8. Distributions of hmi in data and two signal benchmark models denoted as TChiHHðm~χ0
1
; m ~GÞ, with m~χ0

1
and m ~G in units of

GeV. The points with error bars show the data in the 3b (top) and 4b bins (bottom) for 150 < pmiss
T ≤ 200 GeV (left) and pmiss

T >
200 GeV (right). The histograms show the shapes of the hmi distributions observed in the 2b bins with overall event yields normalized
to those observed in the 3b and 4b samples. The shaded areas reflect the statistical uncertainty in the hmi distribution in the 2b data. The
vertical dashed lines denote the boundaries between the HIG and the SBD regions. The ratio plots demonstrate that the shapes are in
agreement.
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IX. SUMMARY

A search for an excess of events is performed in proton-
proton collisions in the channel with two Higgs bosons and
large missing transverse momentum (pmiss

T ), with each of
the Higgs bosons reconstructed in its H → bb̄ decay. The
data sample corresponds to an integrated luminosity of
35.9 fb−1 at

ffiffiffi
s

p ¼ 13 TeV. Because the signal has four b
quarks, while the background is dominated by tt̄ events
containing only two b quarks from the t quark decays, the
analysis is binned in the number of b-tagged jets. In each
event, the mass difference between the two Higgs boson
candidates is required to be small, and the average mass of
the two candidates is used in conjunction with the number

of observed b tags to define signal and sideband regions.
The observed event yields in these regions are used to
obtain estimates for the standard model background in the
signal regions without input from simulated event samples.
The data are also binned in regions of pmiss

T to enhance the
sensitivity to the signal.
The observed event yields in the signal regions are

consistent with the background predictions. These results
are interpreted in the context of a model in which each
Higgsino decays into a Higgs boson and a nearly massless
lightest supersymmetric particle (LSP), which is weakly
interacting. Such a scenario occurs in gauge-mediated
supersymmetry breaking models, in which the LSP is a
goldstino. The cross section calculation assumes that the
Higgsino sector is mass degenerate and sums over the cross
sections for the pair production of all relevant combinations
of Higgsinos, but all decays are assumed to be prompt.
Higgsinos with masses in the range 230 to 770 GeV are
excluded at 95% confidence level. These results constitute
the most stringent exclusion limits on this model to date.
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6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
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