
MIT Open Access Articles

Process Control of Atomic Layer Deposition Molybdenum 
Oxide Nucleation and Sulfidation to Large-Area MoS

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Keller, Brent D. et al. “Process Control of Atomic Layer Deposition Molybdenum Oxide 
Nucleation and Sulfidation to Large-Area MoS2 Monolayers.” Chemistry of Materials 29, 5 
(February 2017): 2024–2032 © 2017 American Chemical Society

As Published: http://dx.doi.org/10.1021/ACS.CHEMMATER.6B03951

Publisher: American Chemical Society (ACS)

Persistent URL: http://hdl.handle.net/1721.1/114819

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/114819


Process Control of Atomic Layer Deposition Molybdenum Oxide
Nucleation and Sulfidation to Large-Area MoS2 Monolayers
Brent D. Keller,† Adam Bertuch,‡ J. Provine,§ Ganesh Sundaram,‡ Nicola Ferralis,†

and Jeffrey C. Grossman*,†

†Department of Material Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,
Massachusetts 02139, United States
‡Ultratech-CNT Inc., 130 Turner Street, Building 2, Waltham, Massachusetts 02453, United States
§Department of Electrical Engineering, Stanford University, 420 Via Palou, Stanford, California 94305, United States

*S Supporting Information

ABSTRACT: Recent advances in the field of two-dimensional
(2D) transition metal dichalcogenide (TMD) materials have
indicated that atomic layer deposition (ALD) of the metal
oxide and subsequent sulfidation could offer a method for the
synthesis of large area two-dimensional materials such as MoS2
with excellent layer control over the entire substrate. However,
growing large area oxide films by ALD with sub 1 nm
nucleation coalescence remains a significant challenge, and the
necessary steps are unexplored. In this work, we demonstrate
the necessary process improvements required to achieve sub 1
nm nucleation control by characterization of nucleation
domains formed by oxide deposition. Synthesis of the TMD
MoS2 from sulfidation of oxide deposited by both thermal ALD from (tBuN)2(NMe2)2Mo and O3 and plasma enhanced ALD
(PEALD) from (tBuN)2(NMe2)2Mo and remote O2 plasma was performed. Large uniform MoS2 areas were achieved by
optimizing the effects of various growth process conditions and surface treatments on the ALD nucleation and growth of Mo-
oxide and the postsulfidation of MoS2. In addition to insights into the control of the oxide deposition, film chemistry analysis
during a multistep sulfidation based on less toxic sulfur as compared to H2S was performed for several temperature profiles
revealing sulfur incorporation and molybdenum reduction at low temperatures but higher temperatures required for 2H crystal
structure formation. The knowledge gained of the ALD, PEALD, and postsulfidation was leveraged to demonstrate tunable film
thickness and centimeter-scale monolayer growth. Material quality can be studied independently of the MoS2 layer count as
demonstrated by the control of the monolayer photoluminescence intensity by the temperature ramp rate during sulfidation.

Monolayer and few layer transition metal dichalcogenides
(TMDs) including MoS2 have attracted attention as

materials for transistors,1 photovoltaics,2,3 sensors,4,5 and
flexible systems,6 due to their tunable7,8 and unique electronic
properties.1,9,10 The direct technological application of such
films relies on the availability of large area, high quality
materials with precise layer control.11 To date, a number of
methods have been used to synthesize films of MoS2 and other
TMDs including chemical vapor deposition (CVD).11−19

However, for applications including integrated circuits which
require large area, complete and/or conformally grown films, an
alternative approach under investigation for the deposition of
MoS2 and other TMDs centers around the deposition of a thin
film of the transition metal or its oxide and subsequent
exposure to a sulfur containing vapor at high temperature.20,21

While this approach is limited by the uniformity, thickness, and
continuity of the starting oxide or metal, for this very reason, it
offers a number of potential advantages compared to CVD
growth if that oxide can be deposited with exceptional
control.11,20,21 For example, extremely large area, complete

films, as well as conformal monolayer coatings and abrupt
vertical heterostructures may be comparatively easy to achieve.
While atomic layer deposition (ALD) has been recently used to
deposit extremely uniform and thin oxide films to generate
large area layer control for WS2,

22 MoS2, and WxMo1−xS2
alloys,23 given how promising this approach is, it is surprising
that it has not received much greater attention. This is in part
because the oxide deposition must be highly controlled. A
detailed understanding of the specific deposition conditions is
required to accelerate nucleation such that film coalescence
occurs at a thinner film than the amount required for a
monolayer of MoS2. This requirement is challenging even with
the highly reactive precursors used for oxide synthesis24 due to
the extreme thinness of monolayer MoS2. Previous work

23 with
Mo(CO)6 and oxygen plasma enhanced ALD (PEALD)
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followed by sulfidation with H2S showed promising results
including excellent film uniformity and continuity. Electron
mobilites in sulfidated PEALD oxides were reported in the

polycrystalline WS2 monolayer film as high as 3.9 cm2/(V s).22

While this method clearly shows significant promise for large
area, well controlled growth, the factors which control the

Figure 1. Nucleation of MoO3 films from the ALD process on as received silicon wafers. (a) In situ ellipsometry of ALD growth of MoO3 from
(NtBu)2(NMe2)2Mo and ozone. The film can be observed to thicken with each (NtBu)2(NMe2)2Mo and thin following oxidation by ozone to
MoO3 with consistent growth per cycle starting after the second cycle in a true ALD process. (b) Ellipsometry of the same film deposition as in (a).
The initially lower growth per cycle after approximately 15 cycles indicates nucleation inhibition in that regime. The lines in (a) and (b) are to guide
the eye. (c−e) From left to right, AFM of ALD MoO3 nucleation islands, SEM and AFM of the edge of a MoS2 film following sulfidation and
transfer to a 300 nm SiO2 on Si wafer. The initial few nanometer islands present after 1 cycle are observed to increase in height and density as the
cycle count is increased, and by 7 counts, the film nears coalescence into a few nanometers of the MoS2 film. All scales bars, 1 μm. All AFM vertical
scales are the same, and the AFM trace axis is in nanometers.
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nucleation regime and thus the thickness of a coalesced oxide
film are still not yet completely understood, hence limiting the
applicability of this method for ultimate commercial and
laboratory fabrication of MoS2 and other TMDs.
Although sulfidation of oxides deposited by other methods

has been studied extensively11,20−22,25−28 and different recipes
developed, most have converged on slow ramps28 or multiple
stage annealing25 with high final temperatures of 800 to 1000
°C.11 Given the thinness of the oxide films, it is surprising that
such elevated temperatures are required to incorporate
sufficient sulfur or other chalcogen. In addition, CVD
approaches are performed over the range of 450 to 850 °C29

and often perform better at lower temperatures where
multilayer nucleation is inhibited.15,30 In this work, we also
study the chemistry of the films after lower temperature single
or two stage anneals to study the evolution of the film and
deduce the importance of higher temperature in the sulfidation
approach.
Herein, we focus on the investigation of sulfidation of MoO3

films deposited from bis(tert-butylimido)bis(dimethylamido)-
molybdenum, (tBuN)2(NMe2)2Mo, and ozone31 and from
(tBuN)2(NMe2)2Mo with remote oxygen plasma.32 For both
cases, a postsulfidation process using elemental sulfur vapor was
employed. Although MoO3 synthesized by these methods had
been previously shown to have a broad ALD temperature range
and high purity,31,32 any initial nucleation regime and synthesis
of ultrathin films (<1 nm) had not been explored in detail. In
this work, the ALD and PEALD nucleation regime and its
impact on ultrathin films of MoS2 were studied by atomic force
microscopy (AFM), scanning electron microscopy (SEM), and
ellipsometry. Optimization methods to control nucleation
kinetics of MoO3 including the effect of plasma introduction,
PEALD temperature, an extended Mo precursor exposure, and
plasma and piranha surface pretreatments were studied.
Ultimately, excellent control of the oxide nucleation was
achieved to synthesize large area (>1 cm2) monolayer MoS2
films.
Following oxide deposition, films were sulfidated and the

composition and chemistry of the film was characterized by X-
ray photoelectron spectroscopy (XPS). By studying the
chemistry of the films during sulfidations with multiple
temperature stages to prevent volatile MoOx loss as developed
elsewhere,25,33 insight into the further role of each stage was
observed. Specifically, sulfur is observed to incorporate in S/Mo
ratios of up to ∼1.4 at temperatures as high as 700 °C, but
higher temperatures are still required to activate the conversion
to the 2H crystal structure and grow the grain size (as shown by
Raman) and to achieve stoichiometric S incorporation. Finally,
through slower sulfidation temperature ramps, the photo-
luminescence (PL) intensity and the 2H MoS2 crystal quality
could be improved, independent of the layer control provided
by the PEALD nucleation engineering.

■ EXPERIMENTAL SECTION
Oxide Deposition. The MoO3 films were deposited using both

thermal ALD and PE-ALD techniques. The thermal ALD process was
conducted in a cross-flow, hot wall Ultratech-Cambridge Nanotech
Savannah system at 300 °C. The (NtBu)2(NMe2)2Mo precursor was
delivered to the chamber using a boosted N2 precursor delivery. The
ozone coreactant was delivered to the chamber with an O2/O3 flow
rate of 330 sccm and a concentration of 120 mg/L. The deposition
was performed as described by Bertuch et al.31 The PEALD
depositions were performed at 150 °C in a top flow reactor
(Ultratech-CNT Fiji system) using a remote inductively coupled

plasma (ICP) unit. The argon gas flow for the process was 20 sccm of
Ar carrier gas with 200 sccm of plasma Ar continuously flowing
through the chamber. The Mo precursor and delivery technique was
unchanged and utilized the boosted precursor delivery technique with
Ar instead of N2 gas. The coreactant was O2 plasma generated at 300
W in a flowing gas of 20 sccm O2 and 80 sccm Ar. Plasma exposure
times were 20 s with a purge time of 5 s. For extended Mo precursor
exposure, the downstream vacuum valve was closed for 14 s during the
precursor pulse step and then opened for the precursor purge and
plasma steps. The piranha treatment was performed using 3 parts 98%
H2SO4 and 1 part 30% H2O2 within 4 h of the MoO3 film deposition.
(CAUTION: “Piranha” solution reacts violently with organic materials; it
must be handled with extreme care.)

Sulfidation. Sulfidations were performed at 240 mTorr with 45
sccm of argon and 4 sccm of H2 gas flowing in a 1 in. diameter quartz
tube. Solid sulfur (500 mg) was supplied at either 125 or 135 °C
immediately upstream of the heater. Samples were placed parallel to
the direction of gas flow. No effect on the sulfidation was observed for
the variation in sulfur source temperature. For multistage sulfidations,
temperature ramp times between stages were 10 min, and the
temperature was held at each step for 30 min unless otherwise
mentioned.

Film Transfer. Following sulfidation, films were transferred to fresh
300 nm SiO2 on Si wafer fragments to provide clean edges for AFM
characterization. Films were coated with ebeam resist (MicroChem
A5) and floated on 10% HF to remove native or thermal oxide layer
below the MoS2. Upon release of the polymer film, films were scooped
with a glass slide and floated on rinse solutions of DI water before
being picked up with the target wafer fragment and dried at 80 °C.
Warm acetone was used to remove the polymer film.

Characterization. X-ray photoluminescence spectroscopy was
performed over regions 400 μm in diameter using a Thermo Scientific
K-Alpha XPS with Al Kα radiation. XPS peak deconvolution was
performed using Casa XPS with Shirley backgrounds subtracted and
Gaussian-Lorentzian product line shapes with 90% Lorentzian
weighting. Micro-Raman spectra were acquired using a Horiba
LabRAM 800 HR spectrometer equipped with a 514.5 nm excitation
source. The laser spot on the sample was ∼800 nm in diameter and
had a power of ∼4 mW at the sample surface. AFM was performed
using a Veeco Metrology Nanoscope IV Scanned Probe Microscope
Controller with Dimension 3100 SPM in tapping mode with PPP-
NCHR probes. SEM was performed on a Zeiss Ultra55 operated at 5
kV.

■ RESULTS AND DISCUSSION

ALD and PEALD of MoO3 films were deposited on silicon
wafers with both native oxide and thermal oxide (300 nm)
surfaces. The ALD process was monitored with in situ
ellipsometry (Figure 1a). The deposition is observed to be
stepwise in a true ALD process with film thickness controlled
by cycle count. The growth per cycle (GPC) was observed to
be constant after approximately 15 cycles indicating a
nucleation inhibited regime in the first 15 cycles. AFM of the
as deposited oxide (Figure 1b−d) shows nucleation islands
after the first cycle which can be observed to increase in size
and density through the fourth and seventh cycles. Following
sulfidation, MoS2 was transferred onto fresh thermal oxide (300
nm) on silicon wafers using a polymer transfer; MoS2 films
were coated with PMMA, followed by etching of the underlying
native oxide or thermal oxide with 10% HF, rinsed with DI
water, and transferred to the new substrate, and the PMMA was
removed with warm acetone. Scanning electron microscopy
(SEM) and AFM of the edges of transferred MoS2 show that
the nucleation islands are preserved resulting in an incomplete
and rough film (Figure 1b−d). While the PMMA transfer is
possible with even the very thin native oxide, at high
temperatures, silicon and sulfur react and form volatile
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products,34,35 and thus, without the protective diffusion barrier
of a thick thermal oxide, the sulfur vapors were observed to etch
pits in silicon wafers at temperatures above 700 °C (Figure S1).
Because the film morphology was preserved during

sulfidation (Figure 1b−d), to grow complete monolayer
MoS2 over large areas, the coalesced oxide film thickness
must be reduced to less than that required to produce a
monolayer of MoS2 from MoO3 (assuming no losses of Mo due
to volatility or diffusion during the sulfidation and based on the
bulk densities of MoO3 and MoS2, approximately 0.7 nm thick).
To reduce the thickness of a film at coalescence, the density of
nucleation islands must be increased. This can be accomplished
through increasing precursor reactivity and dosing or by
reducing surface mobility of adhered species, if they are
sufficiently mobile to diffuse to nucleation islands. To increase
reactivity, the process was adapted to PEALD. While thermal
ALD deposited films were grown at 300 °C to provide the
highest purity film,31 higher temperatures lead to larger
nucleation islands due to increased ad-species diffusivity and/
or run-away CVD growth. Because of the increased reactivity of
PEALD, the temperature can be reduced without sacrificing
film purity (Figure S2). Figure 2 shows >10 nm films deposited
by PEALD at 150, 200, and 300 °C. At 300 °C, very large
nucleation islands are observed, indicative of precursor
decomposition and CVD growth at nucleation sites spaced
hundreds of nanometers apart. The roughness of the films is
dramatically reduced at lower temperature indicating a true
ALD process and is further improved from 200 to 150 °C with
reduced surface mobility of precursor species.
Nucleation islands with one nanometer thickness are still

observed for PEALD growth at 150 °C (Figure 3a). While
significantly improved over the ALD process after a similar
number of cycles, the islands are still larger than needed to
produce monolayer MoS2 from coalesced films. In an attempt
to further increase the nucleation density (and thus reduce
coalesced film thickness), the number of molybdenum
precursor pulses was increased, but no qualitative improvement
in the nucleation regime was observed (Figure 3b) indicating
that Mo precursor transport and reaction kinetics are not
limiting in the nucleation process. Large nucleation features
associated with surface contaminants not removed by an
oxygen plasma treatment were exacerbated by the extended
molybdenum exposure.
Finally, a piranha cleaning treatment prior to PEALD growth

was found to be exceptionally effective in increasing nucleation
density and eliminating nucleation islands larger than 1 nm
after 5 cycles (Figure 3c). The piranha treatment increases the
hydrophilicity of the surface, and a high density of hydrophilic
functional groups often improves ALD nucleation. However,
piranha followed by an oxygen plasma cleaning immediately
before PEALD growth did not improve nucleation density,
highlighting the importance of hydroxyl functionalities left by
the piranha etch for reaction with the molybdenum precursor
(Figure 3d) as opposed to a cleaning or hydrophilicity effect
which would be largely preserved under the oxygen plasma. To
further highlight this distinction, piranha was also effective in
reducing the size of the large nucleation islands likely related to
contamination, and this effect was preserved after an additional
oxygen plasma cleaning.
To sulfidate the oxide films into MoS2, approximately 1 cm2

wafer cuttings were loaded into a quartz tube furnace under an
Ar and H2 atmosphere at low pressure. At the desired
temperature, a solid sulfur source immediately upstream of

the furnace was heated to produce sulfur vapors. Because MoO3
is a volatile oxide, a multistep sulfidation was adopted, to first
partially reduce or sulfidate the film at lower temperature (500
to 800 °C) before final processing at higher temperature.23,25

Figure 4a shows Mo 3d XPS for several annealing temperatures.
The as-deposited oxides show a single doublet at higher
binding energy as expected for Mo6+. Peak broadening is
indicative of moderate contribution from lower oxidation states.
This is in contrast to previous sulfidation work by Song et al.23

which started from a less oxidized film deposited using a
Mo(CO)6 precursor with a single broad Mo 3d complex
showing large contributions from Mo6+, Mo5+, and Mo4+.
It would be expected that sulfur incorporation would be very

rapid due to the extreme thinness of the film and even
moderately elevated temperatures. However, after processing at
300 °C, we observe only partial reduction with Mo6+, Mo5+, and
Mo4+, all present and with 37 atomic percentage (at %) sulfur
based on deconvolution of the Mo 3d 5/2 and sulfur 2s
complex (Figure 4b). It should be noted that given the small

Figure 2. Impact of temperature on the PEALD process. AFM images
of thick films showing rough large nucleation features at (a) 300 °C
and coalesced films at (b) 200 and (c) 150 °C indicating a transition in
growth regime. The 150 °C samples are observed to be smoother than
the 200 °C samples indicating the reduced mobility of active species at
lower temperature. All scale bars, 1 μm. AFM trace axis is in
nanometers.

Chemistry of Materials Article

DOI: 10.1021/acs.chemmater.6b03951
Chem. Mater. XXXX, XXX, XXX−XXX

D

http://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.6b03951/suppl_file/cm6b03951_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.6b03951/suppl_file/cm6b03951_si_001.pdf
http://dx.doi.org/10.1021/acs.chemmater.6b03951


difference in Mo 3d binding energy in MoO2 and MoS2
(approximately 0.2 eV)36,37 it is possible the reduced Mo is
present as a sulfide, oxide, or combined structure. Increasing
the temperature to 600 °C increases the sulfur content (58 at %
sulfur), but the film remains very sulfur poor; elevating the
second step temperature to 700 °C does not result in significant
further sulfidation (59 at % sulfur). S 2p XPS (Figure 4c) shows
that the initial sulfur incorporation lacks chemical uniformity

Figure 3. Control of MoO3 nucleation. (a) AFM of 5 cycle PEALD
deposited MoO3 following 4 min of oxygen plasma clean. Large
features (e.g., feature inside white circle) are likely sources of
nucleation from remaining surface contaminants, and small nucleation
features can be seen covering the remainder of the surface. The trace
from a clean region (white arrow) shows these smaller nucleation
features are ≥1 nm which result in multilayer MoS2. (b) 5 cycles of
PEALD with addition of a 14 s (NtBu)2(NMe2)2Mo extended
exposure on a similar oxygen plasma cleaned wafer. Nucleation islands
remain in the ≥1 nm regime. (c) 6 cycle PEALD deposited MoO3
following a piranha cleaning without a plasma cleaning. The piranha
cleaning removes larger surface contaminants, and nucleation islands
are observed to be <1 nm in height which is critical to large area
monolayer MoS2 fabrication. (d) 5 cycle PEALD deposited MoO3
following a piranha cleaning but with a subsequent oxygen plasma
cleaning. Greater than 1 nm tall nucleation islands, which were
eliminated with the piranha treatment, are again observed when the
piranha treated sample is exposed to oxygen plasma. The larger
features likely related to contamination removed by piranha are still
surpressed. (e) As received wafer for comparison. All scales bars, 1 μm.
All AFM vertical scales are the same, and AFM trace axis is in
nanometers.

Figure 4. Multistep sulfidation of (a) Mo 3d XPS normalized by
maximum signal for as deposited ALD and PEALD films and following
single step processing at 300 °C, 2 step processing first at 300 °C and
then at 600 or 700 °C, and 3 step processing at 300, 600, then 900 °C.
Partial reduction is observed at 300 °C (downshift of Mo 3d 3/2 and
5/2 and appearance of S 2s at 226 eV). Films annealed at about 600
°C show complete reduction of molybdenum. For the annealed
samples, the S 2s and Mo4+ 3d 5/2 signals were deconvoluted to
determine the sulfur content. Dashed lines represent fitted
contributions of S 2s and Mo4+ 3d 5/2, and the solid line represents
total contribution. (b) Atomic percentage of sulfur based on the Mo
3d and S 2s peaks showing partial incorporation of sulfur during a 300
°C single step anneal and final stoichiometric incorporation via a three
step anneal. (c) S 2p XPS initially has broad peaks at 300 °C indicating
disorder and poor uniformity in a chemical environment. By 600 °C in
a two step anneal, peaks are sharp and agree well with the
literature36−41 (binding energies of 162.2 eV for S 2p3/2 and 163.5
for eV 2p1/2 respectively). Dashed lines indicate fits for the 2p3/2 and
2p1/2. Solid lines represent the sum of the fits. As the sulfur content
increases at higher temperature, Raman spectra (d) show the
emergence in the A1g and E2g peaks characteristic of the 2H structure
of multilayer MoS2. Processing up to 900 °C shows a dramatic increase
in the intensity of these peaks. (e) Optical image of 4.5 nm thick MoS2
following transfer to a larger 300 nm SiO2 on Si substrate showing
centimeter scale uniformity achieved with ALD and the postsulfidation
process. Few small tears in the film likely caused by regions of poor
adhesion during transfer.
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with broad peaks fitting the 2p3/2 and 2p1/2. However, although
the film remains sulfur poor, by 600 °C, the S 2p XPS shows
narrow peaks and agreement with the literature36−41 for MoS2
(binding energies of 162.2 and 163.5 eV for S 2p3/2 and 2p1/2,
respectively).
After the 300 °C single step sulfidation, no Raman signal

associated with 2H MoS2 is present (Figure 4c) suggesting that
the material remains amorphous at these temperatures. This
agrees well with broad S 2p XPS peaks and several oxidation
states of Mo (including any from residual oxide) observed after
this single step anneal. After the second annealing step at 600
°C when the reduction of molybdenum to Mo4+ is complete
and the S 2p XPS is sharpened, a weak Raman signal emerges in
the film. Since the film remains depleted in sulfur and the
Raman response is weak (Figure 4d), it is likely still mostly
amorphous or in extremely small grained crystal domains. To
achieve a stoichiometric film and improve the crystallinity, a
third step was added to the anneal at 900 and 1000 °C, both

resulting in a dramatic increase in the Raman scattering
intensity and an increase in sulfur content to a nearly
stoichiometric 68 at % sulfur (Figure 4b,d). From these results,
we conclude that, even though Mo reduction and sulfur
incorporation proceeds at lower temperatures up to approx-
imately 60 at % sulfur, a large barrier to conversion to the 2H
crystal structure and growth of its grains requires temperatures
of 900 °C or higher to activate the conversion and achieve
stoichiometric films.
Following sulfidation, films were transferred to new Si wafers

with 300 nm of thermal oxide to illustrate the uniformity and
measure thickness by AFM. With the exception of small tears
and wrinkles associated with the polymer transfer, the MoS2
films prepared by this method show excellent uniformity with
complete MoS2 coverage of the sulfidated wafer fragment
(Figure 4e). Figure 5a shows postsulfidation thickness as a
function of cycle count for several materials as measured by
AFM as well as the oxide thickness for ALD deposited films

Figure 5. MoS2 layer control. (a) Resulting MoS2 film thickness as a function of the ALD or PEALD cycle count down to the monolayer regime.
Line is only to guide the eye. (b) AFM of monolayer MoS2 with a trace showing ∼1 nm film thickness. Scale bar, 1 μm. (c) Raman spectroscopy of
monolayer, bilayer, and few layer MoS2 samples based on E2g and A1g peak separation. (d) Large area Raman mapping of monolayer MoS2 showing
film uniformity on the centimeter scale. Histogram shows a single distribution of peak spacing centered between 19.5 and 20 cm−1 and with a width
of the detector resolution of approximately 0.5 cm−1. Inset shows spatial map indicating variation is random across the sample and uniformity in
thickness. (e) Effect of heating rate on PL signal intensity for monolayer MoS2 samples sulfurized for 30 min at a 300 °C hold and then a 30 °C/min
ramp with additional holds for 10 min at 600 and 1000 °C (multistep) as well as two samples with linear temperature profiles (no holds) from 300 to
1000 °C.
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measured by ellipsometry. The method demonstrates broad
control over the thickness of large area MoS2 films, from
monolayer through several nanometers. The positive x-
intercept of the guideline shows the combined effects of the
remaining nucleation delay and volatile losses during
sulfidation. Raman spectra for transferred films show the
expected difference in Raman shifts between the A1g and E2g
bands (23.6, 22.5, and 19.7 cm−1, respectively) for multi, bi-,
and monolayer. In particular, a difference of less than 20 cm−1

(Figure 5b) was found for the monolayer film which agrees
with values reported elsewhere for monolayer MoS2 on SiO2
(19 to 20.6 cm−1).23,33,42 AFM characterization shows
approximately one nanometer thick film, which is slightly
thicker than the bulk layer spacing (0.7 nm), probably due to
layer substrate interactions, in agreement with monolayer MoS2
reported elsewhere.23,43 Finally, to demonstrate the uniformity
of an ALD based approach to MoS2 growth, Raman spectra
were sampled across a 500 μm by 1 cm region with 100 μm
distances between points (Figure 5d) for a monolayer MoS2
sample prepared with a 1000 °C final annealing step. The
hundreds of spectra collected indicate a single distribution in
A1g and E2g centered at ∼19.7 cm−1 and are width limited by
the frequency resolution of the detector (0.5 cm−1).
PL at the direct band gap energy (1.8 to 1.9 eV)7,8 indicates

high crystal quality44,45 monolayer MoS2. PL spectra were
collected for MoS2 monolayer films following sulfidation. While
the ALD process sets the number of layers of MoS2 as shown
above, the crystal domain size is determined by the kinetics of
the nucleation and growth of the 2H crystal structure. The
decoupling of layer control from crystal quality is an advantage
which can allow for independent progress on both challenges.
To demonstrate that this approach is possible, we explore the
effect of sulfidation temperature ramp rate on this 2H
nucleation and growth process, and to improve the crystal
quality of the material as determined by PL, samples with an
accelerated multistep sulfidation (30 °C/min and holds for 10
min at 600 and 1000 °C) and with slow but linear temperature
profiles (4.7 and 6.4 °C/min up to 1000 °C) were prepared. All
samples were first partially reduced and sulfidated at 300 °C for
30 min. The slower ramp rate samples show much stronger PL
emission which indicates larger and/or more defect free 2H
crystal domains. Crystal domain size is determined by the
competition of crystal growth from the amorphous MoSx
matrix and nucleation of new crystal domains in that matrix.
By heating more gradually, the nucleation rate is comparatively
suppressed and 2H MoS2 domains grow much larger before
encountering other domains. This illustrates the potential to
leverage the excellent layer control demonstrated here with
future progress around substrate epitaxy or other control of
high temperature 2H TMD grain formation/growth to achieve
truly high quality MoS2, layer controlled, complete film, and
large or single crystal domains.
In conclusion, detailed nucleation engineering of the metal

oxide film led to the successful growth of large scale, uniform
thickness controlled MoS2 films via sulfidation of ALD and
PEALD Mo-oxide films. The effect of temperature, a 14 s
extended precursor exposure, and plasma and piranha surface
treatment on MoO3 PEALD deposition were studied. Plasma
processing at 150 °C was found to be beneficial to nucleation,
and a piranha treated surface immediately preceding the first
ALD pulse was critical to monolayer MoS2 fabrication. The
molybdenum chemistry and sulfur incorporation were also
studied at each stage of the subsequent multistep sulfidation.

Although molybdenum reduction and sulfur incorporation into
the films occurred at temperatures below 700 °C, elevation to
900 °C was required to activate the conversion to crystallize the
2H structure. Through the control of the nucleation process,
centimeter scale monolayers with uniformity across the
substrate were synthesized as demonstrated by AFM and
Raman spectroscopies.
Ultimately, any growth method for MoS2 or other TMDs for

applications such as digital logic must offer three features: layer
uniformity, complete or controlled coverage, and large domain
size or preferably single crystallinity. One of the key advantages
of the method presented is the decoupling of the MoS2
crystallinity from layer control and coverage by separating
this into two distinct nucleation processes. Specifically, we have
shown that, through control of the ALD process, the nucleation
density of the oxide can be controlled on the wafer scale to
provide two of the three key features, layer control and
uniformity. The subsequent nucleation of the 2H crystal
structure at high temperature after sulfur incorporation
independently controls the final property, crystallinity. While
this will be the subject of future work, crystal quality can be
approached through a number of methods including heating
rate as shown here. However, the ability to tackle this last
property, independent of the layer count and uniformity of the
film, because it is already set by the nucleation engineering of
the ALD oxide, is a significant step toward wafer scale, high
quality, MoS2.
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