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A chemical mixture that continually absorbs work from its envi-
ronment may exhibit steady-state chemical concentrations that
deviate from their equilibrium values. Such behavior is partic-
ularly interesting in a scenario where the environmental work
sources are relatively difficult to access, so that only the proper
orchestration of many distinct catalytic actors can power the dis-
sipative flux required to maintain a stable, far-from-equilibrium
steady state. In this article, we study the dynamics of an in sil-
ico chemical network with random connectivity in an environ-
ment that makes strong thermodynamic forcing available only to
rare combinations of chemical concentrations. We find that the
long-time dynamics of such systems are biased toward states that
exhibit a fine-tuned extremization of environmental forcing.

nonequilibrium thermodynamics | adaptation | chemical reaction
networks | self-organization | energy seeking

An arrangement of matter may be said to be finely tuned to its
environment if it is configured to interact with that environ-

ment in a way that is highly atypical for random rearrangements
of its components. Whereas some of the most striking examples
of such matching between system and environment are found in
the architecture of living things (1, 2), the category is in principle
far broader, and one might therefore hope to provide an account
of emergent fine-tuning in general physical terms.

Recent progress in theoretical nonequilibrium statistical
mechanics (3–7) has helped to clarify a general relationship
between the likelihood of a system adopting a particular micro-
scopic configuration and the amount of energy absorbed and dis-
sipated during the system’s dynamical history. Essentially, the
irreversibility of being driven into a kinetically stable state must
be compensated by the release of heat in the surroundings, which
frequently occurs when the system absorbs and dissipates energy
from an environmental source of work. The implications of this
thermodynamic frame are particularly clear in systems where the
specific configuration adopted has a large influence on the acces-
sibility of energy from external drives, such that strongly driven
states are rare. In such a scenario, having a highly dissipative his-
tory becomes tantamount to having a configurational history that
includes the rare, finely tuned states that make dissipation possi-
ble. This observation suggests that there may be a broad class of
nonequilibrium systems for which state-dependent drive strength
is the relevant thermodynamic parameter for describing the bias
in their exploration of configuration space.

Motivated by these considerations, we carried out simulations
of a complexly driven, randomly wired, many-species chemical
reaction network, with the aim of identifying a thermodynamic
principle governing self-organization far from equilibrium. We
found that such networks have a pronounced bias toward set-
tling into rare states in chemical space with extremal forcing, sug-
gesting that emergent fine-tuning is a general tendency of their
dynamical behavior.

Two-Species Model
In this study, we are ultimately interested in the thermodynamic
properties of the nonequilibrium fixed points that emerge when a
many-species chemical system is driven in a way that varies com-

plexly as a function of the system state. However, to illustrate the
relationship between dynamics and thermodynamics in a simple
example, we first consider a chemical network with only two pos-
sible species A and B (with concentrations denoted by the same
symbols) that interconvert with rate constants kA→B = kB→A. In
the absence of driving, this network’s unique dynamical fixed
point is the chemical equilibrium in which A∗=B∗. We wish
to analyze how an external drive may stabilize new fixed points
away from equilibrium. Thus, we now imagine coupling this sys-
tem to an external source of chemical driving by allowing the
same reaction to also proceed via a new pathway with rates
k ′A→B exp[F(A,B)]= k ′B→A (Fig. 1A). The introduction of
this new reaction branch may seem surprising at first, but it is
quite natural. It simply reflects that there was always another
reaction A

D−⇀↽−B that could have happened in principle as the
result of a catalyst D in the environment, except that it was neg-
ligibly slow due to lack of D .

The fact that there is a force F(A,B)= ln(k ′B→A/k
′
A→B )

breaks the time-reversal symmetry that was present in the orig-
inal equilibrium network. Accordingly, the traversal of this new
forced reaction branch must involve free-energy dissipation F in
the surroundings (8–10). This could be achieved, for example, if
the catalyst D were ATP and converted into ADP and Pi when
A→B . In this case, a nontrivial dependence of F on the chem-
ical concentrations would implicitly be the result of feedback
through other chemical actors not represented explicitly in the
model: Perhaps B controls a metabolic pathway that affects the
ATP concentration. Accordingly, as A and B evolve, the chem-
ical potential drop from ATP to ADP might change, thereby
altering the forcing.
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Fig. 1. Illustration of reaction scheme. (A) Two species A and B interconvert
through two reactions, one of which (gray) is driven by a state-dependent
thermodynamic force F (A, B). (B) A dilute, well-stirred mixture of chemical
species (colored circles) interconverts through a random set of reactions.
Some reactions are copied and biased by a collection of thermodynamic
forces Fγ (A), which are nonlinear functions of the species’ concentration
profile.

The rate of dissipation in a fixed point stabilized by such driv-
ing would be positive, and the amount of dissipation per reaction
would be determined by the chemical potential drop powering
the driven reaction. However, the detailed question of whether
such a nonequilibrium fixed point might lie at high or low chem-
ical forcing would entirely depend on the assumption of how F
depends on A and B . For example, if F = fA with f � 1, then
we would expect to see strong positive feedback, whereby a high-
force fixed point would be stabilized at (A∗,B∗)= (Amax, 0). In
the following, we consider systems in which F varies ruggedly
over a multidimensional chemical space, so that the emergent
fixed points are no longer obvious.

Many-Species Model
We set out to study the dynamics of a randomly wired chemical
network of many reacting species in a dilute, well-stirred mix-
ture, driven out of equilibrium by complexly structured thermo-
dynamic forces induced by the surroundings, schematically illus-
trated in Fig. 1B.

As detailed in Materials and Methods, species were allowed
to participate in one-body, two-body, and catalyzed three-body
reaction channels (A
B , A+B 
C +D , and A+B +E 

C +D +E ) with mass-action kinetics (11). No reactions were
allowed that amounted to direct self-replication of any one
species (e.g., A+B 
A+A), to avoid classic mechanisms of
selection (12). Undriven rate constants for the reactions were
randomly chosen from a distribution that comprised multiple
timescales, with the fastest being 1 s to set the units of time. Each
species was assumed to have the same equilibrium free energy.

Thus described, such a chemical reaction network has a single
dynamical fixed point (known as its chemical equilibrium point)
where the concentrations of all different species are equal. To
drive the system away from equilibrium, we introduce a collec-
tion of additional reaction channels biased by various thermody-
namic forces Fγ . The key here is our choice of external forcing,
in other words, how we model the effect of the environment on
the system. In a fully detailed description, an explicit model of
every possible reaction within both the system and the surround-
ings would be necessary to predict the dynamics. Our goal here is

to strip away most of this detail and focus on the essential phys-
ical characteristics of the environment’s effect on the system. In
particular, we aim to explore the general physical consequences
of a circumstance in which the “fuel” in the surroundings may be
exploited only when the chemical concentrations arrange them-
selves into exceptional configurations. We call such conditions
“challenging” because they implicitly define a physical criterion
that most possible configurations of the system fail to satisfy and
thus provide an ideal setting in which to search for fine-tuning to
environmental energy sources; put another way, the rarity of high
(or low)-force arrangements makes their appearance exceptional
and therefore recognizable.

To this end, we chose forcing functions Fγ that were gener-
ated as random functions of concentration following a mathe-
matical form known to lead to many-bodied frustration (13, 14),
so that concentration profiles for which the strength of forcing
was extremely high or low were much more difficult to real-
ize than combinations for which forcing was mediocre (Fig. 2C)
(Materials and Methods). Note that whereas the forcing func-
tion itself contains no explicit time dependence, it does depend
strongly on the system state. To achieve this manner of forcing
in an explicit model would in general require a complex collec-
tion of hidden degrees of freedom that more rapidly relax to a
nonequilibrium steady state determined both by the system state
and by the fixed chemical potentials of various external particle
baths. However, because of the fundamental relationships that
hold between kinetic and thermodynamic quantities, a consistent
picture of the thermodynamic fluxes flowing through these hid-
den processes can be inferred from the system kinetics alone.

We implemented this forcing scheme on a many-species chem-
ical reaction network by randomly selecting a subset of reaction
channels for duplication and asymmetrization. Thus, for a given
channel A
B with undriven rate constants kA→B = kB→A = k ,
we create a second, new, time-asymmetric version with rate
constants k ′A→B = k ′ eF

γ/2 and k ′B→A = k ′ e−F
γ/2. Such a

description will always be thermodynamically consistent as long
as we recognize that the forcing, which breaks detailed balance,
measures the (minimum) amount of free energy dissipation in
the environment consistent with the amount of asymmetrization
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Fig. 2. Thermodynamic characterization of a reaction network. (A) Single
representative dynamical trajectory of the 25 chemical species’ concentra-
tions. (B) Time evolution of the total thermodynamic force magnitude Ftot

for 10 different initial conditions. (C) Normalized histogram of the total
forceFtot from 1,000 uniform samples of configuration space (orange) com-
pared with the normalized histogram of the total force Ftot attained after
107 s for 500 trajectories with uniform initial conditions (blue). (D) Work per
maximum current η=

∑
i JiFγi/maxi |Ji|, which measures the relative con-

tribution of each reaction channel to the total flux, as a function of time for
the trajectory in A.
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in the rates (15). Thus, we can consistently discuss the energet-
ics and thermodynamics of the system without having to specif-
ically model the surroundings. Indeed, explicitly denoting the
net number of reactions through a driven reaction channel as J ,
the dissipation takes the familiar flux times force form JFγ . It
should also be noted that in our initial investigation, we assumed
k ′= k , reasoning that shared transition-state properties could
cause these rates to be strongly correlated. As we shall see below,
however, it is possible to relax this assumption without altering
the effect we observe.

Let us summarize that the motivation for our choice of theFγs
was to ensure that the chemical space contains a few, rare states
that exhibit a fine-tuned matching to an environmental drive. It
must be emphasized, however, that there is no obvious reason at
the outset to expect the system should tend to find or stay in these
rare, finely tuned states—unlike in the obvious case of the one-
reaction model above, the complexity of dynamics exceeds our
ability to intuit which parts of chemical space will prove to be
kinetically stable. A priori the high-force regions are simply loca-
tions in concentration space that experience strong irreversibil-
ity in their reactive flux when the system happens to visit them
over the course of its dynamical evolution, and it is the empir-
ical question investigated below whether their thermodynamic
specialness requires that they turn out to be something more
as well.

Results
With the reactions fixed, the dynamical evolution of the N =25
chemical species A= {A1, . . . ,A25} is given by the nonlinear,
deterministic reaction rate equations Ȧ=Z(A), where the vec-
tor field Z is constructed using mass-action kinetics. We numeri-
cally solved the reaction rate equations for many randomly gen-
erated chemical reaction networks, choosing initial conditions
uniformly from the simplex of species concentrations with total
C =

∑
i Ai fixed to 25 (on average 1 mol/vol of each species).

A number of parameters had to be chosen before a given fam-
ily of random reaction networks could be realized and simulated.
Details of all these calculations are described in Materials and
Methods. We did not carry out a systematic search of parameter
space, which is far too vast, but we found in general that the
effects reported below required that nonequilibrium forcing be
sufficiently strong, the number of catalyzed reactions be suf-
ficiently large, and reaction graph connectivity be sufficiently
sparse. Other than these qualitative constraints, the phenomena
observed arose generically across the range of parameter values
we examined.

In general, the dynamics evolved to one of many possible fixed
points [i.e., to one of the solutions A∗ of Z(A∗)= 0], depending
on the initial conditions. The results for a representative example
of a reaction network are displayed in Fig. 2.

Fig. 2A shows the concentration dynamics of the 25 species.
The most striking feature of this realization is that, on a
timescale ∼103 s (which corresponds to the rate of the slow-
est unforced reactions) a significant change in the concentration
profile occurs: Three species precipitously grow in mass fraction
together while all others drop in concentration. Other realiza-
tions instead would relax into a configuration where all of the
species have roughly equal, small concentrations (Fig. S1).

We designed the chemical space of this system to contain rare
states of extremal thermodynamic forcing, which might be rec-
ognized as examples of apparent fine-tuning. Thus, we under-
took to analyze the total force magnitude on the network over
the course of its dynamical evolution. Labeling the force on
the i th reaction as Fγi , we computed this quantity for the
network as

Ftot =
∑
i

|Fγi |. [1]

This sum can be large either because a few reactions are strongly
forced or because many reactions are moderately forced; in any
case, it acts as a simple measure of whether the network as a
whole is experiencing strong driving.

In the particular realization in Fig. 2B, we see the forcing
tended to exhibit one of two behaviors. In one scenario, forcing
stayed low or decreased; these outcomes corresponded to final
concentration distributions that were relatively close to uniform,
indicating a near-equilibrium behavior. Alternatively, it was also
often the case that the forcing would rise to an extremely high
value as the system approached a fixed point.

This observation is made precise in Fig. 2C by comparing a
histogram of total forces obtained from a uniform sampling of
chemical space with the histogram of the final total force at
the end of the trajectories, where the dynamics have reached
a fixed point. The motivation for this comparison is to detect
whether the dynamical fixed points appear to be exceptional
combinations of their constituents compared with the ensemble
of random rearrangements achieved through uniform sampling
of chemical space.

The final force distribution for the representative network
studied in Fig. 2 displays a bimodal structure, with the final total
forces being either exceptionally high or low, relative to the uni-
formly sampled set. Whereas other network realizations did not
necessarily show this bimodal structure, their final total force dis-
tributions were peaked at either unusually high or low levels,
essentially filling in one or the other of the humps of the bimodal
distribution (Fig. S1). Thus, the dynamical evolution appeared to
be biased toward landing on fixed points that have recognizably
special and atypical thermodynamic relationships to their exter-
nal environment (16).

To test for this bias more rigorously, we randomly realized 200
different reaction networks with distinct connectivity, unforced
reaction timescales, and forcing parameters and then evolved
their dynamics from five random initial conditions. To assess the
atypicality of the final total force Ftot reached at the dynami-
cal fixed point for each trajectory, we computed how likely the
observedFtot would have been in the same network if it had been
sampled from a uniform distribution over concentration space.
We did so by generating the uniformly sampled forcing distribu-
tion as in Fig. 2C for each randomly realized network and then
assigning a percentile rank in this distribution for each fixed point
reached. For example, a trajectory ending with final total force
F∗ assigned a percentile rank of 80 means that 80% of the val-
ues of Ftot observed from uniform sampling over configuration
space were less than F∗. Final total forces exceeding the largest
uniformly sampled Ftot were assigned a percentile rank of 100+,
representing extremely large forcing.

As a further control, we uniformly sampled configuration
space a second time and determined the percentile rank of the
observed total force according to the same procedure by which
the fixed points were ranked; Fig. 3A, Inset is a histogram of
these percentile ranks for fixed points and for the control set.
By computing the ratio between these two histograms we quan-
tified the bias toward each percentile rank, which is displayed in
Fig. 3A.

Strikingly, the final force percentile distribution separates into
two types of behavior, paralleling the outcomes observed in
the single reaction network studied above. Frequently, the fixed
point of a random reaction network resides at low force, corre-
sponding to a near-equilibrium fine-tuned outcome: The system
gets stuck in a near-equilibrium state that is atypically decoupled
from the external drive. However, there is also a heavy tail in
the percentile distribution, and a significant fraction of all tra-
jectories terminate at fixed points with percentile ranks above
100, with a likelihood that is four times that of the control; these
realizations correspond to arrangements in which the system
discovers a way of harvesting energy from the atypically strong
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Fig. 3. Characterization of final total forcingFtot rarity. (A) Frequency ratio of the percentile ranks of final total forcesFtot to percentile ranks of uniformly
sampled control measured relative to a uniformly sampled distribution of forces over configuration space. Shading delimits the region where the final total
force Ftot occurs less often than the control. (A, Inset) Normalized histogram of final total force Ftot percentile (white) and control (gray). (B) Work per
maximum current η as a function of time, averaged over all reaction networks (yellow) and conditioned on ending in a high-forced fixed point (red) or a
low-force fixed point (blue).

forcing, thereby maintaining itself in a recognizably special out-
of-equilibrium arrangement.

We also computed the work rate per maximum current,
η=

∑
i JiF

γi /maxi |Ji |, which measures the dissipation per
reaction, weighted to favor those reactions experiencing the most
current. Averaged over many realizations, the mean value of η is
seen to increase dramatically over time in Fig. 3B, despite the
greater frequency of low-force fixed points. In aggregate, the
high-force fixed points thus lead to such a pronounced increase in
η that they dominate the mean. Increased effectiveness of work
absorption from external drives therefore appears to be a robust
average feature of a large random ensemble of reaction schemes.

Our observations lead us to ask how the dynamics of these
random networks become biased toward having fixed points
that are thermodynamically special. What is it about these rare
configurations—which make up a minuscule fraction of the
whole chemical space—that causes them so frequently to turn
out to be the inevitable dynamical attractor?

To explain this, we note that in our model, all driven reac-
tions were duplicated from an existing undriven version. Accord-
ingly, we can divide the equations of motion into undriven
and driven pieces, Ȧ=Zdriven(A)+Zundriven(A). From this divi-
sion, it is immediately clear that any dynamical fixed point
A∗ must satisfy Zdriven(A∗)=−Zundriven(A∗). It should also be
the case, however, that in the limit of no driving Zdriven(A∗)
will be highly correlated with Zundriven(A∗), because they have
many identical rate equation terms in common. [Indeed, if all
reaction channels are duplicated and forcing is taken to zero,
Zdriven(A∗)=Zundriven(A∗)]. Thus, any nontrivial high-force fixed
point must occur at a place in configuration space that is suf-
ficiently driven to break the relationship between Zdriven and
Zundriven, decorrelating them enough so that they could happen
to additively cancel.

To assess the impact of high forcing, we investigated how
it shifts the Pearson correlation (or normalized inner product)
ρ between Zdriven and Zundriven. The Pearson correlation is a
bounded (−1<ρ< 1) measure of correlation. Positive values
near ρ≈ 1 signify Zdriven and Zundriven point roughly in the same
direction in chemical space and therefore cannot cancel to pro-
duce a fixed point; in contrast, negative values near ρ≈−1 imply
Zdriven and Zundriven are pointing in opposite directions, allowing
for the possibility of a fixed point. Fig. 4 displays distributions of
Pearson correlations conditioned on the total force for 40, 000
configurations obtained from 400 reaction networks.

Low-force configurations have a correlation peaked near
ρ≈ 1, which is consistent with our intuition that when the total
thermodynamic force is low, it cannot reshape the driven reac-
tions so that Zdriven≈−Zundriven. By contrast, high-force config-

urations have a correlation distribution with a pronounced tail
extending to ρ≈−1. Thus, forcing decorrelates the direction of
the driven and undriven force fields. Meanwhile, the scatter plot
of ‖Zundriven‖ vs. ‖Zdriven‖ in Fig. 4B demonstrates that the mag-
nitudes of these two reaction vectors remain largely unchanged,
and correlated, even at high force. With these two different vec-
tors sampled quasi-independently, there is an increased likeli-
hood that they will turn out to be equal and opposite, cancel-
ing out to a high-force fixed point. The key to this mechanism is
the high dimensionality of the chemical space and the random
strength and direction of forcing on reactions.

Discussion
In the ensemble of random reaction networks studied here, a
challenging driving environment made it possible to define fine-
tuned order in terms of an atypically strong matching to available
sources of work. As anticipated in previous theoretical works (7,
17), our central finding was that kinetically stable behaviors of
such a system are indeed biased toward appearing to be finely
tuned to the external drive: In other words, the long-time behav-
ior of the system is enriched in outcomes that would be observed
only with small likelihood in a random and uniform sampling of
the whole space of possibilities.

The mechanism for emergent fine-tuning at high force appears
to require that randomly interacting components lead to a high-
dimensional space of possible configurations with distinct prop-
erties. To maintain a high-force fixed point, the system must
experience enough forcing from the environment to give rise
to driven reactive fluxes that can exactly counterbalance the
undriven reactions occurring alongside them. Whereas such
counterbalancing is by no means guaranteed to occur solely as
the result of high forcing, the high-force regime is composed
of different locations in chemical space that may be thought
of as each being a quasi-independent attempt at achieving this
counterbalancing by random accident. In a setting where the
effective number of such attempts is large enough, the exis-
tence of at least one high-force fixed point can be surprisingly
likely.

We might have suspected that our initial assumption that
forced and unforced reaction branches were governed by the
same reaction timescales (k = k ′) was an important ingredient;
it stands to reason that the correlation of timescale increases
the degree to which the driven and undriven reaction vectors
must point in the same direction. However, when we regener-
ated the same plots in Figs. 3 and 4 using reaction networks in
which k and k ′ were independently drawn (Figs. S2 and S3), we
obtained nearly identical results. This robustness derives from
the fact that the correlation in direction of driven and undriven

7568 | www.pnas.org/cgi/doi/10.1073/pnas.1700617114 Horowitz and England

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1700617114/-/DCSupplemental/pnas.201700617SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1700617114/-/DCSupplemental/pnas.201700617SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/cgi/doi/10.1073/pnas.1700617114


PH
YS

IC
S

Pearson Correlation
-1.0 -0.5 0.0 1.00.5

Fr
eq

ue
nc

y 10-1

10-2

10-3

102

101

1

1 101 102

Undriven Force Magnitude

D
riv

en
 F

or
ce

 M
ag

ni
tu

d
e

BA

Fig. 4. Characterization of driven and undriven dynamics. (A) Normalized histogram of Pearson correlation between driven and undriven force fields,
Zdriven and Zundriven, for low-force configurations (orange) and high-force configurations (blue). (B) Scatter plot of the magnitude of the undriven force field
‖Zundriven‖ vs. the driven force field ‖Zdriven‖ conditioned on low-force configurations (orange) and high-force configurations (blue).

reaction vectors at low forcing comes about from factors other
than the reaction-by-reaction matching of timescales, which sug-
gests the effect we observe may be general to a larger class of
nonequilibrium chemical networks.

We found in general that, once such an attractive fixed point
exists, the system dynamics can find it on the timescale of the
slowest unforced reaction. At first, this rate of relaxation to the
steady state may seem unexpectedly rapid: A structure of corre-
lations in concentration extending across the entire system turns
out not to take significantly longer to develop than the time for a
single slow reaction to occur at random. The reason for this effect
is that we have modeled this chemical network using mass-action
kinetics, which assume a limit of large particle numbers. Thus,
implicitly, the system has the opportunity to “experiment” with
many different chemical combinations in parallel at the level of
individual stochastic molecular events, until a successfully coop-
erative one is discovered (18, 19).

It is instructive to be able to demonstrate that even a chem-
ical mixture devoid of any obvious selective pressure via self-
replication could discover and stay in specially structured com-
binations that appear to be good at meeting a complex challenge
presented by the environment—they can not only do this, but
also do so on timescales rapid enough to be accessible to direct
observation. With further study, such knowledge might prove to
be useful in explaining or promoting the emergence of life-like
behaviors in initially lifeless material settings.

Materials and Methods
Our model is a well-stirred, dilute mixture of N = 25 chemically reacting
species, A = {A1, · · ·A25}, with equal free energies in a solute of volume
V = 1 at inverse temperature β= 1/kBT . The species are “wired” together
into a chemical reaction network by randomly choosing pairs of species
to interconvert through one of α= 1, . . . , M reversible, chemical reaction
channels, ∑

j

rαj Aj 

∑

k

sαk Ak, [2]

with rαj ∈ {0, 1} and sαk ∈ {0, 1}. Most reactions are unimolecular—there
is only one reactant and one product—although with probability p = 0.3, a
reaction is designed to be bimolecular—two reactants and products. In addi-
tion, with probability e = 0.5 a catalyst is added to both sides of the reaction
(as a reactant and product, so it is not consumed), which is uniformly chosen
as a distinct chemical species. This avoids any self-replication reactions.

The reaction rates are given by mass-action kinetics (11),

Rα+(A) = kα
∏

j

A
rαj
j Rα−(A) = kα

∏
j

A
sαj
j , [3]

where ± denotes the forward and reverse reaction, and the bare rate con-
stants {kα} are chosen at random from the set {1 s, 10−1 s, 10−2 s, 10−3 s}.
The bare rates {kα} must be symmetric between the forward and reverse
reactions to comply with detailed balance, as the free energies of each
species are equal and no species appears more than once as a reactant or
product.

We break detailed balance by introducing additional biased reactions
driven by a collection of nonlinear, generalized thermodynamic forces. To
this end, we randomly select a fraction δ= Mdriven/M of reactions and copy
(or clone) them. However, the forward reaction is sped up and the reverse
reaction is slowed down by tilting the reaction rate with one of γ= 1, . . . , f
thermodynamic forces. The forces are constructed as the bilinear sums

Fγ (A) =
∑
i>j

Jγij (Ai − cγi ) (Aj − cγj ). [4]

For each force γ, a fixed fraction µ of the coupling constants Jγij are nonzero
with a magnitude chosen uniformly from the range (−s, s). The offsets cγi
are randomly selected to be either 0 or 1. This form for the forcing was
chosen because it is well known to be a “frustrated” function of all of the
variables Ai whose extremal value is rare (13, 14). The forced reaction kinet-
ics are then

Rα+(A) = eβF
γα (A)/2Rα+(A), Rα−(A) = e−βF

γα (A)/2Rα−(A). [5]

Note that by construction every driven reaction has an undriven copy. As
a result, no matter how much the forcing slows down the reaction, the
undriven path is still possible, meaning that no reaction can be slower than
the rate dictated by the slowest unforced rate constant.

With the rates, the species-concentration dynamics are dictated by the
macroscopic reaction rate equations

Ȧi =

M∑
α=1

sαi Rα+(A)− rαi Rα−(A) +
Mdriven∑
ρ=1

sρi R
ρ
+(A)− rαi R

ρ
−(A) [6]

≡ Zi
undriven(A) + Zi

driven(A) ≡ Zi(A). [7]

In summary, the random ensemble of networks is specified by the fol-
lowing collection of parameters: (i) N, number of chemical species;
(ii) M, number of reaction channels; (iii) p, average fraction of bimolec-
ular reactions; (iv) e, average fraction of catalyzed reactions; (v) kα, bare
rate constants; (vi) δ, fraction of reactions that are duplicated and forced;
(vii) f , number of generalized thermodynamic forces; (viii) µ, fraction of
nonzero bilinear coupling constants in the thermodynamic forces; and
(ix) s, range of possible magnitudes of the thermodynamic forces’ coupling
constants.

Numerical solutions were obtained using the NDSolve function in
Wolfram Mathematica version 10.1.0.0, using the “StiffnessSwitching”
method with accuracy goal set to infinity. Parameters were as follows: For
Fig. 2, N = 25, M = 35, δ= 0.3, f = 10, µ= 0.3, and s = 0.2. For Fig. 3, there
was an even mixture of 1,000 realizations from each of the four ensembles
of random networks with (i) N = 25, M = 35, δ= 0.6, f = 10, µ= 0.2, s = 0.2;
(ii) N = 25, M = 22, δ= 0.3, f = 10, µ= 0.3, s = 0.2; (iii) N = 25, M = 35,
δ= 0.3, f = 10, µ= 0.3, s = 0.3; and (iv) N = 25, M = 35, δ= 0.6, f = 2,
µ= 0.2, s = 0.2. And for Fig. 4, N = 25, M = 35, δ= 0.6, f = 10, µ= 0.2, and
s = 0.2.
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