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Abstract

The top quark mass is one of the most important Standard Model parameters and
its mass has been measured at sub-percent precision by the Tevatron and LHC using
Monte Carlo (MC) based methods. The resulting MC top mass parameter suffers from
0(1 GeV) uncertainty due to lack of specification of a precise field theoretic definition.
Here a kinematic extraction method for obtaining a precisely defined short distance
top mass at the LHC is proposed. A formula for factorized top jet mass cross section in
the peak region is derived using methods of Effective Field Theory (EFT). It can then
be used for direct comparison with data or for calibrating Monte Carlo simulations.
Result for hard matching coefficient at two loops at the top mass scale is presented
that enables N 3LL logarithmic resumamtion of the cross section for top-jets in e+e-
collisions. An effective theory setup for top mass extraction with soft drop grooming
is derived, and is used to derive a factorization formula for the groomed jet mass
distribution. Constraints from power counting in EFT limit the strength of groomers
to "light grooming region". Studies with PYTHIA demonstrate that application of
soft drop, even when restricted to light grooming, shows remarkable improvements
in resilience to contamination from the underlying event (UE), has vastly reduced
dependence the jet radius, and makes the top jet mass spectrum from pp collisions
look like that of e+e- collisions as predicted. Modifications to the peaked spectrum
from hadronization and UE for groomed top jets are suppressed and can be handled
reliably. Using our factorization theorem results, a preliminary calibration study of
Pythia top mass parameter is performed that yeilds results consistent with earlier
calibrations for e+e- colliders.

Thesis Supervisor: lain Stewart
Title: Professor of Physics
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Chapter 1

Introduction

This thesis is about precision measurement of the mass of the heaviest elementary

particle that we know of, the top quark. This work falls under the theme of the quest

for precision measurement of properties of subatomic particles that we have discovered

over the course of last century. In this thesis we aim to broaden our understanding of

the various theoretical and experimental challenges that we face in this pursuit, and

how they have led us to develop unique and powerful tools. The introduction section

is aimed at non-physicists, and can be followed by anyone with modest interest in

particle physics. The rest of the thesis contains advanced material.

Let us first recall how the mass of macroscopic objects is measured. An ant weighs

about 2-5 milligrams, an average human about 70 kilograms. The mass of the earth is

5.9 x 1024 kg and that of the sun is 1.9 x 1030 kg. This is a wide range of masses but the

common feature in their measurement is that we use the force of gravity to measure

the mass. On the other hand, consider a hydrogen atom: given the extremely small

mass of 1.6 x 10-27 kg, the force of gravity between an atom and anything macroscopic

is undetectable. The state of art measurement of gravity is limited up to dielectric

microspheres with diameters > 1 pm [101, which is still far from being able to weigh

much smaller atoms.

However, it is still possible to measure the masses of subatomic particles. The key

ideas that enable this are as follows:

19



1. The known fundamental matter particles that have mass interact with each

other, not just through gravity, but also through some or all of the three other

forces of interaction that are much stronger than gravity: the 'weak', electro-

magnetic, and the strong force (the 'weak' force still being much stronger than

gravity). With the exception of the electromagnetic force, the strong and the

weak forces manifest themselves only at subatomic distances.

2. Einstein's relation E = mc2 tells us that the mass of a particle is equivalent to a

certain amount of energy, and that matter and energy are inter-convertible. As

a consequence, through these forces of interactions, the particles can not only

influence each other in the way they move in each others' vicinity, they can also

completely transform or decay into other particle(s).

3. Such transformations happen in a way that energy and momentum is conserved

throughout the process.

Thus if it happens that a parent particle with an unknown property transforms into

daughter particles with known properties that can be experimentally measured then

we have found a way to learn something about the parent particle. In particular,

by measuring the energy and momentum of these known daughter particles we can

calculate the mass of the parent particle.1 Furthermore, the parent particle can itself

be produced by smashing together known particles at high enough energies. As an

example, a neutral pion, represented by 7ro, mostly decays into two photons. By

measuring the momentum of these photons we can calculate the mass of 7r0.

In this introductory part we first discuss in Sec. 1.1 some of the interesting features

of the strong force that are relevant to top mass measurement. We then consider the

challenges imposed by the nature of the experiment in Sec. 1.2, and by the theory

in Sec. 1.3. We conclude with an overview of the theoretical tools of Effective Field

Theory description in Sec. 1.4 that has made it possible to overcome these challenges

developing a promising method to precisely measure the top mass.

'This is also the reason why it is so hard to determine properties of dark matter, whose only yet
known interaction with normal matter is gravitational.
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1.1 The Standard Model

The physics at the shortest subatomic distances is described by the Standard Model

(SM) of particle physics. We learned about the very first Standard Model particle to

be discovered, the electron, over hundred years ago, and since then, through the use

of particle colliders and studying cosmic rays, we have come a long way towards iden-

tifying the elementary particles that are the building blocks of nature. By smashing

particles at higher and higher energies in a particle colliders we can create heavier

and unstable particles that do not make up bulk the stable matter that macroscopic

objects are composed of.

During the 1970s came the first experimental confirmation of the existence of a

class of particles called quarks, which make up the protons and neutrons and are

held together by the strong nuclear force [26]. Over the course of following decade we

found, one after another, different types of quarks, each of them heavier than the ones

already known. In 1995 we discovered the sixth quark, the top quark [4]. It is the

heaviest elementary particle that we know so far. Its mass alone is about the same

as that of a gold nucleus that contains about 185 protons and neutrons. The next

heaviest quark, the bottom quark is about forty times lighter than the top quark. We

refer to the five other quarks collectively as "lighter" quarks.

The second half of the twentieth century was also the time when the properties of

the strong nuclear force were being understood and a theoretical framework for cal-

culations involving the strong force was being developed. We learned that the strong

force is quite different from the electromagnetic force. The electromagnetic force

between two charged particles decreases as they move further apart, but the strong

force behaves rather like a rubber band: the further the rubber band is stretched

the more tension is created, whereas an unstretched rubber band is slack and there

is no tension. This different nature of the strong force gives rise to very interesting

phenomenon in nature.

A consequence of this behavior is that (lighter) quarks exist only in bound combi-

nations with other quarks, held together by gluons, particles that mediate the strong
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Figure 1-1: Masses of various elementary particles in Standard Model [81].

force. Protons and neutrons are examples of such bound configurations consisting of

three valence quarks, but many more such composite particles called hadrons have

been discovered. There have been even recent observations of hadrons consisting of

exotic combinations of more than three quarks [3]. Just like all the electromagneti-

cally interacting particles carry the (regular) charge, quarks are also charged under

the strong force. This charge is referred to as the color charge. Bare quarks carrying

color charge thus combine to form color neutral hadrons.

All the hadrons need roughly the same amount of time to form starting from bare

quarks. This time scale is set by the dynamics of strong interaction. However, the

top has a unique property that it has a shorter lifetime, and hence, it decays into

lighter particles before it can bind into a hadron.

In Fig. 1-1 we show masses of various elementary particles in Standard Model.

This is expressed in units of GeV where 1 GeV corresponds roughly to the mass of

a hydrogen atom. The heaviest is the top quark with a mass of about 173 GeV and
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Figure 1-2: Shown on the left is a schematic of the ATLAS detector at the LHC [9].
Shown on the right is an event display of top anti-top pair production at the CMS
experiment with identifiable 3-prong substructure from the t and t decays [391.

the lightest particles are the neutrinos, about a factor of 1014 times lighter. It is a

big open puzzle in physics as to why we have such variety of elementary particles

with such different masses. Here we limit ourselves to a much less ambitious, but still

quite exciting, problem: given these particles with their specific properties, how can

we accurately measure their masses, and in particular, measure the top mass?

1.2 The Large Hadron Collider

We show a schematic of the ATLAS detector of the Large Hadron Collider(LHC)

in Fig. 1-2. Two oppositely directed beams of protons collide at the center of the

barrel shaped detector. The particles produced from the collision stream through

the surrounding detectors while depositing their energy. The electronic signals thus

generated allow us to reconstruct the energy and momenta of these particles. The

top quark can be produced at such high energy proton-proton collisions. An event

display of top and anti-top pair production at the CMS detector of LHC is shown in

the right panel of Fig. 1-2. The top quark is an unstable particle that decays before

it reaches the detectors, which precludes direct mass measurement. Its mass must be

measured through measurement of the energy and momentum of the decay products

The measurement of the top mass requires a sample of top quark events. One
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Figure 1-4: A schematic of components of an LHC collision, showing the hard collision,
shower, hadronization, as well as multiple particle interactions [87].

reconstructs the top mass through the decay products for every event and bins it

in a histogram. Fig. 1-3 shows is how an idealized spectrum of reconstructed top
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mass would look like. One might argue that given the fact that the top mass is a

single valued number we should always obtain the same value of mass every time

we reconstruct it using top decay products. Rather, we instead see a probability

distribution that peaks at a certain value and has certain width to it. This is because

the decay of a particle is a quantum phenomenon. For an unstable particle, which

only lasts a finite amount of time, Heisenberg's Uncertainty principle comes into play.

According to this principle there is an inherent uncertainty in the energy (or mass)

of an unstable particle inversely proportional to its lifetime. This leads to a specific

probability distribution of the top mass called the Breit-Wigner (BW) shape shown

in Fig. 1-3 with a small width of about 1.4 GeV. This uncertainty is represented by

the width of the spectrum. Hence, top mass measurement effectively corresponds to

measurement of the peak position of the distribution.

Top quarks are produced in colliders in a much more complex environment. Shown

above in Fig. 1-4 is a representation of what a typical collision event at the LHC looks

like. We find that in addition to top quark production there are several other processes

going on which change the shape and the location of the original BW distribution.

An example of such modifications is shown in Fig. 1-5. The modifications correspond

to a shifting of the peak and smearing of the original BW shape to yield a wider

distribution. In order to be able to extract the top mass from the LHC data, we

must have a good understanding of these extraneous effects and how they shift the

mass distribution. Many of these processes cause contamination in the top mass

measurement and they need to be understood and controlled.

We can understand some of the features of these additional processes by consider-

ing the behavior of the strong force. Going back to the rubber band analogy, we can

distinguish between two scenarios when the rubber band is slack and not stretched vs.

when it is stretched and has tension in it. Top production and decay happens at such

short distances where decay product quarks are relatively free, or when the "rubber

band" is still slack. As the decay products propagate, the strong force between them

gets significant, and after they move far enough apart the energy of interaction gets

transformed into creating more and more quark-antiquark pairs. This is the stage
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Figure 1-5: The peak position for top mass spectrum is shifted from the actual mass
due to radiation, non-perturbative effects, and contamination from the underlying
event.

when the rubber band snaps into pieces. Combining both regimes, the end result is

a collection of quarks and anti quarks. These particles then further radiate quarks

and gluons, collectively referred to as partons, as they propagate, thus creating a

shower of particles, called the parton shower. Then they eventually bind together

to form composite hadrons. This last process is called hadronization. Thus, parton

shower radiation and hadronization change the original BW shape by redistributing

the momenta of the top decay products.

There are other complications we run into that have more to do with our exper-

imental limitations. At the LHC we collide protons against protons. The proton is

not a fundamental particle but rather a bag of quark and gluons. Often times there

are several collisions between incoming quarks and gluons from either of the parent

protons which happen at the same time. So the top quark is often produced with

several other particles from these other collisions. Since the top quark is heavy, we

often have most of the energy of the incoming protons go into creating it, and a

small amount in the remaining collisions, but still, these additional collisions produce
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particles that get counted with the top decay products further shifting the peak po-

sition. These additional collisions are referred to experimentally as the underlying

event (UE). Furthermore, the most severe of all experimental complications is called

"pile-up": at the LHC we do not circulate individual protons in the beam, but rather

bunches of protons. We find that there are collisions between more than one proton-

proton pairs from these bunches, that are completely uncorrelated. This problem gets

worse at higher energies and luminosities (number of collisions per second). In this

thesis we do not consider the effects of pile-up, but we do address the effects of the

parton-shower, of hadronization and of the UE.

1.3 Theoretical Challenges

Given such a wide variety of processes contributing to the top mass spectrum we find

it helpful to work with Monte Carlo (MC) simulations that incorporate the physics

of all these effects. The most precise current measurement of the top mass relies on

such simulations. Many of the complications we discussed above also show up in other

simpler processes such as in the production of lighter quarks. MCs are constructed

and calibrated based on studying such well understood processes. When applied

to top quark production studies, the only unknown is then the top mass, which

is fed into the MC as a parameter. By comparing the experimental data against

simulations one obtains the best fit top mass parameter. One of the most precise

measurements of top mass obtained this way by the CMS collaboration at the LHC

is mt = 172.44 0.49 GeV [84], where the uncertainty here (combination of statical

and systematic uncertainties) is less than one percent.

However, MC simulations are limited in their ability to reproduce the true theory.

In order to gain an understanding of uncertainties from the theory, we first try to

understand what a theory calculation in particle physics involves. By theory here

we mean the framework of quantum field theories that has developed over the last

century. We learned about quantum phenomenon starting in early 1900s by following

various clues from atomic spectroscopy. Around the same time the theory of special
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relativity was being developed. Quantum mechanics describes physics at the scale of

atoms. It is based on a probabilistic interpretation, unlike deterministic classical me-

chanics. Classical mechanics can be thought of as averaging over the quantum effects

to describe gross macroscopic phenomena. Another limit where classical mechanics

needs modification is when we consider objects moving at speeds close to speed of

light, and in this limit special relativity is the appropriate generalization of classical

mechanics. These two theoretical frameworks were studied and tested independently

in the first half of twentieth century, but later on with the advent of experiments that

probed subatomic particles that moved close to speed of light, a relativistic gener-

alization of quantum mechanics was discovered, which we refer to as quantum field

theory (QFT).

QFT is a generic term for a framework of theories. The Standard Model (SM) is

a specific QFT with the ingredients that correspond to the particles and the forces

that we observe in nature. At the heart of the QFT framework each particle, either

a matter or force carrier particle, is associated with a field that takes a value at each

point in space at a specified time, or at a point in space-time. As an example, we

can describe the temperature of a room by specifying the "temperature field" that

is simply the temperature at every point in the room, at a given time. However, in

QFTs these values need not be simply real numbers, but could be complex numbers,

vectors, matrices or even more abstract mathematical objects. This should not be

worrisome since in the experiments we do not probe the actual values of the fields

(unlike measuring the temperature) but rather the probabilities of changing of one

field configuration into another. For example the number of times we observe a certain

particle being created in particle collisions with certain energy from a pair of incoming

particles can be related to a calculation of one such probability.

QFTs provide a convenient way to encode the mathematical description of all

the physical phenomena. A single equation for the SM QFT encodes within it all

the physics from which everything we know and observe in nature follows (except

for the phenomena involving gravity, and ignoring potential small deviations from

experiments that the SM might fail to explain). Collider experiments measure the
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probabilities for various processes that are tested against the theoretical predictions

from QFTs. The task at hand is to define an observable for measuring the top mass

that is free from contamination coming from uninteresting background processes. We

learned that effects of hadronization and UE have an impact on the peak position

and the shape of the spectrum. We would like to work with observables that are less

sensitive to these effects, and are amenable to theoretical calculations.

The intrinsic non-deterministic quantum nature of these processes makes such

calculations quite challenging technically. Here is an example to illustrate the nature

of this complexity: let us recall how the calculation of the Coulomb force between

two charge particles goes. We learned how to calculate the electrostatic force acting

between two objects if we know their charges and the distance between them. This is

a simple matter of plugging the values of charges and the distance into the equation

and getting a number out. However, we rarely consider questions such as does the

presence of a charged particle at a certain distance affect the charge of the other

particle? We assume the charges to be constant and not changing as a function of

distance. It turns out, this assumption is no longer true at subatomic distances,

and this simple classical picture breaks down. At very short distance scales, the

electromagnetic charge itself is a function of distance. The charge of one electron

that another electron "sees" gets larger and larger as they approach each other.

Quantum Electrodynamics (QED), the first QFT written down to describe elec-

tromagnetism, provides the explanation for this phenomenon. It was observed that

the Dirac equation in QED that describes the electron field needed, for the sake of

theoretical consistency, an anti-electron, or positron field. Furthermore, it allowed for

creation and annihilation of electron-positron pairs in vacuum entirely on their own.

This changed our understanding, showing that the vacuum is not really empty after

all. It has particle anti-particle pairs popping in and out constantly. These particles

are called virtual particles, to distinguish them from 'real' electrons which exist in-

definitely (unless they encounter a positron on their way and annihilate). In fact, this

seemingly bizarre phenomenon has been confirmed experimentally by what is known

as the 'Casimir Force'. Two metal plates in vacuum placed nanometers apart can feel
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a tiny attraction to each other even if there's no external electromagnetic field. These

virtual electron-positron pairs, being oppositely charged, create polarization in the

plates which makes them attract each other f89].

The existence of virtual particles also provides an explanation for the varying

electron charge as a function of distance. The virtual pairs surrounding an electron

orient themselves such that the positively charged particles are closer to the electron

and the negatively charged particles away from them. This cloud of virtual particles

then screens the charge of electron, thereby diminishing it, but the closer we go into

the cloud more charge we see. Hence, the charge of the electron becomes a 'scale'

dependent quantity. We use the term scale to refer to either distance or energy

scales. Concepts of energy and distance are used quite interchangeably in particle

physics. Short distances correspond to high energy and vice versa. This is analogous

to Heisenberg Uncertainty principle which constrains simultaneous measurement of

energy and time, or momentum and distance, to arbitrary precision. We have already

seen an example of this: the decay of the top quark introduces a width of about 1.4

GeV in the BW spectrum due to its finite lifetime.2 It is often more convenient to

describe particle physics in terms of energy scales rather than distance scales.

We find that similar quantum effects change the behavior of the mass too and make

it a function of the scale at which the process takes place. The QFT for strong force is

called Quantum Chromodynamics. The "chromo" refers to the 'color charge' carried

by quarks and gluons, similar to positive and negative electromagnetic charge. QCD

predicts how quantum corrections affect the mass. Hence, to make mass measurement

of top quark more meaningful we must know something more than just a number.

That 'more' has to do with the understanding of how the quantum effects shift the

mass as the energy scale at which the mass is being probed is changed. This is referred

to as specifying the definition of top mass.3 The MC methods that were described

above have a difficult time in accurately accounting for such delicate quantum effects

2As a simple example, X-rays carry more energy than infrared light, and they also have shorter
wavelength. X-rays when shine on an atom can knock an electron off as opposed to longer wavelength
infrared waves.

3 In technical terms, we must know the renormalization scheme the mass is measured in, or how
higher order corrections affect the mass definition.
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since their treatment of real and virtual radiation are intrinsically tied together.

We note that the simulations of the kind described above incorporate various

approximations and models, and hence are not first principle simulations of QCD.

They incorporate approximate theoretical descriptions for the sub-processes such as

production of particles, their decays, and parton shower, and models for hadronization

and UE effects.4 These components are then patched together to simulate the full

event, but only to a limited accuracy. As a result the MC top mass parameter, which

we call m'mc does not have a precise field theoretic definition that can be described

by calculations with the Standard Model lagrangian. It has been estimated that this

introduces a theory uncertainty of 0.5-1.0 GeV, which is of the same level as the

experimental uncertainty.

1.4 Effective Field Theories

To go beyond sub-percent precision for the top mass measurement we must turn

to theoretical predictions that are more precise than the MC simulations, but also

equally sophisticated in their ability to account for variety of sub-processes. This

is a challenging task because the top mass measurement involves multiple widely

separated energy scales. It is also a very exciting problem for the very same reason

as this unique feature can be exploited to make use of the well known framework

of 'Effective Field Theory' that we explain below. Knowing the energy scales that

characterize a physical system can provide a great simplification and also guide us

towards the solution.

Consider an example where an engineer is trying to gain understanding of a sys-

tem that involves flow of a liquid through various components. Let's say the engineer

wants to understand how to predict properties such as pressure and the speed of the

fluid at various locations of the system. They are essentially seeking an explanation

in the language of hydrodynamics where a fluid is imagined to be a field with macro-

4There are first principle simulations of QCD called Lattice QCD simulations. These simulate
QCD exactly by discretizing the space-time, however, they are intrinsically Euclidean and hence
unable to directly compute the outcome of high energy collider experiments.
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scopic measurable properties at each point in space, such as the temperature, pressure,

density and fluid speed at a given point. At very small distances the fluid, however,

looks entirely different in composition - one sees a picture of distinct molecules inter-

acting with each other through electromagnetic forces. Macroscopic quantities such

as pressure or temperature are no longer sensibly defined at such short distances.

At the same time, we can be completely unaware of the molecular structure of the

fluid, be it water or oil, and still provide a consistent explanation of its macroscopic

motion by measuring its bulk properties such as viscosity and specific heat, and

make predictions based on hydrodynamics. The key point is that hydrodynamics

is a very convenient tool to use for such practical applications, even though it may

fail to tell us much about physics at molecular distances. One can make rough

statements about the strength of the intermolecular interaction based on how viscous

the fluid is, but a more precise explanation demands a short distance description.

More broadly, hydrodynamics is referred to as the "effective theory" to distinguish it

from the "full theory" based on a description starting at molecular scales. Another

well known example of an effective theory is Ohm's law for circuits that can be applied

to a variety of materials without having to understand the distribution and flow of

individual electrons. At the same time, it is possible to derive the long distance

quantities such as resistance based on a short distance model.

Such a distinction between a physics description at short and long distances of the

same system has direct analogies in particle physics. Effective theories become a very

useful tool for describing processes at particle colliders where multiple sub-processes

contribute at different energy scales. The analogy presented above in Sec. 1.2 in terms

of slack and stretched rubber band is precisely creating a distinction between short

and long distance physics respectively. The physics of formation of the top quark

from the incoming beams is a short distance phenomenon whereas its subsequent

decay, parton shower radiation and hadronization are longer distance phenomena.

We mentioned above that processes such as hadronization are universal in nature in

the sense that these effects can be studied in systems involving lighter quarks. This

is precisely a consequence of the fact that the slack and the stretched rubber band
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scenarios are widely separated in energy scales and thus enable an effective theory

treatment.

One would find it extremeley hard to predict macroscopic behavior of water start-

ing from a description based on its molecular composition H 20. Similarly, processes

such as the details of hadronization and underlying event are very challenging to

calculate from first principles QCD. To tackle such problems, an Effective Field The-

ory (EFT) treatment for QCD processes in collider physics has been developed over

the last two decades that has made such processes theoretically tractable, which is

called Soft Collinear Effective Theory (SCET). EFTs have also been applied to sys-

tems that contain heavy quarks where the mass of the heavy quark interacting with

lighter particles is much larger than the energies of other particles in the system,

called Heavy Quark Effective Theory (HQET). An example is a hadron consisting of

a bottom quark with a mass of about 4 GeV, and a lighter up or down quark whose

mass is over a thousand times smaller. These two frameworks, SCET and HQET,

simplify calculations and enable predictions that are not easy to calculate directly

from QCD. The work presented here combines these two bodies of work to describe

top mass measurements that involve understanding both the collider environment,

and the top-decay and radiation into particles of much smaller masses.

To see why this works we note that in an EFT framework one distinguishes the

energy scales relevant to the problem that are widely separated from each other. One

then associates different fields to the particles based on their energies. This is in

contrast to QCD where a quark is always associated with the same field no matter

how fast or slow it is. In other words, EFT plays a role of hydrodynamics providing

a description in a language that is quite different from the full QCD theory, and

at the same time, much more practical to work with. Analogous to parameters in

hydrodynamics, such as viscosity, the EFT also introduces new quantities that can be

either calculated from first principles or measured separately, and are more directly

related to the specific problem than the parameters of QCD. Hence, EFTs like SCET

and HQET are very useful tools for complex problems like top mass measurement.

We have pointed out earlier that MCs are limited in their ability to accurately
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account for quantum corrections to the top mass, which limited applying results

results of the measurement while retaining a precision beyond 1 GeV. Top mass

measurements using EFT methods hold the promise of improving this precision either

directly or in combination with MC. EFTs allow for greater precision since they

involve calculation of individual objects that involve only a single scale, which are

then combined to give a full result. These sub-calculations can be performed with a

greater precision than the case where we try to tackle a multi-scale problem at once.

The level of sophistication thus obtained from EFT calculations competes with the

MC methods described above and also help us measure the mass with a theoretically

well defined mass definition by accurately accounting for quantum effects.

1.5 Top Mass Measurement Using Jets

The second challenge lies in being able to construct observables that are as free as

possible from contamination from the UE and can be calculated in the EFT frame-

work. At the LHC, experimentalists employ sophisticated algorithmic procedures,

known as jet reconstruction algorithms, to identify particles generated in a specific

process in particle collisions. Here, "jet" refers to a spray of particles in a narrow

cone - a feature that is very commonly observed in high energy collisions at particle

colliders. Energetic particles produced in a collision further radiate more and more

particles in the direction of their motion resulting in a jet like structure. An example

is shown in Fig. 1-2 in the right panel where the top and anti-top quark are produced

back to back and their radiation is collimated in a narrow cone, referred to here as

jets. Jet algorithms are very useful tools in identifying the right set of particles, for

example the decay products of top quarks. The measurement of the top quark mass

using jets involves identifying the jets associated with the top quark decay products

and combining the momenta of all the particles in these jets to obtain the mass. One

then obtains a distribution that looks like the idealized spectrum shown in Fig. 1-5.

As mentioned above, processes like initial state radiation, final state radiation, or

particles from the underlying event can contaminate or deplete the jet by introducing
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particles in the jet region, so that they are no longer those associated with the top

quark. To overcome this problem as much as possible, experimentalists take a second

look at the jet and make use of techniques known as "jet grooming" to "groom" away

as much contamination as possible. The jet grooming algorithm makes a decision

to either keep a particle in the jet or throw it away, such that most of the particles

that accidentally ended up in the jet region from outside can be removed. Thus jet

grooming is an extremely effective experimental tool that allows us to reduce such

contamination.

Only very recently, calculations using EFT methods for jet based measurements

with grooming have started to become available. In the literature, the EFT descrip-

tion of groomed jet observables has only been carried out for processes that involve

lighter quarks [51]. Such calculations are not only challenging for the reasons men-

tioned above, but they have an added complexity due to the special nature of jet

algorithms and jet grooming. Given such powerful features of grooming it is highly

desirable to employ it for the top mass measurement. This thesis presents a calcula-

tion for the top mass measurement using jet grooming in an EFT framework. The

predictions from theory are compared with MC simulations and very promising results

are obtained. Comparing Quantum Field Theory calculations against MC also helps

us pin down numerically the nature of the MC top mass parameter, mMC, encoded

in the simulations, that is otherwise very hard to precisely interpret.

1.6 Guide for the Reader

We now present an outline of rest of the thesis: In Chapter 2 we briefly describe

theoretical challenges faced in calculating top jet mass cross-section at the LHC, thus

clarifying the problem statement that is being addressed in the subsequent chapters.

Chapter 3 reviews the basics of SCET and HQET. In Chapter 4 we derive the factor-

ized 2-jettiness cross-section formula for pp -+ ti. We then consider the application

of soft drop grooming for top jets in Chapter 5. In the first part of Chapter 5 we per-

form a mode and power counting analysis to derive the "light grooming" constraints
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on soft drop parameters that allow an EFT treatment of the groomed jet mass dis-

tribution. We then perform a detailed study with PYTHIA to assess the performance

of "light grooming" in improving the robustness of the top mass extraction from a

jet mass measurement. The last part of the chapter is where we test predictions of

factorized cross section by comparison with PYTHIA, which allows us to calibrate the

mMC parameter. In Chapter 6 we calculate the missing 2-loop matching coefficient

between HQET and SCET that allows us to perform a resummation of the factorized

cross-section for e+e- -+ ti at a higher order than currently known [50]. The work

described in Chapter 5 has appeared recently in Ref. [71]. Chapter 6 is published in

Ref. [72].
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Chapter 2

Top Mass Measurement

The top quark mass is one of the most important parameters in the Standard Model.

As the heaviest observed fermion, the top quark provides an important probe for the

Higgs sector, and gives dominant contributions to many electroweak observables, see

eg. [48], thus providing strong benchmark constraints for extensions of the Standard

Model. Furthermore, the mass of the top quark and the Higgs boson represent crucial

parameters in studies of the stability of the Standard Model vacuum [30, 7, 28, 8, 24,

25].

2.1 Top Mass Measurement Methods

The top mass has been measured in different ways. We can distinguish two classes

as kinematic extractions and extractions using more inclusive variables like the total

cross-section. Kinematic extractions of the top mass involve a jet-based observable

and measurement of a sophisticated differential cross-section. Direct calculations of

differential cross-sections in theory are hard to calculate and experimentalists rely

on Monte Carlo (MC) based template and matrix element methods [85, 421, which

aim to account for essentially all of the kinematic final state information in the top

quark events. MC simulations are very useful here because of their ability to simulate

different physics sub-processes in a fully differential manner. This method yields the

most precise value of top mass as mMC = 172.44 0.49 GeV (CMS) [84], mT\ 4C _
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172.84 0.70 GeV (ATLAS) [1] and mMC = 174.34 t 0.64 GeV (Tevatron) 162]. The

MC superscript emphasizes that the renormalization scheme of the mass extracted

depends on the details of the MC generator.

However, this approach does not account for the relation of the extracted MC

top quark parameter to an unambiguous field theoretic QCD top mass definition [75,

100, 65], which depends on the shower dynamics and its interface with hadronization.

Processes like hadronization, and the amount of underlying event activity are to

some degree universal and can be calibrated by ensuring that MC agrees with other

experiments. The UE is same in the events with or without top quark production.

Furthermore, the MC top mass parameter does not have a precise field theoretic

definition. Identifying these values with a Lagrangian top-mass scheme mt induces an

additional ambiguity at the 0.5-1.0 GeV level [75, 65]. While it seems unlikely that the

template and matrix element analyses can be based on first principle QCD calculations

which can be systematically improved to specify the top mass scheme unambiguously,

it is quite plausible that other highly sensitive top mass observables can be devised

which can clarify the issue by making high precision theoretical calculations feasible.

Calibration of mMC based on such observables has been studied recently in e+e-

collisions [27].

The measurement of the total cross-section provides an alternative way of mea-

suring the top mass [41]. In this case one can perform a direct comparison of the MS

renormalized cross-section of top production with the experiment. This allows one to

extract top mass in MS scheme. However, this cross-section is not very sensitive to mt

and the uncertainties in the normalization limit the measurement to the accuracy to a

few GeV's, and hence cannot compete with a kinematic extraction. This is a general

trend for more inclusive measurements, they cannot compete with the experimental

sensitivity of kinematic extractions.
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2.2 Theoretical Challenges

Precision measurements of the top quark mass are a difficult task due to challenges

from both experimental and theoretical sides. Our aim is two-fold:

1. Propose an observable that is sensitive to the top mass and is robust against

extraneous effects in a hadron collider.

2. Provide a systematically improvable theoretical description of such an observ-

able that allows one to precisely measure the top mass while accounting for the

quantum effects that have remained beyond the scope of MC-based methods.

In the following sections we discuss several aspects of solving this problem that are

relevant to top mass measurement at the LHC.

2.2.1 Observable for measuring top mass

We are interested in using observables that are inclusive over the top decay prod-

ucts, are sensitive to the top mass, and have the level of simplicity that they can be

described with direct computations from QFT and EFT. Using the momenta of the

radiation from the top quark and the decay products, we attempt to reconstruct the

top mass. A jet-based measurement on a boosted top sample is a desirable candidate.

With sufficient boost the decay products can be contained in a cone or a fat top jet

with jet radius R - 1. Jet reconstruction at LHC involves specification of jet algo-

rithm and jet radius, that can introduce extraneous effects in top mass measurements.

The dependence on these jet properties needs to be either eliminated or understood

in the theory.

2.2.2 Top Mass Scheme

We have already alluded above to the fact that any measurement of top mass must be

related to a precise field theoretic definition. This corresponds to specifying a top mass

scheme. A renormalization scheme specifies how the bare top mass paramater in the

QCD Lagrangian gets renormalized and then modified by finite quantum corrections.
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As mentioned above, MC simulations do not have the needed accuracy to precisely

account for these quantum corrections. The gross handling of parton shower and

non-perturbative effects such as hadronization creates an inherent ambiguity of 0(1)

GeV in the definition of m.MC

The most commonly used schemes for mass renormalization are the pole mass and

MS scheme. The pole mass scheme is defined by fixing the top mass to the pole of the

tree level propagator at all orders in perturbation theory, and absorbing all the higher

order corrections in the mass counterterm. However, this definition suffers from the so

called "Renormalon" ambiguity that is related to factorial divergence of higher order

self energy correction graphs. As a result my le cannot be specified in perturbation

theory to an accuracy better than AQCD. There have been studies to estimate the

ultimate precision with many orders in perturbation theory that one can achieve in

defining the pole mass. In Ref. [181 this uncertainty was estimated to be about 70

MeV, however, more careful considerations of heavy quark symmetries yield a more

conservative estimate of 250 MeV [70]. In practice often only lower order perturbative

predictions are available, and values for the pole mass can shift by 0(500 MeV) when

determined at different orders. As a result it is not desirable to express the top mass

in the pole mass scheme.

The class of schemes free from renormalon ambiguities are referred to as short

distance mass schemes. The MS scheme is one such example. Short distance schemes

such as the MS scheme impose a natural IR cutoff on the self energy graphs related

to the scale of renormalization. This cutoff protects the renormalized mass from the

infrared ambiguity.

However, within the class of short distance mass schemes, theoretical calculations

require us to use only the schemes that employ a scale for renormalization that is phys-

ically sensible in relation to the other energy scales presented in the measurements.

As we will see below, this can also be phrased in the Effective Theory language as

choosing renormalization scales that do not spoil the power counting of the effective

theory.

In the case of kinematic top mass reconstruction, we do a jet-based mass mea-
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surement that is inclusive over the decay product. This corresponds to focusing on

the region around mt where the cross-section peaks. Here the Breit Wigner sets the

natural scale ]t= 1.4 GeV in the problem. For the specific case of the MS scheme

the scale for the mass is mt itself and the first order correction to mt is - amt ~ 7

GeV. This correction, being much bigger than Pt, swamps the Breit Wigner, thus

making MS scheme unsuitable for kinematic extraction. This happens because the

scale associated with the MS mass is too large, being >> Ft.

In Refs. [67, 661 an appropriate scheme for kinematic top mass extraction was

proposed. This is known as the MSR scheme. It is based on the coefficients of

the MS scheme but the size of the fixed order corrections can be controlled by a

parameter R so that the scheme is defined at smaller scales. The relation of the MSR

mass mt(R, p) to the pole mass is given by

poleM = t m(R, p) + 6mt (R, y), (2.1)

where 6mt(R, [p) has a perturbative expansion

00 )
6mt(R, y) R Z anLs()lnkIA (2.2)

n=1 k=0

where the ank are numerical coefficients that are identical to the case of the MS

scheme. For the MS scheme we have R = i. Instead choosing R - Ft for the MSR

mass yields a renormalization scheme that is appropriate for kinematic extractions.

This scheme is not a unique choice with R - Ft but is convenient since it has

a simple relation to the MS scheme. This means that the perturbative results are

known at 4-loop orders, enabling a precise scheme conversion. For further details,

including explicit results for the anks, see Ref. [67].

2.2.3 Large Logarithms in Cross Section

Top quark production is a complex process since it involves contribution from physics

at multiple energy scales. For boosted tops we require that they be produced with
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energy Q such that mt < Q. For pp collisions this corresponds to top PT's above 400-

500 GeV. Higher PT's are not only desirable for inclusive measurement over the decay

products, they also enable an effective theory treatment of the jet mass cross-section

as we will see below. We are interested in performing measurements in the peak region

where the energy scale is set by the top decay width Ft = 1.4 GeV < mt. And, then

there are non-perturbative effects of hadronization that scale as - AQCD ~ 300 MeV

< Ft.

The presence of these hierarchically separated scales generate large logarithms

L of ratios of these scales in the cross-section. The ("cumulative")cross section is

schematically

do ~ o(I + aL2 +a L4 +a3 L6 +

+a sL1 +a2L 3 +a3 L 5 +...

+asLo+a L2 +a L 4 +...

+asL' + a2L3  - (2.3)

where -o is the Born cross-section, and we show the structure of logarithms at each

order in as. L could refer to ln(Q/mt), ln(mt/Ft), etc. For a large separation between

the scales, asL - 1 and a strict expansion in as is no longer a good expansion.

One must go beyond traditional fixed order perturbation theory to correctly sum

these series of logarithms that organize themselves in the pattern in Eq. (2.3). This

can be done very systematically in the framework of Effective Field Theories (EFT)

by distinguishing fields at different energy scales.

2.2.4 Initial State Radiation, Final State Radiation, and Un-

derlying Event

The initial state radiation (ISR) corresponds to radiation along the beam that is

emitted from incoming protons. ISR can affect the measurement if the radiation ends

up in tt jets. ISR can be studied in the processes with little activity in the beam
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Figure 2-1: Effect of hadronization and underlying event (modeled through MPI in
PYTHIA) on the peak position.

region [110]. Unlike jets in the central region, the radiation in the beam often cannot

be fully measured. We would like to work with observables where the beam radiation

can be decoupled from the tt jets as much as possible. An event with strong ISR

radiation is likely to contaminate the top jets more. Hence, it is a helpful strategy to

limit the activity in the beam region by imposing a veto on the radiation outside the

top jets.

The final state radiation here refers to the parton shower and hadronization of

top decay products. Hadronization is an inherently non perturbative process, but

it can be treated in the framework of factorization. Furthermore, corrections to jet

mass spectra (or to equivalent event shapes) from hadronization often can be proven

to be universal across several processes. As a result, for example, one could use

the corrections from studying jets from massless quarks to describe hadronization

effects in top jets. These hadronization corrections are of order 0.5-2.0 GeVs [54].

Underlying event (UE) populate the event with soft particles at a scale larger than

hadronization, and can more significantly contaminate the measurement. The UE
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activity is measured in the regions away from the phase space of hard jets [33]. There

is no theoretically rigorous treatment of UE available and the effect of the radiation

needs to be modeled for the measurement, if it cannot be eliminated completely.

While the UE remains outside the framework of factorization, a promising method is

to extend the treatment of hadronization in order to account for effects of the UE to

the peaked jet mass spectrum in pp -+ Z+ jet [111]. In this study we use the multi

parton interaction (MPI) modeling of the UE in PYTHIA.

The top jet mass spectrum is highly sensitive to contamination from initial state

radiation (ISR) and the underlying event, that shifts the peak position and affects

the overall shape. In Fig. 5-1 we show the top-jet mass spectrum from PYTHIA8

simulations in three different cases: partonic, with hadronization turned on, and with

both hadronization and MPI turned on. We see that the peak gets shifted by - 5 GeV

on turning on MPI, while the shift is ~ 2 GeV from including hadronization. The

top mass spectrum is hence sensitive to the MC tuning that fixes the hadronization

and underlying event.

2.2.5 Color Channels, Parton Distribution Functions, and Color

Reconnection

In an e+e- collider the top anti-top pair is produced in a singlet state, whereas in a

pp collision we have various color channels for qq -÷ tt and gg -÷ tt processes [82].

Our theory enables us to perform calculations assuming that the initial and final

states are partons. This perturbative cross-section is then combined with parton

distribution functions PDFs to account for the initial proton states. Since PDFs are

universal non-perturbative objects they are are determined by global fits to other

collider data. Hence, in line with the treatment of ISR, we would like to decouple the

contribution from PDFs from the top jet mass measurement. Furthermore, there can

be interference between the gluons emitted from the initial state and final state lines,

which can also change the color channel. Our treatment of final state dynamics must

also be able to handle measuring the mass of the unstable colored top quark.
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2.2.6 Pile-up

Pile-up corresponds to multiple pp collisions in the same event. Radiation from pile-

up is truly uncorrelated with the collision that generates tt jets. It strongly affects

observables like the mass of large-R jets. The contribution of pile up scales as R3 [2],
which could be problematic for fat top jets with R ~ 1. In our study we do not

consider effects of pile-up and assume that they can be handled experimentally and

that implementing a pile up mitigation strategy will not significantly modify the

kinematic spectrum. This deserves to be explored in a dedicated study and we will

comment more in later sections.
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Chapter 3

Theoretical set up

In this chapter we discuss the basics of the Effective Field Theory (EFT) framework

that forms the basis of the calculations presented in this thesis. The central feature of

these EFTs is that they contain modes, the relevant quark and gluon degrees of free-

dom, that are distinguished based on their momenta. As mentioned above, boosted

top quark production with subsequent decays in the peak region of the invariant mass

distributions involves physical effects in a range of widely separated energy scales that

necessitates replacing fixed order computations by resummed calculations. The hier-

archy between the production energy Q, the top mass m, the decay width Ft and the

hadronization scale AQCD is given by Q > m >>Ft > AQCD. The relevant EFTs for

this hierarchy are the Soft Collinear Effective Theory (SCET) and Heavy Quark Effec-

tive Theory (HQET) which we introduce in this chapter. A similar set up of effective

theories has also played an important role in B-meson physics [21, 94, 12, 13, 23, 93].

3.1 SCET

SCET is the effective theory of QCD suitable for collider physics applications [10, 11,

15, 14]. In this section we first describe the relevant kinematics and then discuss the

field theory structure in terms of SCET fields, Lagrangians, and operator building

blocks.
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3.1.1 Light Cone Kinematics

SCET contains quark and gluon fields that have collinear or soft scaling of momenta

defined with respect to specific directions and characterized by a power counting

parameter A < 1. The power counting parameter determines the size of corrections

that have been ignored when approximating QCD by SCET. Let us consider a jet

(either a quark or a gluon induced jet) in the direction ft. Using ii we define the two

light cone vectors:

nA = (I, i) , ' = (1, -ii), (3.1)

such that

n2 2 = 0, n -n = 2. (3.2)

These light cone vectors allow us to decompose any four vector p" in a basis so that

we have

A= - n + II
P + P +Pi,2 2 PA = (p+, P-, p) , (3.3)

P jP_( &+ & . (3.4)

From Eqs. (3.2) and (3.3) we have

2 P+ - 2
p =p -PI. (3.5)

Next, the power counting parameter A depends on the energy scales in the problem

and the type of measurement being performed. Consider a dijet process in an e+e-

collider, with jets of mass M produced with energy Ej = Q/2 , where Q is the center

of mass energy. In this case the power counting parameter is given by A = M/Q < 1.
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This allows us to distinguish momenta that have collinear or soft scaling with respect

to the direction h according to the relative scaling of their +, -, and I momentum

components defined in Eq. (3.3):

n-collinear ~ Q (A 2 1, A),

h-collinear - Q (1, A2 , A),

ultrasoft ~ Q(A 2 A2 A2). (3.6)

We first note that these momenta correspond to particles that are allowed to be on-

shell. This can be seen from Eq. (3.5). Modes that have the homogeneous scaling

in Eq. (3.6) are technically referred to as ultrasoft modes to distinguish them from

soft modes that scale as Q(A, A, A). In SCET quarks and gluons with collinear and

ultrasoft scalings are associated with different fields. Hence, SCET is not Lorentz

invariant like QCD and is specific to the frame of reference.1 Energetic particles that

move along the direction of the h jet have n-collinear scaling. We can verify that

particles with these scaling contribute to a mass M - QA for the jet:

m.2 =2
-P

Q(A 2) X Q - Q 2A 2  Q 2A 2 = M 2 , (3.7)

Furthermore, adding ultrasoft particles to the the jet also give dominant contributions

of QA to M:

m.2t (Pn +Pus) 2

S(Pn + Pus)+ X (Pn + Pus) - (Pn + Pus) 2

~ Q(A2 + A2) x Q(1 + A 2) _ Q 2(A + A 2) 2 , Q 2A 2 = M 2 , (3.8)

'There are, however, residual Lorentz symmetries in the theory known as Reparameterization
Invariance (RPI) [95], and factorization based predictions do provide a frame independent description
of the dynamics at the order one is working.
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where we observe that the ultrasoft fields only contribute through the + component

that is of the same order as the collinear + component. This implies that the jet

mass spectrum calculated in SCET will have contribution to the mass from both

ultrasoft and collinear fields. In the same way, the ultrasoft fields can also contribute

to the jet in the opposite direction. This has the consequence that for a simple

jet mass observable considered here the masses of the two jets cannot be described

independently but are rather coupled through the ultrasoft particles. We will later

see that application of grooming overcomes this by removing particles with ultrasoft

scaling in Eq. (3.6), in which case, the dominant dynamics of the jets become truly

independent of each other.

We can make a further simplification by making sure that our jet axis defined

by h aligns with the jet three momentum as closely as possible. This makes the I

component smaller and then the jet mass is simply given by

M.2 = p+ p- + O(pI) = p+ Q + O(pI). (3.9)

Thus calculating the jet mass cross section in SCET is equivalent to measuring the

p+ component of the jet with a carefully aligned axis. Hence, following Eq. (3.5),

even though ultrasoft particles have a smaller virtuality of p2 ~, Q2A 4 < p2 ,, Q2A 2

they contribute equally to the jet mass as collinear modes since their + components

are commensurate.

3.1.2 SCET Fields, Lagrangian, and Operator Building Blocks

SCET as an effective theory reproduces the infrared collinear and soft divergences of

QCD. This is made possible by assigning a separate fields for the three momentum

scalings shown in Eq. (3.6). We display the corresponding fields in Tab. 3.1.

The SCET Lagrangian consisting of these fields is given by

LCCE = (0) + Z Ls0)( , An%, ni * Aus) , (3.10)
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SCET Modes Scaling Fields

n-collinear Q( A2 , 1, A) ( n, AP)

h -collinear Q (1, A 2 , A) (f , AP)

ultrasoft Q(A 2 A 2 A2) (4'S, AP8 )

Table 3.1: Summary of the EFT modes set up, scaling, and fields in SCET with a
power counting parameter A and large momentum scale Q.

where the superscript (0) indicates that the Lagrangian is expressed in leading order

in the A expansion. Here ni refers to the collinear directions, which for our case are

n and n. The term ni -Aus indicates that the ultrasoft gluons couple to the collinear

fields through their + component. The SCET fields themselves have a specific scaling

in A. Gauge transformations require that gluon fields scale the same way as their

momentum. Hence

At ~ (A 2 , 1, A), A/ ~ (1, A2 , A), AP ~l_ (A 2 A 2 A2), (3.11)

while the collinear quark n, and ultrasoft quark 0,,, fields scale as A and A3 respec-

tively. This is very helpful in determining which operators in SCET contribute at

leading order and which ones at subleading orders. In this thesis, for example, we

do not consider operators involving ultrasoft quark fields since they are subleading in

the A expansion. The collinear quark Lagrangian is given by:

L(O) eX (-"-in D +Z PI)nwii~fHfI t 1,
= 7) 2

(3.12)

where

iD"1 = 'Pt + gAft,

in - Dn= in -& + gn- An + gn * As, ,

(3.13)

(3.14)

and Wn is a collinear Wilson line discussed further below. We first note that given
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the scaling in Tab. 3.1 we identify three different energy scales in SCET: Q, QA, and

QA2 .We explain the meaning of various terms in Eq. (3.12) by relating them to these

three scales:

1. The QA2 scale: The x dependence encodes fluctuations at the lowest energy scale

QA2 that corresponds to the longest distances, the IR region of our theory. As

mentioned above the ultrasoft fields that scale as A2 can only contribute through

the + component which is of the same order as the collinear + component.

Hence, we note their presence in the derivative n -Dn along side the collinear

gluon term. All the terms in the parentheses Eq. (3.12) scale as A2.

2. The QA scale: Next we have the I projections of derivatives which describe

physics at the scale QA. We do not simply have a derivative with respect to

x since that gives contributions at - QA2 that are subleading for this energy

scale. Neither we see I ultrasoft gluons in Eq. (3.13) since they are also power

suppressed. The "label" operator P1 picks out the O(QA) momentum. We also

notice the I component of collinear gluons are included since they also scale as

O(A).

3. The Q scale: Lastly we have the label momentum operator P that picks out the

O(Q) momentum corresponding to the shortest length scales. We notice that

this operator appears in the denominator making the SCET action non local

at this scale. This should not be surprising since we have integrated out all the

high energy fluctuations at scale Q from the theory, which are present in QCD

that is local at all the energy scales. The action is, however, local at the scales

QA and QA2 .

We note that unlike the other derivative terms we do not see a gt -An term next to

P. This term is actually hiding in W, the collinear Wilson line, defined as

W,(x) = exp ( - An(X)) , (3.15)
perms .
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where the sum is performed over permutations of terms obtained after expanding the

exponential. In fact, the identity

1 11
: W =W 1 (3.16) ih.Dn + gii -An '

can be used to express the derivative at scale Q which has a form similar to that in

Eq. (3.13). It is helpful to write it in terms of collinear Wilson lines since it illustrates

another important point: given the fact that the - component of the collinear gluons

An is 0(1) in power counting we are allowed to have arbitrarily many insertions of

the h - An field, represented by the infinite terms collected in Eq. (3.15). Physically

this is a result of arbitrary number of emissions of n-collinear gluons from particles

that ARE NOT n-collinear, and the formation of these interactions into Wilson lines

is dictated by gauge symmetry.

Given that various quarks and gluons are being distinguished based on their mo-

menta the generic gauge transformations of QCD are no longer symmetries of SCET

either, since gauge transformations of arbitrary momenta can change the momentum

scaling of the SCET fields, thus mixing them into one another. As a result, we restrict

ourselves to gauge transformations that are specific to the n-collinear, ii-collinear and

ultrasoft fields and in general any observable calculated in SCET must be invariant

with respect to gauge transformation in the three sectors. We note that the n-collinear

quarks and gluons transform with both n-colliear and ultrasoft gauge transformations,

but the ultrasoft field transform only under ultrasoft gauge transformations.

We do not give explicit expressions of the Lagrangian for the collinear gluon

and ultrasoft fields here. These expressions can be found in Ref. [14]. We instead

summarize some of the key points: The collinear gluon Lagrangian involves similar

multipole expansions of the derivative terms as in Eqs. (3.13) and (3.14). The gauge

fixing term in this Lagrangian breaks collinear gauge symmetry, as it should, but it is

made covariant with respect to ultrasoft gluons, which makes them background fields

from the perspective of collinear fields. This is to avoid fixing the gauge for ultrasoft

fields in the collinear gluon Lagrangian. Lastly, the Lagrangian for ultrasoft fields is
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identical to the QCD Lagrangian.

Having laid out the formalism for dynamical terms for SCET fields in Eq. (3.10)

we can now add operators that are specific to the process of interest. These operators

have a scaling in A that is given by the sum of the scaling of all the fields and

derivatives appearing in them. To preserve gauge symmetry it is helpful to write

down operators in terms of specific combinations of the fields displayed in Tab. 3.1

that are individually gauge invariant, and serve as building blocks for constructing

any type of operator.

The gauge invariant building blocks for collinear operators are given by

1
Xn = W n , B -n] (3.17)

where in the second term the derivatives act within the square brackets. To lowest

order Bn3j = A" - (P!/P . An + ... These objects scale as A and are gauge

invariant with respect to n-collinear gauge transformations. Every other combination

of collinear fields can be expressed in terms of these three building blocks.

The ultrasoft fields are handled in a different manner. It can be shown that by

redefining the collinear fields as

n --+ Yn At' -+ Yn A Yet, (3.18)

where the ultrasoft Wilson line is defined by

Yn(x) = P ig 0 ds n - As(x + ns) (3.19)

one decouples the redefined fields completely from the ultrasoft fields. Hence, as a

result the gn - As term in Eq. (3.14) drops out. This is referred to as BPS field

redefinition and it implements soft-collinear factorization [141.
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3.2 HQET

Heavy Quark effective theory describes dynamics of QCD systems with a heavy quark

that interacts predominantly through soft interactions [46, 76, 77, 60, 58]. HQET has

been very successful in explaining new emergent spin-flavor symmetries in the heavy

quark limit with mQ -+ oo. Here the hard scale is set by the mass of the heavy quark.

For case of mesons containing bottom or charm quark the low energy scale is AQCD,

however, given that top quark decays before it hadronizes the low energy physics is

dominated by Ft = 1.4 GeV. We will see later on that there are non-perturbative

corrections too from radiation associated with hadronization that can be handled by

a simple extension of the formalism we present below.

Analogous to SCET the description of HQET is dependent on the frame. Here

the frame is set by the velocity vector & of the heavy quark, where v2 = 1. Using v

the momentum of the heavy quark is given by

pA = mQvT + k, (3.20)

where k"1 < mQ. Here k" represents small shifts to the heavy quark momentum by

soft particles. This implies that in the heavy quark limit the velocity v is conserved

unless there is a hard scattering, such as a weak decay of the heavy quark. Since we

are interested in scales that are much smaller than the heavy quark mass we integrate

out the anti-quarks. This is accomplished at tree level by removing fluctuations of

order mQ with a field redefinition

() = - "MiQvx hv(x), (3.21)
V

which results in &"hO ~i pohv(x) where plo, is the relevant low energy scale (in our

case plow ~ Ft. The HQET Lagrangian is then given by

LHQET = hv iv- D hv , (3.22)
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where iD ' = i&' + gA.

3.3 EFTs for Top Jet Mass Measurement

Q [-HQ

mt - Hm

t
Q

QCD

SCET (6)

bHQETF()

S

Figure 3-1: EFT setup for boosted
top jets in the peak region.

We show in Fig. 3-1 the EFT setup for

e+e- -+ tf process [49, 50]. First, the

hard modes with fluctuations with virtu-

alities of order ~ Q are integrated out in

QCD. The corresponding low-energy the-

ory, SCET, then allows us to resum large

logarithms between Q and m. In a second

step all fluctuations with virtualities of or-

der ~ m are integrated out, and SCET is

thus matched onto bHQET, which allows

resummation of logarithms between m and

Ft. The theory is denoted "bHQET" with

an extra b to remind us that here the veloc-

ity v is boosted. We indicate the number

of dynamic flavors in the theory through su-

perscripts (5) and (6).

We are interested in the region where each of the jet invariant masses, for the top

Mt and antitop Mf, is close to the top quark mass, i.e.,

m2 i- m2

m (3.23)

The peak region is characterized by Stf ~ Ft, and corresponds with the peak of the

Mt dependent cross section, while the tail region corresponds to &t, >> Ft while still

satisfying Eq. (3.23).

We first begin by generalizing the collinear quark Lagrangian presented in Eq. (3.12)
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to include massive degrees of freedom for the top quark [92]:

C= - in - D + (iP, - m)WtI Wn(ini + in) ,, (3.24)

In order to keep power counting consistent in SCET we now demand that the jet mass

be of the same scale as m, so that we avoid introducing another hierarchy of scales

in the problem. This leads to the scaling shown in Tab. 3.1 but with A now given by

m/Q. While this includes the region represented by Eq. (3.23) it still allows for mass

fluctuations in SCET with Mi ~ m2 where &,J can be even O(m). Therefore in this

context SCET just plays a role of an intermediate EFT in which the observable is

not yet obtained at the desired smaller scale.

We also include an additional mode in the SCET theory that scales as (*, m, m),

or Q(A, A, A). We refer to this mode as the mass mode. Unlike ultrasoft modes, the

mass modes cannot contribute to the final jet mass measurement and first appear

at two loop order. This can be seen by repeating the steps leading to Eq. (3.8),

demonstrating that final state mass modes spoil the power counting:

m.j 2e= (Pn +Pr) 2

Mk~~~ 
=m 2p .

~(Pn +Pm)+ X (Pn +Pm- - (Pn + )I

~Q(A2 + A) x Q(1 + A) - Q2(A + A)2 , 2 AQ =TQ, (3.25)

Hence, mass modes cannot contribute to the measurement through real radiation.

However, as we will see below, these modes contribute through virtual effects of top

bubbles at 0(a).

Next we turn to the full bHQET theory for unstable top quarks. This bHQET

Lagrangian is given by

LHQET v(ivt - D, - 6m + -It)hv, , (3.26)

where hv is the bHQET field for the top quark with velocity vi'. Here we have labeled

the covariant derivative D in Eq. (3.22) with subscript vt to emphasize that the gluons
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bHQET Modes Scaling Fields

n-ucollinear (g, % st (hzs A )

-ucollinear ,Q V, sVfhs G

ultrasoft ,S, At')
__ __ __ __ _ Q s Q s Q 1___0 _US)

Table 3.2: Summary of the EFT modes set up, scaling, and fields in bHQET.

AVt that appear here have ultracollinear scaling. In bHQET the pole mass term is

integrated out and we are left with the residual 6m term that relates pole mass to a

specific mass scheme, such as the MSR scheme defined in Eq. (2.1). The velocity v'

for the top and anti-top jets produced are given by

A mT Q A (Q m n,,
t , =(, , 1 ), (3.27)

(Q m m Q

where both sets of components are defined with respect to the top jet direction using

nr and W' respectively.

The Ft width term in Eq. (3.26) correctly reproduces the Breit Wigner shape for

the top quark. We refer to this theory as the boosted Heavy Quark Effective Theory

(bHQET). In order to understand the scaling of modes in bHQET we note that the jet

mass fluctuations are now restricted to the desired scale for the measurement st > Ft.

Hence in the frame of top quark the modes simply get boosted to yield the scaling

shown in Tab. 3.2. We refer to these modes as n, ti-ultracollinear (ucollinear or uc)

modes to distinguish them from collinear modes in SCET with higher virtuality.

Ultrasoft modes can be added to bHQET in a very similar manner to SCET.

From Tab. 3.2 we note that they are now at lower virtuality than in SCET. From the

discussion in the previous chapter we learned that the ultrasoft modes couple to the

collinear fields only through the + component which can be implemented by a simple

replacement:

iDA -+ iDPj = i&v + gA + Agr. , (3.28)

Vt 2
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which results in the coupling (Q/m)g n - A, to the heavy quark field in Eq. (3.26).

Here we have performed a multipole expansion for the 04 in Eq. (3.22) term similar

to that in SCET to give

nil~ +" P n a (.9
t =2 2 (3.29)

where the label momentum operators P and Pt pick out the components of size

QFt/m and Ft respectively, and the n.iO corresponds to the residual momentum

components of size mFt/Q.

Furthermore, the ultrasoft modes can be decoupled from the bHQET fields in the

same way as we did above for the collinear fields in Eq. (3.18):

he, -+ Yahv , At' -4Yn A" Yt (3.30)

Together these ingredients give the theoretical set up that we need for our calcu-

lations.
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Chapter 4

Top Mass Measurement at the LHC

Boosted top quarks are desirable for a kinematic extraction of the top mass since

the decay products can be contained in a single jet and one can perform an inclusive

measurement on the top jet. In Ref. [50] a kinematic extraction of the top mass at

future e+e- colliders was proposed through the measurement of the hemisphere mass

distribution. Here we derive a corresponding factorization for a top-mass sensitive

observable for the pp -+ tf process. There are two basic methods that can be used to

extract the top mass from data using our results:

i) One can make a direct comparison of the factorization based cross section result

with experimental data, fitting the top-mass mt together with any hadronic

parameters.

ii) One can use the factorization result to calibrate the meaning of the top mass

parameter in Monte Carlo simulations, by fitting mt and hadronic parameters

to Monte Carlo simulation data. This numerically determines a translation

between mMC and a top mass in a short distance scheme. The Monte Carlo

simulation may then be extrapolated to other regions of the parameters and

directly compared to data.

The correspondence between experimental data, Monte Carlo simulations, and fac-

torization is shown in Fig. 4-1.
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Figure 4-1: The factorized cross section can be either compared directly with the
experimental data or can be used to calibrate the MC top mass parameter mMC

To extend the e+e- -+ tt calculation to pp collisions using the 2-jettiness variable

we draw upon the work presented in Ref. [80] where the 1-jettiness variable was

used to describe the pp - Higgs + 1 jet process. Various issues such as veto in

the beam region, non global logarithms (NGL), and choice of renormalization scales

explored there are also relevant to our work. In this chapter we derive the formula

for factorized cross section at Next to leading log accuracy (NLL). For a differential

cross section d-/dMi we define orders of logarithmic accuracy through the logarithm

of cross section in cumulant space. Schematically we have

Mcut _~
In j dM d ~, In 1+ (L2+ L +1) + a'(L4 + L3 +...) +...

fo dMi

Z(ceL)k+1 + Z(c L) k + Z& (ozL)k +.. (4.1)
k k k

where truncation up to the first two terms defines NLL accuracy, including the next

term brings us to NNLL, and so on. In this chapter we consider measurements without

jet grooming, then extend discussion to include jet grooming in Chapter 5.
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4.1 Mass Sensitive Observable

We propose using a jet mass measurement that can be calculated with the aid of the

2-jettiness variable in order to measure the top mass from a boosted top sample in

pp collisions. We extend the factorization theorem already known for the 2-jettiness

measurement for massless jets to the case of top jets. We will be focusing on the case of

exclusive top production, and later comment on how one can make a generalization for

the inclusive case with the aid of soft drop grooming which also has other advantages.

The 2-jettiness event shape, T2, divides the event into various sectors: the top and

anti-top jet sectors and the beam sector. The jet regions are defined using a specific

algorithm and a minimization procedure, and the remaining region is considered as

the beam region. The particle momenta are combined linearly in each region which

yields a quantity that can be directly related to the invariant masses of the jets. The

2-jettiness for pp collisions is defined as follows

mmn min{pjet (pi, nt), Pjet (pi, nf), Pbeam(Pi)}

- Tt +Tt + Tbeam(42

where the sum runs over all the particles in the event with momentum pi, and p

specifies a distance measure to the jet axes, ntf, or to the beam. A given particle will

fall in one of these regions depending on the smallest of all three distances given by

the p's. Anti-kT [32] is the standard jet algorithm currently being employed at the

LHC. We use the XCone jet algorithm introduced in Ref. [108] to obtain two exclusive

top jets and also specify the distance measure p. The XCone algorithm yields circular

jets just like jets obtained from Anti-kT algorithm, and since it is based on 2-jettiness

it allows us to simply write down an all orders factorization theorem.

For the XCone measure, we have

Pjet (pi, ni) = 2 coshyjJ j' = 2 qjp p Pbeam(Pi) = PT2 , (4-3)
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where yj is the rapidity, R is the jet radius, and nTj = {1, ni} is a normalized light

like axis for a jet in direction ni,. In order to contain the decay products we need

R > M/PT, where PT is the transverse momentum of the top jet. Eq. (4.3) specifies

a reference momentum qj and a normalization factor Qj given by

qj = Enri, Qj = R 2 Ej/ cosh yj , (4.4)

where Ej is the jet energy

E = cosh2 7J + m2 = coshyj p +m , (4.5)

and r/j is the pseudorapidity of the jet.

For large PT we can approximate Qj as R2PT. Here Qj is the large momentum in

the jet direction. We can decompose the jet momentum pj in terms of (p+, p, PJI)

components defined relative to the jet axis nj and an auxiliary vector Aj obeying

2= 0 and nj - ij = 2:

+ i flj + (46Pi = nP, p = th-pj, * = PJ -P - .PJ (4.6)

Hence, we have

TJ_ 2Ej nj -pj 2Ejp(
T2J = QJ QJJ(47

and the jet mass can be written as

2 + 2 2 (4.8)

where Pjj is the component perpendicular to the jet axis. The jet axis n' = (1, ?t)

is a light like vector where nj can be expressed as

=( cos , sin tanh yj (4.9)
coshyj' coshyj'
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The XCone algorithm includes an axes minimization procedure which minimizes the

p7i momentum. As explained in Ref. [108], for jets from massless particles, where

p- = 2Ej (1 + O((m2/E )), with this axes minimization feature one can relate Tj to

the jet mass using Eq. (4.7):

m QJTJ +O(P21 ) (4.10)

where we also indicate the error in misalignment between the jet axis n'j and the jet

momentum jj. Choosing the ij vector to be aligned with the jet 3-momentum makes

pji vanish exactly.

4.2 Effective Theory Above The Top Mass Scale

Our strategy to derive the top-jet mass cross section in the peak region is to carry

out two step matching from QCD to SCET and then to bHQET. We use the massive

SCET Lagrangian in Eq. (3.24) to describe jet mass fluctuations MJ M2 . We

then match the SCET cross section to two copies of boosted Heavy Quark Effective

Theory for the top and the anti-top jet. Here the mass fluctuations are restricted in

the Breit-Wigner region around the top mass: MJ - M 2 
- mrt.

In this section we follow the steps along the lines of derivation presented in Ref. [49

to derive the SCET factorization theorem for top mass measurement in the peak re-

gion using the 2-jettiness variable described above. We start by presenting the rele-

vant operators in QCD and SCET, and the details of matching calculation. We then

describe the details of renormalization group evolution (RGE) and RG consistency

conditions.

The expansion parameter in SCET is A ~ m/Qtg. We have a different scaling for

the beam region. As we show below, for the NLL analysis that we consider, the beam

region factorizes from the jet region and can be treated independently. We split the

beam region into two parts defined by the incoming directions nra,b.

We summarize the modes in Table 4.1 with the corresponding scaling and the
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SCET Modes Scaling Fields

nB -collinear TB, QJ, QJTB ab ( na A~a), (Afb, APb

ni -collinear , QJ, Mt ((,,, ARt), ( nf, AA,

ultrasoft QjgTB(1, 1, 1) (Ws, AsB)
_2(1, 1, 1), AQCD(1, 1, 1) WUS, AA8 )

mass m(1, 1, 1) (mAm)

Table 4.1: Summary of the EFT modes set up, scaling, and fields in SCET above
the top mass scale. Here the subscript i on the momentum components refers to the
appropriate axis ni.

direction.

associated fields.

We take Qj to be the appropriate large momentum in the jet

We notice that in pp -+ tt we no longer have back to back top

and anti-top jets. Hence we generalize the notation presented in Chapter 3 such that

(+-, ,) directions then are defined with respect to the jet directions nt, ni, or the

beam directions na, nb.

4.2.1 SCET Operators

For pp -- ti we have the following partonic production channels:

qq - tf, gg - tf. (4.11)

The operators in SCET are constructed using the collinear building blocks defined in

Eq. (3.17). In the qq -÷ tE channel, the SCET operators are

0? (Wb, W.,Wt, Wt) = (Tnb,Wb Yb 'T Yfla Xfla,Wa) (Xnt ,wt n't~PTAn n Xjc)

(4.12)
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where T, = 1, TA. F, P7 denote the Dirac or spin structures. The wi's corresponds

to the large label momentum

wt,= 2Etj, Wa,b = Xa,bEcm ,

where Xa,b are the momentum fractions of incoming partons. The SCET quark fields

with label wtf are defined as

Xn,wt = 6( 1t' - Wt)Wint . (4.14)

The quark fields are written after applying the field redefinition to decouple usoft

gluons. We notice in Eq. (4.12) presence of additional Wilson lines S, for the top

and anti-top jets. These Wilson lines are defined in the same way as the ultra-soft

Wilson lines in Eq. (3.19) but made out of soft mass mode gluons shown in Tab. 4.1.

Similarly, in the gg -+ di channel there are three color structures:

(Wt Wa, Wb, wf) =

63(wt, wa, w) =

83((Wt, bjW, 04 o) =

Int,Wt

Ant,Wt

Xnt,wt

Ynt St F 'TCTDS Ynf Xnf,wf yEC, (BE )WF nBF 1
a rD EC E FD LF

Yt St F"TDTC St yEC (BED( BLaF

yt 5t p v6 CD StC D Fi o
lt ft 9 t t W fla \ /IIWa yF( 4 1 )

(4.15)

where the three color channels are given by TCD r TCTD TDT', and 3 CD. Here

the ultrasoft Wilson lines in adjoint representation can be defined by the relation

TC yCD(x) = Yn(x) TDn (4.16)
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4.2.2 SCET Factorized cross section

Here we present the derivation of the SCET cross section for the quark channel.

Results for gluon channels can be analogously generalized and we treat the color

mixing between these channels in Sec. 4.2.3. The total cross section of pp -+ X in

QCD is given by

res.

= (2F)b64 (Pa + Pb -px) E (pp|X)(X pp), (4.17)
X F,I,J

where X refers to all the final state particles in the top, anti-top jets and the beam

region, and Pab are the momenta of incoming protons. The transition here is mediated

by the QCD Lagrangian. The corresponding formula in SCET is given by

res.

(= ( )5 4 ( PaP-PX -- x - PXt - Pxfl - PxS) M
nt,nT f,I,J Xi

dWa dWb dwt dwT dw' d' dw' dw' Cri( Wl, Wnb, Wj, Wf)(CEJ(W' , ob, w,

(PPI(Or)t|X I Xfl Xt Xn, X8) (Xna Xnb Xn X8IOiPP) , (4.18)

where CQ is defined as the matching coefficient between the QCD and SCET opera-

tors. Here C = CK' ({sij}) with sij being the hard scales in the problem. We have

also factored out the contribution of mass mode Wilson lines M that only show up

at 2-loops. These effects are explored in Chapter 6. The 'res.' in Eq. (4.18) denotes

restriction on final state momenta. For now we have kept a sum over the nt and nr

directions which will be removed when we consider the differential cross section below.

We have factorized the final state into collinear particles in the four directions and

ultrasoft particles. This allows us to separate matrix elements involving operators

containing only mode:

(PP1(O)tlXna Xnb Xnt Xnf XS) (Xn Xnb Xn, Xnf XS I Opp)

= (ppIT{(i Yta FTJ Yb XnbW) ,W YetP2TJ Yn XW)}yX fbXfXX, XS)

X (Xna n nb n XXST{(X Y TI Yn Xna,L)(Xt,wt Ynt PI T1Yn xnF,wi)}IPP)
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4NC 4NC1 2 IJ2

X [(P(Pa)IYna,,IXn)(X apX(aa A Pa))] [(P(Pb) # Xnb,W IfXfb)(Xf b ,W IPPb))

x 0|ng|s,(Xg4Nc 0 04Nc . )
>[(Vn)ca (TY)cb(y )rjs s~~T'

x [(0|(yna) a(T~yn b( Ynfs)(, rPT1Tcjn~jct T19(nf)pr0).

(4.19)

The T (T) in the first equality keeps track of time (anti-time) ordering. In the second

equality we have rewritten expressions such that every term is spin and color singlet.

We also note that contraction with states in collinear matrix elements sets LO' wi.

To impose the 2-jettiness measurement constraints we insert the identity operator:

1 J d'ps64(ps - PxJ) (4.20)Jl dpn 64 (pni - Px )
i=a,b,t,f

We now separate the label and residual parts of the momenta as follows:

Pn = Pn, i+ kn )

.in = k, +i Kni ,

pA =kl,

Pn = #li +Ki

P! = K"
P(+ xsK,

such that

I d 4Pn
Pnj

dk+J dk-- d ki.

We write the 6 functions for collinear sectors in Eq. (4.20) as

(P- Px) = 
6 64 (kni - Kx )

= 6-- 6 _
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(4.22)

I d4 X ei(kni -Kxn) xi

(27r) 4

64(PS - Px.) = J e k.-Kx -y

(4.23)

(4.24)



As a next step we impose the 2-jettiness measurement for the XCone measure in

Eq. (4.3) to remove the restriction on states in Eq. (4.18):

1 d 6T - **d~oTIwe( ++ Ks'+) cif ( K+ + Kst+)
I zdV6 (V t (t~ dTh( Tt- tfl )

x dTa 6 (Ta-K - K a) dT6 - K' - Kgb)

wt (k+ + kt+) wf K -+ kt+)
= dT6 (Tt - wtk k d46 Tk 8

x dTa6 (Ta - k- - kfa) JdTb (Tb - - kb) (4.25)

where in the first step we have split the soft contribution to each sector and in the

second step we have used the 6 functions in Eq. (4.20). As shown in App. A measuring

rapidity and PT of both top and anti-top jets fixes all the hard scale wi's. Measuring

the azimuthal angle of the jets further fixes the label I components of the beam

momenta. We use the exponential factors e-iKx, * and e-iKxs *Y to translate the

collinear and soft fields in Eq. (4.19) to positions xi and y respectively, bringing

Eq. (4.18) to the following form of the SCET factorized cross section:

= Oo M(m, p) dk+ dk_ dkia dklb
dTdTdTId7B

rir

d~~TdTz tr FV~ {t T; ITb _klabiP )]

x wtJn(wt k+ - m2, m, P) wfJn (wk -k ,m, p)

x Bta (kia, Xa Pi B b kIb, Xb, ,i (4.26)
Wb Wb

Here co is the Born cross section, It,f is the top and anti-top jet phase space. There

is an implicit sum on the label rn in Eq. (4.26) that refers to the partonic channels

qq - tt or gg - t. The various functions appearing in Eq. (4.26) are given by:

3 ( [t,) = S ({ , (4.27)

Jn (wt k+, - m2, , )
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e(21)
2 f d ka x-/2 T t (wt + )2 1N_____~ __ ktx/ trKO I-x~ 2- [6(W 2 t)62 (PtM~ () ] 1 1i0),

J,,(wf k+ - m 2 , p)Nf I P) [

_(2wF)2 [dx eik+ x/12( [yin (- i~) ![(w+ )62 ( )xol0,
-N 0  2wf [ \21 2 10)tti

Bq. (kia Xa, Pi -
=~~~W I IP. (

1 1a -
= 0(Wa)((P(Pa)In (0)- [6(Wa - fa)-(kia - 1 1)IXna (0)] p(Pa)),

Bqb (k-b, Xb, P, Wb)

1 - 1
= O(Wb) tr(p(Pb)|-Xnb (0) [6(wb --- b - 6 (kb -- Pfa1D Xfb(0)] p(Pb))

Wb 2

2 ({km}, {f}, {dm}, f , )

= (0|(YjTJYb)a( T cd 1 (km - i(T") T(YbTIYr) a(YyTIY T tT |0) .

where we have represented the soft function in a compact notation, and the analogous

results for the gluon beam functions B9 can be found in Ref. [55]. Here {km} are

the arguments of the jet and beam functions. The T(m) operator replaces T(") in

Eq. (4.25) and is applied on all particles in region m defined by direction nm and

distance measure dn. Eq. (4.26) is valid for both channels and incorporates the fact

that the steps above can be generalized for the gg channel. The operators have been

renormalized which introduces dependence on p.

The beam functions contain PDFs in them as can be shown by their operator

product expansion:

Bi (x, kL, p)j = , k-L, 2 (4(z.28)+ AC

where Ii are perturbatively calculable matching coefficients. The V scale in the

beam and the soft function indicates that they are SCETnI type and contain rapidity

divergences [37].
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We now make the following change of variables using Eq. (4.10):

-M2
T k = St,f + M 2 , (4.29)

which gives

do-(<btf) _ oo M4(m, u)
d u~ _ uMam, ~ dst dst dkia dklb (4.30)

dM~dMjdTBdT QtQ I

(M t2 M 2 st,fKKI ( - ktET~tr [ (Hbtf p) S2 ' B - kla,b, P,-

x Ba kia ie y, - Bb k-b, -4, P, Jn, (st, M, A) Jnf (sf, M, tt).
Wb Wb

We now explore the properties of this result and discuss the ingredients needed

for the NLL implementation. Most of the parts of Eq. (4.30) have already been

calculated. The fully differential beam functions have been calculated at 2 loops in

Ref. [57]. The results for the soft function for generic N-jettiness measures at I-loop,

such as the XCone measure we employ, appeared recently in Ref. [20]. For the case of

top quarks we will further match the massive SCET jet functions Jtf to bHQET jet

functions that have been known up to 2-loops [78]. Hard function at NNLL order for

pp -+ qq as been presented in Refs. [102, 82]. The remaining ingredient is the hard

function for matching between SCET and bHQET theory for pp -+ tt that we derive

below.

4.2.3 SCET Hard Function Running

Various ingredients in Eq. (4.30) are specified at a common p scale. We adopt a

convention to set the p = ps, the soft scale, and run down the hard, jet and the

beam functions down to Ps through RG evolution. Below we provide the expressions

for the RGE for these functions to arrive at a final NLL factorization formula. We

first consider the running of the SCET hard function in Eq. (4.27) and derive results

needed for the discussion of bHQET matching coefficient below in Sec. 4.3. At tree
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level we have

=8g4 +
s2 ( 1

0

0

0
tgg = 8gt +2 C'/i 1 0

1 i/if 01

0 0 0

Ignoring the top mass for highly boosted jets in SCET the partonic Mandelstam

variables are given by

S = xaXbQCm, t = -xaQcrpte U = -XbQcmpte* .

We make use of the formulas presented in Ref. [82] for deriving resummed expression

of H . The running of the Wilson coefficient is given by'

d
A dC ')

(Ti - T y cusp sn
(2j -S

(4.33)

+ 6IJ 7 (as) (4.34)

Here si= 2u-ijp - pj + i0, and o-i = +1 if pi and pj are both incoming or outgoing

and 0j = -1 otherwise. ycusp is related to the cusp anomalous dimension as 7cusp

Iusp/ci, for i = q, g, which up to NLL order for a quark is given by

a (
FcusP = 4CF s47

-C 67
+ 4CF R

20 ] a) 2

9 1 47r , (4.35)

and -y = (2)(-3CF) and 'yg = (-) (-o). We rearrange the expression as follows:

= : z E (Ti - Tjj 2_(Q) =2(T-T 7CUSP (as) ln - + 6J (a,),

'Our notation here differs from Ref. [82] in that we have a transpose of r' related to difference
between evolution of the operator vs. Wilson coefficient.
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(4.32)

where

=(17')r 1 C', (( Sij} ),

7r2

3 )C



(Ti Tj) 1 j p2_ 1 + 6IJZ'yi (as),2 'cusp(as) [in g~r + In1 E2
i 2 i i j U; M

z(T -T) + IJ Tcusp(as)In
A 2

7CUSP s +7cusp(as )nLP + 7 6 IJ,

where the non-diagonal matrix M' is given by

2pM7 = (Ti -Tj)jj In *,
i (j 4i)

and

Here we have introduced an auxiliary scale p, that is chosen to simplify the form of

M' for the partonic channel r. nqqg are the number of quarks and gluons involved

in the 2 -+ 2 process. We have

1 ( - (CA + Cd)ln(f) + (-CA + Cd)ln(f)

2C,(ln(i + L)

0

-CFln ( -
0 A

1 n (1)

!CAIn (1)

-2ln(l) + 2ln()

0

-21n (

-(CF CA)ln()

We solve Eq. (4.33) for H by diagonalizing the color space matrix M'. We perform

a rotation in color space

Q, KK' = F ,F ,jH3,j = (Fr . Nt3 F t),,
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+ 6II 7i(as),
i

(4.36)

(4.37)

c = ci = (nq + nq) CF + ngCA,

-y'(as) = Z yi(as) = (nq + nq) -q(as) + ng-yg(as) (4.38)

Mq pq2 = -s)= (
-CFln(1)

0

'CAln Q)

) I
(4.39)

Mgg p tt=



tr[fH35r] = tr [ ((Fr) 1 - 2 - (Fr)- , (4.40)

such that the matrix F' diagonalizes M'. This allows to evolve R' multiplicatively:

7Q,KK'({sij}, p; Q) =',KK'({Sij}, p) exp 2cG S(p,Ah) (4.41)

- 2A(p, ttQ) - Ar(p, pQ) AK + Ar*) + c'ln

where the functions S, AH, and Ar are given by

( Qfa ') cusp( a) f " da'
S(,qtQ) = - f a

"'(AQ) (a) e(AQ) /3(a)

Ar(/-, [t) = - da CS(O
J /1(a)

IY (9y(0)
A" (p, p) - da .Q (4.42)

We observe from Eq. (4.30) that the soft function consists of multiple scales and

couples the jet and the beam directions. It was pointed out in Ref. [80] that up to two

loops non-global terms in the soft function can be refactorized for different collinear

regions. As an important consequence this allows us to separate the treatment of the

beam and the jet regions by choosing a different soft scale ps, for each sector. We

ignore rapidity scale dependence for this discussion. With tree level matching and

NLL evolution we have

(k ,T) = $ J Jdk' Us, (k+ - k', yAps,6(k1)

d k_ Us, (T - k., I, (4.43)

j=a,b
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where

CACF -{CF CA CF
qq CA CF 02

=" -'CF CAC CACF (
0 C 2

CA(~ \CACF CACF 2CFCA,,

Similarly in a top down RG evolution picture we can generalize Eq. (4.41) to evolve

the hard function to multiple soft scales as follows:

WQKK/ (I{sii}, {Its }; IAQ) = 'hQ,KK'({ Sij} I/IQ)

x exp [2 Zci S(s, Q) - 2Z A'(Ips , Q) - In / Ztci A(siQ)1
IQ

x exp - 4 KI Ar (si, PQ)1. (4.45)

An important consequence of Eq. (4.43) is that we can independently treat the

beam region at NLL order. By integrating over TB up to a value Tut which im-

plements a veto in the beam region. This plays an important role in limiting the

contribution from the underlying event. Beam vetoes have been studied for different

beam measures in Refs. [53, 1131. Our analysis of Mi is then essentially insensitive

to the precise implementation of the beam veto once we normalize the spectrum. In

Chapter 5 we implement a veto in our PYTHIA studies by imposing a PT-veto cut on

additional jets in the event.

4.3 Effective Theory Below The Top Mass Scale

Here we discuss the EFT for top jets in the peak region defined by Eq. (3.23). In

Table 4.2 we present the modes in the bHQET theory. We note that the soft fields

and the collinear modes in the beam direction remain the same. The soft modes for

the top and anti-top jet continue to be described by the same fields as above but are

now at a lower virtuality of mFt/Qt,f. The heavy quark fields h are defined with
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bHQET Modes Scaling Fields

nB -collinear B, QJ TB (dna, A , ( nb Ab)

nf -ultra collinear Qj grt, r) (hvt, Avt), (hvf, Avf)

ultra soft TB(l, 1, 1) (Vls, A sB)
__ ( 11 1), AQcD(1, 1, 1) (IOas, Al)

Table 4.2: Summary of the EFT modes set up, scaling, and fields in bHQET below
the top mass scale.

four-velocities

2mQ nfmVt = + -2 mn 2 Qt ' f 2 m
nm+ 't

2 Qf'
(4.46)

which are time-like, v2 = o = 1. This results in the same soft function and beam

functions in the low energy theory evaluated with 5 light flavors below the top mass

scale.

From the perspective of matching the effective theories we can write

C, 1({wI}, ) OS'ET,I(/) = CbI {wi}, m (4.47)

Where we have included dependence on the boost factor Q/m. Matching between

SCET and bHQET only involves top and anti-top sector, and is independent of the

color, spin structure, and the partonic channel:

0 sCETI(t) = Cm (mI Qt,
m

(4.48)[It )bHQET, I( At)

where the matching is performed at scale pt - m. The coefficient Cm is the same

as the result derived in Refs. [50] for the e+e- -+ tt process. In Chapter 6 we will

present the two-loop result for C. From Eqs. (4.47) and (4.48) we can identify the

bHQET Wilson coefficient COb as

CR mwi}, , , Pt = Cm (m, At) C'Q,,I({wi}, Pt) .
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The bHQET hard function can now be written as

b ii(wi}, m1 PWt ) =

= Cm(m q,-m it) , H N ,gJ({Wi},,Pt). (4.50)

Hm

We are now in a position to state the bHQET factorization theorem:

doK(<bt) m2 f
= o- d' ds' dkia dklb (4.51)

dMt2dMdTdTa QtQtI

tr [fl. (Dtber, ( M (Atjr - s',, T"'" - kia ,-

x Ba ka, Xa, Ta, i Bb kIb, Xb, Pi
\ Wb ) \ b/

x Jit(t,1 Ft, 1m 6Mp ) Jif(sj, Ft, &n, p-) ,

where st is defined in Eq. (3.23) and <bt is a shorthand for the variables {wi, m, Qtf/m}.

We also notice that the contribution from mass modes M(m, p) has been absorbed

in Hm defined in Eq. (4.50). The matching results in bHQET jet functions that depend

on the scale Ft and are defined by [78]:

J = 2vt.r, Ft, 6m, p) (4.52)

= Im [i d4x eirx(0IT{hvt(O)Wnt(0)Wntt(x)hv(x)} 0)1

It is through the residual mass term 6m appearing in the bHQET jet functions JR

that the top quark mass scheme is specified unambiguously beyond tree-level. As

discussed above, valid options include the jet mass scheme [49, 50, 78] or the MSR

mass scheme [75, 78] which matches continuously onto MS. These two mass schemes

have an adjustable cutoff parameter R which controls the scaling of higher order

corrections. We will use the MSR scheme here. The anomalous dimension equation
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for the MSR mass is given by so-called R-evolution where

d
Rd m(R) = -RYR[as(R)],

dR

7Rkas(R)] = E [aS (R) .+1 (4.53)
n=O

Defining ti = -2r/(#oas(Ri)) the LL solution of the R-evolution equation for the

MSR mass is

m(Ri) - m(Ro) A QCD _/0R (4.54)
200 it t

where the LL anomalous dimension coefficient y 0
1 = 4CF. Since ti < to < 0 this

integral is convergent.

4.3.1 bHQET Hard Function Running

Here we discuss the evolution of Htb to the new ultra-soft scales in bHQET shown in

Tab. 4.2, which we continue to refer to as ps,. From Eq. (4.50) it follows that the

part of the RG evolution of the bHQET hard function that involves running the from

the SCET matching scale AQ ~ Q to the bHQET matching scale pt ~ m is given by

Eq. (4.45). In this section we derive the expression for running below pm. We have

Cb t) UCb t) Cb t),

Uco(,, gut) C.(ut) C(pt)

= cb(Ag t) Cm(At) Uc(Atu, Q) CQ (PQ), (4.55)

where we have suppressed the F and K indices for simplicity and represented the

Wilson coefficients as vectors in color space. Following Ref. [50] the RG evolution

and UV divergences of soft function are independent of the choice of the 2-jettiness

measure. This allows us to calculate the anomalous dimension of Ob(pt) using the

known 5-flavor anomalous dimension of the SCET matching coefficient for jets from

massless quarks stated in Ref. [79]. The g independence of the 2-jettiness cross-section
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for jets from massless quarks, analogous to Eq. (4.26), is given by

dsi Si(si, pi)] O () S2 ({T - }, (4.56)
d1

0 = A- J[1
dy i=a,b,1,2

where Ji are the SCET jet functions for massless quarks. We note that Eq. (4.57) is

expressed in 5 flavor scheme. This yields

IQ (p) 17 6 (kj) = -1E Qi1, (Qiki, p) QQ6(Qkj)j
i i j5i

Similarly, the consistency condition in bHQET gives

- ft({ki},

1JQ 6(Qbkj) - ({ki}, p) ,
jfi -

f ((kgi

where Q' = Qj for j = a, b and Q' = Qj/m for j = t, T. The anomalous dimension of

the SCET jet function is given by

1
= -2 ci 7eusp2 cs(t

A

A2 0(S)
s

+ 'Y,/[a (At)] 6(s) .

Subtracting Eq. (4.58) from Eq. (4.57) and using Eq. (4.59) we have

) m
- Qij (Qiki) = 6(k. ) 2ci 1cusp[as(PIln- +

P

(4.60)

which gives

22
Cb~At In A}up[s(A) 2 Ncusplas(A) +

- inn Cicusp[as(pt) -F 7Y [aS-(1- 

Thus, we can now write the evolution of the hard function from Pt to {pts, } as
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(4.58)

Fs (s, A)

m
Q
M

(4.59)

E 7Y (aS)

[as()]] } (4.61)

p) O (it),

= -1 Q Ug,(Qbki, )
2 i - i



Wb',KK'I'Si}II At I'Q) = Rb,KK'( Sij }, It, I Q)

exp [2 1 ci S(ps , At) - 2 E A'(ps,, jAt)

i=a b i=a,b,t,f

e x p - - - K 4 K a t iiS~~tf

- E c Ar (ps,
i~zt t

- Z[A' (us, Iqt) - A'b([si, At)]
i=t,f

Ar(ps2 , fit) - c Ar (ps, H)ln
i=a,b lt

Lt)ln

where the functions A',, and A',Jb are given by

A'(P, PH) / 4 ( 
T4 )Ige da Y'(a)

(a)
A' (P, PH)=-

as( (A)

es (AH)
da -Yb (a) (4.63)

/3(a)

The evolution of the hard function Hb,KK'({sij}, At, PH) in Eq. (4.62) between pH and

pt is given by

?bKK' ({sij}, At, pA) = Hm(mt, I't)(,KK',({sI}, pU)

exp [2 ci S(At, gQ) - 2 A'(pt, pg) - In A c'Ar (ut, pQ)
AQ

exp Y Ar (t, pQ), (4.64)

where 11QKK,({sij }, pQ) is the SCET hard function at the hard scale pQ.

4.3.2 bHQET Jet Function Running

The RG evolution for the bHQET jet takes the form

= Js' , UB(st -s', AS,; Pr) J '
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The evolution factors are well-known and have the generic form

U JB(st - swP; o)
eK (e'YE)=e [(so)-s't -4

(t- -/)1+w

The functions K = K(p, [to) and w = w(p,, po) at NLL order are given by

jo
W (p, yo) = . -

A#o
Inr +

(Io

K(puo)= -27ro r - 1 - r

002 asp W

1 as(O)
4w(r-o 47r

lnr 'moso
+ Inr +

47r]Fo

(4.67)1)],

Iro 0)
1 - r + Inr - i 2+ ln r

4wr 8wr30

where r = 8 ().

sion [78].

Here -yi are the coefficients of the non cusp anomalous dimen-

4.3.3 Factorization Formulas

We now combine the results from above sections to derive the final form of the cross

section at NLL accuracy. Prior to carrying out the resummation of large logarithms

and adding the non-perturbative hadronization function we just have the tree level

cross-section given by

dMt dM, d7t d7r dpT

x

PT0O 1fb( , pnb ) 1' ,
4-rQ4 Nisk ab

F2m2m 1
w2 [(Me - rn2)2 + m27] [(Me - m2) 2 + m2J7]

Here Nnit. is the number of initial states for the partonic channel K = {qq, gg} and

the partonic Mandelstam variables are understood to be evaluated with Xab given by

X* 7tT +* a Q e es,
*+ e-) (4.69)

and the PDFs fa,b are evaluated at the scale p1 .,ab We discuss some of the steps

leading to Eq. (4.68) in App. A.

Combining the various resummed functions from the previous sections and adding
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the non-perturbative function discussed in detail in the next section, the full NLL

cross section is

du _ PTU00TO -i-(,i ,fy ;tt Q (4.70)'
dM dM2 dtd#dpT 4,rQ4 Nikn [ t. b

1
X fa(*, asf X, 111%) k (MCUt, Ise A a Aa)KC(Mcut I sb , Inb)

jd + d- F(,+ I f (-)P(M t - Q- + )- Qf-)
0 JO Mt 'Mt nt Tnt

Here P is given by the RG evolved expression of the bHQET jet function:

P(t) =jd' USB(At - s' , pst; Art)J '

= Im -(t ( i-w) (4.71)

We also note that the hard and soft function matrices in Eq. (4.70) have been defined

after performing the rotation in color space as shown in Eq. (4.40). In the second

line of Eq. (4.70) we have defined K(Mcut) as the contribution of beam functions

integrated up to TB = Mut. We see that it only affects the normalization.

4.4 Nonperturbative Hadronization Function

We now consider the non-perturbative corrections to the factorized cross section for

ungroomed top jets. Here, the differential cross section gets significant corrections in

the peak region for st ~ Q/mAQCD -Ft, and in the tail region where st > Q/mAQCD i

Ft the perturbative corrections are dominant. In Ref. [74] the strategy suggested

for e+e- - dijets in order to incorporate non-perturbative corrections correctly in

the MS scheme, and smoothly turn off the non-perturbative corrections in the tail

region, was to include a non-perturbative function through a convolution in the 1+, 1-

variable in the hemisphere soft function for ti dijets in e+e- collisions. The fact

that the convolution is in these variables follows from the power counting for the

non-perturbative mode and the form of the measurement. (Similar results were also
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derived for the soft (shape) function in b - sy decays in Ref. [931.) The moments of

this non-perturbative function are defined by field theory matrix elements of specific

operators involving Wilson lines. In this case with ultrasoft modes, one extends the

measurement function to include the non-perturbative mode as follows:

1 = dl+ 6(1+ - n - (pus + PA))

= dl+dk 6(l+ - k - n -Pus) 6(k - n -PA) (4.72)

which allows one to employ the following form for the soft function

Shemi(1+1 1-1 d+- Sp (+ _ k+, 1- _ k-, p) F(k+, k-) . (4.73)

Here the two arguments refer to the top and anti top jets that are coupled in the

ungroomed jet mass measurement. The F(k ) is the non-perturbative function that

peaks around k' - AQCD and falls off for k' > AQCD- It is identical to that of a jet

initiated by a massless quark.

In our case with additional contributions from the beam region the soft function

depends on four variables rather than two. However for our purposes it suffices to

neglect non-perturbative corrections to the jet-veto distribution since we will mostly

fix this variable, and then cancel out the majority of jet-veto effects by looking at

normalized Mj spectra. Therefore even for the four variable case we only consider a

two-variable non-perturbative function F,

S(lt, i , la, lb/I) = dl+dl- part (l - k, l - k', la, pb P) F(k, k') . (4.74)

As a further simplification, although S and 5 part are color matrices, we consider F to

be a scalar rather, so that all entries of the perturbative soft function in color space

are modified by hadronization in the same manner. Considering more general matrix

valued non-perturbative functions F would allow one to explore for color correlations

in the hadronization between the jet and beam regions, but the addition of more
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parameters would also make such an analysis quite involved, and it is beyond the

scope of our work. Obviously the function F in Eq. (4.74) need not be the same as

for e+e- in Eq. (4.73) (despite our abuse of notation by giving them the same names).

The exact form of F for our implementation for ungroomed top jets is stated in

Sec. 5.5.1 below. This function is normalized

1 = Jdk dk F(k, k'), (4.75)

and it can be determined by fitting its first few moments defined by

Qn,m = dk dk' k k'"n F(k, k') . (4.76)

The first moment of F, Q 1 - Q1,o = Qo,1 has a special significance since it sets the

dominant momentum scale for this non-perturbative function, and allows us to pa-

rameterize the size of the non-perturbative corrections. For example, we parameterize

the second moment Q 2 - Q2,o as

X 2  - 2-2 1 (4.77)

where Qc is the 2nd cumulant moment of F. From carrying out a dedicated study we

find that the dependence of the peak position on the higher moments is most often

sub-leading when they are parameterized in terms of dimensionless parameters like

X2. This involves considering Q1 and X2 as independent parameters, and the same

conclusion is not reached if we instead take the parameters as Q 1 and Q2 since these

are both dimensionful and more highly correlated. Using dimensionless parameters

for higher moments allows us to specify the scale of the non-perturbative corrections

solely by referring to the first moment. For the ungroomed jet mass there is also a

third moment parameter, Q1,1/Q2 that encodes information about cross correlations

between the k and k' variables. Since our focus is on one-dimensional jet mass spec-

tra, where the other jet-mass variables is integrated over, this parameter becomes

redundant, and hence is not considered here. We explore the dependence of the cross
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section on Q, and X 2 in detail in Sec. 5.5.2.

Note that for pp collisions with and without jet grooming we always use moment

parameters defined in the MS scheme since we have not yet fully derived the necessary

framework to implement the short distance gap scheme for moments that has been

discussed for e+e- -+ tf, cf. [74].

4.5 Underlying Event Model

For the jet mass measurement inside conical jet of radius R, the main impact of

the underlying event is to populate the jet with additional soft radiation that is

at somewhat higher energy than the radiation associated with hadronization. This

radiation is expected to be predominantly uncorrelated with the jet direction and

hence uniform across the jet cone. The contribution of these UE effects lies outside

the scope of our factorization theorem, and it has been proposed that this is related to

the neglect of so-called non-factorisable contributions from Glauber exchange when

deriving the factorization theorem [56]. While it is known from Ref. [106] how to

incorporate such Glauber exchanges into SCET, the connection of these effects to

underlying event is beyond the scope of this work.

Therefore to account for the contributions of UE we adopt a reasonable physical

model proposed in Ref. [111] that appears to accurately account for the impact of

this type of radiation on jet mass measurements. In particular, it was shown that

MPI in PYTHIA for the ungroomed jet mass spectrum can be well modeled by simply

changing the hadronic parameters in the soft non-perturbative function F [111]. This

model is reasonable because in both cases we are describing soft radiation effects,

just at a larger scale in the case of MPI. Adopting this approach simply changes

the meaning of the moment parameters Q, determining F. We will add an extra

superscript MPI to indicate when this assumption is being used:

Qn -+ QMPI (4.78)
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In Ref. [111] it was even noticed there that for jet-mass measurements in pp -* Z+jet

and pp - H+jet that the change in the spectrum obtained when adding MPI to a

hadronic PYTHIA cross section is accurately captured by shifting a single first moment

parameter Q1 with an exponential functional form for F(k) which only has this one

parameter. Since it is not clear if this will remain true in general we will here allow

all moment parameters Q, to be modified in the presence of UE as in Eq. (4.78).
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Chapter 5

Top Mass Determination with Jet

Grooming

The top jet mass spectrum is highly sensitive to contamination from initial state

radiation (ISR), underlying event, and pile-up, that shifts the peak position and

affects the overall shape. Radiation from pile-up is truly uncorrelated with the event

while that from ISR and the Underlying Event (UE) are only weakly correlated with

the dynamics of the boosted top jet. UE effects are often modeled in Monte Carlo

simulations by Multi Parton Interactions(MPI), and we therefore use both terms. In

our study we do not consider effects of pile-up and assume that they can be handled

experimentally without significant modifications to the spectrum. In Fig. 5-1 we

show the top-jet mass spectrum from PYTHIA8 simulations in three different cases:

partonic, with hadronization turned on, and with both hadronization and MPI turned

on. We see that the peak gets shifted by ~ 5 GeV on turning on MPI, whereas the

shift is - 2 GeV after including hadronization.

As mentioned in the previous section, contamination from the MPI can be modeled

quite well by modifying the shape function which describes hadronization. However,

it is not ideal to have such a large shift that needs to be modeled. We therefore seek

top mass sensitive kinematic observables that are largely insensitive to contamination,

thus reducing an important systematic uncertainty.

Contamination in the boosted top jet that is uncorrelated or only weakly correlated
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Figure 5-1: Partonic, Had, Had+MPI for no SD case.

tends to be either soft and/or at wide angles from the jet axis. Jet grooming can help

reduce these effects by grooming away soft wide angle radiation that also includes

radiation from MPI interactions. Several grooming algorithms have been proposed

in the literature, including mass drop [291, pruning [47], and trimming [88]. These

algorithms yield new observables, which then require modified theoretical calculations,

and some of them are more theoretically tractable than others [116, 44, 43]. For our

application to top quark jets we consider the modern version of minimal mass drop,

called the soft drop grooming algorithm [90]. Factorization theorem based higher

order calculations have been carried out for observables like the jet mass and jet

angularities when soft drop is applied to massless quark jets [52, 511, making it a

promising procedure for our case.

Soft drop declusters the jet using the Cambridge-Aachen algorithm [45, 117] and

sequentially goes through the branching history of the jet analyzing the pair of par-

ticles (or sub-jets) at each branch. If the energy fractions of the pair fail to meet

a certain criteria then the softer branch is discarded. This procedure is continued

until a pair is found that satisfies the criteria, and the combination of this pair then
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determines the particles that belong to the final groomed jet. The soft drop criteria

for e+e- colliders is

with R' = v'-2sin(Ro/2), while for pp collisions the criteria is

min[pTi, PTi] Rsin(' 3  (5.2)

> zcut (.)

PTi + PTj (Ro/

where the angular distance Rij = V12_ [cosh(77 - %-) _ cos(5, _ oj)]l/2 in terms of the

rapidity rj1, and azimuthal angle 9i of the branch i. Here zcu and 03 are the soft drop

parameters which determine the relative strength of the groomer. We always take

1O= since this parameter is not independent from the choice for z,11t and ,3. If the

pair fails this criteria then the softer branch is removed, and the groomer proceeds

along the more energetic branch. The procedure stops the first time the soft drop

condition is satisfied, and the resulting jet is referred to as the groomed jet.

The soft drop procedure also determines a groomed jet radius Rg that corresponds

to the largest angle between two branches which pass the soft drop criteria in Eq. (5.2)

for the first time. This effectively limits the area of the jet contaminated by soft

particles to R 2 which is significantly smaller than the original jet area.

Soft drop grooming has been widely employed in the context of jets from massless

particles. As we will see below, soft drop grooming for top quark jets is more subtle

due to the nature of the mass measurement for massive particles and the unique decay

topology. We will develop an effective theory framework to predict the groomed top

jet mass spectrum in the peak region, and derive explicit factorization theorems to

predict the associated cross section. Predictions from soft drop and the factorization

theorem will also be explored with simulation studies using PYTHIA8. In particular

we will find, as expected, that the groomed-jet mass spectrum is much less sensitive to

91



effects of hadronization and MPI, and thus provides the robustness needed for direct

comparison of data with our theory predictions. This work has recently appeared in

Ref. [71].

The strength of soft drop groomers is determined by the parameters zcut and 0.

Higher zcut and smaller # values correspond to more aggressive grooming. We limit

ourselves to considering only / > 0 values. Commonly values employed by theorists

and experimentalist for other jet grooming studies are zcut ~_ 0.1 and / = 0, 1, but

these choices must be reconsidered for our application. We require the implementation

of soft drop grooming on the top jet to achieve three main objectives:

1. remove the dominant soft contamination that would otherwise couple the top

jet to the dynamics going on in the rest of the event,

2. keep the top quark decay products,

3. retain the ultra-collinear radiation that specifies the information related to the

top-mass scheme, and avoid having soft-collinear radiation depend on the an-

gular distribution of the top decay.

The first objective is the main motivation for using soft drop grooming, while the

second and third items are constraints that are imposed by what we desire from our

measurement and our ability to theoretically compute the corresponding cross section

at the desired level of precision. In particular the top mass measurement using jets

requires us to be inclusive over the top-decay products, and hence we must not have

the grooming be so aggressive as to remove one of the decay products that we want

to measure.

To understand the third point, we recall from our discussion in Sec. 4.3 above that

for ungroomed top jets the top mass scheme is specified in the HQET Lagrangian, and

this information then enters the cross section through the bHQET jet functions. The

jet function is described by the ultra-collinear modes in bHQET that have offshellness

p2 ~ Fi and energies E, FQ2 /m 2 , which are smaller than the typical energies

S m2 of the top decay products. Limiting the strength of grooming so as to not to
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modify the ultracollinear modes is therefore a constraint stronger than that needed

to just retain the decay products. A more subtle requirement that we make when

deriving the factorization theorem, is that the top decay products should not directly

influence the dominant perturbative soft radiation that remains inside the groomed

jet radius Rg. Together these constraints allow for the full evolution and decay of top

jets in the peak region to be described by the same universal bHQET top jet functions

JR as in Sec. 4.3. This JR remains independent of the soft drop parameters, and the

corresponding analysis of appropriate top mass schemes then remains in the same class

of "top resonance schemes" discussed for ungroomed top jets. These schemes allow

for R ~ Ft in Eq. (2.2), and include the MSR top mass scheme, discussed in Chapter

2. We will demonstrate in the next few sections that together these three constraints

require us to choose soft drop parameters in a restricted range corresponding to what

we refer to as a light soft drop region.

Below in Sec. 5.1 we consider the effects of soft drop grooming on the ultra collinear

and ultra soft modes that were relevant for the peak region prior to grooming. We

derive the constraints on the grooming parameters, and determine the relevant modes

that are required to describe groomed top jets in the peak region, including collinear-

soft and non-perturbative modes. In Sec. 5.2 we analyze these constraints to deter-

mine the region where one should carry out measurements that can be compared to

our computation of groomed jet masses. Sec. 5.3 is devoted to a derivation of the

factorization formulae for soft drop groomed top jets. This includes the important

treatment of the dominant residual effects of hadronization which appear in the soft

drop factorization theorems through a function FC defined in the quantum field the-

ory calculation. This is discussed in Sec. 5.3.4. For the modeling of UE effects with

soft drop we will adopt the same approach discussed in Sec. 4.5.

The final result of this chapter are factorization theorems for the soft drop top

jet-mass cross section. We leave the discussion of the numerical implementation of

the factorization theorems to Sec. 5.5.1.
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5.1 Modes and Power Counting Analysis

We can get a better understanding of the constraints mentioned above by studying

the result of applying of soft drop on the quantum field theory modes which are

relevant to describing the cross section in the peak region. Which modes are kept

and which ones are groomed away is the key question. In this section we derive

some key formulae, which are then analyzed further numerically and summarized in

Sec. 5.2.

5.1.1 Perturbative Modes

We consider an emission (or a decay product) of energy E and at an angle 0 off

the top quark and note that for this emission to contribute to the invariant mass

measurement in the peak region it needs to satisfy

s = 2vt -k ~I'- F, (5.3)

where F > Ft is the physical width of the distribution in the peak region.1 Here vt

was defined in Eq. (4.46), k is the four momentum of the emission(s), and z is the

energy fraction from k relative to the jet energy. Decomposed along the jet direction

we have

k = (nr - k, Ij - k, ki) = (E(1 - cos 0), E(1 + cos 0), ki) , (5.4)

with the energy fraction, z = 2E/Q = k-/Q. Here Q corresponds the large momen-

tum along the boost direction. For an e+e- collider this corresponds to the center

of mass energy, and for pp collisions Q = 2PT cosh(qj) with PT and q being jet's

transverse momentum and pseudorapidity, respectively. The peak region constraint

'In the constraint equations derived in this section we can also replace I by the measurement
variable . = (M3 - m2 )/m as long as we do not consider values s < Ft since the width effectively
provides an infrared cutoff which shields this low momentum region.
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written in these variables reads

z (1-COS 0) + M2(1 + COS0) ~ .F (5.5)

Eq. (5.3) states that the scale of fluctuations of momenta in bHQET theory is O(Ft).

Both ultra-collinear (UC) or ultra-soft modes in bHQET by definition satisfy this

constraint. For the ultra-collinear modes that are boosted along the i direction with

small angles 0 we have 0 - 2kI/k -.

For the emission to pass the soft drop criteria in Eqs. (5.1) and (5.2) we need

z r> zcuto'3 (5.6)

Our analysis of this constraint is similar to the case of massless quark jets treated in

Ref. [51], just with modifications to account for the massive unstable top quark. When

writing this constraint we note that one of the remaining branches i or j will always

contain one, two, or all three of the top decay products, so that min [Ei, Ej]/(Ei +

Ej) ~ z on the LHS. For the pp soft drop constraint we also have min [pTi, pTj]/(pTi -

pTj) ~ z because the difference between PTi and energy Ei is a factor of cosh(7i) and

at the level of deriving scaling relations the approximation that these cosh(7i) factors

cancel out suffices for this comparison of branches that have momentum within the

jet of radius R. On the RHS we adopt a small angle approximation that has correct

scaling for 0 < 1 up to an 0(1) prefactor (which is R'-'3 for the e+e- case and

[cosh(Tlj)/2],3 for the pp case). For 0 - 1 the form of the constraint in Eq. (5.6) also

retains the same scaling as the unexpanded form.

In the ungroomed factorization theorem it was the ultra-soft modes that intro-

duced couplings between the top quark jet, and other elements in the event, such

as the f jet and beam radiation. Demanding that ultra-soft modes with 0 1 and

z ~ 2mF/Q2 will always be groomed away implies a lower bound on zcut,

ZCUt >> 2F (5.7)
Q2
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On the other hand, to always keep the ultra-collinear modes which have Ouc ~ 2m/Q

and z ~ F/m we require

2m 13 F r, Q
Zcut < - - >> zcut. (5.8)

(Q ) , m 2m

This constraint puts an upper limit on the soft drop parameter zut. Due to the fact

that the small F/m ~ 0.01 factor is not overcome by the boost factor (Q/2m)a this

forces us into a light soft drop region.

The decay products have same boost as the ultra-collinear particles, or 0 decay ~ Ouc,

but with much higher energy Zdecay ~ 1. A typical value is zdecay ~ 1/3. Hence, the

condition in Eq. (5.8) is strong enough to ensure that the top decays products are kept.

From the constraints considered so far for the modes that existed in the ungroomed

factorization theorem we find:

F F 2rn 2
Zdecay Q > > Zcut > - .m (5.9)

2 nJ decay m 2 m ucollinear usoft m Q 2

products kept vetoed

kept

For boosted top quarks Q > m and there is always a parametric window where these

constraints are satisfied. We will see below that both constraints on zcut in Eq. (5.9)

will become a bit stronger once the full set of expansions needed for the factorization

theorem have been considered.

While the wide angle 0 ~1 ultra-soft modes are vetoed away, the introduction of

the soft drop constraint allows new modes to become active. We now have collinear-

soft (CS) modes with momenta pP defined as the modes having the minimum energy

and largest angle that passes the soft drop criteria in Eq. (5.6), and still satisfies

Eq. (5.5) so that particles of this type contribute to the jet mass measurement. These

modes were introduced for describing soft drop factorization in Ref. [51] and also

appear in other physical applications of jet physics, being part of the generic SCET+

framework which contains additional modes that are simultaneously collinear and
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soft, discussed in Refs. [16, 105, 91, 1041. Parameterizing

Ps ~ Q Zmin ( 47

this definition of the collinear-soft modes gives

2
0+2iFt 4m2

)

mi Q2 zcut -)
( r

(5.11)
1

4 mn2 IF 2+,3

, max =
ZCut Q2 m

Hence, after the application of soft drop we are left with the following perturbative

modes:

t ~ Q 2,Pm .. tM TIA ) A ~ll Ft -(A21,
m

A), (5.12)

where we have defined expansion parameters

m
A = , I

2m ) m
ZCut - (5.13)

To be able to factorize the contributions to the cross section between collinear-soft

modes and ultracollinear modes we demand the hierarchy

1 >> r > A. (5.14)

This results gives us the condition

S1 Ft 4mn2 2+,3ZC21,1

cut >> 2 Q 2  (5.15)

which is a stronger constraint on the lower bound of zcut than that in Eq. (5.9) from

grooming the ultra-soft radiation. (A numerical study of this constraint is given below

in Sec. 5.2.) As another consequence of Eq. (5.14) we note that the collinear-soft mode
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is more perturbative than the ultra-soft mode:

2

2 =2Ff 2m\1  m 132 22 2=]2A2(.6
Pcs~t[Q ) rt5.6

In addition to vetoing the ultra-soft modes, soft drop will groom away all wide

angle modes with energy fraction up to z ~ zcut. These modes do not contribute to

the measurement but they affect the overall normalization of the cross section. Again

such modes also appear for massless quark jets in Ref. [51] and we refer to them as

either "Global Soft" or just "Soft" with the momentum scaling as

PSG 2 (1, 1, 1). (5.17)2

We will see later on that they are also needed to ensure the consistency of the functions

appearing in the factorized cross section under renormalization group evolution.

In Fig. 5-2 we represent the modes discussed above, on the standard p+-p- plane,

including collinear-soft (CS), ultra-collinear (UC), and Soft. We also display the

non-perturbative modes (A) that will be discussed in a later section. In this plane

modes with fixed invariant mass lie on one of the indicated hyperbole, with smaller

invariant masses lying on hyperbole that come closer to the origin. This gives us a

sense of relative offshellness of the modes we considered above. As shown in the figure,

and following Eq. (5.12), the p+ components of both the CS and UC modes have the

same scaling and the other two components of collinear-soft modes are parametrically

smaller, a feature similar to that of ultra-soft modes before grooming. Hence the two

modes in Eq. (5.12) will couple in the jet mass factorization theorem through their p+

momenta. This agrees with our EFT picture where the minus component is fixed to

be the hard scale and the jet mass is determined by the plus component in the peak

region, as shown in Eqs. (4.7) and (4.10). We notice from Fig. 5-2 that soft modes

have higher invariant mass than the collinear-soft modes. To see this we rewrite the
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Figure 5-2: Modes on p+-p- plane.

constraints in Eq. (5.9) as

2m I
6 = ZCUt (

<<
pt

where we recall that zcut has been chosen so that these constraints are satisfied. Hence

we have

2 c2
PS r.) cu

2

2 ]7(1+# 3

2 22 2

t C 2,6 F2 t p

However, the comparison between soft and ultra-collinear modes depends on specific

values of c and 6. We can further check that the soft modes lie below the top mass

hyperbola, or Q zcut < m for the experimentally accessible values of Q that we

consider here. From Eq. (5.9) we have

zcut <
M 2m )

2m

Q
(5.20)
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Figure 5-3: Modes on z-6 plane for the "high-pT" case.

since Ft/m < (2m/Q)+ 5 for the Qs we consider here, and 3 = 0, 1, 2.

5.1.2 Non-Perturbative Modes

Next we turn to the discussion of the non-perturbative mode present after grooming.

To facilitate our discussion, we now consider another illustration of the modes and

constraints by representing them on the ln(1/z)-ln(1/6) plane in Fig. 5-3. To start

out we set PT = 1500 GeV, rjj = 0, and AQCD ~ 300 MeV. Here the orange line

corresponds to the soft drop constraint in Eq. (5.6), and the blue curve represents

the peak region constraint in Eq. (5.5). The orange shaded region indicates the

particles groomed away by soft drop. The brown line corresponds to the onset of the

non-perturbative region, and particles above this line are confined in hadrons.

The location of the modes discussed earlier is also indicated in Fig. 5-3, with

modes to the right being more collinear, and modes higher up being softer. The

collinear soft mode satisfies the peak region constraint in Eq. (5.5) and lives on the

boundary of soft drop region, and hence sits at the intersection of the blue and orange

curves. The ultra collinear mode, being higher in virtuality is located to the right on

the blue curve. The previous ultrasoft modes that were present at the intersection of

blue curve and y-axis are groomed away and we are left with the (global) soft wide
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angle modes at the boundary of the soft dropped region (green dot).

The dashed line indicates the point when soft drop stops, which we previously

discussed in terms of the groomed jet radius Rg < R. Due to the special top decay

topology, and for zcut in the range given by Eq. (5.9), the soft drop criterion in

Eq. (5.2) is first satisfied when the algorithm reaches the branch that corresponds to

a pair of sub-jets of top-decay products of commensurate energy, after having vetoed

away the ultra-soft particles at larger angles. If among the decay products labeled by

indices dl, d2, and d3, the subjet corresponding to the pair {d 1 d2} stops the groomer,

then we define 0d as

Od max(di , 0
d2 ), (5.21)

where the angles 0
d, are defined with respect to the boosted top jet's jet axis. Thus,

the groomed jet radius, Rg, effectively corresponds to Rg ~ 0 d and the soft drop

algorithm stops removing particles when it reaches this angle, shown by the dashed

line in Fig. 5-3. The boost of the top quark causes the angles 0
di ~ 2m/Q, so as we

increase PT the dashed line moves to the right along with the UC modes. Although

this dashed line turns out to not play a role for our discussion in this subsection, it

does have important theoretical and phenomenological consequences that are explored

below in the next subsection.

Modes that are collinear and non-perturbative satisfy p2 - A2CD and can be

parametrized by their angle 0 relative to the jet axis as

2 AQCD 02 0) 
2 AQCD

PA ~- -, 1, - ,za(O) ~- (5.22)
0 (4 2 QO

and are represented by the brown line in Fig. 5-3.

To calculate the location of the dominant non-perturbative modes on this line we

first can extend the results in Eq. (5.12) to describe the tail region, as well as the

non-perturbative region, by making the substitution IF - s. Since the collinear-soft

modes have the lowest invariant mass of all the three modes considered above, we

can ask for what values of the measurement S we fall into the non-perturbative region
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such that

2 rl A2
PCs QCD-

This would correspond to the blue curve in Fig. 5-3 moving up as s is reduced, and

eventually the pink dot meeting the brown line at the point A. (In practice we never

have to consider s < Ft since Ft screens the infrared s -* 0 region, much like in the

function s2 + Ip2. However this argument still suffices to derive the scaling of the

dominant nonperturbative modes.) This leads to

1

AQCDQ AC +s A- 2 Q Zcut ~/(5.23)

This mode also corresponds to the maximum angle 0 that passes the soft drop criteria:

2AQC"\1+/
ZNP(0) > ZCut 00 Q )CD (5.24)

Q zcut)

Combining these results gives the scaling for the dominant nonperturbative mode

)1 12 rdA2  AQ+ (2AQCD\ p-/ ,-2 OA Q z~" (5.25)PA QCD' 2A QAt J] ICD Z2 A)}
2 Qzcut 2AQCD

which is shown appearing at the intersection of the brown and orange lines in Fig. 5-3.

5.1.3 Effects of Top-Decay Products

In the previous section we analyzed a case with PT = 1500 GeV. For high-pT top

jets the decay products are more collimated and hence in this case the location of

the non-perturbative mode is analogous to the case of jets from massless quarks. In

particular for high-pr the dashed line in Fig. 5-3 is always on the right hand side of

the A modes.

However, for an intermediate PT range of experimental interest the dashed line

moves further to the left, and we find that the dominant non-perturbative modes are
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Figure 5-4: Modes on z- plane for the "decay" case.

located on the dashed line. This occurs because the brown line now hits the dashed

line instead of the orange line. This is shown in Fig. 5-4 for PT = 750 GeV.

In such cases the the nonperturbative modes have the angle set by the decay

product that is furthest away from the top jet axis and stops the groomer:

OA ~ Od . (5.26)

We refer to the two cases in Figs. 5-3 and 5-4 as "high-PT" and "decay" cases respec-

tively. We can ask at what Q we transition between the two pictures by comparing

the p+ components of the A modes, since the contribution of a mode to the measure-

ment is proportional to the plus component contribution as shown in Eq. (4.7). We

first parameterize the plus component of the A mode in Fig. 5-4 as follows

A= AQCD Mh(9d), (5.27)

where we have factored out the leading dependence on the boost Q/m and parame-

terized the subleading dependence in an 0(1) number, h(Od), that is related to the

fraction of the top quark energy carried by the decay product at angle 9 d. Comparing

the p+ components for the "decay" and "high-pT" cases in Eqs. (5.27) and (5.25) we
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find that the "decay" case is relevant for

decay+ > high pT + _m hzcut . (5.28)
PA ~PA rl IAQCD )

We discuss in detail the calculation of h in Sec. 5.3.5 below and comment further on

the range of validity of Eq. (5.28) there. For making estimates one can take h ~ 2

which turns this condition into

Q < 4m (2mzcut) 1/)3 (5.29)
AQCD

Using Eq. (5.22) and Eq. (5.27) we have

P decay ~ AQCD (h, , 11 (5.30)
A ( Q mh

which on comparison with Eq. (5.4) gives

Q __-__s__ Q 6 d
h(Od) = - COSOd tan 2 (5.31)

m I + cosOd m 2

Another interesting consideration in this intermediate PT regime for the decay

dominated version of the factorization is when we consider larger zcut values. Eq. (5.9)

specifies the values of zcu1 t for which the ultra-collinear modes get groomed away. In

absence of top decay products this would correspond to the orange line moving down

on increasing zcut and eventually meeting the ultra-collinear mode for

zcut ~ t (5.32)m 2m- F ( Q i

However, the decay products shield the ultra-collinear mode from soft drop grooming

ever reaching them, as long as the first inequality in Eq. (5.9) is satisfied. This has

important consequences. Since the csoft mode lives on the boundary of soft drop, we

note that on increasing zcut the csoft mode will hit the vertical dashed line in Fig. 5-

4 already at zcut = zcaty before soft drop gets close to touching the ultra-collinear
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Figure 5-5: Modes on z-0 plane.

modes. This intersection is shown in Fig. 5-5 by the dashed orange line.

Zeccut can be calculated by demanding that both the peak region constraint in

Eq. (5.5) and the soft drop criteria in Eq. (5.6) be saturated at 0 = Od given by

Eq. (5.31). This gives

zdecay _ mt m
ct mh2 2mh 4m 4m (5.33)

which turns out to give a stronger constraint than Eq. (5.32) since h > 1.

Further increasing zcut beyond zudecay will keep the location of csoft mode un-

changed. However, the collinear soft mode on the dashed line for these values of zcut

is no longer described by Eqs. (5.10) and (5.11), and now instead depends on the

decay product phase space which determines Od. Thus in this regime the top decay

products would also be influencing the perturbative collinear-soft function and not

be solely isolated to influencing the perturbative ultra-collinear modes. This regime

therefore results in a different theoretical analysis even for the perturbative modes,

and consideration of factorization for this regime is beyond the scope of this work.

We therefore limit ourselves to values of zcut ,< Zccay
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5.2 Kinematic Constraints

We have by now considered several constraints imposed by power counting and va-

lidity of factorization theorem. We summarize them here again for convenience:

1. soft drop vetoes ultra-soft modes:

zcUt >> 2Ft (5.34)

2. soft drop does not touch ultra-collinear modes:

zcUt << , (5.35)
m (2m)

3. collinear-soft modes and ultra-collinear modes factorize:

1 T2 '

ZC I (Ft 42 2+,3

2+ >> , Q2 (5.36)

4. top decay products do not influence the collinear-soft function, Ocs Od:

<cu ip . (5.37)Zctr,,4m (4m)

To compare the relative strength of these constraint we plot all four of them for

zcut as a function of PT in Fig. 5-6. Here the dashed curves represent inequalities

(<, >, > or <) in the constraints above replaced with equalities, and the solid lines

satisfy the strong inequalities (> or <) by a factor of 3. We find that Eqs. (5.37) and

(5.36) provide stronger constraints than Eqs. (5.35) and (5.34). The shaded regions

represent the area of parameter space that is ruled out by these restrictions, and

is beyond the scope of the factorization theorems we will derive. The combination

of above the constraints has a striking consequence of limiting the allowed values

of grooming parameters to the region of "light grooming" with zcut - .01. It also

induces a minimum bound PT > 500 GeV, and hence requires the top-quark to be
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Figure 5-6: Comparing all the constraints as a function of PT.

more boosted than the expansions needed for deriving our ungroomed factorization

theorem.

We also extend the constraints in the peak region to cover tail region by making

substitution Ft -+ S, and plot the constraints as a function of Mi in the tail region

for Mj > mt + ]Ft. In the peak region S^ saturates to rt. We see that the constraints

in the peak region are modified in the tail such that the expansion parameter for the

ultra-collinear and collinear-soft factorization becomes larger the further out on the

tail we go.

Below in Fig. 5-8 we also show the constraints for # = 0 and 1, which correspond

to applying more aggressive soft drop. We notice that the restrictions that enable us

to derive our factorization theorems are stronger for smaller values of /.

We will later check through PYTHIA8 studies that even with such seemingly strong

restrictions on zcut and 3, that the light grooming required by theoretical considera-

tions still removes the ultra-soft particles that couple the top-jet to the dynamicss of

the rest of the event, as predicted.
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Figure 5-8: Constraints on zcut as function of PT and Mi for various #.
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5.3 Factorization for Soft Drop Groomed Top Jets

Having determined the relevant modes we now describe in detail the EFT for soft

drop groomed top jets. For the scales above the top mass we have the same massive

SCET as described in Sec. 4.2. However, the low energy theory for the peak region

gets modified. We show a schematic of the comparison of the EFTs for top jets before

and after grooming in Fig. 5-9. We refer to the low energy theory in the frame of top

quark as bHQET+ and it has the ultracollinear and collinear soft modes, summarized

in Table 5.1. As an important consequence of jet grooming we now no longer have

cross talk between the top and anti-top jet. This is because the ultra-soft particles

that coupled to both top and anti-top jets, and the beam region, have been groomed

away. This allows for the use of both fully hadronic top decays as well as the use

of semi-leptonic top decays, where the jet mass from the hadronically decaying top

is measured, and the leptonically decaying top can be used for tagging. In the case

where both t and i decay hadronically we can consider the two decays as providing

independent samples that can be combined, with the jet mass measurement and soft

drop grooming done on one or the other of the two jets. Our analysis also applies

equally well whether the top-mass is measured from the t jet or the t jet, but for

simplicity of language we will always refer to the t jet as the one which has jet

grooming applied.

5.3.1 Operators in bHQET+

In this subsection we derive the expressions of Wilson lines generated by integrating

out off-shell collinear-soft modes, and by doing field redefinition we decouple the the

ultracollinear modes from collinear-soft modes. This lays foundation for factorizing

the cross section. We then make use of the results in the literature to write down the

collinear-soft function for the factorization theorem, and check the consistency of RG

running.

For p2 > m2 we have the same collinear modes as in our ungroomed factorization

analysis and the relevant operators are described in Sec. 4.2.1. However, the soft
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Figure 5-9: Sequence of effective field theories
before and after soft drop grooming.

imEi

for top invariant mass distribution

modes in the Wilson lines now have the scaling given by Eq. (5.17). Due to the

factorization of the top-jet from the rest of the event, we can simply denote the beam

region our factorization analysis here by an operator VD which does not have to be

treated in detail, unlike the ungroomed case. For the top sector and anti-top sectors

above the scale m 2 we have

0 SCET = _) (Yt FIT Y ) X$ ) (DI', (5.38)

where TI are color matrices and F' denotes the Dirac structure in the channel I. The

(0) superscript indicates that the fields have been defined after BPS field-redefinition

to decouple soft gluons. In all the expressions below we will drop the (0) superscript.

Note that if we consider the case where the rest of the event is exclusive with a veto

of all jets beyond the t and f which have transverse jet momenta PT > pTt', then the

V' field will also in general contain Wilson lines Y,,, and Y,,, for the beam region, and

hence does not factorize from the global soft contributions. (This is clearest if the

veto scale is commensurate with the soft scale pvt ~ Qzcut.) This occurs because

only the contributions contributing to the jet mass spectrum fully factorize, not the

contributions needed to compute the overall normalization.
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bHQET+ Modes T Scaling Fields

nt,f -ultra collinear Me rt 2it, rt (hvt, AvJ), (hvl, Avf)

nt,f -csoft M ,~ Q2,J "rt n )t ( ,c, Acs),1 ( nc, IAc)

global soft "z (1, 1, 1) ( 4 SG  SG

Table 5.1: Summary of the EFT modes set up, scaling, and fields in bHQET+ the-
ory for groomed top jets. 7 is defined in Eq. (5.13). We have displayed here only
perturbative modes.

The bHQET+ Lagrangian is given by

EbHQET+ V [ivt.Dv, - 6m + (5.39)

where Ft is the total width of the unstable top-quark and

(5.40)

We have a similar expression for the anti-top case. We note that the csoft gluons

couple to the heavy quark field through the nt - Ac component, similar to the ultra-

soft gluon coupling in the ungroomed case. Hence we can perform field redefinition

within bHQET+ to decouple the csoft mode:

h-t = Xnt [nt.Ac] h(O). (5.41)

The analogous decoupling when grooming is done on the anti-top side is

(5.42)

Here the superscript (0) indicates that collinear fields are decoupled from the csoft

fields. It should not be confused with decoupling from usoft gluons since they are

absent in bHQET+ theory after application of grooming.

Now we consider the collinear-soft sector. We note that analogous to the ultra-
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collinear Wilson line W,, we get Wilson lines of csoft modes given by

V, [rit.Ant] = [ exp _ nt.A"(x) , (5.43)
perms ( ft. nt t(X

which generated by integrating out offshell fluctiations from attachment to collinear

modes in other directions. These Wilson lines are required for the csoft gauge invari-

ance. Hence the matching from SCET to bHQET+ for the top-quark reads

-(0 ___ hI Wn,) Vnt , (5.44)

while if we apply soft drop for the anti-top then we have the analogous result there,

ni -nVi (Wnt, hvf) . (5.45 )

Hence, we have in bHQET+ with soft drop grooming on both the t and t jets

0 bHQET+ = (vtWnt) (XntVnt) (Yt TIr Y Y ) (VtXn,) (Wnhvf) . (5.46)

All the terms in parentheses will factorize from each other. In the squared matrix

element the (htWnt) will appear in the ultra-collinear jet function JB, the (XnVnt)

in the collinear-soft function for the top-jet Sc. Similarly (Wnthv,) will appear in

the ultra-collinear jet function for the anti-top jet, and (Vt Xnf) for the soft-collinear

function for the anti-top jet. Finally the (Y, TI YnjI ') term will give rise to the

global soft function and contributions only affecting the normalization like PDFs and

initial state radiation. If instead of grooming both the t and t jets, we only groom

the t jet then we can write the relevant operator as

0 btt'HqE (h-tWn,) (XnVn) (Yt,('), (5.47)

where now V includes also terms associated with the f jet. Again the same ultra-

collinear jet function and collinear-soft function will arise in this case. We discuss
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these in more detail in the next section.

5.3.2 Perturbative Cross Section

In this section we derive the factorization theorem for groomed top-jet mass. The

SCET factorization for the top sector remains the same as considered in Ref. [49],

but we now match to bHQET+. For simplicity we focus on the single top sector in

Eq. (5.46) or Eq. (5.47). We start by considering the definition of the bHQET jet

function:

JB(t, Ft, p) = Im i d 4 erx(0 T{Eht(0)IWt)(0)W~i~(x)hvt(x)} 0)]
(4-rNcm)

= Im i(01T{Iht(0) Wn(0) 5(t - 2vt.p) (27r)363(P-) Wntit(0)hvt(0)}0) ]
Ncm

(5.48)

where st = -2vt.r. We refer to the projections of the momentum operator P transverse

to vt as PI .

Analogous to the expression of Eq. (5.48) we can now write down the operator

definition of the collinear soft function:

Sc(l+, Q, zcut, 0) = tr(OIT{XltVnt}6(l+ - (1 _ 9) n.Cs) T{VtXnt }0).

(5.49)

Here 0'D denotes the soft drop grooming operator, which only acts on collinear-soft

particles to apply the grooming algorithm. The factorization theorem for the soft

drop jet mass for light quark jets was discussed in Ref. [51] and also involves the

same function SC, and further details can be found there, including and a perturba-

tive calculation for this function. There it was demonstrated that the collinear-soft

function depends only on single dimensionfull scale in a non-trivial manner. As a re-

sult zcut entered the functional dependence of SC only through a specific combination.

113



From Eq. (5.12) and Eq. (5.13) we have

2(1+3)

2 ,(ITm jt) 2+8

1Q=
2

(20 QZcu 2+0 (5.50)

From Eq. (5.58) we note that the soft function variable l+ ~ mFt/Q which gives

2(1+ )

PCs _1+) 2+1 (2"Qzcut) 2+0 (5.51)

This is the single scale that appears in SC and it involves the combination

QcUt = 23Qzcut . (5.52)

This implies that the arguments of Sc can be reduced from five down to three

SC(1+, Q, zcut,3 -, I) =S +Pc, =Sc +,ut , 0)

SSc(1+, Qcut, O, P) .

(5.53)

(5.54)

In the last line we define a four argument version of Sc for ease of presentation, since

the three argument version involves powers of f+ and Qcut that otherwise make the

equations more messy. Our definition of Sc is equivalent to the definition of Sc in

Ref. 1511 for angularity e2 by a change of variable given by

(5.55)Sc(l+, Q , #, 0 ) 5= Ref.[51] ( 2) = 41+, QcUt, , .
Qc Q

In the case where a jet veto is applied so we have an exclusive top and anti-top

jet cross section, then the global soft function SG for pp -+ fi can be factorized from

the collinear modes in the beam region in a manner analogous to our analysis in the
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ungroomed case. This gives

(SG)IJ= -(01(YT )ab -T d , Xs q-atY*')ba (Yt TTY* *dc| ) ,
x,

(5.56)

where G is the measurement operator on the global soft function, which includes

the soft-drop constraint on the top-jet, variables associated with the jet-veto, but

importantly, does not depend on the jet mass Mj. The remaining fields inside <1?

in this case would lead to beam functions and PDFs, much like our analysis of the

ungroomed case.

To derive the factorization theorem, we first consider the momentum operator in

bHQET+ given by

= C + (1-CS ) Cs. (5.57)

Hence for groomed jet mass we include the following measurement function in our

cross section:

1 = J dst6 2vt.uc + (1 - OseD) 2.1-cs

= J&Y5(2vt.puc + Q (1 - Ocs ) npcs -

= dst dl+6 2vt.uc + Q 1+ - t) 6 (1+ - (1 _ Cs) n'pcs) (5.58)

In the last line the measurement operator has been factorized into terms that only

act within the ultra-collinear and collinear-soft sectors. This allows us to obtain the

factorization formula for top-jets at the stage where collinear-soft and ultra-collinear

modes have been factorized,

dM = N(Q, m, zcut, <b)J dl+JB st - - - , 6m, ) Sc(l+, Qcu, /, u) , (5.59)
dMt i m

where Mt is the mass of the top-jet after soft drop grooming, st = (M2 -- M2) /m, and
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we have used a shorthand <bj = {PT, 71} for the top-jet kinematic variables. In this

expression N is a normalization factor that includes the global soft function, PDFs,

initial state radiation, as well as the dynamics of the t jet. It can be factorized further

to calculate these contributions, following for example our analysis for ungroomed jets.

For our numerical predictions we compute N using N-Jettiness with XCone or anti-kT

jets [109, 114, 108, 115, 321 and a loose jet-veto following Ref. [801. We do not dwell

on the details of this method since beyond capturing the Born PT and r7 dependence

of the top-jet our analysis our analysis of soft drop groomed jet mass spectra are quite

insensitive to the choices made for this calculation of N.

This result in Eq. (5.59) does not yet contain the additional contribution from

factorizing the non-perturbative modes. Although somewhat subtle, we will prove in

Sec. 5.3.4 below that in both the high-pT and decay situations discussed in Sec. 5.1.3

that considering these additional modes only adds to the result in Eq. (5.59) an extra

convolution with a non-perturbative function Fc.

5.3.3 Summing Logarithms and Consistency

In this section we demonstrate independence of the cross section on various renormal-

ization scales by deriving consistency relations for the SCET and bHQET+ theory.

We first start with rewriting Eq. (5.59) in position space.

dor dy N([d Q
= N(p) e stJB(Y, It, m, p) 5c -YQcut, )p (5.60)

dst J27r (M

where we have used the Fourier transform

f(y, P) = J dk e-ikyf(k, p). (5.61)

We define the anomalous dimensions for each of the position space functions by

y pf(y,' ) = /f f(y,,'), (5.62)
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noting that in position space the RG equation is multiplicative. Taking derivative

with respect to p on both sides of Eq. (5.60), and using the fact that the cross section

is p independent, we have

'YN - Zcut,) +PYB(Y) + Sc -Y1 QCUt =0. (5.63)

Here ji are the anomalous dimensions in position space. We notice that the three

terms have different dependence on the variables y, zcut, /, and Q/m. Here _N is

given by

1 1
7N 7Hm + SG (5.64)

where 7Hm is given by anomalous dimension of the matching coefficient Hm defined

in Eq. (4.50). -YSG corresponds to anomalous dimension of global soft function defined

in Eq. (5.56). The factor of 1/2 takes into account the contribution to the top jet

only, and not the anti-top. We demand that

1. the y dependence cancels between ~B and sc,

2. the zcut and / dependence cancels between }'N and js, and

3. the Q/m dependence cancels between 7N and isc.

Furthermore, there is at most a single logarithm in the anomalous dimensions with a

universal coefficient proportional to the cusp anomalous dimension cp USP - ]cusP (as,

which up to NLL order for a quark is given by

CUSP = 4CF s 4) F 77[(A - 20I1Ff 2  (5.65)
47) 9 3 9 4)

The full anomalous dimensions needed for the resummation of large logarithms at

NLL order are as follows:

7Hm -2FCUsP In ( 2 ) + (-8CF) ( ,) (5.66)Q2 4
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-2ITCUSP 
/n A

G cut

YB (Y) = FcusP In ((i''E y) 2 /_2 ) + (4CF) 0ZQs

cusp 2 + 2(1+3) A
2

isc = -cIn(iyeE 2+0 2 *
+ #2+0

QCut

Adding YB and ~YSc we have

B(Y) + Sc (Y) = (4 CF)( _ - usp [t Q2  + 1 In(2 (5.67)

= - ~m- YSG*

These consistency equations tie together the logarithms obtained by considering the

renormalization group evolution of the various functions. We employ standard tech-

niques to solve the RGE equations in momentum space when carrying out the re-

summation to NLL in order to make predictions using our soft drop factorization

theorems.

5.3.4 Factorized Contributions from Non Perturbative Modes

We now consider the non-perturbative corrections to the factorized cross section.

Once again the effect of these contributions can be derived by considering the inter-

actions between the dominant non-perturbative modes identified in Secs. 5.1.2 and

5.1.3 and the other modes in the analysis. For the jet mass measurement, the small-

est ratio of scales occurs between the non-perturbative modes and the mode of next

smallest invariant mass, which are the soft-collinear modes. Therefore we expect to

find a convolution between a non-perturbative function and the collinear-soft func-

tion, much like the convolution with the ultras=soft function in the ungroomed case.

The treatment is, however, more complex here than above. We notice that the soft

modes, as well as the non perturbative modes, do not have a simple homogeneous

scaling, rather collinear scaling as shown in Eq. (5.22). This complicates the form

of the convolution of the perturbative and the non perturbative parts. We also ob-
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served in Sec. 5.1.2 that we have two possibilities of non-perturbative modes given by

Figs. 5-3 and 5-4; we referred to these two cases as the "high-pT" and "decay" case.

These two cases must be considered separately.

We first consider the "high-pT" case. In this case the non-perturbative modes can

be considered as part of the collinear-soft modes, which must simply be refactorized

in order to separate perturbative and non-perturbative components. From Eq. (5.25)

we observe that the dominant non-perturbative momenta have

- 1 2 +3

nt .PA = Q k +0, (5.68)

with k - AQCD. After employing rescaling identities we can remove all dependence

on Qcut from the soft-drop groomed non-perturbative function FC, so that it is only

a function FC = FC(k, 0) with mass dimension -1. This allows us to factorize the

collinear-soft function as

/ 1

SC(l+, Qcu, /, p) = ddk Sart  + - k , Qcutl,3,/L Fc(k, /3), (5.69)
QCut

where we have used the notation defined in Eq. (5.53). Here Fc has similar properties

as the model function considered for ungroomed top jets with k - AQCD. In particular

its dominant support is in the non-perturbative region, all of its moments are given

by well defined field theory matrix elements, and it has a tail at large k that falls

off faster than any power. However, we observe through the form of the convolution

in Eq. (5.69) that the non-perturbative corrections are suppressed by an additional

factor of (Q ) . The / dependence in FC reminds us that contribution of non-

perturbative radiation to the groomed jet is dependent on the aggressiveness of soft

drop groomer. Furthermore, there is no zcut dependence we have factored out zcut

through Qcut in Eq. (5.68). We can thus write down the final "high-pT" factorization

theorem for soft drop groomed tops by incorporating Eq. (5.69) into Eq. (5.59):

= N(Q, m, zcut, <DJ) dl+JB s - -- , Ft, 6m,
dst M
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, Qcut, , p) F(k, ) (.7

Note that the moments of this non-perturbative functions are 3 dependent:

O-4) =Jdk Fc(k,#),
(Q() = _ (Q(a)) 2

2x1

To see this consider the action of the soft drop grooming operator ESD on an emission

i with scaling of the "high-pT" non-perturbative mode given in Eq. (5.25):

QghighpT z -- ZCUt -~ A

We 0 (resc+l t p ctas

We now rescale the components of p , as

Z(ut 2p A (5.72)

(5.73)

- = (k +,+= Q2i+(k) +/ p7 =Qck1 ,

From Eq. (5.25) it follows that k scales as ultrasoft mode:

required by the argument of FC. This gives

A1highP $cut =) - Qcut -0(

kA ~- AQCD(1, 1, 1), as

(5.75)
- - -J

Next we turn to the non-perturbative modes for the decay case. From Eq. (5.27)

we can write analog of Eq. (5.68) for the decay case as

nt. PA = h (Dd7) k , k ~ AQCD -

Here we have made the functional dependence of h on <Dd, the phase space distribution

of the top-decay products, and the top quark boost, explicit. This leads to the
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pu = k-L (5.74)

(5.76)

(5.70)x jdk Spart (+
k

-k ( k )11
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following form for the soft model convolution:

Sc(l+, Qct, /, p) = dk sta t (+ - jh ( , ), Q cut, /, p Fc(k, 1). (5.77)

Here the model function for the "decay" case is independent of / and the same as

that of the "high-pT", for = 1. In the "decay" case, the groomer stops at the angle

0 d defined in Eq. (5.21), as a result of which all the particles with angles less than 0 d

are kept. Hence OSD is simply given by

E8decay _(Od -0 9 =( 2mh 2 pi). (5.78)

Here we use Eq. (5.30) to rescale the components as follows

Q mh
P+ = k+, p_= k- pi = kI , (5.79)

mh Q

which gives

E)ecay = 0 2mh _ 2mh = 0 (l-i =shighPT(=l). (5.80)
SD (Q Q k )k-j S

This shows that the action of the soft drop groomer on non-perturbative modes for

the decay case is the same as that of high-pT case with / 1, hence they keep the

same set of particles and are described by the same non-perturbative function. We

also see that in the decay case there is no 3 dependence in the non-perturbative

function, so the / dependence of the cross section is perturbatively calculable.

Since our jet mass measurement is inclusive over the decay products we must now

explicitly integrate over (Dd. This means that we need to resolve the Breit Wigner

inside the ultra-collinear function to include the angluar cross-section of the top decay

products. This subtlety was ignored when we originally arrived at Eq. (5.59). We

start by considering the fact that the unstable top jet function JB( t, Ft, 6m, At) and
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tt tt b tt t tq

Figure 5-10: Bubble chain for an unstable top quark leading to a Breit-Wigner to-
gether with a differential distribution for the top decay products. From the closed
two-loop bubble calculation involving bqq' only the imaginary top width term is kept.

stable top jet function Jr (t, 6m, p) by [50]

JB~sttm,/) t ]d. O J (AQt, 6m, P) (rt+ ~ (5.81)

To include the angluar distribution of the top decay products we define a top-decay

resolved jet function:

JD (st d, , m, t j d (t - A, 6m , b)Dt ( , d , (5.82)

Here Dt (s', Dd, mt/Q) encodes the angular cross-section of the top-decay products,

which can be considered to be a perturbative calculation carried out at a scale - m,

and thus in the hard region. The presence of these boosted colored decay products

does not change the nature of the decoupling of the collinear-soft or global soft modes

from this jet function, they are still eikonal Wilson lines in the same directions since

they only see the total color channel of the decay products, and are independent of

the normalization of the light-like vectors on which they depend. By consistency the

1t dependence of JDt is the same as that for JBt and hence is described by the stable

top quark jet function.

The calculation of Dt at lowest order requires a geometric sum of decay product

bubbles, where one hadronically decaying bubble is cut, shown in Fig. 5-10. In the

non-cut bubbles we just keep F yielding the resonant contribution

Mt) /m= r/ '
Dt t 4Q 7 (s/ 2Da + ]p2 dt [,1+0( ,) (5.83)

Q trsf Fj Q mnt
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where dt(Jid, mt/Q) is the angular dependence of the top-decay with f 4 ) dt () d, mt/Q)

1. For the calculation of dt we can set A' = 0, leading to the factorized structure in

Eq. (5.83). We calculate dt exactly below in Sec. 5.3.5. Integrating over the decay

products phase space (Dd gives back the unstable top jet function:

JBt (st, Ft, m, p) = dd JDiQt, id,, 6m, p . (5.84)

We do remark that there may be non-trivial finite perturbative O(cZ,) corrections

from gluons that are exchanged between the top-quark and its decay products, but

these can still be computed with A' = 0, so Eq. (5.83) remains valid. These corrections

are therefore only expected to modify dt in a calculable way and hence not change

the structure of the factorization theorem.

We are now in a position to write down the factorization theorem for the "decay"

case:

d = N(Q, m, zcut, 4I) dl+ d'1d d ' D (s', (d At JO -2+

x JdkS Crt (1+- kh(Id, Q),Qut,/3,P) Fc(k, 1)

= N(Q m, zcuI dV J da di M JB( dA t ) Q 1 1 , p

x Jdk Sartl+ - kh(4PdT),QQcut,At,) Fc(k, 1), (5.85)

where we have used Eqs. (5.81) and (5.83) to recover the stable top jet function. We

can further simplify Eq. (5.85) by rescaling the arguement of the non-perturbative

function through

k' = k h (d, M), (5.86)

in order to absorb all the dependence on decay-products variables. After this change

of variable the 4 d integration only acts on the non-perturbative function, convolving
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it with the perturbatively calculable functions dt and h to give

P, (k' 1, -) =fd Da h(DiMQ F, ( h(D, , ), .(5.87)

This allows us to write

d M = N(Q, m, zcut, 1D) dl+JB st - - r, 1e, 6m, y
dMt M

x Jdk' Sart (+ _ n Qp /t)c (k', 1,) (5.88)

here the mt/Q prefactor pulls out the dominant dependence on the boost. It cancels

out the Q/mt boost factor in the argument of JB, which largely eliminates the Q

dependence of the peak position observed in the ungroomed case. If we take the n-th

moment then

C(1)ff- Jdk'k'"Pc(k' 1, i) = [Jddd,(d, T)h" ((d, M)] (1) - (ha)

(5.89)

so the (hn) causes the effective moments to only have residual mt/Q dependence. We

implement Eq. (5.87) by computing (h) and (h2 ) exactly and using the resulting Q(1)eff

and ?Il)eff to specify the function Pc. The fundamental non-perturbative parameters

are still the Q$F1 for the decay factorization theorem.

The exact form of FC for our implementation for either the high-pT or decay

groomed top jet factorization is given in Sec. 5.5.1 below. It can be determined by

fitting its first few moments defined by

Q(3) =Jdk kFc(k, 3). (5.90)

Once again the first moment Q(') is the most important parameter as it determines the

dimensional scale in this function. There is no reason to expect that this parameter is

insensitive to # and indeed we find some evidence that the / dependence is significant.
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Figure 5-11: Top quark decay to three quarks, showing the notation used for their
four-momenta.

The other parameter we keep in our analysis is related to the second moment, defined

again with a dimensionless ratio

S= 2 . (5.91)

We explore the dependence of the soft drop cross section on Q( and x( in detail in

Sec. 5.5.2.

5.3.5 Angular Distribution of Decay Products

We now have two different factorization formulas in Eqs. (5.70) and (5.88) that differ

in their treatment of non-perturbative corrections. The choice between one or the

other at a given PT is dependent on the distribution of top decay products and is given

by the condition in Eq. (5.28). In this section we calculate the functions dt(<bd, m/Q)

and h(4d, m/Q), and then use the results to further explore the question of the regions

where each of the decay and high-pr factorization theorems are appropriate.

We perform the calculation of h using variables defined in the rest frame of top

quark, and then apply a boost in the top jet direction to obtain the result in the pp

center of mass frame. We start by simplifying the form of the phase space integration

for the three body top decay shown in Fig. 5-11, using momenta for the quarks q, q',
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and b as pi, P2, and Pb, respectively. The phase space integration measure is given by

PS = J(2 3 Ei d3 E2  d AEb (7 4 6(4) (Pt - Pi - P2 - Pb)

(5.92)

Out of these nine variables for the momenta of three onshell particles, only five of

them are independent after using the momentum conserving 6-function. Our choice

of independent rest frame variables are as follows:

_2E 1X, = 2, 7 1 Ol 2, # S = #1 + 02, AO = 01 - 02, (5.93)
mt

where 0, and q# are the angles with the z axis and azimuthal angles in the rest frame

of top quark. The angles in the boosted frame can be expressed in terms of these

variables:

= ( ,Olt , 62t = 02t (Q, 02 , bt = fit , . (5.94)

Here 0 it refers to angle of the decay product i with respect to the top direction in

the pp center-of-mass (or lab) frame. Thus in terms of these angles, the angle Od is

defined as

~01,2, A) = max(it, jt) , fij = max(f1 2 , 6 lb, 0 2b), (5.95)

where the second condition determines the pair ij = 12, 1b, or 2b that stops the

groomer. We further note that due to the rotational symmetry about the boost axis

#s is a cyclic coordinate and can be integrated over. Hence, expressed in the four

remaining variables, the PS simplifies to

m 6 2 j1 dcos(01) 1 dcos(02) 27 dA# j PS = dxl
647r _ I 47 _1 47 J0 27r o

x (2- AO) 2x1 (I - x-) 2 (5.96)
7 2 - x1E(0 1, 02, AO)
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where

E(0 1 , 02, A#) = 1 - cos(0 12 ) = (1 - cos(01) cos(02) - cos(A#) sin(01) sin(0 2 )) ,

(5.97)

where 012 is the angle between qi and q2. To ensure the top decay products lie in the

jet of radius R we define a restricted PS with this constraint:

PS- d<D = I
mt dc

647 3 _

(2 )

dd 0 (R -O (Q 1 01, 02, AO)

os(01) ' dcos(02) 2- dzr d
4747x _1 47r-2

2x1(1 - x1)
2.

12 - X1E(01, 02, A#)I

This modified phase space is used both to calculate the moments (hn) and to normalize

dt.

Now we state the result for dt(bd, mt/Q) that is given by the resonant contribution

of the bubble chain shown in Fig. 5-10:

P2 *PtPi *Pb
(5.99)

.P2 - MW)

where JA' is a constant that fixes the normalization of dt. We define

Smx 1 (1 - Xi)E(0 12 )
9(X) 02) 2 , -P2 2 - XiE(012)

(5.100)

which gives

dt(xi, 0 12 ) =
XAd
4

This now allows us to determine
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m
- d (Q 01, 2,

(5.98)

(Xi - s) (1 - Xi + g)
2 .4

rn f 2 +WW]r

(5.101)

(hn) = &0b dt 44a,
nm)h ((Dd, 7n)Q Q

dt = Jd [(p
+ mn2ww2
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Q/m, Q/mt

Figure 5-12: Here we show results for our calculation of (h) and (h2) as a function of
the boost factor Q/m. Recalling that Q = 2PT cosh(7), and to include also non-trivial
rapidities, we show these results over an extended range.

m2 1 d cos(01) 1 dcos(0 2 ) 2 w m
Sd dx 0 R- d - 01, 02, A#643 _ 1 4T _1 47 io 27r 0 Q'

#\ 2x1 (I - XI) /1 m
2- 7r ) 2 -x 1 )2 dt (x, 012 ) tan' (20d( , 01, 02, A#)

w 2 -- xiE(012)1 \2 Q
(5.102)

We compute the integrals in Eq. (5.102) with a Monte Carlo technique to obtain

the result as a function of m/Q. In carrying out this analysis we fix the ratio mw/m.

The results for (h) and (h2) can be very well described by the ratio of two polynomials,

leading to the following numerical fit results:

17.05 - 3.96 Q/mt - -4.94 + 1.21 Q/mt
1 - 1.34 Q/mt ' 1 + 0.06 Q/mT '

where Q = 2 PT cosh(qt). We show the actual numerical results for (h) and (h2) as a

function of PT with qt = 0 in Fig. 5-12, where the red dots are exact calculations and

the black solid lines are the fitting curves. We notice that (h) saturates to about 2.5

for high PT, and h ~ 2 for our dominant region of interest.

To determine which regime for non-perturbative corrections is dominant at a given

PT we compare the p+ component of the modes for the high-pT and decay cases in

Fig. 5-13. Using our result for (h), Eqs. (5.68) and (5.76), and setting 7t/ = 0, 8 = 2,
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and zcut = 0.01, we have

+~ighp (k, PT; 2, zut = 0.01, ?t = 0) = 2.3 k(

+ (86.5 GeV)
PA decay (k, PT; 't = 0) = k (h)(PT /m) , (5.104)

PT

where k sets the scale for non-perturbative corrections. In the first figure we show the

comparison where we set k in both the formulas to have the same value of 0.5 GeV.

We observe from this plot that the two modes have similar contribution to the non-

perturbative peak region for the range of PT'S of interest where constraints explored

in Sec. 5.2 allow application of soft drop grooming. However, the comparison between

the two cases is not straightforward since the non-perturbative functions are different,

and hence there is no reason to take the same k in both formulas. For example, if we

take kdecay = 2 khighpT = 2 GeV, then we get the result shown in the second figure,

and here the "decay" factorization dominates. We will see later in our analysis of

simulation data that both formulas actually work quite well, agreeing with PYTHIA8,

and hence are both giving an accurate and fairly similar description of the physics in

the regime of PT that we explore. We do find that the "decay" factorization theorem

generically gives smaller X2 values in our simple fits, and describes the PT dependence

of PYTHIA8 a bit better than the high-pT factorization theorem. We will see that

the fits to PYTHIA8 also supports the relation kdecay - 2 khighpT at the level of the

corresponding first moment parameters Q(1) and Q), which are obtained from the

fits for #3 2.

5.4 PYTHIA Studies

In this section we explore various predictions of the peak region boosted soft-dropped

top-jet factorization theorems by using Monte Carlo event simulation. This includes

both exploring cases where the factorization theorems imply that the spectrum should

be insensitive to certain variables, and cases where the factorization theorem's power

counting and physical picture allow us to predict how the spectrum should behaves
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Figure 5-13: We compare pA for the two cases of non-perturbative corrections. In the
first one we have p+ecay - P-highpT = 0.5 GeV. The second case we take p+ecay -
2p+highp 2 GeV

when changing certain variables.

For this analysis we generate events using PYTHIA 8.219 with a fixed input mass

of mMC - 173.1 GeV and by default both hadronization and MPI turned on with the

default tune. As a default we also take jets in the bin PT > 750 GeV, 17A < 2.5. The

jet bins are determined from the partonic top momentum in PYTHIA to speed up

the event generation. (We have confirmed that these variables are very close to the

corresponding jet PT and q, such that the difference for determining the events in our

PT and 7 bins is negligible for our analyses.) The jets are determined by the XCone

algorithm with radius R = 1, and then the active t or t being considered is groomed

with soft drop parameters zcut = 0.01 and 3 2. In addition as a default we take

a very loose jet-veto of p'to = 200 GeV which retains about 85% of the events. By

default we always consider Mj spectra that are normalized over the full Mj range

shown in the plot, unless otherwise noted. In our description of the plots we will for

simplicity always refer to the Mj spectra as being obtained from the top quark jet,

though in practice we obtain these spectra by independently combining results from

both the top quark jets and anti-top jets in the events.

5.4.1 zcut and # dependence

We start by considering the dependence on the soft drop parameters zcut and 0. Due

to the constraints discussed above in Sec. 5.2 the factorization theorem is only valid
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Figure 5-14: zcut dependence of the normalized Mj spectrum from PYTHIA8, showing
a transition at the predicted light soft drop values.
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Figure 5-15: 3 dependence of the normalized Mj spectrum from PYTHIA8. We fix
zcut = 0.01 so that there is still a fairly light soft drop being applied as we vary 0.

for a limited range of zcut. These restrictions were displayed in Fig. 5-8 for various

values of PT, Mj, and 0, and generically require that zcut is an order of magnitude

smaller than the zut values being considered experimentally for other processes. We

referred to this as a requirement of light soft drop grooming.

Nevertheless the factorization theorems imply that only this light grooming is
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needed to make the top-jet insensitive to the wide angle ultra-soft radiation, and

hence that there should be a visible transition when the light soft drop becomes

active. To test this we plot in Fig. 5-14 the normalized jet mass spectrum from

a PYTHIA8 simulation of pp -+ tf while varying zut. Prior to soft drop, or with

very light grooming such as zcut = 0.001, the jet is contaminated with soft particles

and hence we see a very broad Mj spectrum which peaks at values significantly

higher than the input Monte Carlo top mass of mmc = 173.1 GeV. The shift of the

peak from the input mass is by about 7GeV. When we increase zut towards the

nominal zut = 0.01 going through the transitional value of zut = 0.005 we observe

that the spectrum makes a rapid evolution, exhibiting a narrower width and peaking

significantly closer to the input top-mass. Once the light soft drop is active the peak

is at a value that is only ~_ 1 GeV higher than the input Monte Carlo top-mass.

As we increase zcut further, to values > 0.01, the peak location in Fig. 5-14 remains

stable. This demonstrates that stronger grooming is not actually removing additional

soft particles that still contaminate the top resonance region. This occurs because

the top-decay products are energetic and always pass the soft-drop condition even for

this stronger grooming. The decay products set a minimum value for R9 determined

by the angle 6 d discussed in Sec. 5.1.2, which means that soft particles inside the

radius R9 are always retained.

We saw earlier in Fig. 5-8 that as we decrease 3 to apply a stronger grooming

with soft drop, the expansions needed to derived the factorization formulae have

larger expansion parameters. In particular a more limited range of zcut is required

to retain the same expansion, and smaller values should be considered. For this

reason we focus our analysis on 0= 2, while only giving a few Mj spectrum plots

for smaller /3. The 4 dependence predicted by PYTHIA8 is shown in Fig. 5-15 and

turns out to actually be quite mild, with peaks of similar width, location, and height

for # = 2, 1, 0. This provides an indication that the breakdown of the factorization

theorem with changing / may be mild.
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Figure 5-16: Rg spectrum as a function of the strength of the soft drop grooming
parameter zcut. The right panel imposes a constraint to take only events in the peak
region 170 GeV < Mj < 180 GeV, while the left panel is unconstrained.
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Figure 5-17: Rg spectrum as a function of PT. The right panel imposes a constraint
to take only events in the peak region 170 GeV < Mj < 180 GeV, while the left panel
is unconstrained.

5.4.2 R9 distributions

Another method for studying the light soft drop transition is by measurements of the

spectrum of the soft dropped groomed jet radii Rg. Given an event with particles

grouped into an initial jet of radius R, the soft drop procedure generates a radius R9

utilizing the angular distance of the pair of particles in the angular ordered cluster tree

that first passes the soft drop criteria. Therefore Rg is an experimentally accessible

variable which yields a distribution of values on given sample of events. In Fig. 5-16

we show the Rg spectrum as a function of zcut, finding once again that there is a

transition in the spectrum in the light grooming region of zcut - 0.01. In the left

panel of Fig. 5-16 both the peak and tail of the Mj spectrum are contributing, so
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the light grooming transition is shown most clearly in the right panel of Fig. 5-16

where an additional constraint of 170 GeV < Mj < 180 GeV is imposed to ensure

that only events in the peak region contribute. The transition of the R9 spectrum

with changing zcu1 t shown in the right panel of Fig. 5-16 matches very closely with the

transition observed above for the Mj spectrum in Fig. 5-14.

It is also interesting to look at the R9 spectrum as a function of the top jets PT.

Indeed we expect R9 to be influenced by the top decay products, and if the top quark

decay products are playing an important role in the application of soft drop, to track

the decay product derived angle 0 d which was introduced and discussed in Sec. ??.

If this is the case we would expect that the peak of the R9 spectrum would decrease

as M/PT with increasing PT. In Fig. 5-17 we show the resulting Rg spectra for three

different PT bins, again without any Mj restriction in the left panel, and with a

restriction to the peak region of Mj in the right panel. The peak position decreases

with increasing pT as expected, and actually fits very well to a M/PT functional form

with a coefficient that is in good numerical agreement with the approximate result

tan(Od/2) ~- (h)m/Q using our calculation for (h) from Sec. 5.3.5. This provides the

first evidence that PYTHIA8 favors the decay form of the factorization theorem where

the top decay products have an important influence on the behavior of the soft drop

grooming.

5.4.3 Dependence on a PT Veto of additional jets

The soft-drop procedure causes the factorization theorems to become independent

of interactions other than those generated by the heavy top-quark producing the

jet. In particular, after soft-drop the top-quark has ultra-collinear and collinear-soft

radiation that only depends on variables associated to the top-jet such as its direction,

but is independent of the other f-jet and initial state radiation from the beams. One

variable that probes the nature of the event outside the jet is a jet-veto, and so one

may explore how the spectrum changes when varying the strength of such a jet-veto.

The jet-veto for pp -+ ti restricts the presence of jets beyond the boosted t and t jets

by demanding that the PT for any jet beyond these two satisfies PT <prO. In the case

134



0 .12 , , , , ., , , I 1 0 .12 , , , , I , , , , I , , , I I I
Pythia8 Had+MPI: pp -> fif Pythia8 Had+MPI: pp - if - p- = 20 GeV

MMc = 173.1 GeV, pT 750 GeV, R = 1 - mmC = 173.1 GeV - pT" = 40 GeV
0.09 - zf = 0.01,,6 2 = 0GV - 0.09- PT 750 GeV, p'* 200 GeV - p - 100 GeV

-~~ n'4f(p = 2Tep-p=00 GeVp,=2Ge No soft drop -PT-20Ge
- pv"=40GeV -o-t-- Nopetcut

- -- pf = 100 GeV .
0.06- -p" = 200 GeV 0.06-

--- NopT cut

- 0.03 -- 0.03 - -

70 175 180 185 190 170 175 180 185 190

M [GeV] Mi [GeV

Figure 5-18: pv dependence for soft drop (left) and no soft drop (right)

of non-soft-dropped jets the jet-veto provides an important theoretical input which

restricts the event to the exclusive jet category, but this veto is not required for the

soft dropped factorization formulae. The only dependence on the veto occurs in the

normalization factors N in Eqs. (5.70) and (5.85), which does not directly influence

the Mj spectrum.2 This is true as long as the jet veto's restriction on soft radiation

in the event outside the jet is not stronger than that caused by soft drop for the soft

particles in the jet since the distribution of soft radiation is fairly homogeneous and

the amount of soft radiation inside and outside the jet is correlated. Hence the soft

drop factorization theorem predicts that the spectrum should be insensitive to pv

for a wide range of values.

In Fig. 5-18 (left panel) we show the Mj spectrum for various values of pvt.

To get a feeling for the strength of these vetoes we note that the fraction of events

they retain are 12%, 33%, 65%, and 84% for pvt = 20, 40, 100, 200 GeV respectively.

We see that as predicted for p 0 > 40 GeV that there is very little sensitivity to

the jet-veto, and that the spectrum is indistinguishable from having no-veto by the

time we get to p't = 100. This implies that for an experimental analysis one may

work with no veto, and hence not restrict the number of events by this cut. In our

analyses we use the value of ptO = 200 by default, simply as a reminder that our

later theoretical calculation of the normalization factors N do technically implement

2There is a residual dependence on the jet-veto only because we bin the jets over PT and q, which
through the Q dependence couples N with the terms in the factorization theorem that are sensitive

to Mj. However this is a small effect.
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Figure 5-19: Dependence of the Mj spectrum on the jet radius R with soft drop (left)
and without soft drop (right)

a loose jet-veto, though again we emphasize that this is a negligible effect at the

desired level of precision.

For jets without soft drop it turns out that there is also insensitivity to the jet

veto. As explained in Ref. [80], for jets produced by the hard scattering of massless

quarks or gluons, this is predicted by the non-soft drop factorization theorem, because

at NLL the dependence on the jet-veto factorizes from the Mj dependence, and hence

mostly drops out of the normalized spectra. Furthermore it was found in [80] that the

impact of the fixed order NLO corrections that might modify this picture, and which

are included first at NNLL order, are very small. In Fig. 5-18 (right panel) we show

that this is also the case for pp -+ tt events simulated with PYTHIA8, validating the

picture that even without the protection from soft drop that the jet veto dependence

of the normalized Mj spectrum is small.

5.4.4 Jet radius dependence

After carrying out soft-drop the jet is groomed of soft radiation at larger angles,

which reduces the radius from R down to the groomed radius Rg < R. The same Rg

is obtained independent of the initial starting R, as long as R is large enough to not

be considered a small parameter, namely R/2 ~ 1. This implies that the jet-mass

spectrum will be independent of R. On the other hand, if we start with smaller R/2

then this may still influence the jet mass spectrum by cutting into the decay products.
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This expectation is quite different from the predicted jet-radius dependence of the jet-

mass spectrum of jets without soft drop, where the jet radius dependence modifies

the shape in a linear fashion as R is varied.

In Fig. 5-19 (left panel) we show the Mj spectrum after soft drop for various values

of R. For R > 0.9 we observe that the spectrum is insensitive to the precise R value

as predicted. In contrast, in Fig. 5-19 (right panel) we show the strong dependence on

R of the Mj spectrum when considered prior to soft drop. Here the perturbative soft

contamination brings in direct dependence on R in terms of the variable m2 /(pTR)

which modifies the double Sudakov logarithms, and hence gives a strong dependence.

(For further discussion of the ungroomed case see for example Ref. [80].)

5.4.5 Comparison of e+e- - tt and pp - tt results

The insensitivity of the soft dropped factorization theorem to outside interactions

(interactions not associated with the heavy top-quark producing the jet) also predicts

a correspondence between the Mj spectrum for top jets produced from e+e- -* ti and
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Figure 5-21: Comparison of top jets from e+e- and pp collisions in PYTHIA8 with
and without soft drop.

pp - t. These processes both obey the same factorization theorems in Eqs. (5.70)

and (5.88). Indeed, the functions and variables in these formulae are the same for both

processes except for the normalization factor N, and the definition of the variable Q.
For pp collisions Q = 2 p cosh(ri), while for e+e- collisions Q is the center of mass

energy of the e+e- collision. The other difference is that pp collisions can have

additional contributions to the jet mass spectrum from the underlying event, which

is absent in e+e~. This UE is not something that is rigorously predicted by the

factorization theorems, though as described in Sec. 4.5 it can still be modeled fairly

accurately in our theoretical calculations. As a result of Monte Carlo tuning it is

also believed to be modeled fairly accurately by the MPI contributions included in

PYTHIA8.

In Fig. 5-20 we show results for the Mj spectrum from e+e- and pp collisions

without soft drop. As can be seen from the e+e- hadronized result (blue-dashed line)

and pp hadronized result (green dotted line), the two spectra are noticeably different,

with peak positions differing by ~ 1 GeV. With MPI turned on (broad red dotted
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Figure 5-22: Effect of adding hadronization and MPI without (left) and with (right)
soft drop grooming.

curve) the differences are significantly larger. In Fig. 5-21 we retain these curves and

add the three analogous results after soft drop has been applied, shown as the dashed-

blue line, solid green line, and solid red line for e+e- with hadronization, pp with

hadronization, and pp with hadronization and MPI, respectively. Here the dashed-

blue and solid-green curves with hadronization agree quite well, as predicted by the

factorization theorems. The peak positions for these curves differ by only ~ 0.24 GeV

which is within the expected accuracy of the accuracy of the approximations used to

make a comparison with similar Q values. This factor of four improvement differ-

ence between the peak locations agrees with our theoretical expectations. Note that

to obtain the corresponding center-of-mass energy Q for the e+e- result, we consid-

ered the range of PT and T values for the default pp bin, computed the average PT

and Tj weighted by the corresponding cross section, and used these values to obtain

an average value for Q = 2PT cosh(7q) for the pp bin, giving Q ~ 2460 GeV. Avail-

able simulation data with the nearby value of Q = 2400 GeV was then used for the

comparison.

5.4.6 Hadronization and MPI

When MPI is added the soft drop pp result has a peak that is shifted by 4.5 GeV. This

is shown most cleanly in Fig. 5-22 (left panel) where for pp collisions we display the no

soft drop hadronization result (blue) and hadronization+MPI result (red), including
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also here the purely partonic PYTHIA8 result (green), and listing the positions of the

various peak locations in GeV. The shift from adding MPI to the hadronization result

is about a factor of two larger than the ~ 2.5 GeV shift between the partonic and

hadronic peak positions.

After soft drop the analogous pp results are shown in Fig. 5-22 (right panel). Here

we observe a significantly smaller shift between both the partonic and hadronization

results, ~ 1.0 GeV and between the hadronization and hadronization+MPI results,

~ 1.1 GeV. The latter result is quite important; since the UE / MPI effects must be

modeled in a manner that goes beyond the factorization theorem this reduction in

the magnitude of their contribution provides a significant decrease in the associated

uncertainty. At the level of the analysis carried out here we make a rough estimate

that the factorization based model for including UE effects, through modifying the

moment parameters Q, -* QP, has a 30% uncertainty. This approximation for

the residual uncertainty may actually be somewhat conservative since this modeling

agrees well with PYTHIA8's MPI model with much higher accuracy. Nevertheless we

feel it is appropriate to be conservative when relying on model dependent methods.

This rough estimate yields a 0.3 GeV uncertainty estimate for the modeling of MPI.

With further dedicated studies of MPI in samples of top, massless quark or b-jets, we

may gain the needed confidence to make this rough uncertainty estimate more precise

in the future.

5.4.7 PT dependence of the pp -+ tt jet mass spectrum

In Fig. 5-23 we study the PT dependence of the soft-dropped spectrum predicted by

PYTHIA8, for four different PT bins. In the first panel we see that there is essentially

no PT dependence of the spectrum in the partonic PYTHIA results. The second panel

includes hadronization, and we begin to see PT dependent shifts between the bins

at a very small 0.1-0.2 GeV level. These small shifts are in agreement with the dra-

matically reduced PT dependence predicted by the soft drop factorization theorems.

Indeed, these small shifts are compatible with the lack of PT dependence predicted

by Eq. (5.128). They are also compatible with Eq. (5.129) if the AQCD is replaced
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Figure 5-23: PT dependence of the Mj spectrum with soft drop. The three panels are
partonic PYTHIA8, PYTHIA8 with hadronization, and PYTHIA8 with hadronization
and MPI, respectively.

by ('~ 1 GeV. Finally the third panel of Fig. 5-23 adds MPI effects. Once again

the peak of the distribution remains quite stable, with variations of at most 0.25 GeV

between neighboring PT bins. Once MPI is included the top jet mass peak is broad-

ened with increasing PT by the additional soft radiation populating the groomed jet

at angular distances < R_,. In the presence of MPI there is also a very small back-

ward shift of the peak position with increasing PT in PYTHIA8, which however is not

significant at the expected level of our uncertainties.

Note that if the relatively mild dependence of the Mj spectrum on PT is taken to

hold at smaller PT, below the region of validity of the factorization theorem, then one

could attempt to extrapolate the theoretical predictions of the soft-drop factorization

theorem even to smaller PT (for example, by simply using the predictions at larger PT

and assigning an additional uncertainty). The existence of mild behavior is supported

by Monte Carlo simulations in this region. Due to the inherent imprecision of such

an extrapolation we do not favor it, and will not consider it further here, though it
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Figure 5-24: PT dependence of the Mi spectrum without soft drop. The three panels
are partonic, with hadronization, and with hadronization and MPI respectively.
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Figure 5-25: Spectrum of jet PT values in three different PT bins which are fixed by
the parent top quarks PT.

might be interesting to explore further in the future, particularly while size of the

data sample for top quarks at larger PT remains limited.

Note that our implementation of determining the events in a PT bin in PYTHIA8

uses as a short cut the PT of the parent top quark rather than the jet PT. This is

quite advantageous for collecting statistics in a given PT bin since we do not need
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to run a jet finding algorithm to determine the PT. In Fig. 5-25 we show the actual

spectrum of jet PT values for each of these bins. This plot shows that the jet PT tracks

very closely with the parent top quarks PT, with the anticipated sharp fall off at the

edges of the bins (the difference in top quark and jet PT values is formally power

suppressed).

5.5 Factorization Theorem Results

In this section we discuss further our implementation of the decay and high-pT soft

drop factorization theorems in Eqs. (5.70) and (5.88) and the ungroomed factoriza-

tion theorem in Eq. (4.51). In particular we discuss the profile functions used to

sum large logarithms in the appropriate phase space regions and forms we use for the

non-perturbative functions F and FC. We then carry out a systematic exploration of

how these factorization theorems depend on various variables, including the hadronic

parameters Q1 and X2, top mass mt, jet PT, zut and 4. We also give a more sophis-

ticated comparison between cross section predictions obtained from the high-pT and

decay factorization theorems, demonstrating that they are quite similar in the desired

region of phase space.

5.5.1 Factorization Theorem Implementation

The various functions appearing in the ungroomed and groomed factorization theo-

rems are each dominated by physics from a single physical scale, and also depend on a

renormalization scale [L. This p dependence is exploited to sum large logarithms using

the renormalization group to evolve between the scales associated with the various

jet, soft, and hard functions. After this evolution, there is still residual dependence

on the boundary scale values Mi that we use to specify the initial conditions for this

evolution, but this dependence cancels out order by order in resummed perturbation

theory. As we vary the physical observable Mj, encoded by st = (M -- m 2 )/m, the

cross section goes through different regions, which are referred to as the peak, tail,

and ultra-tail regions. Since the arguments of the logarithms in the initial conditions
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Figure 5-26: Profile functions for ungroomed top jet factorization theorm. The dotted

vertical lines indicate the transition region that distinguishes the peak and tail regions.

depend on st, the scales [ti must also, in particular with increasing t. This is en-

coded by the use of "profile scales" pi = pi(At) which satisfy the correct theoretical

constraints in various regions, and provide a smooth interpolation in between [93, 5].

Our precise implementation follows results for profiles used in Refs. [80, 69]. In the

following two subsections we discuss the profiles for the case of the ungroomed fac-

torization thoerem, the soft drop groomed high-pT factorization theorem, and the

decay factorization theorem respectively. We then discuss our implementation of the

non-perturbative hadronization functions F and FC in Sec. 5.5.1.

Profile Functions for Ungroomed Top Jet Factorization

The factorization formula in Eq. (4.70) contains the following characteristic renor-

malization scales: the hard scale pQ, top mass scale pt, the bHQET heavy quark jet

scale pr, beam scales A.Bab, and soft scales pst for the top jets, and psab for the soft

radiation in the jet vetoed beam region.

The regions relevant for the scales pt, ps,, flr, are Peak, Tail (bHQET resumma-

tion) region, and the Ultra tail (SCET resummation region). In order to avoid large

logarithms, these scales must satisfy certain constraints in the different regions:
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1. Peak (non-perturbative), A ~ F < mt :

pt ~ mnt, pr ~ F, pst,~ AQCD ,

2. Tail (bHQET Resummation), Ft < A <m:

ptt ~ mt, pr ~ ., AQCD < [Stj -

3. Ultra Tail (SCET resummation), Ft < -mt:

/it [ Lpr ~ m t, Ips e = C .

QSt t

The profile function for pst written in terms of dimensionless variables ( = are

given by the following formula. For the soft scales associated with the jets we have:

[LA + Ft mt 0 < t

~(AA + rt' 0,7 0, r, I't 2t o, t 1, ~)to < < ti

lst(j, ti) = [+estV( , t3) <rs yt M tI < _ < t 2

((0, rs pt , /t M, 0, t 2, t3 , ) t2  < t3

Mt At t3  < 1

(5.105)

Here ((a, , , a2 , b2 , tI , t 2 , t) has tt < t 2 and is a piecewise quadratic function

that smoothly connects two straight lines of the form 11(t) = a, + bi t for t < ti and

12 (t) = a2 + b2 t for t > t 2 at the meeting points t, and t2 . The arguments of the (

function in Eq. (5.105) are simply the coefficients of the equation of the straight lines

that occur for the regions below and above where ( appears. For our case where we

focus on the peak region, the region where we transition from the tail to the ultra-tail

region, > t2 , is not relevant and hence we can take t2 = t 3 = 1. We also always

take the slope parameter to have it canonical value rs = 1. Finally we take [LA 1

GeV, noting that the flat region for small t freezes the scales of the perturbative
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functions before they can get close to the Landau pole in the strong coupling where

their perturbative expressions would no longer be valid. The parameters ei take a

default value of zero and are varied by +0.5 to carry out scale variation. The function

V(T, t3 ) that always multiples the ei parameters is defined as follows:

V( , t3) = 0(t 3 -

ensuring that variations of scales related

time we reach the fixed order region with

to 2QA ,
2e

)) 1(5.106)

to the resummation are turned off by the

( > t3. Our choice for to and t, are

t = 4 '2 ,(5.107)
Mt

where this to roughly defines the extent of the peak region, and taking ti = 4 to

ensures that we have a smooth transition to the tail region. Different parameters to

and t, can in principal appear for the t and f case due to differences in Qt and Qf.

We similarly define the profile for the bHQET jet scales for the two JB functions

as:

l'rj( , ti) = I + ertV( , t3) I

Mt + Ft

t PA + I't, 0, 0, r81pt, to, tl, 1 )

rst ,

0 < < to

to < < t1

t1 <_ < t2

t2 < < t3

St 3 < <1
(5.108)

These scales are consistent with the constraints for different regions stated above.

They preserve the see-saw relation between the bHQET jet and soft scale: [pr~
Q
Mt 1St.
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For the hard scales we take pg = Q and pm = m, and vary these scale choices by

a factor of two when estimating uncertainties. A plot of the various profile functions

for the ungroomed factorization theorem is shown in Fig. 5-26.

For the choice of profile scales for the beam functions PBa,, and the associated soft

scales psab we follow Ref. [80] when we consider a SCET, particle based beam thrust

jet veto, and Ref. [112] for a jet based p"t. Since our normalized results for the

Mj spectra are essentially independent of the treatment of the beam related scales,

and for that matter the jet-veto itself, we will not go into detail about these profile

functions. Their treatment is also the same for the calculation of the normalization

function N in the soft-drop factorization theorems. We discuss the profile scales that

differ for the case of soft drop in the next subsection.

Profile Functions Soft Drop Groomed Top Jets

We now consider groomed top jets. Instead of the soft function we now have the

global soft function and the collinear-soft function with corresponding scales AsG and

ps,. We choose the global soft function scale PsG as a constant for all the regions:

PSG = [1 + es0 ] (2"Qtzcut) , (5.109)

where the parameter esG is used to vary this scale for estimating higher order per-

turbative uncertainties. The choice of the profile function for PS differs between the

high-pT and decay cases.
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For the high-pT soft drop factorization theorem the [p scale is taken to be:

Qtf IA F
mt [AA \\QcutJ +r ,

( )= 1+t0erV( , tA)l
Al i) 1 + r .t) rsy ( t' < < t2

((0, rLt, At, 0, t2, 6, t2 < _ < t

At t3 < <1
(5.110)

(If we chose to apply soft drop to both the t and t jets simultaneously then we

would have two such scales with their own parameters.) Here the result in the

region 0 < ( < t' is dictated by the scales appearing through the convolutions in the

high-pr factorization theorem. The parameter ert is used to vary this scale for the

perturbative uncertainty analysis. We define the Msc scale for the top jet using the

corresponding pr profile and the p scale via:

L, 1 2+3

p'sc( , ti) = + estV((, t)i t) (psG) 1+ . (5.111)

This choice for psc can be motivated by noting that from Eq. (5.16) we have

2(1+03) 2

2 yt2t 2+1 QtZcut)
PSc Qt 2

2(1+)3)
F [ 112+3

~ t se (2 Qtzcut) + ,(5.112)

and that Eq. (5.111) enforces this see-saw relation, while allowing for a scale variation

through the parameter es,. The choice of transition points ti appearing in the ultra-

collinear function in Eq. (5.108) are based on the form of non perturbative convolution
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structure in Eq. (5.70). We take t' to correspond to the value of st that makes the

soft-collinear mode non-perturbative. This is given by Eq. (5.23) as follows:

i 1 pIAQt p PA
mt mt

(5.113)

We make a choice of t1 such that we avoid any sharp transitions and kinks in the

profile functions. For convenience, we define tmid to be the point of the intersection

of the two straight lines in regions 0 < < to and tt < < t2 :

I QtAA + rtimt
tmi = QLtt

Tslltmt
(5.114)

Then we choose t1 such that it symmetrically placed with respect to to about tmid:

I = mi - to (5.115)

For the soft drop decay factorization theorem in Eq. (5.85) we modify the peak

region profile for pr profile in Eq. (5.108) to account for the difference in the scaling

of non-perturbative momentum:

rt = [1+erV( , t3) x

hy A+ F

((h AA + Ft, 0, 0, rs 1 t, tU, t'i, )

it

0 <t

t'l < < t2

t 2 < ' < t3

t3  < 1
(5.116)

Here we determine tU by noting that this roughly corresponds to the value of

St = when Osc in Eq. (5.11) is the same as that of the top decay product at the
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widest angle with respect to the jet axis:

6sc ~- h , (5.117)
Qt

which gives

11t
t4' = s 2'-2zcut (t h2+)3. (5.118)

m0 -M Qt)

We have included an additional factor of 1/4 here for convenience since it yields

smoother profiles in the transtion region. As above we set tI' symmetrically with

respect to tU about the intersection point of the straight line profiles in the peak and

tail regions:

11h/pA-+ Ft
tmid = , (5.119)

and

tI1 = 2 t1Ie tilI (5.120)

The choice of scales that appear for the factorization based calculation of the

normalization factors N in the soft drop cross section formulae, are taken to be the

same as in the ungroomed case.

A plot of the various nontrivial profile functions for the two soft drop factorization

theorems is shown in Fig. 5-26 for the choice PT = 750 GeV. Despite the differences

in the functional forms in Eqs. (5.108) and (5.116), see that the pr and pos scales are

actually quite similar for high-pT and decay for this value of PT. Perturbatively these

factorization theorems involve the same functions, so the logarithms they sum up are

very similar, and the only difference appears from their treatment of non-perturbative

corrections which has a mild impact on the choice of profile functions in the range of

PT we consider here.
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Figure 5-27: Profile Functions for the "decay" and "high-pT" factorization theorem.
The dotted vertical lines indicate the end and onset of peak and tail region respec-
tively.

Parameterizing the Hadronization Functions

As discussed in Sec. 4.4 the effect of non-perturbative effects on the jet regions in

the ungroomed factorization theorem are determined by a non-perturbative function

F(k, k'):

Idt df' SK? (f, b, et - 4, f - 4,

(5.121)

where the partonic soft function Spart. is convoluted with the non-perturbative func-

tion F which has the normalization

J det J d F(ft, ff)
(5.122)

In order to have an explicit functional form we parameterize the nonperturbative soft

function for the ungroomed cross section using the Korchemsky-Tafat model [86]

- (e+)o(f7) . (abA) (+e- a-]

A2 (A2 )

I -2e+ - 2V- - 2bvf+f-
exp (4 123)

Here A, a, and b are parameters of the model and K(a, b, A) is a normalization factor

that ensures the normalization condition in Eq. (5.122)..
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In our analysis of the ungroomed jet mass spectra we always consider integrating

fully over one jet mass, while studying the other. Since at NLL order there is no

correlation between the two jet mass variables, so the only possible correlation occurs

through F via the parameter b. Keeping b and integrating over f only effectively

results in a modified one-dimensional model function for the + depencence, whose

parameters depend on b. Therefore for simplicity for our analysis of single jet mass

spectra we take b = 0. The integral over t- then leads to the simple one-dimensional

exponential model function modulated by a power,

F(f) = O(f) 1' exp , (5.124)
A A -i ( A

where again K(a, A) is fixed to ensure this function is normalized to 1 when integrated

over f. Computing the moment parameters for this function we find

Q = , 2 -, (5.125) 2 a

so that the parameters A and a are in 1-to-1 correspondence with the moment based

parameters Q1 and X 2 that we wish to vary for our analysis. The parameter X 2 varies

from 0 < X2 < 1 for any reasonable functional form, and we generally observe that

this parameters impact on the cross section is subdominant to that of Q 1, particularly

for smaller X 2 values.

In the case of the soft drop factorization theorems we have a one-dimensional

nonperturbative hadronization function, which is Fc(k, #) for the high-pT case, and

Fc(k, / = 1) for the decay case. For these we choose to use the same model function

given in Eq. (5.124), translating to the / dependent moment parameters Q(O and

(2 using the direct analog of Eq. (5.125). While it would in interesting to explore

the dependence on higher moment parameters beyond the Q() encoded in X 2, doing

so is beyond the scope of this work.
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Figure 5-28: Results from the "decay" and "high-pT" factorization formulae. For the

hi h-PT case we consider several different choices for the non-perturbative parameters,

Q1 and x, with the last choice made so that the cross section is similar to the decay
result.

5.5.2 Factorization Theorems: Q1 and x 2 dependence

In this and the following sections we explore the dependence of the factorized cross

sections on various parameters. For the soft drop factorization theorms the main

difference between the decay and high-pT cases are their predictions for how non-

perturbative hadronization corrections precisely effect the Mj differential cross sec-

tion. For example, in the decay case we have a non-perturbative function FC(k', 1)

which is independent of 3, while for the high-pr case the non-perturbative function

is #3 dependent. These functions are determined by two non-perturbative parameters,

Q(3) and x(, which may take different values for different values of 3.

To explore the dependence on these parameters first consider the cross section

results in Fig. 5-28. The solid red and solid green curves take the same values for

the parameters, Q(2) = Q41) and x( = x 2 ignoring their 3 dependence, and we

see that this leads to quite different predictions for the jet mass spectrum, with a

different peak position and width. If we instead decrease the value of Q(2) by a factor
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of two, then this yields the yellow dashed curve for the high-pr factorization theorem

result, whose peak position, tails, and width are more much closer to the decay result.

Changing in addition x( to 0.2 and increasing Q(2) slightly to 1.1 GeV yeilds the dot-

dashed blue curve for the high-pT result, which now matches the decay result very

closely. This serves as an example of the fact that when we are considering a single

PT bin, that within the range of reasonable nonperturbative parameter variations in

the factorization theorems the decay and high-pr results are essentially equivalent.

To explore the dependence on other parameters we therefore adopt the values given

by the red solid curve and dot-dashed blue curve as our default values.

The variations in Fig. 5-28 also demonstrate that the cross section is fairly sensitive

to non-perturbative corrections. This sensitivity is not unexpected from the structure

of our factorization theorems where the entire functions F or FC play a role in the

peak region (this is in contrast to the tail region on the right of the Mj peak where

only a single hadronic parameter Q1 or Q( is important). To explore this further we

plot in Fig. 5-29 independent variations of the various Q1 and x2 parameters for the

decay, high-p - T and ungroomed factorization theorems respectively. We see that the

sensitivity to ihe Q1 parameter is largest in the ungroomed case (bottom-left panel),

which occurs because in this case the non-perturbative corrections are enhanced by

a factor of Q/m. They are smallest in the decay case (top-left panel) where this

enhancement factor is absent, and are in between in the high-PT case (middle-left

panel). Note that we have considered slightly different variations of the parameters

Q1, Q(') and Q( 2 ) to account for the fact that these parameters also do not have

identical meanings. In the panels on the right of Fig. 5-29 we show the corresponding

changes from varying X 2 which are always subdominant to the Q1 type variations.

Again the impact of the X2 parameters is somewhat different in the three cases, but

always modifies the peak region and the tail to the left of the peak.

5.5.3 Factorization Theorem mt dependence

A crucial dependence for the factorization theorems is that of the top mass parameter

mt that we wish to measure. This dependence turns out to be quite linear with a
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Figure 5-29: Effect of the nonperturbative parameters Q(3) (left panels) and x3
(right panels) on the cross sections predicted by the factorization theorem. The top
panels are the soft drop decay factorization theorem with Q(1) and x41 , the middle
panels the soft drop high-pT factorization theorem with Q(2) and (), and the bottom
two panels use the ungroomed factorization theorems with Q1 and x 2. In the left
panels we also include a dotted curve for the purely perturbative NLL result without
hadronization.

change 6mt essentially shifting the peak in the Mj spectrum by the same amount

6mt. This is illustrated in the left panel of Fig. 5-30 using the decay factorization

theorem and MSR mass scheme to define mt, but is also true for the high-pr and

ungroomed versions and with the pole mass definition. For even smaller variations

6mt ~ 0.2 GeV the dominant change to the entire Mj spectrum is actually given by
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Figure 5-30: (left panel) Dependence on mMSR for the decay soft drop factorization
theorem, showing that the peak shifts in a manner directly proportional to the value of
the top-mass. The dependence in the high-pT factorization theorem, and ungroomed
factorization theorem is very similar and hence not shown. (right panel) Comparison
of results in the pole and MSR top mass schemes for the decay factorization theorem.
For the reasons discussed in the text, the difference between schemes is primarily a
shift, and hence similar spectra can be obtained by using different input masses in
the two schemes as shown.

a simple shift.

In the right panel of Fig. 5-30 we compare the type of deviations that occur by

changing the top mass scheme. We consider the pole mass m"ole and the MSR mass,

which is scale dependent and hence defined at a reference scale of R = 1 GeV,

MSR _ MSR(R = I GeV) , (5.126)

which in Ref. [75, 65] has been argued to be the right scale physically to obtain a

value close to that of the Monte Carlo mass mMC. The right panel of Fig. 5-30 gives

results for the pole mass (blue solid curve) and the MSR mass parameter meMR (red

dashed curve) both with a common input value of 173.0 GeV. The peak locations

of these curves differ by 0.5 GeV, which is in agreement with the expected size of

deviations caused by varying the mass scheme.

In contrast if we increase the MSR mass to 173.5 GeV, yielding the dotted red

curve in Fig. 5-30, then we see that it agrees quite well with the pole mass result for

173.0 GeV. Because the jet scale profiles pr are flat or vary by a small amount in the

peak region, the dominant effect of varying the mass scheme between pole and MSR
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simply comes from the renormalization group evolution of the MSR mass, mMSR(R)

from the scale 1 GeV up to the scale pr of the bHQET jet function. At the NLL order

we are working the input value of myoe effectively corresponds to mMSR(R) with the

scale R = ci 5 GeV as the typical scale pr appearing in JB( t, 6m, Ft, pr). The

observed difference in pole and MSR fit results is compatible with the result from

evolving between these scales,, m MSR(1 GeV) - mMSR(5 GeV) = 0.53 GeV.

We point out that having a correspondence between m ole and m MSR, with a

value of mp'le that is 0.5 GeV smaller than the mMSR, is not compatible with the
at pole

pole mass obtained from converting between schemes at one-loop order, mt -

mt MSR(I GeV) + 0.17 GeV, which has the opposite sign. However, it is known that the

pole mass has a renormalon ambiguity of - AQCD, so that this conversion is not being

carried out by a convergent series, and furthermore that the m *ole parameter is in

general expected to be more unstable than that of the short-distance MSR mass. The

fact that the pole mass is scale independent but ambiguous because of the ~ AQCD

renormalon can be directly attributed to the reason why the correspondence between

the mpole and mMSR values that give equivalent cross sections does not agree with a

direct conversion between these schemes.3 In general this should be interpreted as

additional uncertainty that is inherent to using the pole mass. For this reason we

continue to take the MSR mass as our default for further plots in this section.

5.5.4 Factorization Theorem PT dependence

For boosted top quarks we require M/PT < 1, and as discussed in Sec. 5.2 the soft drop

constraints also require a minimum PT to in order to place us in the desired region for

the various expansions. Within the region of validity, the three factorization theorems

make somewhat different predictions for the PT dependence. In both soft drop cases

this dependence turns out to be much weaker than that in the non soft-dropped

factorization theorem. For the discussion below recall that Q = 2PT cosh(71).

In the non soft-dropped factorization theorem there is PT dependence in the per-

3 For example, if fits for mt were made in two renormalon free short distance schemes, then one
would expect that the perturbative relation between the schemes would be satisfied by the fit results.

157



0.2

0.15

b0.1

0.05

70 172 174 176 178 180
M [GeV]

0-1i ! ! -

0.3

025

0.2

0.15

0.1

0.05

0.17 172

170 172 174 176 178 180

Mi [GeV]

174 176 178 180

MA [GeV]

Figure 5-31: Dependence on PT in the decay factorization theorem (top left panel),
high-pT factorization theorem (top right panel), and ungroomed factorization theorem
(bottom panel). The decay and high-pT variations are very similar but not identical,
whereas the ungroomed variations are significantly different. Since the ungroomed
factorization may apply at lower PT, we show a fourth lower PT bin.

turbative resummation of double logarithms, and from the boost factor Q/m which

appears as a multiplicative factor on the momentum f in the argument of the boosted

jet function JB in Eq. (4.51). Since the perturbative soft function S(f - k,...) and

non-perturbative soft function F(k,...) have momentum appearing at the same level,

f - k, the Q/m boost factor also causes a boost of the corrections from hadronization.

For example the factorization theorem yields a peak position that behaves qualita-

tively as 1491

Mpeak M m+ (-E Ft -+-
noSD

..)QAQCD
m

Here the second term includes perturbative corrections that depend on the mass

scheme, and the last term is from the boosted hadronization effects.

For the decay factorization theorem in Eq. (5.88) there is still a PT dependence
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in the Sudakov logarithms that appear between the jet and collinear-soft scales, but

these scales are numerically closer. In addition the impact of the non-perturbative

soft function is modified by the presence of a m/Q factor appearing in the convolution

between the perturbative collinear-soft function SC [(f - hkm/Q)Qcut] and the non-

perturbative collinear-soft function Fc(k). This m/Q factor encodes the fact that the

decay products approach the jet axis as the jet is boosted to larger Q values. When

considering the impact of hadronization on the jet mass, this m/Q compensates the

Q/m boost factor in JB, leading for example to a stable peak position as PT is varied,

Myeak ~ m + (asFt +...) + AQCD + -. . .. (5.128)
decay

Here the last displayed term is from the hadronization, and the final ellipses denote

subleading m/Q dependent contributions.

In the case of the high-pT factorization theorem there is the same PT depen-

dence in the Sudakov logarithms as the decay case, but a modified dependence in

the hadronization corrections. Due to the form of Eq. (5.70) there is a reduced PT

dependence relative to the no soft drop case, but still more remaining PT dependence

than the decay factorization theorem case. In particular for the peak position we

have

18

1+ TA 1+'
Veak m + (asFt +...)+ Q .AD (5.129)

high-pT m(2zcut) '1+

In our default boosted PT region of PT ~ 700-1000 GeV the predictions from Eqs. (5.128)

and (5.129) are hard to distinguish numerically (and indeed we have seen that the

factorization theorems can give very similar spectra).

In Fig. 5-31 we show results for the PT dependence of the three factorization

theorems. As anticipated this dependence is largest for the ungroomed factorization

theorem (bottom panel), which differs from the groomed cases. For the high-PT and

decay results (top panels) the PT dependence is actually quite similar for the range

of PTS we consider, further adding to evidence that both formulas will be able to give
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Figure 5-32: Dependence on zct in the decay factorization theorem (top left panel),

zcu in the high-pT factorization theorem (top right panel), and #3 in the decay factor-
ization theorem (top left panel). We do not show #3 dependence for high-pr since its
non-perturbative parameters depend on ,3. All results here are at NLL and may be
modified by fixed order corrections that are not included here.

accurate predictions for the range of PTs we are interested in. For much higher PT

differences between the two soft drop factorization theorems would become evident.

5.5.5 Soft Drop Factorization Theorems: zc11t and #3 depen-

dence

Finally, we turn to the dependence of the soft drop factorization theorems on the

grooming parameters zcu and #3. Since the zcut dependence only appears in perturba-

tively calculable functions it can be seen as a prediction of the factorization theorem.

In Fig. 5-32 (top two panels) we plot the dependence on zcu predicted by the decay

and high-pr factorization theorems. We see that this dependence is predicted to be

more mild in the case of decay, than it is in the case of high-pr. Thus varying zc1 t can

provide a handle on distinguishing between the two, as well as providing an additional
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handle to help break potential degeneracies when fitting parameters like mt, Q(3 and
(p3)
2

In the decay case the / dependence is also perturbatively calculable just like

zcut since the non-perturbative function Fc(k, 1) is / independent. This is in con-

trast to the high-pT case where the non-perturbative function FC(k, /) depends on

#, and hence we can not make predictions for the / dependence without specify-

ing Q (3) and x(. Again this non-trivial difference occurs due to the treatment of

non-perturbative corrections in the two factorization theorems and is an important

distinction. In Fig. 5-32 (bottom panel) we plot the / dependence predicted by the

decay factorization theorem. Interestingly we see that the variation from / is very

degenerate with varying zcut in the decay factorization theorem (compare the bottom

and top-left panels).

It is important to realize that although the dominant factorization theorem de-

pends to some extent on non-perturbative dynamics, that the preferred factorization

theorem can actually be directly determined directly with data. This can be done

simply by carrying out analyses on the same event sample but with grooming done us-

ing different parameter choices, including both choices for zcut, as well as for example

using both /3 1 and / = 2.

5.6 Factorization Results versus Pythia

In this section we make direct comparisons between the factorization theorems and

PYTHIA8 results. We focus on a comparison with the "decay" and "high-pr" soft drop

factorization formulae in Eqs. (5.70) and (5.88), but also consider the ungroomed fac-

torization theorem in Eq. (4.51). As default soft drop parameters we take zcut = 0.01

and / = 2, and initial jets with a radius of R = 1. For this analysis all perturbative

functions in the factorization theorems are taken at tree-level with next-to-leading-

logarithmic (NLL) order resummation and an input value of the strong coupling as

Oa8(mz) = 0.118. In the factorization theorems we use the MSR short distance top

mass scheme mMSR(R) [67, 66] and include it's leading logarithmic evolution from
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Figure 5-33: Comparison of PYTHIA8 without and with MPI to the "decay" and "high-
PT" factorization theorems at NLL. The mt parameter is in the MSR mass scheme
for the factorization theorems here. The top-mass parameter in PYTHIA8 is referred
to as mMC

a reference scale R = 1 GeV to the scale pr in JB. We also consider results with

the pole mass scheme. In PYTHIA8 we fix the top mass as mMC = 173.1 GeV where

the MC reminds us that the mass definition depends on details of the Monte Carlo

implementation including the shower cutoff and interface with hadronization.

The results in this section should be considered to be a first numerical calibration

of the meaning of the mMC parameter in simulations like PYTHIA8 by determining

a direct correspondence to a Lagrangian mass parameter implemented through the

hadron level factorization theorems. This approach was pioneered in Ref. [27] for

e+e~ a tt and a measurement of 2-jettiness, where results up to next-to-next-to-

leading-logarithmic order with NLO fixed order corrections are available. A key open

question from this work was whether it could be extended to pp -+ tt at hadron

colliders, and our analysis here answers this question in the affirmative. Ref. [271
carried out a more sophisticated analysis of theoretical uncertainties, and correlations
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Figure 5-34: Comparison of PYTHIA8 without and with MPI to the "decay" and "high-
PT" factorization theorems at NLL. The mt parameter is in the pole-mass scheme for
the factorization theorems here. The top-mass parameter in PYTHIA8 is referred to

asmMC

between uncertainties than we will carry out here. (In the future our exploratory

analysis should be extended to this level of analysis, in particular once full NNLL

results for the soft drop top cross section are available.) In particular we do not

intend to quote here the final uncertainties for the fit parameters, but will try to give

some indication for what one may roughly anticipate the size of these uncertainties

to be.

5.6.1 Soft Drop Pythia and Factorization Comparison

In Fig. 5-33 we show a comparison of PYTHIA8 results with the "decay" and "high-pT"

factorization formulae. As fit parameters in the factorization results we take the MSR

mass m aR = 1 GeV), and the two non-perturbative parameters f and

reslWe do a simultaneous fit of these parameters to results for the PT 750 GeV

and Pt 1000 GeV bins. For the fit range we take M e [173,180] GeV, over which
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the curves are also normalized. To maximize the use of shape information we compare

cross sections for 10 bins in this range, using a x 2 function that provides more weight

to the peak of the distribution to simulate the fact that experimental uncertainties

are expected to be smaller there. To obtain the best fit values we do a scan over

values of the parameters with step size of 0.1 GeV for mt and Q(3, and of step size

of 0.1 for xf (also including the value xo = 0.05).

In the upper two plots of Fig. 5-33 we include only hadronization in PYTHIA8,

whereas the lower two plots also include MPI. The orange band shows the perturba-

tive NLL uncertainty on the "decay" result, from varying scales in the factorization

theorem through our profile functions. The values of PT being considered are close

to the upper limit of Eq. (5.29) (both above and below it), and our fits show that

both factorization theorems actually reproduce the PYTHIA8 results quite accurately

in the fit range.

The mMSR fit values obtained from the fits in Fig. 5-33 are within 0.3 GeV of the

input mMC. The variation between the five best fit values from the scan is Am'MSR _

0.3 GeV for both the Had and Had+MPI fits, so we conclude that these values agree

within the anticipated uncertainties. This is compatible with theoretical expectations

for this mass parameter [75, 65], as well as results from the e+e- calibration analysis

in [271. We also observe that the fit values of m MSR are compatible between the

"decay" and "high-pT" results (within 0.2 GeV), and between results with and without

MPI effects (within 0.3 GeV). As anticipated, the dominant effect of adding MPI is

to significantly increase the scale of the hadronization parameter, for example going

from Q(1) = 2 GeV to (41)MPI = 3.4 GeV. Interestingly the fit values for Q( ) and

Q(2)MPI for the high-pT factorization theorem give values that are half as large, in

agreement with the rough comparisons of the theory results in Sec. 5.5.2. Adding

MPI also modifies the fit results for x(. The fact that meMSR unchanged and only

the hadronic parameters are modified is crucial, and validates that our approach to

modeling the UE/MPI effects is working as anticipated. This fact is what enables a

precision mt to be obtained from this method.

In Fig. 5-33 and other fits given below there is a noticeable difference between the
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factorization theorem results and PYTHIA8 for the tail on the left of the peak. For

this reason we have purposely started the fit region at 173 GeV so that it includes less

of the region on the left of the peak. We discuss this left of the peak region further

in Sec. 5.6.5 below.

Since the soft drop factorization theorems provide control over the top mass

scheme we can also repeat the analysis using the pole mass instead of the MSR

mass. The analog of Fig. 5-33 showing the fit to PYTHIA8 with hadronization and

hadronization+MPI is now given by Fig. 5-34. Summarizing and comparing the fit

values with soft drop and PYTHIA8 with just Hadronization we have

Had, decay, MSR:

Had, decay, pole:

Had, high-pT, MSR:

Had, high-pT, pole:

while the corresponding

are

Had+MPI, decay, MSR:

Had+MPI,

Had+MPI,

Had+MPI,

decay, pole:

high-pT, MSR:

high-pT, pole:

m MSR = 172.8 GeV,

mpole = 172.4 GeV,

M MSR = 173.0 GeV,

m ple = 172.5 GeV,

Q(') = 2.0

Q(') = 1.8

Ql) -=1.0

Ql) -=1.0

GeV,

GeV,

GeV,

GeV,

2I = 0.1, (5.130)

2 =0.1,

X2 ) = 0.3,

(x) = 0.3,

results including both Hadronization and MPI in PYTHIA8

MSR = 173.1 GeV,

m pe = 172.7
M

MSR = 173.2

M pe = 172.6

GeV,

GeV,

GeV,

Q(2)MPI = 3.4 GeV,

Q(2)MPI = 3.2

(2)MPI = 1.7

Q(2)MPI = 1.71 -

GeV,

GeV,

GeV,

(2)MPI

(5.131)

"(2)MPI -

"(2)MPI

(2)MPI
2)P = 0.6.

We observe that the mpole values from the fit are 0.4-0.7 GeV smaller than the input

mMC. Again the variations between the five best fit values in the scan are at the

AmPole = 0.3 GeV level for both the Had and Had+MPI fits, so in this case the

ole values are noticeably smaller than the input mMC mass. This is compatible

with the e+e- calibration result in [27]. These results show that the pole mass can-

not be directly identified with the MC top mass. The obtained values of mpole are
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also compatible within uncertainties between the "decay" and "high-pT" results, and

between results with and without MPI effects, though in general we observe larger

variations in the pole scheme than we do in MSR. Once again, the dominant effect

of adding MPI is to significantly increase the scale of the hadronization parameters

Q( and to modify x(6)

As can be seen from Eqs. (5.130) and (5.131) the values of the Q(") and x(f" pa-

rameters remain very stable when comparing corresponding MSR and pole mass fits.

For the top mass values the mole fit results give numbers that are 0.4-0.6 GeV smaller

than the corresponding m MSR(1 GeV) fit results. At the NLL order we are working

the difference between the fit in the two mass schemes comes from the evolution of

mMSR(R). At this order the fit value of mpole effectively corresponds to mMSR(R) with

the scale R = ~ 5 GeV as the typical scale appearing in the JB( t, 6m, Ft, i) jet

function. The observed difference in pole and MSR fit results is compatible with the

result from evolving between these scales, m MSR(1 GeV) - mMSR(5 GeV) = 0.53 GeV.

This effect was also discussed above in Sec. 5.5.3, where we attributed it as being com-

patible with known deficiencies of the pole mass scheme. The determination of mtole

is expected to be more uncertain than that of the short-distance MSR mass. This is

compatible with interpreting the difference between the results from directly fitting

for mpole, and obtaining mpole via the MSR fit result, as an additional uncertainty in

the pole mass.

5.6.2 Predictions for higher zcut and lower #

Having determined the parameters of the soft drop factorization theorems we can

now make predictions for other amounts of soft drop grooming. Here we consider

predictions coming from the decay factorization theorem where both the zcut and #3
dependence are calculable. In the left panels of Fig. 5-35 we show the factorization

predictions (red curves) obtained when we double zcut to zcut = 0.02. The upper

panel shows the parameters fixed from the Had fit, while the bottom panel shows

those obtained from the Had+MPI fit. Also shown in the left panels of Fig. 5-35 are

results from PYTHIA8 for this value of zcut (dashed blue curves), which agree well
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Figure 5-35: Predictions from the decay factorization theorem for values of the soft
drop parameters other than the zut = 0.01 and / = 2 used for the fit. Results are
compared to PYTHIA8 where the (left panel) varies to zcut = 0.02 and the (right
panel) varies to 3 = 1. These two variations are observed to yield very similar cross
sections.

with the factorization results over a wide range of Mj values (an exception again

being the region to the left of the peak). These results seem promising, showing that

the fit results are pertinent, and can make meaningful predictions. Since the zcut

dependence of the high-pT factorization theorem is stronger than that of decay, it

fits the PYTHIA8 results from this variation less well. (This implies that PYTHIA8

agrees better with the decay factorization theorem, but does not necessarily answer

the question as to which data prefers.)

Also shown in Fig. 5-35, in the two right panels, are predictions from varying # to

/ = 1 in the decay factorization theorem (red lines). These again agree well with the

PYTHIA8 results (blue dashed curves). In fact we observe that the zut = 0.01 -+ 0.02

variation and beta = 2 - 1 variation are close to having degenerate effects on the

cross section. The dependence on zcut and 3 does not immediately provide a simple

explanation for this degeneracy.
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5.6.3 Soft Drop Results for Smaller PT

Another possible variation that can be considered are different bins in PT. While we

leave a more detailed exploration of these variations to the future, a relevant question

is whether the soft drop factorization theorem can be applied to smaller PT values

than those included in our fit, and where precisely do the predictions break down.

This is particularly interesting since in the short term data from CMS and ATLAS

will still be most statistically significant for smaller PT.

In Fig. 5-36 we make predictions from both the decay and high-pT factorization

theorems for a bin with smaller PT in the range [550, 750] GeV. The left panel shows

the results compared to PYTHIA8 with only hadronization, and still exhibit nice

agreement within the theoretical uncertainty band, and in particular for the peak

location. On the other hand in the right panel of Fig. 5-36 we show the prediction

when MPI is included, and here theory and PYTHIA8 are no longer in agreement.

In particular the peak positions now differ by 0.8 GeV and the shapes are quite

different. We attribute this to the fact that PT E [550, 750] GeV is becoming close

to the boundary allowed by the expansions in our soft drop factorization theorem,

and that the soft drop is no longer as effective for grooming the extra soft particles

present with MPI turned on, and hence that higher order terms in the soft drop

factorization expansions are becoming important. This initial exploration therefore

appears to indicate that we should consider PT ;> 700 GeV to ensure the validity of

the soft drop factorization theorems. It should be noted that adding this lower PT

bin in the soft drop based fit of Sec. 5.6 does not change this conclusion, since the

results from this type of fit clearly exhibit tensions between the higher and lower PT

bins.

5.6.4 Comparison of Pythia and Factorization without groom-

ing

In this section we repeat the comparison between factorization and PYTHIA8 but us-

ing the cross sections without jet grooming. While there are clear advantages to using
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Figure 5-36: Comparison for a smaller PT bin of PYTHIA8 without and with MPI to
the "decay" and "high-pT" factorization theorems at NLL. The factorization results
use the values obtained from the fit to the higher PT bins. Here mt is in the MSR
mass scheme, and the pole scheme results look very similar.

grooming, the extra theoretical expansions involved in deriving the soft drop factor-

ization theorem also require jets with larger PT than the ungroomed case. Indeed we

have seen in Sec. 5.6.3 that the soft drop factorization predictions appear to be break-

ing down in the presence of MPI when considering a bin with PT E [550, 750] GeV. It

is therefore interesting to consider whether we could make predictions for smaller PT

if we considered the ungroomed cross section and use Eq. (4.51). This also will pro-

vide a test of whether we are able to handle the much larger amount of soft radiation

from UE/MPI with the approach we have adopted that is based on using a modified

parameters in the non-perturbative function F.

Much like our soft drop analysis, we carry out the fit using two bins in PT, this time

taking PT E [550, 750] GeV and PT > 750 GeV so as to focus on smaller PT. Because

of the larger peak shifts from both hadronization and MPI, we also adjust our fit

windows, taking Mj E [173,184] for the hadronization case and Mi E [173,190] for

the case including MPI. Other than these changes, the analysis stradegy is the same

as for the fits done in Sec. 5.6, in particular the parameters are still m MSR, plus Q1,

and x 2, which are now determining the function F.

The results of the fit are shown in Fig. 5-37 with solid magenta curves for the

ungroomed factorization theorem, and dashed blue curves for the input PYTHIA8

results. We see that the factorization theorem results accurately reproduce PYTHIA8

both inside and above the fit window, even though we have included a lower PT bin
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Figure 5-37: Comparison of PYTHIA8 and the fit with the factorization theorem at

NLL for the case without grooming. The fit regions are shown by the vertical dashed

lines. In the factorization theorem we take the mt parameter in the MSR scheme.

than was done for the soft drop fit. Examining the values of the parameters obtained

from the fit, we see that m MSR is within 0.1 GeV of the input mMC mass, is only

modified by 0.3 GeV by the introduction of MPI. Comparing the best five fits we find

variations of AmMC = 0.2 GeV, and again we conclude that these results for the

masses are compatible within uncertainties. The dominant effect of adding MPI is to

significantly modify the parameter %, which here goes from Q, = 1.6 GeV to the much

larger value of QGmI = 5.6 GeV. The larger value obtained for QMPI is fully consistent

with the larger amount of soft radiation present in the jet in this ungroomed study.

As a test of the quality of the fit we can also then make predictions for a smaller PT

bin. Considering a bin with PT E [450,550] GeV we obtain the predictions shown by

the solid magenta curve in Fig. 5-38. The corresponding PYTHIA8 results are shown

by the dashed blue curves. We see that the predictions agree quite well even for

this small PT, making it seem quite promising to apply the ungroomed factorization

to analyze data at smaller PT. Since this relies more heavily on the modeling of
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Figure 5-38: Predictions of the factorization theorem at NLL for the case without
grooming compared to PYTHIA8 for a lower PT bin. Parameters are taken from the
fit to higher PT bins, including mt which is in the MSR scheme.

underlying event using the approach discussed in Sec. 4.5, there will be a larger

theoretical uncertainty here. Using our earlier conservative 30% estimate would yield

an uncertainty of ~ 1.3 GeV, however the model does appear to work much better

than that when comparing with PYTHIA8 and hence it is possible that this is an

overestimate. Clearly this should be studied further in the near future by including

more PT bins, studying other values of the jet radius parameter R, and also providing

profile variations to account for perturbative uncertainties.

It is also interesting to compare the results for the ungroomed factorization fit

using the MSR mass scheme and pole mass scheme for mt. The quality of the pole

mass fits is very similar to that of the MSR mass fits shown in Fig. 5-37, and for that

reason we do not display the plots here. A summary of the fit values for the various

cases is given by

Had, MSR mass: mMSR = 173.0 GeV, Q, = 1.6 GeV, = 0.6,

(5.132)

Had, pole mass: m pIe = 172.1 GeV, Q1 = 1.6 GeV, = 0.5,

Had+MPI, MSR mass: m MSR = 172.7 GeV, QOj1 = 5.6 GeV, x2 P' = 0.7,

Had+MPI, pole mass: mpole = 172.3 GeV, QmpI = 5.4 GeV, xm'I = 0. 7.

Here we see significantly smaller values of m'le, which are however still compatible
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Figure 5-39: Comparing effect of AR cut on jets wit grooming (left panel) and without
grooming (right panel).

with those obtained from the soft drop fits. We also see that in the pole scheme the

value of mpole remains stable when adding MPI, and the value of various hadronic

parameters are very compatible with those obtained from the earlier fit in the MSR

mass scheme.

5.6.5 AR cut on top decay products

Finally we return to the question of the disagreement between PYTHIA8 and factor-

ization for the tail on the left of the peak in the Mj spectrum. Recall that in the fac-

torization theorem the underlying contributions to the spectrum are a Breit-Wigner

distribution that is dressed by perturbative Sudakov logarithms and soft perturbative

and non-perturbative corrections. The Sudakov logarithms smear the spectrum above

the physical threshold and hence have little effect in the offshell region to the left of

the peak. Likewise the non-perturbative corrections tend to shift and broaden the

entire spectrum. We do expect that the tail to the left of the peak will be affected

by events where the decay products are outside the R = 1 jet cone, or are close to

the boundary within the cone. It is also possible that the cross section in this region

could be influenced by our use of the MS scheme when defining the Q, and i

parameters, since these are known to have an ~ AQCD renormalon themselves which

can modify the spectrum near the threshold (see for example Ref. [74]). Another

possible explanation is that PYTHIA8's description of the cross section in this region
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may also be impacted by approximations used in the simulation of the top decay and

associated shower dynamics. We leave exploration of the latter two possibilities to

future work.

To test the impact of the first possibility we can compare the impact on the Mj

spectra of making an angular cut to only keep events where each top decay product

is within an angle ARut of the jet axis. In Fig. 5-39 we show the impact of this cut

both with soft (left panel) and without soft drop (right panel). The curve without

any such cut is solid red, while taking ARcut = 1.0 GeV gives the dashed blue curve.

This imposes a restriction that all top decay products are within the jet, and as we

can see this has a negligible effect on the Mj spectrum either with or without soft

drop. The only visible effect is in the no soft drop case there is a small decrease

to the cross section on the left of the peak, consistent with some of the out of cone

decay products yielding contamination in this region. If we consider an even stronger

ARcut = 0.4 GeV then the impact becomes visible for both the soft drop and no soft

drop cases. Here we see a modification of the cross section on the left of the peak in

both cases, indicating that events with decay products at wider angles are somewhat

responsible for the behavior of the cross section to the left of the peak.

It is likely that both the factorization and PYTHIA8 predictions could be improved

in this left of peak region, and we leave further exploration of this issue to the future.

5.7 Outlook for Utilizing Experimental Data

Above we have carried out an extensive analysis of predictions from our factorization

formulae for the jet mass differential cross section. The main goal of using this cross

section is to determine the top-mass in a short distance scheme. In this section we

discuss the best short term method for combining our results with experimental data.

Predictions from the decay and high-pT versions of the factorization theorems are not

distinguishable for the relevant range of PTS where there will be a statistically signifi-

cant data set in the foreseeable future, so we will assume that soft drop based analyses

are carried out with the decay version (which is slightly closer to the predictions of
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PYTHIA8). An alternative is to make use of the factorization theorem without soft

drop, since for smaller PT values evidence was shown in Sec. 5.6.4 that it works better

than the soft drop based results. As mentioned earlier, there are two basic methods to

utilize our results: i) by making a direct comparison of the factorization based result

to experimental data, fitting the top-mass mt together with the hadronic parameters

Q1 and x 2, and ii) by carrying out a calibration study fitting the same parameters

in the factorization result to Monte Carlo predictions, thus determining a translation

between mMC and a top mass in a short distance scheme.

The major challenge for a direct comparison of the soft drop factorization theorem

with data is the limited statistics at the higher PT'S that are required by our light

grooming constraints. From the preliminary study in Sec. 5.6 it appears that a direct

comparison with the soft drop groomed factorization theorem would require PT ,>

700 GeV. There are much fewer top events at such large PTs, for example the number

of events in the PT E [700, 800] GeV bin is 4% of those in the PT E [400, 500] GeV

bin from the analysis of 19.7 fb-1 of data in Ref. [40]. A recent study carried out a

top-mass extraction from ungroomed jet-mass measurements by CMS in Ref. [107],

using PT > 400 GeV with cuts on AR and p". They found that the dominant

uncertainties were the limited statistics for highly boosted tops, the unfolding of data

to particle level, and Monte Carlo theory modeling, were quite significant Amtat =

6.0GeV, Amu"nfold = 4.6 GeV, and AmMC-theory = 4.0 GeV using 19.7 fb-1 of data at

N_ = 8 TeV. We have seen in Sec. 5.6.4 that without grooming we are still able to

predict the jet mass spectrum for PT > 450 GeV, where there are significantly more

events. Thus for a direct comparison between the factorization spectrum and data the

ungroomed factorization theorem is currently the most promising avenue, and it is

possible that it may remain so in the near future. Both our soft drop and ungroomed

studies also show that the extraction of the top mass can be done by fitting only

three parameters: mt, Q1, and x 2. The use of the ungroomed factorization theorem

comes at a higher cost due to the larger impact of underlying event, and hence the

associated larger uncertainty for the mt extraction from modeling this effect. The

results in Sec. 5.6.4 indicate that the simple model discussed in Sec. 4.5 works very
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well, but this deserves further study, for example by testing results from Monte Carlos

other than PYTHIA8. Although we obtain a good fit when the hadronic function Fc is

parameterized by its first two moments, it would also be worth exploring the impact

of the third and higher moments in a dedicated study (particularly given the large

values of X2 favored by some of our fits).

One important assumption we made was that pile-up can be handled experimen-

tally in a way that does not significantly modify the interpretation of the jet-mass

spectrum. While we have showed that light grooming at the level of - 1% is still very

effective in reducing the effects of underlying event, it is not clear if it will provide the

same level of effectiveness for removing pile-up in top-mass studies. The more typical

stronger grooming, at the 10% level, modifies the spectrum of the original hard event

in a manner that is beyond the range of validity of our soft drop factorization for-

mulae. If direct comparison to data is carried out with our ungroomed factorization

theorem then of course the use of grooming to handle pileup must be avoided. On

the other hand, track based pileup methods such as charged-hadron subtraction or

jet area subtractions 131] may well enable the jet mass spectrum of the primary hard

collision to be reconstructed with a less dramatic impact on the spectrum. If the

effects of such a method of handling pile-up are at worst similar to that of underlying

event, that is to leave behind extra soft particles in the jet without disturbing the

energetic decay products and associated radiation, then they can be handled by the

same model that we have used for underlying event (see Sec. 4.5). This would mean

simply modifying the interpretation of the same hadronic parameters which are being

fit to the data

Q, , QMPI+Pileup , 2 M PI+Pile up. (5.133)

Methods for treating pileup can be directly studied by comparing fits with these

hadronic parameters to Monte Carlo simulations, which should determine whether

this treatment will suffice at the desired level of precision. Such studies were beyond

the scope of this work, but should be straightforward to carry out given the results
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derived here.

In the second approach, using the factorization theorem to calibrate Monte Carlo,

we are not directly constrained by the statistics of the high-pT experimental datasets,

since the Monte Carlo can be fit at multiple large PT values and then used to extrap-

olate to lower PT where the experimental analysis is carried out. In this case it is best

to use the soft drop factorization theorem, both because of its simplicity in treating

the isolated top jet, and because of its much reduced sensitivity to underlying event.

We have shown through our NLL study in Sec. 5.6 that the MC top mass parameter

mMC can be calibrated by comparison with soft drop factorization results for a couple

of PT bins. This analysis can be further improved by considering simultaneous fits

with more PT bins, and other choices for zcut and 3. It can also be improved by

increasing the perturbative order to NNLL, adding non-singular 0(a,) corrections,

and by analyzing perturbative uncertainties using a statistical method that carries

out fits for many choices of profile parameters (all things that we intend to explore in

the near future). One may also choose to use the MC to extrapolate in parameters

other than PT to go outside the range of the soft drop factorization theorem, such as

in zcut, or by allowing the angular separation between decay products to increase to

the point where they are reconstructed as separate jets. The main assumption here

is that the meaning of the mMC parameter is unchanged by these extrapolations. In

general one expects that the closer the experimental analysis is to calibration study,

and thus the fewer extrapolations used, that the more likely this is to be the case.

Our results obtained in Sec. 5.6 for pp -+ tt at NLL order with soft drop are in agree-

ment with the more thorough e+e- calibration study at NNLL+O(a,) order without

jet grooming presented in Ref. [27]. This agreement lends credibility to the fact that

it may be safe to extrapolate the Monte Carlo away from the calibration region, in

order to exploit experimentally favorable configurations.

The above considerations provide our best recommendation at this time, given

our current state of theoretical knowledge: i) Prior to obtaining enough statistics at

higher PT, a direct comparison with experimental data with moderate boosts PT 2

450 GeV should be carried out with the ungroomed factorization theorem. ii) Further
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improvements to the Monte Carlo calibration study for pp - tt should be carried

out with the light soft drop factorization theorem and bins with PT > 700 GeV. To

reduce extrapolation uncertainty the experimental analysis should still try to maintain

similar choices for parameters, such as zcut = 0.01.

There are also future avenues to explore theoretically, which may further improve

the direct comparison to soft drop groomed jets. Given that light grooming and

requirement of high PT are both experimentally unfavorable, it would be interesting to

explore whether top jets with more aggressive grooming and lower PT can be described

by effective field theory methods. One fact that makes this potentially possible is that

the top-decay products can stop the soft drop groomer because of their commensurate

energies, and thus protect the ultra-collinear radiation inside the groomed radius. We

have seen from the PYTHIA8 study in Fig. 5-14 that the peak position actually remains

quite stable even if we continue to increase zcUt beyond the range of validity of our

light-grooming factorization. We provided a possible explanation in Sec. 5.1.3 that

beyond the value of zcut given by Eq. (5.33) the collinear-soft mode no longer moves

with the soft drop curve but rather stays on the vertical line in Fig. 5-14. Exploring

the feasibility of describing this new regime through factorization may allow us to go

beyond the current constraint imposed by the light groomed factorization theorems.
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Chapter 6

Hard Matching between SCET and

bHQET

In this chapter we provide a result for the O(a,) correction to Hm at the scale y ~m

for the e+e--collider setup. This work is published in Ref. [72]. In Refs. [49, 50, 75]

the hemisphere dijet invariant mass distribution in the peak region for the production

of boosted tops in e+e- annihilation was suggested as an observable:

d~t d~g2 = HQ (Q, p) Hm, , y

Mt2 - 2 _ f+
x JB M t 61t

mteas m t
x 1 +0 - + 0

I (Q (Q2

df+d - S(f+, If-, I[)

r, A) JB t F'6,

+ 0(t +0 t 'f). (6.1)
Mt M _

We note that it is possible that the O(mtcz,/Q) power corrections indicated in Eq. (6.1)

are absent, but we are not aware of a rigorous proof at this time.

The exact algorithm to determine the two jet regions and the precise form of

the observable is irrelevant for the structure of Eq. (6.1) as long as parametrically

Mt ~ Mf, but does matter for the explicit perturbative expressions of its ingredients.

The restriction Mt ~ Mf avoids large logarithms of the form ln(Mt/Mf), and is

satisfied by variables designed to study the peak region of both jets, such as thrust.

In the analysis of Ref. [50] all particles were assigned to either of the two top jets
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depending on which hemisphere with respect to the thrust axis they enter. Thus the

observable considered was physically close to event-shape distributions. The analysis

of Ref. [50] for this inclusive jet observable was carried out at NLL', i.e. including

perturbative ingredients at 0(a,) and NLL resummation. At the time of writing the

hard function HQ, the bHQET jet function and the soft function are already known

up to O(a2) [98, 78, 83] or beyond, while resummation can be carried out to N 3LL.

Thus, the only relevant correction missing to perform a N 3LL analysis for the double

hemisphere invariant mass distribution and similar observables in the peak region is

the hard function Hm at O(a2). This correction will affect the normalization of the

differential cross section, while the shape of the cross section is determined mainly by

the jet and soft functions.

The outline of the sections is as follows: In Sec. 6.1 we outline two methods to

perform the computation. Instead of directly calculating the current matching factor

between bHQET and SCET, we can also exploit the knowledge of the QCD heavy

quark form factor calculated in Refs. [19, 59] and various properties of the EFT to

extract the hard function. In Sec. 6.2 we carry out the computation at O(aZ) using

this method and show how to handle issues associated with the number of active

quark flavors. This yields the result given in Eq. (6.34) in terms of the pole mass. In

the two loop expression for Hm we find terms of the form

a2CFT Q 2 0,1,2 #
as FT n (M2 )n1(M 2  (6.2)

The large logarithm ln(Q2/m 2) is induced by the separation in rapidity of soft mass-

shell fluctuations with the scaling (p , p-, p1) - (m, in, m) from collinear mass-shell

fluctuations with (p+, p-, p') - (Mi2/Q, Q, M). It can not be eliminated by a choice

of p or summed by the RGE in p. This effect is directly related to virtual top quark

loops which first appear at O(a2), and has been discussed in detail in Refs. [61, 103]

together with other subtleties concerning the incorporation of a massive quark in

primary massless jet production in SCET. In Sec. 6.3 we will explicitly carry out the

matching calculation for the O(a2CFTF) correction with primary massive top quarks,
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and demonstrate how the amplitudes factorize into collinear and soft components

which each involve a single rapidity scale. We show that this factorization is the

same as that for massless external quarks, computed in Ref. [103], up to a different

constant term that appears in the collinear corrections. The direct computation of

the SCET soft and collinear diagrams at 9(a'CFTF) can be performed elegantly

by first computing the virtual correction for the radiation of a "massive gluon" at

one-loop and performing in a second step a dispersion integral. In Sec. 6.4 we show

how to resum the type of rapidity logarithm in Eq. (6.2) using the framework of the

rapidity renormalization group established in Refs. [38, 37]. We also demonstrate that

the residual scale dependence of Hm on [ significantly decreases when employing the

complete two-loop correction, and assess the impact of the rapidity logarithm.

6.1 Setup and Notation

As described in Refs. [49, 50] for the description of the peak region we first match

QCD onto SCET, and then SCET onto bHQET. We stress that in SCET the top

quark is considered as dynamical and hence the RGE takes place with six active

flavors, while for the ingredients that arise in bHQET there are only five dynamical

flavors in the evolution. The relevant current operators needed to define the hard

functions in Eq. (6.1) are

JQCD

JSCET VnSn'1 nXn-,

JbHQET= v+WnY1F YaWh_ (6.3)

where FP = 'y" and FA = 7/-y. The jet fields Xn = W2nt and xn = W Fa describe

the collinear radiation in SCET, and contain the massive collinear quarks n and

( [92, 106] and Wilson lines Wn,f where in position space Wt (x) = P exp (ig f ds h-

An (hs + x)). The ultracollinear radiation in bHQET is described by the heavy quark

fields hv+_ and by Wnf. The wide-angle radiation in SCET is described by soft
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Wilson lines Sa, where in position space St(x) = P exp (ig fo'ds n -A,(ns + x)), and

ultrasoft Wilson lines Yf are the analogs with ultrasoft gluon fields in bHQET. The

difference between the SCET fields and bHQET fields is that SCET still contains

soft and collinear fluctuations at the top mass scale, i.e. the SCET fields contain

mass mode fluctuations which scale as (p+, p- pI) ~ (m, m, m) and (Q, m 2 /Q, m) or

(m2 /Q, Q, m) which are absent in bHQET. This makes our EFT above the top mass

scale an SCETIn type theory. There are six flavors in the MS running coupling in

QCD and SCET, and five flavors in bHQET.

The notation above differs from Ref. [501 which used a hybrid of SCET, and

SCETI, where the current operator was written as

JsCET = (kn S SnnXn (6.4)

Here the Wilson lines Snf describe exclusively soft mass mode fluctuations and have

ultrasoft zero-bin subtractions. In Eq. (6.3) the SCET operator only describes soft

fluctuations above and of order of the mass scale m, and not far below m. This

simplifies the setup for the matching coefficient calculation, which in particular can

be viewed as going from a six flavor theory to a five flavor theory.

The matching coefficients between these effective theories are defined by

,"c+l n+ Tn [1 + O(m/Q)], (6.5)

-sE bm J ET [1 + O(A/m)] (6.6)

Here both the currents and Wilson coefficients refer to the renormalized quantities.

When we refer to the bare objects we will indicate this explicitly as e.g. in JSE -

For all quantities we consider we use the renormalized coupling constant. When we

want to separate the color structures of the matching coefficients we will do so in the

following way:

Cgn+1) = 1+ ,ni+ +C,,ni+1) +CFCAn1+1) C(FnITF,n1+1) + 0 (CFTF,fnI+1)
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-f 1+ + +C )+ FCA, nf) - FlCF,nf) (FF, (f 6

O(cs) O(a2)

In all the objects above the coupling is renormalized in the MS scheme with the

number of dynamical flavors, nf, being either n, or (n, + 1) as indicated by the

superscript. Here n, is the number of light quarks, and the additional flavor indicates

the heavy quark (here the top quark). The choice for the number of flavors in each of

the expressions above is motivated by the scales at which these objects live compared

to the top mass. Note that we have kept the number of flavors appearing in Cm

unspecified, as it can be expressed in either the n1- or the (n + 1)-flavor scheme. We

will be explicit about which scheme we are using in the equations below.

The hard functions in Eq. (6.1) are related to the Wilson coefficients via

HQ(Qlp) = |CQ|2 , Hm , y = Cm|2 . (6.8)

Here the dependence on Q in the hard function Hm appears due to the boost factor

Q/m.

In Eq. (6.1) all the functions live at their respective scales and are evolved to a

common scale pfinal through renormalization group running. While the jet and the soft

functions have convolution running [50], the large logarithms of the hard matching

coefficients are summed by multiplicative evolution factors,

Hevoi(Qm, , Ifinal; /IQ, m, ', um) -H 'Q 1(Q, Q) U4 1 A(Q, I,/pm) (6.9)

m~l ) m~l ( AM114

for pQ ~_ Q, /zm ~_ m and Pfina < Am. On the LHS the dependence on AQ and [Im

only comes from higher order corrections when the objects in Eq. (6.9) are truncated

at a given order in resummed perturbation theory. The same is true for the rapidity

scales vQ and v., which are induced by the rapidity RGE that will be discussed

further below and in Sec. 6.4.1. We will frequently drop these arguments that appear
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after the semicolon. The evolution factors here obey the RG equations

d Uln,+11(Q, PQ, P) -,,Y(Q p) UiF (Q, p, p
dp HQ ~ HQ (Iit-HQ QM I)

y d UF"5i ,yPunal = YV + Q" , p-) UV"' i, P, vlnal (6.10)
dp (M m (M

where 75"n') is the anomalous dimension for the squared current in bHQET.

Eqs. (6.5) and (6.6) suggest two different methods that one can use to calculate

the O((a,) piece of Cm or equivalently Hm:

1) Indirect calculation using the known result for CQ and the matrix elements for

the QCD and bHQET current operators in pure dimensional regularization:

Using Eq. (6.5) and (6.6), and taking matrix elements of the operators with onshell

top-quark states as in [49], we have

(jT~nll)) 0(n1+1) C~n) K$,f(E)*(.1(SQCD %_+/ Q ) \-bHET (.1

Using the relation between bare and renormalized bHQET currents

(J n E ) = ZHnET ( b arn) (6.12)

we get

C +) =r eQCD / (6.13)
C (ni+l) Z(ni) / (bare, ni)

%Q bHQET \ bHQET/

Note that the terms on the RHS involve objects with different flavor number schemes

for the strong coupling, which must all be converted to nl-flavors to get Cl"'). Here we

work in dimensional regularization for both UV and IR divergences and renormalize

the quantities in the MS scheme. With this regulator we can use the known two loop

result for the heavy form factor (JQCD) given in Refs. [19, 59]. The result for CQ is also

known [98, 97] in MS, and the result for ZHQET can be determined by RG consistency
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as discussed below. Loop graphs in bHQET factorize into ultrasoft and ultra-collinear

contributions, and in general each involve at most a single dimensionful scale. The use

of dimensional regularization for both the UV and IR, and employing onshell external

quarks, imply that these loop corrections in bHQET are scaleless and vanish, such

that (b are) = 1. In general, the IR divergences in the QCD and bHQET matrix

elements will match up, and the UV divergences in (IjaQE) are eliminated by the

counterterm ZHQET In dimensional regularization with 1/EIR =1/cuv, this implies a

cancellation of 1/c poles between (jQCD) and H Z ET. Thus we can use the simpler

relation

CCnl) = QCD (-4
- Z(" l)O(ni+)

, bHQET Q

2) Direct calculation by matching the SCET and bHQET current operators:

Using Eq. (6.6) we can also just directly compute the Wilson coefficient from a

matching calculation, computing partonic matrix elements using the same IR regula-

tor in SCET and bHQET,

g(nl+1)) F(nl+l)
C (i = (SCET - SCET (6.15)M (g(nn \ F(nl)

\bHQET/ bHQET

These matrix elements are form factors in the respective theories which we denote

by F. We will use the same notation for the color structures in the perturbative

expansion of FSCET and FbHQET as in Eq. (6.7). We define the relation between bare

and renormalized SCET currents by

(j(n+0l)\ - Z(nJ+ (bare n1+1)) (6.16)

SCET /~SCET \ SCET' /

As usual the bare currents are p-independent, so from Eqs. (6.12), (6.15) and (6.16)

the p-RG equation for C"1) can be written as

5 ln c1, =(n) - sCE - bHQET ,) 1 (0l)) E _ (Q, m, p), (6.17)
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where the current anomalous dimensions are computed order-by-order from the coun-

terterms in the standard fashion

(ni+1) (d, I = l
NYCET 4 ) diu SCET N'HQET d/i [ n d LubHQET

The anomalous dimension for the SCET current is known to 3-loop order [991. Up to

two loops the result reads

(n1+1)()C
as )CF4[-4LQ+6]

47r

268
+ CFCA 9

( (n +1)( ) 2
+ ws 4

961 117r2

27 3

CF2[3 - 47r2 +48(3]

-52(3j

(n+ )FF Q80 2260
+(n+ 1)C 9 L 27

47r2-

3 ,} (6.19)

where LQ = ln[(-Q 2 - iO)/ 1u 2]. The bHQET anomalous dimension can be derived

using one of the consistency relations [501 for the factorization theorem in Eq. (6.1):

NY = 7bHQET + 'YbHQET J 2yjB+ 2YS, (6.20)

where -ys indicates the soft function anomalous dimension for one hemisphere. Us-

ing the results for yjB given in Eq. (41) of Ref. [78] and for 'ys given in Eq. (19)

of Ref. [681 (which can be derived via consistency from the two-loop jet function

anomalous dimension [17]) we find

(ni) (~C
as( [-4L+4]

47r

+ CFCA
268

(ani) 2u) \2

47w iCFTF L - --9 9
4w 2 )L +196 4 2 8( 3

3 9+3 13

where L = ln[(-Q 2 - io)/m 2]. Expanding the recently calculated anomalous di-

mension in HQET at O(a3) [63, 64] we extract in appendix B also the three-loop

coefficient, which has - to our knowledge - not yet been displayed in literature.
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s'_YC (QP)

Q
7bHQET (_

(6.21)

47r 2 L +
L3 +)



As mentioned above, the two-loop expression of Cm contains large logarithms of

the form a'CFTF ln(-m2/Q 2) ~ ((a 8 ) which cannot be resummed using the RGE

in [t. They are rapidity logarithms and originate from a separation of the soft and

collinear mass modes which have the same invariant mass but different rapidity. These

rapidity logarithms only appear inside Hm, and not for the other soft, jet, and hard

functions in Eq. (6.1). Our focus here will be on the leading rapidity logarithms,

which start contributing with the ((aCFTF) piece. The latter comes from virtual

top quark loops, and hence we only need to compute the correction FsCFTF,1l+1), while

the bHQET graphs give no contribution for this color structure, i.e. F(CFTFnI) = 0.
bHQET

To set up the stage for rapidity resummation we can factorize the current operators

and its matrix elements into products of soft and collinear diagrams,

( (nl+l)\ _ / (nl+1)\ / (nl+,)\ / (nl+1)\

SCET / -\SCET /n \ -SCET /S \ SCET /71y

(n+l) - (n+1) K(nJ+)) \ (6.22)
bHQET/ bHQET n (bHQET/s\ bHQET/fi*

where the {n, s, ii} labels in bHQET indicate n-ucollinear, ultrasoft, and h-ucollinear

contributions respectively. Note that in order to split up these corrections we must

choose an IR regulator which preserves the SCETI nature of the theory. We will

regulate the IR divergences using a gluon mass A, which thus differs from the use of

pure dimensional regularization discussed above for method 1. In SCET1I the individ-

ual soft and collinear diagrams have rapidity divergences, and using the regulator of

Refs. [38, 37] the coefficients will depend on a rapidity renormalization scale V. Thus

Eq. (6.15) can be decomposed into individual contributions involving n-collinear, n--

collinear, and soft amplitudes,

C -= K T /Z, i = n,i, s. (6.23)
(bHQET i

This leads to

Ct' ) (m, = C (m , C m, y, CM") C m, y (m , (6.24)
Tn M n IP Q M' /M Q
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where we included the dependence on scales and renormalization parameters. Thus

we see that the logarithmic dependence on the Q/m boost variable is factorized by

the rapidity regularization parameter v into collinear factors that depend on Q and a

soft factor which does not. To sum the rapidity logarithms we can follow the standard

approach of matching and running.

We define hard functions H(". = C . The individual Wilson coefficient and

hard functions obey related RG equations,

V d C ) -C Cmi') d H(n) - H H(nl) Hm __CM + CMY*v-C~) Vy'm cMnz dv rMi = 7Yv'i m'i ' = 
-_V iyV, +

(6.25)

The v-anomalous dimensions appearing here can be computed directly from the SCET

and bHQET counterterms and depend only on m and M. Taking Eqs. (6.12) and

(6.16) and introducing individual counterterm factors for each of the collinear and

soft component amplitudes, noting that the bare coefficients are v-independent, and

using Eq. (6.23) we get

7(m,p) = v -InC"'= vdIn(JST); - v dln (JkET)i

= v ln Zsnl'l1  - d dn Z(nj) E = n h ' ()2
dv SCET,i v -bHQET, = ,i7.(.6

As we will see in detail below, individual contributions on the right hand side of

Eq. (6.26) contain IR divergences, but they will always cancel to leave an IR finite

result for the < 7, when we fully expand in either the nl-flavor or (n, + 1)-flavor

scheme for the strong coupling.

6.2 Two Loop Determination of Hm from QCD heavy

form factor

In this section we use the first method outlined in Sec. 6.1 to determine the bHQET

matching coefficient, Cm at two loops. From Eq. (6.14) the ingredients we need are
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the UV renormalized QCD two-loop heavy quark form factor, (JT"n+l), in dimen-

sional regularization and the SCET matching coefficient, C47'+1 . In the following we

abbreviate the appearing logarithms as

L = ln Q2 i0 L, = In m LQ = ln Q-2_ io

From Refs. [19, 59] we extract the renormalized two loop QCD heavy quark form

factor result in the high energy limit, Q2 >> M 2 , evaluated at an arbitrary scale

p > n, abbreviating asn+1) -(nf+) 1

F(nl+l)QCD
.as - CF f 2L -2

4w
L 2 (2L-3)L+2Lm4

3

+- + LM-
-8+7 (Lm

- 8 + + 4(3
3 1

2 /

+ O(2)

3Lm+8- (4

+ (a(n+1)) 2

+ 47r C 2 {![2L2-4L

-4Lm+8 2 2] +

- 8L 2 - (28

- 44(3 - 87r2 1n

1r (nl+1>'\

+ 4as )
( 11

+ i3m

7
6

-47r 2 )L

3 L

2- 5 4
90

CCA{-
C A 2

233 r2

18 3 L

+ 2] +

4LM 20)

85
2

OJE

2L3 -(4Lm-8)L 2 +

L3 +(4L 2 - 16Lm

(16.

11
3

( 11] - ( 67
3 9

{11 L2 233

S3 L (9

3 L-
27r 2 L

3 L

(8Lm -

55
2

-)L.

14+ L

27 2 )L2

3 L2

- 4r2 )Lm+46

49 r2  1

+93+ - 2 3I

137r 2

+2

+ 9 L3
2545 117 2

54 9 26( 3 )L

77r 2  134 4

54 3 60

(ni+)) 2

+ (\ 4w

4 L
3 M

CFnjTF { [4L 4

76 418 47 2 )

9 27 9 +
4
3

(88
9

4-Fr2 ) 424 147r2

9m+ 27 27

'Note that in Ref. [19] the counterterm for the renormalization of the coupling constant con-
tains an extra factor 1'(1 + c), so that also additional finite terms are subtracted compared to the
conventional MS renormalization.
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- 32(3 L+4L -
FM

11 2

3LM
177 2

9
+4(3 )Lm

1595

27

1
-F-

6
20]
9

20
9

4 4
9 L3

72)L -L 2+

{230
+9

38)
-9 L



16 G l

3 J( (nL- 2 1[8 8 4 3
+ CFTF 1 L 3 -- 9 3+ 47r ) E 3 _ 9

530 27r 2  ( 16 47r2

+27 3 L+4L 3 9 Lm+

- -L - -- ) L2 (4L2 _4Lm

1532 47 2

27 9 +()

(6.28)

Note that we keep the O(E) part of the one loop piece in F,6D+1 since it yields

a contribution when considering the cross terms in the expansion of the ratio in

Eq. (6.14). (One can avoid considering these cross terms and obtain the same answer

by taking the logarithm of Eq. (6.14).) We remark that in these expressions the pole

mass scheme has been used for the top quark mass m.

The other ingredient we need is the well known two-loop expression for CQ, widely

used in the SCET literature, and obtained with the aid of the massless form factor

calculation of Refs. [98, 97],

0(n11+1a (II)CF 2 LQ- F~
C + 47 + C - L2 + 3L -8 + 6

+it C -L 4-3LU + - - L 2 -_ 4

255 77 2  837r4

8 2 360 J
(nl+1) 22

as (t) 11 233 T 2 2545
+ 47r CACF 9LQ 18 3 L2Q+ 54

51157 3377r2  3133 +117 4

648 108 9 45 J
a(n,+1 2 4 38 418

+ 47r + 1) 9 L 9 L 27
4085 237 2  4(3

+ 162 27 9 .

+ -24(3 LQ
2

9 LQ

(6.29)

The remaining quantities in Eq. (6.14) are the coefficient Cnl we wish to deter-

mine, and the counterterm Z (H)ET The contributions to these two quantities can be

easily distinguished since Zb"QET only has terms with powers of 1/c, whereas C') is
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given by the finite O(e0 ) contribution. Therefore, it is straightforward to distinguish

these two quantities unambiguously. Since we wish to determine these with n, active

flavors, we must convert the strong coupling in (QCjD l) and CQ7I+1 to the n-flavor

scheme using the decoupling relation

n1+1 (p) = (n)f) 1 + I(m2, 0) - as)(p)TF ,2

where the one-loop vacuum polarization at zero momentum transfer for a massive

quark pair is given by

II(m2 , 0) = as()TF 2e S F - L ( 2 + 2 2

37r Tm 37 C )2 m 12

(6.31)

We need to keep terms up to O(c) in Eq. (6.30) since they contribute in the dimen-

sional regularization scheme we are using when multiplying O(as/E) IR divergent

terms in Eq. (6.14). Using these results in Eq. (6.14) we find the following expression

for )for bHQET'

Z E- +a"()CF !(2L 2C2) ( ) (2L 2 - 4L + 2)-bHQET 47w E 4 CF E2

( ) 2 - - [ (67 72 49 7r2 -
+ Z A CFCA 1 1L + 1]- ) L- --- -2C

4:7 E2 3 3 g 3
')(,) 2 - -[] 2 + 20}

+ ()CFnTF 2 L -- + - L+ . (6.32)
47r C2 3 3_ 6 9 9_

This result can also be extracted from earlier literature using the consistency relation

for RG running between Hm, and the soft and the jet functions in Eq. (6.1). In

particular, the 1/E2 terms in Eq. (6.32) are given by a term involving the lowest order

/-function, and the square of the one-loop result (due to non-abelian exponentiation),

while the 1/c terms are directly related to the two-loop anomalous dimension given

in Eq. (6.21). This provides a key cross-check for Z)ET and hence for our result

below for (.
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After cancellation of the 1/c and 1/62 terms in Eq. (6.14) with the help of Z HQET

the remaining O(cO) terms give the desired result for C . With the top-mass in the

pole scheme we find

C )(m, Q,m
=1+a (p)C 2r2

(ni) (A) CF L2 -L
4+a (L Ir m+4+6

+ 2 C 1L4

9A1 13 2

- 11w2 +24(3 Lm
2 - (6+ 2 ) L 2

163r

+ + - -7T 8og2g2-6(3- 360
8 336

+ (a7 i) (/) 2

+ ( as47r )CA CF
11

9 Lm
12877 3237r2

+ + + 4r2 1og 2
(486

al() 2

+47r

(4
+ +

-
((fL)))

1 U

GFnTF

CFTF{

40
9

4

9 m

8 L
9 LM
112) I
27 n

(167
+ (18

89
+(

(3 477r4

) 180

* 154 +
+ 27

* 130 +
+ 27

26

9 m

2 L2
9 M

2 1165
54

87r2 Lm -

9 L)

27r2)

3

-Q2 _ ,i J

287r
2

9

1541
162

-30(3 )Lm

37-r2

27
52(3

9J
5107 417r 2  4(3

Lm+ 162 27 9

(6.33)

Finally we arrive at the main result of this section - the result for Hm = 1Cm12 in the

nl-flavor scheme with the top-mass in the pole scheme (a "'-- an (n())

i)=1

+ ( as 4 )

+ 4 CF (2L2-2Lm+8+f)

C 2L 4 - 4L3 + 18+ 2 - (19 - 1072

305 797r4

+ + 10w2 -16w 2 og 2- 12( 3 - 90

p) 2 22 L 167 -27r2
~CACF{1L9+( 9 3

12877 3237r 2  178(3

+ 324 54 +8 2 1og2+ 9

8 L3
9 M

52 L
9M

308
27

) 2 (1165

ML2 27
477r

4

90 f
1 67r2 1

19 )

567r

9

541
81

2
_ 60(3 )Lm

747r2  104(3
27 9
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(n) 2 272
+a S (p) 2 16 C f 3 -4 L2 + (260 472 L 5107 822  8(3

47 9 M 9 m 2 7  3 8 1  27 9

- -L 2 + 8L + 2 In (6.34)
(3 m 9 27 m 2

As anticipated, all of the logarithms in this expression are minimized for y , ~

except for the contributions in the last line that involve the rapidity logarithm

a2CFTF ln(Q2/m 2 ). To understand the origin of this type of logarithm in the context

of the renormalization group requires a further factorization of Hm') into soft and

collinear pieces, as in Eq. (6.24). In the next section we will carry out an independent

calculation of the O(acCFTF) terms in Hm4'. This sets up the rapidity renormaliza-

tion group analysis of this term, which can be found in Sec. 6.4.1. In Sec. 6.4.2 we

present the result for H1 l) with the top mass renormalized in the MS scheme.

6.3 Direct Computation of the O(ceCFTF) Result

6.3.1 Ingredients for the Calculation

In this section we perform a direct computation of the a2CFTF piece of the match-

ing coefficient Cm(m, Q/m, p) due to massive quark loops using the second method

from Sec. 6.1. We carry out the calculation in analogy to Refs. [61, 103j, where the

corresponding contribution to the matching coefficient at the mass scale for massless

external quarks (in the following called "primary") was computed. In this section we

extend the calculation to the case of primary massive quarks.

Starting from Eq. (6.15) we note that for the a2CFTF massive quark term, the

bHQET graphs expressed in the usual n1-flavor scheme do not give any contribution.

The SCET graphs do contribute, and should be expressed in the same scheme for the

strong coupling. Using the decoupling relation in Eq. (6.30) we obtain in the notation

of Eq. (6.7)

CCFTF' m, , [ FCE (Q, mnA, +) (6.35)
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as" (A)TF M2 1,nl+l)(Q
- 7 In F SCET mA nl (j

The second term on the right hand side accounts for the coupling conversion of the

SCET form factor from (ni + 1) to nj flavors. 2 As discussed in detail below, we

will use a massive gluon as an IR regulator A, such that O(E) terms in the coupling

conversion in Eq. (6.30) can be dropped. For the remainder of this section we will

drop the superscript (nr + 1) on the SCET form factors.

We adopt the calculational method of Refs. [61, 103], where the two loop graphs

containing a "secondary" massive quark bubble are calculated by starting with one-

loop graphs describing the radiation of a massive gluon with mass M and applying

in a second step dispersion relations to account for the gluon splitting into a pair of

secondary massive quarks with masses m. The corresponding relation can be written

as

(i)g(P 2 2) =_ U2 + dM Im [F(m2, M2)]
P 2 +E P )p 2 + iE 7r M2 p - M2 +iC

(-i) (gv - PAPL)

2-- r(M2, 0). (6.36)

Here fl(m 2, p 2) is the gluonic vacuum polarization due to the massive quark-antiquark

bubble,

S,B(i 2, 2 ) _i(p2gpgv- p,,p,)fl(m 2 , p2 )6A J d4X ePx (01TJ(x)J(0)|0),

(6.37)

2 Note that the subscript "al"' + a "l" used here and elsewhere stands for the plain replace-
ment of the couplings and does not involve any expansion based on Eq. (6.30).
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with the imaginary part in d = 4 - 2E dimensions given by

m[(2 , 2 )] O(p2 -4M 2 ) 2 T P2 -E 23-2d7(3-d)/2 4m 2)(1 4 M2 (d-3)/2

Im(U[m2 2 -42 9TF ( j2 r d- 2+ P -2

(6.38)

We note that the same method can be applied to account for any kind of secondary

particles by a corresponding choice of the polarization function 1. Eq. (6.36) allows

us to express the contribution to the SCET form factor due to the massive quark

loops as

F(CFTF, bare) (Qrm, A) - F(OSCFTF,bare)
SCET - CET (Q~ )

- ((m2, 0) - l)(pL)TFI) F, Ie7(Q, m, A) , (6.39)
37T 6)SE

where the "on-shell" form factor is

F(sCFTF,bare) 1 dM2 Fsare)(Q, m, M) Im[(m 2, M 2 )] . (6.40)

In Eq. (6.39) A denotes the gluon mass acting as our IR regulator, which we distin-

guish from the gluon mass M used in the dispersion integration. Since total bare

quantities are p-independent, we do not add u as an argument to the components

of bare quantities at a specific order. In Fsbare) the massive quark contributions
SCETT

to the coupling are renormalized with the onshell subtraction, i.e. Fs~clare) is given

in the scheme with ni dynamic flavors. In Eq. (6.39) the second term accounts for

the change to nr + 1 dynamic flavors. The form factor itself is still unrenormalized,

as indicated by the (bare) superscript. We perform the MS renormalization for the

SCET current using Eq. (6.16). Incorporating Eqs. (6.39) and (6.16) into Eq. (6.35)

the result for CFTF, n,) can be written as
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CjFTF, n)(m ,) = F(O CFTFbare)

(2 3)TF (- CET

+ CsF TF as 1()F M2 (1 FS ET
Z+ ( ZCET(Q,3, p 3-F ln( A 2 FSCET(Q A

Here the 1-loop form factor F(lbare) is a UV and IR divergent amplitude, and ZsS( TF)

is the SCET current counterterm in the (n, + 1)-flavor scheme. Using the explicit

form of II(m2 , 0) in Eq. (6.31) one can rewrite Eq. (6.41) as

(CFTF, n1) , = FsS(CFTFbare) E+ (CFTF)FSG& '(Q m) 95C Tn , 11 (6.42)

+ I(M2,0) - 2s , )TF CET (Q M,
37r E

where we see explicitly that the dependence on the IR regulator is canceled. Note that

we could have also carried out the computation employing the (n, + 1)-flavor scheme

to determine (C FTF,ll1), which involves converting the bHQET form factor from

the n, to (n + 1)-flavor scheme. In this case the cancellation of IR divergences occurs

in a different manner, and involves the 0(a,) bHQET form factor. This approach is

discussed in App. B.

Note that nothing in Eq. (6.42) depends on the low energy bHQET theory. There-

fore the result applies equally well to the case where one integrates out the heavy quark

loop without approaching the jet invariant mass threshold st -* m2 and matches onto

a nl-flavor SCET theory instead of bHQET. In this case the matching coefficient

only contains the contribution from the massive quark loop and receives corrections

starting at 0(asCFTF), so switching between the ni and (n, + 1)-flavor schemes only

affects the corrections at 0(a') and beyond. This is in close analogy to the case of

primary massless quarks discussed in detail in Refs. [61, 1031.
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P P

x x

p Z(1,a)

z(1,b)

Figure 6-1: Non-vanishing EFT diagrams for the computation of the hard current
at O(a,) with primary massive quarks and secondary massive gluons with masses m
and M, respectively. Soft-bin subtractions are implied for the collinear diagrams.

6.3.2 One-loop computation for secondary massive gluons

Having laid out the basic framework in the previous section we now start with cal-

culating the one loop SCET heavy quark form factors for a top-quark of mass m

with a massive gluon of mass M to be used in the dispersion relation. The complete

unrenormalized SCET result for the current form factor at O(a,) can be written as

= FsETmO(Q M) +Fl ' ar)(Q ,M Fslhbae= (E, M) .SCET M 7M CET,m=O

=FS' "(re)4(m,M)

(6.43)

The correction with primary massless quarks Fs ,$-e has been already calculated

in Refs. [36, 35, 34, 37, 611 and reads in d = 4 - 26 dimensions

Fsk,- = as([)CF 2
SCETm=O 47w 62

3 2 2 5 2

+ -LQ+(2LQ-3)Lm-LM +- 6

where LQ = ln (-Q 2 -0) and LM = In ( 2 ). The corresponding one-loop counterterm

in MS reads

Z(1) = as(p)CFZSCET 47

2 3 +2
62 6 6 .
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Fig. 6-1 illustrates the SCET graphs with massive gluons needed to compute FS' are)

For the first three graphs in Fig. 6-1 the form factor contributions are defined as

prefactors to the spinors, Fl iin,tUhp for i = n, n-, s and are computed using the

SCET Feynman rules for massive quarks given in Ref. [92].

Due to the eikonal structure the result for the soft diagram, F( ,bare), is same as

that for primary massless quarks [here ft2  
1

2 eE/(47)1,

F(1,bare) g2CF
2 E/ dk 1 1 1(

j ( 2 7r)d [k- + iE] [k+ - i6] [k 2 - M 2 + ZE(.

For the n-collinear diagram we get

F (1,bare) - 2i 2 0 2E f dk Q-1
n F (27)d [k2 - Qk+ _- + Z6 [k- + iE] [k2 - M 2 + iE]

(6.47)

We can decompose this contribution into a correction corresponding to the diagram

with primary massless quarks, and a UV and IR-finite difference of terms which can

be computed in 4 dimensions,

F(1,bare) = F(1,bare) +F(1,bare) F(1,bare)) (6.48)

n nm=O n nm=O

After performing a contour integration in k+, carrying out the k1 -integration and

rescaling the label momentum as k- zQ, the finite correction due to the mass of

the primary quark yields

F( ,bare) - F( ,bare) (6.49)

aSCF 2 z 222YE- -
- ' (2 )- ( 2 dz [ -- z+ M2 -(1-z)2

27r 2 [(10 zn

es CF InI+4 a n - + 1 +G a n + a -+ a -n a 06
27 1 2 ) n 2 ) 1I-a 2 1 +a ln 2 +) + (I
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with

4m2
aE= :m (6.50)

In SCET loop graphs include soft 0-bin subtractions [96] which ensure that there is

no double counting of infrared regions. For the soft 0-bin subtraction of Fnl,bare) the

dependence on the primary quark mass drops out, and we obtain the same result as

for primary massless quarks, which is therefore fully contained in F(;,"bare) Note that

the result in Eq. (6.49) does not contain any rapidity divergences, so that rapidity

logarithms arise only in the computation of Fl . This can be understood from

the fact that the corrections due to soft modes are the same for massless and massive

primary quarks, so that the rapidity divergences in the soft sector and, by consistency,

also in the collinear sectors have to agree in both cases.

The ii-collinear diagram corresponds to switching k- and k+ in Eq. (6.47). We

perform a decomposition analogous to Eq. (6.48),

F(1,bare) = F(1,bare) F(1,bare) - F(,bare). (6.51)

n n,m=O A n,m=O

The difference correction due to the primary quark mass is again UV and IR-finite and

does not contain any rapidity divergences. Thus it yields for any choice of regulator

the same result as the n-collinear correction, i.e.

F(1,bare) - F(1,bare) = F(l,bare) -F(1,bare) 6.52)
_tm=O n n,m=O

Finally, we also have to consider the wave function corrections. In analogy to the

computation in Ref. [50] we have

= 2ig2 CF[ 2E f dk Qm2 (3 - c) - (Q 2k+ + Qp 2 + m2 k-)(1 . (6.53)
2 J (2 7r)d Q2 [k 2 - M2 + iE][(k+ p) 2 - m 2 + iM]

Using p 2 = m2 +A 2 and decomposing the integrals into elementary one- and two-point
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functions we obtain

E1) = ig2CF2 # (2) - o(M2)] [2M2 + A2
2 Q(m2 + A 2 )

+ BO(m 2 + A2M 2m2 2) 4m 2 (M 2 + A2 )
+~~~ BIm + C2 2,m)

+ 2m2M2 + M2A2 _ A4 }
(6.54)

which uses the loop integrals

Ao(m 2 )

Bo(p 2 , m 2 IM 2 ) =

dd k
(27r)d

d(k

(2r)"

1

[k 2 - M2 +iE] '
1 1

[k2 - M2 + i] [(p - k) 2 -mi 2 + ic]

The wave function renormalization constant Z() is defined by taking the on-shell

limit A -+ 0

EM 3? 1#2m I ms, 1() + A2 ZM + O(A4)11 2 Q 1T (6.56)

where 6m 'OS1 ) is the one-loop renormalization constant for the quark mass m in

the pole mass scheme for the interaction with a massive gluon (with mass M). The

wavefunction correction Z( can be written in terms of the wavefunction correction

for primary massless quarks and a UV and IR finite remainder,

ZM= Z + (Z - Z ) (6.57)

The remainder contribution in d = 4 dimensions reads

ZM - Z = asCF

4-

-2(1

2a(1 3- a 2 ) 2 2(1 + a)4 (2

- a)4(2 + a) In 12 a

+ a) n(1 a

+ a (11 - 14a 2 + 3a 4 )

where a was given above in Eq. (6.50).
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+O(). ,
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The complete finite correction at one-loop, which accounts for the mass of the

primary quark is given by the sum of the terms from Eqs. (6.49) and (6.58),

6FS 1 E (m, M) = 2 F(l,bare) - F(1bare)( M)SCET ~M=( n n,m=O )(iM)
- (Z1) - Z =0) (m, M).

This result will be used for our two-loop computation in the next section.

6.3.3 Two-loop computation for secondary massive quarks

In this section we use the one-loop results from Sec. 6.3.2 to calculate the two-loop

graph with the massive quark loop, and to determine the CFTF contribution to Cm.

First we compute Fs4CrFTF,bare) via Eq. (6.40) using the one-loop result in Eq. (6.43).

Again we can decompose the two loop SCET form factor into a primary massless

component and a correction for primary massive top quarks:

F(Os,CFTF,bare) - F(OsCFTF,bare) +F(CFTF)SCET SCET,m=O m

The calculation for primary massless quarks has already been performed in Ref. [103].

We display the result here for convenience:

F(OsCFTF ,bare)
SCET, m=O 4 Fni) F +2 SL-4L+

1
-1--

6
3L2 16L+ 16) LQ

65 7r2  56 2
+4LQ+4L - 2 7 -91 + 9L2

242 47r2 L

-27+ 9L
8 16 16

L3 + 3L L2Q

- 8L2+8L - 130 - 27r2]

3L28 27 9
LQ +875 87 2  20(3

54 9 3

The contribution from the two-loop MS counterterm is known from the massless quark

case and reads

Z(CFTF) nt-1) 2 
sCET 47 ) CFTF

2
63

81

9]

1
E6 I 20

9

65 77 2 -

27 3JJ

(6.62)
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where L and LQ are defined in Eq. (6.27). The 1/E0 divergences in Eqs. (6.61) and

(6.62) differ, and are reconciled only once we account for the additional scheme change

correction in the last term of Eq. (6.39). The 6 F'CFTF) term can be computed by

inserting the one-loop massive gluon correction term of Eq. (6.59) into the dispersive

integral (6.40) which can be performed in four dimensions. The result reads

z ( n)(p) 2 11241 567r 2  16
FCFF ( 47r 81 27 3 (6.63)

Thus the only modification in the massive quark loop contributions to the form fac-

tor for primary massive quarks with respect to primary massless quarks is a simple

constant term. In particular no additional rapidity logarithm ~ ln(Q2/m 2) appears,

which can be again traced back to the universality of the soft corrections for massless

and massive primary quarks.

Assembling all the pieces above in Eq. (6.42) we get the following result for

C(FTF, n'):

Q a(n') 2 8 3 7r 2
0 (CFTF, __ as (FTF 83 L2 + 1 L2M M -1A -L~ - Lr -+ Lmn

\'m"/ 47 9 27 3,)

(6.64)

4 L2+40 Ln+112) -n(Q2 -- iO. 5107 -4 17r2 -4(3

3 r 9 27 m 162 27 9

which matches exactly with the CFTF result we obtained above in Eq. (6.33). In the

next section we decompose the SCET form factor result into soft and collinear pieces

in order to find the terms needed for the rapidity RGE analysis.

6.3.4 Two Loop Ingredients for the Rapidity Renormalization

Group

In order to determine the ingredients needed for the rapidity renormalization group

analysis, we now calculate the O(a2CFTF) SCET form factor contributions for the

individual collinear and soft sectors using dispersion relations. We will employ the
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symmetric r-regulator [38, 37 to regulate the rapidity divergences in the individual

sectors. This corresponds to modifying the Wilson lines in the respective sectors

according to

W,
W( i'7

(ii )1 n' Sn:
n .p n

W(V) _ .12
(6.65)

and similarly for Wf and Sa. Here P" denotes the label momentum operator and

w(v) is a dimensionless book keeping coupling parameter satisfying

d W
du 2

lim w(V) = 1.
77-+0

The one-loop form factor corrections for the radiation of a massive gluon have been

already calculated in Ref. [37] for massless quarks. Including the modification due to

the quark mass in Eq. (6.59) they read after expanding in q

F(l,bare) - F(1,bare)
SCET,n SCET,fn

On+1)(1)W2(V)CF /c2e

47r (M2

+F SET(m, M)
2

- (nl+1) W2(V)CF

47
( ) e E I P )

(M2

(6.67)

+ In 12 )

{

2V)(2 - c) 2
_YE

4

In the collinear results we have included the wave function contributions Zn /2 and

Z,/2. The soft-bin subtractions in the collinear diagrams vanish for the q-regulator.

In direct analogy to Eq. (6.39) the corresponding two-loop expressions for the

individual soft and collinear sectors read

F(CF T F,bare) I Qm d)

- (II(m2 ,0)- a TF
3wr

I>J FsCE , (Q, m,A) (6.68)

for i = n, h, s. Note that for this relation to make sense also the one-loop form factor
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F(l,bare)SCET, s

1-_
2 - }

- 2-YE- 2 In - 2(c
- M2 + i0

FCT i7 (Q, M, M) IM[ImM2



corrections with a massless gluon have to be decomposed according to Eq. (6.23). To

achieve this goal we use a gluon mass A < m as an infrared regulator which allows us

to use the results in Eq. (6.67). As discussed in Sec. 6.1, we absorb all divergences of

the form 1/t, q0/,n in the form factors into separate counterterms ZsrT, for each

sector, so that

- F(1,bare) + ZSCET, i - SCET, i SCET, i F(CFTF) - F(CFTF,bare) + Z(CFTF)
SCET, i SCET,i SET, i (6.69)

The explicit results for the counterterms at one-loop are given by3

ZM C Q nA 0 _Z(ET, n (Q I , A, i, v) , T

-In
_2 Q2

+ 2 In

E - A + ZOZSCET, s ,A I)

a(n+l)Q) 2(V) CF

4w

n + w2(t,) CF F
47r l7

4 2 2 2
- +4-n

C ( 2 2

[ 6 p2 _/i

while at two-loop they read

(CFF)Q1 m)A,,i)= Z(CFF(Q,mT, A, p, v)

[C(n+1 P)] 2(v)CT i 4 20 8
1 l I [ _ 4 + 2 + -Lm In
167r2 j 302 9c 3 m P 2

[ 2 ( V2 1]- 1 [10 In V2 ) 2 2]
E2 _3 Q2 9 2 6 9

Z+ [Cn( (Q, mn, A, [ (, v)

[a(nI+1) (At)] 2 w2 (V) CFTF

167r2

2 1
63 e2

4 v2\
3 In ( -A 2 +2o

13

yL3e2
10
9

40
91

I
16 2
1 Lmln A 2
3 pA 2 )

[
3 m + 80L+

9

224

27 k6)
56
27

2-

9_

(6.71)

NCETt that the sum Zl ST+reproduces the result for the SCET

3Although the full c-dependence in the expression proportional to 1/r should be in principle
kept unexpanded, this is only relevant to ensure that the coefficient of the 1/r/ pole is explicitly

p-independent, which is also true order by order in its E expansion. Therefore we show here only
the terms up to O(E 0 ) which contain the information we need later for the anomalous dimensions.
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current counterterm Z2(CFF) in Eq. (6.62). These results for the individual collinear

and soft counterterms provide the necessary ingredients for determining the rapidity

RGE for the collinear and soft sectors below in Sec. 6.4.1.

6.4 Rapidity Evolution and Numerical Results

6.4.1 Rapidity Renormalization Group Evolution

In our result for the matching coefficient between bHQET and SCET at O(ac), given

above in Eq. (6.34), we encountered a large logarithm a2CFTF ln(m2/Q 2 ). We dis-

cussed the setup for the resummation of such logarithms above in Sec. 6.1. As shown

in Sec. 6.3 these rapidity logarithms are only related to contributions of the virtual

massive quarks that appear in the gluon vacuum polarization, and hence are the same

as in the threshold corrections for massless primary quarks in Ref. [103]. There it was

anticipated that they can be resummed by exponentiation, as is common for these

kinds of logarithms. For example, for the radiation of a massive gauge boson the

rapidity renormalization group implies that this exponentiation occurs to all orders

in perturbation theory [36, 35, 37, 61]. The difference in our case is that the rapid-

ity logarithms start at two-loops, and hence involve the additional issue of one-loop

induced corrections due to the scheme change in the coupling constant.

Here we will show explicitly how to treat the rapidity logarithms at O(ZCFTF)

in a rapidity renormalization group framework, and subsequently demonstrate that

they indeed exponentiate. We start from Eq. (6.26). Up to O(c2) we only have a

contribution from the CFTF dependent terms,

d d
S(in, 1u) = v Iln ZSCETi - v -n ZbHQET,i

du dv

= ~Z(CFTF) -Z S~'Q) F v-dZ +05 O3dv CET,i 3w ny 2 } dv SCET, O(S) (6.72)

where the second term accounts for coupling conversion from the (n, + 1)-flavor to

n-flavor scheme. As before, in the nl-flavor scheme the bHQET graphs give no con-
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tribution. The results from Sec. 6.3.4 can now be used to compute this V-anomalous

dimension. Using Eq. (6.70) we can calculate the one-loop correction,

- 2 d SCET, s

(n1+1) F

27r 2 . )

(6.73)

which exhibits dependence on the infrared gluon-mass regulator A.

term above can be calculated using Eq. (6.71) which gives

The two-loop

d
l,_ Z(FTF) -

dV SCET,n 
,d Z(CFTF)

dv SCET, -

[C(n,+1) 2 0 F

167r2

-1v ZCFTF)
2 d y ZSCET, s

8 

Lm

ln A
p A2)

where Lm is defined in Eq. (6.27). Together these results determine the v-anomalous

dimensions:

fm ,CF TF Cm, CF F __ _), CFTF
,Tn(ft'l v t M i 2 -y , ( ,A

[aK(11)]2CFTF
167 2

40 Lm
9

(6.75)

Note that the IR regulator has canceled out, and that here the coupling [ozs(p)] 2 can

be taken in either the nj or (n, + 1)-flavor scheme since the anomalous dimension

starts at O(o2) and the difference is higher order. This result suffices for solving the

v-RGE equations at NNLL order. Using Eq. (6.24) and Eq. (6.25) we can write an

analog of Eq. (6.9) for the v-evolution of Hm. From Eq. (6.24) we have

H'm (m,
Q
m

H" (m, i, (6.76)

With rapidity evolution this becomes
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4 L2
3 m + 40L+

9
112}
27

(6.74)

3 M +27
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Q N

= H , , 
I1 HQ) Im(, n Al ,) VRRG (vQ m,) H (m,

where on the LHS the dependence on vQ and um comes from truncating the resummed

perturbation theory for objects on the RHS. Here the functions Hmnl) =Hn and

H', are given up to 0(a) by

"(j) (A) CF L2

4w (

(a$' (AL)
47
241

8

+ ( (nj) (AL)
47

12877
+ 648

4w

a ) (L)

47T

+ 4 40
+(3 m 

(11

137 2

3
87r 2 1og 2 - 6(3

CACF
11 3
9 m

3237r2

108 +4w 2 1og2+

CFnITF { L3

CFTF 2L2 +

112)
+ 27)

( (n i) ( L4wr

1637 4

360

167
18

89(3
9

}
7r 2 L
3 )L2 _

47-r4

180

26 2

9

(2 872 L

K+ L)m

In ( }

CFTF {-3

11w 2

6

(1165
54

28wr 2

9

1541
162

37wr 2

27
52(3

9)

3139 47 2  8(3
162 3 3

(6.78)

40 L 2+
9fl1

224) I
27 n

(448
27

656 107 2  56(3
27 27 9

(8 ( 2

3LM
80

+ 8 Lm
9

+d Pv2 (6.79)

and contain no large logarithms for st ~- m, and for vQ ~- Q and vm ~ m, respectively.

The evolution factor VRRG sums the rapidity logs between vm and vQ, and is defined
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y,)

Lm + 4 +7T' 2)
Hk" (m, , =IQ) +

c2 I
CF L r

L3+ 9
-L (+

7r 2 2
+ 6 )LM +24(3 )LM

{+ -30(3 ) LM

+ 154 +87 2

+27 9

) 2

4FLmH(ni) (m ) = 1+



(fn fVRRG (Vf, Vi, A) = exp
nvin v

dlnv Cm+ (y )* }.
The general result for VRRG, and the result at NNLL, will be given below.

Similarly to the v-anomalous dimensions, we can also determine individual p-

anomalous dimensions for the collinear and soft sectors, i = n, s, n,

= d d
A, = pIn ZSCET, i - P In ZbHQET, i (6.81

dp dpL

Repeating the steps below Eq. (6.72) we find

Cm,CFTF / ii

CmCFTF ( V
Thm u--

167r2

Cm (CF TF) (

[i)(At)
2 OFTF

167r2

40)I( V2 )9- Q2y~

{ 16 8 In-Lm+ In
3 9/

2
4Lm-

( 2)

-2 +i j

87r 2}

224 47r2 '

27 9

(6.82)

whose sum yields the same result for the 0(a CFTF) [-anomalous dimension of C.

as the difference of Eqs. (6.21) and (6.19),

1 ) + 7'mCFT
F (m A/

16 L

3
[ (n (A) 2] CFTF

167r2

260 47 2

27 3 f
- _ (n1T (CFT) = fmCFTF (QmM
= CET - H ET ],CT (6.83)

with Lm and LQ defined in Eq. (6.27).

Eqs. (6.9) and (6.77) together include the evolution connected to Hm in the 2-

dimensional p-v plane, including that from invariant mass scales pm to pQ, that

from invariant mass scales pm to Pfinal, and that from rapidity scales vQ to vm. As

demonstrated in Ref. [37] the combined p-v evolution can be performed along any
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path and the path independence implies the consistency equation:

d cm a (&(& Cm d CM
pd )'7 M = +#(g v7 Vz?'. (6.84)

However, similar to the example of the massive Sudakov form factor considered in

Ref. [37] we can see from Eq. (6.75) that 'yc contains potentially large logarithms

ln(p/m) for an arbitrary path in p-v-space. This is resolved by a prior resummation

exploiting the fact that the derivatives in Eq. (6.84) are proportional to the cusp

anomalous dimension. Since C, is a matching coefficient between a (n, + 1)-flavor

and ni-flavor theory, we can express Eq. (6.84) in terms of the difference between the

cusp anomalous dimensions Fcusp[[as in the (n, +1) and ni-flavor schemes. So for -y,

we obtain

d 7 = / d ' = - 2 (Fcusp[("nl)] _ Fcusp[an)1)

a CF2 32 160)= CFTF 323 Lm + + O(a3), (6.85)
-167r

2 ~3 9 s

which can be checked using the explicit perturbative expression of Fcusp[as] up to two

loops,

FCS~~~] (nf) C (n f 2 7T2__
CUusp [as"'] = 4CF + 4CF CA - F + a3-

(6.86)

Integrating Eq. (6.85) in 1- we obtain the resummed result for -yc,

Inmp7Vy (m, [A) =-2 Jl dlIn p' (FCUSsp( 1 1)(Pf)] - Frcu[opla'C0(0]) + 7' (mI m)

-

(w(n+)(A, m) -W( i(p, in)) + 7 , m). (6.87)

Here the integration constant 7 (m, m) is the correction in the anomalous dimension

V'C that does not multiply a logarithm ln(pi2 /m 2 ). We are now in the position to

write down a general expression for VRRG- Using Eq. (6.80) we find the all orders
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result

VRRG (VQ, Vm, 1) = exp w(nt+1 (p, m) - W () (p, m) - (m, m) In .

(6.88)

At NNLL order with the counting as(p)ln(Vm/vQ) ~ 1, we can expand this exponen-

tial to the first non-trivial order. At the order we are working

[M cM+'(m)] 2CFTF 224 + ),
V's (,m)=167 2  27 +0(, (6.89)

as can be seen from Eq. (6.75), where we have for definiteness employed the (n, + 1)-

flavor scheme. The evolution function w at NNLL accuracy reads

W (T(Po)= lnr+ F 1 !3i's\ a (PO)(r- 1) (6.90)
1o \Fo /oJ 47r

F2  /31 F 1 _/21 ()]2 2
+ +IF --r (2sr --_

Fo -3oro -F /o/ 327F2 (

where r (po) and the coefficients fi and Fi are evaluated with nT

flavors.

To extend the analysis to N3LL resummation, one needs the result for the v-

anomalous dimension m (, m) at O(ac), which can be inferred from the coefficient

of the rapidity logarithm appearing in a related DIS calculation [6] due to consistency

(see Ref. [731).

6.4.2 Numerical Results

In this section we explore the impact of the two-loop correction to the hard func-

tion Hm on the differential cross section and the corresponding improvement to

the perturbative uncertainties. To do this we examine the evolved hard function

Hevoi(Q, n, pfinal; PQ, Am, LVQ, um) from Eq. (6.9). This function fully captures the

multiplicative contributions for the differential cross section factorization theorem
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in Eq. (6.1), including the matching at pQ Q in H~nl+', the RG evolution from AQ

down to pm ~ m in U("+', the matching at p.. encoded in Hm, and through U)

the RG evolution from jam down to a scale pafinal where the soft and jet functions are

evaluated.4 Since the ingredient that has not been previously analyzed is Hm we focus

our numerical study on the impact of this function and the associated reduction in the

resulting pm dependence. For HM") (M, Q/m, jam; VQ, um) we employ Eq. (6.77), which

provides a decomposition of this function into collinear and soft components, H 72,

with i = n, ii, s, plus a kernel VRRG which carries out the RG evolution in rapidity

from vQ ~_ Q to vm ~ m.

We begin by converting the result for the collinear and soft components H(") in

Eqs. (6.78) and (6.79) from the pole-mass scheme to the MS mass scheme with n + 1

dynamic flavors via

(n1 +1

mpole = i(n+() Q as (P)CF (3m - 4 + O(). (6.91)

The MS scheme is an appropriate renormalon-free short distance mass scheme to be

employed in the hard function Hm. For consistency we also convert the results in

Eqs. (6.78) and (6.79) to the (ni + 1)-flavor scheme for the strong coupling. Together

this yields up to O(a2)

_~ll 1/Qs (ja)CF 2HIfn+n (ff, P, = 1 + 47 (i0( )FL2 - L7 + (n+1 + ,2)Q4w 6,!
Cnl ClF 2 11 24

( n 1+l 2 4 L 3 415 7r2  33 1172  /
+L CL-0 - +L -+ --24(3) L7

47 2 2 6 2 6

1 7 7 + 1 3 2 - 7 o ( -1 6 3 7 4 1+ + -8wr 2 1g2-6(3 -368 3 36

aCe(np+1) ) 2 C 11 3 (1165 287 2

+ 9C Lm L2 - + - 30(3 Li
4w ) 18 3 54 9

12877 3237 2  89(3 _ 477r4
+ + +47r2log2+ 8 3

648 108 9 180

4The soft or jet functions also contain an additional evolution which is not purely multiplica-
tive [49]. This evolution affects the shape of the du/dstdsf distribution and was evaluated up to
NNLL' order in Ref. [78].
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+ n + ( )(2l4)362 { (2154 +872 1541 3772 52(3
+ s47rCxI 9L _ 9 LM 27 9 )Ln-162 27 9f

/n + 2 4 2 107r2 + 3139 47F2  8C3
(aCFTF -L+-L + 6+ L+ + 3+ 47r 3 Lm+3 Lm+( 9 )Ln 162 3 3

+ 40L 4 1 1 2 )+L+ n (=H") 1)(,, ,) (6.92)

H" -, =+ CF0 L7+ ++ - Lf
(n+1 (r2 CF 81 4 + (448 47r2N~

Hfmi , M ) 47 ; 9 M + ff 27 9J)

656 107r2 56(3 8L2+80 Lfi+22411 (v2) 6-3+ L + mn , (7.93)
27 27 9 9_2 p2

where Lm = ln(fi, 2/[t 2 ) and f = fi1(nf+l)(p) is the MS mass for ni + 1 active flavors.

For the bHQET evolution function UPI) , when using the MS mass scheme, we expand

the pole mass appearing in the anomalous dimension in Eq. (6.21) in terms of rn-t(fr-t)

to obtain

(nj a '(P) CF a(n ') 2_~~0 _____ as~u ~ ~ [0 80 1
n4bHQET- ) -4L +41 + 4w iCFF L-

m x'7r9 9'

268 47r2 - 196 47r2
+CFCA 9 L+ 3 4 +8 3]

32 ( ) n 2+ O(a ), (6.94)
+ ~ (47r)2

where L = ln[(-Q 2 - i0)/f-i 2 ]. For the v-anomalous dimensions the MS results are

obtained by the simple replacement m -- f-, since they start at two-loops. For our

central results below we use 'm = vm = it and pQ = vQ = Q.

For our numerical analysis of He,,i we employ scale choices that are appropriate

to the peak region of the differential cross section within bHQET. We fix Q =PQ =

1 TeV, which is a possible c.m. energy for a future linear collider, and fina = 5 GeV

corresponding to the scale of the soft radiation. We do not vary these two scales here

since their impact and associated uncertainties have been analyzed elsewhere [50].

They matter only for the overall normalization and thus cancel in the normalized

spectrum. In addition we use the MS mass mat(int) = 163 GeV or pole mass mt =

171.8 GeV using the two-loop conversion, and a(5)(mz) = 0.114 [22, 5] and using
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Figure 6-2: Upper panels: Plots of the residual dependence on the matching scale ILm
for the unnormalized (left) and normalized (right) evolved hard function Hevoi at three
different orders in the evolution, using the MS mass. Lower left panel: Comparison
of the scale dependence at NNLL' for the MS mass and the pole mass. Lower right
panel: Impact of varying the ratio of rapidity scales vQ/lvm by a factor of two at
NNLL' as a function of pm, with the MS mass.

two-loop conversion at p = nit to obtain a)(p). For results with RG evolution

that sums large logarithms we use the so called primed counting, i.e. our results at

NLL' and NNLL' include NLL and NNLL evolution kernels together with the hard

function boundary conditions at O(a,) and O(a2), respectively. 5 For the rapidity

evolution we use the expression in Eq. (6.88), and the default rapidity scales vQ =Q

and vn = mt, where mt is either the MS mass ?net(fnt) or the pole mass.

To determine the impact on the normalization we first note that the two-loop

fixed order corrections to H Il) turn out to be small, giving at the central scale

'Going from NNLL' to an even higher order in the resummation, N3LL, does not affect any of
the conclusions in this section, and therefore, for convenience, we carry out our numerical analysis
at NNLL'.
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Pm = mt(fiit) a 2% correction and the fixed-order series

H t, , pm =- = 1 + 0.126(1-loop) + 0.015(2-loop) = 1.141. (6.95)

In the top-left panel of Fig. 6-2 we display the evolved hard function Hevo at the

first three orders in resummed perturbation theory for values of [i in the range

fn-t/2 < pm < 2f-. We use the MS mass scheme and the expressions for Hffu,

Hni and HY(n1 1) from Eqs. (6.92) and (6.93). As already observed in Ref. [50],

there is a significant correction when going from LL to NLL' order which more than

doubles Hevoi. From NLL' to NNLL' we observe that the correction is notably smaller,

indicating that the series has stabilized. Although the magnitude of these corrections

is not captured by the p, variation, it is of the size expected from studying the

uncertainty associated to the Afinal variation. The complete study of the /fnal variation

requires including the jet and soft functions, which cancel the pfina dependence of Hevoi

to the order one is working. We leave this for future work rather than taking it up

here. We observe that the pm dependence significantly decreases as we go to higher

order. This behavior is shown best in the top-right panel of Fig. 6-2, where the same

curves are plotted, but now normalized to Hevoi(pm = 'ht) at the respective order.

The two-loop result for the hard function H+ plays a key role in this reduction

of the scale dependence at NNLL'. Note that the size of the ti. variation of the blue

dashed curve at 2% correlates well with the size of the NNLO fixed order correction

in Eq. (6.95), which gives a +2% correction. Therefore it is reasonable to take the Pm

variation of the solid red curve in this figure as an estimate of the O(ce) correction

in Eq. (6.95), which we take to be 0.2%.

In the lower-left panel of Fig. 6-2 we compare the dependence on pm at NNLL' for

the MS mass with the corresponding result for the pole mass. In the pole mass case

we employ Eqs. (6.78) and (6.79) for H', H ) and H-.). We see that the pole

mass exhibits a larger sensitivity to the renormalization scale Pm implying a slightly

slower convergence of the perturbative series, potentially related to IR renormalon

effects.
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Finally, we can analyze the impact of the terms related to rapidity logarithms. For

Pm = Pit(?;tt), these terms yield a numerical contribution of -0.0014 in the fixed-order

full hard function H, (ft, Q/ft, Irn = fn-t) in Eq. (6.95). Due to a relatively small

coefficient, they do not give a significant correction in comparison with the remaining

two-loop contributions which give a numerical correction of 0.0166. Therefore, we

anticipate the dependence on the rapidity scales vg and um to be rather mild. In the

lower-right panel of Fig. 6-2 we plot Hvo at NNLL' for the MS mass as a function

of am, but now with three choices for vQ/vm. To obtain these results we varied vQ

up and down by a factor of two, but we note that equivalent results are obtained by

instead varying vm by a factor of two. We see that varying vl/vm by a factor of 2 gives

a negligible effect compared to the residual pm dependence at this order. Therefore,

we conclude that including an uncertainty from v-variation is not necessary to obtain

an estimate of the overall perturbative uncertainty of the cross section.

Now we summarize the results of this chapter. In the context of EFT factorization

for boosted top quark production, we have extracted the hard function Hn = Cm|2

describing virtual fluctuations at the top-mass scale, completely at two-loop order

using earlier results from Refs. [19, 59j. This result provides the last missing ingre-

dient needed to make N 3LL resummed predictions (up to the 4-loop cusp anomalous

dimension) for the invariant mass distribution of top-jets in the peak region using the

factorization theorem of Refs. [49, 50] given in Eq. (6.1). Particular focus was given

to the contributions to H. from heavy quark loops, which induce terms with a large

logarithm av2CFTFln(Q2 /m 2) that can not be treated with standard RG evolution in

p. These terms were computed once more directly using collinear and soft matrix

elements in SCET, and we have shown how they can be factorized using a rapidity

cutoff V, and RG evolved using rapidity renormalization group equations. Interest-

ingly, this factorization and RG evolution occurs within the Wilson coefficient Cm and

hence at the amplitude level. Using our result for Hm we have assessed the remaining

perturbative uncertainty associated to the top-mass scale, Pm ~ m, and estimate it

to be very small, 0.2%, predicting that the two-loop result for Hm provides a very

accurate result for this function. The total normalization uncertainty in the differen-
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tial cross section is expected to now be dominated by that from O(c,) perturbative

corrections to the low-scale soft and jet functions, which could be estimated by a

dedicated study of the residual Afinal dependence at NNLL' order.
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Chapter 7

Conclusion

In this thesis we have considered the application of effective field theories (EFT) for

precision determinations of the mass of the top quark, mt. We have shown that

effective field theories provide the needed sophistication to describe the multi-scale

process of the top production, decay, and hadronization at a hadron collider. EFTs

provide a practical framework for carrying out calculations that are otherwise quite

challenging in QCD. Using EFT methods we can accurately predict top-mass sensitive

kinematic observables such as a simple hemisphere mass measurement at a lepton

collider or more complex jet-mass measurements, with or without grooming, at hadron

colliders. A key feature of the first principles theory calculations presented here is that

they enable the top mass to be determined in a field theoretically well defined scheme,

a major shortcoming of more well-established Monte Carlo (MC) based methods.

By matching QCD successively onto SCET and then bHQET we can describe

the decay of boosted top quarks close to mass shell through a factorized formula for

the corresponding peaked cross section. By factorizing the cross section into separate

hard, soft and collinear components we are able to provide a description for the physics

at different scales. These energy scales are related to the top production process

and subsequent measurements on the final state particles. Through the bHQET jet

functions that encode physics of collinear particles of virtuality of the order the width

of the top quark (Fe) we are able to specify the top mass scheme.

Starting with the existing theory framework for describing top jets at lepton col-

217



liders, we extended this to extend it to the hadron collider case. We make use of the

2-jettiness measurement as a top-mass sensitive observable for the pp -* tt process.

The 2-jettiness cross section has the same bHQET jet functions as in the lepton col-

lider case, but now has a more sophisticated structure due to multiple color channels,

PDFs, and jet-based measurement. The initial state radiation and PDFs are described

through beam functions. We derive the form for hard matching between QCD and

SCET, and between SCET and bHQET that is now a matrix in color space.

While most calculations are carried out in perturbation theory, we are also able to

account for non-perturbative effects in the peak region by factorizing the soft function

into perturbative and non-perturbative functions. The scale of non-perturbative cor-

rections to the mass-spectrum is predominantly governed by the first moment Q 1 of

the non-perturbative function. The higher moments, when parameterized in terms of

dimensionless numbers scaled with powers of the first moment, only have subleading

effect on the peak position. We primarily considered x 2 = - 1. We further

showed through studies comparing factorization and PYTHIA that one can account

for dominant effects of the underlying event in addition to hadronization by simply

increasing Q1 and modifying x 2. This allows for top mass extraction by fitting the

factorized formula with only three unknown parameters.

We noted that the effects of UE can significantly affect the top-mass spectrum.

While these effects can be modeled through the non-perturbative function, it is prefer-

able like to work with observables that are less sensitive to this contamination. We

therefore took another step and added jet grooming to our set of tools. In particular,

we made use of the soft drop grooming procedure to drop wide angle radiation based

on the soft drop criteria that depends on two parameters zcut and # that specify the

minimum energy fraction of the particles kept in the groomed jet and sensitivity to

the angle between them respectively. This requires a more sophisticated setup in

EFT.

Building upon the studies for jets from massless quarks we derived the factoriza-

tion formula for soft drop groomed top jets. There is a more rich phenomenology

for groomed top jets compared to jets from massless quarks due to interesting effects
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from the top-decay products. The top-decay products, being commensurate in their

energies, can stop the soft drop groomer in certain kinematic situations. This also

changes the way non-perturbative corrections enter the cross section. As a result we

have two different versions of factorized formulas: the "decay" factorization theorem

where soft drop predominantly stops by comparing top decay products and the re-

sult depends on their angular distribution, and the "high-PT" factorization which is

a more direct generalization of the result for jets initiated by lighter quarks. Both

the forms, however, are quite similar in their perturbative content, and, for the range

of PTS that are experimentally possible, effectively only change the meaning of the

non-perturbative scale set by Q1 .

Soft drop grooming places non trivial restrictions on the range of groomer param-

eters for a given PT of the top jet. In order to have a simple effective theory treatment

for top mass measurements we find that we are restricted to a "light grooming" re-

gion. Light grooming limits us to ~ 1% level of grooming, which is much weaker than

more typical 10% level of grooming that is being employed currently at the LHC. We

further note that the light grooming is allowed only on top jets with PT > 500 GeV.

However, we show that even when restricted to the light grooming region the groomed

jet-mass distribution is quite robust to effects of underlying event, the activity in the

beam region, and the jet-radius. Furthermore, the groomed jet-mass distribution is

very similar to that of e+e- for similar kinematics.

We compare the results of factorization for groomed and ungroomed top jets with

PYTHIA simulations. Our preliminary study allows us to calibrate the MC top mass

parameter, mtC, and we find that it's definition is close to the MSR top mass with

R = 1, mMSR(R = 1GeV). Our calibration results for pole mass give mpole that is

about 0.5 - 1.0 GeV smaller than mMC.

The factorization theorems derived here allow for improvement in theoretical ac-

curacy by incorporating higher order matrix elements as they become available. By

also calculating of two-loop matching coefficient between SCET and bHQET at the

top mass scale we have now made available all the ingredients needed to evaluate the

dijet invariant mass cross section for the e+e- - tt process at N3 LL accuracy.

219



220



Appendix A

Phase Space Integrations

The factorization formula in Eq. (4.70) is differential in it, g, and PT of the top and

anti-top jets. This final form is obtained by performing the phase space integrals over

the top and anti-top jet momenta using constraints from momentum conservation

which we evaluate here. The differential momentum phase space for the top and

anti-top jets is given by

d4Dtf d = t~ (A. 1)
(27r)32Et ,(

and their four-momenta are parametrized as

ptJ = (E)t cosh qj, pt cos #t,f, p sin #t,e, E)t sinh ijf), (A.2)

where the jet energies are

ET= (p T )2 +m2 (A.3)

Using this parameterization of the jet momenta and working in the limit pt >> mt,

the jets differential phase space can be brought into the form

d~bt, =2(2r)_P dPtdtdt,. (A.4)
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Thus, the jet phase space integrals take the form

J dy J dot J d#J dpir Jdpf(ptpr),
4(27r)

6 J drt

(A.5)

and are performed using the momentum conservation delta function constraint:

6(4)(pa + P - Pt - P) = 6 (Q(Xa+Xb) -Ecosh 77t

(Q (Xa -Xb) tE sinh 7t

(Po 2 ETsin)6(p

(P COS cOs + ATr COS #i 6 (P

- Ef cosh 77i

- E4 sinh 77t)
t sin #t + pr sin Of

The azimuthal symmetry if the process allows us to choose a coordinate system where

#t = 0. This allows us to set qt = 0 in the integrand and then integrate over all

directions so that f dot = 27r. The delta function constraint can now be written as

6(4)(pa + P - Pt - P) = 6 (Q(Xa+Xb) - Et coshrqt - Ef coshrif

6 ( a2 - sinhr7t - E sinh 77

6 (p~1- +pr cos #) 6 sin

(A.7)

which can be brought into the form:

6(4 )(pa + P - t - Pt) = 6 (Q(Xa+Xb) - E coshit

6 (Q(Xa Xb) - E sin

6(+p cos )

--- [6(o) + o# r
PTr

hIrt

- Ecoshif)

- E4 sinh li)

(A.8)
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Since we have set #t = 0, for a non-zero value of pt +p' only the #i =7r (f #t = 0)

point in phase space will contribute in the last line of Eq. (A.8), which gives p' =

PT = PT. Performing the phase space integrals in Eq. (A.5) using the constraints in

Eq. (A.8), we are left with the useful result:

d1 J dIb (2r )4 6(4) (Pa + Pb - Pt - Pt) = ifdrt f df pOA

6 ( 2 PT cosh rIt - PT cosh 71f

6(Q(Xa - Xb) -PT sinh 1t - PT sinh rf)

(A.9)

which used in deriving the final form of the factorization formula in Eq. (4.70) that

is differential in rt, r, and PT of the top and anti-top jets.
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Appendix B

Direct Calculation of Cm in the

(n1 + 1)-flavor scheme

In Sec. 6.3 we directly computed the 9(a'CFTF) massive quark correction to Cmn1)

by using form factors in the nm-flavor scheme. Since this coefficient lives at the border

between the (n, + 1) and n1-flavor theories, we could just as well have carried out

the calculation for Cm by using form factors in the (n, + 1)-flavor scheme, and then

converted to an nl-flavor coupling at the very end. Of course the same result is

obtained in this approach, but there are a few subtle differences in the calculation,

which we discuss here.

In particular, in Sec. 6.3 we noted that for the 0(a'CFTF) correction in the ni-

flavor scheme, the bHQET graphs give no contribution. However, using the (n + 1)-

flavor scheme for the strong coupling this is no longer the case. To see this, consider

the ratio in Eq. (6.15) and express the denominator in the (n, + 1)-flavor scheme by

inverting the decoupling relation given in Eq. (6.30):

a ( = a 1+(s) 1 + a 3 (/)TF In 2  . (B.1)

Expanding in a, and using the notation in Eq. (6.7) we then get

CfFTF, ni 1) )m, , = [sTF, nl i)(Q, mA,) (B.2)
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37 InP2 bHQET C)(nl) (nl+1)~S -+ t

Here the second term comes from converting the strong coupling constant to (n + 1)-

flavors in the one-loop bHQET graph. Below we drop the flavors superscript on the

form factors. Here it should be understood that all the terms are now expressed in

the (ni + 1)-flavor scheme. Then combining Eq. (B.2) and Eq. (6.39), and Eq. (6.16)

we get

CCF TF, n1 + 1) Q,, = F(OSCFTF ,bare) (Q,m)-I U 
m2 I - +CET +

-(Tn2,O0) - af1+l(A)TF 1F(be)( )

+ ZCFTF) asF In ( )

(B.3)

FQET (T

Note that both FsCET and F(1 ) are IR divergent. This result can be simplified

by noting that in any flavor scheme the one-loop C2 is given by the difference of

one-loop renormalized SCET and bHQET amplitudes:

C() (M, P, y () = FjET(Q, m,A, t) - FQET( A, (B.4)

Using Eq. (B.4) in Eq. (B.3) we can then write down a simpler expression for CEFTF,n1 l):

C(CFTF,nl+1) =F(OSCFTFbare) FTF(Q A)
m - GET +SCET'

-- (l(m2,

- +(A)TF In
37w

(FSET(Q, m, A, ) - ZSCET(Q, A))

( 2)
= G (TFbare) + ZF) (QE T )

+ (1J(m2, 0)- (n + 01 ()T CET
37r C

a n + ( )TF m 2)
37r p2 /1 2
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A) .

0) C,(nl+l)(ft)TFI
37r 6)

(1) - AF't)HQET (Q
M

C M ,l ( , I . I'm )



This result can be used to compute CFTF,flI+). Comparing it with Eq. (6.42) we

see that it can be rewritten as

a(nl+l) M2 )C,C(CFTF, nI+1) = C(CFTF, n + (l ) ((B.
37 In 3 2 m

and hence is fully consistent with determining CEFTFnl) from Eq. (6.42) and then

simply applying the coupling conversion in Eq. (B.1) in the result. Note that in this

(n, + 1)-flavor scheme approach the bHQET one-loop amplitude contributes and plays

an important role in obtaining the scheme conversion term involving C.) in the last

line of Eq. (B.6).
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Appendix C

bHQET current anomalous dimension

at O(a4)

To extent the resummation of large logarithms in the factorization theorem in Eq. (6.1)

from NNLL to N 3LL the only missing ingredient - besides the cusp anomalous di-

mension at four-loops - is the O(a3) noncusp anomalous dimension of the bHQET

jet function or equivalently of the bHQET current (which are related to each other

via Eq. (6.20) with the known three loop result for -Ys). The latter has not been so

far given in the literature, but can be extracted from a recent result for the three-

loop anomalous dimension of a cusped Wilson loop [63, 64], which is equivalent to

the full anomalous dimension in HQET. Expanding their result in the lightlike limit

~m/Q - 0, we obtain with the help of the Mathematica package HPL [?]

7bHQET A) bt)

(9o5

n \3 2 490 5367r2 88 447r4
CFCA 4 L

(C.1)

686 608w 2  1480 44w 4  8w 2  1
++ (3 + + -(3-725i

+9 27 9 45 3 1

[(1672 160wr 2  224 712 1607r 2 
- 992 (3

+CFCAF 2 7  27 3 L 27 27 9

22_ 220 1~64 641
+CTF l22 - 6 4 (3 L - +64(3 +CF(TFni ) 2 -L -- I6

1\3 / 3 [ 27 27j
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where L = In[(-Q2 - iO)/m2 ]. The coefficient of this logarithm is proportional to the

well-known lightlike cusp anomalous dimension at three loops, TFUSp, while the non-

logarithmic ingredient of Eq. (C.1) represents the noncusp part. Together with the

corresponding anomalous dimension of the SCET current this enables one to predict

the logarithmic structure of Hm at three loops by solving Eq. (6.17). Furthermore

it allows one to extract the last missing ingredient to predict the full IR-divergent

structure of the three-loop full QCD form factor for massive quarks for m < Q, which

is for example in Ref. [59] the coefficient K(3 ) in Eq. (63).
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