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Abstract. The expressive power of Gaussian process (GP) models comes at a
cost of poor scalability in the size of the data. To improve their scalability, this
paper presents an overview of our recent progress in scaling up GP models for
large spatiotemporally correlated data through parallelization on clusters of ma-
chines, online learning, and nonmyopic active sensing/learning.

1 Introduction
Gaussian process (GP) models are a rich class of Bayesian non-parametric models that
can perform probabilistic regression by providing Gaussian predictive distributions with
formal measures of predictive uncertainty. Unfortunately, the expressive power of a full-
rank GP (FGP) model comes at a cost of poor scalability (i.e., cubic time) in the data
size, which hinders its practical use for large data generated from environmental sensing
and monitoring applications. To boost its scalability, two research trends are prevalent:
Model approximation. To improve the time efficiency of training with all the given
data, structural assumptions have been imposed on the FGP model to yield two different
classes of sparse GP approximation methods: (a) Low-rank approximate representations
[7,27,31] of the FGP model are especially suitable for modeling smoothly-varying en-
vironmental phenomena with high spatiotemporal correlation (i.e., long length-scales)
and they utilize all the data for predictions like FGP; and (b) localized regression and co-
variance tapering methods (e.g., local GPs [6,25] and compactly supported covariance
functions [11]) are capable of modeling highly-varying phenomena with low correlation
(i.e., short length-scales) but they use only local data for predictions, hence predicting
poorly in areas with sparse data. Recent sparse GP approximation methods [3,28,30]
have attempted to unify the best of both worlds.
Data/information gathering. Alternatively, the GP model can be trained with consider-
ably less but highly informative data that are actively (as opposed to passively) gathered
by optimizing some active sensing/learning4 criterion defined using mean-square error,
entropy, or mutual information [1,16,18,19]. This is particularly desirable in environ-
mental sensing applications and tasks constrained by some sampling budget.

This paper presents an overview of our recent progress in scaling up GP models
for large spatiotemporally correlated data along the two research directions discussed
above. The specific contributions of our three recent works [3,13,32] include:

4 Active sensing/learning in machine learning is also known as adaptive sampling in oceanogra-
phy and control [17].



Parallel GP models. Though existing sparse GP approximation methods utilizing low-
rank representations (i.e., including the unified approaches) [7,27,28,30,31] have im-
proved the scalability of GP models to linear time in the data size, they remain com-
putationally impractical for performing real-time predictions necessary in many time-
critical environmental sensing and monitoring applications and decision support sys-
tems (e.g., precision agriculture [19], sensing and monitoring of ocean, freshwater, and
traffic phenomena [1,2,4,5,10,17,18,20,21,26], GIS) that need to process and analyze
huge quantities of data collected over short time durations (e.g., in traffic, meteorology,
surveillance). To resolve this, our first work considers exploiting clusters of parallel ma-
chines to achieve efficient predictions in real time. The local GPs method [6] appears
most straightforward to be “embarrassingly” parallelized but they suffer from disconti-
nuities in predictions on the boundaries of different local GPs. The work of [25] rectifies
this problem by imposing continuity constraints along the boundaries in a centralized
manner. But, its use is restricted strictly to data with 1D and 2D input features.

Different from the parallel local GPs method, our proposed parallel GP models [3]
(Section 3), which exploit low-rank approximate representations for distributing the
computational load among parallel machines to achieve time efficiency and scalability,
do not suffer from boundary effects, work with multi-dimensional input features, and
exploit all the data for predictions but do not incur the cubic time cost of FGP model.
We theoretically guarantee the predictive performances of our parallel GP models to
be equivalent to that of some centralized sparse GP approximation methods and imple-
ment them using the message passing interface (MPI) framework to run in a cluster of
20 computing nodes for empirically evaluating their predictive performances, time effi-
ciency, scalability, and speedups on a dataset featuring a real-world traffic phenomenon.
Interestingly, our parallel GP models can be adapted to GP-based decentralized data fu-
sion algorithms to be run on a network of mobile sensors for cooperative perception of
spatiotemporally varying environmental phenomena, as detailed in [4,5].

Online GP model. When the data is expected to be streaming in over a (possibly indef-
initely) long period of time, it is computationally impractical to repeatedly use existing
offline sparse GP approximation methods [7,27,28,30,31] or online FGP model [9] for
training at each time step because they incur, respectively, linear and quadratic time in
the data size per time step. Our next work proposes a novel online sparse GP approxima-
tion method [32,22] (Section 4) that, in contrast to existing works mentioned above, is
capable of achieving constant time and memory (i.e., independent of data size) per time
step. We provide a theoretical guarantee on its predictive performance to be equivalent
to that of the offline sparse partially independent training conditional (PITC) approxi-
mation method. Our proposed method [32] generalizes the sparse online GP model of
[9] by relaxing its conditional independence assumption significantly, hence potentially
improving the predictive performance. We empirically demonstrate the practical feasi-
bility of using our generalized online sparse GP model through a real-world persistent
mobile robot localization experiment.

Nonmyopic active sensing/learning. Its objective is to derive an optimal sequential
policy that plans the most informative locations to be observed for minimizing the pre-
dictive uncertainty of the unobserved areas of a spatially varying environmental phe-
nomenon given a sampling budget (e.g., number of deployed sensors, energy consump-



tion). To achieve this, many existing active sensing algorithms [1,4,5,16,18,19,20] have
assumed the spatial correlation structure of the phenomenon modeled by GP (specif-
ically, the parameters defining it) to be known, which is often violated in real-world
applications. The predictive performance of the GP model in fact depends on how in-
formative the gathered observations are for both parameter estimation and spatial pre-
diction given the true parameters. Interestingly, as revealed in [23], policies that are ef-
ficient for parameter estimation are not necessarily efficient for spatial prediction with
respect to the true model parameters. Thus, active sensing/learning involves a potential
trade-off between sampling the most informative locations for spatial prediction given
the current, possibly incomplete knowledge of the parameters (i.e., exploitation) vs. ob-
serving locations that gain more information about the parameters (i.e., exploration). To
address this trade-off, one principled approach is to frame active sensing as a sequen-
tial decision problem that jointly optimizes the above exploration-exploitation trade-off
while maintaining a Bayesian belief over the model parameters. Solving this problem
then results in an induced policy that is guaranteed to be optimal in the expected ac-
tive sensing performance [13]. Unfortunately, such a nonmyopic Bayes-optimal active
learning (BAL) policy cannot be derived exactly due to an uncountable set of candi-
date observations and unknown model parameters. As a result, existing works advocate
using greedy policies [24] or performing exploration and exploitation separately [15]
to sidestep the difficulty of solving for the exact BAL policy. But, these algorithms
are sub-optimal in the presence of budget constraints due to their imbalance between
exploration and exploitation [13].

Our final work proposes a novel nonmyopic active sensing/learning algorithm [13,12]
(Section 5) that can still preserve and exploit the principled Bayesian sequential deci-
sion problem framework for jointly optimizing the exploration-exploitation trade-off
and hence does not incur the limitations of existing works. In particular, although the
exact BAL policy cannot be derived, we show that it is in fact possible to solve for a non-
myopic ε-Bayes-optimal active learning (ε-BAL) policy given an arbitrary loss bound ε.
To meet real-time requirement in time-critical applications, we then propose an asymp-
totically ε-optimal anytime algorithm based on ε-BAL with performance guarantee. We
empirically demonstrate using a dataset featuring a real-world traffic phenomenon that,
with limited budget, our approach outperforms state-of-the-art algorithms.

2 Modeling Environmental Phenomena with Gaussian Processes
The GP5 can be used to model an environmental phenomenon as follows: The phe-
nomenon is defined to vary as a realization of a GP. LetX be a set of sampling units rep-
resenting the domain of the phenomenon such that each sampling unit x ∈ X denotes
a d-dimensional feature vector and is associated with a realized (random) measurement
zx (Zx) if x is observed (unobserved). Let {Zx}x∈X denote a GP, that is, every finite
subset of {Zx}x∈X has a multivariate Gaussian distribution. The GP is fully specified
by its prior mean µx , E[Zx] and covariance σxx′|λ , cov[Zx, Zx′ |λ] for all locations

5 GP regression in machine learning is equivalent to the data assimilation scheme called ob-
jective analysis or optimal interpolation or 3DVAR in oceanography and meteorology [2,17]
when the domain is reduced to a finite set of grid points and all observations are at the grid
points. It is also equivalent to kriging in geostatistics [8].



x, x′ ∈ X , the latter of which characterizes the spatial correlation structure of the phe-
nomenon and can be defined using a covariance function parameterized by λ. When λ
is known and a set zD of realized measurements is observed for some set D ⊂ X of
sampling units, the FGP model can exploit these observations to predict the unobserved
measurement for any sampling unit x ∈ X \ D as well as provide its predictive uncer-
tainty using a Gaussian predictive distribution p(zx|x,D, zD, λ) = N (µx|D,λ, σxx|D,λ)
with the following posterior mean and variance, respectively:

µx|D,λ , µx+ΣxD|λΣ
−1
DD|λ (zD − µD) and σxx|D,λ , σxx|λ−ΣxD|λΣ−1DD|λΣDx|λ

(1)
where, with a slight abuse of notation, zD is to be perceived as a column vector, µD is
a column vector with prior mean components µx′ for all x′ ∈ D, ΣxD|λ is a row vec-
tor with prior covariance components σxx′|λ for all x′ ∈ D, ΣDx|λ is the transpose of
ΣxD|λ, and ΣDD|λ is a matrix with components σx′x′′|λ for all x′, x′′ ∈ D. When λ is
not known, a probabilistic belief bD(λ) , p(λ|zD) is maintained over all possible λ and
updated using Bayes’ rule to the posterior belief bD∪{x}(λ) ∝ p(zx|x,D, zD, λ) bD(λ)
given a new measurement zx. Then, using belief bD, the predictive distribution is ob-
tained by marginalizing out λ: p(zx|x,D, zD) =

∑
λ∈Λ p(zx|x,D, zD, λ) bD(λ).

3 Parallel GP Models
In this section, we will present a class of parallel GP models (pPITC and pPIC) that
distributes the computational load among parallel machines to achieve efficient and
scalable approximate GP prediction by exploiting the notion of a support set. The key
idea of the parallel partially independent training conditional (pPITC) approximation
of FGP model is as follows: After distributing the data evenly among N machines
(Step 1), each machine encapsulates its local data, based on a common prior support set
S ⊂ X where |S| � |D|, into a local summary that is communicated to the master6

(Step 2). The master assimilates the local summaries into a global summary (Step 3),
which is then sent back to the N machines to be used for predictions distributed among
them (Step 4). These steps are detailed below. For simplicity, we omit the use of the
known GP model parameters λ in our notations.
STEP 1: DISTRIBUTE DATA AMONG N MACHINES.
The data (D, yD) is partitioned evenly into N blocks, each of which is assigned to a
machine, as defined below:

Definition 1 (Local Data). The local data of machine n is defined as a tuple (Dn, yDn)
where Dn ⊆ D, Dn

⋂
Di = ∅ and |Dn| = |Di| = |D|/N for i 6= n.

STEP 2: EACH MACHINE CONSTRUCTS AND SENDS LOCAL SUMMARY TO MASTER.
Definition 2 (Local Summary). Given a common support set S ⊂ X known to all
N machines and the local data (Dn, yDn

), the local summary of machine n is de-
fined as a tuple (ẏnS , Σ̇

n
SS) where ẏnS , ΣSDnΣ

−1
DnDn|S (yDn − µDn) and Σ̇n

SS ,

ΣSDn
Σ−1DnDn|SΣDnS such that µDn

is defined in a similar manner as µD in (1) and
ΣDnDn|S is a matrix with posterior covariance components σxx′|S for all x, x′ ∈ Dn,
each of which is defined in a similar way as (1).

6 One of the N machines can be assigned to be the master.



Remark. Since the local summary is independent of the outputs yS , they need not be
observed. So, the support set S does not have to be a subset of D and can be selected
prior to data collection. Predictive performances of pPITC and pPIC are sensitive to the
selection of S. An informative support set S can be selected from domain X using an
iterative greedy active selection procedure [16] prior to observing data.
STEP 3: MASTER CONSTRUCTS AND SENDS GLOBAL SUMMARY TO N MACHINES.
Definition 3 (Global Summary). Given a common support set S ⊂ X known to all
N machines and the local summary (ẏnS , Σ̇

n
SS) of every machine n = 1, . . . , N , the

global summary is defined as a tuple (ÿS , Σ̈SS) where ÿS ,
∑N
n=1 ẏ

n
S and Σ̈SS ,

ΣSS +
∑N
n=1 Σ̇

n
SS .

STEP 4: DISTRIBUTE PREDICTIONS AMONG N MACHINES.
To predict the unobserved measurement for any set U of sampling units, U is parti-
tioned evenly into disjoint subsets U1, . . . ,UN to be assigned to the respective machines
1, . . . , N . So, |Un| = |U|/N for n = 1, . . . , N .

Definition 4 (pPITC). Given a common support set S ⊂ X known to all N machines
and the global summary (ÿS , Σ̈SS), each machine m computes a predictive Gaussian
distribution N (µ̂x, σ̂xx) of the unobserved measurement for all sampling units x ∈ Un
where µ̂x , µx +ΣxSΣ̈

−1
SS ÿS and σ̂xx , σxx −ΣxS

(
Σ−1SS − Σ̈

−1
SS

)
ΣSx.

Theorem 1. Let a common support set S ⊂ X be known to all N machines. Let
N (µPITC

x|D, σ
PITC
xx|D) be the predictive Gaussian distribution computed by the centralized

PITC approximation of FGP model [27] for all sampling units x ∈ U where

µPITC
x|D , µx+ΓxD (ΓDD + Λ)

−1
(yD − µD) and σPITC

xx|D , σxx−ΓxD (ΓDD + Λ)
−1
ΓDx
(2)

such that ΓBB′ , ΣBSΣ
−1
SSΣSB′ for all B,B′ ⊂ X and Λ is a block-diagonal matrix

constructed from the N diagonal blocks of ΣDD|S , each of which is a matrix ΣDnDn|S

for n = 1, . . . , N where D =
⋃N
n=1Dn. Then, µ̂x = µPITC

x|D and σ̂xx = σPITC
xx|D.

Remark. Since PITC generalizes the Bayesian Committee Machine (BCM) of [29],
pPITC generalizes parallel BCM [14], the latter of which assumes the support set S
to be U [27]. As a result, parallel BCM does not scale well with large U . Similarly,
since PITC reduces to the fully independent training conditional (FITC) approximation
method when Λ is a diagonal matrix constructed from σx′x′|S for all x′ ∈ D (i.e.,
N = |D|), pPITC generalizes parallel FITC.

Though pPITC scales very well with large data [3], it can predict poorly due to (a)
loss of information caused by summarizing the realized measurements and correlation
structure of the original data; and (b) sparse coverage of U by the support set. We pro-
pose a novel parallel partially independent conditional (pPIC) approximation of FGP
model that combines the best of both worlds, that is, the predictive power of FGP and
time efficiency of pPITC. pPIC is based on the following intuition: A machine can
exploit its local data to improve the predictions of unobserved measurements that are
highly correlated with its data. At the same time, pPIC can preserve the time efficiency
of pPITC by exploiting its idea of encapsulating information into local and global sum-
maries. The predictive Gaussian distribution computed by pPIC on each machine is (a)



more complicated mathematically because, to avoid exploiting the local data twice, its
contribution to the summary information has to be removed, and (b) proven to be equiv-
alent to that of the centralized PIC approximation of FGP model [30]. Interested readers
are referred to [3] for more details.
Remark 1. The above equivalence results imply that the computational load of the cen-
tralized PITC and PIC approximations of FGP can be distributed amongN parallel ma-
chines, hence improving the time efficiency and scalability of approximate GP predic-
tion. Supposing |U| < |D| and |S| < |D| for simplicity, theO(|S|2|D|+ |D|(|D|/N)2)

time incurred by PITC and O(|S|2|D|+ |D|(|D|/N)2 +N |D|) time incurred by PIC
can, respectively, be reduced to O(|S|2(|S|+N + |U|/N) + (|D|/N)3) incurred by
pPITC and O(|S|2(|S|+N + |U|/N) + (|D|/N)3 + |D|) time incurred by pPIC, the
latter of which scale better with increasing data size |D|. The speedups of pPITC and
pPIC over their centralized counterparts (a) deviate further from ideal speedup with
more machines N due to their additional O(|S|2N) time, and (b) grow with increas-
ing data size |D| because, unlike the additional O(|S|2|D|) time of PITC and PIC that
increase with more data, they do not have corresponding O(|S|2|D|/M) terms.
Remark 2. The equivalence results also shed some light on the underlying properties
of pPITC and pPIC based on the structural assumptions of PITC and PIC, respec-
tively: pPITC assumes that YD1 , . . . , YDM

, YU1 , . . . , YUM are conditionally indepen-
dent given YS . In contrast, pPIC can predict the unobserved measurements YU bet-
ter since it imposes a less restrictive assumption of conditional independence between
YD1

⋃
U1 , . . . , YDM

⋃
UM given YS . Experimental results on two real-world datasets [3]

show that pPIC achieves predictive accuracy comparable to FGP and significantly better
than pPITC, thus justifying the practicality of such an assumption.
Remark 3. Predictive performances of pPITC and pPIC are improved by increasing size
of S at the expense of greater time, space, and communication complexity [3].

Experiments and Discussion. This section empirically evaluates the predictive perfor-
mances, time efficiency, scalability, and speedups of our proposed parallel GPs against
their centralized counterparts and FGP on a dataset of size |D| = 41850 featuring a
real-world traffic phenomenon, which contains traffic speeds (km/h) along 775 road
segments of an urban road network (including highways, arterials, slip roads, etc.) dur-
ing the morning peak hours on April 20, 2011. The traffic speeds are the measurements.
The mean speed is 49.5 km/h and the standard deviation is 21.7 km/h. Each sampling
unit (i.e., road segment) is specified by a 5-dimensional vector of features: length, num-
ber of lanes, speed limit, direction, and time. The time dimension comprises 54 five-
minute time slots. This spatiotemporal traffic phenomenon is modeled using a relational
GP (previously developed in [5]) whose correlation structure can exploit both the road
segment features and road network topology information. 10% of the data is randomly
selected as test data for predictions (i.e., as U). Our experimental platform is a cluster
of 20 computing nodes connected via gigabit links: Each node runs a Linux system
with Intelr Xeonr CPU E5520 at 2.27 GHz and 20 GB memory. More details of our
experimental setup can be found in [3].

Fig. 1 shows that, with N = 20 machines and data size |D| = 32000, pPITC and
pPIC incur 2-4 orders of magnitude less time than FGP while achieving comparable
predictive performances (respectively, root mean square error (RMSE) differences of
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Fig. 1. Performance of parallel GP models with varying number N = 4, 8, 12, 16, 20 of ma-
chines, data size |D| = 32000, and support set size |S| = 2048. The ideal speedup of a parallel
algorithm is defined to be the number N of machines running it.

less than 0.2 km/h and 0.05 km/h). Specifically, pPITC and pPIC incur only 1-2 minutes
while FGP incurs more than 3.5 hours. Also, the speedups of pPITC and pPIC over
their centralized counterparts deviate further from ideal speedup with more machines, as
explained earlier. We have in fact proposed another parallel GP model in [3] called pICF
that exploits parallel incomplete Cholesky factorization. For implementation details of
pICF and more extensive experimental results, interested readers are referred to [3].

4 Generalized Online Sparse GP (GOSGP) Approximation
The key idea of our GOSGP approximation method [32] is to summarize the newly
gathered data at regular time intervals/slices, assimilate the summary information of the
new data with that of all the previously gathered data/observations, and then exploit the
resulting assimilated summary information to compute a Gaussian predictive distribu-
tion of the unobserved measurement for any sampling unit. For simplicity, we omit the
use of the known GP model parameters λ in our notations. Let x1:t−1 , {x1, . . . , xt−1}
denote a set of sampling units from time steps 1 to t − 1, each time slice n span time
steps (n − 1)τ + 1 to nτ for some user-defined slice size τ ∈ Z+, and the number of
time slices available thus far up until time step t be denoted by N (i.e., Nτ < t).

Definition 5 (Slice Summary). Given a support set S ⊂ X , a subsetDn , x(n−1)τ+1:nτ ∈
x1:t−1 of sampling units associated with time slice n, and the column vector zDn =
z(n−1)τ+1:nτ of corresponding realized measurements, the slice summary of time slice
n is defined as a tuple (µns , Σ

n
s ) for n = 1, . . . , N where µns , ΣSDnΣ

−1
DnDn|S(zDn −

µDn) and Σn
s , ΣSDnΣ

−1
DnDn|SΣDnS .

Definition 6 (Assimilated Summary). Given (µns , Σ
n
s ), the assimilated summary (µna , Σ

n
a )

of time slices 1 to n is updated from the assimilated summary (µn−1a , Σn−1
a ) of time

slices 1 to n − 1 using µna , µn−1a + µns and Σn
a , Σn−1

a + Σn
s for n = 1, . . . , N

where µ0
a , 0 and Σ0

a , ΣSS .

Remark 1. After constructing and assimilating (µns , Σ
n
s ) with (µn−1a , Σn−1

a ) to form
(µna , Σ

n
a ), Dn = x(n−1)τ+1:nτ , zDn

= z(n−1)τ+1:nτ , and (µns , Σ
n
s ) (Definition 5) are

no longer needed and can be removed from memory. As a result, at time step t where
Nτ + 1 ≤ t ≤ (N + 1)τ , only (µNa , Σ

N
a ), xNτ+1:t−1, and zNτ+1:t−1 have to be kept

in memory, thus requiring only constant memory (i.e., independent of t).
Remark 2. The slice summaries are constructed and assimilated at a regular time interval
of τ , specifically, at time steps Nτ + 1 for N ∈ Z+.



Theorem 2. Given S ⊂ X and (µNa , Σ
N
a ), our GOSGP approximation method com-

putes a Gaussian predictive distribution p(zt|xt, µNa , ΣN
a ) = N (µ̃xt , σ̃xtxt) of the

measurement for any xt ∈ X at time step t (i.e., Nτ + 1 ≤ t ≤ (N + 1)τ ) where

µ̃xt
, µxt

+ΣxtS
(
ΣN

a

)−1
µNa and σ̃xtxt

, σxtxt
−ΣxtS

(
Σ−1SS −

(
ΣN

a

)−1)
ΣSxt

.

(3)If t = Nτ + 1, µ̃xt
= µPITC

xt|x1:t−1
and σ̃xtxt

= σPITC
xtxt|x1:t−1

.

Remark 1. Theorem 2 implies that our GOSGP approximation method [32] is in fact
equivalent to an online learning formulation/variant of the offline PITC [27]. Supposing
τ < |S|, the O(t|S|2) time incurred by offline PITC can then be reduced to O(τ |S|2)
time (i.e., time independent of t) incurred by GOSGP [32] at time steps t = Nτ +1 for
N ∈ Z+ when slice summaries are constructed and assimilated. Otherwise, GOSGP
[32] only incurs O(|S|2) time per time step.
Remark 2. The above equivalence result allows the structural property of GOSGP [32]
to be elucidated using that of offline PITC: The measurements ZD1 , . . . , ZDN

, Zxt be-
tween different time slices are assumed to be conditionally independent given ZS . Such
an assumption enables the data gathered during each time slice to be summarized in-
dependently of that in other time slices. Increasing slice size τ (i.e., less frequent as-
similations of larger slice summaries) relaxes this conditional independence assumption
(hence, potentially improving the predictive performance), but incurs more time at time
steps when slice summaries are constructed and assimilated (see Remark 1).
Remark 3. Since offline PITC generalizes offline FITC, our GOSGP approximation
method [32] generalizes the online learning variant of FITC (i.e., τ = 1) [9].

WhenNτ+1 < t ≤ (N+1)τ (i.e., before the next slice summary of time sliceN+
1 is constructed and assimilated), the most recent observations (i.e., D′ , xNτ+1:t−1
and zD′ = zNτ+1:t−1), which are often highly informative, are not used to update µ̃xt

and σ̃xtxt
(3). This may hurt the predictive performance when τ is large. To resolve this,

we exploit incremental update formulas of Gaussian posterior mean and variance [32]
to update µ̃xt and σ̃xtxt with the most recent observations, thereby yielding a Gaussian
predictive distribution p(zt|xt, µNa , ΣN

a ,D′, zD′) = N (µ̃xt|D′ , σ̃xtxt|D′) where

µ̃xt|D′ , µ̃xt
+ Σ̃xtD′Σ̃

−1
D′D′ (zD′ − µ̃D′) and σ̃xtxt|D′ , σ̃xtxt

− Σ̃xtD′Σ̃
−1
D′D′Σ̃D′xt

(4)
such that µ̃D′ is a column vector with mean components µ̃x (i.e., defined similarly to
(3)) for all x ∈ D′, Σ̃xtD′ is a row vector with covariance components σ̃xtx (i.e., defined
similarly to (3)) for all x ∈ D′, Σ̃D′xt is the transpose of Σ̃xtD′ , and Σ̃D′D′ is a matrix
with covariance components σ̃xx′ (i.e., defined similarly to (3)) for all x, x′ ∈ D′.
Theorem 3. Computing (4) incursO(τ |S|2) time at time steps t = Nτ+1 forN ∈ Z+

and O(|S|2) time otherwise. It requires O(|S|2) memory at each time step.

So, GOSGP [32] incurs constant time and memory (i.e., independent of t) per time step.

Experiments and Discussion. In contrast to existing localization algorithms that train
the GP observation model of a Bayes filter offline, GOSGP [32] is used to learn it online
for persistent robot localization and the resulting algorithm is called GP-Localize [32].
The adaptive Monte Carlo localization (AMCL) package in ROS is run on a Pioneer
3-DX mobile robot mounted with a SICK LMS200 laser rangefinder to determine its
trajectory (Fig. 2a) and the 561 locations at which the relative light measurements are
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Fig. 2. (a) Pioneer 3-DX mobile robot trajectory of about 280 m in SMART FM IRG office/lab
generated by AMCL package in ROS, along which (b) 561 relative light (%) observations/data
are gathered at locations denoted by small colored circles. (c) Graphs of incurred time (s) per
time step vs. number of time steps comparing different GP localization algorithms.

taken using a weather board (Fig. 2b); these locations are assumed to be ground truth.
For empirical evaluation of GP-Localize with other real-world datasets, refer to [32].

The localization error (i.e., distance between the robot’s estimated and true loca-
tions) and scalability of GP-Localize are compared to that of two sparse GP localiza-
tion algorithms [32]: (a) The Subset of Data (SoD)-Truncate method uses |S| = 10 most
recent observations (i.e., compared to |D′| < τ = 10 most recent observations consid-
ered by GOSGP [32] besides the assimilated summary) as training data at each time
step while (b) the SoD-Even method uses |S| = 40 observations (i.e., compared to the
support set of |S| = 40 possibly unobserved locations selected prior to localization and
exploited by GOSGP [32]) evenly distributed over the time of localization. The scalabil-
ity of GP-Localize is further compared to that of GP localization algorithms employing
full GP (FGP) and offline PITC. GP-Localize, SoD-Truncate, and SoD-Even achieve,
respectively, localization errors of 2.1 m, 5.4 m, and 4.6 m averaged over all 561 time
steps and 3 runs. Fig. 2c shows the time incurred by GP-Localize, SoD-Truncate, SoD-
Even, FGP, and offline PITC at each time step. GP-Localize is clearly much more scal-
able (i.e., constant time) than FGP and offline PITC. Though it incurs slightly more
time than SoD-Truncate and SoD-Even, it can localize significantly better.

5 Nonmyopic ε-Bayes-Optimal Active Sensing/Learning
Problem Formulation. To cast active sensing as a Bayesian sequential decision prob-
lem, we define a sequential active sensing policy π , {πn}Nn=1 that is structured to
sequentially decide the next location πn(zD) ∈ X \ D to be observed at each stage
n based on the current observations zD over a finite planning horizon of N stages
(i.e., sampling budget). To measure the predictive uncertainty over unobserved areas
of the phenomenon, we use the entropy criterion and define the value under a policy π
to be the joint entropy of its selected observations when starting with some prior ob-
servations zD0 and following π thereafter [13]. The work of [19] has established that
minimizing the posterior joint entropy (i.e., predictive uncertainty) remaining in unob-
served locations of the phenomenon is equivalent to maximizing the joint entropy of
π. Thus, solving the active sensing problem entails choosing a sequential BAL policy
π∗n(zD) = argmaxx∈X\D Q

∗
n(zD, x) induced from the following N -stage Bellman

equations, as formally derived in [13]:

V ∗n (zD) , max
x∈X\D

Q∗n(zD, x)

Q∗n(zD, x) , E [− log p(Zx|x,D, zD)] + E
[
V ∗n+1(zD ∪ {Zx}) |x,D, zD

] (5)



for stage n = 1, . . . , N where p(zx|x,D, zD) is defined in Section 2 and the second
expectation term is omitted from right-hand side expression of Q∗N at stage N . Unfor-
tunately, since the BAL policy π∗ cannot be derived exactly, we instead consider solving
for an ε-BAL policy πε whose joint entropy approximates that of π∗ within ε > 0.

ε-BAL Policy. The key idea of our nonmyopic ε-BAL policy πε is to approximate the
expectation terms in (5) at every stage using truncated sampling. Specifically, given
realized measurements zD, a finite set of τ -truncated, i.i.d. observations {zix}Si=1 [13]
is generated and exploited for approximating V ∗n (5) through the following Bellman
equations:

V εn(zD) , max
x∈X\D

Qεn(zD, x)

Qεn(zD, x) ,
1

S

S∑
i=1

− log p
(
zix|x,D, zD

)
+ V εn+1

(
zD ∪

{
zix
}) (6)

for stage n = 1, . . . , N . The use of truncation is motivated by a technical necessity
for theoretically guaranteeing the expected active sensing performance (specifically, ε-
Bayes-optimality) of πε relative to that of π∗ [13].

Anytime ε-BAL (〈α, ε〉-BAL) Algorithm. Although πε can be derived exactly, the
cost of deriving it is exponential in the lengthN of planning horizon since it has to com-
pute the values V εn(zD) (6) for all (S|X |)N possible states (n, zD). To ease this com-
putational burden, we propose an anytime algorithm based on ε-BAL that can produce
a good policy fast and improve its approximation quality over time. The key intuition
behind our anytime ε-BAL algorithm (〈α, ε〉-BAL) is to focus the simulation of greedy
exploration paths through the most uncertain regions of the state space (i.e., in terms of
the values V εn(zD)) instead of evaluating the entire state space like πε. Interested readers
are referred to [13] for more details.

Experiments and Discussion. This section evaluates the active sensing performance
and time efficiency of our 〈α, ε〉-BAL policy π〈α,ε〉 empirically under using a real-
world dataset of a large-scale traffic phenomenon (i.e., speeds of road segments) over
an urban road network; refer to [13] for additional experimental results on a simulated
spatial phenomenon. Fig. 3a shows the urban road network X comprising 775 road
segments in Tampines area, Singapore during lunch hours on June 20, 2011. Each road
segment x ∈ X is specified by a 4D vector of features: length, number of lanes, speed
limit, and direction. More details of our experimental setup can be found in [13].

The performance of our 〈α, ε〉-BAL policies with planning horizon length N ′ =
3, 4, 5 are compared to that of APGD and IE policies [15] by running each of them on a
mobile robotic probe to direct its active sensing along a path of adjacent road segments
according to the road network topology. Fig. 3 shows results of the tested policies av-
eraged over 5 independent runs: It can be observed from Fig. 3b that our 〈α, ε〉-BAL
policies outperform APGD and IE policies due to their nonmyopic exploration behav-
ior. Fig. 3c shows that 〈α, ε〉-BAL incurs < 4.5 hours given a budget of N = 240 road
segments, which can be afforded by modern computing power. To illustrate the behav-
ior of each policy, Figs. 3d-f show, respectively, the road segments observed (shaded in
black) by the mobile probe running APGD, IE, and 〈α, ε〉-BAL policies with N ′ = 5
given a budget of N = 60. Interestingly, Figs. 3d-e show that both APGD and IE
cause the probe to move away from the slip roads and highways to low-speed segments
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Fig. 3. (a) Traffic phenomenon (i.e., speeds (km/h) of road segments) over an urban road network,
graphs of (b) root mean square prediction error (RMSPE) of APGD, IE, and 〈α, ε〉-BAL policies
with horizon length N ′ = 3, 4, 5 and (c) total online processing cost of 〈α, ε〉-BAL policies with
N ′ = 3, 4, 5 vs. budget of N segments, and (d-f) road segments observed (shaded in black) by
respective APGD, IE, and 〈α, ε〉-BAL policies (N ′ = 5) with N = 60.

whose measurements vary much more smoothly; this is expected due to their myopic
exploration behavior. In contrast, 〈α, ε〉-BAL nonmyopically plans the probe’s path and
direct it to observe the more informative slip roads and highways with highly varying
traffic measurements (Fig. 3f) to achieve better performance.
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