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Abstract

In this paper, we study the task of detecting semantic parts of an object, e.g., a wheel of a car,
under partial occlusion. We propose that all models should be trained without seeing occlusions while
being able to transfer the learned knowledge to deal with occlusions. This setting alleviates the diffi-
culty in collecting an exponentially large dataset to cover occlusion patterns and is more essential. In
this scenario, the proposal-based deep networks, like RCNN-series, often produce unsatisfactory re-
sults, because both the proposal extraction and classification stages may be confused by the irrelevant
occluders. To address this, [25] proposed a voting mechanism that combines multiple local visual cues
to detect semantic parts. The semantic parts can still be detected even though some visual cues are
missing due to occlusions. However, this method is manually-designed, thus is hard to be optimized in
an end-to-end manner.

In this paper, we present DeepVoting, which incorporates the robustness shown by [25] into a
deep network, so that the whole pipeline can be jointly optimized. Specifically, it adds two layers
after the intermediate features of a deep network, e.g., the pool-4 layer of VGGNet. The first layer
extracts the evidence of local visual cues, and the second layer performs a voting mechanism by
utilizing the spatial relationship between visual cues and semantic parts. We also propose an improved
version DeepVoting+ by learning visual cues from context outside objects. In experiments, DeepVoting
achieves significantly better performance than several baseline methods, including Faster-RCNN, for
semantic part detection under occlusion. In addition, DeepVoting enjoys explainability as the detection
results can be diagnosed via looking up the voting cues.
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Abstract

In this paper, we study the task of detecting semantic
parts of an object, e.g., a wheel of a car, under partial occlu-
sion. We propose that all models should be trained without
seeing occlusions while being able to transfer the learned
knowledge to deal with occlusions. This setting alleviates
the difficulty in collecting an exponentially large dataset to
cover occlusion patterns and is more essential. In this sce-
nario, the proposal-based deep networks, like RCNN-series,
often produce unsatisfactory results, because both the pro-
posal extraction and classification stages may be confused
by the irrelevant occluders. To address this, [25] proposed a
voting mechanism that combines multiple local visual cues
to detect semantic parts. The semantic parts can still be de-
tected even though some visual cues are missing due to oc-
clusions. However, this method is manually-designed, thus
is hard to be optimized in an end-to-end manner.

In this paper, we present DeepVoting, which incorporates
the robustness shown by [25] into a deep network, so that
the whole pipeline can be jointly optimized. Specifically, it
adds two layers after the intermediate features of a deep
network, e.g., the pool-4 layer of VGGNet. The first layer
extracts the evidence of local visual cues, and the second
layer performs a voting mechanism by utilizing the spatial
relationship between visual cues and semantic parts. We
also propose an improved version DeepVoting+ by learning
visual cues from context outside objects. In experiments,
DeepVoting achieves significantly better performance than
several baseline methods, including Faster-RCNN, for se-
mantic part detection under occlusion. In addition, Deep-
Voting enjoys explainability as the detection results can be
diagnosed via looking up the voting cues.

1. Introduction
Deep networks have been successfully applied to a wide

range of vision tasks, in particular object detection [7, 20,

∗The first three authors contributed equally to this work.

19, 13, 29]. Recently, object detection is dominated by a
family of proposal-based approaches [7, 20], which first
generates a set of object proposals for an image, followed
by a classifier to predict objects’ score for each proposal.
However, semantic part detection, despite its importance,
has been much less studied. A semantic part is a fraction of
an object which has semantic meaning and can be verbally
described, such as a wheel of a car or a chimney of a train.
Detecting semantic parts is a human ability, which enables
us to recognize or parse an object at a finer scale.

In the real world, semantic parts of an object are fre-
quently occluded, which makes detection much harder. In
this paper, we investigate semantic part detection especially
when these semantic parts are partially or fully occluded.
We use the same datasets as in [25], i.e., the VehicleSeman-
ticPart dataset and the VehicleOcclusion dataset. Some typ-
ical semantic part examples are shown in Figure 1. Note
that, the VehicleOcclusion dataset is a synthetic occlusion
dataset, where the target object is randomly superimposed
with two, three or four irrelevant objects (named occluders)
and the occlusion ratios of the target object is constrained.
To the best of our knowledge, VehicleOcclusion is the only
public occlusion dataset that provides accurate occlusion
annotations of semantic parts like the occlusion ratio and
number of occluders. This allows us to evaluate different
methods under different occlusion difficulty levels.

One intuitive solution of dealing with occlusion is to
train a model on the dataset that covers different occlusion
cases. However, it is extremely difficult yet computationally
intractable to collect a dataset that covers occlusion patterns
of different numbers, appearances and positions. To over-
come this difficulty, we suggest a more essential solution,
i.e, training detectors only on occlusion-free images, but al-
lowing the learned knowledge (e.g., the spatial relationship
between semantic parts, etc.) to be transferred from non-
occlusion images to occlusion images. This motivates us to
design models that are inherently robust to occlusions. A
related work is [25], which pointed out that proposal-based
deep networks are less robust to occlusion, and instead pro-
posed a voting mechanism that accumulates evidences from
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Figure 1. Typical semantic parts on six types of rigid objects from the VehicleSemanticPart dataset [25]. Some semantic parts (e.g., wheel)
can appear in different object classes, while some others (e.g., chimney) only appear in one class (train).

multiple local visual cues, and locate the semantic parts
with the help of geometric constraints (i.e., the spatial re-
lationship between the visual cues and the target semantic
part). However, this manually-designed framework is bro-
ken down into several stages, and thus it is difficult to op-
timize it in an end-to-end manner. This motivates us to see
if the robustness shown in [25] can be incorporated into a
deep network which enables end-to-end training naturally.

To this end, we propose DeepVoting, an end-to-end
framework for semantic part detection under partial occlu-
sion. Specifically, we add two convolutional layers after
the intermediate features of a deep neural network, e.g., the
neural responses at the pool-4 layer of VGGNet. The first
convolutional layer performs template matching and out-
puts local visual cues named visual concepts, which were
verified to be capable of detecting semantic parts [26]. This
layer is followed by a ReLU activation [16], which sets a
threshold for filtering the matched patterns, and a dropout
layer [22], which allows part of evidences to be missing.
After that, the second convolution layer is added to perform
a voting mechanism by utilizing the spatial relationship be-
tween visual cues and semantic parts. The spatial/geometric
relations are stored as convolutional weights and visual-
ized as spatial heatmaps. The visual concepts and spatial
heatmaps can be learned either on foreground objects only
or on whole image with context. We first follow [25] to train
our model on foreground objects only by cropping the ob-
ject bounding boxes. We further show that visual concepts
and spatial heatmaps can also exploit context information
by using the whole image to train our model, and we call
this improved version DeepVoting+.

We investigate both DeepVoting and DeepVoting+ in our
experiments. The first version, in which contexts are ex-
cluded, significantly outperforms [25] with the same set-
ting, arguably because the end-to-end training manner pro-
vides a stronger method for joint optimization. The sec-
ond version, which allows contextual cues to be incorpo-
rated, fits the training data better and consequently produces
higher detection accuracies. In comparison to the state-of-
the-art object detectors such as Faster-RCNN [20], Deep-

Voting enjoys a consistent advantage, and the advantage
becomes more significant as the occlusion level goes up.
DeepVoting brings two additional benefits apart from be-
ing robust to occlusion: (i) DeepVoting enjoys much lower
model complexity, i.e., the number of parameters is one or-
der of magnitude smaller, and the average testing speed is
2.5× faster; and (ii) DeepVoting provides the possibility to
interpret the detection results via looking up the voting cues.

2. Related Work
Deep convolutional neural networks have been applied

successfully to a wide range of computer vision prob-
lems, including image recognition [11, 21, 23, 9], seman-
tic segmentation [14, 2, 30], object detection [7, 20, 19,
13, 29], etc. For object detection, one of the most pop-
ular pipeline [7, 20] involved first extracting a number of
regions named object proposals [1, 24, 12, 20], and then
determining if each of them belongs to the target class.
Bounding-box regression and non-maximum suppression
were attached for post-processing. This framework signif-
icantly outperforms the deformable part-based model [6]
trained on top of a set of handcrafted features [4].

There are some works using semantic parts to assist ob-
ject detection [3, 31]. Graphical model was used to assem-
ble parts into an object. Also, parts can be used for fine-
grained object recognition [28, 27], be applied as auxiliary
cues to understand classification [10], or be trained for ac-
tion and attribute classification [8]. Besides, [17] investi-
gated the transferability of semantic parts across a large tar-
get set of visually dissimilar classes in image understanding.

Detecting semantic parts under occlusion is an impor-
tant problem but was less studied before. [25] combined
multiple visual concepts via the geometric constraints, i.e.,
the spatial distribution of the visual concepts related to the
target semantic parts, to obtain a strong detector. Different
from [25], DeepVoting implements visual concept extrac-
tion and the geometric relationships as two layers, and at-
tach them directly to the intermediate outputs of a deep neu-
ral network to perform an end-to-end training. This yields
much better performance compared to [25].



3. The DeepVoting Framework
3.1. Motivation

We aim at detecting the semantic parts of an object un-
der occlusion. First of all, we argue that only occlusion-free
images should be used in the training phase. This is be-
cause the appearance and position of the occluders can be
arbitrary, thus it is almost impossible to cover all of them
by a limited training set. It is our goal to design a frame-
work which can transfer the learned knowledge from the
occlusion-free domain to the occlusion domain.

One possible solution is to adapt the state-of-the-art ob-
ject detection methods, such as Faster-RCNN [20], to de-
tect semantic parts. Specifically, the adapted methods first
extract a number of proposals for semantic parts and then
compute the classification scores for each of them. But, we
point out that this strategy may miss some partially or fully
occluded semantic parts because of two important factors:
(1) occlusion may distract the proposal generation network
from extracting good proposals for semantic parts; (2) even
with correct proposals, the classifier may still go wrong
since the appearance of the occluded semantic parts can be
totally different. We verify that these factors indeed down-
grade the performance of Faster-RCNN in Section 4.3.

The voting mechanism [25] suggests an alternative strat-
egy, which accumulates mid-level visual cues to detect
high-level semantic parts. These mid-level cues are called
visual concepts [26], i.e., a set of intermediate CNN states
which are closely related to semantic parts. A semantic part
is supported by multiple visual concepts via the geometric
constraints between them. Even if the evidences from some
visual concepts are missing due to occlusion, it is still pos-
sible to infer the presence of the semantic part via the evi-
dences from the remaining ones. However, it involves too
many hyper-parameters and thus is hard to be optimized.

In this paper, we propose DeepVoting which incorpo-
rates the robustness shown by [25] into a deep network.
Following [26], the visual concepts are learned when the
objects appear at a fixed scale since each neuron on the in-
termediate layer, e.g., the pool-4 layer, has a fixed recep-
tive field size [21]. Therefore, we assume that the object
scale is approximately the same in both training and test-
ing stages. In the training stage, we used the ground-truth
bounding box to resize the object for the DeepVoting, and
compute the object-to-image ratio to train a standalone net-
work, ScaleNet [18], for scale prediction (see Section 3.4
for details). In the testing stage, the trained ScaleNet was
used to predict the resizing ratio, and then we resize the
testing image according to the predicted ratio.

3.2. Formulation

Let I denote an image with a size of W × H . Follow-
ing [25], we feed this image into a 16-layer VGGNet [21],

and extract the pool-4 features as a set of intermediate neu-
ral outputs. Denote the output of the pool-4 layer as X, or a
W ′×H ′×D cube, where W ′ and H ′ are the down-sampled
scales of W and H , and D is 512 for VGGNet. These fea-
tures can be considered as W ′ ×H ′ high-dimensional vec-
tors, and each of them represents the appearance of a local
region. Denote each D-dimensional feature vector as xi

where i is an index at the W ′ × H ′ grid. These feature
vectors are `2-normalized so that ‖xi‖2 = 1.

3.2.1 Visual Concept Extraction

In [25], a set of visual concepts V = {v1, . . . ,vK} are ob-
tained via K-means clustering, and each visual concept is
considered intuitively as a template to capture the mid-level
semantics from these intermediate outputs. Specifically, the
response of the visual concept vk at the pool-4 feature vec-
tor xi is measured by the `2-distance, i.e., ‖vk − xi‖22.

We note that xi has unit length, and so ‖vk‖2 ≈ 1 as
it is averaged over a set of neighboring xi’s, so we have
‖vk − xi‖22 ≈ 2− 2 〈vk,xi〉 where 〈·, ·〉 is the dot product
operator. Then the log-likelihood ratio tests are applied to
eliminate negative responses. This is driven by the idea that
the presence of a visual concept can provide positive cues
for the existence of a semantic part, but the absence of a
visual concept shall not give the opposite information.

Different from [25], DeepVoting implements this mod-
ule as a convolutional layer, namely visual concept layer,
and attaches it directly after the normalized intermediate
outputs of a deep neural network. The kernel size of this
convolutional layer is set to be 1× 1, i.e., each xi is consid-
ered individually. The ReLU activation [16] follows to set
the negative responses as 0’s and thus avoids them from pro-
viding negative cues. We append a dropout layer [22] with
a drop ratio 0.5, so that a random subset of the visual con-
cept responses are discarded in the training process. This
strategy facilitates the model to perform detection robustly
using incomplete information and, consequently, improves
the testing accuracy when occlusion is present.

The output of visual concept layer is a map Y of size
W ′ ×H ′ × |V|, where V is the set of visual concepts. We
set |V| = 256, though a larger set may lead to slightly better
performance. Although these visual concepts are trained
from scratch rather than obtained from clustering [26], we
show in Section 4.4 that they are also capable of capturing
repeatable visual patterns and semantically meaningful.

3.2.2 Semantic Part Detection via the Voting Layer

After the previous stage, we can find some fired visual con-
cepts, i.e., those positions with positive response values.
In [25], the fired visual concepts are determined via log-
likelihood ratio tests. These fired visual concepts are then
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Figure 2. The overall framework of DeepVoting (best viewed in color). A car image with two wheels (marked by red frames, one of
them is occluded) is fed into VGGNet [21], and the intermediate outputs are passed through a visual concept extraction layer and a voting
layer. We aggregate local cues from the visual concept map (darker blue indicates more significant cues), consider their spatial relationship
to the target semantic part via voting, and obtain a low-resolution map of semantic parts (darker red or a larger number indicates higher
confidence). Based on this map, we perform bounding box regression followed by non-maximum suppression to obtain the final results.

accumulated together for semantic part detection by con-
sidering the spatial constraints between each pair of visual
concept and semantic part. It is motivated by the nature that
a visual concept can, at least weakly, suggest the existence
of a semantic part. For example, as shown in Figure 2, in a
car image, finding a headlight implies that there is a wheel
nearby, and the distance and direction from the headlight to
the wheel are approximately the same under a fixed scale.

Different from [25], DeepVoting implements the spatial
constraints between visual concepts and the semantic parts
as another convolutional layer, named the voting layer, in
which we set the receptive field of each convolutional kernel
to be large, e.g., 15×15, so that a visual concept can vote for
the presence of a semantic part at a relatively long distance.
This strategy helps particularly when the object is partially
occluded, as effective visual cues often emerge outside the
occluder and may be far from the target.

Though the spatial constraints are learned from scratch
and only semantic part level supervision is imposed during
training, they can still represent the frequency that visual
concepts appear at different relative positions. We refer to
each learned convolutional kernel at this layer as a spatial
heatmap, and some of them are visualized in Section 4.4.

Denote the output of the voting layer, i.e., the semantic
part map, as Z. It is a W ′ ×H ′ × |S| cube where S is the
set of semantic parts. Each local maximum at the seman-
tic part map corresponds to a region on the image lattice
according to their receptive filed. To generate a bounding
box for semantic part detection, we first set an anchor box,
sized 100 × 100 and centered at this region, and then learn
the spatial rescaling and translation to regress the anchor
box (following the same regression procedure in [7]) from
the training data. The anchor size 100× 100 is the average
semantic part scale over the entire training dataset [25].

3.3. Training and Testing

We train the network on an occlusion-free image corpus.
This helps us obtain clear relationship between the visual
concepts and the semantic parts. We discard the background

region by cropping the object according to the ground-truth
bounding box, to be consistent with [25]. Then, we rescale
the cropped image so that the object short edge has 224 pix-
els, which is motivated by [26] to capture the visual con-
cepts at a fixed scale. The image is fed into the 16-layer
VGGNet, and we get the feature vectors at the pool-4 layer.

These feature vectors are normalized and passed through
two layers for visual concept extraction and voting. We
compare the output semantic part map Z with the ground-
truth annotation L by computing dice coefficient between
prediction and ground-truth [15]. To generate the ground-
truth, we find the nearest grid point at the W ′ × H ′ grid
(down-sampled from the original image by the factor of 16)
based on the center pixel of each annotated semantic part,
and set the labels of these positions as 1 and others as 0.
Then we apply Gaussian filtering on the binary ground-truth
annotation, to generate the smoothed ground-truth annota-
tion L. The label cube L is also of size W ′×H ′×|S|. The
similarity between Z and L is defined as:

D(Z,L) = 1

|S|

|S|∑

s=1

2×∑W ′,H′

w=1,h=1zw,h,s × lw,h,s

∑W ′,H′

w=1,h=1

(
z2w,h,s + l2w,h,s

) , (1)

It is straightforward to compute the gradients based on the
loss function L(Z,L) = 1−D(Z,L).

On the testing stage, we first use ScaleNet (see Sec-
tion 3.4) to obtain the object scale. Then, we rescale the
image so that the short edge of the object roughly contains
224 pixels. We do not crop the object because we do not
know its location. Then, the image is passed through the
VGGNet followed by both visual concept extraction and
voting layers, and finally we apply the spatial rescaling and
translation to the anchor box (100× 100) towards more ac-
curate localization. A standard non-maximum suppression
is performed to finalize the detection results.

DeepVoting is trained on the images cropped with
respect to the object bounding boxes to be consistent
with [25]. Moreover, visual concepts and spatial heatmaps
can also exploit context outside object bounding boxes. To



Figure 3. Examples of images in VehicleSemanticPart dataset and VehicleOcclusion dataset. The first is the original occlusion-free image
from VehicleSemanticPart dataset. The second, third and forth image (in row-major order) are from VehicleOcclusion dataset. There are
2, 3 and 4 occluders, and the occluded ratio of object, computed by pixels, is 0.2–0.4, 0.4–0.6 and 0.6–0.8, respectively.

verify this, we train an improved version, named DeepVot-
ing+, without cropping the bounding boxes. We also resize
the image so that the object short edge contains 224 pixels
in the training stage, and the testing stage is the same as
DeepVoting. Experiments show that DeepVoting+ achieves
better performance than DeepVoting.

3.4. The Scale Prediction Network

The above framework is based on an important assump-
tion, that the objects appear in approximately the same
scale. This is due to two reasons. First, as shown in [26],
the visual concepts emerge when the object is rescaled to
the same scale, i.e., the short edge of the object bounding
box contains 224 pixels. Second, we expect the voting layer
to learn fixed spatial offsets which relate a visual concept to
a semantic part. As an example, the heatmap delivers the
knowledge that in the side view of a car, the headlight of-
ten appears at the upperleft direction of a wheel, and the
spatial offset on x and y axes are about 64 and 48 pixels (4
and 3 at the pool-4 grid), respectively. Such information is
not scale-invariant.

To deal with these issues, we introduce an individual net-
work, namely the ScaleNet [18], to predict the object scale
in each image. The main idea is to feed an input image
to a 16-layer VGGNet for a regression task (the fc-8 layer
is replaced by a 1-dimensional output), and the label is the
ground-truth object size. Each input image is rescaled, so
that the long edge contains 224 pixels. It is placed at the
center of an 224× 224 square and the remaining pixels are
filled up with the averaged intensity. During the training,
we consider the short edge of the object, and ask the deep
network to predict the ratio of the object short edge to the
image long edge (224 pixels). In the test phase, an image
is prepared and fed into the network in the same flowchart,
and the predicted ratio is used to normalize the object to
the desired size, i.e., its short edge contains 224 pixels. We
show in Section 4.2.1 that this method works very well.

3.5. Discussions and Relationship to Other Works

The overall framework of DeepVoting is quite different
from the conventional proposal-based detection methods,
such as Faster-RCNN [20]. This is mainly due to the prob-

lem setting, i.e., when the occlusion is present, the accuracy
of both proposal and classification networks becomes lower.
However, DeepVoting is able to infer the occluded semantic
parts via accumulating those non-occluded visual cues. We
show more comparative experiments in Section 4.3.

We decompose semantic part detection into two steps,
i.e., central pixel detection and bounding box regression.
The first step is performed like semantic segmentation [14]
in a very low-resolution setting (down-sampled from the
original image by the factor of 16). We also borrow the
idea from segmentation [15], which uses a loss function re-
lated to the dice coefficient in optimization. As the seman-
tic part is often much smaller compared to the entire image,
this strategy alleviates the bias of data imbalance, i.e., the
model is more likely to predict each pixel as background as
it appears dominantly in the training data.

4. Experiments

4.1. Dataset and Baseline

We use the VehicleSemanticPart dataset and the Vehi-
cleOcclusion dataset [25] for evaluation. The VehicleSe-
manticPart dataset contains 4549 training images and 4507
testing images covering six types of vehicles, i.e., airplane,
bicycle, bus, car, motorbike and train. In total, 133 se-
mantic parts are annotated. For each test image in Vehicle-
SemanticPart dataset, some randomly-positioned occluders
(irrelevant to the target object) are placed onto the target
object, and make sure that the occlusion ratio of the target
object is constrained. Figure 3 shows several examples with
different occlusion levels.

We train six models, one for each object class. All the
models are trained on an occlusion-free dataset, but evalu-
ated on either non-occluded images, or the images with dif-
ferent levels of occlusions added. In the later case, we vary
the difficulty level by occluding different fractions of the
object. We evaluate all the competitors following a popular
criterion [5], which computes the mean average precision
(mAP) based on the list of detected semantic parts. A de-
tected box is considered to be true-positive if and only if its
IoU rate with a ground-truth box is not lower than 0.5. Each
semantic part is evaluated individually, and the mAP of each



No Occlusions L1 L2 L3
Category KVC DVC VT FR DV DV+ VT FR DV DV+ VT FR DV DV+ VT FR DV DV+
airplane 15.8 26.6 30.6 56.9 59.0 60.2 23.2 35.4 40.6 40.6 19.3 27.0 31.4 32.3 15.1 20.1 25.9 25.4
bicycle 58.0 52.3 77.8 90.6 89.8 90.8 71.7 77.0 83.5 85.2 66.3 62.0 78.7 79.6 54.3 41.1 63.0 62.5
bus 23.8 25.1 58.1 86.3 78.4 81.3 31.3 55.5 56.9 65.8 19.3 40.1 44.1 54.6 9.5 25.8 30.8 40.5
car 25.2 36.5 63.4 83.9 80.4 80.6 35.9 48.8 56.1 57.3 23.6 30.9 40.0 41.7 13.8 19.8 27.3 29.4
motorbike 32.7 29.2 53.4 63.7 65.2 69.7 44.1 42.2 51.7 55.5 34.7 32.4 41.4 43.4 24.1 20.1 29.4 31.2
train 12.3 12.8 35.5 59.9 59.4 61.2 21.7 30.6 33.6 43.7 8.4 17.7 19.8 29.8 3.7 10.9 13.3 22.2
mean 28.0 30.4 53.1 73.6 72.0 74.0 38.0 48.3 53.7 58.0 28.6 35.0 42.6 46.9 20.1 23.0 31.6 35.2

Table 1. Left 6 columns: Comparison of detection accuracy (mean AP, %) of KVC, DVC, VT, FR, DV and DV+ without occlusion.
Right 12 columns: Comparison of detection accuracy (mean AP, %) of VT, FR, DV and DV+ when the object is occluded at three different
levels. Note that DV+ is DeepVoting trained with context outside object bounding boxes. See the texts for details.

object class is the average mAP over all the semantic parts.
DeepVoting and DeepVoting+ (denoted by DV and DV+,

respectively, Section 3.3) are compared with four baselines:

• KVC: These visual concepts are clustered from a set
of pool-4 features using K-Means [26]. The ScaleNet
(detailed in Section 3.4) is used to tackle scale issue
and the extracted visual concepts are directly used to
detect the semantic parts.

• DVC: These visual concepts are obtained from Deep-
Voting, i.e., the weights of the visual concept extrac-
tion layer. The ScaleNet (detailed in Section 3.4) is
used to tackle scale issue and the extracted visual con-
cepts are directly used to detect the semantic parts.

• VT: The voting method first finds fired visual concepts
via log-likelihood ratio tests, and then utilizes spatial
constraints to combine these local visual cues.

• FR: We train models for each category independently.
Each semantic part of a category is considered as a
separate class during training, i.e., for each category,
we train a model with |S| + 1 classes, corresponding
to |S| semantic parts and the background. Different
from other baselines, Faster-RCNN here is trained on
full images, i.e., object cropping is not required. This
enables Faster-RCNN to use context for semantic parts
detection and handle scale issue naturally since seman-
tic parts with various scales are used in training.

4.2. Semantic Part Detection without Occlusion

As a simplified task, we evaluate our algorithm in detect-
ing semantic parts on non-occluded objects. This is also a
baseline for later comparison. In the left six columns of
Table 1, we list the detection accuracy produced by dif-
ferent methods. The average detection accuracies by both
voting and DeepVoting are significantly higher than using
single visual concept for detection, regardless whether the
visual concepts are obtained from K-Means clustering or
DeepVoting. This indicates the advantage of the approaches

Figure 4. The distribution of the ratio of the predicted scale to the
actual scale.

which aggregates multiple visual cues for detection. Mean-
while, DeepVoting is much better than voting due to the
better scale prediction and the end-to-end training manner.
Even the right scale is provided for voting (oracle scale re-
sults in [25]), DeepVoting still beat it by more than 20% in
terms of averaged mAP over 6 objects, which indicates the
benefit brought by the joint optimization of both weights for
visual concept extraction layer and voting layer.

On the other hand, DeepVoting produces slightly lower
detection accuracy compared to Faster-RCNN. We argue
that Faster-RCNN benefits from the context outside object
bounding boxes, as we can see, if we improve DeepVoting
by adding context during the training (i.e. DeepVoting+),
Faster-RCNN will be less competitive compared with our
method. Meanwhile, DeepVoting enjoys lower computa-
tional overheads, i.e., it runs 2.5× faster.

4.2.1 Scale Prediction Accuracy

We investigate the accuracy of ScaleNet, which is essen-
tial for scale normalization. For each testing image, we
compute the ratio of the predicted object scale to the ac-
tual scale, and plot the contribution of this ratio over the
entire testing set in Figure 4. One can see that in more than



Recall at Different Levels mAP w/ Addt’l Prop. mAP by DeepVoting+
Category L0 L1 L2 L3 L1 L2 L3 L1 L2 L3
airplane 99.3 98.1 97.4 96.7 36.2 27.7 20.7 40.6 32.3 25.4

bicycle 99.5 99.0 98.0 96.5 77.9 64.0 44.7 85.2 79.6 62.5

bus 99.8 96.3 93.8 91.5 57.1 42.4 28.3 65.8 54.6 40.5

car 99.8 96.0 94.4 92.7 48.2 30.2 19.4 57.3 41.7 29.4

motorbike 99.0 96.5 95.7 93.3 43.6 33.1 21.3 55.5 43.4 31.2

train 98.3 93.5 90.6 85.6 32.0 19.4 11.3 43.7 29.8 22.2

mean 99.3 96.6 95.0 92.7 49.2 36.1 24.2 58.0 46.9 35.2
Table 2. Left 4 columns: the recall rates (%) of the proposal network at different occlusion levels. Middle 3 and right 3 columns: detection
mAPs (%) of Faster-RCNN (ground-truth bounding boxes are added as additional proposals) and DeepVoting+ at different occlusion levels.

75% cases, the relative error of the predicted scale does not
exceed 10%. Actually, these prediction results are accurate
enough for DeepVoting. Even if ground-truth scale is pro-
vided and we rescale the images accordingly, the detection
accuracy is slightly improved from 72.0% to 74.5%.

4.3. Semantic Part Detection under Occlusion

We further detect semantic parts when the object is oc-
cluded in three different levels. Since the baselines KVC
and DVC perform much worse than other methods even
when occlusion is not present, we ignore these two methods
when performing semantic part detection under occlusion.
In the first level (i.e. L1), we place 2 occluders on each ob-
ject, and the occluded ratio r of the object, computed by pix-
els, satisfying 0.2 6 r < 0.4. For L2 and L3, we have 3 and
4 occluders, and 0.4 6 r < 0.6 and 0.6 6 r < 0.8, respec-
tively (see Figure 3 for examples). The original occlusion-
free testing set is denoted as L0. The detection results are
summarized in Table 1. One can see that DeepVoting out-
performs the voting and the Faster-RCNN significantly in
these cases. For the Faster-RCNN, the accuracy gain in-
creases as the occlusion level goes up, suggesting the advan-
tage of DeepVoting in detecting occluded semantic parts.
As a side evidence, we investigate the impact of the size
of spatial heatmap (the kernel of the voting layer). At the
heaviest occlusion level, when we shrink the default 15×15
to 11× 11, the mean detection accuracy drops from 31.6%
to 30.6%, suggesting the usefulness of long-distance voting
in detecting occluded semantic parts. When the kernel size
is increased to 19× 19, the accuracy is slightly improved to
31.8%. Therefore, we keep the kernel size to be 15× 15 for
a lower model complexity.

To verify our motivation that Faster-RCNN suffers
downgraded performance in both the proposal network and
the classifier, we investigate both the recall of the proposals
and the accuracy of the classifier. Results are summarized
in Table 2. First, we can see that the recall of the propos-
als goes down significantly as the occlusion level goes up,
since the objectness of the semantic part region may be-
come weaker due to the randomly placed occluders. Thus

the second stage, i.e., classification, has to start with a rela-
tively low-quality set of candidates. In the second part, we
add the ground-truth bounding boxes to the existing pro-
posals so that the recall is 100%, feed these candidates to
the classifier, and evaluate its performance on the occluded
images. Even with such benefits, Faster-RCNN still pro-
duces unsatisfying detection accuracy. For example, in de-
tecting the semantic parts of a bicycle at the highest occlu-
sion level (L3), making use of the additional proposals from
ground-truth bounding boxes merely improves the detection
accuracy from 41.1% to 44.7%, which is still much lower
than the number 62.5% produced by DeepVoting+. This im-
plies that the classifier may be confused since the occluder
changes the appearance of the proposals.

4.4. Visualizing Visual Concepts and Heatmaps

In Figure 5, we show some typical examples of the
learned visual concepts and spatial heatmaps. The visual-
ization of visual concepts follows the approach used in [26],
which finds 10 most significant responses on each convolu-
tional filter, i.e., the matching template, traces back to the
original image lattice, and crops the region corresponding
to the neuron at the pool-4 layer. To show different spatial
heatmaps, we randomly choose some relevant pairs of vi-
sual concept and semantic part, and plot the convolutional
weights of the voting layer for comparison. We see that the
learned visual concepts and spatial heatmaps are semanti-
cally meaningful, even though there is only semantic part
level supervision during training.

4.5. Explaining the Detection Results

Finally, we show an intriguing benefit of our approach,
which allows us to explain the detection results. In Fig-
ure 6, we display three examples, in which the target se-
mantic parts are not occluded, partially occluded and fully
occluded, respectively. DeepVoting can infer the occluded
semantic parts, and is also capable of looking up the voting
(supporting) visual concepts for diagnosis, to dig into errors
and understand the working mechanism of our approach.



VC #027: license plate

VC #073: windshield, right side

VC #029: car wheel, left side

VC #170: car side

SP #20:
license 
plate

SP #23:
rear 
window

SP #1:
car 
wheel

SP #12:
side 
window

Object class: car Object class: car

Figure 5. Visualization of visual concepts and spatial heatmaps (best viewed in color). For each visual concept, we show 10 patches with
the highest responses. Each spatial heatmap illustrates the cues to detect a semantic part, in which yellow, cyan and dark blue indicate
positive, zero and negative cues, respectively. For example, VC #073 (windshield) often appears above SP #20 (license plate), and VC
#170 (car side bottom) often appears below SP #12 (side window).

Object: car; SP #17: headlight

1
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3

List of voted VC’s:
1. #160: score = 0.393

∆𝑥, ∆𝑦 = 0,0
2. #245: score = 0.091

∆𝑥, ∆𝑦 = +5,+1
3. #091: score = 0.053

∆𝑥, ∆𝑦 = +6,+3

Object: car; SP #20: licence plate

List of voted VC’s:
1. #073: score = 0.020

∆𝑥, ∆𝑦 = 0,−6
2. #235: score = 0.012

∆𝑥, ∆𝑦 = 0,+4
3. #232: score = 0.007

∆𝑥, ∆𝑦 = −5,−3

1

2

3

Object: car; SP #13: side window

List of voted VC’s:
1. #076: score = 0.023

∆𝑥, ∆𝑦 = +1,+2
2. #038: score = 0.015

∆𝑥, ∆𝑦 = +3,−2
3. #101: score = 0.013

∆𝑥, ∆𝑦 = +3,+6

1

2

3VC #091

VC #245

VC #160 VC #076

VC #038

VC #101

VC #073

VC #235

VC #232

Figure 6. DeepVoting allows us to explain the detection results. In the example of heavy occlusion (the third column), the target semantic
part, i.e., the licence plate on a car, is fully occluded by a bird. With the help of some visual concepts (blue dots), especially the 73-rd VC
(also displayed in Figure 5), we can infer the position of the occluded semantic part (marked in red). Note that we only plot the 3 VC’s
with the highest scores, regardless the number of voting VC’s can be much larger.

5. Conclusions

In this paper, we propose a robust and explainable deep
network, named DeepVoting, for semantic part detection
under partial occlusion. The intermediate visual represen-
tations, named visual concepts, are extracted and used to
vote for semantic parts via two convolutional layers. The
spatial relationship between visual concepts and semantic
parts is learned from a occlusion-free dataset and then trans-
ferred to the occluded testing images. DeepVoting is eval-
uated on both the VehicleSemanticPart dataset and the Ve-
hicleOcclusion dataset, and shows comparable performance
to Faster-RCNN in the non-occlusion scenario, and superior
performance in the occlusion scenario. If context is utilized,
i.e., DeepVoting+, this framework outperforms both Deep-
Voting and Faster-RCNN significantly under all scenarios.
Moreover, our approach enjoys the advantage of being ex-

plainable, which allows us to diagnose the semantic parts
detection results by checking the contribution of each vot-
ing visual concepts.

In the future, we plan to extend DeepVoting to detect
semantic parts of non-rigid and articulated objects like ani-
mals. Also, we plan to perform object-level detection under
occlusion by combining these semantic cues.
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