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Abstract

A mild method for the arylation of lysine in an unprotected peptide is presented. In the presence of 

a preformed biarylphosphine-supported Pd(II)-aryl complex and weak base, lysine amino groups 

underwent C–N bond formation at room temperature. The process generally exhibited high 

selectivity for lysine over other amino acids containing nucleophilic side chains and was 

applicable to the conjugation of a variety of organic compounds, including complex drug 

molecules, with an array of peptides. Lastly, this method was also successfully applied to the 

formation of cyclic peptides via macrocyclization.
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The chemical modification of amino acid residues in peptides has recently evolved into a 

valuable tool for the study of biological macromolecules.1 The construction of covalent 

bonds to peptides provides a means of accessing novel macromolecules that contain 

molecular fragments of interest, such as affinity probes, chromophores, or medicinally active 

structures. Furthermore, covalent modifications can enhance the therapeutic potential of a 

bioactive peptide by extending its circulation half-life and augmenting cell permeability.1a,1b 

To broaden the range of synthetically accessible altered biomolecules, additional methods 

for bioconjugation are needed. Procedures that do not degrade the peptide2 and provide the 

amended biomolecule with high levels of site- and regioselectivity are particularly valuable.
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We recently reported a new approach for mild and site-selective bioconjugation that 

leverages the reactivity of organometallic reagents (Figure 1).3 In the presence of preformed 

complexes of type LPd(Ar)X (L = biarylphosphine, X = Cl, Br, OTf), cysteine thiol groups 

formed S–C(sp2) bonds to provide the respective S-arylated peptide or protein. By 

employing this operationally simple protocol, the arylation of cysteine-containing 

biomolecules is completed within minutes and in generally high yields.4 Moreover, 

palladium complexes bearing a variety of functionalized aryl groups were compatible with 

these reaction conditions. Nevertheless, the potential chemical and biological lability of the 

resultant thioether linkage, as well as the scarcity of cysteine residues in peptides, limits the 

applicability of this protocol. Consequently, we set out to develop an alternative arylation 

protocol for the formation of stable bonds to amino acid residues that are more abundant in 

peptides and proteins.

We considered the arylation of the amino group in lysine as an alternative means of 

generating a stable bioconjugate. Among the various amino acid residues containing 

potentially reactive nitrogen atoms, we targeted lysine because of its nucleophilicity and 

unambiguous site of reactivity. Strategies used for the chemical modification of primary 

amines in polypeptides include conjugate addition,5 condensation with an activated ester,6 

addition to a (thio)isocyanate or ketene,7 and Schiff base formation/derivatization.8 More 

recently, the reaction of acyl trifluoroborates with prefunctionalized hydroxylamine esters 

has also been reported.9 Despite the utility of these protocols, important limitations still 

exist, including inadequate chemoselectivity, the requirement for a preactivated nucleophile, 

or the limited chemical stability of the respective conjugate.

Compared to cysteine bioconjugation, we anticipated that lysine conjugation would present 

additional challenges as a consequence of the lower nucleophilicity of the amino group and 

the lower acidity of the palladium-amine complex. To address the latter, we envisioned the 

use of a weak base to effect the requisite deprotonation. Importantly, this base would need to 

be relatively mild in order to avoid degradation of the polypeptide. In addition, a judiciously 

chosen ligand would be required to facilitate the desired C-N reductive elimination in 

preference to other palladium-mediated bond-forming processes. Herein we report the 

development of conditions to address these challenges, resulting in a general and selective 

protocol for the conjugation of aryl groups to peptidic lysine residues.

In initial optimization studies, a model peptide containing a lysine residue was exposed to 

preformed complexes of type LPd(Ar)Br (Ar = 4-anisyl) supported by a series of 

biarylphosphine ligands in the presence of sodium phenoxide as the base (Table 1, entries 1–

6).10 Sodium phenoxide was selected due to its widespread availability and relatively low 

basicity (pKa[BH] = 10).11 Notably, stability studies indicated that greater than 95% of the 

peptide substrate remained intact in the presence of sodium phenoxide (see the Supporting 

Information). It was discovered that the complex supported by t-BuBrettPhos exhibited the 

most pronounced reactivity at room temperature (Entry 5).12 Unfortunately, a palladium 

complex bearing an electron deficient aryl group (4-CO2Me-Ph) afforded the arylation 

product in low yield due to competitive phenol and aryl ether formation under these 

conditions (Entry 7).13 Improved results were obtained when t-BuBrettPhos was replaced 

with the less bulky BrettPhos, presumably due to the reduced propensity of the latter to 
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facilitate C–O bond forming reductive elimination (Entry 8). Analysis of the reaction 

mixture by LC/MS indicated that partial arylation of the supporting ligand occurred, due to a 

previously observed arylative rearrangement of the palladium complex.14 Thus, more than 

one equivalent of the palladium complex was required for full conversion of the peptide to 

the arylated product.15

Next, we investigated the selectivity of this methodology by utilizing peptide substrates 

containing a lysine and another nucleophilic residue (Table 2). Throughout this analysis, the 

position of modification was unambiguously determined by tandem MS/MS analysis. 

Although the presence of a cysteine residue was not tolerated due to competitive base-

mediated dehydroalanine formation, the current protocol was shown to be completely 

selective towards the modification of a lysine residue in the presence of serine, tyrosine, 

methionine, histidine, or tryptophan residues (Entries 1–5). Amino acid residues containing 

an amide (Entry 6) or a guanidine (Entry 7)17 side chain could be used in this protocol, 

although diarylation was also observed. Similarly, the presence of a primary amine at the N-

terminus18 and an amide at the C-terminus gave rise to the corresponding diarylation 

product (Entries 8 and 9).19 However, these side reactions could be completely suppressed 

by employing the Pd complex as the limiting reagent (Entries 6–9).

To demonstrate the utility of this developed protocol, we investigated the arylation of a 

complex bioactive peptide using LPd(Ar)X complexes with a variety of aryl groups (Scheme 

1). We focused our attention on a tumor-suppressing peptide that targets a p53-MDM2 

interaction.20,21 Using this method, an aryl group derived from the corresponding chloride, 

bromide, and triflate could be coupled to the respective peptide in comparable yields (1–3). 

Complex functional molecules, such as natural product derivatives (422 and 5), conjugation/

affinity tags (6 and 7), chromophores (8 and 9), and complex drug molecules containing a 

chlorine atom (10–15), were successfully appended with high efficiency. Importantly, this 

protocol could be conducted on a larger scale without diminishing yield (8), and greater than 

95% of the Pd-containing species could be conveniently removed from the sample by HPLC 

purification (153 ppm). The triflate derived from fluorescein (9) underwent undesired 

coupling with sodium phenoxide in addition to the desired coupling with the peptide. In 

accordance with the results in Table 1, this side reaction could be suppressed by the use of 

BrettPhos in place of t-BuBrettPhos.

A variety of reactive functional groups were tolerated and demonstrated the robustness of 

this method. These functional groups include arylamines (10, 11, and 15), alkylamines (11, 

12, and 13) an amidine, (12), a ketone (13), a carbamate (14), a carboxylic acid (15), and a 

diverse array of heterocycles (10, 11, 12, 14, and 15). For a number of cases (entries 1, 2, 3, 

5, and 13), we isolated the respective LPd(Ar)X complexes as bench stable reagents for 

peptide arylation.3 In other cases, the palladium complexes were generated in situ from the 

aryl (pseudo)halide and cyclooctadiene-ligated palladium(0) complex A and used without 

isolation.23 We anticipate that this in situ protocol would find utility in cases where the 

isolation of the metal complex is non-trivial or rapid diversification of a peptide target is 

desired. In all cases, the desired monoarylation product was observed as the major product, 

although in some cases, diarylation products (1, 2, 3, 6, and 10) or regioisomeric products (5 
and 9) were detected as minor by-products.24 Notably, Pd triflate complexes had a higher 
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propensity to undergo these undesired pathways, presumably due to the cationic nature of 

the metal center.

Peptide stapling has proven to be an invaluable tool in increasing the stability, cell-

permeability, and enhancing the α-helicity of peptides.25 While numerous chemical 

approaches have been reported, only a limited number of strategies can utilize native amino 

acid residues as a handle for macrocyclization of both synthetic and recombinantly 

expressed peptides.26 Furthermore, these approaches often result in the formation of amides 

or thioethers that can be proteolytically or oxidatively unstable, respectively. Recently, we 

have reported a lysine stapling strategy with highly electron deficient arenes that proceeds 

via SNAr to form chemically and biologically stable constructs that addresses the 

aforementioned concerns.27

In the presence of a stapling reagent derived from 1,2-bis(4-bromophenoxy)ethane, p53 

peptide with an additional lysine residue underwent facile macrocyclization (Scheme 2). The 

protocol provided access to both [i, i+4] and [i, i+7] stapled products with comparable 

efficiencies. In addition to the unreacted starting material, side products derived from 

arylation with a mono-organometallic species account for the rest of the mass balance.28 It is 

expected that the organometallic reagent-based approach will allow for the straightforward 

modulation of the length and identity of the linkers, a feature that is not feasible with a SNAr 

reaction-based strategy.

In conclusion, we have discovered a general lysine arylation method based on the use of 

preformed or in situ generated LPd(Ar)X complexes. The reaction allows for the formation 

of N–aryl conjugates, which are more stable than the corresponding S–aryl conjugates.27 

Furthermore, this protocol operates under mild conditions and is selective over most other 

nucleophilic amino acid residues. The success of this method stems from the use of the 

biarylphosphine ligands BrettPhos and t-BuBrettPhos in conjunction with the mildly basic 

sodium phenoxide. We have used this strategy to functionalize complex peptide substrates 

with a variety of biologically important small molecules and peptide macrocyclization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Bioconjugation strategy using organometallic reagents and the structure of biarylphosphine 

ligands.
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Scheme 1. 
Lysine arylation shows broad substrate scope including introduction of tags, chromophores, 

and drugs. [a] Diarylation product; [b] regioisomeric product; [c] [BrettPhos·Pd(COD)]23 

was used in place of A.
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Scheme 2. 
Polymetalated Pd complex enables efficient peptide macrocyclization.
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Table 1

Conditions for efficient arylation of lysine in unprotected peptides.

Entry L R Yield (%)a

1 RuPhos 4-OMe 0

2 XPhos 4-OMe 0

3 t-BuXPhos 4-OMe 93

4 BrettPhos 4-OMe 1

5 t-BuBrettPhos 4-OMe 94

6 AdBrettPhos 4-OMe 79

7 t-BuBrettPhos 4-CO2Me 18

8 BrettPhos 4-CO2Me 71

a
Yields were calculated by integration of total ion count (TIC) chromatogram.16
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Table 2

Systematic investigation of lysine arylation in the presence of other nucleophilic side chains.

Entry Peptide A / B (%)

1 AcNH-FLG GVG AF-CO2H 90/0

2 AcNH-FLG GVG AF-CO2H 78 / 0

3 AcNH-FLG GVG AF-CO2H 92 / 0

4 AcNH-FLG GVG AF-CO2H 62 / 0

5 AcNH-FLG GVG AF-CO2H 80 / 0

6 AcNH-FLG GVG AF-CO2H 88 / 5 (20/0)a

7 AcNH-FLG GVG AF-CO2H 37 / 39 / 13b (20 / 0)a

8 -FLAG GAFG-CO2H 86 / 8 (24 / 0)a

9 AcNH-FLAG GAFG- 64 / 29 (18 / 0)a

a
Reaction yield with 0.20 mM of Pd complexes

b
Triple arylation
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