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Abstract A search for a massive resonance W′decaying
into a W and a Higgs boson in the �νbb (� = e, μ) final
state is presented. Results are based on data corresponding
to an integrated luminosity of 19.7 fb−1 of proton–proton
collisions at

√
s = 8 TeV, collected using the CMS detec-

tor at the LHC. For a high-mass (�1 TeV) resonance, the
two bottom quarks coming from the Higgs boson decay are
reconstructed as a single jet, which can be tagged by placing
requirements on its substructure and flavour. Exclusion limits
at 95 % confidence level are set on the production cross sec-
tion of a narrow resonance decaying into WH, as a function
of its mass. In the context of a little Higgs model, a lower
limit on the W′ mass of 1.4 TeV is set. In a heavy vector
triplet model that mimics the properties of composite Higgs
models, a lower limit on the W′ mass of 1.5 TeV is set. In the
context of this model, the results are combined with related
searches to obtain a lower limit on the W′ mass of 1.8 TeV,
the most restrictive to date for decays to a pair of standard
model bosons.

1 Introduction

This paper presents a search for massive resonances decaying
into a W and a standard model (SM) Higgs boson (H) [1–4] in
the �νbb̄ (� = e, μ) final state. Such processes are distinctive
features of several extensions of the SM such as composite
Higgs [5–7], SU(5)/SO(5) Littlest Higgs (LH) [8–11], tech-
nicolor [12,13], and left-right symmetric models [14]. These
models provide solutions to the hierarchy problem and pre-
dict new particles including additional gauge bosons such as
a heavy W′. The W′ in these models can have large branch-
ing fractions to WH and WZ, while the decays to fermions
can be suppressed. The recently proposed heavy vector triplet
(HVT) model [15] generalizes a large class of specific models
that predict new heavy spin-1 vector bosons. In this model,
the resonance is described by a simplified Lagrangian in
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terms of a small number of parameters representing its mass
and couplings to SM bosons and fermions.

For a W′ with SM couplings to fermions and thus reduced
decay branching ratio to SM bosons, the most stringent lim-
its on production cross sections are reported in searches with
leptonic final states [16,17]. The current lower limit on the
W′ mass is 3.3 TeV. In the same context, searches for a W′
decaying into a pair of SM vector bosons (WZ) [18–21] pro-
vide a lower mass limit of 1.7 TeV. In the context of a HVT
model with reduced couplings to fermions (HVT model B),
the most stringent limit of 1.7 TeV on the W′/Z′ mass is
set by a search for W′/Z′ → WH/ZH → qq̄bb̄ [22]. The
same model is used to interpret the results of a search for
W′/Z′ → WH/ZH → �ν/��/νν+bb̄ [23]. A lower limit on
the W′ mass of 1.5 TeV is set in the same final state reported in
Ref. [23]. Finally, a specific search for Z′ → ZH → qq̄τ+τ−
was reported in Ref. [24] and interpreted in the context of the
same HVT model B.

This analysis is based on proton–proton collision data at√
s = 8 TeV collected by the CMS experiment at the CERN

LHC during 2012, corresponding to an integrated luminosity
of 19.7 fb−1. The signal considered is the production of a res-
onance with mass above 0.8 TeV decaying into WH, where
the Higgs boson decays into a bottom quark–antiquark pair
and the W boson decays into a charged lepton and a neu-
trino (Fig. 1). It is assumed that the resonance is narrow, i.e.
that its intrinsic width is much smaller than the experimental
resolution.

The search strategy is closely related to the search for
high mass WW resonances in the �νqq̄ final state, described
in Ref. [25], with the addition of b tagging techniques. We
search for resonances in the invariant mass of the WH system
on top of a smoothly falling background distribution, where
the background mainly comprises events involving pair pro-
duced top quarks (tt) or a W boson produced in association
with jets (W+jets). For the resonance mass range considered,
the two quarks from the Higgs boson decay would be sepa-
rated by a small angle, resulting in the detection of a single
jet after hadronization. This jet is tagged as coming from
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Fig. 1 Production of a resonance decaying into WH

a Higgs boson through the estimation of its invariant mass,
application of jet substructure techniques [26], and use of
specialized b tagging techniques for high transverse momen-
tum (pT) Higgs bosons [27].

The results of this analysis are also combined with two
previous results [22,24] to obtain a further improvement in
sensitivity.

2 CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter, providing a field of
3.8 T. Within the field volume are a silicon pixel and strip
tracker, a crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadronic calorimeter (HCAL). The
CMS tracker consists of 1440 silicon pixel and 15 148 sili-
con strip detector modules covering a pseudorapidity range
of |η| < 2.5. The ECAL consists of nearly 76 000 lead
tungstate crystals, which provide coverage of |η| < 1.48
in the central barrel region and 1.48 < |η| < 3.00 in the two
forward endcap regions. The HCAL consists of a sampling
calorimeter [28], which utilizes alternating layers of brass as
an absorber and plastic scintillator as an active material, cov-
ering the range |η| < 3, and is extended to |η| < 5 by a for-
ward hadron calorimeter. Muons are measured in the range
|η| < 2.4 with detection planes which employ three tech-
nologies: drift tubes, cathode strip chambers, and resistive-
plate chambers. The muon trigger combines the information
from the three sub-detectors with a coverage up to |η| < 2.1.
A more detailed description of the CMS detector, together
with a definition of the coordinate system used and the rele-
vant kinematic variables, can be found in Ref. [28].

3 Simulated samples

For the modelling of the background we use the MadGraph

v5.1.3.30 [29] event generator to simulate the production of

W boson and Drell–Yan events in association with jets, the
powheg 1.0 r1380 [30–35] package to generate tt and single
top quark events, and pythia v6.424 [36] for diboson (WW,
WZ, and ZZ) processes. All simulated event samples are gen-
erated using the CTEQ6L1 [37] parton distribution functions
(PDF) set, except for the powheg tt sample, for which the
CT10 PDF set [38] is used. All the samples are then processed
further by pythia, using the Z2* tune [39,40] for simulation
of parton showering and subsequent hadronization, and for
simulation of the underlying event. The passage of the parti-
cles through the CMS detector is simulated using theGeant4
package [41]. All simulated background samples are normal-
ized to the integrated luminosity of the recorded data, using
inclusive cross sections determined at next-to-leading order,
or next-to-next-to-leading order when available, calculated
with mcfm v6.6 [42–45] and fewz v3.1 [46], except for the
tt sample, for which Top++ v2.0 [47] is used.

To simulate the signature of interest, we use a model of
a generic narrow spin-1 W′ resonance implemented with
MadGraph. We verified that the kinematic distributions
agree with those predicted by implementations of the LH,
composite Higgs and HVT models in MadGraph. The res-
onance width differs in the three models, but in each case it is
found to be negligible with respect to the experimental reso-
lution. More details on the parameters used for interpretation
of the models are given in Sect. 8.

Extra proton–proton interactions are combined with the
generated events before detector simulation to match the
observed distribution of the number of additional interactions
per bunch crossing (pileup). The simulated samples are also
corrected for observed differences between data and simula-
tion in the efficiencies of the lepton trigger [16], the lepton
identification/isolation [16], and the selection criteria iden-
tifying jets originating from hadronization of bottom quarks
(b-tagged jets) [27].

4 Reconstruction and selection of events

4.1 Trigger and basic event selection

Candidate events are selected during data taking using single-
lepton triggers, which require either one electron or one muon
without isolation requirements. For electrons the minimum
transverse momentum pT measured at the high level trigger
is 80 GeV, while for muons the pT must be greater than
40 GeV.

After trigger selection, all events are required to have at
least one primary-event vertex reconstructed within a 24 cm
window along the beam axis, with a transverse distance from
the nominal pp interaction region of less than 2 cm [48]. If
more than one identified vertex passes these requirements,
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the primary-event vertex is chosen as the one with the highest
sum of p2

T over its constituent tracks.
Individual particle candidates are reconstructed and iden-

tified using the CMS particle-flow (PF) algorithm [49,50],
by combining information from all subdetector systems. The
reconstructed PF candidates are each assigned to one of the
five candidate categories: electrons, muons, photons, charged
hadrons, and neutral hadrons.

4.2 Lepton reconstruction and selection

Electron candidates are reconstructed by clustering the
energy deposits in the ECAL and then matching the clusters
with reconstructed tracks [51]. In order to suppress the multi-
jet background, electron candidates must pass quality criteria
tuned for high-pT objects and an isolation selection [52]. The
total scalar sum of the pT over all the tracks in a cone of radius
ΔR = √

(Δη)2 + (Δφ)2 = 0.3 around the electron direc-
tion, excluding tracks within an inner cone of ΔR = 0.04
to remove the contribution from the electron itself, must be
less than 5 GeV. A calorimetric isolation parameter is calcu-
lated by summing the energies of reconstructed deposits in
both the ECAL and HCAL, not associated with the electron
itself, within a cone of radius ΔR = 0.3 around the elec-
tron. The veto threshold for this isolation parameter depends
on the electron kinematic quantities and the average amount
of additional energy coming from pileup interactions, calcu-
lated for each event. The electron candidates are required to
have pT > 90 GeV and |η| < 1.44 or 1.57 < |η| < 2.5,
thus excluding the transition region between ECAL barrel
and endcaps.

Muons are reconstructed with a global fit using both the
tracker and muon systems [53]. An isolation requirement
is applied in order to suppress the background from multi-
jet events in which muons are produced in the semileptonic
decay of B hadrons. A cone of radius ΔR = 0.3 is con-
structed around the muon direction. Muon isolation requires
that the scalar pT sum over all tracks originating from the
interaction vertex within the cone, excluding the muon itself,
is less than 10 % of the pT of the muon. The muon candi-
dates are required to have pT > 50 GeV and |η| < 2.1 in
each selected event.

Events are required to contain exactly one lepton candidate
(electron or muon). That is, events are rejected if they contain
a second lepton candidate with pT > 35 GeV (electrons) or
pT > 20 GeV (muons).

4.3 Jets and missing transverse momentum reconstruction

Hadronic jets are identified by clustering PF candidates,
using the FastJet v3.0.1 software package [54]. In the jet-
clustering procedure, charged PF candidates associated with
pileup vertices are excluded, to reduce contamination from

pileup. In order to identify a Higgs boson decaying into bot-
tom quarks, jets are clustered using the Cambridge–Aachen
algorithm [55] with a distance parameter of 0.8 (“CA8 jets”).
Only the highest pT CA8 jet is used. Jets in the event are
also identified using the anti-kT jet-clustering algorithm [56]
with a distance parameter of 0.5 (“AK5 jets”). AK5 jets are
required to be separated from the CA8 jet by ΔR > 0.8.
An event-by-event correction based on the projected area of
the jet on the front face of the calorimeter is used to remove
the extra energy deposited in jets by neutral particles coming
from pileup. Furthermore, jet energy corrections are applied,
based on measurements in dijet and photon+jet events in
data [57]. Additional quality criteria are applied to the jets in
order to remove spurious jet-like features originating from
calorimeter noise [58]. The CA8 (AK5) jets are required to
be separated from the selected electron or muon candidate by
ΔR > 0.8 (0.3). Only jets with pT > 30 GeV and |η| < 2.4
are allowed in the subsequent steps of the analysis. Further-
more, CA8 jets are not used in the analysis if their pseudo-
rapidity falls in the region 1.0 < |η| < 1.8, thus overlapping
the barrel-endcap transition region of the silicon tracker. In
that region, ’noise’ can arise when the tracking algorithm
reconstructs many fake displaced tracks associated with the
jet. The simulation does not sufficiently describe the full
material budget of the tracking detector in that region, thus it
does not accurately describe this effect. Without this require-
ment, a bias can be introduced in the b tagging, jet substruc-
ture and missing transverse momentum information, making
this analysis systematically prone to that noise. The probabil-
ity of signal events satisfying the requirement that the pseu-
dorapidity of the CA8 jet falls outside the region 1.0 < |η| <

1.8 is 80 % (92 %) for a resonance mass of 1.0 (2.5) TeV.
A b tagging algorithm, known as the combined secondary

vertex algorithm [27,59], is applied to reconstructed AK5
jets to identify whether they originate from bottom quarks.
This method allows the identification and rejection of the tt
events as described in Sect. 4.6. The chosen algorithm work-
ing point provides a misidentification rate for light-parton
jets of ∼1 % and an efficiency of ∼70 % [27]. The simulated
events are reweighted event-by-event with the ratio of the
b tagging efficiency in data and simulation, determined in a
sample enriched with b-jets. The average value of the correc-
tion factor is 0.95. The same b tagging algorithm is also used
to identify whether the CA8 jet comes from a Higgs boson
decaying into bottom quarks, as described in Sect. 4.5.

The missing transverse momentum pmiss
T is defined as the

magnitude of the projection on the plane perpendicular to
the beams of the negative vector sum of the momenta of all
the reconstructed particles in an event. The raw pmiss

T value is
modified to account for corrections to the energy-momentum
scale of all the reconstructed AK5 jets in the event. More
details on the pmiss

T performance in CMS can be found in
Refs. [60,61]. A requirement of pmiss

T > 80 (40) GeV is
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applied for the electron (muon) channel. The higher threshold
for the electron channel is motivated by the higher contribu-
tion from the multijet background expected in the low-pmiss

T
range due to jets misidentified as electrons. The background
is expected to be negligible in the muon channel, for which
a lower pmiss

T threshold can be used to preserve a higher effi-
ciency for a low-mass signal.

4.4 The W → �ν reconstruction and identification

The identified electron or muon is associated with the W →
�ν candidate. The pT of the undetected neutrino is assumed
to be equal to the pmiss

T . The longitudinal component pz,ν
of the neutrino momentum is calculated following a method
used originally for the reconstruction of the invariant mass
of the top quark as described in Ref. [62]. The method aims
to solve a quadratic equation that makes use of the known
W boson mass. Kinematic ambiguities in the solution of the
equation are resolved as in Ref. [62]. The four-momentum
of the neutrino is used to build the four-momentum of the
W → �ν candidate.

4.5 The H → bb identification using jet substructure and b
tagging

The CA8 jets are used to reconstruct the jet candidates from
decays of Lorentz-boosted Higgs boson to bottom quarks.
We exploit two techniques to discriminate against quark
and gluon jets from the multijet background, including the
requirement that the reconstructed jet mass be close to the
Higgs boson mass, and b tagging methods that discriminate
jets originating from the b quarks from those originating from
lighter quarks or gluons.

First, we apply a jet-grooming technique [26,63] to re-
cluster the jet constituents, while applying additional require-
ments to remove possible contamination from soft QCD radi-
ation or pileup. Different jet-grooming algorithms have been
explored at CMS, and their performance on jets in multijet
processes has been studied in detail [63]. In this analysis,
we use the jet pruning algorithm [64,65], which re-clusters
each jet starting from all its original constituents using the
CA algorithm iteratively, while discarding soft and large-
angle recombinations at each step. The performance of the
algorithm depends on the two parameters, zcut = 0.1 and
Dcut = mjet/p

jet
T , which define the maximum allowed hard-

ness and the angle of the recombinations in the clustering
algorithm, respectively. A jet is considered as an H-tagged
jet candidate if its pruned mass, mjet, computed from the
sum of the four-momenta of the constituents surviving the
pruning, falls in the range 110 < mjet < 135 GeV. The
mjet window is the result of an optimization based on signal
sensitivity and on the constraints due to the higher bounds of
the signal regions of other diboson analyses [25].

The simulation modelling of the pruned mass measure-
ment for merged jets from heavy bosons has been checked
using merged W → qq′ decays in tt events with a �+jets
topology [26]. The data are compared with tt events gen-
erated with MadGraph, interfaced to pythia for parton
showering. The differences between recorded and simulated
event samples in the pruned jet mass scale and resolution are
found to be up to 1.7 and 11 %, respectively. In addition, the
modelling of bottom quark fragmentation is checked through
reconstruction of the top quark mass in these tt events [66].

To discriminate between quark and gluon jets, on one
hand, and a Higgs-initiated jet, on the other, formed by the
hadronization of two bottom quarks, we use a H tagging tech-
nique [27]. This procedure splits the candidate H-jet into two
sub-jets by reversing the last step of the CA8 pruning recom-
bination algorithm. Depending on the angular separation ΔR
of the two sub-jets, different b tagging discriminators are used
to tag the H-jet candidate. If ΔR > 0.3, then the b tagging
algorithm is applied to both of the individual sub-jets of the
CA8 jet; otherwise, it is applied to the whole CA8 jet. The
chosen algorithm working point provides a misidentification
rate of 10 % and an efficiency of 80 %. The ratio of the b
tagging efficiency between data and simulation, in a sample
enriched with b-jets from gluon splitting by requiring two
muons within the CA8 jet, is used to reweight the simulated
events.

4.6 Final event selection and categorization

After reconstructing the W and Higgs bosons, we apply the
final selections used for the search. Both the W and Higgs
boson candidates must have a pT greater than 200 GeV. In
addition, we apply topological selection criteria, requiring
that the W and Higgs bosons are approximately back-to-back,
since they tend to be isotropically distributed for background
events. In particular, the ΔR distance between the lepton and
the H-tagged jet must be greater than π/2, the azimuthal
angular separation between the pmiss

T and the H-tagged jet
must be greater than 2.0 radians, and the azimuthal angular
separation between the W → �ν and H-tagged jet candidates
must be greater than 2.0 radians. To further reduce the level
of the tt background, events with one or more reconstructed
AK5 jets, not overlapping with the CA8 H-tagged jet candi-
date as described previously in Sect. 4.3, are analyzed. If one
or more of the AK5 jets is b-tagged, the event is rejected. Fur-
thermore, a leptonically decaying top quark candidate mass
m�

top is reconstructed from the lepton, pmiss
T , and the closest

AK5 jet to the lepton using the method described in Ref. [62].
A hadronically decaying top quark candidate mass mh

top is
reconstructed from the CA8 H-tagged jet candidate and the
closest AK5 jet. Events with 120 < m�

top < 240 GeV or

160 < mh
top < 280 GeV are rejected. The chosen windows
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around the top quark mass are the result of an optimization
carried out in this analysis, taking into account the asymmet-
ric tails at larger values due to combinatorial background. If
several distinct WH resonance candidates are present in the
same event, only the candidate with the highest-pT H-tagged
jet is kept for further analysis. The invariant mass of the WH
resonance (MWH) is required to be at least 0.7 TeV. The sig-
nal efficiency for the full event selection ranges between ∼3
and ∼9 %, depending on the resonance mass.

5 Modelling of background and signal

5.1 Background estimation

After the full event selection, the two dominant remaining
backgrounds are expected to come from W+jets and tt events.
Backgrounds from tt, single top quark, and diboson produc-
tion are estimated using simulated samples after applying
correction factors derived from control samples in data. For
the W+jets background estimation, a procedure based on data
has been developed to determine both the normalization and
the MWH shape.

For the W+jets normalization estimate, a signal-depleted
control region is defined outside the mjet mass window
described in Sect. 4.5. A lower sideband region is defined
in the mjet range [40, 110] GeV as well as an upper side-
band in the range [135, 150] GeV. The overall normaliza-
tion of the W+jets background in the signal region is deter-
mined from the likelihood of the sum of backgrounds fit to
the mjet distribution in both sidebands of the observed data.
In this approach, simulated events are replaced by an ana-
lytical function, which has been determined individually for
each background process. Figure 2 shows the result of this fit
procedure, where all selections are applied except the final
mjet signal window requirement. The inclusive W+jets back-
ground is predicted from a fit excluding the signal region
(between the vertical dashed lines), while the other back-
grounds are estimated from simulation.

The shape of the W+jets background as a function of MWH

in the signal region is estimated using the lower sideband
region of themjet distribution. Correlations needed to extrap-
olate from the sideband to the signal region are determined
from simulation through an extrapolation function defined as:

αMC(MWH) = FW+jets
MC,SR (MWH)

FW+jets
MC,SB (MWH)

, (1)

where FW+jets
MC,SR and FW+jets

MC,SB are the probability density func-
tions determined from the MWH spectrum in simulation for
the signal region and low-mjet sideband region, respectively.

In order to estimate the W+jets contribution FW+jets
DATA,SB

in the control region of the data the other backgrounds are
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Fig. 2 Distributions of the pruned jet mass, mjet, in the electron (top)
and muon (bottom) channels. The signal region lies between the dashed
vertical lines. The hatched region indicates the statistical uncertainty of
the fit. At the bottom of each plot, the bin-by-bin fit residuals, (Data −
Fit)/σdata, are shown

subtracted from the observed MWH distribution in the lower
sideband region. The shape of the W+jets background distri-
bution in the signal region is obtained by scaling FW+jets

DATA,SB
according to αMC. The final prediction of the background
contribution in the signal region, NBKGD

SR , is given by

NBKGD
SR (MWH) = CW+jets

SR FW+jets
DATA,SB(MWH) αMC(MWH)

+
∑

k

Ck
SR Fk

MC,SR(MWH), (2)

where the index k runs over the list of minor backgrounds, and
CW+jets

SR andCk
SR represent the normalizations of the yields of

the dominant W+jets background and of the different minor
background contributions. The CW+jets

SR parameter is deter-
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mined from the fit to the mjet distribution as described above,
while eachCk

SR is determined from simulation. The ratio αMC

accounts for the small kinematic differences between sig-
nal and sideband regions, and is largely independent of the
assumptions on the overall cross section. The validity and
robustness of this method have been studied in data using
a lower mjet sideband of [40, 80] GeV to predict an alter-
nate signal region with mjet in the range [80, 110] GeV. Both
the normalization and shape of the W+jets background are
successfully estimated for the alternate signal region. This
alternate signal region differs from the signal region of the
search for WW or WZ resonances in Ref. [25] as b tagging is
applied to the CA8 jet. We are therefore able to evaluate the
potential WW and WZ signal contamination in the alternate
signal region and find less than 5 % signal contamination,
assuming a signal cross section corresponding to the exclu-
sion limit for a WW resonance from Ref. [25]. The MWH

distribution of the background in the signal and lower side-
band regions is described analytically by a function defined
as f (x) ∝ exp[−x/(c0 + c1x)], which is found to describe
the simulation well. Alternative fit functions have been stud-
ied but in all cases the background shapes agree with that of
the default function within uncertainties.

For the tt background estimate, a control sample is
selected by applying all analysis requirements, except that
the b-tagged jet veto is inverted, the veto on the top quark
mass is dropped, and the mjet requirement is removed. The
data are compared with the predictions from simulation and
good agreement is found. The pruned jet mass distribution in
the top quark enriched control sample is shown in Fig. 3. The
pruned jet mass distribution shows a small peak due to iso-
lated W boson decays into hadrons, along with a smoothly
varying combinatorial component mainly due to events in
which the extra b-tagged jet from the top quark decay is in the
proximity of the W boson. The difference in normalization
between data and simulation is found to be 4.6±5.6 %, where
the quoted uncertainty is only statistical. This normalization
difference is applied to correct the normalization of tt back-
ground in the signal region. The relative uncertainty of 5.6 %
is used to quantify the uncertainty in the tt and single top
quark background normalization, as described in Sect. 6.1.

5.2 Modelling of the signal mass distribution

The shape of the reconstructed signal mass distribution is
extracted from the simulated signal samples. In the final anal-
ysis of the MWH spectrum, the statistical signal sensitivity
depends on an accurate description of the signal shape. The
signal shape is parametrized with a double-sided Crystal Ball
function (i.e. a Gaussian core with power-law tails on both
sides) [67] to describe the CMS detector resolution. Figure
4 shows an example of this parametrization for a W′ mass of
1.5 TeV. To take into account differences between the elec-
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Fig. 3 Distributions of mjet in the top quark enriched control sample
in the electron (top) and muon (bottom) channels. The hatched region
indicates the overall uncertainty in the background. In the lower panels,
the bin-by-bin residuals, (Data−MC)/σ are shown, where σ is the sum
in quadrature of the statistical uncertainty of the data, the simulation,
and the systematic uncertainty in the tt background

tron and muon pT resolutions at high pT, the signal mass dis-
tribution is parametrized separately for events with electrons
and muons. The resolution of the reconstructed MWH is given
by the width of the Gaussian core and is found to be 4–6 %.

6 Systematic uncertainties

6.1 Systematic uncertainties in the background estimation

Uncertainties in the estimation of the background affect both
the normalization and the shape of the MWH distribution.
The systematic uncertainty in the W+jets background yield
is dominated by the statistical uncertainty associated with the
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Fig. 4 Final distributions in MWH for data and expected backgrounds
for electron (top) and muon (bottom) categories. The 68 % error bars
for Poisson event counts are obtained from the Neyman construction
[77]. The hatched region indicates the statistical uncertainty of the fit
combined with the systematical uncertainty in the shape. This figure
also shows a hypothetical W′ signal with mass of 1.5 TeV, normalized
to the cross section predicted by the HVT model B with parameter
gV = 3 as described in Sect. 8.2

number of events in data in the mjet sideband regions, and it
is found to be about 59 % (42 %) in the electron (muon) chan-
nel. The systematic uncertainty in the tt normalization comes
from the data-to-simulation ratio derived in the top-quark-
enriched control sample (5.6 %) as described in Sect. 5.1.
The systematic uncertainties in the WW, WZ, and ZZ inclu-
sive cross sections are assigned to be 10 %, taken from the
relative difference in the mean value between the CMS WW
cross section measurement at

√
s = 8 TeV and the SM expec-

tation [68].
Systematic uncertainties in the W+jets background shape

are estimated from the covariance matrix of the fit to the
extrapolated data sideband and from the uncertainties in the
modelling of αMC(MWH). They are driven by the available

data in the sidebands and the number of events generated
for the simulation of the W+jets background, respectively.
These uncertainties are shown in Fig. 4, and they are found
to be about 30 % (120 %) at MWH ≈ 1 TeV (1.8 TeV). The
estimation of the systematic uncertainty in the shape of the tt
background takes into account the following contributions:
the statistical uncertainty associated with the simulated event
sample, the choices of regularization/factorization scales
(varied up and down by a factor of 2), the matching scales
in the MadGraph simulation, and an observed difference
between MadGraph and powheg simulations.

Systematic effects from rare noise events identified in the
tracker overlap region were specifically studied in the con-
text of the acceptance requirement introduced for H-jet can-
didates (|η| < 1.0 or |η| > 1.8) as described in Sect. 4. Those
studies conclude that any residual noise effects following the
imposition of this requirement are negligible. No additional
source of systematic uncertainty is taken into account for the
background predictions.

6.2 Systematic uncertainties in the signal prediction

Systematic uncertainties in the signal prediction affect both
the signal efficiency and the MWH shape. The primary uncer-
tainties in signal yields are summarized in Table 1 and
described below.

The systematic uncertainties in the signal efficiency due
to the electron energy (E) and muon pT scales are evaluated
by varying the lepton E or pT within one standard deviation
of the corresponding uncertainty [51,53]; the uncertainties
due to the electron E and muon pT resolutions are estimated
applying a pT and E smearing, respectively. In this process,
variations in the lepton E or pT are propagated consistently
to the pmiss

T vector. We also take into account the systematic

Table 1 Summary of the systematic uncertainties in the signal yield,
relative to the expected number of events

Source Uncertainty [%]

Electron Muon

Lepton trigger and ID efficiencies 3 2

Lepton pT scale <0.5 1

Lepton pT resolution <0.1 <0.1

Jet energy-momentum scale 1–3

Jet energy-momentum resolution <0.5

Higgs boson mass tagging efficiency 2–10

Higgs boson b tagging efficiency 2–8

Unclustered energy scale <0.5

Pileup 0.5

PDF <0.5

Integrated luminosity 2.6

123



237 Page 8 of 26 Eur. Phys. J. C (2016) 76 :237

uncertainties affecting the observed-to-simulated scale fac-
tors for the efficiencies of the lepton trigger, identification
and isolation requirements. These efficiencies are derived
using a specialized tag-and-probe analysis with Z → �+�−
events [69], and the uncertainty in the ratio of the efficien-
cies is taken as the systematic uncertainty. The uncertainties
in the efficiencies of the electron (muon) trigger and the elec-
tron (muon) identification with isolation are 3 % (3 %) and
3 % (4 %), respectively.

The signal efficiency is also affected by the uncertain-
ties in the jet energy-momentum scale and resolution. The
jet energy-momentum scale and resolution are varied within
their pT- and η-dependent uncertainties [57] to estimate their
impact on the signal efficiency. The variations are also prop-
agated consistently to the pmiss

T vector.
The momentum scale uncertainty of particles that are not

identified as leptons or clustered in jets (‘unclustered energy-
momentum’) is found to introduce an uncertainty of less than
0.5 % in the signal efficiency.

We also include systematic uncertainties in the signal effi-
ciency due to uncertainties in data-to-simulation scale factors
for the pruned jet mass tagging, derived from the top quark
enriched control sample [26] and b-tagged jet identification
efficiencies [27]. These sources introduce a systematic uncer-
tainty in the mass tagging and b tagging of the Higgs boson
of 2–10 % and 2–8 %, respectively, depending on the signal
mass.

The systematic uncertainty due to the modelling of pileup
is estimated by reweighting the signal simulation samples
such that the distribution of the number of interactions per
bunch crossing is shifted according to the uncertainty in the
inelastic proton–proton cross section [70,71].

The impact of the proton PDF uncertainties on the signal
efficiency is evaluated with the PDF4LHC prescription [72,
73], using the MSTW2008 [74] and NNPDF2.1 [75] PDF
sets. The uncertainty in the integrated luminosity is 2.6 %
[76].

In addition to systematic uncertainties in the signal effi-
ciency discussed above, we consider uncertainties in the sig-
nal resonance peak position and width. The systematic effects
that could change the signal shape are the uncertainties due
to the pT/energy-momentum scale and resolution of elec-
trons, muons, jets, and the unclustered energy-momentum
scale. For each of these sources of experimental uncertainty,
the energy-momentum of the lepton and jets, as well as the
corresponding pmiss

T vector, are varied (or smeared) by their
relative uncertainties. The uncertainty in the peak position of
the signal is estimated to be less than 1 %. The jet energy-
momentum scale and resolution introduce a relative uncer-
tainty of about 3 % in the signal width. The unclustered
energy-momentum scale introduces an uncertainty in the sig-
nal width of 1 % at lower resonance masses (<1.5 TeV), and
of 3 % at higher masses.

Table 2 Observed and expected yields in the signal region together
with statistical uncertainties

eν+H-jet μν+H-jet

Observed yield 9 16

Expected total background 11.3 ± 3.1 14.9 ± 3.1

W+jets 4.7 ± 2.9 7.0 ± 3.1

Top 6.3 ± 1.1 7.3 ± 0.4

VV 0.4 ± 0.1 0.6 ± 0.2

7 Results

The predicted number of background events in the signal
region after the inclusion of all backgrounds is summarized
in Table 2 and compared with observations. The yields are
quoted in the range 0.7 < MWH < 3 TeV. The expected
background is derived with the sideband procedure. The
uncertainties in the background prediction from data are sta-
tistical in nature, as they depend on the number of events in
the sideband region. The muon channel has more expected
background events than the electron channel owing to the
lower pmiss

T requirement on the muon and its worse mass
resolution at high pT.

Figure 4 shows the MWH spectra after all selection criteria
have been applied. The highest mass event is in the electron
category and has MWH ≈ 1.9 TeV. The observed data and
the predicted background in the muon channel agree. In the
electron channel, an excess of three events is observed with
MWH > 1.8 TeV, where about 0.3 events are expected, while
in the muon channel no events with MWH > 1.8 TeV are
observed, where about 0.3 events are expected.

8 Statistical and model interpretation

8.1 Significance of the data

A comparison between the MWH distribution observed in
data and the largely data-driven background prediction is
used to test for the presence of a resonance decaying into
WH. The statistical test is performed based on a profile like-
lihood discriminant that describes an unbinned shape anal-
ysis. Systematic uncertainties in the signal and background
yields are treated as nuisance parameters and profiled in the
statistical interpretation using log-normal priors.

We evaluate the local significance of the observations in
the context of the described test, under the assumptions of a
narrow resonance decaying into the WH final state and lepton
universality for the W boson decay, by combining the two
event categories. Correlations arising from the uncertainties
common to both channels are taken into account. The result is
shown in Fig. 5. The highest local significance of 2.2 standard
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Fig. 5 Local p-value of the combined electron and muon data as a
function of the W′ boson mass, probing a narrow WH resonance

deviations is found for a resonance mass of 1.8 TeV, driven
by the excess in the electron channel described in Sect. 7. The
corresponding local significance for a resonance of 1.8 TeV
in the electron channel is 2.9 standard deviations, while in the
muon channel there is no significance. Taking into account
the look-elsewhere effect [78], a local significance of 2.9
standard deviations translates into a global significance of
about 1.9 standard deviations searching for resonances over
the full mass range 0.8–2.5 TeV and across two channels.

We conclude that the results are thus statistically compatible
with the SM expectation within 2 standard deviations.

8.2 Cross section limits

We set upper limits on the production cross section of
a new resonance following the modified-frequentist CLs

method [79,80]. Exclusion limits can be set as a function of
the W′ boson mass, under the narrow-width approximation.
The results are interpreted in the HVT model B [15] which
mimics the properties of composite Higgs scenarios, and in
the context of the little Higgs model [8]. Typical parameter
values for the HVT model B are

|cH| ≈ |cF| ≈ 1, gV ≥ 3, (3)

where cH describes interactions involving the Higgs boson
or longitudinally polarized SM vector bosons, cF describes
the direct interactions of the W′ with fermions, and gV is
the typical strength of the new interaction. In this scenario,
decays of the W′ boson into a diboson are dominant and
the W′ → WH branching fraction is almost equal to that of
the decay into WZ. The parameter points for this scenario are
currently not well constrained from experiments [15] because
of the suppressed fermionic couplings of the W′ boson.

The following parameters are used for interpretation of the
results: gV = 3, cH = −1 and cF = 1 in the HVT model B
and cot 2θ = 2.3, cot θ = −0.20799 in the LH model, where

Table 3 Intrinsic total widths
(Γ ) and cross sections (σ ) for
the LH model and HVT model
B for different resonance
masses. The WH → �νbb
branching fraction is not
included in the calculation

Resonance mass [TeV] LH model HVT model B

Γ [GeV] σ [pb] Γ [GeV] σ [pb]

0.8 7.22 5.09 × 10−1 24.1 3.37 × 10−1

0.9 8.12 3.03 × 10−1 27.1 2.48 × 10−1

1.0 9.02 1.87 × 10−1 30.1 1.71 × 10−1

1.1 9.92 1.18 × 10−1 33.1 1.16 × 10−1

1.2 10.8 7.65 × 10−2 36.1 8.05 × 10−2

1.3 11.7 5.06 × 10−2 39.1 5.59 × 10−2

1.4 12.6 3.39 × 10−2 42.2 3.88 × 10−2

1.5 13.5 2.29 × 10−2 45.2 2.51 × 10−2

1.6 14.4 1.56 × 10−2 48.2 1.87 × 10−2

1.7 15.3 1.08 × 10−2 51.2 1.30 × 10−2

1.8 16.2 7.43 × 10−3 54.2 9.03 × 10−3

1.9 17.1 5.17 × 10−3 57.2 6.27 × 10−3

2.0 18.0 3.61 × 10−3 60.2 4.25 × 10−3

2.1 19.0 2.53 × 10−3 63.2 3.02 × 10−3

2.2 19.8 1.76 × 10−3 66.2 2.10 × 10−3

2.3 20.8 1.24 × 10−3 69.2 1.46 × 10−3

2.4 21.6 8.67 × 10−4 72.2 1.01 × 10−3

2.5 22.6 6.07 × 10−4 75.3 7.31 × 10−4
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θ is a mixing angle parameter that determines W′ couplings
and that cot 2θ and cot θ can be directly related to cH and cF.

The intrinsic width and cross section for both models are
listed in Table 3 for several resonance masses. The widths for
the HVT model B are computed by means of Eqs. (2.25) and
(2.31) in Ref. [15], while the cross sections were obtained
using the online tools provided by the authors of Ref. [15].
The width is less than 5 % for the following parameter values:
0.95 < gV < 3.76, cH = −1, and cF = 1; gV < 3.9,
cH = −1, and cF = 0; or gV < 7.8, cH = 0.5, and cF =
0. The widths for the LH model have been computed by
means of Eq. (15) in Ref. [81], and they are less than 5 %
for values of 0.084 < |cot θ | < 1.21. Hence, in both models
we can consider the width to be negligible compared to the
experimental resolution.

Figure 6 shows the expected and observed exclusion lim-
its at 95 % confidence level (CL) on the product of the
W′ production cross section and the branching fraction of
W′ → WH for the electron and muon channels separately,
and for the combination of the two. For the combined chan-
nels, the observed and expected lower limits on the W′ mass
are 1.4 TeV in the LH model and 1.5 TeV in the HVT model B.
For the electron (muon) channel, the observed and expected
lower limits on the W′ mass are 1.2 (1.3) TeV in the LH model
and 1.3 (1.3) TeV in the HVT model B.

8.3 Analysis combination

The limits obtained in this analysis can be combined with
two previous results [22,24], setting limits on the sum of
W′ → WH and Z′ → ZH production in the context of
the HVT model. The search for W′/Z′ → WH/ZH →
q′qbb/qqqqqq [22] reports limits in the context of the HVT
model that can be directly used in the combination. However,
while an asymptotic approximation of theCLs procedure was
used in the original paper, for the combination the limit is re-
evaluated with theCLs procedure reported above. The search
for Z′ → ZH → qqτ+τ− [24], does not report limits in the
context of a W′ resonance. However, since it is also sensitive
to a signal from W′ → WH → q′qτ+τ− with an efficiency
of about 5 % less than for the Z′ signal, it was reinterpreted for
the purpose of the combination. The results of the combina-
tion are shown in Fig. 7. The limit on the mass of the W′/Z′ is
slightly improved to 1.8 TeV compared to the most stringent
result reported by the W′/Z′ → WH/ZH → q′qbb/qqqqqq
search.

In Fig. 8, a scan of the coupling parameters and the corre-
sponding observed 95 % CL exclusion contours in the HVT
model from the combination of the analyses are shown. The
parameters are defined as gVcH and g2cF/gV, related to the
coupling strengths of the new resonance to the Higgs boson
and to fermions. The range of the scan is limited by the
assumption that the new resonance is narrow. A contour is
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Fig. 6 Observed (solid) and expected (dashed) upper limits at 95 %
CL on the product of the W′ production cross section and the branching
fraction of W′ → WH for electron (top) and muon (middle) channels,
and the combination of the two channels (lower plot). The products of
cross sections and branching fractions for W′ production in the LH and
HVT models are overlaid

overlaid, representing the region where the theoretical width
is larger than the experimental resolution of the searches, and
hence where the narrow-resonance assumption is not satis-
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Fig. 8 Exclusion regions in the plane of the HVT-model couplings
(gVcH, g2cF/gV) for three resonance masses, 1, 1.5, and 2 TeV, where
g denotes the weak gauge coupling. The point B of the benchmark
model used in the analysis is also shown. The boundaries of the regions
outside these lines are excluded by this search are indicated by the
solid and dashed lines (region outside these lines is excluded). The
areas indicated by the solid shading correspond to regions where the
resonance width is predicted to be more than 7 % of the resonance mass
and the narrow-resonance assumption is not satisfied

fied. This contour is defined by a predicted resonance width
of 7 %, corresponding to the largest resonance mass resolu-
tion of the considered searches.

9 Summary

A search has been presented for new resonances decaying
into WH, in which the W boson decays into �ν with � = e, μ
and the Higgs boson decays to a pair of bottom quarks. Each
event is reconstructed as a leptonic W boson candidate recoil-
ing against a jet with mass compatible with the Higgs boson
mass. A specialized b tagging method for Lorentz-boosted
Higgs bosons is used to further reduce the background from
multijet processes. No excess of events above the standard
model prediction is observed in the muon channel, while an
excess with a local significance of 2.9 standard deviations is
observed in the electron channel near MWH ≈ 1.8 TeV. The
results are statistically compatible with the standard model
within 2 standard deviations. In the context of the little Higgs
and the heavy vector triplet models, upper limits at 95 % con-
fidence level are set on the W′ production cross section in a
range from 100 to 10 fb for masses between 0.8 and 2.5 TeV,
respectively. Within the little Higgs model, a lower limit on
the W′ mass of 1.4 TeV has been set. A heavy vector triplet
model that mimics the properties of composite Higgs mod-
els has been excluded up to a W′ mass of 1.5 TeV. In this
latter context, the results have been combined with related
searches, improving the lower limit up to ≈1.8 TeV. This
combined limit is the most restrictive to date for W′ decays
to a pair of standard model bosons.
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