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ABSTRACT 

To facilitate the usage of neural prosthesis, a sustainable recording method of cleaner neural signals is 

desired. While invasive neural electrodes can record neural activities with less noise than non-invasive 

methods and provide the ideal spatial-temporal resolution of the recorded signal, one major challenge of 

this invasive method is the potential tissue responses. The scar tissue that forms around the penetrating tip 

of the electrode may significantly degrade the signal quality in time, which causes the reading to be 

unreliable in the long-term. Solving this problem is key to enabling chronic usage of neural prosthetic 

systems. 

To tackle this challenge, previously Aalap Dighe has designed a reconfigurable neural probe using 

flexible polyimide material1. The design used a spring-like structure to allow the electrode probe tip to 

move further inside the brain weeks after the initial implantation surgery. The latest generation of the 

devices, Gen 3, was tested both in vitro and in vivo using rodent models.  

In this thesis, the author continued the characterization of Gen 3 devices based on problems and 

observations occurred during the in vivo tests by Dighe, and proposed and tested an improved version of 

the device design, Gen 4. In particular, this thesis focused on solving the mechanical failure of some 

devices post-implantation and on reducing the instability of electrical properties of the electrodes. An 

improved structural mechanics simulation model of the design was used to characterize the mechanical 

properties of the devices. The simulation results were partially validated using benchtop load force tests, 

and were used to revise device design parameters for Gen 4. Experiments with Gen 4 devices showed that 

the new design met the design target well. Long-term in vitro impedance analysis of the electrodes was 

also performed using Gen 3 devices, which confirmed the observation of decreasing impedance over time 

in the previous in vivo tests. The results suggested delamination occurring between the polyimide layers, 

and the fabrication process was modified based on this hypothesis. Benchtop impedance tests of the new 

generation of devices confirmed that the delamination issue has been significantly improved.  

 

 

Thesis Supervisor: Joel Voldman 

Title: Professor of Electrical Engineering and Computer Science 

                                                      
1 A. Dighe, "Reconfigurable Neural Probes for Chronic Electrical Recording," Cambridge, MA, 2015. 
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Chapter 1:  Introduction 

1.1 Background and Motivation 

1.1.1 Neural Prosthetics and Common Recording Methods 

Neural prosthetics aim at replacing or improving the performance of malfunctioning parts of the nervous 

system due to disease or trauma. Imagine a patient who lost an arm or a patient who cannot control his or 

her arm well due to a spinal cord injury. If we know how neural activities in the brain corresponds to the 

control of arm motions and hand gestures, we can develop a system that redirects the commands from the 

brain to the peripheral nervous system, or build a prosthetic arm that can be controlled directly using brain 

signals. 

To understand how the neurons control our bodies, the ability to access and record their activities is 

essential. The recording of brain signals has been a fascinating realm of exploration since scientists 

learned that neurons communicate through electrochemical signals. Not only can the neural activities be 

read directly from voltage measurements in individual neurons, but also from the electrical field that such 

signals generate in the neurons’ adjacent surroundings.  

Currently, both non-invasive and invasive neural probes are used to record neural activities. Common 

non-invasive recording techniques include electroencephalogram (EEG) and Electrocorticography 

(ECoG), which record from outside the brain and maximally avoid tissue damage. Invasive neural 

electrodes, on the other hand, penetrate brain tissue and read from within the brain. The invasive 

electrodes have much higher spatial-temporal resolution compared to EEG or ECoG [1], and is less prone 

to ambience noise or disturbance caused by body movements of the test subjects wearing them, which are 

both desired traits of recordings used for neural prosthetic devices. 

 

1.1.2 Challenges with Invasive Electrodes: Tissue Responses 

Although invasive electrodes are capable of recording cleaner data with higher spatial-temporal 

resolution, their functional lifetime is a big challenge in their chronic usage. The implants often trigger 

tissue responses that deteriorates the signal quality over time [2]. The initial insertion of the devices into 

the brain causes inflammatory response of the tissue due to mechanical trauma [2]. However, while this 

initial inflammatory response goes away in a few weeks, the long-term responses by glial cells, in 

particular reactive Astrocyte and activated microglia, is more concerning [2]. In reaction to a neural 

electrode insertion, these electrically inactive glial cells in the brain tissue gradually forms a condensed 

sheath around the inserted foreign body in between 4 to 6 weeks, as shown in Figure 1-1 [2] [3]. The glial 

sheath likely shields the electrically active neurons from the electrode, thus prevents the electrode form 

recording neural signals. 
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Figure 1-1 and caption adapted from [3] by [2]- Time course of glial scar formation at four time points as 

imaged by GFAP staining. At 2 and 4-week time points, the astrocytic processes fall back into the void left by 

the probe extraction before tissue processing. By 6 weeks, the processes have interwoven to form a stronger, 

more dense sheath surrounding the implant. Minimal changes between the 6- and 12-week time points indicate 

the glial scar completion within 6 weeks. 

 

 

Figure 1-2 adapted from [4] - Aggregated data from eight chronic animals to show the trend of the weekly 

array yield for long-term microarray implants (≥6 weeks). 

Previously, Prasad and Sanchez has performed a long-term study on the yield of active electrode over 

time after implantation using custom made microelectrode arrays [4]. Their results in Figure 1-2 shows 

that the fractions of active electrodes decrease after 2 to 3 weeks post-implantation in most implanted 

arrays. They attributed this decrease to the glial response. 

This problem caused by the glial sheath formation suggests that brain implant surgeries need to be done 

frequently to replace the inactive probes with new ones in order to get reliable readings. This makes the 

long-term and large-scale use of such probes very inconvenient, if not impractical, for both doctors and 

patients. Therefore, one of the most critical challenges in invasive neural probe design is to lessen or 

avoid effect by long-term tissue responses. 
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1.1.3 Current Approaches to Reduce Effect by Tissue Responses 

Currently, people have proposed various approaches to reduce tissue responses in the long-term, while 

others use repositioning probes to pierce through the formed glial sheath to reach fresh tissue. 

1.1.3.1 Reducing Tissue Responses 

Long-term tissue responses may be reduced by enhancing biocompatibility of the recording interface. 

Common ways to achieve biocompatibility are using biocompatible polymers or coating the implanted 

electrodes with highly biocompatible material. For example, a study by Rao et al. showed that 

Polyethylene glycol-containing polyurethane hydrogel coatings reduces the glial responses [5]. 

Immunohistochemistry performed after 6-week implantation in rat cortexes showed that the average 

thicknesses of the glial sheath were 35 µm around uncoated electrodes and 22 µm around coated ones.  

Making the electrodes smaller can also lower negative effect from tissue responses. Ultra-small implants 

have been proven to cause significantly less glial sheath formation. Seymour and Kipke demonstrated that 

their design of a parylene 5-µm thick lateral structure caused significantly lower level of tissue responses 

and neuron loss than a 48-µm-by-68-µm shank with the same parylene surface 4 week post implantation 

[6]. Kozai et al. have proposed and tested an ultrasmall microthread electrode designs with a total 

diameter of 8.5-µm, and demonstrated that these electrodes were able to record single-unit neural signals 

for at least 5 weeks with a high yield and had no sign of degradation over the moderate period of time [7]. 

These studies suggests that electrodes with subcellular-geometry are be able to reduce tissue responses 

and are feasible for single-unit neural recordings. 

Another approach is to use flexible material to make the electrodes. Lee et al. performed a study using 

neural probes made from silicon (~150 GPa), polyimide (1.5 GPa), OSTE+Hard (300 MPa), and OSTE+Soft 

(6 MPa) with comparable small thickness (15-µm silicon probe and 22-µm polymer probes) were 

implanted in adult mice [8]. The tissue responses were studied 4 and 8 weeks post implantation by 

performing a quantitative study of different inflammatory biomarkers around the site of implant. Results 

confirmed that flexibility is one key to reducing the tissue responses, since the silicon probes induced the 

most severe responses. However, results from the three softer polymer probes showed no significant 

difference, suggesting that beyond some threshold, further increasing the flexibility could not provide 

further help.  

1.1.3.2 Repositioning Probes 

While the mechanism of how to further lower or avoid tissue reaction is still under study, people have 

been using the technique of repositioning probes to prolong the functional lifetime of the neural implants. 

When the tissue reaction and SNR decrease, the electrodes get pushed further inside to pierce through the 

glial scars to get cleaner readings. For example, Jackson et al. designed a MEMS based device to push 

electrodes of size 50 μm × 4 μm × 5 mm forward when the SNR decreases to a level where signal and 

noise were undistinguishable [9]. The electrodes were implanted in rat somatosensory cortex, and each 

time the electrode was repositioned, the SNR stayed high enough for 2-4 days. Nevertheless, this is not an 

ultimate solution for chronic usage since after a certain number of repositions the electrodes will be 

pushed too far away to record from the target neurons. 

Another study by Stice and Muthuswamy provided evidence that later repositioning of the electrodes 

causes less response than the initial insertion if repositioned after the initial healing process [10]. In the 

study, they performed a quantitative assessments of glial fibrillary acidic protein (GFAP) around the 

microeletrodes with a diameter of 114 µm implanted in rat cortex repositioned at different times. The 

electrodes were repositioned 2 days, 14 days, and 28 days post-implantation, and histology was 

performed 4 weeks post-movement, with control groups in which the electrodes were not repositioned. 

Results showed that although the level of GFAP expression was not significantly different between the 
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control group and that moved 2 days post-implantation, the groups repositioned 14 and 28 days post-

implantation showed much lower GFAP around the tip of the electrodes.  

 

1.1.4 Our Approach: Reconfigurable MEMS Neural Probe 

1.1.4.1 Device Design 

Our approach utilizes a combination of the previously introduced methods: biocompatibility, small size, 

flexibility to reduce tissue response, and with repositioning feature. Previously, A. Dighe has proposed 

and tested a MEMS-based design that used biocompatible and highly flexible polyimide (PI) with tip 

thickness of about 10 µm [11]. The recording electrode was in the form of a gold trace, which was mostly 

covered in between the two PI layers, while one of the PI layers had a small opening on the tip of the 

device to allow exposure of the trace to the brain tissue. The repositioning operation schematics of the 

device is shown in Figure 1-3. This thesis will be based on his work.  

 

Figure 1-3 adapted from [11] - Device operation schematic by A. Dighe. 

Figure 1-3 shows the MEMS device that consists of a shuttle that supports the tip with electrode sites, an 

outer frame, and thin legs that connects the shuttle to the frame. Prior to insertion, the shuttle is pulled and 

glued to the outer frame, as shown in (a). Since polyimide is highly flexible, the deflected thin legs act as 

springs to store mechanical energy. In (b), after the implant surgery, tissue reaction takes place and a glial 

sheath forms around the probe tip. This initial healing process is expected to take about a few weeks. 

Then, the glue holding the shuttle back gets dissolved, and the energy stored in the deflected legs helps 

push the shuttle forward and releases the probe tip to fresh tissue, as shown in (c). 

The test of the design started with Gen 0, in which the mechanical feasibility of the leg-spring design was 

verified. Benchtop buckling tests of the tip was performed to ensure that the geometry of the tip was able 

to pierce through brain tissue. In Gen 1, the electrode traces were added, and the design of the legs was 

improved based on test results of Gen 0 devices. Gen 2 and Gen 3 further modified the design based on 

test results of their previous generations, and in Gen 3, a resistive heater mechanism was added to enable 

remote control of the shuttle deployment. The resistive heater mechanism was verified in benchtop in 

vitro setup. 

1.1.4.2 Known Issues from In Vivo Studies and Proposed Hypotheses 

The latest generation of the design, Gen 3, was used in both acute in vivo studies in optogenetic mice and 

preliminary chronic in vivo study in rats. The acute study showed high SNR of recorded neural signal in 
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some electrodes, which proved the recording functionality of the devices. However, the recording was not 

reliable in all electrode sites. In the chronic study in which the device shuttles were initially pulled back 

during implantation, the devices failed to deploy after 5-weeks. 

Mechanical failure of the legs was suspected — whether the force the legs could deliver was enough to 

pierce through the glial sheath, and whether the stress was too high to cause plastic instead of elastic 

deformation. Another hypothesis of the unsuccessful deployment was due to the failure of the resistive 

heater, as the impedance of the heater was measured to be open circuit after 5-weeks. 

Besides the unsuccessful shuttle deployment, another especially concerning observation from the in vivo 

study was the significant decrease in measured impedance of the electrode sites.  

 

Figure 1-4 – Magnitudes of the impedances of the 16 electrode sites measured in benchtop tests pre-

implantation, immediately post-implantation, and 1, 2, 5 weeks post-implantation using data from [11].  

The impedance of the electrode sites at 1 kHz was measured in benchtop tests pre-implantation, 

immediately post-implantation, and 1, 2, 5 weeks post-implantation. As shown in Figure 1-4, for 14 out of 

the 16 implanted electrode sites, the impedances dropped dramatically during the first week after 

implantation. 

The cause of the heater failure and impedance decrease was hypothesized to be the delamination of the 

two PI layers of the device. Water absorption causing adhesion loss has been a known issue for PI [12]. 

Thus if the adhesion between the two layers were not initially strong enough, submerging in a high 

moisture environment could have decreased the adhesion further, even breaking the bonding to cause 

delamination. That means there was a gap in between the layers, exposing more of the electrode traces 

than designed to the brain tissue environment. If the delamination happened rather fast after the 

implantation, it could also have contributed to the inability to record neural signals reliably in the acute in 

vivo experiment.  

 

1.2 Thesis Overview 

Therefore, the main goal of this thesis will be to test the remaining Gen 3 devices and produce an 

improved design based on the test results and resulting hypotheses.  

Chapter 2 includes mechanical and electrical characterizations of the Gen 3 devices. The original 

analytical model used for mechanical design was re-examined, and simulations were used to verify the 
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choice of design parameters. Then the simulation model will be compared to actual measurement results. 

The impedance of the electrode sites were recorded over prolonged time to verify if any changes would 

take place in in vitro settings. 

In Chapter 3, using the results in Chapter 2, modifications were made to the mechanical parts of the 

design and to the fabrication process of the devices. This new generation, Gen 4, will be tested again for 

their mechanical and electrical properties to see whether the design or fabrication process has been 

improved.   

Chapter 4 will include discussions on what contributions this work has made during its process, and 

future directions for those who might later take on this work. 
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Chapter 2:  Gen 3 Device Characterization 

2.1 Introduction 

As introduced in Chapter 1, the shuttle deployment failure 5 weeks post implantation using Gen 3 devices 

in in vivo environment let us suspect both mechanical failure of the device legs and electrical failure 

caused by delamination.  

In this chapter, the original mechanical model of the stresses induced by a certain leg deflection and the 

corresponding load forces required to provide such a deflection will be reviewed. Since an analytical 

linear model was used for the design of previous generations, nonlinear model will be used with the help 

of FEA simulation software to provide a better characterization of the mechanism.  

On the electrical aspect, the impedance of the electrode sites will be recorded in an in vitro setting to see 

whether the decreased observed in in vivo setting can be replicated. The impedance will be recorded at 

short intervals for a prolonged time to determine if and how it decreases to potentially provide more 

insights into the causes; in particular, whether they are consistent with the delamination hypothesis. 

 

2.2 Gen 3 Mechanical Analysis 

In the assembly of the device packaging, the outer edge of the frame is glued to a holding glass slide, 

while the shuttle is not directly attached to the slide. Prior to implant surgery, the device shuttle is pulled 

and glued to the frame on one end. Since the device is made from Polyimide, which is highly flexible, 

when the stress induced in the legs by the deflection is below the elastic yield of Polyimide, the set of legs 

acts like a spring. When the load force is released by melting the glue, the reaction force will drive the 

shuttle in the opposite x-direction until legs are straight again.  

In this design, three criteria are essential: the deflection of the legs, the force this spring provides when 

released, and the maximum induced stress. The deflection of the legs should be greater than the thickness 

of the glial sheath (estimated to be 5 µm [11]) to reach unblocked tissue. The force the spring provides 

while restoring its shape at rest should be strong enough to pierce through the glial sheath (estimated to be 

5 mN [11]). The maximum induced stress should be lower than the elastic yield stress (70 MPa [11]) of 

Polyimide to make sure that the structure remains undamaged and able to restore its original shape. The 

last one is critical in that it makes sure that the deflection of the legs while held by glue is the same as the 

distance the shuttle travels when released, and that the reaction force can be predicted assuming elasticity 

of the material. 

In the in vivo tests of Gen 3 devices, some devices failed to deploy when the glue is melted [11]. One of 

the potential reasons was mechanical failure, that the device tip failed to provide enough force or distance 

to pierce through some of the glial sheath. In choosing the design paramters for Gen 3, the mechanical 

properties were modeled using the linear model of beam deflection, and large safety factors were 

introduced in the predictions to account for the simplification of the mechanism. These mechanical 

properties, however, were not tested thoroughly in the devices. 

This section re-examines the original mechanical model of the device to see whether the safety factors 

used were large enough to cover the simplifications by the model as well as other factors due to 

fabrication variations.  
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2.2.1 Re-Visiting the Original Linear Analytic Model 

2.2.1.1 Model of the Deflected Device Legs as a Fixed-Fixed Beam 

 

Figure 2-1 – Model of the device leg in the x-y plane. Figure adapted from [11]. 

Figure 6 shows the view of the device mechanism in the x-y plane. The device has uniform height in the z 

direction perpendicular to the x-y plane. All movements and deflections of the device are designed to 

occur only in the x-y plane.  

Since the legs are very thin beams made from highly flexible material, the legs can be viewed as highly 

elastic. The shuttle and the frame, on the other hand, have relatively very large span at any point in all 

directions in the x-y plane, and thus can be approximated as rigid bodies when discussing movements and 

deflections in this plane. When a load force (by hand or by glue) is applied at one end of the shuttle along 

the axis of symmetry of the structure, the legs will deflect accordingly, allowing the shuttle to move in the 

same direction as the force, as shown in Figure 2-1.  

Each device leg can be modeled as a beam with a uniform rectangular cross-section, and all legs are 

identical by design. The end of the beam connected to the frame can be modeled as a fixed support, while 

the end connected to the shuttle is allowed to move only in the x-directions. The distance of the frame 

from the shuttle is kept at 𝑙, which is the length of the original undeflected leg. The deflection 𝛿 is 

measured by the distance the end connected to the shuttle moves.  

Due to the symmetry of this setup and the approximation of the shuttle as rigid body, the model in Figure 

2-1 can be transformed into the model in Figure 2-2 by mirroring the beam with respect to the shuttle end 

(green dashed line). 
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Figure 2-2 – Model of a pair of leg, adapted from [11]. 

The revised model in Figure 2-2 models a pair of legs at both sides of the shuttle, since all legs are 

identical by design. The load force is applied to the connection point of the beams along the green dashed 

line, which is now the axis of symmetry. The constraint that the shuttle end of the beam only moves in x-

directions in the previous model in Figure 2-1 is now by default due to the symmetry.  

And since all legs are identical by design, we can model only one pair of the legs to predict the amount of 

deflection and stress induced by load forces. The deflection and maximum stress induced in all legs are 

the same as those in one pair of legs, and the total load force equals the load force on one pair of legs 

times the total number of pairs.  

 

2.2.1.2 Deflection vs. Load Force in a Fixed-Fixed Beam 

 

 

Figure 2-3 – Center load on beam with two fixed supports. Figure from [13]. 
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Figure 2-3 and Equation 2-1 are adapted from figures and equations contained in Mechanics of Materials 

(Fourth SI edition) by J. M. Gere, S. P. Timoshenko and Stanley Thornes [13]. A beam with span L is 

fixed on both ends, and a load force F is applied at the center of the beam in a direction perpendicular to 

the beam at rest. The maximum deflection δ, occurring at the center of the beam, is given by [13] 

 δ =
𝐹𝐿3

192𝐸𝐼
 , Equation 2-1  

Where F is the load force and L is the total original span of the beam as shown in Figure 2-3, E is the 

Young’s Modulus of the material, and I is the area moment of inertia of the beam’s cross section.  

This model in Figure 2-3 is the same as our model of one pair of legs in Figure 2-2, with the only 

difference being the notation of l =
L

2
, or equivalently L = 2l. 

In our device leg model, the neutral axis of the beam is along the direction of the height of the beam h in 

the z-direction, and the cross-sectional area is a rectangle with uniformly distributed mass, so [14] 

 I =
𝑏3ℎ

12
 . Equation 2-2 

Combining with Equations 2-1 and 2-2, we have 

 δ =
𝐹(2𝑙)3

192𝐸
𝑏3ℎ

12

=
𝑙3

2𝐸𝑏3ℎ
𝐹 , Equation 2-3 

Where F is the load force on each pair of leg. Equivalently 

 𝐹 =
2𝐸𝑏3ℎ

𝑙3
δ . Equation 2-4 

Equation 2-4 here is consistent with the result given by Equation 2-5 in Dighe’s [11]. The factor of two 

discrepancy is because the F in Dighe’s is load force per leg, while here is load per pair of legs. 

According to Newton’s Third Law, the reaction force at the center point of this beam when the load force 

F is released has equal magnitude but opposite direction as F. So the force the device tip, which is 

connected to the shuttle, provides when the glue is released can be approximated using Equation 2-4. 

2.2.1.3 Stress vs. Load Force in a Fixed-Fixed Beam 

In the same setting has above in Figure 2-3, we can calculate the maximum stress induced at the load and 

both ends using [15] 

 𝜎𝑚𝑎𝑥 =
𝐹𝐿

8𝑍
 , Equation 2-5  

 

Where Z is section modulus of the beam, [16] 

 Z =
𝑏2ℎ

6
 . Equation 2-6  

  



21 

 

 

This gives 

 𝜎𝑚𝑎𝑥 =
𝐹𝐿

8
𝑏2ℎ

6

=
3𝐹𝐿

4𝑏2ℎ
 . Equation 2-7  

Substituting Equation 2-4, we get 

 𝜎𝑚𝑎𝑥 =
3
2𝐸𝑏3ℎ

𝑙3
δ(2𝑙)

4𝑏2ℎ
=

3𝐸𝑏

𝑙2
δ . Equation 2-8  

Which is also consistent with Equation 2-6 in Dighe’s.   

 

2.2.2 Limitations of the Original Linear Model 

These linear equations, however, are no longer appropriate approximations of the mechanical system once 

the deflection is large comparative to the span.  

Table 2-1 – Device specifications of Gen 3 devices. 

Device 

Type 

Beam Length 

[μm] 

Min. Target 

Deflection [μm] 
Min. % 

of Span 

Max. Target 

Deflection [μm] 
Max. % 

of Span 

T10 300 50 16.67% 80 26.67% 

T20 500 50 10.00% 80 16.00% 

 

The lengths of the legs in Gen3 devices were either 300 μm or 500 μm, while the target deflection range 

was 50μm to 80μm. This means the target deflection range has been greater than 10% of the length of the 

beams, which should no longer be considered small deflection settings. Thus, nonlinear models should be 

used to get a better approximation of the system.  

 

2.2.3 FEA Simulation Model 

2.2.3.1 FEA Simulation Software 

Since solutions using nonlinear models are not easily calculated analytically, COMSOL Multiphysics 4.2 

was used to perform 3-D Finite Element Analysis (FEA) of the system. The linear elastic materials model 

under Structural Mechanics Module was used, and geometric nonlinearity for large deformations was 

included. 
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Table 2-2 – Equations used in COMSOL linear elastic materials model [17] 

Not including geometric nonlinearity Including geometric nonlinearity 

−∇ ∙ 𝜎 = 𝐅υ,  𝜎 = 𝑺 

𝑺 − 𝑺0 = C ∶ (𝜀 − 𝛼(𝑇 − 𝑇ref) − 𝜀0) 

 𝜀 =
1

2
[(∇𝐮)T + ∇𝐮] 

−∇ ∙ 𝜎 = 𝐅υ,  𝜎 = (𝑺 ∙ (𝐈 + ∇𝐮)) 

𝑺 − 𝑺0 = C: (𝜀 − α(𝑇 − 𝑇ref) − 𝜀0) 

 ε =
1

2
[(∇𝐮)T + ∇𝐮 + (∇𝐮)T∇𝐮] 

𝜎 - symmetric stress tensor 

𝐅 - loads 

υ - Poisson’s ratio 

𝒔 - stress tensor, 𝑺0 - initial stresses 

𝐈 - identity matrix 

𝛁𝐮 - displacement gradient 

C - 4th order elasticity tensor 

 ∶ - double-dot tensor product (or double contraction) 

𝜀 - strain tensor, 𝜀0 - initial strains 

𝛼 - thermal expansion tensor 

𝑇 - temperature, 𝑇ref – reference temperature 

 

 

2.2.3.2 Material Properties 

The material properties of Polyimide HD-4100 from HD MicroSystems™ used in the simulations are 

listed in Table 2-3. 

Table 2-3 – Material Properties of Polyimide 

Material Property Name Value Unit 

Young's Modulus [18] 3.3  GPa 

Density [19] 1430 kg/m3 

Poisson's ratio [19] 0.33  (unitless) 

 

2.2.3.3 Equivalent Stress 

In the simple modeling used for previous generations, only stress induced by bending moments was 

explicitly calculated. Previously, Dighe performed an analysis that showed the significant impact on the 

total stress by stretching, and concluded that the effect could be taken account for by including a safety 

factor [11]. For this new generation of devices, we use the equivalent tensile stress, or von Mises stress, to 

compare to the approximated yield stress of the material, which is a commonly used approach in 

engineering design [20]. 

 

2.2.3.4 Stress Concentrations vs. Stress Singularities 

One particular issues that needs to be dealt with carefully while using FEA to solve for stress is the 

occurrence of stress singularities in the solutions. In steady-state simulations, if the model is set up 

correctly, the solution should converge to a specific value as finer spatial discretization is used, which is 
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known as a mesh sensitivity study [21]. But sometimes due to the unrealistic geometric elements (such as 

perfectly sharp corners) and constraints in simplified models used for simulation, the solutions at certain 

points will not converge and go to infinity instead. This is caused by the non-differentiability of the non-

linear functions due to the geometry or the constraints. To demonstrate, we set up the following simple 

model of a device leg in Figure 2-4 with one end fixed and the other constrained to move freely only in 

the x-direction. 

 

Figure 2-4 – (a) The simple model of the leg using a beam with rectangular cross-section. (b) An example 

surface plot of the FEA result of von Mises stress on the deformed beam using a mesh of 2305 elements.  

Beam length (z-direction) l = 500𝜇𝑚, width (x-direction) b = 20𝜇𝑚, and height (z-direction) h = 10𝜇𝑚.  

The surface plot of von Mises stress by using a simple mesh in Figure 2-4 suggests that the stress 

concentrations or singularities are in the corners, as expected. Therefore, the mesh and increase the 

number of FEA elements by locally refining the mesh near the corners. This was achieved by defining the 

mesh distribution by fixed numbers of mesh elements on all four edges in z-directions and constraining 

the growth rate of elements to a fixed value (here 1.35 was used). 

 

Figure 2-5 – Locally refining the mesh near the corners in simple beam model. The number of mesh elements 

on the blue edges are specified. 
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Table 2-4 - # of mesh elements used with the model in Figure 2-4 and the corresponding total number of 

elements  

# of elements on edges in z-direction # total elements 

5 3002 

10 5117 

15 7863 

20 9822 

25 12527 

30 14888 

35 17357 

40 20170 

 

 

Figure 2-6 - Maximum von Mises stress induced by 50𝜇𝑚 deflection of one end in a 500𝜇𝑚 beam vs. the 

number of elements calculated in the FEA study by COMSOL. 

As shown in Figure 2-6, the increasing maximum stress versus number of elements does not approach a 

limiting value over the tested range, which is consistent with a stress singularity at the corners (see Figure 

2-4b), rather than stress concentrations. 

This phenomenon has been thoroughly studied in similar settings. For example, M. Acin performed a 

mesh sensitivity test on a 2-D cantilever beam with one end fixed and shear force applied on the other end 

[21]. 
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Figure 2-7 from [21] - Mesh sensitivity study – Fiber stress at clamped section and tip displacements of 2D 

model against Theory of Elasticity predictions. 

This study showed that the stresses at the corners do not converge even with more than 400,000 elements, 

which means the elements were less than 0.04% of the beam length that Acin used in this simulation [21]. 

This singularity is due to the conflict of the Poisson’s ratio effects and the fixed constraints. Furthermore, 

as Acin pointed out, Tullini, N. and Savoia, M. has performed a mathematical analysis of this setting and 

found that this singularity is of a logarithmic type [22]. Although our setting is not identical to the one in 

our study of a beam fixed at both ends instead of one, and we are using non-linear equations instead of 

linear ones, the same Young’s Modulus and Poisson’s ratio method were used, so the conflict between 

stress and displacement boundary constraints cannot be avoided.  

The same study by Acin suggests that if we do not care about the stress solutions at or close to the 

singularities, they can be ignored. In our case, however, we would expect the maximum stress to be at the 

corners, where the singularities occur if not dealt with carefully, and we want to make sure that 

concentration does not exceed the yield stress. Therefore, the singularities at these corners needs to be 

removed. In setting up the model, we should maximally avoid unnecessary constraints near these corners. 

Since sharp reentrant corners and point loads are also known causes of stress singularities in FEA studies 

involving partial differential equations, these elements should be avoided as well [23]. 

 

2.2.3.5 Revised Simulation Model Setup 

A new model was built to avoid causes of stress singularities such as conflicting boundary constraints, 

sharp reentrant corners and point or edge loads. 
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Figure 2-8 - The COMSOL model to simulate the mechanics of this device is a symmetric section of the 

device including a pair of legs and a section of the shuttle in the center. A cross-sectional view of this model in 

the x-y plane is further detailed in Figure 2-9. 

 

Figure 2-9 - The revised model with no deformation in x-y plane. In this model, one pair of legs is modeled 

instead of one leg to avoid constraining the end of the beam to move only in one direction.  

The left and right panels are the frame of the device. These panels are added to keep the fixed 

displacement constrains far away from the ends of the beams.  

The center panel is the device shuttle. It is added to avoid an edge load in z-direction, which is unrealistic 

in 3-D and is expected to pause a singularity just like a point load in 2-D. 

Thin rectangular beams connecting the panels are the device legs. 

Fillets in the shape of 90-degree arcs are added at the reentrant corners of the structure to make sure of the 

differentiability of equations at the corners. They should also help reduce the level of stress 

concentrations. The inclusion of fillets is well supported by the fact that the optics used to manufacture 
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the photomask of the device has a 0.5𝜇𝑚 radius, making a square of 1𝜇𝑚 side length rounded circle, as 

stated on the manufacturer’s website [24]. 

Fixed constraints are applied to the edges shown in red, while an edge load Fx or a fixed displacement dx 

in the x-direction is applied on the edge shown in green. Due to the symmetry of this structure, we do not 

need to put further constraints on the system to make sure the shuttle moves only in x-directions. 

 

2.2.3.6 The Effect of Fillets 

Mesh sensitivity tests were performed using the new model without (FilletR = 0) and with the fillets in 

the reentrant corners using a similar process as described in Section 2.2.3.4.  

 

Figure 2-10 – Simulated equivalent stress using a non-locally-refined extra-fine mesh.  

Simulation parameters were: 𝐵𝑒𝑎𝑚𝐿 = 500 𝜇𝑚, 𝐵𝑒𝑎𝑚𝑊 = 20 𝜇𝑚, 𝐵𝑒𝑎𝑚𝐻 = 10 𝜇𝑚, 𝑆𝑖𝑑𝑒𝑊 = 500 𝜇𝑚, 

𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑊 = 500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝐿 = 500 𝜇𝑚, 𝐹𝑥 = 0.1 𝑚𝑁 and 𝐹𝑖𝑙𝑙𝑒𝑡𝑅 = 20 𝜇𝑚. 

A look at simulated equivalent stress using a non-locally refined mesh shown in Figure 2-10 suggested 

that the stress concentration is indeed near the corners. Therefore, instead of globally refining the mesh, 

again local refinement was used. The number of mesh elements is defined on each of the 8 edges in the z-

direction in the reentrant corners when there is no fillet, as well as on the 16 edges at the intersection of 

the fillets and the beams/panels when the filter is added. Other meshing parameters were the same as in 

Section 2.2.3.4. 

 

Figure 2-11 – Locally refining the mesh near the corners in device model. The number of mesh elements on 

the blue edges are specified. 
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Figure 2-12 - Mesh Sensitivity Tests of maximum von Mises stress vs. number of FEA elements from 

simulating the model in Figure 2-9 using nonlinear model, without (Figure 2-12a) and with (Figure 2-12b) 

fillets.  

Simulation parameters were: 𝐵𝑒𝑎𝑚𝐿 = 500 𝜇𝑚, 𝐵𝑒𝑎𝑚𝑊 = 20 𝜇𝑚, 𝐵𝑒𝑎𝑚𝐻 = 10 𝜇𝑚, 𝑆𝑖𝑑𝑒𝑊 = 400 𝜇𝑚, 

𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑊 = 500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝐿 = 500 𝜇𝑚, 𝐹𝑥 = 0.1𝑚𝑁 and (a)𝐹𝑖𝑙𝑙𝑒𝑡𝑅 = 0 or (b)𝐹𝑖𝑙𝑙𝑒𝑡𝑅 = 0.5 𝜇𝑚.  

Results of stress induced by a fixed deflection in Figure 2-12 confirm that adding fillets in these reentrant 

corners is indeed essential to avoiding stress singularities. The maximum equivalent stress in (a) without 

fillets shows no sign of convergence with increasing number of elements if using the model without 

fillets, but stabilizes in the range of 90 to 100MPa when small fillets were added in (b). 

As a confirmation of that stress singularities do not affect force versus deflection results [21], mesh 

sensitivity studies were also performed with a fixed load force on the shuttle. 

 

Figure 2-13 – Mesh Sensitivity Study of the deflection induced by a fixed load force of 1e-4N shows clear sign 

of convergence, (a) without and (b) with fillets. 

Simulation parameters are: 𝐵𝑒𝑎𝑚𝐿 = 500 𝜇𝑚, 𝐵𝑒𝑎𝑚𝑊 = 20 𝜇𝑚, 𝐵𝑒𝑎𝑚𝐻 = 10 𝜇𝑚, 𝑆𝑖𝑑𝑒𝑊 = 500 𝜇𝑚, 

𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑊 = 500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝐿 = 500 𝜇𝑚, and 𝐹𝑖𝑙𝑙𝑒𝑡𝑅 = 0.5 𝜇𝑚. 

As shown in Figure 2-13, when studying the load force versus deflection relationship, singularities did not 

occur in the simulation model, with or without the addition of fillets in the corners. 
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Unless specifically noted, all remaining simulations presented in this thesis used meshes refined in the 

same way as in Figure 2-11, and results were recorded when further refining the mesh did not 

significantly change their values.   

2.2.3.7 The Effect of Added Panels 

The effects different parameters of the three panels on the simulated deflection and maximum von Mises 

stress results were studied. The widths of the three panels were swept from 50 µm to 650 µm with 50 µm 

instance, and lengths of the panels from 100 µm. The mesh refinement at the corners in each plot was 

kept consistent to maximally reduce the effect of meshing method on the plotted trend. 

 

Figure 2-14 – Simulation results of the deflection and maximum von Mises stress induced by a fixed load 

force, with variations of SideW, ShuttleW and ShuttleL from 50 µm to 650 µm. In each trial, only one 

parameter was swept while others were kept constant. 

Simulation parameters when unchanged were: 𝐵𝑒𝑎𝑚𝐿 = 1500 𝜇𝑚, 𝐵𝑒𝑎𝑚𝑊 = 20 𝜇𝑚, 𝐵𝑒𝑎𝑚𝐻 = 10 𝜇𝑚, , 

𝐹𝑖𝑙𝑙𝑒𝑡𝑅 = 20 𝜇𝑚, 𝐹𝑥 = 0.1 𝑚𝑁, 𝑆𝑖𝑑𝑒𝑊 = 500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑊 = 500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝐿 = 500 𝜇𝑚. 
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Results in Figure 2-14 show that although the simulated deflection monotonically changes with increasing 

SideW, ShuttleW or ShuttleL in the testing range, the results were all within 1% difference from others, 

which is very small for simulation purpose.  

The stress results show greater variation, but also in an acceptable range. For lengths greater than 200 µm, 

the results stabilizes in the range of 18 to 20 MPa. 

Therefore, the choice of SideW, ShuttleW and ShuttleL within this tested range is not critical to the 

simulation result. 

 

2.2.4 Simulation Results: Stress vs. Deflection Relationships 

With a reasonably refined mesh that is verified using mesh sensitivity test, the relationship between the 

maximum induced stress and the deflection amount was studied by putting a fixed deflection dx = 50 µm 

on the shuttle, which is the design target deflection [11]. The parameters of Gen 3 T20 devices were used. 

 

Figure 2-15 – Comparison of simulation results using linear and nonlinear equations.  

Simulation parameters are: 𝐵𝑒𝑎𝑚𝐿 = 500 𝜇𝑚, 𝐵𝑒𝑎𝑚𝑊 = 20 𝜇𝑚, 𝐵𝑒𝑎𝑚𝐻 = 10 𝜇𝑚, 𝑆𝑖𝑑𝑒𝑊 = 500 𝜇𝑚, 

𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑊 = 500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝐿 = 500 𝜇𝑚, and 𝐹𝑖𝑙𝑙𝑒𝑡𝑅 = 0.5 𝜇𝑚. 

Figure 2-15 shows that the maximum stress increases monotonically with increasing deflection as 

expected. It also shows that while the simulations using linear and nonlinear equations give close results 

with smaller deflections, the results deviate as the deflection becomes larger. Using the parameters of Gen 

3 T20 devices, the maximum equivalent stress is almost twice as high using the nonlinear model at the 

target deflection of 50 µm. This confirms that including geometric nonlinearity is necessary despite it 

takes much more computational time than using only linear models. 
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2.2.5 Simulation Results: Force vs. Deflection Relationships 

 

Figure 2-16 - Comparison of simulation results using linear and nonlinear equations.  

Simulation parameters are: 𝐵𝑒𝑎𝑚𝐿 = 500 𝜇𝑚, 𝐵𝑒𝑎𝑚𝑊 = 20 𝜇𝑚, 𝐵𝑒𝑎𝑚𝐻 = 10 𝜇𝑚, 𝑆𝑖𝑑𝑒𝑊 = 500 𝜇𝑚, 

𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑊 = 500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝐿 = 500 𝜇𝑚, and 𝐹𝑖𝑙𝑙𝑒𝑡𝑅 = 0.5 𝜇𝑚. 

Similar to the equivalent stress vs. deflection relationship, the simulation results of the deflection induced 

by a given load force using linear or nonlinear equations are also close at smaller deflections while large 

at greater ones. 

Another comparison we can make is the comparison of the FEA simulation results with direct hand 

calculation using Equation 2-3. In the stress simulations, we are using von Mises equivalent stress in the 

software while only accounting for the bending stress in equations, so the difference between the 

simulation result using linear model and that using hand calculations is expected to be large. But in the 

force calculations, both the simulation software and Equation 2-3 are calculating the same thing, which 

should give similar results, which is confirmed by the plot in Figure 2-16. The slight but consistent-in-

ratio discrepancy could be contributed to the fact that FEA is applying the linear equations on small 

meshing segments while hand calculation applies the same equations to the whole beam at once.  

 

2.2.6 Limitations of the FEA Model 

There are several assumptions that we make from the device in reality to the above model for 

simplification.  

1. We are assuming that the stretching of the shuttle and the frame is negligible with respect to the 

deflection of the legs. Therefore, when comparing the displacement of the shuttle from its original 

position to the design target, we just use the simulation result from the above model, which is 

only any one pair of legs in the hundreds.  

A confirmation of this assumption is by performing the calculation of the strain when all of the 

target force of 5mN is applied on the shuttle only. In Gen 3 devices, the ShuttleW is 300, so the 

stress is 
5𝑚𝑁

300𝜇𝑚∗10𝜇𝑚
= 1.67 × 106𝑃𝑎. The Young’s Modulus of Polyimide is 3.3GPa, so the 

response strain portion is 
1.67×106𝑃𝑎

3.3GPa
= 5.05 × 10−4, which is very small. When legs are 
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connected, the stress experienced by the shuttle itself will be much less, making the stretching 

effect negligible. 

 

2. We assume that all dynamics take place in x-y plane only. In reality, the motion of the shuttle 

may not strictly be in the x-plane, since the pulling is done by hand. The legs may also twist out 

of plane. The out of plane rotations of the legs, however, should tend to reduce the stress 

concentrations. Therefore, excluding these motions in our calculation gives a safer estimate of the 

stress induced. 

 

3. We assume that the variation of the device only happens in x-y directions; nothing should change 

in the z-direction. In other words, the thickness of the device (height in the z-direction) is 

uniform. This is far from practical in the actual fabrication process, as both the curing of the 

polyimide precursor and the oxygen plasma etching processes decrease the thickness more near 

the edge of the structures. 

 

Figure 2-17 - Photo of one Gen 3 T-20 Device under microscope. The reflection of light shows that the top 

surface is not flat. 

The reflection of the light is near the edges confirm that the top surface of the device is not flat 

but instead gets thinner towards the edges. 

 

2.2.7 A Review of Gen 3 Parameters 

FEA simulations using Gen 3 device parameters from [11] were performed to examine their mechanical 

characteristics if including geometric nonlinearity for large deflections and compare to the design targets.    
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2.2.7.1 Stress vs. Deflection 

 

Figure 2-18 – Simulation results of stress vs. deflection using parameters of Gen 3 devices (as shown in Table 

2-1): (a) T10 Devices and (b) T20 Devices. Simulation parameters are: 𝐵𝑒𝑎𝑚𝐻 = 10 𝜇𝑚, 𝑆𝑖𝑑𝑒𝑊 = 500 𝜇𝑚, 

𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑊 = 500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝐿 = 500 𝜇𝑚, 𝐹𝑖𝑙𝑙𝑒𝑡𝑅 = 0.5 𝜇𝑚, and (a) 𝐵𝑒𝑎𝑚𝐿 = 300 𝜇𝑚, 𝐵𝑒𝑎𝑚𝑊 =
10 𝜇𝑚; (b) 𝐵𝑒𝑎𝑚𝐿 = 500 𝜇𝑚, 𝐵𝑒𝑎𝑚𝑊 = 20 𝜇𝑚. 

The simulations using parameters of Gen 3 devices show that the equivalent stress well exceeds the yield 

of the material, which is estimated to be 70 Mpa [11], when the deflection goes above 10𝜇𝑚. This could 

have made the implanted device unable to restore its original form. Thus the tip of the device could have 

been pushed less than the desired distance to pierce through the glial sheath formed in the week after 

implantation. And the force provided could also have not been enough. 

 

2.2.7.2 Deflection vs. Load Force 

 

Figure 2-19 – Simulation results of deflection vs. load force using parameters of Gen 3 devices (as shown in 

Table 2-1): (a) T10 Devices and (b) T20 Devices. Simulation parameters are: 𝐵𝑒𝑎𝑚𝐻 = 10 𝜇𝑚, 𝑆𝑖𝑑𝑒𝑊 =
500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑊 = 500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝐿 = 500 𝜇𝑚, 𝐹𝑖𝑙𝑙𝑒𝑡𝑅 = 0.5 𝜇𝑚, and (a) 𝐵𝑒𝑎𝑚𝐿 =
300 𝜇𝑚, 𝐵𝑒𝑎𝑚𝑊 = 10 𝜇𝑚; (b) 𝐵𝑒𝑎𝑚𝐿 = 500 𝜇𝑚, 𝐵𝑒𝑎𝑚𝑊 = 20 𝜇𝑚. 

Simulation results in Figure 2-19 show that for all Gen 3 device variations, the load force for the 

deflection to reach 50 µm was massively overshooting the 5 mN target, if the elastic equations still hold. 

However, this result is likely no longer valid for deflections greater than 10 µm for T10 or 7 µm for T20 

devices, since the maximum stresses exceed the yield. 
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2.2.8 Verification of FEA Results: Deflection vs. Load Force Test 

Unlike the induced stress, which is not easily measurable on benchtop settings, both the deflection and the 

force can be measured. Hence, a deflection vs. load force experiment was performed to compare with the 

simulation results.  

 

Figure 2-20 – Experiment setup for load force vs. deflection measurements. 

The experiment was performed using a Gen 3 NH-PS-T20 device. The device was glued to a holding 

glass slide, and the slide was held in vertical position by a clamp. A hook made from AWG-30 wire, 

which provided enough strength while having a small enough diameter, was hung through the hold in the 

device head. Different load weights were hung on the hook, whose masses were measured using an A&D 

Weighing GR-200 lab balance. ZEISS® Stemi 2000C Microscope with an Amscope® MU300 CMOS 

color camera was used to take images of the device with each different load. The images were later 

analyzed to get the measurement readings.  

 

Figure 2-21 – Gen 3 device design from [11]. (a) NH-type device head, with the head in the middle of the 

moveable shuttle structure. (b) OH-type device head at the opposite end of shuttle as the tip. 

The NH-PS-T20 device was chosen because the device head was in the middle of the shuttle, as shown in 

Figure 2-21, making it easier to hang weights through the hold in the header while holding more of the 

device on the glass slide.  

(a) (b)
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The parallelism of the camera plane and the device x-y plane is checked by comparing the number of 

pixels of lengths of known segments in perpendicular directions on the device. 

 

Figure 2-22 – A section of a microscopic picture of the device. The length of the leg BeamL and the separation 

between legs are both known values, and with no load weight the two segments are perpendicular by design.  

Table 2-5 – Average number of pixels of the lengths of the legs (BeamL) and the separation of the legs in the 

picture with no deformation. 

 Average [pixel] Theoretical length [μm] μm/pixel 

BeamL 309.04 500 1.62 

Leg Separation 61.51 100 1.63 

 

The comparison in Table 2-5 shows that the μm/pixel result in both directions are very close, confirming 

that the camera plane is almost parallel to the device x-y plane. 

The deflection amount is determined using the following process: 

 

Figure 2-23 – Measuring scheme of the deflection dx. 𝐶𝐷 is parallel to 𝐴𝐵. 𝐴𝐶 and 𝐵𝐷 represent the edge of 

the shuttle and the frame connected by the legs, respectively, and are parallel by design. 

1. Mark the intersections between the legs and the shuttle/frame by crossing lines tangent to the legs 

and to the shuttle/frame. Figure 2-23a shows an example section of the image. 
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2. Read x and y coordinates in pixels for points A, B and C. A and B are at the ends of one leg, and 

C is on the same side of the legs as A. 

3. Calculate vectors 𝑢⃗  and 𝑣  using A, B and C, as shown in Figure 2-23b. 

4. Use vectors 𝑢⃗  and 𝑣  to get ∠θ. Then ∠γ = ∠θ − 90°. 
5. Since the frame is glued to the holding glass slide and the setup is symmetric, BeamL should not 

change significantly during the experiment. Therefore, 𝑑𝑥 = 𝐵𝑒𝑎𝑚𝐿 × tan 𝛾. 

Calculated dx’s from multiple legs were averaged. Two sets of two legs were chosen on either side of 

the shuttle, making a total of 8 legs calculated per image. The same set of the 8 legs were measured in 

all images taken at different load forces. Since the readings are from microscope images, they may 

still not be precise. 

 

 

Figure 2-24 – Measured deflection versus load force in Gen 3 T20 device with 58 pairs of legs and a 

comparison against simulation result. The load weight was applied in strictly increasing order for the data 

points in this plot. 

Simulation parameters: 𝐵𝑒𝑎𝑚𝐿 = 500 𝜇𝑚, 𝐵𝑒𝑎𝑚𝑊 = 20 𝜇𝑚, 𝐵𝑒𝑎𝑚𝐻 = 10 𝜇𝑚, 𝑆𝑖𝑑𝑒𝑊 = 500 𝜇𝑚, 

𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑊 = 500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝐿 = 500 𝜇𝑚, and 𝐹𝑖𝑙𝑙𝑒𝑡𝑅 = 0.5 𝜇𝑚.  

Figure 2-24 shows that measurement and FEA simulation results are in the same order of magnitude, 

which is supportive of our simulation model.  

Measured deflections from this experiment show that the relationship is no longer near linear while 

reaching the desired range of deflection. In fact, the trend looks very similar to the curve given by FEA 

simulation. 

Besides the limitations of the model already mentioned in Section 2.2.6, a factor contributing to the 

deviation of the measured data from simulation results is that the legs were not perfectly straight at rest. 

As shown in Figure 2-24, the legs had a deflection of almost 10 µm when there is no load force.  
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Also, due to the design of Gen 3 NH-type devices (Figure 2-21b), only half of the device frame could be 

glued to the glass slide. The unattached part of the frame could be pulled towards the middle, making it 

easier for the legs there to bend. 

Furthermore, the devices was made more than 1.5 years before used in this test, meaning that the 

Polyimide film may have degraded in time, causing the material properties to change slightly. For 

example, a decrease in Young’s Modulus could have made the device easier to bend.  

And in the aspect of verifying the yield stress, the result was inconclusive. As previously shown in Figure 

2-18, the simulated von Mises stress goes beyond the yield as the deflection exceeds 7 μm in T20 

devices. The deflection induced by the same load of 26.29 mN before and after a greater load of 

44.11 mN was measured. Beforehand the measurement was 64.00 μm, but afterward it was 67.36 μm. 

The structure could have been damaged and lost its ability to restore its original elasticity. However, this 

difference may also have been partially due to measurement error, so it is inconclusive. 

 

2.3 Gen 3 Impedance Test  

Benchtop in vitro studies were performed to verify the observed decrease over time of the impedance of 

the electrodes in the in vivo studies [11]. In this study, Phosphate-buffered-Saline (PBS) was used to 

mimic the environment in the rodent brain.   

 

2.3.1 Experiment Setup 

 

Figure 2-25 – Electrical path in the device. 

Figure 2-25 shows a diagram of the electrical path in the device whose impedance was to be measured. 

The edge of the device frame was glued to a glass slide, and a clamp was used to hold the device in 

position such that only a desired part of the device is immersed in PBS. The exposed contact pad on the 

opposite end on the electrode trace was connect to a 5 cm 0.002’’ annealed stainless steel wire via silver 
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epoxy. Another 0.002’’ stainless steel wire of similar length was used as the reference electrode, with 

about 0.5 cm exposed to the PBS solution. The impedance between the ends of the two wires was to be 

measured.  

The two stainless steel wires have a diameter of 0.002’’, which is equivalently about 5 × 10−5 m. With a 

resistivity of around 1.6 × 10−7 Ω ∙ 𝑚 [25], a 5-cm wire has a resistance of about 4 Ω. The contact 

resistance between the wire and the contact pad on the device are typically on the order of a few ohms 

[11]. The electrode trace covered by PI on both sides has a maximum length of 42 mm, a width of 100 µm 

and a thickness of 200 nm [11]. Gold has resistivity of 2.2 × 10−8 Ω ∙ 𝑚 [11], so the trace has a 

resistance of about 46.2 Ω. These resistances connected in series give a total of around 50 to 60 Ω, which 

is negligible compared to the typical measurements of a few hundreds of kΩ to more than 1 MΩ total 

impedance previously done by Dighe [11]. 

The interface between metal and electrolytes in solution can be estimated as a double-layer capacitance 

proportional to the surface area, which means that the impedance is inversely proportional to the contact 

surface area.  The stainless steel wire had an area of about 8 × 105 𝜇𝑚2 exposed to the solution, which is 

about 3 orders of magnitude higher than that of the electrode sites of Gen 3 which was designed to be 507 

µm2 [11]. If the behavior or the double-layer interfaces on gold and annealed stainless steel surfaces are 

similar, that means the impedance of the interface between the wire and PBS is about 3 orders of 

magnitude lower than the impedance of the electrode site. 

Therefore, it is appropriate to assume that the dominant portion of the impedance measured between the 

two wires is of the electrode site.  

 

 

Figure 2-26 – Experiment setup for long-term impedance monitoring.  

A programmable impedance analyzer (Agilent® 4294A Precision Impedance Analyzer) was used to 

measure the magnitude and phase of the impedance of one electrode site over a frequency span of 100 Hz 

to 10 kHz. The analyzer was connected to a computer using a GP-IB to USB convertor and USB cable, 

and can communicate with the computer thorough a virtual USB COM port. Prior to the experiment, the 

impedance analyzer was calibrated using fixture compensation, and the accuracy of the magnitude and 

phase was confirmed using several resistors and capacitors of known values.  
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A Matlab® script was used to set a timer routine. Each time the timer is triggered, the program sends a 

command to the 4294A to trigger an impedance sweep and read the results from the analyzer. It then plots 

the magnitude and phase of the received impedance against sweep frequency in separate axes, and shows 

the magnitude value at 1 kHz. The 1 kHz value is especially relevant for recording neural signals since an 

action potential usually takes about 1ms.  Finally, it writes the raw data into a text file and saves the plots 

with time stamps.  

The computer may simultaneously receive a live feed from the camera installed on the microscope, and 

saves the image with the impedance data. The imaging system used was ZEISS® Stemi 2000C 

Microscope with an Amscope® MU300 CMOS color camera mounted on top. Figure 2-27 shows an 

example of the view of the device in water from the microscope. 

 

Figure 2-27 – Microscope image of the device in water. 

For trials in which the solution level must be held constant, a syringe pump was used to pump in DI water 

to compensate for the water evaporated. The evaporation rate in the experiment environment was 

calculated from the distance water level dropped in the container by evaporation with no water intake in 

one day, and the rate of the syringe pump was set accordingly.  

 

2.3.2 Results and Discussions 

2.3.2.1 Impedance of the Reference Electrode 

In one experiment, two of the same stainless steel wire with similar lengths were put in PBS, and the 

impedance between the non-immersed ends were measured. The measured result was about 3 kΩ. This 

means either reference electrode had an impedance of about 1.5 MΩ, which was about 3 orders of 

magnitude lower than the previous measured impedances of Gen 3 from a few hundred kΩ to 1 - 2 MΩ. 

This confirms of assumption in section 2.3.1 that the impedance of the reference electrodes should be 

negligible in the measured total impedances in this setup. Notably, this 3 orders of magnitude difference 

is also consistent with our previous estimation from the assumption that the double-layer capacitance 

behavior at gold and annealed stainless steel surfaces are similar.  
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Figure 2-28 – A typical measurement between two reference electrodes. 

Figure 2-28 shows a typical measurement between two reference electrodes. The magnitude of the 

impedance is almost linear as expected. But the underlying explanation of the linearity – that the 

impedance of the wire in water was expected to be dominated by the capacitance at the interface of the 

metal surface and water – is challenged by the behavior of the phase. The phase started about -80 degrees 

at low frequency but increased fast after the frequency was above 1 kHz to about -50 degrees at 10 kHz. 

This was a curious result, since the behavior we expected was near capacitive, which means the phase 

would stay close to -90 degrees. This measurement was repeated several times with different wires, but 

the behaviors of the magnitude and phase against frequency were all similar. The cause of the significant 

phase increase is yet to be studied.  

 

2.3.2.2 Only Tip in PBS, Constant Solution Level 

To test whether the impedance of the electrode also drops in in vitro environment and if so, how fast the 

drop was, one experiment was done with the device tip in PBS while keeping the PBS level unchanged. 

Measurements were taken every 5 minutes. 
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Figure 2-29 – Magnitude of impedance at 1 kHz over time measured with constant PBS level on device tip: 

full experiment. 

 

Figure 2-30 - Magnitude of impedance at 1 kHz over time measured with constant PBS level on device tip: 

first 6 hours. 

The recording of the impedance data confirmed that the impedance magnitude of the electrode site at 1 

kHz was actually dropping in the in vitro setup, as shown in Figure 2-29 and Figure 2-30. A few data 

points were missing due to occasional GPIB command error or serial communication timeout, cause 

unidentified. Regardless, the recorded data showed a clear trend over time, which eliminates that the 

cause of the drop recorded in in vivo tests in [11] was not or not only due to in-vivo-specific issues such as 

the animals’ movements.  

The trend of the impedance magnitude at 1 kHz shows a significant drop in the first half hour and then 

relatively stabilized at about 18 kΩ after 15 hours. The trend started at 156 kΩ, which was much lower 

than typical of Gen 3 device benchtop measurements (600-1500 kΩ [11]). This could be due to the set up 

time between clamping the device and starting the auto-measurements. It was possible that the impedance 

started at a higher value but had already decreased by the time the first measurement was taken, since the 

impedance dropped so rapidly in the first half hour. This assumption could potentially have been verified 

by starting the auto-measurement Matlab® script right after submerging the tip of the device in PBS.  
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This results is consistent with the hypothesis that delamination took place between the two PI layers. If 

there is a small gap between the two thin PI layers, the PBS solution would gradually go up in between 

the layers due to capillary. This would result in much more surface area of the gold trace to be exposed to 

the ionic environment than initially as designed. An increased exposure would cause an increase in the 

capacitance of the interface between the trace and the solution, which in turn would decrease the 

magnitude of the total impedance measured.  

(a)

 

(b)

 

(c)

 

(d)

 

Figure 2-31 – Magnitudes and phases of the impedance at significant time points.  

A closer look at the impedance vs. frequency plots at start of recording, after 0.5 hours, after 5 hours, and 

after 3.5 days (end of recording) showed that the shape of the impedance magnitude and phase curves 

were changing over time, suggesting a shift of the composition of the measured electrical path over time. 

At the beginning of the recording, both the shape of the magnitude and the phase resembles those from 

measurements taken of Gen 2 devices by Dighe [11]. The magnitude curve was slightly convex while the 

phase curve was sinusoidal in frequency domain. However, after the first half hour as the impedance 

magnitude dropped significantly as shown in Figure 2-30, the shape of the magnitude curve changed to 

near linear and the phase curve completely changed. Then as Figure 2-31c shows, in 5 hours, the 
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magnitude curve became concave, and the phase curve became more near monotonically increasing. After 

that, both the values and shapes of the magnitude and phase curves did not change much till the end of 

experiment, as shown in Figure 2-29 and Figure 2-32b. These observations are also consistent with our 

delamination hypothesis, since it would cause the electrical path to change.  

The specific shapes of the curves, however, requires further study. In this thesis, we will focus on the 

temporal change.  

Due to the limited working devices from Gen 3 left for testing, this test was not repeated.  

 

2.3.2.3 Only Tip in DI Water, Constant Water Level 

To see whether this trend is PBS-specific, a control experiment was done using DI water instead of PBS. 

 

Figure 2-32 - Magnitude of impedance over time measured with constant DI level on the device shows a 

significant rise in the first few hours and then relatively stabilized.  

In this test, the magnitude of impedance increased at first, then stabilized around the higher level, then 

eventually dropping a little after 20 hours, as shown in Figure 2-32. A few data points were missing due 

to occasional GPIB command error or serial communication timeout, cause unidentified. 

It was surprising that the measured impedance did not show near open circuit behavior, as DI water 

should have been a poor conductor. This was very likely because the device originally had ions trapped 

inside the Polyimide due to the extensive exposure to Aluminum etchant when releasing the devices from 

the wafer. The aluminum etchant used was Transene® Type A [11], which consists of Phosphoric Acid, 

Nitric Acid, and Acetic Acid [26]. The devices on the wafers were immersed inside the etchant for days 

before the devices could be released while only rinsed promptly afterwards. The Polyimide HD-4100 is 

highly water and ion permeable, as HF is one of the recommended methods of pealing cured films from 

wafers [27]. Therefore, it is reasonable to suspect that although ions from these acids on the surfaces of 

the device were more likely rinsed away, the ones inside the PI films could have stayed.  

This hypothesis also explains the initial increase, as the ions dissolved in DI water and diffused slowly to 

the whole container in time, decreasing the ion concentration around the device tip. When PBS was used 

instead of DI water, this initial increase did not show on the plot probably because the ion concentration 

change caused by the amount of ions in PI was less significant due to the already relatively high ion 

concentration of 1x PBS, so the factors causing the drop was much more dominant. The same decrease 

did not show up possibly because the decrease in ion concentration around the device outraced the 

delamination, and the observed increase is a combination of the two effects.  
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Another potential reason why the water was conducting is contamination of the container of DI water by 

ions. This, however, does not explain the initial increase of impedance.  

The cause for the drop after 20 hours was still unclear, and how long or to what final value the impedance 

magnitude decreased to remained unknown since the experiment was only done for 24 hours. 

Also, it was inconclusive whether there was another peak at about 4 hours. The recorded values suggested 

a peak; however, the fact that there were lots of GPIB command errors occurring around that time might 

not have been by accident. There might have been unknown outside factors that affected the performance 

of the impedance analyzer during that time, causing the measurement results to be less reliable.  

Due to the extremely limited number of electrically functional devices left from Gen 3, the individual 

experiments were not repeated and thus the results were inconclusive.  

 

2.3.2.4 Other Observations 

 

Figure 2-33 – Microscopic picture of one of the test devices after 35h in DI water showed severe delamination 

on the tip. 

One device had its tip submerged in DI water for 35 hours. When the tip was taken out, the two layers 

were no longer attached to each other and curved apart after drying, as shown in Figure 2-33. This 

strongly corroborates the delamination theory in Section 2.3.2.2. 

 

2.4 Conclusions and Directions for Gen 4 Design 

Mechanical re-modeling of the leg deflection using FEA simulation with geometric nonlinearity 

suggested that, while the reaction force provided by the legs greatly exceeded the target force in the target 

deflection range, the stress in the device may have caused plastic deformation. This could have been a 

cause to the failure of shuttle deployment after 5 weeks in the Gen 3 in vivo study. 

Meanwhile, in vitro testing of the impedance showed the significant decrease in the first few hours after 

inserting the device tip in PBS. Visible delamination on the tip was also observed after one device was 

submerged in water for 35 hours. These results were consistent with the PI delamination hypothesis, and 

they suggested that the delamination happens rather quickly. Therefore, if we are aiming at long-term 

(~weeks) experiments with the device or even chronic usage for a longer time, the design or fabrication of 

the device must be improved to solve the delamination problem.   
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Chapter 3:  Gen 4 Device Design and Testing 

3.1 Introduction 

In Chapter 2, simulations revealed that the maximum stress induced in the device legs could have 

exceeded the yield with a deflection in the target range. Hence, the design of the legs much be improved 

to lower the stress concentrations. The FEA simulation model is again used to help determine the design 

parameters of the legs.  

Impedance measurement experiment results in PBS supported our hypothesis that delamination of the PI 

layers happened when the device was implanted in tissue. Therefore, the composition of the metal trace 

layer and the fabrication process were revised aiming at improving the adhesion between the metal trace 

and the PI layer as well has between the PI layers.  

  

3.2 Gen 4 Device Parameters 

 

Figure 3-1 – Gen 3 PS-T20 design schematics from [11]. 

The Gen 4 devices were revised from Gen 3 PS-T20 Devices. The FEA simulation model introduced in 

the previous chapter revealed that the maximum stress in the old design may have exceeded the yield, and 

benchtop testing confirmed that the total force required to reach the target deflection of the legs was 

massively overshooting the force target. Therefore, in Gen 4 the parameters of the legs are revised based 

on simulation results. Since the device tip, metal trace, resistive heater, capacitive sensors, and contact 

pads were tested to be functional in Gen 3, their design was not changed.  

In revising the parameters of the legs, the main design objective was that the maximum stress induced in 

the system did not exceed the Yield stress of the material with required deflection range. The other design 

objective, the total delivered force, could easily be adjusted by changing the total number of legs, as long 

as the size of the device is kept within practical range in terms of fabrication (fits on a 6-inch wafer) and 

experimental concerns (not too long to be kept straight when implanted).  

The height of the leg was constrained by the thickness of the device, which was determined by the size 

constraint of the probe tip. Therefore, the author decided to keep the 10 µm thickness as used in Gen 3 

devices [11].  
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3.2.1 Effects of Design Parameters on Stress-Deflection Relationship 

The COMSOL® FEA model as detailed in Section 2.2.3 was used to examine how varying the fillet size 

and the width and length of the legs affects the induced stress at a fixed deflection amount.  

 

Figure 3-2 – Simulated maximum von Mises stress vs. fillet radius with fixed deflection amount.  

Simulation parameters: 𝐵𝑒𝑎𝑚𝐿 = 1500 𝜇𝑚, 𝐵𝑒𝑎𝑚𝑊 = 20 𝜇𝑚, 𝐵𝑒𝑎𝑚𝐻 = 10 𝜇𝑚, 𝑆𝑖𝑑𝑒𝑊 = 500 𝜇𝑚, 

𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑊 = 500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝐿 = 500 𝜇𝑚, and 𝑑𝑥 = 50 𝜇𝑚.  

Figure 3-2 shows that increasing the fillet size decreases the maximum stress induced in the structure. 

  

Figure 3-3 – Simulated maximum von Mises stress vs. leg width with fixed deflection amount.  

Simulation parameters:𝐵𝑒𝑎𝑚𝐿 = 1500 𝜇𝑚, 𝐵𝑒𝑎𝑚𝐻 = 10 𝜇𝑚, 𝑆𝑖𝑑𝑒𝑊 = 500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑊 = 500 𝜇𝑚, 

𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝐿 = 500 𝜇𝑚, 𝐹𝑖𝑙𝑙𝑒𝑡𝑅 = 20 𝜇𝑚, and 𝑑𝑥 = 50 𝜇𝑚. 

Figure 3-3 shows that increasing the width of the legs increases the max stress.  
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Figure 3-4 – Simulated maximum von Mises stress vs. leg length with fixed deflection amount.  

Simulation parameters:𝐵𝑒𝑎𝑚𝑊 = 20 𝜇𝑚, 𝐵𝑒𝑎𝑚𝐻 = 10 𝜇𝑚, 𝑆𝑖𝑑𝑒𝑊 = 500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑊 = 500 𝜇𝑚, 

𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝐿 = 500 𝜇𝑚, 𝐹𝑖𝑙𝑙𝑒𝑡𝑅 = 20 𝜇𝑚, and 𝑑𝑥 = 50 𝜇𝑚. 

Figure 3-4 shows that increasing the length of the legs decreases the maximum stress induced.  

 

3.2.2 Proposed Leg Parameters 

Comparing the plots in Section 3.2.1, increasing the leg length is the most space-efficient way to decrease 

the stress concentrations. The fillet size decreases the stress very slowly as the radius goes beyond 5 µm, 

and there is a fabrication limit on how thin the legs can be. Therefore, in this section, we will first decide 

on the fillet size and leg width, then look deeper into specific leg lengths to use for Gen 4 devices. 

3.2.2.1 Fillet Size (FilletR) 

Increasing the fillet size decreases the maximum stress induced in the structure, as shown in Figure 3-2. 

Meanwhile, as the fillet gets larger, each pair of the legs takes more space and in turn increase the total 

size of the device. When one device takes more space, there can be less instances of the device per wafer, 

and each one is more prone to potential fabrication defects such as bubbles, residues, or alignment errors, 

which lead to a lower yield of functional devices per wafer. Larger devices are also harder to operate. 

Therefore, we want a fillet size that is large enough to reduce the stress concentration while keeping the 

total size of the device reasonable.  

The choice was 20 µm. 
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3.2.2.2 Leg Width (BeamW) 

Figure 3-3 shows that increasing the width of the legs increases the max stress.  

 

Figure 3-5 – (a) Design of the device from [11] and (b) the metal traces that goes through the legs. 

In fabrication of the multiple layer structure, since the metal traces of the electrodes need to go through 

the legs, as shown in Figure 3-5, the precise alignment of the different layers of the legs may be especially 

challenging. Having a 20-µm instead of 10-µm leg width allows a higher tolerance of miss-alignment due 

to equipment precision limit or human error, while still keeping the stress relatively low. A slightly wider 

leg length also makes the legs less likely to break while releasing the devices from the wafers, which was 

a lesson learned from the process of releasing Gen 3 T10 (legs 10 µm wide) vs. T20 (legs 20 µm wide) 

devices from the wafers.  

 

3.2.2.3 Leg Length (BeamL) 

As longer legs reduces the stresses, increasing the length also makes the devices wider, taking more space 

on the wafer. For similar reasons as stated in Section 3.2.2.1, the BeamL should be kept reasonably short.  

With fixed FilletR = 20 µm and BeamW = 20 µm, more simulations were run to take a closer look at the 

maximum stresses within our target range of deflections above 50 µm. A safety factor of 1/3 was used on 

the maximum stress to account for the limitations of the FEA model.  
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Table 3-1 – Simulated maximum von Mises stress vs. leg length with fixed deflection amount.  

Simulation parameters:𝐵𝑒𝑎𝑚𝑊 = 20 𝜇𝑚, 𝐵𝑒𝑎𝑚𝐻 = 10 𝜇𝑚, 𝑆𝑖𝑑𝑒𝑊 = 500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑊 = 500 𝜇𝑚, 

𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝐿 = 500 𝜇𝑚, 𝐹𝑖𝑙𝑙𝑒𝑡𝑅 = 20 𝜇𝑚. 

BeamL 

[µm] 

dx 

[µm] 

Max stress 

[MPa] 

dx 

[µm] 

Max stress 

[MPa] 

dx 

[µm] 

Max stress 

[MPa] 

dx 

[µm] 

Max stress 

[MPa] 

500 50.0370 86.5806 60.0507 115.7018 70.0653 149.2321 80.0807 186.7456 

600 50.0277 66.8700 60.0382 89.1694 70.0497 114.7778 80.0620 143.3479 

700 50.0214 44.6476 60.0296 59.7716 70.0388 77.1096 80.0488 96.9253 

800 50.0170 34.7460 60.0236 46.5573 70.0311 60.0368 80.0392 75.5024 

900 50.0138 28.7516 60.0192 38.5910 70.0254 49.8191 80.0322 62.4047 

1000 50.0114 22.7851 60.0160 30.6435 70.0211 39.6286 80.0268 49.7188 

1100 50.0096 18.5180 60.0134 25.7346 70.0178 33.3013 80.0227 41.8039 

1200 50.0082 15.9212 60.0115 21.4182 70.0152 27.7039 80.0194 34.7619 

1300 50.0071 13.6155 60.0099 18.3319 70.0132 23.7208 80.0168 29.7733 

1400 50.0062 11.7192 60.0086 15.6148 70.0115 20.2205 80.0147 25.3981 

1500 50.0054 10.6331 60.0076 14.3230 70.0101 18.5476 80.0129 23.2967 

1600 50.0048 9.0635 60.0067 12.7953 70.0090 16.5845 80.0115 20.8492 

1700 50.0043 8.1279 60.0060 10.9904 70.0080 14.2552 80.0103 17.9322 

1800 50.0038 7.1325 60.0054 9.6216 70.0072 12.4759 80.0092 15.6895 

1900 50.0035 6.4510 60.0049 8.7060 70.0065 11.2931 80.0083 14.2068 

2000 50.0031 5.9378 60.0044 8.0200 70.0059 10.4113 80.0076 13.1073 
         

    

Above 

yield  

Above 1/3 

of yield  Safe 

 

BeamL = 1200 µm gives about 10 µm of operational error tolerance while pulling the legs. If BeamL = 

1500 µm, the shuttle can be pulled up to 80 µm without the maximum stress going over 1/3 of the yield 

stress. Another variation, BeamL = 2000 µm, was chosen as a back up, in case there were other large 

contributing factors neglected in the simulations. 

3.2.2.4 Summary of Gen 4 Leg Dimensions and Fillet Size 

Table 3-2 – Gen 4 Leg Dimensions and Fillet Size 

Type BeamL BeamW BeamH FilletR 

1 1200 20 10 20 

2 1500 20 10 20 

3 2000 20 10 20 
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3.2.3 Force-Deflection Relationships using Chosen Parameters 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 3-6 – Deflection vs. load force per pair of legs using chosen BeamL. 

Simulation parameters:𝐵𝑒𝑎𝑚𝑊 = 20 𝜇𝑚, 𝐵𝑒𝑎𝑚𝐻 = 10 𝜇𝑚, 𝑆𝑖𝑑𝑒𝑊 = 500 𝜇𝑚, 𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑊 = 500 𝜇𝑚, 

𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝐿 = 500 𝜇𝑚, 𝐹𝑖𝑙𝑙𝑒𝑡𝑅 = 20 𝜇𝑚. 
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From Figure 3-6, we can read the approximate force required to reach the target deflection in each pair of 

legs. The number of legs required to provide 5 mN of total force is detailed in Table 3-3. The actual 

number of legs was determined while including a safety factor. They were chosen to be 1.6 times of the 

number required predicted by the FEA model. 

Table 3-3 – Load force required per pair of legs and the number of legs 

BeamL Load Force per pair at 50 µm # Pair of legs required # Pair of legs in Gen 4 

1200 0.08 63 100 

1500 0.04 125 200 

2000 0.02 250 400 

 

3.2.4 Leg Separation 

How far apart each pair of legs are from their neighbors should have negligible effect on the mechanical 

characteristics of the device. Theoretically, the spacing in between only need to leave enough space for 

two fillets. In fabrication, however, small spacing in the structure can be hard for the developer to sink in 

and react fully with the photoresist. On the other hand, large spacing makes the devices longer, which, as 

detailed in Section 3.2.2.1, is undesired.  

 

Figure 3-7 – Leg separation. 

Here, we define the separation as the total space taken by each pair of legs, measured between the edges 

on the same side of two neighboring legs. In Gen 4, separation of 60, 70 and 100 µm were used. 
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3.2.5 Summary: Proposed Variations of Gen 4 Devices  

Table 3-4 – Summary of Proposed Gen 4 Parameters and Simulation Predictions 

Name 

BeamL 

[µm] 

Separation 

[µm] 

# Pair of 

legs 

Force at 50 µm [mN] 
Max. stress 

[MPa] at 50 µm 

Deflection safe 

range* [µm] Per pair Total 

1200A 1200 60 100 0.08 8 15.9212 < 59 

1200B 1200 70 100 0.08 8 15.9212 < 59 

1200C 1200 100 100 0.08 8 15.9212 < 59 

1500A 1500 60 200 0.04 8 10.6331 < 81 

1500B 1500 70 200 0.04 8 10.6331 < 81 

1500C 1500 100 200 0.04 8 10.6331 < 81 

2000A 2000 60 400 0.02 8 7.1325 < 98 

2000B 2000 70 400 0.02 8 7.1325 < 98 

2000C 2000 100 400 0.02 8 7.1325 < 98 

*The maximum deflection for which the induced stress does not exceed 1/3 of the yield stress. 

For all variations, device height = 10 µm, leg width = 20 µm, fillet radius = 20 µm. 

 

3.3 Device Design and Mask Layout 

3.3.1 Device Schematics  

The design was modified from  

 

Figure 3-8 – Gen 4 design revised from the Gen 3 devices. 
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3.3.2 Test Devices for Deflection vs. Force Measurement 

To verify the new Gen 4 leg design parameters using FEA simulation results, an additional type of 

devices was designed specifically for testing deflection vs. load force relationships.  

Table 3-5 - Summary of Proposed Gen 4 Test Device Parameters and Simulation Predictions 

Name 

Legs 

identical 

to 

BeamL 

[µm] 

Separation 

[µm] 

# Pair 

of legs 

Force at 50 µm 

[mN] 
Max. stress 

[MPa] at 50 µm 

Deflection safe 

range* [µm] Per pair Total 

T1200 1200B 1200 70 100 0.08 8 15.9212 < 59 

T1500 1500B 1500 70 200 0.04 8 10.6331 < 81 

T2000 2000B 2000 70 400 0.02 8 7.1325 < 98 

*The maximum deflection for which the induced stress does not exceed 1/3 of the yield stress. 

For all variations, device height = 10 µm, BeamW = 20 µm, FilletR = 20 µm. 

 

 

 

Figure 3-9 – Design schematics for the test devices.  

The leg parameters are the same as the B-series devices, with no metal traces. The device head is placed 

such that it is easier to hang a hook through the hole in it during the experiment, while gluing most part of 

the device frame to the holding glass slide.  
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3.3.3 Mask Layout 

 

 

 

Figure 3-10 – Mask layout of variations of Gen 4 devices and the test devices. 

Devices with the same parameters were spread out on different places of the wafer to avoid failure of one 

particular variation of the device due to fabrication error on one section of the wafer. The tips were 

maximally facing the center of the wafer since the areas near the edges were more prone to fabrication 

errors.  

3.4 Gen 4 Device Fabrication 

The fabrication process of the device is adjusted from that of Dighe’s devices as in [11]. Section 3.4.1 

will include a description of the process, with the main adjustments and their justifications highlighted in 

Section 0. Some issues observed in the final fabrication product as well as experienced in device testing 

will be described in Section 3.4.3 as reference for future fabrication process modifications.  
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3.4.1 Fabrication Process Flow 

The fabrication process uses 6-inch-diameter silicon wafers and includes 7 steps. 

 Top view Side view  

1. Silicon wafer 

with 

alignment 

marks 

  

 
Si 

 
Al 

 
PI 

 
Ti 

 
Au 

 

 

 

2. Sacrificial Al. 

layer 

  

3. Bottom PI 

layer 

  

4. Ti-Au-Ti trace 

  

5. Top PI layer 

  

6. Top layer Ti 
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7. Al. etching 
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Figure 3-11 – Fabrication process of the device. The side view on the right shows a cross-sectional view along 

the green dashed line of the corresponding top view on the left.  
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3.4.1.1 Etching Alignment Marks on Silicon Substrate 

An 1-µm-thick layer of positive photoresist patterned with alignment marks is put on a 6-inch, single-side 

polished silicon wafer. A LAM AutoEtch 490B plasma etcher is then used to etch the alignment marks 

into the silicon wafer through the exposed areas uncovered by photoresist (primary gas: Cl2; secondary 

gas: He; etch time: 3 min 45 sec). Afterwards, the photoresist layer is removed by piranha etch (3:1 

concentrated H2SO4: 30% H2O2). 

3.4.1.2 Sacrificial Aluminum Layer 

Immediately after the wafers are cleaned in piranha etch and spin-dried, a 1-µm aluminum layer is 

deposited onto the wafer using an Applied Materials Endura® metal sputtering system. This aluminum 

layer will be etched away to release the devices from the silicon wafer in the final step.  

3.4.1.3 Bottom Polyimide Layer 

The precursor of Polyimide HD-4100 from HD MicroSystems™ is dispensed on the wafer with a low 

spinning speed. After making sure no air is trapped in the highly viscous precursor solution, the precursor 

is spread with a spin speed of 1000 rpm for 25 sec with an initial 200 rpm/s ramp up, and then with a final 

spin speed of 3000 rpm for 60 sec with an initial 500 rpm/s ramp up. This set of parameters of the 

spinning process is tested to be optimal for the target thickness of the two PI layers after curing, which is 

10 µm total. 

The wafer then goes through a soft bake process on horizontal hot plate surfaces (90℃ for 3 min and then 

110℃ for 3 min), in order to provide the surface with resistance against the developer after exposure [27].  

The polyimide layer is then patterned with photolithographic masks using Electronic Visions 620 (top 

side transparent; soft contact; interval; 30 µm separation; expose 5 sec, delay 8 sec, expose interval 6). 

After exposure, the wafer is developed in HD MicroSystems™ PA-400D using a puddle process for 4 

min. It is rinsed in 1 PA-400D : 1 PA-400R solution for 10 sec, in PA-400R solution for 10 sec, and then 

dried. A post-develop bake of 150℃ for 2 min and 200℃ for 2 min follows. 

The polyimide precursor layer then goes through a partial-cure process in an oven in a nitrogen 

environment. The temperature of the oven ramps up from room temperature to 200℃ at a rate of 

10℃/min, hold at 200℃ for 15 min, ramp up to 250℃ at a rate of 10℃/min and then hold at 250℃ for 15 

min. The wafers are then allowed to gradually cool down to room temperature. 

3.4.1.4 Conductive Metal Trace 

A 10-nm titanium – 200-nm gold – 10-nm titanium metal layer including the traces of the electrodes and 

resistive heater is patterned on the wafer. The titanium layers are added to improve the adhesion between 

gold and PI. The trace is patterned using Microchemicals AZ® 5214 photoresist, exposed using 

Electronic Visions 620 and developed in AZ® 422 using a puddle process. The metal deposition process 

uses an Temescal® FC2000 electron beam evaporator. The excessive metal and photoresist is then 

removed using acetone liftoff process.  

3.4.1.5 Top Polyimide Layer 

The process is very similar to building the bottom PI layer as described in step 3. Minor adjustments 

include a short oxygen plasma etch cleaning process before dispensing the PI precursor on the wafer. The 

final spinning speed to spread the precursor is decreased from 3000 rpm to 2500 rpm. And instead of the 

partial-cure process, the wafer now goes through a full cure process with the final holding temperature 

and time increasing from 250℃ for 15 min (as in step 3) to 375℃ for 60 min.  
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Figure 3-12 – Wafer with patterned devices after fully curing both PI layers.  

3.4.1.6 Etching Top Titanium Layer 

The titanium at the exposed areas on the top PI layer such as the electrode sites and contact pads is 

removed using diluted hydrofluoric acid (10 H2O: 1 49% HF).  

3.4.1.7 Device Release 

In this final step, the sacrificial aluminum layer is removed by emerging the wafer in Transene® type A 

aluminum etchant, allowing the devices to be released from the wafer. 

 

3.4.2 Main Adjustments from Gen 3 Process 

3.4.2.1 Partial Cure Temperature and Time of the Bottom PI Layer 

The benchtop impedance measurements of the Gen 3 devices suggested that the adhesion between two PI 

layers was not ideal, causing delamination. An approach to improve this issue was to lower the curing 

temperature and shortening the curing time of the devices, leaving more free bonds at the surface to attach 

to the second layer. In previous generations, the final curing temperature and holding time after ramping 

up the temperature from room was 300 ℃ for 30 minutes. This step was modified to 250 ℃ for 15 

minutes for Gen 4 devices.  



58 

 

 

3.4.2.2 Composition of the Metal Layer 

In Gen 3, the metal trace layer was Ti-Au. The 10 nm Ti layer was put between the bottom PI layer and 

the 200 nm Au trace to enhance the adhesion of the Au trace to the PI. In Gen 4, another 10 nm Ti layer 

was added on top of the Au layer to help the adhesion between the Au trace and the top PI layer.  

In order to remove the top Ti layer in the electrode site and contact pad openings, after the second layer 

was fully cured before releasing the devices from the wafer, the Ti was etched in Etch Ti with 10:1 HF 

(10 H2O: 1 49%HF) for 2 sec at room temperature. Since HF was also one of the recommended methods 

of removing cured PI films from the wafers [27], the process was kept extremely prompt to avoid the HF 

solution from penetrating the PI layers and attack the unexposed parts of the Ti layers as well as from 

releasing the devices from the wafer.  

3.4.2.3 Plasma Etching of the Bottom PI Layer 

To further enhance the adhesion between PI layers, before starting the top (second) PI layer, an oxygen 

plasma-etching step was added. The partially cured bottom (first) PI layer with patterned metal trace layer 

on top was plasma-etched in oxygen at 1000W for 1 minute immediately before the PI precursor was 

dispensed on the wafer.  

 

3.4.3 Lessons Learned from Fabrication Modifications 

3.4.3.1 Edge Space on Mask Layout 

The layout should leave more space near the outer edge of the wafer, in case alignment markers on the 

silicon wafer in the initial fabrication step was slightly off-center. It should allow even more space near 

the flat of the wafer, allowing more space for the tweezer to operate. The author recommends a minimum 

of 0.5 inch.  

 

3.4.3.2 Wrinkles in the Metal Trace Layer 

 

Figure 3-13 – Wrinkles in the metal trace layer 

As shown in Figure 3-13, wrinkles were observed in the metal trace layer, especially near corners of the 

metal trace (Figure 3-13a) or in the exposed area such as the contact pad (Figure 3-13b). The most likely 

cause of this issue is that the partial curing of the bottom PI layer was insufficient. Aiming at enhancing 

the adhesion between two PI layers by leaving more open bonds on the first one, the partial curing 

temperature and time were dropped in Gen 4 fabrication. It is likely that the temperature was too low and 
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the time was too short, so the solvent in the PI precursor had not been fully vaporized before the metal 

trace layer was deposited. As a result, the solvent in the bottom PI layer got released during the final 

curing process with the top PI layer, attacking the metal trace which blocks the way out during the 

process. Therefore, in future modifications of the fabrication process, the temperature and time 

parameters of the partial curing process should be increased to avoid this problem.  

Due to this issue, the electrical properties of the electrode traces would deviate from the original design 

target. Both the length and width of the traces, as well as the contact area of the electrode sites with the 

environment, have changed, which should lead to a non-negligible change in the impedance. 

Nevertheless, no visible cracks were observed in the traces, suggesting that the devices should still be 

functional for testing.  

 

3.4.3.3 Leg Spacing 

The 70-µm leg separationg or 40-µm spacing between adjacent legs were more than sufficient for 

developing photoresists cleanly. Longer devices were proven to be harder to work with. They were more 

easily damaged by curling or folding while releasing the devices from the wafer, since the double-layer of 

PI would be be floating in the acid solution when no longer attached to the wafer via the sacrificial 

aluminum layer. Therefore, it is strongly recommended to keep the overall device size minimum.  

 

3.5 Gen 4 Benchtop Characterization: Mechanical Performance 

3.5.1 Deflections with Load Forces 

The deflection vs. total load force relationship was measured using the same setup as previously 

introduced in Section 2.2.8. More data points were taken in the test of each device by increasing the 

variation of different load weights added. Two legs that are ten legs apart were used for the calculation for 

each data point, and the same set of two legs were used for all images for each device. They were taken 

ten legs apart so that even if end of the legs were marked 1 or 2 pixels off, the effect of the error is 

effectively low because 1 or 2 pixels represents very small distance (1.6 to 3.2 µm) compared to the 

distances between any two points (the chosen legs were 700µm apart). Due to this improvement of the 

measurement process, only two legs’ (four points’) coordinates were obtained on each image, compared 

to the 4 sets of 3 adjacent legs used in the previous test of Gen 3 device (where adjacent legs were 100 

µm apart). 

  



60 

 

 

(a) T1200, No Load 

 

(b) T1200, Load = 73.74 mN 

 
(c) T1500, No Load 

 

(d) T1500, Load = 107.98 mN 

 
(e) T2000, No Load 

 

(f) T2000, Load = 98.18 mN 

 

Figure 3-14 – Microscope images of the test device legs when there is no load weight attached vs. when there 

is load. 

As Figure 3-14 shows, putting a large load weight on the shuttle produced an obvious deflection in the 

legs. The images in (b), (d) and (f) shows the maximum loads the author was able to apply to the devices 

before the holes holding the hook in the device head broke.  

It was notable that, while the legs were mostly straight in the T1200 devices, they were bending before 

any load was put on the shuttle in T1500 or T2000 devices, and the bending was more severe in the 

T2000 devices. This bending could have been caused by unbalanced residual stress in the two PI layers, 

so that the devices were not flat. It may also have been caused by the swelling of the PI material due to 
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the excessive exposure to acid solution (Al. Etchant) during device release. The swelling could potentially 

lower the stress in the legs [12]. It may also lower the required force to deflect, since it makes the legs 

longer. 

 

 

Figure 3-15 – Measured deflection vs. load force result in T1200 Device. 

For the T1200 Devices, Figure 3-15 shows that the measured deflections were consistently lower than the 

simulation result. The measured results were mostly 20% to 30% lower than simulation predicted, which 

means a relatively high simulation validity. There could have been due to the simplification of the 

simulation model. They may also have been partly due to differences in material properties from 

simulation parameters. The simulations used results from HD Microsystems™ [18] and Grady et al. [19], 

but the actual device material may perform differently due to differences in the PI precursor product batch 

or fabrication process. In terms of the goal of the device, however, a lower deflection at a given load force 

means that the reaction force provided by the shuttle is higher than expected at the target deflections, 

which means that the device still works. 

 

Figure 3-16 – Measured deflection vs. load force result in T1500 Device. 
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Result using T1500 device shows that the deflections were mostly slightly higher to the simulation result. 

Unlike in T1200 devices in which the pre-existing bending was not so obvious, the bending may have 

canceled out the factors that causes the deflections to be lower and simulation predicted. Although it is 

undesired that the actual reaction force is lower than expected at a given deflection, since we have 

included a safety factor in design, the deflection only needed to be slightly higher than the 50 µm target 

for the force to pass 5 mN. Considering the measurement precision from 300M pixel microscope images 

in which 1 pixel corresponds to 1.6 µm, this small force deficiency may be partly due to measurement 

error. For the design to be safer, future generations of the device should use more legs if using such leg 

dimensions.  

 

 

Figure 3-17 – Measured deflection vs. load force result in T2000 Device. 

In the T2000 device, as shown in Figure 3-17, the measure results goes around the simulation curve. This 

could be a combined result of simulation simplification, pre-existing bending, or measurement error. 

Similar to the case of T1500 device, thanks to the safety factor used in design, the design target is still 

marginally achieved. For the design to be safer, future generations of the device should use more legs if 

using such leg dimensions.  

In general, the measured results using different variations of the design showed that our simulation 

predictions were all within good range from the reality.  

 

3.5.2 Challenges with the Elasticity Test 

The simulation predictions of the forces and deflections at which the stress in the material reaches its 

estimated yield stress of 70 MPa are the follows: 
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Table 3-6 – Simulation predictions of the forces and deflections at which the stress in the material reaches its 

estimated yield stress. 

Name 

BeamL 

[µm] 

# Pair of 

legs 

Deflection [µm] Total load force [mN] 

At 1/3 yield 

stress 

At yield 

stress 

At 1/3 yield 

stress 

At yield 

stress 

T1200 1200 100 59 115 12 70 

T1500 1500 200 81 153 28 160 

T2000 2000 400 98 207 40 320 

 

Theoretically, the elasticity of the material while the stress is lower than the yield can be tested by 

verifying that the legs may restore their original shape after the applied load is removed. However, this 

was proven to be challenging especially due to the pre-existing bending in the devices.  

The T1200 device started with a 4.11 µm deflection before load was applied, and after the maximum load 

was applied and then removed, the deflection was measured to be 5.64 µm. Because the difference was 

only 1.53 µm, which was less than a pixel in the image, it was unclear whether it was due to loss of 

elasticity or due to measurement error. The result is highly inconclusive before repetitions of the 

experiment with many more devices may potentially provide more insights.  

On the other hand, in the case of T1500 and T2000 devices, because the pre-existing bending was so 

severe, meaning that the legs were much longer than the distance between their two ends, the way of 

bending could be changed significantly by a very small force. This was verified by measuring the 

deflection of the legs when only the hook (0.1 mN) is attached on the device after different loads were 

added. 

 

 

Figure 3-18 – Deflection of the legs in T2000 after load forces were removed. 
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As results in Figure 3-18 show, the 5 mN load already caused legs to bend 10 µm more in the direction of 

the shuttle after it is removed. The observation of severe leg bending in Figure 3-14e and the fact that the 

deflection vs. load force relationship in Figure 3-17 still greatly resembles the simulation result assuming 

full elasticity suggests that the increase in deflection after loads were released do not prove a lost in 

elasticity.  

Unfortunately for T1500 and T2000 devices, the author was not able to add loads up to the predicted load 

force or deflection at the estimated yield, because the device heads holding the hook broke. In future 

experiments, adhesive material such as epoxy may be applied to the device head before experiments start 

to increase the strength of the heads.  

Although the experiments did not prove or prove against loss of elasticity, the inability for the T1500 and 

T2000 device legs to restore their original shape was still discouraging of the design regardless of what 

cause it—plastic deformation or pre-existing bending. It still means that the distance the pulled-back 

shuttle will travel when the glue on the head melts is lower than expected. This, however, does not 

necessarily mean that the design is not usable. Assuming that the elasticity is still intact, it only means 

that initially the shuttle should be pulled further back. 

 

 

Figure 3-19 – Distance shuttle travels when load force is removed. 

For example, Figure 3-19 shows the curve of the distance the shuttle traveled by the comparing the 

deflections with the load hanging on the shuttle and after the loads are removed. In order to make sure 

that the shuttle to travel 50 µm to pierce through the glial sheath, initially it should be pulled farther back 

to about 75 µm.  

 

3.5.3 Discussions and Future Directions 

Due to limited time, the tests were not repeated, so all findings were only preliminary. The fabrication 

process may vary slightly between wafers and fabrication batches, causing the material properties to 

change and hence affecting the mechanical performance. To more systematically study the mechanical 

properties of the devices and make sure of the performance of the product, more sample devices from 

different wafers or different batches should be tested.  
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Since the severe pre-existing bending caused unexpected complications in the mechanical performance of 

the device, the author recommend avoiding or minimizing the bending in future generations. An obvious 

way is to use shorter legs, as all devices with 1200-µm legs were generally flatter and their legs showed 

much less bending than the ones with 1500-µm or 2000-µm legs.  

 

3.6 Gen 4 Benchtop Characterization: Impedance 

Impedance tests using the same setup and procedure as introduced in Section 2.3 were run using Gen 4 

devices to verify whether the modified fabrication process has made improvements on the issue of 

impedance dropping over time. Measurements were taken every 1 or 2 minutes to give a better temporal 

resolution of the change and minimize the effect of occasional data loss due to GPIB communication 

errors between the impedance analyzer and the computer.  

3.6.1 Device 1 

3.6.1.1 Experiment 1 

In Experiment 1, the tip of the device was put in PBS for 23 hours to observe the change of impedance 

over time.  

 

Figure 3-20 – Experiment 1: impedance magnitude of Gen 4 Device 1 tip in PBS at 1 kHz over time for 23 h. 
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Figure 3-21 - Experiment 1: impedance magnitude of Gen 4 Device 1 tip in PBS at 1 kHz over time for 23 h: 

first 5 hours.  

As shown in Figure 3-20, the trend was opposite to the case of the Gen 3 device we tested under the same 

experimental setting. It started at around 500 to 600 kΩ, which is in the range of typical Gen 3 devices 

[11], which makes sense because Gen 4 has identical tip electrode site opening design as Gen 3. Then the 

magnitude of impedance rose up to about 800 kΩ in 15 hours, which is also in the range of typical Gen 3 

device measurements. Then unlike the Gen 3 device in DI water that showed a drop in impedance after 20 

hours, the impedance stayed relatively stabilized.  

Since our fabrication improvements were based on the delamination hypothesis of the impedance drop in 

Gen 3 devices, and now the impedance is no longer dropping rapidly, Figure 3-20 proves that that our 

delamination hypothesis was likely right and the modifications were effective.  

And since the time frame of increase in the initial 15 hours is similar to that in the case of the Gen 3 

device with tip in DI water, the cause of the increase could be similar. Our assumption was that initially 

the ions from the Aluminum etchant stored in the PI layers dissolved in water and caused a higher 

concentration of electrolytes around the device tip. Then as they diffused away the concentration was 

back down. The reason that this increase did not show in the case with Gen 3 device in PBS could be that 

the drop due to delamination was too dominant. 

 

3.6.1.2 Experiment 2 

To test whether the increase observed in Experiment 1 was reversible, after Experiment 1, Device 1 was 

rinsed in DI water and dried in room temperature for 20 min, then the tip was put back in PBS with 

constant level. 
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Figure 3-22 – Experiment 2: impedance magnitude of Gen 4 Device 1 tip in PBS at 1 kHz over time for 5 h, 

after rinsed in DI water and dried after Experiment 1. 

As shown in Figure 3-22, initially the magnitude dropped back to about 500 to 600 kΩ. Then in 5 hours, 

it slowly increased to about 700 kΩ. Unfortunately, the device became open circuit after 5 hours. A 

careful inspection of the metal traces under 40x microscope revealed no visible cracks in the electrode 

traces. It could be due to invisible small cracks in the traces caused by the wrinkles shown in 

xxxxxxxxxxxxxx. It could also be due to the failure of the connection point between the stainless steel 

wire and the contact pad of the device by silver epoxy, which was unable to be reworked without 

damaging the device.  

The start value range, end value range and rate of increase in the first 5 hours were very similar to those in 

Experiment 1 in Figure 3-21. The measurements in Experiment 2, however, was noisier, suggesting more 

instability of the electrical path. The increase of instability was likely due to the rinse in DI water, which 

could have damaged the trace already fragile due to the wrinkles.  

The initial increase’s still being present and having the same time frame could be because of the salt on 

the surface and in PI causing effects similar to that caused by the etchant residues, since the device was 

only rinsed promptly because it was fragile. However, it is uncertain whether the effect should be as 

strong. It could also mean that our previous hypothesis was incorrect.  

Another potential causes is swelling of the PI covering the electrode site. But it is unlikely that the PI 

would have completely dried and resumed its volume in 20 minutes between the two experiments. 

It could also potentially be because the water injection rate controlled by the syringe pump did not 

precisely match the evaporation rate, causing the PBS concentration to change slightly. However, this is 

unlikely because the change of PBS solution volume should still be very small compared to the total 

volume, which should not cause a change of almost 50% in the measured impedance in a day. 

The effect by the position of the syringe pump injection pipe and the device was also eliminated because 

the device was at least 2 cm from the pipe and their relative position was changed in between Experiment 

1 and 2. If it is because the PBS concentration is lower near the water injection point, the rising rates in 

the two experiments should not match. Also, since the injection rate was very slow (10 µL/min), it is 

unlikely that it would lower the concentration significantly enough to affect the measurement result in a 

place not in its direct adjacency (more than 2 cm away). 
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Other causes include slightly stirring of the PBS solution due to the insertion of the device and height 

adjustment of the holding z-stand causing a temporary drop in impedance. This hypothesis was tested 

with the next device. 

 

3.6.2 Device 2 

3.6.2.1 Experiment 3 

Another device was put in PBS for a longer period of time to observe whether the impedance magnitude 

changes further after the seemingly stabilized level was reached after 15 hours.  

 

Figure 3-23 - Experiment 3: impedance magnitude of Gen 4 Device 2 tip in PBS at 1 kHz over time for 48 h. 

Figure 3-23 shows that the trend in the first 23 hours of Device 2 were similar to that of Device 1 in the 

previous two experiments. However, although the trends started in a similar range, in the case of Device 

2, the trend increased to a much higher value around 1.1 to 1.2 MΩ, which, however, is still within the 

typical range [11]. 

After about 25 hours, a decreasing trend started. The decrease was very slow and it was unclear to what 

value since it seemed to continue decreasing at the 48-hour mark, when the value was about 1 MΩ. 

Due to limited time, this experiment was not continued. 

 

3.6.2.2 Effect of stirring 

After the impedance magnitude was initially stabilized, the author manually stirred the PBS solution in 

the container to see whether the stirring may be the explanation of the initial increase after the tip was put 

in PBS. The stirring was not very violent such that the PBS level was almost maintained during the 

process. 
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Figure 3-24 – Measured impedance magnitude of Gen 4 Device 2 tip in PBS at 1 kHz around the time of 

stirring of the PBS. 

Figure 3-24 shows the hour around the time of stirring. Although the stirring did temporarily decrease the 

impedance, the original level was restored in 2 min. This was a very short restoring time compared to the 

15-hour increase after the device tip was put in PBS in all three experiments so far. Therefore, the 

hypothesis that turbulence of the PBS solution due to injection of device was more likely false.  

 

3.6.3 Discussions and Future Directions 

Experiments using Gen 4 devices showed that the impedance magnitudes measured did not decrease 

rapidly like using Gen 3 device, and the magnitude stayed in the designed range of the device during the 

experiments. 

However, an increase of the impedance in the first 15 hours showed up in all three experiments, as well as 

the later much slower decrease after 25 hours in Experiment 3. The cause of the increase and the timeline 

remains uncertain. In future experiments, if time allows, the experiments may be run for longer periods 

(~weeks) to make a better characterization of the change of impedance over time and they may provide 

more insights to the observations in the three experiments here.  

The failure of Device 1 after 5 hours in Experiment 2 suggested that the wrinkles in the electrode traces 

(see Section 3.4.3.2) might have caused them to be very fragile. Therefore, modifications of the next 

generation’s fabrication process should avoid these wrinkles. 

 

3.7 Conclusions 

On the mechanical aspect, measurement results of leg deflection vs. load weight using test devices with 

different leg lengths confirmed that our simulation model made a considerably good approximation of 

reality. They showed that the modified design was able to meet the design targets. During the experiment, 

the measurement of leg deflection of the device prior to holding any load weight revealed that when the 

device legs are long, they suffer severe bending even at rest, which is a problem that should be avoided in 

future generation design. Due to this bending and the lack of repetition of the experiment, whether the 

deformation of the legs was elastic or plastic at the target force remains inconclusive. 
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On the electrical aspect, impedance tests showed that the impedance magnitude of the electrode sites were 

no longer dropping rapidly as in Gen 3 devices. This suggests that our modification of the fabrication 

process successfully improved the adhesion between the PI layers. However, longer experiments should 

be performed before concluding that the delamination problem is solved. Meanwhile, wrinkles in the 

metal traces were observed, which made the traces fragile and very likely caused electrical failure of one 

of the test devices. This means that the fabrication needs further improvements. Since the insufficient 

partial curing of the first PI layer was most probable source of the wrinkles, the curing temperature and 

time should be increased in future fabrications.   
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Chapter 4:  Conclusions and Future Directions 

4.1 Contributions 

4.1.1 Mechanical Model and Benchtop Experiment Setup 

This work provides a FEA simulation model setup of the spring structure using fixed-fixed beam with 

fillets and is capable of predicting the mechanical behavior of the actual fabricated device with 

considerably good accuracy, as verified by benchtop tests.  

The benchtop experiment setup to measure deflection vs. load force on the structure is simple to use and 

requires only common lab supplies such as a microscope and a weighing balance. This setup can be used 

to perform systematic mechanical studies of the device design and the material. Alternatively, a digital 

camera with high resolution and good close-up clarity may be used in place of the microscope, since the 

magnification required was only 5x with a 300M camera. For this application, the weighing balance 

requires about 0.001 g readability, and 100 g capacity should be more than enough for studying the 

mechanical performances of the devices up to the yield point, if the simulation results are not far off. 

Therefore, equipment required in this setup can be potentially low-cost and easily accessible. 

 

4.1.2 Real-Time Impedance Monitoring 

The automatic impedance recording setup described and tested in this thesis provides a reliable tool to 

study the temporal change of the electrical behavior of this device, as well as any other electrical device 

whose temporal change in impedance may be of interest. The system is capable of taking an impedance 

measurements as fast as about every 20 seconds with reasonably good frequency sweeping resolution and 

averaging bandwidth. The complete raw data from the experiments can be automatically stored, and 

specific values of the impedance at frequencies of interest may also be extracted and recorded 

automatically. When the computer in control is connected to a network, the result may be remotely 

accessed anytime from anywhere, the progress of the experiment as well as whether there are problems 

occurring can be monitored constantly. Therefore, this system makes long-term experiments up to weeks 

or even months more convenient.  

 

4.2 Future Directions 

4.2.1 Fabrication 

Although the fabrication modifications in Gen 4 were proven to have enhanced the adhesion between PI 

layers, they caused unexpected issues in the device such as wrinkles in the metal trace due to insufficient 

partial curing of the first PI layer. Therefore, in future fabrication using the PI and recipe, the optimal 

temperature and time of the curing of the first layer should be studied. There is no evidence to suggest any 

problems caused by the short plasma etch before depositing the second PI layer, or by the Ti layer in 

between the Au trace and the second PI layer, so these should be kept.  

Insufficient opening of the electrode sites was also observed in some of the devices. The optimal spinning 

speed of the second PI precursor layer and its exposure time should also be studied to avoid the need of 

excessive plasma etching to open up the electrode sites. 

Also, it should be tested whether the acid residue from the aluminum etchant used in device release is 

kept inside the devices, since it was one hypothesis for the impedance increase of the measured electrode 

sites in the in vitro setting. A device may be immersed in DI water of small but sufficient volume for 

days, and the DI water may be tested for the chemicals present in the etchant formula afterwards. If there 



72 

 

 

was actually acid residue in the PI layers, additional steps should be considered to either remove or shield 

the acid from leaking before the devices are used for in vivo tests. One approach is to immersed the device 

in DI water of large quantity for long enough to maximally dissolve the acid ions. However, in such an 

approach, delamination and swelling caused by excessive direct exposure to DI water may be of concern. 

 

4.2.2 Mechanical and Electrical Characterization 

Due to the limited time and number of working devices from the Gen 4 fabrication batch available for this 

thesis, the experiments carried out were only from one to a few days. Devices from different wafers and 

different batches should be tested for mechanical properties to provide a more systematic characterization 

of the design. 

Longer experiments of the impedance measurements should be carried out to gain a better knowledge of 

whether the delamination problem have been solved or was the delamination process only slowed down. 

The unexpected shape and value of the impedance phase vs. frequency could also be studied, potentially 

by first running simulations to see what combination of circuit elements produces similar magnitude and 

phase characteristics, then study the parts of the device that could perform as such circuit elements 

accordingly.   

 

  



73 

 

 

REFERENCE 

[1]  L. F. Nicolas-Alonso and J. Gomez-Gil, "Brain Computer Interfaces, a Review," Sensors, vol. 12, 

no. 2, p. 1211–1279, 2012.  

[2]  V. S. Polikov, P. A. Tresco and W. M. Reichert, "Response of brain tissue to chronically implanted 

neural electrodes," Journal of Neuroscience Methods, vol. 148, no. 1, pp. 1-18, 15 October 2005.  

[3]  J. N. Turner, W. Shain, D. H. Szarowski, M. Andersen, S. Martins, M. Isaacson and H. Craighead, 

"Cerebral Astrocyte Response to Micromachined Silicon Implants," Experimental Neurology, vol. 

156, p. 33–49, 1999.  

[4]  A. Prasad and J. C. Sanchez, "Quantifying long-term microelectrode array functionality using 

chronic in vivo impedance testing," J. Neural Eng., vol. 9, no. 2, p. 026028, 2 April 2012.  

[5]  L. Rao, H. Zhou, T. Li, C. Li and Y. Y. Duan, "Polyethylene glycol-containing polyurethane 

hydrogel coatings for improving the biocompatibility of neural electrodes," Acta Biomaterialia, vol. 

8, no. 6, pp. 2233-2242, July 2012.  

[6]  J. P. Seymour and D. R. Kipke, "Neural probe design for reduced tissue encapsulation in CNS," 

Biomaterials, vol. 28, no. 25, pp. 3594-3607, September 2007.  

[7]  T. D. Y. Kozai, N. B. Langhals, P. R. Patel, X. Deng, H. Zhang, K. L. Smith, J. Lahann, N. A. 

Kotov and D. R. Kipke, "Ultrasmall implantable composite microelectrodes with bioactive surfaces 

for chronic neural interfaces," Nat. Mater., vol. 11, no. 12, p. 1065–1073, December 2012.  

[8]  H. C. Lee, F. Ejserholm, J. Gaire, S. Currlin, J. Schouenborg, L. Wallman, M. Bengtsson, K. Park 

and K. J. Otto, "Histological evaluation of flexible neural implants; flexibility limit for reducing the 

tissue response?," Journal of Neural Engineering, vol. 14, no. 3, 4 May 2017.  

[9]  N. Jackson, A. Sridharan, S. Anand, M. Baker, M. Okandan and J. Muthuswamy, "Long-Term 

Neural Recordings Using MEMS Based Movable Microelectrodes in the Brain," Front 

Neuroengineering, vol. 3, no. 10, 2010.  

[10]  P. Stice and J. Muthuswamy, "Assessment of gliosis around moveable implants in the brain," J 

Neural Eng., vol. 6, no. 4, p. 046004, 2009.  

[11]  A. Dighe, "Reconfigurable Neural Probes for Chronic Electrical Recording," Cambridge, MA, 

2015. 

[12]  M. Ghosh, Polyimides: Fundamentals and Applications, CRC Press, 1996, p. 784. 

[13]  R. Elliott, "Deflection of beams," The Central London Area Group of the Scalefour Society, 30 

December 2010. [Online]. Available: http://www.clag.org.uk/beam.html. [Accessed 28 July 2017]. 



74 

 

 

[14]  "Rectangular Area," efunda, [Online]. Available: http://www.efunda.com/math/areas/rectangle.cfm. 

[Accessed 28 July 2017]. 

[15]  E. Oberg, F. D. Jones, H. L. Horton and H. H. Ryffel, Machinery's Handbook, 28th Edition, New 

York, NY: Industrial Press, 2008, p. 258. 

[16]  J. M. Gere, Mechanics of Materials, 6 ed., Belmont, CA: Brooks/Cole–Thomson Learning, 2004, p. 

313. 

[17]  "COMSOL Multiphysics User’s Guide," COMSOL AB., May 2012. [Online]. Available: 

http://people.ee.ethz.ch/~fieldcom/pps-

comsol/documents/User%20Guide/COMSOLMultiphysicsUsersGuide.pdf. [Accessed 17 August 

2017]. 

[18]  "HD MicroSystems™ Product Selection Guide," HD MicroSystems™, December 2013. [Online]. 

Available: 

http://www.hdmicrosystems.com/HDMicroSystems/en_US/pdf/ProductSelectorGuide.pdf. 

[Accessed 20 August 2017]. 

[19]  M. E. Grady, P. H. Geubelle and N. R. Sottos, "Interfacial adhesion of photodefinable polyimide 

films on passivated silicon," Thin Solid Films, vol. 552, p. 116–123, 2014.  

[20]  N. E. Dowling, Mechanical Behavior of Materials, 4 ed., Pearson, 2013, p. 298. 

[21]  M. Acin, "Stress singularities, stress concentrations and mesh convergence," 2 June 2015. [Online]. 

Available: http://www.acin.net/2015/06/02/stress-singularities-stress-concentrations-and-mesh-

convergence/. [Accessed 29 July 2017]. 

[22]  N. Tullini and M. Savoia, "Logarithmic stress singularities at clamped-free corners of a cantilever 

orthotropic beam," Composite Structures, vol. 32, no. 1–4, pp. 659-666, 1995.  

[23]  H. Sönnerlind, "Singularities in Finite Element Models: Dealing with Red Spots," COMSOL Inc., 3 

June 2015. [Online]. Available: https://www.comsol.com/blogs/singularities-in-finite-element-

models-dealing-with-red-spots/. [Accessed 29 July 2017]. 

[24]  "Direct Write Pricing," Front Range Photo Mask, [Online]. Available: https://frontrange-

photomask.com/direct-write-pricing-2/. [Accessed 4 February 2017]. 

[25]  A. I. H. Committee, ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-

Performance Alloys, ASM International, 1990, p. 199. 

[26]  Transene Company Inc., Safety Data Sheet, Aluminum Etchant Type A.  

[27]  "HD-4100 Process Guide," HD Microsystems™, September 2009. [Online]. Available: 

http://www.hdmicrosystems.com/content/dam/dupont/products-and-services/electronic-and-



75 

 

 

electrical-materials/semiconductor-fabrication-and-packaging-materials/documents/HD-

4100_ProcessGuide.pdf. [Accessed 20 August 2017]. 

[28]  J. K. Nguyen, D. J. Park, J. L. Skousen, A. E. Hess-Dunning, D. J. Tyler, S. J. Rowan, C. Weder 

and J. R. Capadona, "Mechanically-compliant intracortical implants reduce the neuroinflammatory 

response," J. Neural Eng., vol. 11, no. 5, p. 056014, October 2014.  

[29]  J. Thelin, H. Jörntell, E. Psouni, M. Garwicz, J. Schouenborg, N. Danielsen and C. E. Linsmeier, 

"Implant Size and Fixation Mode Strongly Influence Tissue Reactions in the CNS," PLoS ONE, vol. 

6, no. 1, p. e16267, January 2011.  

[30]  A. Jackson and E. E. Fetz, "Compact Movable Microwire Array for Long-Term Chronic Unit 

Recording in Cerebral Cortex of Primates," J. Neurophysiol., vol. 98, no. 5, p. 3109–3118, 

November 2007.  

[31]  A. B. Schwartz, X. T. Cui, D. J. Weber and D. W. Moran, "Brain-controlled interfaces: movement 

restoration with neural prosthetics," Neuron, vol. 52, no. 1, p. 205–220, October 2006.  

 

 

 

 


