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Abstract

The online market has expanded tremendously over the past two decades across all
industries ranging from retail to travel. This trend has resulted in the growing avail-
ability of information regarding consumer preferences and purchase behavior, sparking
the development of increasingly more sophisticated product recommendation systems.
Thus, a competitive edge in this rapidly growing sector could be worth up to millions
of dollars in revenue for an online seller.

Motivated by this increasingly prevalent problem, we propose an innovative model
that selects, prices and recommends a personalized bundle of products to an online
consumer. This model captures the trade-off between myopic profit maximization and
inventory management, while selecting relevant products from consumer preferences.
We develop two classes of approximation algorithms that run efficiently in real-time
and provide analytical guarantees on their performance. We present practical ap-
plications through two case studies using: (i) point-of-sale transaction data from a
large U.S. e-tailer, and, (ii) ticket transaction data from a premier global airline. The
results demonstrate that our approaches result in significant improvements on the
order of 3-7% lifts in expected revenue over current industry practices.

We then extend this model to the setting in which consumer demand is subject to
uncertainty. We address this challenge using dynamic learning and then improve upon
it with robust optimization. We first frame our learning model as a contextual non-
linear multi-armed bandit problem and develop an approximation algorithm to solve
it in real-time. We provide analytical guarantees on the asymptotic behavior of this
algorithm's regret, showing that with high probability it is on the order of O(V T).
Our computational studies demonstrate this algorithm's tractability across various
numbers of products, consumer features, and demand functions, and illustrate how it
significantly out performs benchmark strategies. Given that demand estimates inher-
ently contain error, we next consider a robust optimization approach under row-wise
demand uncertainty. We define the robust counterparts under both polynomial and
ellipsoidal uncertainty sets. Computational analysis shows that robust optimization
is critical in highly constrained inventory settings, however the price of robustness
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drastically grows as a result of pricing strategies if the level of conservatism is too
high.
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Chapter 1

Introduction

The rapid expansion of the online market over the past two decades has directly re-

sulted in an increasing focus on the development of research in the field of revenue

management. More specifically, the growing availability of consumer data across

all industries operating an online platform has sparked a great deal of interest in

the modeling and analysis of personalized assortment optimization, constrained as-

sortment planning, dynamic pricing and online demand learning. Furthermore, the

utilization of the above techniques in practice has resulted in significant increases in

revenue and sales volume for businesses that have leveraged this growing source of

information successfully in their operational strategies. In this thesis, we study the

areas of inventory planning, strategic pricing and demand learning in the context of

product recommendation systems for bundles as follows: in Chapter 2 we develop a

model for personalized bundle pricing and recommendation and propose approxima-

tion approaches with analytical guarantees for real-time implementation; in Chapter

3 we present a detailed analysis of the performance of these algorithms through two

data-driven case studies from the retail and travel industries; and, in Chapter 4 we

extend our modeling framework to include potential demand uncertainty, which we

capture using dynamic learning through a contextual non-linear multi-armed bandit

formulation and robust optimization under various uncertainty sets.

21



1.1 Motivation

Over the past few decades, the expansion of the online channel has experienced dra-

matic development across all industries ranging from retail to travel to personalized

shopping and styling. In retail alone, the online market is predicted to increase by

over 34% in sales over the four year period from 2016 to 2020, from a recorded $373

billion to an estimated more than $500 billion. This growth has generated an increas-

ingly availability of information regarding consumer demographics and preferences,

resulting in a greater emphasis among online sellers on personalizing customer ex-

periences in order to improve retention and satisfaction. Stemming from this trend,

effective personalized recommendation services across businesses in the online sector

have experienced great prosperity over the past several years. As a direct example

of this, Dollar Shave Club, a startup specializing in male grooming that sends its

customers monthly personalized boxes of razors and shaving supplies, recorded $152

million in revenue in 2015, which was projected increase to over $200 million by end of

2016 and ultimately led to a $1 billion acquisition by Unilever. These success stories

demonstrate that consumers are both interested in and willing to pay for customized

experiences. Thus, a more sophisticated product recommendation system can pro-

vide the necessary competitive edge for any online seller, making the difference on

the order of millions in profits.

These current industry practices and research developments in revenue manage-

ment directly motivate the primary goal of Chapter 2, which is the development of

a personalized model that selects, prices, and recommends a bundle of related prod-

ucts to a consumer during their online session. This model presents a framework

for constructing dynamic bundle offers and combines diverse recommendations with

personalized discounts by leveraging consumer profiles and in-session context, while

considering the trade-off between myopic profit maximization and long-term prof-

itability under inventory constraints. The resulting dynamic programming problem

is both structurally complex and practically challenging to implement, therefore we

develop two classes of approximation algorithms in order to utilize this model effi-
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ciently in real-time in an online setting. We develop analytical guarantees on both

classes of algorithms relative to their respective "optimal" strategies and analyze the

empirical performance of these bounds depending on initial instance parameter set-

tings using real data. We also develop and analyze a multi-level pricing setting in

which our model and resulting algorithms align an upper-level periodic nominal price

trajectory problem with our lower-level personalized discounted offers, and extend

our analytical guarantees to this context.

While we develop a new modeling framework for simultaneously considering per-

sonalization, inventory balancing and long-term profit maximization within the con-

text of the online bundle recommendation problem, we also aim to demonstrate the

practical relevance of our proposed algorithms. In addition to providing analytical

guarantees, we want to show that both classes of approximation methodologies solve

efficiently in real-time and provide quality solutions to the original dynamic program-

ming problem. Thus, in Chapter 3 we implement these algorithms and analyze their

performance through two in-depth case studies: (i) using point-of-sale transaction

data from a major U.S. e-tailer, and, (ii) using ticket transaction data from a pre-

mier global airline. These case studies demonstrate that our approaches result in

significant improvement on the order of 3-7% lifts in revenue over existing industry

practices and provide efficient solutions that obtain up to 98% of the expected profit

of a full-information offline benchmark strategy. In retail and travel industries which

operate on razor-thin margins and are increasingly utilizing personalized strategies

in the online channel, these gains are very substantial and can scale up to millions of

dollars in revenue.

In the first two chapters we consider the personalized bundle pricing and recom-

mendation problem under the assumption that there is sufficient historical consumer

data to adequately estimate consumer preferences and demand. However, when con-

sidering the online setting in practice, consumer purchasing information is often un-

available in a multitude of realistic cases such as the following: where no (or few)

product bundles have ever been offered historically, where new products are intro-

duced into the market with no previous purchase history known to the seller, and
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finally, where first time shoppers frequently appear in the market without any pur-

chase history or preferences known to the seller. Businesses such as StitchFix, which

offers personalized clothing styling and achieved $250M in revenue in 2015 that nearly

tripled to $730M by the end of 2016, obtain their success by collecting, analyzing and

effectively leveraging consumer feedback data that is traditionally not available to

brick-and-mortar businesses in these uncertain demand scenarios. Thus, motivated

by these industry successes, we consider these challenging and relevant online scenar-

ios in Chapter 4 by extending our prior model to account for demand uncertainty.

We study this by considering two approaches: (i) dynamic learning, and, (ii) robust

optimization. We initially formulate our learning model under setting (i) as a contex-

tual non-linear multi-armed bandit problem. We propose an approximation method

based on estimating the first-order Taylor series of the expected reward function,

which requires no assumptions on the functional form of the demand other than it

being differentiable. We establish analytical guarantees on the asymptotic behavior

of this algorithm's regret compared to an oracle strategy and the empirical results

show that it performs well across various demand functions, numbers of products and

consumer features relative to relevant benchmarks from the existing literature. How-

ever, we also find that in certain cases dynamic demand learning innately captures

a significant amount of error, which leads us extend our modeling approach to set-

ting (ii), where we consider a robust optimization approach under row-wise demand

uncertainty. We define the robust counterparts under both polynomial and ellip-

soidal uncertainty sets. Our computational analysis shows that robust optimization

is critical in highly constrained inventory settings, however the price of robustness

drastically grows as a result of pricing strategies if the level of conservatism is too

high.

1.2 Thesis Contributions

In Chapter 2 we develop a new modeling framework that captures personalization at

an individual level, as well as the trade-off between myopic profit maximization and
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long-run profitability through inventory management. This approach guards against

inventory-related losses resulting from both salvaging excess inventory and stock outs

as a result of consumer choices. However, this is a challenging dynamic programming

problem that involves personalization, bi-level pricing, future demand forecasting,

and inventory management, and is therefore not tractable for implementation in the

online setting. Therefore, we construct two classes of approximation algorithms,

multiplicative and additive, which provide efficient real-time recommendations. We

present analytical guarantees on the performance of the multiplicative approach rel-

ative to a full-knowledge benchmark strategy that knows the entire consumer arrival

sequence in advance. We also provide guarantees on the optimality gap between the

additive approaches and our original dynamic programming formulation that is linear

in the number of available products. We empirically assess the performance of these

analytical guarantees by considering their behavior based on various instance param-

eters such as initial inventory levels and continuity in the demand functions. Based

on data-driven studies, we find that our overall best heuristic obtains 90-98% of the

expected revenue of the full-information benchmark across various problem instances.

Chapter 3 presents the detailed analysis of two case studies on actual data from

the retail and airline travel industries that demonstrate significant improvement in

expected revenue on the order of 3-7% over existing industry practices. We consider

a two year period of transaction data from a large U.S. e-tailer and find that our

algorithms provide output in real-time with average expected gains of up to 12% in

profits over current pricing schemes for seasonal products. We also analyze a one

month period of ticket transaction data from a premier global airline and find that

average gains in predicted sales volume and revenue are as high as 8-9% in data

scenarios when consumers are unaware of the existence of ancillary services such as

in-flight wi-fi or priority boarding. We objectively analyze our model's ability to

distinguish between changes in online context and changes in personalized features

and found that changes in online context resulted in different bundle composition but

similar discounting strategies, whereas changes in personalized features generated

discounts that differed by as much as 5% on average. In aggregate, we found that
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the overall greatest gains in revenue resulted from personalized pricing targeted at

consumers with lower price sensitivities, who had generally higher willingness-to-

pay across all products and therefore resulted in significantly more conversions from

discounted offers. However, the largest growth in predicted sales came from relevant

product recommendations and differed between various consumer groups depending on

the products. Finally, we present a detailed comparison of the algorithm classes and

empirically demonstrate that multiplicative methods perform up to 7% worse than

additive methods relative to the full-knowledge strategy, but are significantly easier to

implement. Thus, the combined work in these two first chapters presents a solution for

a challenging problem that is highly relevant to the existing literature, while providing

both analytical guarantees and data-driven computational results that highlight the

complexity of the problem structure and extract innovative business insights.

The main contributions in Chapter 4 lie in the analysis and development of (i) a

new high-dimensional learning framework based on contextual non-linear multi-armed

bandits, and, (ii) the robust optimization formulations for the personalized bundle

recommendation problem. Both approaches capture individualized demand modeling

in the online bundling setting and also capture the trade-off between profitability and

inventory management. In the context of dynamic learning, many convex optimiza-

tion methods place assumptions on the structure of the expected reward function in

this problem. We construct a more generalized approach that requires only the as-

sumption that the function be differentiable. Furthermore, we develop an algorithm

based on upper confidence bounds and first-order Taylor series approximation in or-

der to then implement our proposed approach and establish analytical guarantees on

the asymptotic behavior of the regret relative to an oracle strategy. We also present

empirical results that demonstrate that this algorithm converges to the true demand

faster than existing benchmarks from the literature and it performs well over a range of

settings with respect to various numbers of products, numbers of consumer features,

and different demand functional forms. However, we find that demand estimation

particularly in the case of model misspecification, may be subject to a significantly

level of error. Therefore, we also the robust optimization setting in which we define
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the robust counterparts to the personalized bundle recommendation problem using

both polynomial and ellipsoidal uncertainty sets. We conduct an extensive computa-

tional analysis to analyze the feasibility of optimal solutions in the full-information

setting when demand is slightly perturbed and find that these are particularly sen-

sitive to initial inventory settings. Furthermore, we find that in mildly conservative

settings ellipsoidal uncertainty sets typically outperform polyhedral uncertainty sets

by 4-7% with respect to the "optimal" objective value of the nominal problem, which

is relatively marginal when considering the significant computational advantage of

using polyhedral sets. Our numerical results demonstrate that the use of robust opti-

mization to account for demand uncertainty is crucial in highly constrained inventory

problems, in which the cost of robustness is only up to 10%, but optimal solutions

to the nominal problem are infeasible in up to 50% of instances with perturbations

of only 0.10% in demand. Furthermore, a comparison of the numerical analysis be-

tween the two demand uncertainty settings demonstrates the extent of this critical

result. We find that on average, the demand estimation error associated with model

misspecification ranges from 1.3% to 1.9%; in parallel, perturbations in demand by

1-2% in the robust computational study resulted in infeasibility in 30-70% of problem

instances. Therefore, error in demand estimation can have a significant impact on

the quality of the solutions made in the fundamental recommendation model. In a

practical setting, this implies that even minor errors in demand estimation can result

in infeasible and sub-optimal solutions for the bundle recommendation and pricing

problem, and it is therefore absolutely necessary to also account for this effect when

implementing our model in realistic business settings.
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Chapter 2

Personalized Bundle Pricing and

Recommendation

2.1 Introduction

The online market as a whole has grown enormously over the past decade. According

to a forecast released by Forrester Research in 2016, U.S. e-commerce retail sales are

expected to grow from $373 billion in 2016 to more than $500 billion in 2020, an

increase of over 34%; furthermore, the online sector alone impacts over $1.5 trillion

of total retail sales in the United States. This surge in online shopping has led

to an increased availability of data regarding consumer preferences, which can be

leveraged by businesses across all industries in order to improve operations, revenue

and consumer satisfaction. As a direct example of this, strategic recommendation

services that utilize such data effectively are currently undergoing massive and rapid

expansion. StitchFix, which offers personalized clothing styling for its customers and

only became cash-flow positive in 2014, achieved $250M in revenue in 2015 that nearly

tripled to $730M by the end of 2016. The travel industry has also undergone dramatic

growth over the past decade due to the increasing availability of online services.

As a result, travel products are becoming increasingly commoditized. Consumers

are not willing to pay exorbitant fees for these generic services, resulting in a great

deal of competition across industries such as airlines. However, travelers are both
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interested in and willing to pay for customized experiences. Therefore, businesses

in the travel and hospitality industries have begun providing recommendations at

the time of reservation by offering ancillary services that are un-bundled from ticket

cost or room rate. In the case of airlines, supplementary products to improve the

travelers' experience before, during and after their ticketed trip such as VIP lounge

access, priority boarding, seat upgrades, in-flight wi-fi, and destination-relevant deals

are now provided at their own prices and offered throughout the online purchase

process, which was previously not the case. As a result of these industry trends in

the online sector, the development of a more sophisticated product recommendation

system can provide the necessary competitive edge for any online seller, making the

difference on the order of millions in profits.

As demonstrated by these industry examples, the majority of businesses with

an online component now utilize recommendation systems. However, these methods

are often primarily based on historical purchase trends across segments of the on-

line population when there is also a wealth of individualized consumer information.

Motivated by this increasingly prevalent cross-selling problem and current industry

practices, the goal of our work is the development of a personalized model that se-

lects, prices, and recommends a bundle of related products to a consumer during

their online session. Having dynamically received this offer while browsing a partic-

ular item or ticket itinerary, the consumer can then choose to accept this discounted

offer, or purchase any combination of items at their full prices, or simply exit the

online marketplace without making any purchase at all. This dynamic bundle of-

fer is constructed using a new model that combines diverse recommendations with

personalized discounts by leveraging consumer profiles and in-session context, while

considering the trade-off between myopic current profit with long-term profitability

under inventory constraints. Note that because we consider the possibility that con-

sumers may choose to purchase products at their full prices, we must additionally

incorporate the upper-level problem of determining the time-dependent trajectories

of full prices over the course of the selling horizon. Thus, the novelty of this work

consists of simultaneously incorporating personalization, bundle assortment selection,
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bi-level pricing, and inventory-balancing within this particular online bundle offer set-

ting. These challenges have not yet been explored jointly in the existing literature.

In order to construct our bundle pricing and recommendation model we focus

on incorporating all of the above components simultaneously. We aim to make rele-

vant offers by solving a personalized bundle assortment selection and pricing problem

that uses individualized propensity-to-buy models based on consumer profiles and

online context. We integrate this personalized online offer setting within the goal of

long-run profitability by additionally considering future demand through an inventory

balancing function in our model, which improves expected profits by mitigating costs

associated with overstocking and lost sales. Balancing all of these factors is novel

to the analytical problem and practically crucial to sellers from an operational per-

spective, but also gives rise to several challenges with respect to both the analytical

problem structure and its implementation. The combination of all of these compo-

nents results in a complex dynamic programming problem that is highly intractable

in an online setting. Furthermore, focusing on inventory-constrained products leads

to the additional difficulty of incorporating upper-level dynamic pricing schemes that

affect the full prices of products as the selling horizon progresses. Thus, our result-

ing model simultaneously addresses personalization, multiple levels of pricing, bundle

assortment selection, demand forecasting, and inventory management. We develop

approximation algorithms and provide analytical guarantees that improve in tight-

ness as the problem becomes less inventory constrained. Furthermore, we analyze

the performance of our algorithms through two case studies: (i) using point-of-sale

transaction data from a major U.S. e-tailer that includes personalized features such

as customer IDs and loyalty information, and, (ii) using ticket transaction data from

a premier global airline that includes consumer-specific information such as tier level,

miles balance and previous flight history at the time of ticket purchase. These case

studies demonstrate that our approaches result in significant improvement in expected

revenue over existing industry practices. In industries that operate on razor-thin mar-

gins, these gains can scale up to several millions of dollars in revenue.
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2.1.1 Contributions

We analyze the problem of personalized online bundle recommendation, which lies

at the intersection of several branches of revenue management literature. Our main

contributions consist of,

1. Two classes of approximation algorithms that provide real-time bun-

dle recommendations and simultaneously incorporate personalization,

inventory balancing and tractability. We develop multiplicative and addi-

tive methods to implement our model in real- time in an online setting. These

heuristics capture personalization as well as the trade-off between myopic profit

maximization and long-run profitability under inventory constraints. We also

coordinate the dynamic lower-level personalized bundle prices with an upper-

level global pricing strategy that periodically determines the time-dependent

trajectories of the full prices of all items.

2. Analytical guarantee on the performance of the multiplicative algo-

rithm and empirical comparisons of both classes. We provide a bound

on the ratio of the expected revenue of the multiplicative approach relative to

a full-knowledge strategy that knows the entire consumer arrival sequence in

advance. This becomes even tighter as the problem becomes less constrained

by inventory and falls on average within 15% of the algorithm's actual empirical

performance ratio on data. We further compare the empirical performance of

both algorithm classes and show that on average, the overall best heuristic is

an additive benchmark that obtains 90-98% of the expected revenue of the full-

information benchmark across various initial inventory settings. Furthermore,

we show that the multiplicative approach is easier to implement compared

to the additive methods and on average obtains an expected revenue that is

within 1-6% of that achieved by additive methods, relative to the full-knowledge

strategy.

3. Two detailed case studies on actual data from the retail and air-

line travel industries that demonstrate significant improvement in
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expected revenue on the order of 2-7% on average over existing prac-

tices depending on the setting. In the retail case, we observed that our

algorithms provide output in real-time with predicted gains of up to 14% in

revenue over current pricing schemes in the most unconstrained discounting

settings. In the airline case, our model predicted improvements in sales volume

and revenue as high as 7-8% over current strategies in settings when a fraction

of the online population is unaware of the existence of ancillary services. The

greatest gains in expected revenue were a result of personalized pricing targeted

at consumers with lower price sensitivities, who are easily incentivized to make

additional purchases through smaller personalized discounts. Conversely, the

largest growth in predicted sales volume was dependent on product category

and primarily a result of relevant recommendations, resulting in lifts on the

order of up to 10% over current practices.

2.1.2 Literature Review

We consider two bodies of literature most closely related to our work: constrained

assortment optimization and dynamic pricing. The first line of literature pertains to

the assortment planning problem under capacity constraints. Initial works such as

[21] consider a single-period stochastic model under which the retailer selects a profit-

maximizing assortment of substitutable products and determines their initial stock

prior to the selling period, under the assumption that consumers choose products

according to a multinomial logit model, which was extended in [22] to incorporate

dynamic substitution effects when a consumer's product of choice may be stocked out.

[181 presents a summary of the initial works on the single-period assortment planning

setting under inventory or budget constraints, which captures extensions to other

consumer choice models and various dynamic substitution effects. Later works such

as [21 provide provably efficient algorithms under stochastic demand and dynamic

substitution and show that these approximations are order optimal, or near-optimal

in the case of [131, under general random-utility choice models. [111 consider both

assortment cardinality and display space constraints, showing that the assortment
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problem is efficiently solvable by linear programming, while the space problem is NP

hard. Considering a setting in which each period has two phases of pricing, [15] ex-

plore the joint problem of inventory and markdown management with inter temporal

demand substitution and perishable goods. Building on the one-period assortment

planning problem, another body of works has recently evolved in the direction of the

dynamic assortment optimization problem that is solved distinctly for each consumer

arrival. [30] and [291 study this problem when the parameters of the consumer de-

mand functions are unknown. In [31 they formulate this as a dynamic program to

identify which optimal assortment of substitutable goods to offer each consumer and

develop inventory threshold policies for determining this. By contrast, [12] propose an

index-based inventory balancing approach for determining the optimal personalized

assortments, which motivates our multiplicative algorithm that extends this setting

by also incorporating pricing. [33] and [16] present more generalized approaches to in-

ventory balancing in the dynamic assortment planning problem and demonstrate the

value of duality-based approximations of DP formulations for online implementation

in the context of the network revenue management problem and dynamic resource

allocation problems, respectively. In [9] they develop an asymptotically optimal pol-

icy for this dynamic setting, and in [19] and [7] they consider further extensions

under the d-nested logit choice model and the MNLD choice model (in which con-

sumer segments have non-overlapping consideration sets), respectively. In this work,

we consider an inventory-constrained assortment planning problem to dynamically

determine the composition of personalized product bundles. However, the bundle

recommendation system we propose sets this work apart from the existing litera-

ture in constrained assortment planning primarily because we extend the problem

to incorporate dynamic pricing. Furthermore, we do not limit our analysis to any

specific consumer choice model, nor do we assume that the assortment consists of

only substitutable goods.

The second body of work is related to dynamic pricing and cross-selling. Dy-

namic pricing literature, which initially focused primarily on single products, is very

well summarized in [4]. However, there is a vast body of more recent literature on
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this topic across a wide variety of consumer utility models and considering multiple

products. In [26] and [27] they explore multi-period pricing strategies in which retail-

ers determine optimal inventory and pricing decisions based on consumer behavior

regularities. [20] consider consumer disappointment from stock outs and determine a

policy for pricing and product rationing to leverage this strategic behavior to increase

profits. The applied work in [51 presents a price optimization model for markdowns in

fast-fashion that was implemented by Zara & Co. and connects retail operations with

pricing methods, which is in line with our practical goals in this work. There is also a

body of work on online pricing problems in which information is revealed dynamically

upon arrival of a consumer or service request. In [1] and [311 the authors consider

the online resource allocation problem under different settings and develop efficient

algorithms for maximizing long-term system revenue based on dual price updates. By

contrast, [17] develop an algorithm based on a scaled version of the partially known

primal problem (as opposed to dual prices) to obtain and round fractional solutions

and develop integral allocations for all requests. [24] study the problem of order-

ing and pricing products for consumers who view the items sequentially by using a

Markov decision process to obtain the optimal policy for finding the product prices

and purchase probabilities. Tying online pricing to learning with a multi-armed ban-

dit framework, [8] develop an algorithm based on Thompson sampling for dynamically

pricing multiple products under inventory constraint in order to maximize long-run

profitability. In [23] they study randomized markdown strategies and demonstrate

the benefit of these pricing methods for retailers by exploiting known consumer prod-

uct monitoring behavior. By contrast to all of these works, dynamic cross-selling

grew as its own field from economics and initially did not incorporate pricing. [6]

provides an overview of the growth and expansion of this early literature. [25] is

a key pivotal work that combined these fields by analyzing models with stochastic

arrivals for the joint problem of cross-selling and pricing in which a consumer has one

primary product of interest and is offered one additional complementary product at

a discounted price for both; in [28] the authors extend this dynamic programming

setting by proposing a rule-based approach to the joint bundle selection and pric-
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ing problem. New directions such as [341 consider request for quote (RFQ) models

where consumers interactively participate in the pricing process. Recent work in [10]

presents a dynamic approach to product pricing and framing to determine optimal

product displays on webpages for consumers. We consider a setting in which the

bundle offer is presented as an additional option that the consumer can choose not to

purchase in favor of any other combination of non-discounted products. Thus, since

all products are also available for purchase at their full prices, we must consider the

upper-level problem of determining the time-dependent full product prices over the

course of the selling horizon. Thus, our work addresses a two-level pricing problem

and aligns: (i) the lower-level personalized bundle prices offered dynamically to each

consumer, with, (ii) the upper-level full price trajectories for each product. To the

best of our knowledge, this simultaneous bi-level pricing problem is not addressed in

the cross-selling literature.

2.2 Problem Setting and Model Formulation

We consider a monopolist online seller that makes a dynamic bundle offer to each

arriving consumer who may choose to accept the offer, purchase individual items

separately at full price, or choose to purchase nothing at all, as shown in Figure 2-1

below. If the consumer chooses to purchase either the bundle or some other collec-

tion of items at their full prices, we assume that they only purchase one unit of each

item. Let us consider a set of items i = 1, ... ,n denoted by S. These items' prices

may affect one another and they can be complementary, substitutable, or even inde-

pendent as is often the case in the travel industry. Given a captive online consumer

considering products within 5, or a specific ticket itinerary for which S is the set

of ancillary goods, our model offers a relevant bundle of products from S. We are

interested in cases where S contains inventory-constrained products that we leverage

to maximize expected long-run profitability by accounting for future demand. There-

fore, we consider a finite selling horizon with a fixed number of periods T with no

replenishments.
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A B C D Bundle A,B,C

$16.99 $7.99 $9.99 $11.99 Total Price:
$14.97

Your 20% Discount Offer:
$27.98

Figure 2-1: This is an example of a personalized bundle recommendation when a
consumer is shopping online and is offered the set A, B and C at a 20% discount,
otherwise they can choose from any combination of A, B, C and D at full price.

Each arriving consumer is uniquely described by a combination of categorical and

continuous features related to preferences, demographics, purchase history, loyalty,

and online shopping context. Thus, we do not consider a discrete set of consumer

types as is traditionally done in segmentation and instead assume that there is an

infinite set of continuous consumer types. Furthermore, since we address a bi-level

pricing problem, we index consumers within a given period t by (k, t), where k

1, ... , Kt and the total number of arrivals Kt in each period can differ. We define the

full price of item i in period t as pt; thus, the full price psk, of a bundle Sk,t offered

to consumer (k, t) is defined by,

Sk '~jCkt (2.1)

The full prices pt are not necessarily fixed throughout the horizon and may follow

some dynamic trajectory, summarized in each period by vector pt = [pt, pt, -- , t]

We thus define price vector,

P~k,t [Pt, PSk,tl APi A, "' I Pfl ~J 22

in which we append the discounted price of the personalized bundle for consumer

(k, t) to the vector of full price settings for period t. It is common in business practice

for sellers to consider discrete price ladders. Therefore, we make the assumption that

we have a fixed set of price levels for every product i from which we can choose
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to construct bundle offers. We define the individual consumer propensity-to-buy

(s ) as the probability that consumer (k, t) will purchase the combination of

products S : S ? Sk,t (and nothing else) at their full prices if their personalized

bundle Sk,t is offered at price PSk, .We similarly define the probability that consumer

(k, t) will purchase only the bundle Sk,t (and no other products) when it is offered

at the discounted price Ps , as 0 (Ps,,)- We will refer to est as the bundle unit

vector that takes the value 1 for all i E Sk,t and 0 otherwise. Finally, we define Ikt

as the vector of inventory levels of all i E S at the time when consumer (k, t) arrives,

written explicitly as Ikt - [k 1 ',. , Ik'']. This leads to the following decision

variables for any given consumer (k, t): the optimal bundle to recommend Sk,t E 5,

and, its personalized price PSk,t < PSk, . For convenience, we summarize the notation

in Table A.1 in Appendix A.1.

2.2.1 Dynamic Programming Formulation

We formulate this personalized bundle offer problem ideally as a dynamic program, as

is traditional in the revenue management literature. This results in a complex model

that is difficult to solve, as we discuss below in Section 2.2.2. This DP approach leads

us to the following formulation (2.3), defined by {Dynamic}v(k,t):

maximize Vkt(Ik')
Sk,tCS, PSk,, 7

subject to Vkt(Ikt) = Zsc (Pskt) - Ps

+ (Psk,, - PSkt) - {SkCs} + Vk+1,t(I - es)

VKt+1,t(I) = V1,t+1 (I) VKt, t = 1, ... , T

(1 - )Pskt < PSk,t < Psk,, V(k, t), Sk,t C S

We solve this problem for every consumer k = 1, ... , Kt who arrives within each

period t = 1, ... , T and connect the periods t through the forward-looking inventory
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cost-to-go functions V(.). Note that in addition to the offer for each consumer, the

full price trajectories A over all products in all periods are also decision variables

in this model. However we note here that unlike the consumer-level bundle offer

decisions, these prices are calculated periodically in an upper-level pricing problem

at the conclusion of each period t, then held fixed for that period and updated with

the most currently inventory for period t + 1.

The objective function consists of several terms: the first term captures the prob-

ability d't(psk) with which a consumer (k, t) purchases some set of products S C 5,

, summed over all possible sets S (note that this captures the cases in which S is a

superset that encompasses the personalized offer Sk,t); the second set of terms account

for the expected revenue from consumers purchasing individual items at full price, as

well as from accepting the bundle offer (at which point the discounted bundle at full

price ps,,, is removed from the summation of pi). Note that we do not include the

probability of a "no-buy" because this is innately captured in the set of collections

of products S c S that also includes the null set 0, corresponding to the consumer's

decision to make no purchase. This is a complex dynamic programming problem be-

cause it relies on knowledge of future demand and inventory levels to utilize Vk+1,t(.)

in making bundle offers. The first constraint accounts for the recursive transition of

the inventory revenue-to-go function V(-) between periods and the second constraint

limits the depth of the bundle discount PSkt and ensures that the bundle offers re-

main attractive. This DP formulation is intractable for the online setting due to the

forward-looking nature of the functions V(-) and the need to calculate the full prices

pt for all products in all periods.

If we were given the full price trajectories pt for every i, along with the values

for the functions V(-) at all possible inventory levels and bundle combinations, then

solving formulation (2.3) would be an enumeration over all the discrete prices and

bundle combinations. We remark that even if provided with all of these values,

this enumeration problem could potentially suffer from the curse of dimensionality.

However, appropriate limitations to ensure a small size of 5 would reasonably bound

the number of bundle combinations and thus make this problem tractable. Therefore,
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if we were provided with the full price trajectories pt and all the precise values of V(-)

(which become 0 in the absence of inventory constraints), we could use the above

model to make optimal individually tailored offers of bundles Sk,t at prices ps,, for

each consumer in a tractable manner.

2.2.2 Challenges

While we are interested in optimally solving {Dynamic}v(k,t) for every consumer in

real-time, realistically the consumer arrival sequence, full price trajectories, and values

of V(-) are unknown. This results in three fairly sizable challenges: (i) how to estimate

a personalized propensity-to-buy, (ii) how to determine the upper-level prices pt and

align them with offers (Sk,t,Pskt), and, (iii) how to estimate the values of V(-) while

maintaining tractability in an online setting.

Developing a personalized bundle recommendation at an individually tailored price

requires the most granular possible estimate of a consumer's propensity-to-buy. Tradi-

tional methods lack distinctive information that distinguishes a customer from others

in their segment. Therefore, to address (i), we use machine learning methods to fit

high-dimensional models that capture all of these features through covariates as de-

scribed in detail in Chapter 3. Considering an inventory-constrained problem with a

finite horizon, results in challenge (ii) of determining and incorporating an upper-level

pricing strategy into our model that alters the full prices of individual products over

time. Thus, we propose a method (described in Section 2.3.1) for determining these

price trajectories within our problem framework as follows: at the beginning of each

t we calculate the full prices pt across all products i and fix them for the duration of

that period, after which we update them at the beginning of the next period t + 1 us-

ing current inventory levels after consumer demand is realized. This rolling approach

coordinates the upper-level full price trajectories with the lower-level bundle offers

(which are based on the values of pi) made to individual consumers within a given

period. Finally, we address (iii) by developing various approximation approaches to

the forward-looking inventory balancing functions V(.). A common linear program-

ming approximation, in which we solved a series of LPs to estimate the values of V(.)
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at various inventory levels (as is commonly done in the revenue management liter-

ature, see [32]), runs far too slowly. Thus we propose two classes of approximation

algorithms in Section 2.3, multiplicative and additive methods, that are practically

tractable and therefore applicable in an online setting.

2.2.3 Clairvoyant Formulation

Before presenting any approximation algorithms, we first generalize the dynamic pro-

gramming problem to a "full-knowledge" model to establish a benchmark against

which we can compare any algorithm's performance. We assume that the entire con-

sumer arrival sequence {k, t} T is known in advance, as well as the full price

trajectories Pt for all products i in all periods t, which we assume are provided to

us by an oracle. In order to model this perfect information setting we propose the

following formulation that we refer to as the {Clairvoyant} problem:

maximize K Z n

k,t T K 1 Lsk 1C
Skit

+ cS4 t(PSkf) (PSkJ PSkt)) k y't

ET 1E~t Ok~ yk~t Ji VZ(2.4)
subject to T k= ESkC () Vk, (2 .4

ZSk,tC5Sk 1 k

yi > 0 V(k, t), Skit C5

The decision variables y 1 correspond to the probability with which bundle

Skit is offered at price Ps to consumer (k, t) when the full product prices are set

at pt. The discrete price setting allows us to relax these initially binary decisions to

continuous variables, resulting in the above linear programming formulation. For this

formulation we define the individual consumer propensity-to-buy t(pskt) as the

'We define y Sk as being dependent on both the bundle composition and price. However,

under discrete pricing, we can enumerate the collection S of all bundles at all prices so each Skit is
inherently defined by its corresponding price. Thus for ease of notation we neglect the additional
subscript of ps,# and write the summations over VSk,t C S.
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probability that consumer (k, t) will purchase item i if their personalized bundle Sk,t

is offered at price Ps,,,. Unlike the prior exclusive definitions of (-) for formulation

(2.3), these propensities-to-buy are defined as follows: O5k'(ps ) captures all of the

combinations in which product i can be purchased when only the bundle offer is

discounted and all other products remain at full price p'. For example, if consumer

(k, t) is offered bundle Sk,t at price PSk,, we can define the probability they purchase

product i in some combination of other products S at full price as s (Ps, PSk,t)- Thus

the complete probability of (k, t) purchasing i is given by,

(ps,) =Zscssi ds ,(p s) (2.5)

We similarly define the probability 4t (Psk,) with which a personalized bundle Sk,t

is purchased as,

/4's{(Psk,t) ZSCs:SDSk, isPst) (2.6)

Note that the above probability includes the scenarios in which the consumer

purchases full-priced items in addition to the bundle Sk,t, meaning that their purchase

set S contains Skt. Thus, formulation (2.4) is the offline version of formulation (2.3)

in which the entire sample path of consumer arrivals and full price trajectories are

both known before the start of the horizon. Therefore, the objective function is

an expectation of the total revenue taken over the consumer purchase decisions for

a specific known sample path {k, t} ' T',gt, and is thus an upper bound on the

expected revenue of any online algorithm. Notice that this problem is also subject to

inventory constraints defined through initial stock levels hI for all products i = 1, ... , n,

because it allocates bundle offers according to expected consumer behavior over the

entire horizon. By definition of the Clairvoyant, this problem eliminates the need for

forward-looking inventory functions because it identifies the optimal bundle Sk,t for

every consumer (k, t) utilizing its full knowledge of all future arrivals. This benchmark

is not actually attainable because it relies on precise future knowledge that is never

available to any practical online model. However, since this formulation provides an

upper bound on the expected profit for our setting, we will use its objective value
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{Clairvoyant} as an "optimal" best-case benchmark against which we measure the

performance of all proposed algorithms.

2.3 Approximation Algorithms

The primary source of complexity in our model stems from the calculation of the

expected future revenue as a function of the inventory levels. Therefore, our main goal

in this section is to develop methods that approximate the V(.) terms in formulation

(2.3). We also aim to address the second challenge that arises from the consideration

of products with limited stock, which is the incorporation of inventory-based dynamic

pricing strategies that optimize the full product prices Pl over the course of the selling

horizon. Thus, we also aim to develop approximation algorithms within a framework

that aligns: (i) the bundle offer pricing in our lower-level recommendation system for

individual consumers within each period t, with, (ii) the global upper-level full price

trajectories.

2.3.1 Multiplicative Approximation Algorithm

We first consider the following approach to our lower-level bundle recommendation

problem, which incorporates the value of inventory through a multiplicative penalty

on the bundle terms from the objective function of {Dynamic}v(k,t). This multiplica-

tive penalty can be viewed as an approximation to the negative counterpart of the

dual variables corresponding to the inventory constraints in formulation (2.4) of the

Clairvoyant problem. Using this multiplicative approach allows us to maintain the

previous trade-offs captured in the objective function of the DP problem in formula-

tion (2.3), but include inventory balancing through a tractable calculation that does

not require demand forecasting. In formulation (2.7) we present the general formu-

lation for this multiplicative approximation algorithm, denoted by {MultAlg}v(kjt),

which requires the full price trajectories pt as inputs (the procedure for computing
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the values of Pi is below).

{MultAlg}v(k,t)= maximize '(Psk, ) -A -
Sk,tCS, PSkt Li/

+ Os'lt (Psk,t) - (Psk,t - si,,) -

subject to (1 - E)pskI, < Psk,, PSk,, V(k, t), Sk,t E S

The above formulation has a similar structure to the objective function of {Clairvoyant}

However, the key difference between this algorithm and formulation (2.4) lies in the

use of the multiplicative inventory penalty V)(.) to determine bundle composition and

pricing using an approach that requires no estimation of future consumer behavior,

as was previously the case in the use of the V(-) functions in formulation (2.3). This

penalty 0(.) is a twice-differentiable, monotone increasing, concave function on the

interval [0, 11 and takes as input the fraction of remaining inventory Ikt/Ip at the time

of arrival of consumer (k, t). We consider several different forms for this function in-

cluding linear, 4'(x) = x; polynomial, 4'(x) = VY; and exponential, 4'(x) = (1 - e-x).

In this work we consider the joint problem of bundle composition and pricing, and

therefore introduce the minimization of V)(-) over all i in bundle Sk,t, which penalizes

bundles composed of items with low stock and instead promotes products with excess

inventory. We also introduce a corresponding set of 0(.) functions to the individual

product purchases to approximately account for the corresponding V(.) functions that

would influence those terms in the original dynamic programming formulation. 2 By

avoiding any demand forecasting, this approach reduces the recommendation prob-

lem to an enumeration over all possible bundles and prices, which is typically small

in scale given limitations on the size of S. However, note that the choice of func-

tional form for the multiplicative penalty is important to the implementation of this

algorithm. We show in Section 3.4 that a choice of polynomial 0(.), which is often

2 1f we directly replaced each V(.) term from the DP in formulation (2.3) with a minimization
over @(-) we would get: LscY(Psk ) _(Zgs) -m /(I''/ip) instead of the first term in

formulation (2.7). However, we instead consider a good upper bound on this term without the
minimization, which provides us with this approximation algorithm.
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a good approach when approximating a function whose true form is unknown, may

result in lower empirical performance on the order of up to 6% when compared to the

performance of a more sophisticated exponential 0(-), relative to the full-knowledge

Clairvoyant strategy. Nevertheless, we also find that our results are fairly robust to

the choice of V)(.) and still capture 81% of the expected profit of the full-knowledge

approach, even in the most inventory-constrained cases.

We further improve on this algorithm by introducing a rolling extension that aug-

ments formulation (2.7) to use V (ii,/max{If - 1, i}) instead of 1, (I't/IO for all

consumers k = 1, ... , K' arriving during period t. This periodic approach increasingly

emphasizes the difference between products with highly depleted stock and those with

great excess as the horizon progresses. Note that we use It - 1 as opposed to I'. In-

tuitively, if we set the denominator of V(.) to It at the start of each period t, the

inventory levels of all available products initialize to 100% and become equivalent in

terms of )(-) for first-arriving consumers (k = 1, t). Therefore, subtracting one unit

consistently differentiates the fractions I 1 /max{I, - 1, 1}. This extension is equally

tractable and has improved empirical performance over the approach in formulation

(2.7), as shown in Section 3.4.

Calculating Upper-Level Full Price Trajectories

To address our second challenge of aligning upper and lower level pricing strategies,

note that the multiplicative algorithm only requires individual full product prices p'

to make bundle offers. Due to lack of demand forecasting, formulation (2.7) cannot

adequately calculate these full price trajectories. Thus, we propose an upper-level

method for calculating the time-dependent full price trajectories, denoted by Pt as

they are now estimated quantities, using following formulation:

T n

max EED (f t) -Pt
Vt t=1 =1 

(2.8)
T' '

subject to ED'( t ) < Io Vi
td1

We define D'(ftt) as the expected demand for product i during period t based on
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all current product prices p', which can be calculated using expected future con-

sumer arrival rates based on historical transactions. Based on the prior definition of

Oi' (ps,,) from equation (2.5), D'(Pt) is the expected aggregate demand for product i

and incorporates all combinations S in which i is purchased along with other products

at full price. Thus, formulation (2.8) is a tractable linear programming problem, as

shown in [32]. As is commonly done in practice, we implement this using a rolling

approach by periodically re-solving the above LP at the beginning of each period t

using updated inventory levels. The output of this upper-level problem provides us

with a set of full price trajectories pt for all products i in all periods t. By holding

these fixed for the duration of a given period t, we can now easily solve the lower-level

bundle recommendation problem using the multiplicative algorithm.

Performance Ratios of the Multiplicative Approximation Algorithm

The strength of the multiplicative approximation algorithm lies in the fact that it

only assumes broad conditions on the structure of 0(-) and 0(-). This eliminates

the need for demand forecasting and is thus applicable to the majority of possible

demand groups S and models 0(-). However, note that the full price trajectories

utilized by our algorithm from the upper-level problem may differ significantly from

those selected by the full-knowledge Clairvoyant strategy. Therefore, we define:

a = i, t, where Pt are full price trajectories chosen by formulation (2.8), and,

S= piVi, t, where pt are optimal price trajectories provided by an oracle to the

Clairvoyant in formulation (2.4).

In this multi-period setting, for a given sample path {k, t} we show the..................... ...,Kt

following result.

Theorem 1. Given a fixed adversarial sequence of consumer arrivals (k, t) and time-

dependent trajectories of full product prices Pt from formulation (2.8) defined through

at for all products i and periods t, the worst-case competitive ratio of our multiplicative

algorithm {MultAlg}v(kt) relative to the full-knowledge strategy of { Clairvoyant} when
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choosing personalized bundle composition and prices as well as the global full prices

p' is bounded by,

1 > {MultAlg}v(kt)
{ Clairvoyant}

Y-:T I EKKI R k,t 1 Ex-T Mt

mm i~maa ~1
. 7Lt=i Lk= min "TL_

Min1X:-<1 IJAU+ 1a b(y)dy + 1 - b (x) -:~~

The bound parameters are explicitly defined as follows: I0 is the minimum initial

inventory level across all products i E S, defined by I = min I%, I9 is similarly
i=1 ... n

the maximum across all initial inventory levels, R , is the minimum of the product of

propensity-to-buy k 't(psk,) with the nominal price discount level at across all i c S

for consumer (k, t), defined by R = min q't(ps,) c4, Mt is defined as the

maximum revenue loss from bundle discounting in period t that is defined explicitly

in Proposition 4 of Appendix A.2 as Mt max Z= 1 ZiESk, ', t (Psk,,) t Pt
Sk, CS,dskt

(1 - dsk,,), where dsk,, is the bundle discount price ratio PSk,t/PSkt-

The proof of this theorem is provided in detail in Appendix A.2. Notice that

if we were to remove pricing from formulation (2.7) the resulting problem would

identify the most relevant bundle of products to offer, while still allowing consumers

to purchase any other combination S $ Skt of products where all products (including

the bundle Skt) are at full price. Similarly, if we were to remove bundling but continue

pricing, the problem would reduce to identifying the best single-item discount offer

from among products i E 5, while allowing the consumer to purchase any other

products at their full price. Thus in the combined setting in which both bundling

and pricing are removed from the problem, the above bound reduces to the result in

1121. We empirically evaluate the performance of this ratio in realistic scenarios by

using actual data from our case studies to generate the results in Figure 2-2 below.

Notice that this bound depends on the choice of the inventory penalty V(-) and

will vary depending on its functional form. Furthermore, the initial stock levels Ifl

dictate the extent to which the problem is constrained by inventory, and thus the

extremity of the lower bound. Remark that the larger the gap between Imo and I',ax

the more conservative the lower bound, as shown in Figure 2-2. Intuitively, a less
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Figure 2-2: This plot shows
the empirical value of the
bound as a function of the ra-
tio between lowest initial in-

ventory I'. and the highest
level setting I2 across all
products, when all else is held

o0.1 0.20 0 4 0o 1s . constant.

inventory-constrained problem with higher initial inventory settings will result in a

significantly tighter bound as there is inherently less error in the multiplicative ap-

proach relative to the full-knowledge strategy due to the fact that the consideration of

future consumer behavior becomes less critical. Overall, we find that more inventory-

constrained instances with limited discounting opportunity due to initially low full

price settings generate the most extremely conservative values of the above bound.

However, as we demonstrate in Table 3.8 in Section 3.4, the empirical performance of

the bound on the multiplicative algorithm on actual data falls within 7% of its actual

performance relative to a full-knowledge strategy across all possible inventory cases.

We conduct an in-depth computational analysis with various functional forms for

this multiplicative penalty algorithm, the results of which are summarized in Table

3.5 in Section 2.3.2 and Table 3.6 in Section 3.4 using real industry data from our

case studies. We find that the empirically best multiplicative algorithm utilizes an

exponential form for the penalty function and obtains 70% of the expected revenue

achieved by the full-knowledge strategy in highly constrained inventory cases, which

improves to 97% in the less constrained cases. We will refer to this approach as the

exponential multiplicative penalty algorithm (EMPA) for the remainder of the work.

By implementing the rolling version of the EMPA, we can improve these results to

72% and 97.4%, respectively.

2.3.2 Additive Approximation Methods

The multiplicative algorithm provides a tractable approach with analytical guaran-

tees that does not need to account for demand forecasting. Therefore, in this section
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we develop a second class of approximation algorithms to use as benchmarks in or-

der to evaluate the empirical value of considering future consumer behavior. Based

on well-known methods from the DP literature such as problem decomposition and

Lagrangian relaxation, for example as presented in [14], we construct two additive

approaches to approximating the inventory functions V(.) in the lower-level bundle

pricing and selection problem. In Section 3.4 we show that on average the multi-

plicative algorithm empirically performs within 1-6% of these additive approxima-

tions when compared to the full-information benchmark. Thus, the multiplicative

approach provides a much easier implementation method at a very marginal cost in

terms of expected revenue.

Separable Item Additive Algorithm (SIAA)

We aim to estimate the functions V(-) efficiently by decomposing the expected future

revenue function V(I) of a given inventory state I into the sum of the expected future

revenues fj(Ii) for each of the items in demand group S. Thus, we propose the

following separable-by-item approximation:

Vk+l,t (I) fk+1,t (Ii), where,
i ES

fik+1,t(J.) = T . min{6DT (P), C[}, and, (2.9)

Ci {C- - 6rTDT(pr)}+, initialized at Cf = Ii.

The values of Dt(p') and Pt in this expression are provided by output of the periodi-

cally re-solved upper-level LP problem defined by formulation (2.8) in Section 2.3.1.

We define Yf as the fraction of time remaining in the period t during which consumer

(k, t) arrives, implying that 6= 1 for all periods T after the current one. Each of

the terms in fk+1,t(J) from the second line of equation (2.9) considers the minimum

between the expected demand for product i in that period and its expected available

inventory. We capture this by defining inventory levels C[ recursively for all periods

T after the current one and initializing the inventory level at Ih. Thus equation (2.9)
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provides us with an estimate of expected revenue fik+1,t(I) from product i over the

remainder of the horizon given current inventory Ii. Leveraging this estimation for

every product i in the approximation approach from the first line of equation (2.9), we

develop a tractable algorithm that depends only on current inventory levels and fixed

quantities that are known entirely in advance. We define this method as the SIAA,

Separable-Item Additive Algorithm, which allows us to provide each individual cus-

tomer with a personalized bundle offer in real-time at significantly less computational

cost than the original dynamic programming formulation.

Additive Lagrangian Algorithm (ALA)

Based on the above framework we now propose a more sophisticated approach, which

we refer to as the Additive Lagrangian Heuristic (ALA). If we consider the SIAA

more closely, we observe that the separable-by-item decomposition omits any terms

related to the expected revenue from bundle purchases at possible bundle discounts.

Therefore, we construct a second additive algorithm that incorporates these additional

terms. Recalling the approximation framework from equation (2.9), we propose the

following extension to include bundle purchases:

Vk+l,t(I) Y f 1 ,t (I), where,
sc5

T

f~k 1~t(I) r3js -min {FD'(p'), min {CJ , and, (2.10)
T~-t

C> {CV1 - D"(P's) }
(Sc :SEai

The extension here is the additional consideration of bundle terms at bundle prices,

as captured by f 1t(I). Instead of solving the LP problem from formulation (2.8),

which only outputs single-item trajectories and demand, we formulate an extension

in which pt are also decision variables. To improve tractability, we further relax this

problem by introducing the inventory constraints into the objective function using

Lagrange multipliers and ultimately obtain an LP formulation extension of (2.8) that
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provides the distinct sets of trajectories p', for individual products i, and p', for

combinations S. (In this extended setting Ds(pt ) is the bundle demand exclusively

for bundle S.) Thus for any consumer we can generate an estimate of the cost-to-

go Vk+1,t(I) using equation (2.10), which includes the expected revenue from both

individual items and bundle purchases, accounting for the additional revenue not

captured by the SIAA due to bundle discounts. This approximation is similarly

tractable and in Section 3.4 we show that the ALA achieves empirical results on

the order of up to 5% higher than the SIAA in average expected revenue relative

to the full-knowledge strategy. Ultimately, these additive approximations provide

empirically strong benchmarks against which we can measure the performance of the

multiplicative algorithm as opposed to comparing only to the Clairvoyant strategy,

which is unattainable in realistic business practice.

2.4 Conclusions

As demonstrated by leading market forecasts, the online channel stands to inherit a

significant proportion of the retail market, and is also a rapidly growing avenue of

business for many other industries offering personalized experiences such as travel

and styling. Gaining the competitive edge this sector is of utmost importance to any

participating firm's success. By leveraging personalized consumer information and

making relevant offer recommendations, online sellers can develop a loyal customer

following and drastically increase their future sales. Furthermore, personalized bundle

pricing not only incentivizes consumers to purchase more, but also increases their

overall satisfaction with the shopping experience.

We present a novel modeling approach for personalized bundle selection, pricing

and recommendation in real-time in an online setting. By incorporating individu-

alized estimates of consumer propensity-to-buy with a long-term profit maximizing

framework that capture inventory management, we develop a new analytical problem

structure that simultaneously addresses several relevant fields in the existing liter-

ature. We develop practical approaches for tractable implementation of our model
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through two classes of inventory balancing approximation algorithms, for which we

provide analytical performance guarantees and present corresponding empirical re-

sults from two in-depth industry case studies in Chapter 3.
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Chapter 3

Industry Driven Case Studies

3.1 Introduction

To test the performance of our proposed algorithms we conducted two extensive case

studies using data sets from large industry partners. In what follows, we present a

summary of our computational results:

1. Airline Data Case Study: We analyzed online ticket transactions from a premier

airline with a set of ancillary goods (examples may include in-flight wifi access,

priority boarding or seat upgrades) offered in addition to the ticket itself. We

found that our models generated an increase in revenue and sales on the order

of 3-7% when compared to existing methods.

2. Retail Data Case Study: We analyzed data from a two year selling horizon of

a large online e-tailer. By benchmarking against actual pricing strategies used

by the e-tailer, we observed an improvement in revenue on the order of up to

10%.

Given that both of these industries operate on very tight margins, these results

are very promising for practical business implementation. We also extract innovative

business insights in both cases that could help sellers in both industries make strategic

pricing and recommendation decisions. We conclude with an in-depth comparison of
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the two classes of approximation algorithms in Section 3.4 to demonstrate the trade-

off between approximation accuracy and tractability.

3.2 Airline Case Study

The increasing trend in online shopping is not only limited to tangible consumer goods

and products. The travel industry, which encompasses a vast variety of consumer ser-

vices such as airlines, cruise lines and hospitality, has undergone massive expansion

over the past ten years alone. According to the International Air Transport Associa-

tion (IATA), the airline industry (when measured by revenue) has doubled over the

past decade from $369B in 2004 to approximately $746B in 2014. As a direct result of

this, travel products such as airline tickets are becoming commoditized. Travelers are

unwilling to pay premiums for these generic services and therefore airline businesses

are forced to price very competitively and operate on razor-thin margins. However,

despite this commoditization, consumers are increasingly willing to pay for unique

experiences, which airlines have begun providing in the form of un-bundled ancillary

services that were not previously provided. These ancillary goods are offered to con-

sumers in addition to their ticket and include products to customize their journey

before, during and after the flight such as: seat selection and upgrades, VIP lounge

access, priority boarding, in-flight wi-fi access, priority baggage handling and vari-

ous destination-related services such as transportation or tickets to local attractions.

Personalization solutions for offering these ancillary services to potential passengers

can greatly increase traveler intimacy during their journey and improve their satisfac-

tion with the airline. Therefore, in the context of the airline industry, our modeling

goal translates to offering relevant personalized offers consisting of ancillary goods

that complement the ticket itinerary the customer is considering. As airlines employ

various revenue management methods for setting their ticket prices, we consider the

ticket price to be fixed at a nominal value and aim to bundle and discount ancillary

goods that will customize and improve the journey for the traveler.
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3.2.1 Overview of Data

We analyzed a one-month period of ticket transactions from a premier international

airline. This corresponds to approximately 640,000 historical ticket sales, in addi-

tion to ancillary item purchases that were linked to each transaction. Each of these

ticket transactions corresponds to the arrival and purchase behavior of a specific con-

sumer. As this is a particularly short window of time, we do not have any repeat

consumers and thus no details regarding the contexts of previous flight itineraries for

any given consumer. Every consumer transaction is described by a set of features

that we categorized into the following two types: (i) personal consumer information

including airline tier level, mileage balance, miles to next tier, time since joining re-

wards program, and the number of previous business and economy flights taken; and,

(ii) contextual itinerary booking data, which includes the transaction date, fare paid

(USD), connection time, time to departure (in weeks), day of travel (of the week), and

the number of passengers in the booking. We also had the corresponding purchase

history for some of the following ancillary goods: in-flight wi-fi access, premium on-

board entertainment, priority security, priority boarding, priority baggage handling,

seat upgrades, checked excess baggage, VIP lounge access, gourmet in-flight meals,

and, offers of 2,000 and 4,000 bonus miles. The nominal prices at which these un-

bundled services were offered are summarized in Table 3.1 below. Note also that in

this case study, the products are by definition independent of one another since they

correspond to very different services which are not necessarily categorized as purely

substitutable or complementary.

Given all of this personalized information that captures both individual consumer

features as well as context features that describe their itinerary of interest, our goal

is to implement our proposed model through the presented approximation algorithms

to make a personalized bundle offer consisting of relevant ancillary services for ev-

ery consumer in this historical arrival sequence. We achieve this by first analyzing

the personalized consumer information to develop consumer profile clusters, which

we then leverage to estimate individualized models of propensity-to-buy for each
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Ancillary Good Nominal Price

In-Flight Wi-Fi Access $25

Premium Entertainment $20

Priority Security $20

Priority Boarding $10

Priority Baggage Handling $25

Comfort Seating Upgrade $50

Excess Checked Baggage $45

VIP Lounge Access $50

In-Flight Gourmet Meals $15

2,000 Bonus Miles $100

4,000 Bonus Miles $200

Table 3.1: This table summarizes the nominal prices at which each of the ancillary

goods are typically offered. Remark that by definition these services are independent
of one another and priced separately.

consumer. By dynamically using these estimates, we implement our approximation

algorithms through simulations on the actual consumer arrival sequence and evaluate

the empirical performance of our methods relative to the full-knowledge Clairvoy-

ant recommendation strategy. We present results that demonstrate the effects of

personalized pricing, product recommendation and inventory balancing, while also

developing practical business insights.

3.2.2 Developing Consumer Profiles

In order to ultimately construct personalized models of propensity-to-buy for indi-

vidual consumers, we first analyzed the features in the available data. We used

the k-means clustering method to develop distinct categories of consumer profiles in

order to map the transactions for our demand model estimations. We ultimately

established 7 unique consumer profiles that ranged from premium business travelers

to leisure individuals; the distribution of consumers across these clusters is shown

in Figure 3-1 below. These clusters were constructed using a combination of per-

sonalized consumer features and flight itinerary context features. For example, the

premium business traveler cluster was identified by features such as: single passen-
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ger, short time until departure, departure on a week day, higher tier level and miles

balance, higher fare paid, and, a history of previous premium flights. By contrast, a

leisure individual traveler profile corresponded to: single passenger, lower tier level,

longer time before departure, and, a departure on a Thursday, Friday or Saturday.

Notice that because this is a premier global airline, there is a reasonable fraction

BusTravPrem,
1.30% BusTravEcon,

10.88%

SingleTravHigh
End, 29.38%

Family, 19.69%

SingleTrav Leisure
11.78%

CoupleL sure,

Couple _-HighEnd,

11.29%

Figure 3-1: This chart shows the distribution of consumers across various persona
profile clusters.

of consumers that constitute both business and high end leisure travelers. Having

developed these clusters, we were able to automatically identify and map consumers

upon arrival to one of these distinct categories. These clusters allow us to identify

both consumer profile and relevant itinerary context, which are both necessary for

estimating the desired individualized propensity-to-buy models.

3.2.3 Demand Estimation

After developing a consumer to persona profile mapping using the above clustering

method, we then needed to estimate individualized models of consumer propensity-

to-buy. We accomplished this by fitting a model for every (persona profile, product)

pair. Note that the independence property between products is crucial in this case

study as it allowed us to define the purchase probability of any bundle Os(.) as the

product of the purchase probabilities Oj(-) of all the products i in that bundle S; this
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greatly eased our estimation problem since we did not have to additionally capture

and estimate a complicated relationship between the ancillary services.

Instead of constructing segment-level estimation models in which every consumer

profile has the same fixed propensity-to-buy for any given product, we built a com-

plete set of models for all (persona, product) pairs. Thus, when any consumer arrives,

they are mapped to a particular distinct profile for which there is a set of personal-

ized estimated demand models that are then populated with this consumer's unique

feature vectors to produce their individual propensity-to-buy for any given ancillary

product. This estimate of propensity-to-buy is therefore unique for every consumer as

they consider any one of the ancillary services. These individual-level models for con-

sumer propensity-to-buy were estimated using logistic regressions on (persona profile,

product) pairs, which ultimately produced an exhaustive set of logistic MNL models.

These estimated models had an out of sample weighted mean absolute percent error

(WMAPE) of 0.12 on average across persona profiles.

3.2.4 Simulation Design

Having developed consumer profile mappings based on clustering and estimated per-

sonalized models of propensity-to-buy for all consumers, we design a simulation and

corresponding benchmark methods in order to test our bundle recommendation model

and observe the effects of personalized pricing, product recommendation and inven-

tory management on expected revenues. To this end, we consider two simulation

settings: (1) making bundle offers in the context of unconstrained inventory as is

provided in the data set, and, (2) injecting inventory constraints by considering rea-

sonable choices of ancillary services that would have restricted quantities. We now

describe our simulation design in detail, which is primarily the same in implementa-

tion across both settings but varies regarding benchmark methods and the analysis

of the results.

Our goal is to observe the effect of making personalized bundle recommendations

to the consumers in this airline data set. Therefore, we take the known consumer
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arrival sequence as given and iterate over these arrivals, making a personalized offer

to each traveler. More specifically, as we consider each consumer in the sequence, our

offline clustering approach automatically maps this traveler to one of the 7 persona

profiles. Having identified this consumer's profile, the recommendation model solving

the lower-level bundle offer problem now uses the corresponding set of individual-

ized demand models for all available ancillary products to decide which bundle is

optimal. Note that because we are considered the unconstrained inventory setting,

there is no need for any estimation of the functions V(.). Thus, our model reduces to

the selection of the profit-maximizing bundle for this specific customer based on their

personalized propensities-to-buy for all of the products (which can be easily combined

due to product independence to generate the bundle purchase probabilities). Having

identified the optimal bundle composition and price, our model proposes this recom-

mendation to the traveler, who may choose to accept the bundle offer, purchase any

combination of the ancillary products at their nominal prices, or make no purchase

at all. We iterate this process over the entire arrival sequence thousands of times and

ultimately analyze the average performance ratios of our recommendation relative to

the Clairvoyant approach, which knows the entire arrival sequence in advance. Again

we would like to remark that in the absence inventory constraints, our model reduces

exactly to the Clairvoyant approach.

In the results under our first unconstrained setting we benchmarked our methods

against the current business practice in which no personalized pricing is offered. This

baseline benchmark is equivalent to a model that always offers all of the ancillary

products at their full prices, as provided in Table 3.1. Thus, our results show the

direct benefit of implementing personalized pricing techniques. We then extend these

preliminary findings to also consider other benchmarks corresponding to lost sales,

from which we develop the benefit of personalized recommendations strategies.

3.2.5 Results

The results are organized according to the two settings described above. Under (1)

we analyze the effects of personalized bundle offers, then introduce the concept of

63



lost sales to further enhance the impact of relevant product recommendations when

consumers are unaware of the existence of ancillary products. We explain the design

of (2) but discuss results in Section 3.4.

Value of Personalized Bundle Offers and Business Insights

In the first setting our initial goal was to analyze the effects of personalized pricing

and the recommendation system. We considered a baseline method that offers all of

the ancillary products at their fixed full prices from Table 3.1 in Appendix ??. We

implemented our model and observed the average expected gain in revenue over the

baseline for all (persona, product) pairs, as summarized in Table 3.2 below. Fur-

thermore, in this simulation scenario our model produced bundle offer outputs in

2.5ms on average. Note that under unconstrained inventory there is no need for the

V(.) functions so our model reduces to the unconstrained Clairvoyant problem and

selects a personalized myopic profit-maximizing bundle for each customer. Thus, the

predicted improvements over the baseline are a direct result of personalized bundle

offers.

From Table 3.2 we observe that on average the predicted gains in revenue over

the baseline varied from 2% to 7% depending on the persona or ancillary product.

The overall largest predicted relative improvements in revenues are generated by con-

sumers with low price elasticities such as premium business and high end leisure

travelers. Small discounts targeted at these frequent high loyalty consumers result in

significantly more conversions and therefore the most expected revenue. By analyzing

the corresponding counterpart table of gains in sales volume across all (persona, prod-

uct) pairs relative to the baseline, we find product-dependent effects. High elasticity

personas such as families and lower end leisure travelers see the greatest expected gains

in sales volumes across cheaper travel convenience products such as priority security,

boarding, and baggage handling, as well as in-flight meals. Conversely, higher-end

personas have the highest predicted sales volume gains for more luxe products rele-

vant to frequent travelers, such as VIP lounge access and bonus miles. Intuitively,

cheaper products such as in-flight wi-fi have a relatively low elasticity and grow unan-

imously in predicted revenue across all persona types, particularly among personas
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Average Expected Lift in Revenue Over No-Pricing Baseline

Wi-fl Prem. Prior. Prior. Prior. Seat Ex. VIP In- 2,000 4,000 Total
Access Enter- Secur. Board Bag Up- Check Lounge Flight Bonus Bonus Avgtain. Handl. grade Bag. Access Meals Miles Miles

BusTrav 10.1% 3.2% - - - - - - - 8.6% 3.5% 2.3%PREM

BusTrav 5.3% 2.3% 1.4% 2.6% 4.4% 8.7% 2.1% 9.7% 3.6% 4.3% 2.5% 4.3%ECONI

Family 4.2% 2.5% 3.7% 4.0% 1.9% 3.7% 1.9% 5.2% 6.4% 3.9% 2.7% 3.6%
Group 1
LastMin 2.2% 5.0% 3.9% 2.5% 2.1% 3.1% 2.4% 4.3% 5.4% 4.5% 2.5% 3.4%
Group I__I

Couple 7.1% 4.2% 3.3% 2.1% 3.4% 2.5% 2.6% 3.3% 3.6% 4.5% 3.0% 3.6%Normal 7.1 4.% 33I.% 34 .% 26% 33 .% 45 .% 36
Couple 8.8% 7.3% 3.8% 2.1% 4.0% 5.3% 3.4% 2.9% 3.8% 7.4% 4.1% 4.8%

HighEnd I___ ______ _______ ___ ___ ___

Leis 6.5% 2.6% 2.4% 1.8% 2.6% 4.6% 3.6% 3.2% 3.8% 4.4% 2.8% 3.5%Normal 6.5 2.% 24I.% 26 .% 36% 32 .% 44 .% 35
Leis 9 8% 8.0% 2.8% 1.9% 3.8% 9.1% 4.3% 6.5% 3.7% 8.8% 5.3% 5.8%

HighEnd 11 __ 9-8 _ 1__ ___ 1___ __ _ ___ _ __ _ _ __ ___

Total 6.7% 4.4% 2.7% 2.1% 2.8% 4.6% 2.5% 4.4% 3.8% 5.8% 3.3% 3. %[Avg JJ_ I_ __ _ __ _ I_ ___ ___ __

Table 3.2: This table shows the lift in revenue from implementing our personalized
pricing and recommendation model over the baseline benchmark in which all products
are offered to all arriving consumers at full prices. (Note: some products are not
offered to premium business travelers because they are included in their tier level
benefits.)

with less price sensitivity that are easily converted with slightly discounted offers.

These insights provide potential marketing and pricing strategies that could improve

revenues and sales volume if used in the right combinations for (persona, product)

pairs.

Impact of Context on Personalization

We also assess our model's ability to distinguish between changes in personalized

consumer features and itinerary contexts by analyzing the differences in the average

offers made in the following two scenarios: (i) considering the same customer booking

two different itineraries, and, (ii) considering two different customers interested in the

same itinerary.

In scenario (i), due to lack of purchase history, we generate repeat consumers with

similar personal features but different ticket itinerary contexts. The resulting pair of

vectors has relatively constant personal features such as tier level and miles balance,

but itinerary features such as ticket fare, day of departure and time to departure
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vary. We find that our model recommends bundles with different compositions but

similar discounts. For example in one such simulation, it categorizes the first context

as a business trip and offers in-flight wi-fi and lounge access at a 5.2% discount,

while it recognizes the second trip as leisure and offers in-flight entertainment and

seat upgrades at a 6.1% discount. Since the personalized consumer features were

held constant, the consumer's price elasticities stayed relatively constant over time

and therefore the discount remained similar across this scenario. Thus, the primary

benefit in this setting comes from the model's ability to identify the significance of

itinerary context in the absence of major changes in personal features.

Under scenario (ii) we discover the converse effect. For example, we can compare

one customer of high tier level with historical premium flights to another passenger

with lower tier level traveling in a group. The first customer is offered in-flight wi-fi

and 2,000 bonus miles at a 1.8% discount, whereas the second customer is offered in-

flight meals and priority boarding at a 6.7% discount. The first customer has low price

elasticities across all products (on average below -1) and is recommended business-

related products, whereas the family traveler has much higher price elasticities (on

average between -2 and -3) and receives a greater discount on products convenient for

travel with a group. This demonstrates that the model not only identifies context-

relevant items but also maximizes expected profit through personalized pricing.

Value of Relevant Product Recommendations

We also objectively analyze the enhanced effect of product recommendation by in-

troducing a parameter a, which is defined as the proportion of consumers who are

unaware of the existence of ancillary products and hence do not consider them at all.

This is quite common in the travel industry, such as in cruise lines, where there is

often an abundance of products that are not explicitly offered to consumers during

their online browsing process resulting in loss of potentially interested consumers.

Notice that a = 0 corresponds to the setting in which all consumers are aware of all

ancillary products and there are no lost sales, which is precisely the previous setting

from Table 3.2. Thus, the results for any fixed setting across varying levels of a ex-

plicitly quantify the expected improvement from relevant product recommendations.
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We consider the same baseline method as before and implement our myopic profit

maximizing recommendation model without inventory constraints. We summarize

our predicted lifts in revenue over the baseline in Table 4.6 and note that in this ex-

panded setting with the lost sales included, our model still produced output in under

3ms.

Average Expected Lift in Revenue Over No-Pricing Baseline Method

a-level No Constraints 20% Max 15% Max 10% Max By Product "Bundle-Only"

a= 0 8.04% 6.11% 4.21% 3.51% 4.83% 4.15%

a = 0.05 9.48% 6.09% 5.27% 3.49% 6.18% 5.74%

a = 0.10 13.23% 6.23% 5.30% 3.80% 5.66% 6.05%

a 0.15 14.92% 7.74% 5.89% 3.66% 6.89% 6.24%

a = 0.20 18.83% 7.24% 6.64% 5.49% 7.94% 7.61%

Table 3.3: This table summarizes the lifts in revenue over the no-pricing benchmark
in various scenarios of lost sales (a) ranging from 0 to 20%. When we compare across
varying a levels we see the benefit of product recommendation, and as we compare
across a fixed a we see the expected improvement from personalized pricing.

Each of the columns in Table 4.6 corresponds to a simulation setting in which we

have imposed limitations on our recommendation model. For example, the column

"20% Max" corresponds to comparing our recommendation model to the baseline in

the case where no product in the bundle offer is discounted by more than 20%; this

definition similarly extends to the columns "No Constraints", "15% Max", and "10%

Max". In these scenarios we reasonably limit discounts for all products and observe

that the predicted improvement in revenue over the baseline is on the order of 3-8%

across all possible cases of lost sales, captured by the varying values of a. We found

a similar trend in the corresponding results for expected lifts in sales volume on the

order of 2-3%. The column "Discount by Item" imposes limitations depending on

the full prices of the products; for example, cheaper products are only discounted up

to 10%, but more expensive ones are discounted up to 15-20%. The "Bundle-Only"

column is the case where the consumer is offered an optimal bundle by our model,

but they can only purchase any other subset of the bundle at full price. This corre-

sponds to the realistic setting where there is a vast number of ancillary products and

the consumer only considers those displayed to them at checkout. Interestingly, the
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expected improvement in this case is comparable to the "15% Max" scenario because

a consumer's propensity-to-buy is typically highest for the set of products selected by

our model; therefore, disregarding the products outside this relevant bundle does not

heavily impact overall expected sales volume or revenue. Thus, we conclude that in

reasonable discount-limiting scenarios the expected gain in revenue from our person-

alized pricing strategy is on the order of 5-6%. By definition, higher a values indicate

that a greater proportion of the population is unaware of ancillary products. The

results in Table 4.6 are robust to changes in a and by analyzing the symmetric re-

sults for sales volume we observe that these trends are consistent across both metrics.

Therefore, the predicted improvements on the order of 2-3% over the baseline from

the lowest a = 0 level to the highest a = 0.2 level are a direct result of exposing

consumers to products of which they are otherwise unaware through personalized and

relevant product recommendations.

Value of Inventory

We lastly consider setting (2) to assess the validity of the approximation algorithms

presented in Section 2.3. While inventory is not inherent to this data set, we consider

a subset of ancillary products that would reasonably be limited such as VIP lounge

access, on-board wi-fi, gourmet meals, excess checked baggage and seat upgrades.

We introduce initial inventory levels at quantities that are proportional to the length

of the consumer arrival sequence. The simulation is identical to setting (1), except

that we consider an inventory-constrained problem across this smaller set of ancillary

products. Instead of solving a myopic personalized profit-maximizing problem, we

now solve our original DP problem using both classes of algorithms and observe the

average percentage of Clairvoyant revenue they obtain. However, we still do not solve

the upper-level problem of time-dependent full price trajectories due to the nature

of the data and current industry practice. We present our results and a detailed

discussion comparing the algorithms in Table 3.6 in Section 3.4.
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3.3 Retail Case Study

In this second case study we analyze data from a major U.S. e-tailer over the two year

sales period from July 2011 to September 2013. We were provided with point-of-sale

transaction data for electronic fulfillment orders across 312 departments which to-

taled approximately 13M customers and over 34M transactions. This data consisted

of order information defined through customer IDs, transaction IDs, SKU numbers,

fulfillment center codes, prices at time of purchase, costs at time of purchase, trans-

action types, and dates and times of purchases. In parallel we also analyzed the

corresponding inventory data for the same period across the electronic fulfillment

centers (EFCs) responsible for these online orders. The key to this case study lies

in the fact that the products are no longer inherently independent as in the airline

case, and inventory plays a significant role as we focus on considering seasonal goods

with impending periods of steep markdowns. We believe that the resulting computa-

tional study clearly demonstrates the continuously robust performance of our various

algorithms.

3.3.1 Overview of Data

We briefly summarize the available data and our modeling approaches regarding per-

sonalization demand estimation. While this point-of-sale data set provided a wealth of

time-series information in the form of consumer purchase histories, it severely lacked

in personalized features outside of customer IDs, which linked consecutive transac-

tions. In comparison to the airline case study data set, we did not have access to any

individualized consumer information outside of historical product purchase history.

Our ultimate goal, similar to the previous case study, was to simulate the perfor-

mance of our various algorithms against benchmark methods and observe the effects

of personalization, pricing and recommendations on the e-tailer's expected revenue.
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3.3.2 Developing Personalization Metrics

In order to adapt and test our algorithms in the setting of this case study, we first

needed to construct personalized consumer features that were not present innately in

the data. Given that our only distinctly individual identifying factors were customer

ID and transaction ID, we analyzed the data set and recorded each consumer's cu-

mulative number of visits at the time of each of their transactions, along with their

corresponding total cumulative expenditure up until that time. By considering the

behavior of these metrics across all consumers over the two year period, we developed

a time-dependent consumer loyalty mapping consisting of low, medium and high fre-

quency categories; this mapping allowed us to categorize a consumer at the time of

any of their transactions based on these two metrics. At the time of any consumer's

arrival, they would be mapped into one of the three resulting loyalty groups as fol-

lows: (i) low frequency consumers (loyalty group 1) had no previous purchase history

in this two-year selling period and accounted for 77% of all of the transactions in

the data set; (ii) medium frequency customers had made at least one previous pur-

chase, but had currently spent below the mean cumulative expenditure (across the

whole consumer population) at the time of their arrival and accounted for 17.5% of

all transactions; finally, (iii) high frequency customers also had at least one historical

transaction, but had spent over the mean cumulative expenditure amount at their

time of arrival and accounted for 5.4% of all transactions.

Note that consumers could change loyalty groups over time as they returned for

more purchases; every transaction mapped to a given consumer ID was assigned a

corresponding loyalty category flag, which was time-dependent and varied depending

on that consumer's progression in visits and expenditure. Thus, a returning consumer

in the data set was automatically mapped to the medium frequency loyalty group in

their second transaction since a prior purchase indicated that this was their second

shopping visit. In Figures 3-2 and 3-3 we see the time-series behavior of the middle and

high frequency consumer loyalty groups with respect to their cumulative expenditure
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over the two year selling horizon.

Figure 3-2: This plot shows the mean ex-Figure 3-3: This plot shows the mean
penditure for medium loyalty repeat cus-expenditure for high loyalty repeat cus-
tomers. tomers.

We mapped these loyalty groups to every transaction in this time series fashion,

as opposed to simply assigning every consumer just one general loyalty category, so

that our personalized demand estimation could learn only from past purchases as

it also would in a realistic setting. For example, the entirety of the data set may

indicate that a particular consumer ultimately reaches high frequency by the end of

the two year period; however, any dynamic recommendation model would not know

this during their first or second visit and must therefore only use an estimate of their

personalized propensity-to-buy that is based on the historical information known to

the model at that time, which would sort them into a low or medium category for

earlier transactions.

3.3.3 Choosing Demand Groups

Having established metrics for personalization, we next had to narrow our focus from

312 potential retail departments to select relevant and interesting demand groups

to analyze. We ultimately chose to consider seasonal home decor products because

their actual price trajectories, as determined by the e-tailer, included steep clearance

periods at the end of their respective selling seasons.

Even after selecting this particular department, we were faced with transactions

ranging over thousands of SKUs to choose from and initially shrank our consideration

set to only the top 500 products based on historical purchase frequency over our two

71



year period. We were then able to extract meaningful combinations of related prod-

ucts by utilizing association rule learning. This particular branch of machine learning

is a subset of collaborative filtering that is primarily used for finding groups of items

that are frequently purchased together and constructing probabilistic implications,

known as association rules, based on these historical transactions. This methodology

was originally applied in market basket analysis for advertising and shelf-space opti-

mization, particularly with point-of-sale data in supermarkets. Growing interest in

this field led to the development of many efficient algorithms, such as Apriori ([1]) and

FP-Growth (141), that allow for easy computation of frequent item sets. By leveraging

these computational approaches we were able to narrow our scope to a set of approx-

imately 25 demand groups, each of which consisted of a group of products united

by a common holiday or seasonal theme such as Valentine's Day, St. Patrick's Day,

Halloween, Patriotic, Autumnal, Western or Coastal. However, a more close analy-

sis of these demand groups demonstrated that many of them were interconnected in

historical purchases across this department; for example, in Figure 3-4, we see that

demand group (winter holiday themed) and demand group 2 (snow themed) are fairly

related. Therefore, in order to separate these products into more manageable sized

"seI~m "" Domndarc~

Figure 3-5: This visualization

Figure 3-4: This is a visualization of the focuses on the most frequent
joint historical transactions between mul- interactions between products

tiple demand groups. in demand group 1.

groups for analysis, we employed association rule learning algorithms again to assess

the strength of the connections between products. In both Figures 3-4 and 3-5 we

see that certain products (indicated by a darker connecting line) were purchased to-

gether significantly more frequently than others. Thus, by leveraging the outputs of

these machine learning algorithms we ultimately selected five distinct demand groups,
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based on these frequency of purchase thresholding policies, for our algorithm testing.

3.3.4 Demand Estimation

After extracting relevant and meaningful demand groups for analysis and prelim-

inarily preparing the data by developing personalized consumer features, we then

proceeded to estimate out individualized propensity-to-buy models. However, unlike

in the airline case study where we had a core and ancillary product structure, we did

not have any information regarding lost sales. Our data set consisted only of his-

torical consumer purchases, and therefore we did not have any records of consumers

arriving and choosing not to purchase specific items. Furthermore, the long-term

selling horizon we considered required consideration of time-dependent information

which we included in the form of loyalty values, holiday and seasonality flags, and

nominal price variations as decided by the e-tailer. For each consumer loyalty group

we then fit a set of demand models corresponding to each of the product demand

groups under consideration using the approach in [3]. The out of sample WMAPE in

this case study was approximately 0.40 when averaged across all loyalty and demand

group pairs. While this is significantly higher than in the airline case, we feel that

it is a reasonable result due to the lack of personalized consumer features for which

we developed our own metrics, as well as the lack of historical lost sales. Further-

more, the estimated coefficients across all of the models intuitively corresponded to

realistic consumer choice behaviors. For example, the coefficients related to promo-

tion periods and seasonality were all strongly positive, reinforcing the idea that peak

selling periods and popularity drive consumers to have a higher propensity-to-buy for

products. Conversely, steep clearance periods resulted in negative coefficients; this

result corresponds to the scenarios in which the prime life span of the seasonal good

has expired (for example the holiday has passed) and therefore consumer willingness-

to-pay drastically decreases. As in the airline case, this estimation method provided

us with a model for every consumer (loyalty group, demand group) pair, which we

could leverage dynamically in our simulation to make truly personalized bundle offers
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to every individual consumer using their particular loyalty features, as well as the

time-dependent context features such as holiday weeks or promotion periods.

3.3.5 Simulation Design

We designed a similar simulation to the airline case to test the efficacy of our proposed

algorithms relative to several benchmark pricing methods. For every demand group

under consideration, we simulated the historical arrival sequence of all consumers who

purchased products in that group during our two-year consideration period. For each

historical transaction we aimed to use the personalized propensity-to-buy models that

we estimated along with the historical inventory levels at the time of that consumer's

arrival in order to make them a personalized bundle offer. Having been presented with

this discounted offer the consumer could choose to accept it, choose to purchase any

combination of the products in the demand group at full price, or choose to purchase

nothing at all. By averaging over this consumer arrival sequence for each demand

group thousands of times, we ultimately measured two performance metrics: (i) the

average percentage of full-knowledge Clairvoyant profit achieved by each algorithm,

and (ii) the average conversion rate (percentage of offers that resulted in a purchase)

of each algorithm. Note that these averages were taken both over the arrival sequences

for each demand group, as well as over all five demand groups under consideration.

3.3.6 Results

Our empirical results are divided into two discussions: (1) the effects of personaliza-

tion and dynamic pricing, and, (2) the value of inventory balancing.

Value of Personalization and Dynamic Pricing & Business Insights

We initially considered the bundle recommendation problem in the unconstrained in-

ventory setting in order to objectively measure and emphasize the impact of personal-

ization and dynamic pricing on expected revenue, while implementing the upper-level

problem framework for determining the full prices of all products in all periods. To
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develop these results we introduce three relevant benchmarks: (i) the "actual" pric-

ing strategy that parallels the airline case and offers every product in the demand

group at its historical full price at the time of each consumer's arrival; (ii) a rolling

LP method that periodically re-optimizes the full prices for all products based on

segment-level expected future demand, then offers all products at these optimized

fixed prices in a given period t to all arriving consumers; and, (iii) an un-personalized

version of our myopic recommendation model that uses segment-level consumer fea-

tures to make bundle offers to each arrival. The results are presented as the average

expected percentage of Clairvoyant revenue attained by each pricing strategy and are

summarized in Table 3.4.

Effect of Personalization on Empirical Performance

Model Personalization Percent of Clairvoyant Revenue

Actual Historical Prices X 88.2%

Rolling LP Model X 95.5%

Segment-Level Dynamic Model X 96.8%

Personalized Dynamic Model / 98.5%

Table 3.4: This table summarizes the empirical performance of all the benchmarks for
the unconstrained setting in the retail case as a percentage of the expected Clairvoyant
revenue, averaged across all demand and loyalty groups.

Note that our model does not achieve 100% of the Clairvoyant profit due to

discrepancies in the pricing of the upper-level problem. The output of personalized

bundle offers was produced on average in approximately 3ms. We find that on average

employing a dynamic pricing strategy over a static approach, such as a rolling LP

benchmark, improves expected revenue by 1.3%. Furthermore, leveraging personalized

models of propensity-to-buy to make bundle offers increases the expected revenue by

an additional 1.7% over a generic segment-level strategy. The overall improvement

over the current pricing strategy is on average on the order of 10%, which is very

substantial in a thin-margin setting such as retail.

Our loyalty analysis shows that majority of online consumers in a product category

are one-stop shoppers (~40% within our selected demand groups). While these can

be potentially converted using recommendation systems, the real focus of online e-
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tailers should be on improving conversions of higher frequency customers. The results

from Table 3.4 present the objective benefit in expected revenue from personalized

dynamic pricing strategies. We found that higher loyalty consumers provided the

greatest expected lifts in revenue over the "actual" pricing benchmark within each

demand group. Furthermore, as shown in Figures 3-2 and 3-3 in Appendix ??, these

consumers spend substantially more than other customers and have a larger source

of historical data from which our model can develop more tailored bundle offers.

Furthermore, these consumers have lower price elasticities and by definition spend

significantly more across the selling horizon. Thus we conclude a similar result to the

airline case: on average, higher frequency consumers respond the most effectively to

personalized discounted prices, and thus should be the primary target audience for

recommendation systems aiming to raise expected revenues and conversions.

Value of Inventory

We now expand our results to the inventory-constrained setting inherent in the data

set in order to analyze the practicality and performance of our approximation algo-

rithms from Section 2.3 relative to benchmark methods and the Clairvoyant strategy.

The "actual" and rolling LP benchmarks remain the same in this setting. We ad-

ditionally introduce the myopic heuristic benchmark, which offers the personalized

myopically profit-maximizing bundle to each consumer as in the unconstrained case.

We consider two metrics of performance for each method: (i) the average expected

percentage of Clairvoyant revenue achieved across all loyalty and demand groups,

and, (ii) the average conversion rate. The resulting empirical performance ratios are

summarized in Table 3.5 below.

In this setting where we implemented our approximation algorithms that depended

on inventory levels, the output of personalized bundle recommendations was produced

on average in 15ms, which is still very efficient, as is necessary for implementation

in an online setting. These results show that on average all of the methods perform

relatively well: the ALA obtains 97% of the expected revenue achieved by the full-

knowledge strategy, the SIAA reaches 93% and the multiplicative algorithm reaches

91%. The 4% performance gap between the additive methods is precisely the esti-
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Constrained Inventory Results Across All Algorithms

Model Percent of Clairvoyant Profit Conversion Rate

Actual Historical Prices 83.2% 1.5%

Rolling LP Model 84.6% 3.1%

Myopic Heuristic 87.9% 4.2%

Exponential Multiplicative Algorithm 91.5% 6.0%

Separable-Item Algorithm (SIAA) 93.4% 6.6%

Lagrangian Algorithm (ALA) 97.5% 7.8%

Clairvoyant Model 100% 8.6%

Table 3.5: This table summarizes the empirical performance in expected revenue
of all the proposed algorithms for the retail case study as a percentage of the full-
information Clairvoyant revenue, averaged across all demand and loyalty groups.

mation difference accounted for by the additional bundle terms included in the ALA

at discounted prices. We also observe an average expected gain of 5.5% in revenue

over the myopic approach by accounting for inventory balancing and future demand

in the SIAA. Furthermore, the overall average improvement in expected revenue from

our best algorithm compared to the "actual" historical pricing strategy from the data

set is 14% across these demand groups. Note that the while the best multiplicative

algorithm (EMPA) is slightly outperformed by the additive methods in this highly

inventory-constrained setting with steep markdown periods, it still performs within

9% of the full-knowledge strategy and within 6% of the best additive approach. Fur-

thermore, the EMPA is significantly easier to implement and maintains a very close

empirical performance relative to the ALA even in this challenging setting. Note

that Table 3.5 illustrates the fact that the SIAA and ALA are empirically effective

benchmarks that perform well relative to the full-knowledge strategy, but are much

more reasonable for comparison to the EMPA because the Clairvoyant is not actually

attainable in any practical setting. Furthermore, as shown by the range of inventory

constrained cases above, these results demonstrate the significant benefit of inventory

management through personalized recommendations by bundling items at a lesser

discount ahead of the markdown period in order to preserve already narrow margins.
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3.4 Comparisons

We conclude by presenting comparisons between the relative performances of our

algorithms, as well as the empirical behavior of their analytical guarantees under

various inventory settings.

Comparison of Approximation Algorithms

The first set of comparisons, summarized using airline case data in Table 3.6 below,

show the expected percentage of Clairvoyant revenue achieved on average by each

algorithm. As described in Section 3.2.5, we introduce inventory constraints in the

airline data on ancillary products for which this is realistic: VIP lounge access, in-

flight wi-fi, gourmet meals, excess checked baggage and seat upgrades. Furthermore,

we implement the bi-level framework and also determine the full price trajectories of

all ancillary products, which are initialized at the values in Table 3.1. Each column

in Table 3.6 corresponds to the initial inventory level of the ancillary products as

a function of the total number of consumer arrivals in the data set as described in

Section 3.2; furthermore, we define the column "unlimited" as having a higher initial

stock of each product than there are consumer arrivals, meaning that none of the

products can ever be consumed entirely.

The "actual" prices benchmark corresponds to the prior baseline that offers all

the available inventory-constrained ancillary products at their full prices. We include

two additional sets of hybrid benchmarks based on (i) a threshold policy, and, (ii) an

automated procedure. In approach (i) the hybrid algorithm makes all recommenda-

tions based on the EMPA until one of the products' inventories is depleted by 20%,

after which all recommendations are made using the SIAA. In hybrid approach (ii),

which we consider with two parameter settings, we employ a variant of the hybrid

method in [21 where -y is a multiplicative weighting factor applied to the objective

function of the offer chosen by the SIAA when compared to the offer selected by the

EMPA. At greater values of -y, the SIAA recommendation is made more frequently.

We discuss the implications of these hybrid resuls in more detail below in conjunction

with Table 3.7. For robustness, we conducted this set of simulations on the retail
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Initial Inventory Level

Algorithm Unlimited 100% 90% 80% 75% 50%

"Actual" Prices 85.1% 82.6% 78.4% 76.4% 73.1% 60.7%

Re-Optimized Rolling LP 90.4% 88.4% 85.7% 83.8% 81.5% 65.2%

Linear Mult. Penalty 94.2% 92.3% 87.6% 84.1% 78.7% 63.8%

SIAA (Separable-Item Additive) 96.9% 96.1% 95.3% 92.2% 88.6% 76.6%

Polynomial Mult. Penalty 95.1% 92.3% 89.3% 84.8% 79.9% 64.7%

EMPA (Exp. Mult. Penalty) 97.0% 94.8% 92.4% 88.2% 84.2% 69.2%

Rolling Exp. Mult. Penalty 97.4% 95.6% 94.2% 91.1% 87.3% 72.8%

ALA (Additive Lagrangian) 97.9% 97.4% 96.1% 93.5% 89.8% 79.5%

Threshold Hybrid 97.3% 95.7% 94.4% 91.3% 88.9% 74.1%

Automated Hybrid: -y = 1.5 97.3% 95.7% 94.5% 91.7% 88.1% 73.7%

Automated Hybrid: -y = 2 97.4% 95.8% 94.6% 91.9% 88.4% 75.3%

Table 3.6: This table summarizes the performance gaps of the proposed additive and

multiplicative algorithms, as well as some hybrid algorithms, in the airline case study

in percent of expected revenue attained relative to the full-knowledge Clairvoyant
strategy.

data and observed symmetrical results.

From Table 3.6 we can conclude that the rolling implementation of the EMPA

performs within 3-6% of the full knowledge strategy and within 1-2% of the ALA in

less constrained inventory settings; furthermore, it outperforms the EMPA that uses

initial inventory levels Io by 1-3% across all inventory cases. We observe that the

SIAA begins to slightly outperform the rolling EMPA in increasingly more inventory-

constrained settings, which is fairly intuitive: as it becomes more important to avoid

inventory-related costs, the difference in approximation accuracy between the additive

approaches and the multiplicative penalty becomes increasingly greater. However, the

multiplicative method requires no re-optimization and is easy to implement compared

to the ALA, while only under-performing by a margin of up to 5.6% in worst cases

in while still achieving on average at least 87% of the expected Clairvoyant revenue

in reasonable inventory settings, and at least 73% in the most constrained case. This

marginal trade-off in empirical performance is largely offset by the practicality of the

multiplicative approach, as well as the fact that in less constrained settings it per-

forms within 1% of the best additive method. Finally, Table 3.6 also demonstrates
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the value of choosing the correct functional form of the inventory penalty function

(-) depending on the data. For example, in this airline case, the polynomial form of

the multiplicative penalty under performs on average by approximately 3% compared

to the multiplicative algorithm using the exponential penalty function across all in-

ventory scenarios. Furthermore, these gaps in performance grow from 1.9% to up to

4.6% as the problem becomes more inventory constrained; thus, using an increasingly

sophisticated form of 0(-) results in a multiplicative algorithm with stronger empirical

performance.

The results in Table 3.6 provide an empirical foundation for understanding the

performance differences between the algorithms relative to the Clairvoyant "optimal",

but it is also important to gain an insight into which settings each algorithm is best

suited for. For this purpose, we introduced the hybrid methods in these results, which

alternate between recommendations from both the EMPA and the SIAA. It is clear

from Table 3.6 that under mildly constrained inventory settings, all of the hybrids

behave essentially the same way as the EMPA. It is in the more constrained inventory

cases that we begin to see a greater gap between the performance of the hybrid

methods and the EMPA, due to the incorporation of demand forecasting captured

in the additive approach. To gain a better understanding of the magnitude of this

effect, we provide a second set of hybrid results in Table 3.7 below.

Percentage of Offers Driven by Additive Algorithm (SIAA)

Initial Inventory Level

Algorithm 50% 20% 15% 10% 5% 2%

Threshold Hybrid (SIAA after 20%) 16.8% 52.6% 75.7% 87.1% 95.4% 98.3%

Automated Hybrid: y = 1.5 31.6% 63.7% 81.9% 90.2% 94.8% 97.5%
Automated Hybrid: y = 2 38.5% 68.8% 84.2% 92.8% 96.4% 98.6%

Table 3.7: This table summarizes the percentage of personalized bundle offers made
by each of the hybrid algorithms that are selected by the SIAA (as opposed to the
EMPA) in the airline case study.

The focus of Table 3.7 is to observe the percentage of personalized bundle offers

that are made by the SIAA (as opposed to the EMPA) in the hybrid algorithms

under increasingly more constrained inventory settings. Notice that in the 50% that
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column Tables 3.6 and 3.7 share in common, the SIAA outperforms the EMPA by

4% and accounts for up to 40% of the recommendations in the hybrid method with

parameter -y = 2. Furthermore, the results of Table 3.6 demonstrate that the EMPA

becomes less accurate than the SIAA by a growing margin as the problem becomes

increasingly more inventory constrained. Supplementing this effect with the com-

putations from Table 3.7, we find that in the most tightly constrained scenarios, the

SIAA recommendations represent 75-99% of the offers made in the hybrid approaches.

The joint results of these two table indicates that the solution quality of the EMPA

deteriorates at a greater rate than the offers selected by the SIAA, and that in the

most tightly constrained inventory scenarios, all hybrid methods ultimately resolve

to implementing the SIAA. We can conclude that this indicates that the SIAA pro-

vide significantly better quality results under highly constrained inventory settings,

whereas the multiplicative methods are more efficient and virtually indistinguishable

in performance relative to additive methods when initial inventory levels are high.

In addition to algorithm performance and suitability, we also assess the difference

between the actual composition and pricing of bundle offers made by the ALA and

EMPA, by analyzing the most common bundle offers on average for each persona.

We found that the multiplicative approach typically recommends more expensive

products at a 1-2% steeper discount than the ALA. Consider the following case of a

business traveler flying in economy: the ALA recommends seat upgrades ($50) and

VIP lounge access ($50) at an average of a 2.4% discount. By contrast, the EMPA

recommends VIP lounge access ($50) and 2,000 bonus miles ($100) at an average dis-

count of 4.8%, which is an increase of 2.4% in average discount amount and $45.20 in

total offer amount over the ALA. This indicates that rougher inventory estimates in

the EMPA generate bundles with a greater emphasis on myopic profit maximization

that offset more expensive product offers with higher discounts to increase consumer

propensity-to-buy. However in expectation, these two methods generate similar ex-

pected revenues that are on average within 10-13% of the full-knowledge approach in

less inventory constrained cases.

Empirical Comparison of Analytical Guarantees
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Finally, we discuss the difference between the empirical analytical guarantees and the

practical algorithm performance in the multiplicative approach. Consider the follow-

ing airline case results for the EMPA in Table 3.8 in which we now also implement

the upper-level full pricing problem (similar tables for polynomial and linear multi-

plicative penalties echo the trends observed here). The first row shows the average

expected percentage of Clairvoyant revenue achieved by the EMPA from empirical

data simulations. Note that these ratios slightly decrease from the results in Table

3.6 due to discrepancies between the upper-level solutions of formulation (2.8) and

the Clairvoyant. The second row represents the corresponding data-driven values of

a path-dependent lower bound on the performance ratio between {MultAlg}Vk,t and

{Clairvoyant}, which is derived in the proof of Theorem 1 in Appendix A.2 and de-

pends on the trajectory of inventory levels I' for a fixed consumer arrival sequence

f kt k=1,...,Kt'

Empirical Performance of the EMPA

Initial Inventory Level

Exp. Penalty Function Unlimited 100% 90% 80% 75%

Performance Ratio from Data 91.6% 88.0% 84.3% 82.0% 76.6%

Posterior Bound on Ratio 84.8% 79.4% 75.8% 71.3% 65.6%

Prior Bound on Ratio 80.4% 74.7% 70.9% 65.6% 58.7%

Table 3.8: This table presents the average expected percentage of Clairvoyant revenue
attained by the EMPA as well as the empirical values of its analytical guarantees that
are path-dependent (posterior bound) and path-independent (prior bound).

This intermediate bound is less conservative than the worst-case result of Theorem

1, which we refer to as the prior bound in the third row. The results in Table 3.8

demonstrate that the relative gaps between the algorithm's empirical performance

ratios (first row) and the posterior bound (second row) grow increasingly as the

problem becomes more inventory-constrained; we observe the same effect between the

posterior bounds (second row) and the prior bounds (third row). These effects are also

visualized in Figure 3.8 above. Note that the empirical performance ratios relative to

the Clairvoyant also decrease as a function of initial inventory levels. Furthermore,

as shown in Figure 3-6, the gaps between the bound and empirical performance also
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Empirical Performance and Bounds
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Figure 3-6: This shows the empirical gap between the analytical bounds of the EMPA
and its practical performance.

grows with decreased inventory levels. These effects reinforce the insight that the more

limited the inventory, the greater the performance lag in all of the online algorithms

relative to the full-knowledge offline strategy. Through further simulation we found

that this result was consistent across all scenarios in both case studies and all forms

of penalty functions. However, the empirical performance of the algorithm on the

actual data is significantly better than the worst-case analytical guarantees provided

by the prior bound from Theorem 1. In the most inventory-constrained scenarios, the

gap between the empirical ratio and the prior bound reaches up to 18%, while the

actual performance of the algorithm is within at least 14% of the expected Clairvoyant

revenue in practice in reasonably inventory-constrained scenarios, improving to within

9% on average in the least constrained cases.

3.5 Conclusions

We show that our methods are computationally efficient and that the resulting person-

alized offers produce an expected marginal gain of up to 12% in profits over existing

pricing practices in retail, while performing achieving on average 98% of the expected

profit of a full-knowledge Clairvoyant strategy. In the airline study we similarly ob-

serve revenue lifts on the order of 3-7% over existing industry baseline methods that

do not use personalized pricing or recommendation methods. We conduct empirical

83



comparisons of our proposed algorithms and establish that in constrained inventory

cases, additive methods outperform multiplicative approaches by as much as 10%

relative to a Clairvoyant strategy. However, in most scenarios, the relative improve-

ment by using an additive approach is marginal compared to the significantly greater

computational ease of using a multiplicative method. We also find that multiplicative

methods place a greater emphasis on profit maximization by offering more expensive

products on average, which are coupled with larger discounts. We develop innova-

tive business insights within each case study that help online sellers determine target

audiences for various recommendation schemes and general approaches to pricing

and personalization strategies. Thus, our work provides contributions through novel

analytical problem structure and performance guarantees, as well as through the de-

velopment of tractable methods that are suitable for practical application and result

in a business edge potentially worth millions in profits to an online seller.
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Chapter 4

Personalized Bundle

Recommendations under Demand

Uncertainty

4.1 Introduction

With the growing popularity of smart phones and increasing rates of digital con-

nectivity through social networks across the world, the online market has undergone

enormous and rapid growth. Based on a study by eMarketer, a market research com-

pany focused on digital trends, media and commerce, "Women and men ages 18 to

34 are more likely than 35 to 64 year olds to engage in nearly every online shopping

activity, with 40% of males and 33% of females in the younger age group saying they

would buy everything online if they could." This swiftly expanding behavior across

more generations generates a very large body of available data for online sellers to

leverage in strategic personalized product recommendation and pricing strategies.

Consider the industry example of StitchFix, a personalized styling startup that only

became cash-flow positive in 2014, then achieved $250M in revenue in 2015 that was

doubled in 2016. In addition to smart business practices, strategic inventory manage-

ment and sophisticated product recommendation models, the real innovation behind
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StitchFix's success is its massive collection of consumer feedback data. On any given

item sent to a consumer in a personalized styling box, they collect 100-150 data points

ranging from product features (such as color, style, size) to consumer features (such as

weight, height, location). Due to the nature of their interaction with their consumers,

they are able to capture data about lost sales that is traditionally not available to

brick-and-mortar retail channels. This business example clearly demonstrates that

the true key to successful personalization and cross-selling in this expanding online

channel is accurate knowledge of demand and consumer preferences.

As demonstrated by industry examples such as that of StitchFix, gaining a com-

petitive edge through personalized assortment or pricing strategies in the online set-

ting relies fundamentally on the ability to accurately estimate or rely on a given esti-

mate of consumer demand and preferences. However, many of the following settings

have become increasingly common across all industries in their business practices:

(1) no (or few) product bundles have ever been offered historically, thus there is

an absence of transaction data from which demand estimations can be constructed;

(2) new products are introduced into the market with no previous purchase history

known to the seller, hindering reasonable demand estimates; and finally, (3) first

time shoppers frequently appear in the market without any known purchase history

or preference information. We wish to address the problem of making personalized

bundle offers under all of these challenging circumstances by incorporating robustness

into our modeling framework for personalized bundle recommendations. More con-

cretely, we are interested in the problem of offering personalized product bundles to

consumers during their shopping session, which they can choose to accept, or to pur-

chase individual items at their full prices, or to simply leave the online market without

making any purchase at all. We want to maintain the trade-off between myopic profit

maximization with long-term profitability under inventory constraints while also of-

fering bundles that are robust in the realizations of the unknown consumer demand

functions.

We address this problem of capturing uncertainty in consumer demand by con-

sidering two possible approaches: (i) dynamic learning, and, (ii) robust optimization.
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Under setting (i) we consider the multi-armed bandit problem, which models the

trade-off between exploration and exploitation in a dynamic setting in which the

agent playing tries to learn information about the system by trying new "arms", while

maximizing his payoff over the selling period by playing "arms" whose rewards he

has already learned about, are high. In the context of our problem, this agent is

the online seller who is interested in maximizing long-term expected revenue over the

entire selling horizon by offering personalized bundles, represented by the arms, to

arriving consumers whose demand function is unknown. Depending on their choice

to purchase items or not when presented with the bundle offer, the seller observes a

reward, generated from their decision, in the form of revenue. Our specific model-

ing framework is a contextual multi-armed bandit in which the contexts correspond

to high-dimensional vectors of personalized consumer features, which are realized

when the consumer arrives in the online market for a transaction. Due to the po-

tentially complicated functional forms of the true demand, the objective function of

our optimization problem for personalized bundle offers becomes highly non-linear.

Furthermore, we still incorporate the profitability trade-off of our prior modeling

approach in order to reduce inventory-related costs throughout the selling period.

Thus, we develop a fairly challenging dynamic learning model that couples the joint

problems of constrained assortment planning and dynamic pricing under the person-

alized setting of contextual bandits. We then demonstrate computationally that our

modeling framework is stable and performs well against existing benchmarks from

the literature across changes in demand function, number of available products and

number of consumer features. However, we also find that in the cases where the

true demand model is misspecificed, there is average estimation error of 1% to 2%,

which may cause severe infeasibility or suboptimality of the recommended offers in

the dynamic learning setting. Therefore we mitigate this in setting (ii), by consid-

ering the robust counterparts to our personalized bundle recommendation problem

under various potential uncertainty sets. We investigate the full-knowledge Clairvoy-

ant setting in which the entire consumer arrival sequence is known in advance and the

problem is inventory constrained. Under this setting, we observe that the effects of
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minor perturbations in the demand on the feasibility of the optimal solution can be as

large as 70% of inventory constraints violated in highly constrained inventory cases.

Therefore, we conclude that robust optimization is critical to protecting against er-

ror in demand learning and preserving margin in the pricing problem. We also find

that ellipsoidal uncertainty sets outperform polyhedral uncertainty sets in terms of

the price of robustness and also find that robust optimization is crucial in highly

inventory constrained problems.

We are interested in implementing this complex model practically in both of our

desired uncertainty settings. In the case of the multi-armed bandit problem with

dynamic learning, we consider constructing an algorithm based on the coupling of

Taylor series approximations and upper confidence bound (indexing) policies. We do

not assume that the expected reward function has any particular structural conditions

other than differentiability, and consider its first-order Taylor series approximation.

By making some assumptions on the bounded nature of the higher-order terms, we

are able to establish analytical guarantees on the performance of this algorithm. More

specifically, the performance of any algorithm in the context of multi-armed bandit

problems is modeled by regret, which measures the difference in long-run expected

reward between a given policy and an oracle strategy that knows the true demand

distribution in advance of the selling period and thus always chooses the optimal

arm (in this case bundle offer for each consumer). Our Taylor series-based algorithm

allows us to establish near-optimal bounds on the asymptotic behavior of this regret,

showing that it is on the order of O(/(T)) and is independent of the number of

arms. Given our potentially combinatorially expansive state space of possible product

bundles, this result is crucial for the tractability of our approximation algorithm.

The robust optimization setting presents computational challenges depending on the

uncertainty set choice. In the case of a polyhedral uncertainty set, we are able to

formulate our robust counterpart as a linear optimization problem, which is efficiently

solvable and only marginally less optimal, on the order of 3-5% in mildly conservative

settings, in performance relative to the ellipsoidal uncertainty set that results in a

non-linear problem. However, for smaller instances of demand group size, ellipsoidal
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uncertainty sets are also reasonably implementable and offer performance within 10%

of the optimal profit, which proves to be infeasible in 50% of the instances when

demand is perturbed by as little as 0.01%.

4.1.1 Contributions

As described above, our primary goal is the incorporation of demand uncertainty into

our personalized bundle recommendation problem. In the setting of dynamic learning,

our aim is to develop a generalization of current approximation approaches for solving

the contextual multi-armed bandit problem in order to obtain near-optimal bounds

on the asymptotic regret. In the robust optimization setting, we seek to establish

the importance of capturing demand uncertainty and observe its impact in highly

constrained inventory settings. We summarize our main contributions in this work as

follows:

1. Development of a high-dimensional learning framework based on con-

textual multi-armed bandits that incorporates personalized demand

modeling while considering inventory levels and future demand. We

adapt our personalized bundle pricing and recommendation model from Chap-

ter 2 to the online setting where demand cannot necessarily be estimated from

historical transactions. We model this new problem as a contextual non-linear

multi-armed bandit problem with the goal of learning personalized high-dimensional

consumer demand functions while jointly solving the dynamic bundle assort-

ment and pricing problem to maximize expected revenue over the course of the

entire selling horizon. We also capture our previous trade-off between myopic

profit maximization and long-run expected rewards by considering inventory

management in the optimization problem for selecting and pricing the bundle

offer.

2. Construction of a generalized approximation algorithm for solving

and implementing this model with minimal assumptions on the struc-

ture of the demand. In order to implement and solve the above dynamic
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learning model, we develop an approximation algorithm based on the first-order

Taylor series expansion of the expected reward function in combination with the

UCB approach. We achieve this by making no assumptions on the properties

of the true demand function other than differentiability. This approximation

approach allows us to iteratively estimate the coefficients for a linear demand

function that approximates the true underlying demand distribution, which may

be parametric and non-linear. Thus, we generalize the approaches of many ex-

isting works in the literature, which assume specific structural conditions on

the true demand or the expected reward function. Given any demand function,

regardless of its form, we are able to model the above problem and solve it using

this approximation algorithm.

3. Establishment of analytical guarantees on the asymptotic behavior of

the regret relative to an oracle strategy. We are able to establish regret

bounds that are similar to existing works with linear expected reward functions

for this Taylor series approximation algorithm. With some assumptions on

the bounded nature of the higher-order terms in the Taylor series expansion of

the reward and their role in developing adequate upper confidence bounds, we

obtain near-optimal asymptotic regret on the order of O( (T)).

4. Analysis of empirical results based on simulations that show our al-

gorithm outperforms baseline methods such as the myopic c-greedy

approach. We test the efficacy of our approximation algorithm on a range of

problem instances with varying numbers of consumer arrivals and numbers of

products, different demand functional forms, and various lengths of cold starts

relative to an c-greedy myopic strategy. We find that across all cases our ap-

proach ultimately outperforms this baseline and converges more efficiently with

errors decreasing in time.

5. Analysis of the effect of demand perturbations on the optimality of

the Clairvoyant solution. We consider the inventory constrained Clairvoyant

problem, which considers the full-knowledge setting where the entire consumer
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arrival sequence is known in advance. This benchmark is considered the "op-

timal" solution against which our prior approximation algorithms were tested.

We find that minor perturbations on the order of 0.10% to 0.50% in the values

of the personalized consumer willingness-to-pay results in average infeasibility

of approximately 50% of the optimal Clairvoyant solution. We also find that

certain products with higher consumer popularity, defined through a generally

higher propensity-to-buy across all consumer types, are more susceptible to this

effect.

6. Formulation and computational studies of robust counterparts to the

personalized bundle recommendation problem under polyhedral and

ellipsoidal uncertainty sets. In the case of polyhedral uncertainty sets, the

robust counterpart to the Clairvoyant problem is a linear optimization problem,

which is highly tractable. We find that while the ellipsoidal uncertainty sets

result in a non-linear problem, they outperform polyhedral uncertainty sets

with respect to percentage of optimal objective obtained and are reasonably

tractable for small demand groups S of up to 10 products. We demonstrate that

we can achieve within 10%-20% of the optimal objective function value while

maintaining feasibility with very high probability. Furthermore, we show that

robust optimization is invaluable under highly inventory constrained settings.

4.1.2 Literature Review

The growing availability of personalized consumer data in the online sector has

sparked a great deal of work on the problems of (i) dynamically learning consumer

preferences through strategic pricing and recommendation systems, and, (ii) develop-

ing pricing and assortment optimization strategies through robust optimization when

facing demand uncertainty. We summarize the primary bodies of literature related

to our work within the field of research on the multi-armed bandit problem, as well

as within robust optimization.

The multi-armed bandit problem models the trade-off between exploration and
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exploitation in a dynamic learning setting where the agent playing the "arms" in each

round tries to acquire information about the system by playing new "arms", while

maximizing his long-term payoff by playing "arms" whose rewards he knows to be

high. The performance of any algorithm in the context of this problem is modeled

by regret, which measures the difference in expected revenue between a given policy

and an oracle strategy that knows the true demand distribution in advance of the

selling period and thus always chooses the optimal arm. This model was pioneered

by the work in [341, which develops a converging stochastic approximation method

for estimating the true mean value of each arm. The seminal work by [25], since

published as a textbook, established the Gittins index, which is an optimal policy

for maximizing the long-term expected reward over the entire horizon of trials in the

setting with independent of arms, infinite horizon, one arm pulled in each round,

and a discount factor that is stricly less than 1; extensions to this work analyze this

indexing policy under variations of these setting parameters. In [29], they develop

asymptotically efficient policies for this problem based on upper confidence bounds,

which function as an indexing policy, for each arm. The survey work in [40] provides

a general overview and evaluation of these various multi-armed bandit algorithms.

Later works, such as [30], explore the role of dependencies between arms in the context

of this problem and provide optimal policies under different scenarios of discounted

and non-discounted rewards, showing that their methods outperform those made for

bandit problems with independent arms.

Many algorithms have been developed for solving this general multi-armed bandit

problem. One initial class of methods is based on the concept of upper confidence

bounds, which provide optimal strategies for maximizing long-term expected rewards

by essentially behaving as an indexing policy for each arm that is based in Bayesian

updates of the posterior distribution over the expected reward of each arm. The

strong analytical performance of this Bayesian-UCB approach is established in [27].

However, there is also a growing body of work on the randomized Bayesian algorithm

known as the Thompson sampling algorithm (or the probability matching algorithm).

By contrast, this approach randomly samples the posterior distributions across all of
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the arms and chooses the one with the highest sampled reward. In works such as [7

and [201, they evaluate the performance of this approach relative to the UCB algo-

rithm and show similar theoretical guarantees as well as better empirical performance,

respectively. More recently in [37], they convert UCB regret bounds into Bayesian

regret for posterior sampling and show that their bounds from Thompson sampling

are more generalized and in some cases stronger.

Having developed the necessary framework for modeling and solving this prob-

lem through tractable algorithms to varying degrees of optimality, there are generally

two classes of problems to which this model is applied: (i) dynamic assortment plan-

ning, and, (ii) dynamic pricing. We have summarized the static approaches to these

problems, in which the demand in considered known, in our modeling and literature

review from Chapter 2. In the context of multi-armed bandits, both the problems

of assortment planning and pricing becoming dynamic due to the need for demand

learning as the problem horizon progresses. In the case of dynamic assortment plan-

ning, the existing literature analyzes both constrained and unconstrained cases with

respect to inventory. In [3], the authors consider unknown consumer demand defined

by a multinominal logit (MNL) choice model and provides an approach that simul-

taneously explores and exploits (as opposed to explore-then-exploit methods) that

achieves a near-optimal worst-case regret bound of O( /(NT)) that is independent of

instance parameters; they further extend this to also consider cardinality constraints

on the size of the assortment. The work in [171 uses Lagrangian relaxation of weakly

coupled dynamic programs to obtain closed-form indexing policies with corresponding

near-optimal bounds and show that their approach outperforms greedy methods that

chooses arms myopically to optimize the single-period reward in each round. Building

on the prior approach, the authors of [381 propose a stochastic dynamic programming

model that incorporates learning with Bayesian updates and demonstrates that it is

profitable for an agent (online seller) to use discounting strategies early on in the

horizon in order to accelerate demand learning.

In addition to dynamic assortment optimization, there is a great deal of ongoing

work that applies the multi-armed bandit framework to dynamic pricing (in some
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cases in tandem with assortment planning and inventory constraints). In [9] they

present a framework based on partially observed Markov decision processes for dy-

namically pricing fashion-like products. In the joint works of [18], and [19], they

analyze "one-step ahead" pricing based on a Taylor expansion of the expected reward

function for the next period; while they do not provide any analytical guarantees,

their numerical results on various classes of demand functions indicate that their

policies perform well. The work in [14] analyzes the problem of jointly learning the

demand and dynamically pricing products through dynamic programming methods

under unknown linear demand and analyze the performance of their approaches in

various settings with competition. In [28], they also consider dynamic pricing under

a setting in which the unknown demand function is linear and achieve lower bounds

on the regret on the order of O(/(T)) and O(log(T)) for scenarios where the seller

has no information or limited information about demand under incumbent prices,

respectively. As opposed to using dynamic programming, the authors in [16] con-

sider an adaptive optimization approach based on data-driven uncertainty sets that

are dynamically updated and align the reward optimization with the demand esti-

mation. Finally, other recent works such as [12], [23], and [37], consider machine

learning methods as opposed to optimization-based strategies for dynamic pricing

bandit problems. In [12], a LASSO-based approach is presented with near-optimal

performance, whereas in [23], they employ an algorithm based on Thompson sampling

in an inventory-constrained setting. While Thompson sampling is easy to implement

and does not require the use of confidence bounds, it requires the specification of an

underlying probabilistic model, which is an assumption we do not make for our more

generalized learning method.

While many of the multi-armed bandit problems are applicable to a wide range of

demand functions and settings, two particular directions of interest to us in this work

are that of contextual bandits and multi-armed bandits with linear expected reward

functions. In contextual bandit problems, each consumer is summarized by some

unique vector of contextual features which are realized to the online seller upon arrival.

The seller must strategically make pricing or joint assortment decisions in this setting
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with unknown demand, which is described by a high-dimensional feature vector. In

the seminal work of [8] on contextual linear bandits, they present algorithms for two

settings in the best of which they achieve a regret on the order of O( (T)), where the

regret is dependent on the number of arms. By contrast in [1], they also consider a

linear reward function structure, but improve the regret bound by a logarithmic factor

under the assumption that the observed noise is conditionally R-sub-Gaussian, which

allows them to construct smaller confidence intervals when using the UCB approach.

In the more recent work in [4], they consider a linear reward function under knapsack

constraints and establish a regret bound that is independent of the number of arms.

There is also a body of research under multi-armed bandits that relaxes the linearity

assumption on the structure of the expected reward function. The works in [101,

and [11], in this nonlinear setting with knapsack constraints where in the first work

there are no contexts and the regret is characterized by the number of arms, and in

the second work arbitrary contexts are considered and the regret is independent of

the number of arms. In [51 and [6], they analyze non-linear reward functions under

convexity and knapsack constraints, respectively. In particular, the authors of [51

establish regret that is independent of the number of arms but contexts are known in

advance of the learning horizon; whereas in [6], they provide an extension to a concave

reward function and constraints, in which they assume that rewards and consumption

are drawn IID from a joint distribution. Furthermore, the work in [331 also considers

this non-linear case in which unlike all the previous works, each round consists of a

subset of arm pulls as opposed to only a single one; their regret is characterized by a

dependence on the number of arms.

The literature on robust optimization has been rapidly expanding over the past

decade, during which a great deal of fascinating research has been conducted across a

great deal of applications and theoretical fields. The seminal work in [131 character-

ized the construction of robust counterparts to linear optimization problems where

the uncertainty set is defined through a general norm. This is a building block for the

work done in the robust section of this chapter as we consider the first and second

norms, corresponding to polyhedral and ellipsoidal uncertainty sets, respectively. In
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the following work in [15], the authors propose relaxed robust counterparts for general

conic optimization problems that preserve the tractability and underlying structure

of the nominal problems. Instead of the previously established result that linear pro-

gramming problems had robust counterparts that were second order conic problems,

and second order conic problems resulted in semidefinite programming problems, this

work proposed a method for preserving problem structure in robust counterparts (i.e.

linear programming robust counterparts are also linear programming problems). This

work also directly influences the computational results obtained in this chapter.

The work across the field of robust optimization that is relevant to the model pro-

posed in this thesis is related to dynamic pricing and assortment optimization. With

regards to pricing, the work in [39] considers a robust formulation for a single-product

pricing problem with capacity constraints when demand is uncertain but assumed to

be a linear function of price. In an extension to this topic, [32] consider the dynamic

pricing of a single product in a setting with firm competition in which each seller

faces their own demand uncertainty. The authors consider another direction in the

dynamic pricing and inventory control problem in [21, in which there are multiple

products, and demonstrate how to use the deterministic solution of the original prob-

lem in the robust approach. In [22], the authors consider dynamic congestion pricing

under demand uncertainty in which the flows correspond to user equilibrium on a

network of interest and show that robust dynamic solutions outperform static ones.

While they do not consider pricing under uncertainty in [21], they instead analyze de-

mand response management with price interval uncertainty and demonstrate how to

formulate these problems using mixed integer linear programming for this stochastic

problem.

In addition to robust optimization applications to pricing problems, there is also

a growing body of work related to robust applications in assortment optimization

and revenue management problems. The work in [361 and [35], study the multi-

period assortment planning problem that is dynamically solved for each consumer

arrival under the assumption that the consumer choice model is a multinomial logit

whose parameters are unknown and represented through an uncertainty set. In the
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revenue management literature, the authors of [311 develop a robust formulation for

the capacity allocation problem using polyhedral uncertainty sets and demonstrate

empirically that this approach outperforms well-known heuristics in the literature

while maintaining scalability. A thorough general summary of the work done in the

field of robust optimization is provided in [24], which covers many different fields of

applications as well as settings of theoretical development such as across static and

dynamic problems. To the best of our knowledge, none of the existing literature has

considered applying robust optimization methods to the joint assortment and pricing

problem addressed in a personalized bundle recommendation model.

Relating more closely to the above literature, in the first setting in this work

we are primarily interested in the intersection of this last body of works between

contextual bandit problems with expected linear reward functions. A summary of

the contributions of the above works relative to our approach is provided in Table

C.1 in Appendix C. We develop a non-linear contextual bandit framework that we

reduce to a linear setting through Taylor series expansion. However, there is inherent

error in dynamic demand learning, which may affect the optimality of pricing and

assortment decisions. Therefore, in the second setting, we are interested in applying

the methodologies from the robust optimization literature to the personalized bundle

recommendation problem and analyzing the effects of such demand uncertainty on the

feasibility of optimal offers in the full-knowledge Clairvoyant problem, which serves

as the benchmark method for the approximation approaches presented in Chapter 2.

4.2 Dynamic Learning Approach

In order to address potential uncertainty in consumer demand, we first consider the

approach of dynamic learning by developing a modeling framework for the personal-

ized bundle recommendation problem based on multi-armed bandit theory. In par-

ticular, we focus on contextual multi-armed bandits and how to incorporate bundling

into this problem setting. We then establish an approximation algorithm to make this

approach tractable for the online setting, and establish analytical guarantees for the
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asymptotic behavior of the regret, which we show to be on the order of O( /T). Fi-

nally, we conclude Section 4.2 with computational analysis showing the performance

of our proposed algorithm relative to existing benchmarks from the literature, and

show that it is relatively robust across changes in numbers of consumer features and

products, as well as across various lengths of cold starts and demand functional forms.

4.2.1 Problem Setting and Model Formulation

We consider the problem of offering personalized bundle recommendations for indi-

vidual consumers as they arrival sequentially in an online setting. We have a monop-

olistic seller who offers products j = 1, ... , n from a given demand group S of related

items. The resulting set of all possible bundle composition and price combinations

is indexed by i 1, ... , N. In order to incorporate dynamic demand learning, we

now model this problem using contextual multi-armed bandits. Under this setting,

we consider a finite horizon of length T in which any given period t =1, ... , T has

a single consumer arrival. We define xi(t) as the feature vector associated with arm

i at time t, which corresponds to a given bundle at a given price. Note that this

feature vector definition is easily extended to also incorporate personalized consumer

context features. We then denote i(t) as the arm (bundle offer) chosen by the online

seller at time t. Symmetrically, we let i*(t) be the optimal arm for the consumer

arriving at time t, which is known to the oracle strategy that has full knowledge of

the true demand function parameters. Let yi(t) (t) be the reward received by the seller

at time t as a result of choosing to offer bundle i(t) to the consumer. Similarly we

denote yj*(t)(t) as the optimal reward received by the oracle strategy at time t as a

result of offering bundle i*(t). Finally, let us define f(0, x) as the unknown non-linear

expected reward function that the seller is attempting to accurately learn through

dynamic personalized bundle offers.

In order to evaluate the performance of our proposed algorithm, we define the

following fundamental performance metric of regret for all multi-armed bandit prob-

lems. The regret is defined as the total difference in reward between a given policy 7r

and the oracle strategy, which always chooses optimal arm i*(t) and receives reward
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yj*(t)(t). This total regret Regret(7r, T), which is a function of 7r and the length of

the horizon T, is explicitly defined as,

t=T

Regret(7r, T) = Yi*(t) - Yi (t)()
t= 1

where the optimal choice of arm in period t is explicitly defined as the reward-

maximizing option for each consumer, given by,

i*(t) = arg maxiyi(t).

We also define the first-order Taylor series transformation of the expected reward,

which is a function of the historical matrix of observed feature vectors x(t) up until

time t and current expected reward function estimates 0, as Zi(t) below,

Zi(t) = Ti(X(t), 0) f (Xi(t), 0) + (0) T f'(Xi(t), 0)

Given these definitions, the general methodology behind the proposed dynamic learn-

ing approach based on this Taylor series approximation is as follows:

1. Upon their arrival to the online market, the feature variables of a given consumer

in period t are realized to the seller and therefore our algorithm.

2. Using the most recent estimates of the transformed expected reward function

parameters, we write the expected reward function as a sum of independent

random variables (in our case these random variables are the first-order Taylor

series transformation of incoming consumer context features).

3. By the Azuma-Hoeffding inequality we can then find an upper confidence bound

over the actual reward of each potential bundle offer (arm), and thus obtain an

upper confidence bound over the estimated reward of each arm from this Taylor

series approximation.

4. Considering the upper confidence bounds on all of the available offers (arms),
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our algorithm chooses the one with the highest UCB value and offers this to

the consumer at time t.

5. After observing the purchase decision of consumer t, we regress their new feature

vector and the corresponding observed demand against the matrix of histori-

cal features and respective demands in order to update our estimates of the

transformed parameters of the expected reward function. Note that this step

is equivalent to fitting a linear regression whose dependent variable is the ex-

pected reward and the independent variables are the transformed incoming ran-

dom context variables (which we have transformed to the first-order derivative

space).

6. Using these updated reward function estimates, we repeat this procedure for

the next arriving consumer in period t + 1.

This method requires the coordination of two separate algorithms, one of which is

nested within the other; we must use and update the upper confidence bounds (UCBs)

within the larger modeling framework in order to make dynamic personalized bundle

offers, while also updating the global estimates of the demand. We now explicitly

detail this below in the following Sections 4.2.3 and 4.2.2.

4.2.2 Lower-Level Algorithm for Upper Confidence Bounds

In order to construct the upper confidence bounds (UCBs) to select the best bundle

offer for each arriving consumer and thus implement the larger global algorithm for

sequential learning, we consider an extension of the UCB approach in [81 in which

we replace the historical data matrix of past feature vectors and observed rewards

with the first order transformation matrix based on Zi(t) of the observed features and

expected reward function. We define the algorithm in detail below.

Note that in order to simplify implementation, you can also replace the ai(t) coef-

ficient estimates in Step (6) above directly with the regression coefficients and observe

the resulting performance, as we do in Section 4.2.5. In practice, the assumption of
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independence between the values of ai(t) and x(t) is not necessarily crucial and cir-

cumventing this tedious construction process could greatly ease practical application.

The intuitive reasoning for using the transformed matrix Z(m) in Step (1) is due

to our necessity to obtain confidence bounds; we need to upper bound the quantity

IIai(t)f1 2 , which can be done only if Z(t) - Z(t) is sufficiently regular in the sense that

all eigenvalues are sufficiently large. If some of the eigenvalues are small, we have to

deal with them separately. Therefore, we instead use the transformation below. Given

a new consumer arrival, this algorithm gives us a method for estimating the upper

confidence bounds across all arms (potential bundle offers) i 1, ... , K in each period

t. By selecting and making the offer of the bundle with the highest upper confidence

bound, we develop a recursive method for learning the consumer demand dynami-

cally by using these UCBs in Step (2a) of Algorithm 4.2.2. Thus, we have developed

a tractable approach for dynamic learning based on Taylor series approximation and

UCBs with virtually no assumptions on the functional form of the demand. We now

consider the analytical implications of using this methodology in Section 4.2.4 below.
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Algorithm 4.2.1: TUCB(3 E [0, 1], number of Trials T) for determining

upper confidence bounds (UCBs) on each potential bundle offer (arm) i

1, ... , K in order to select the best option for the consumer arriving at time

t.
Input History of previous transformed features Zj(1... t - 1), current

incoming feature Xi(t) and its transformation Zi(t).

Output: Upper confidence bounds (UCBs) of all potential bundle offers

(arms) i = 1, ... , K, resulting in the algorithm's decision to offer

arm i(t) that maximizes the upper confidence bound ucbi(t) to the

consumer at time t.

1 Let Z(m) be the matrix of all previous transformed feature vectors up until

time t;

2 Let Y(m) be the vector of all previous observed rewards up until time t;

3 Calculate the eigenvalue decomposition:

Z(t) - Z(t)' = U(t)'A(Ai(t), ... , Ad(t))U(t), where Al(t), .Ak(t) > 1 and the

rest are less than 1. Also U(t) - U(t)' = A(1, .. 1);

4 Now for each feature vector zi(t), let i(t) = U(t) - zi(t), and,

fi (t) = (zi,(t), zi,2 (t), ..Zi,k(t), 0, 0, 0...)', and,

Di (t) = (0, 0, 0, z"i, k+1I(t), Zi, k+1I(t), .Zi, d(t) ;

5 Calculate, a (t) = fi(t)'.A(Al(t), .At). Ak ( .) U(t) - Z)

6 Next, calculate the upper confidence bounds for all arms i = 1, ... , K using,

widthi(t) =j|ai(t)||( (lin(2TK16) +| j~> (t)||, and,

ucbi (t) = z(t) - ai (t)' + widthi(t);

7 Choose that alternative i(t) which maximizes the upper confidence bound

ucb2 (t).

4.2.3 Global Algorithm for Personalized Bundle Offers

Having established the necessary algorithm for acquiring the UCBs, we now develop a

7r policy based on this Taylor series approximation approach for selecting bundle offers

(arms) from i = 1, ... , K for every given arriving consumer t. We develop a global
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algorithm based on Taylor series expansion for solving the problem of personalized

assortment planning with online demand learning, which is defined as follows:

Algorithm 4.2.2: Global(6 E [0, 1], number of Trials T) for utilizing upper

confidence bounds (UCBs) on each potential bundle offer (arm) i = 1, ... , K

in order to select the best option for the consumer arriving at time t, and

periodically updating the demand estimates in order to achieve asymptotic

regret on the order of O(v"T).
Input : The features xi(t) of a given consumer in period T.

Output: Estimates ai(-r) of transformed f(*, Xi(T)) of the expected reward

function through the first-order Taylor series expansion.

1 Using the most recent estimates a (T) of the transformed expected reward

function parameters, write the expected reward X, as a sum of independent

random variables, X, = Y, - ai(T) (these random variables Y, are the

first-order Taylor series transformation of context features).;

2 By the Azuma-Hoeffding inequality (Lemma 1) calculate an upper confidence

bound ucbi(r) over the actual reward of each arm i =1, ... , K, and thus

obtain a UCB over the estimated reward of each arm from the Taylor series

approximation using Algorithm 4.2.1 defined in Section 4.2.4 below;

3 Choose the arm i that minimizes ucbi(T) over all available offers i = 1, ... , K

and offer this bundle at time T;

4 Having observed the decision of T, regress the new feature vector xi(T) and

corresponding observed demand against the matrix of historical features

x(T) and respective demand estimates 0. Update the estimates of the

transformed parameters of the expected reward function to ai(T +1). Note

that this step is equivalent to fitting a linear regression whose dependent

variable is the expected reward and the independent variables are the

transformed incoming random context variables (which we have transformed

to the first-order derivative space);

5 Return to Start for consumer T + 1.

We establish this framework based on the contextual linear approach from [81, which
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we extend by replacing the historical data matrix of past feature vectors and observed

rewards with the first order Taylor series expansion matrix based on Zi(t) of the ob-

served features and expected reward function. The above approach uses the indexing

policy based on the UCBs developed in Algorithm 4.2.1 in order to make consecutive

dynamic offering decisions to consumers. As this approach requires only the Taylor

series expansion of the expected reward function, it makes no assumptions on the

functional form of the true consumer demand model outside of differentiability. The

above method is therefore very generalized compared to the majority of settings in

the current literature, and as shown below in Section 4.2.4 achieves asymptotic regret

on the order of O(v'T).

4.2.4 Analytical Guarantees on Asymptotic Regret

In order to establish an analytical result regarding the asymptotic behavior of the

regret of our global learning Algorithm 4.2.2 from Section 4.2.3, we must first estab-

lish guarantees with respect to the upper confidence bounds used in the lower-level

Algorithm 4.2.1 for selecting the optimal arm with the highest index, as described in

Section 4.2.2. Let us begin by recalling the following well-known result from proba-

bility theory regarding the values of martingales with bounded differences:

Lemma 1. Azuma-Hoeffding Inequality Let X1 ,... .Xn be random variables with

IXtau atauI for some a1....a, > 0. Then,

P{ X, - E[X IX,,...X,1] > B 2exp (4.1)

We can utilize the above result from Lemma 1 in order to show the following inequality

in Lemma 2 utilized in Step (6) of the lower-level Algorithm 4.2.1 in order to determine

the values of the UCBs for all arms i = 1, ... , K. This result is necessary in order

to ensure that Algorithm 4.2.2 in turn will have asymptotic regret on the order of

6O( VT) ).

Lemma 2. Let 0(t) be constructed in such a way that for fixed transformed feature

vectors A(T), T C $(t), the rewards y(T), T c 0(t), are independent random variables
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with mean reward E[yi(,)(T) = f(O*, xi() (T)). Then with probability 1-6/T we have

that for all i G 1,..., K,

IY(t) ai(t)' - f (9*, xi(t))I < I ai(t)II (21n(2TK/6)) + Il(t)|1 (4.2)

We detail the proof of Lemma 2 in the joint work in [261. Establishing the above result

in Lemma 2 relies primarily on applying the Taylor series expansion to the consumer

feature vectors and making an assumption regarding the behavior of its higher order

terms, coupled with the correct application of the Azuma-Hoeffding Inequality from

Lemma 1 above. If we assume that the Hessian matrix in the region of evaluation is

bounded, we are able to prove the desired inequality. Thus, having shown the result

in Lemma 2, we now want to establish the larger result on the regret of Algorithm

4.2.2 and show that asymptotically it behaves on the order of O(V'T7). We consider

Algorithm 4.2.2 in which we replace the historical input matrices with their Taylor

series transformations as defined in Algorithm 4.2.1. We first prove the following

lemma, which bounds the number of entries in each set of independent trials 0.

Lemma 3. The number of trials for which an alternative offer is chosen at stage s

during which a dynamic choice is made is bounded by the following quantity. For all

stages s,

1'(T + 1)1 5 -2s(C + K + 21n(2TK/6)) dI<'(T + 1)1. (4.3)

The proof of the above Lemma 3, also detailed in [261, relies on the definition of

the widths of the UCBs utilized in Step (2) of Algorithm 4.2.2, which are defined in

Step (6) of Algorithm 4.2.1. Lemma 3, in combination with Lemma 2, allows us to

establish the following result regarding the asymptotic behavior of the regret.
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Theorem 2. When the Global Algorithm, as defined in Section 4.2.3, is run with

parameter 6/(1 + ln(T)) then with probability 1 - 6 the regret of the algorithm is

bounded by:

B(T) < 44 - (1 + ln(2KTlnT))1/ 2 -V + 2 /T

The proof of the above result is also specified in [26] and demonstrates that the

behavior of the regret of the global algorithm for our dynamic learning approach is

on the order of O(vT). Thus, this result ultimately demonstrates that we are able

to achieve the best possible asymptotic theoretical behavior of regret, on the order

of that achieved by linear models, within a non-linear generalized dynamic learning

framework. While this is a promising analytical result, we next test and analyze the

practical performance of our approach in the following Section 4.2.5 in order to see

its behavior across various settings.

4.2.5 Computational Results

Having established the desired analytical result regarding the asymptotic regret of

the global Algorithm 4.2.2 for online learning in our bundle recommendation problem

setting, we next want to practically assess the empirical performance of our algorithm.

We do so by conducting studies on various problem instances using synthetic data

and simulate the learning process averaged over thousands of iterations of sample

arrival sequences. We partition this section based on various scenarios with respect

to changes in functional forms of demand, number of products offered, number of con-

sumer features, length of cold starts and settings with misspecification of demand. We

compare our approach to existing benchmarks from the literature and demonstrate

our algorithm's general improvement in performance over these approaches in a dy-

namic setting. Ultimately, our results indicate that our approach is relatively robust

to changes across all of these factors and that this approximation method consistently

outperforms the commonly studied c-greedy policies.
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Simulation Design

We consider simulated data in order to analyze the performance of our proposed al-

gorithm compared to benchmarks from the literature, in the form of various greedy

approaches. In each of the following scenarios, we simulate the true demand parame-

ters from a uniform distribution and iterate over a given setting 1,000 times in order

to obtain average values for cumulative regret or estimation error. The features of

each consumer are also drawn randomly from a uniform distribution upon arrival.

In each particular demand parameter setting, we cycle through the arrival sequence

until the regret or error no longer significantly changes. We then repeat the param-

eter selection step 100 times, for each of which we run these 1,000 iterations over

an arrival sequence. Thus, all of the displayed results in the following sections are

averaged across all of these higher level true demand parameter selections, as well

as over many realizations of the arrival sequences within each of these settings. We

also introduce two verions of an E-greedy policy for benchmarking, in which: (i) we

consider a fixed policy in which E remains the same throughout the entire arrival se-

quence, and, (ii) we vary the behavior of the E-greedy policy from having a fixed value

of E, to time-dependent decreasing trajectories for values of E over the progression of

the selling horizon.

Variations in Demand Functional Form

In the first set of experiments our goal is to evaluate the performance of the Taylor se-

ries approximation algorithm relative to these c-greedy policies over various functional

forms of true demand such as: non-linear logarithmic (log(02 x + C)) and non-linear

exponential (e 02 X). In Figures 4-1 and 4-2 below, we present the results in which we

consider logarithmic non-linear demand functions under varying numbers of products

(n=2 or n=3).

The results above demonstrate that our method performs noticeably better in

long-term convergence than either the constant or time-dependent decreasing versions

of the E-greedy policy. Intuitively, the transition from Figure 4-1 to Figure 4-2 shows
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Cuinmulatve Regret with Log(0x+C) and n=2
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Figure 4-1: This plot shows the cumu-
lative regret for a non-linear logarithmic
demand function for n = 2 items under

various c greedy policies.

Cumaniive Regret with Log(02x+C) and n=3
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Figure 4-2: This plot shows the cumu-
lative regret for a non-linear logarithmic
demand function for n = 3 items under

various c greedy policies.

that the cumulative regret objectively grows as we study the case with more potential

products. We present a more in-depth analysis of the effect on cumulative regret from

increasing the number of products N in the next section below. We also observe this

effect when we consider the non-linear exponential demand function, given by e* ,

and shown in Figures 4-3 and 4-4 below.

Cumulative Regret with e and n=2
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Figure 4-3: This plot shows the cumu-
lative regret for a non-linear logarithmic
demand function for n = 2 items under

various c greedy policies.
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Figure 4-4: This plot shows the cumu-
lative regret for a non-linear logarithmic
demand function for n = 3 items under
various c greedy policies.

We note that across both demand functional forms, the gaps between the per-

formance of the methods (in terms of cumulative regret) grow with an increase in

number of products; this effect is also present in the total cumulative regret in each
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method with larger values of n. We observe that in the setting with a greater num-

ber of products, the greedy policies on average can stop exploring and in some cases

never discover the optimal policy based on the correctly estimated reward parame-

ters, resulting in an empirically much higher overall regret. Furthermore, we consider

a fixed n and analyze the behavior of the regret in the various methods in order to

quantify this exploration effect. The corresponding box plots of the distribution of

cumulative regret for these simulated results are shown below in Figures 4-5 and 4-6

for the logarithmic demand function, and in Figures 4-7 and 4-8. Both sets of results

demonstrate that across demand functions, the error in our method's estimation ap-

proach decreases as the selling horizon progresses, in contrast to the greedy policies

which continue to accumulate regret through randomized trials throughout the length

of the selling period.

Cumulative Regret of Taylor Series Algorith1 wtih LOg(Wx 4C) and n 3
500 +

.00

350

TAYLOR..SMES

Figure 4-5: This plot shows the distribu-
tion of the cumulative regret of the our
Taylor series algorithm at different points
in the arrival sequence over many simula-
tion iterations under logarithmic demand
(log( 2x +C)) with n = 3 products being
offered.

COnulative Regret of Time-Varying Greedy with rLg(Wx+C) and n 3
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Figure 4-6: This plot shows the distribu-
tion of the cumulative regret of the time-
varying E-greedy policy at different points
in the arrival sequence over many simula-
tion iterations under logarithmic demand
(log( 2x +C)) with n = 3 products being
offered.

Performance Across Various Numbers of Products and Consumer Features

We also want to consider various number of available products n from which we

develop bundles i = 1, ... , K, as well as more complicated demand functions in which

there is a varying number of consumer features d. The effect on the cumulative regret
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Figure 4-7: This plot shows the distribu-
tion of the cumulative regret of the our
Taylor series algorithm at different points
in the arrival sequence over many simula-
tion iterations under exponential demand

(e0 2X) with n = 3 products being offered.
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Figure 4-8: This plot shows the distribu-
tion of the cumulative regret of the time-
varying E-greedy policy at different points
in the arrival sequence over many simula-
tion iterations under exponential demand

(e0 2X) with n = 3 products being offered.

of our proposed Taylor series approximation algorithm, as a function of these changes,

is demonstrated below in Figures 4-9 and 4-10; we obtained symmetric results under

exponential demand as well.

Ctunulative Regret with Log(O- XC) over Vam U U
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Figure 4-9: This plot shows the cumu-
lative regret under our algorithm with
logarithmic demand (log(9 2 X + C)) for a
varying number of n items under various
policies.
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Figure 4-10: This plot shows the cumu-
lative regret under our algorithm with
logarithmic demand (log(6 2 X + C)) for a

varying number of d consumer features.

We primarily observe two effects: (i) it becomes more difficult for the algorithm

to identify the "optimal" bundle offer as the number of consumer features d or total

number of products n grows; and, (ii) this effect is more greatly pronounced in the case
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of more consumer features d, as this indicates a more challenging learning problem for

the algorithm due to the larger number of demand covariates. Notice that the scale

on the two plots is not identical, and furthermore, the case with the largest number

of consumer features d = 15 converges more slowly than in the case with the most

products n = 15. The effect is due to the fact that it is easier for the model to learn

the best few products for a fixed demand function with few covariates as opposed to

a function with many covariates, each of which has a great deal of estimation error

early in the learning process. We generalize the above results and summarize the

cross effects in Table 4.1 below.

Arrivals for Convergence of Taylor Series Algorithm

Features (d) x Products (n) n = 1 n = 2 n = 3 n = 5 n = 10 n = 15

d = 1 3,289 5,010 8,717 11,520 15,560 19,590

d = 2 6,086 8,950 10,890 13,770 18,640 22,360
d = 3 7,478 9,970 12,310 16,180 20,750 26,940

d = 5 13,198 16,920 17,990 20,330 25,420 29,170

d = 10 16,350 22,130 28,940 35,670 40,810 56,680

d= 15 29,640 31,870 36,640 .47,660 55,210 71,320

Table 4.1: This table summarizes the time to convergence (in length of arrival se-
quence) of the Taylor series approximation algorithm, when we jointly vary the num-
ber of products offered n and the number of consumer features d.

Notice that the initial conclusions from the example in Figures 4-9 and 4-10 hold

across the variations in Table 4.1. The time to convergence grows signicantly faster

as we increase the number of features d when compared to the effect of increasing the

number of products. Furthermore, we can also analyze this effect by observing the

regret as a percentage of the number of arrivals needed for the algorithm's conver-

gence, as summarized in Table 4.2. Here we observe that the growth is more marginal

across both numbers of features and numbers of products in the ratio of cumulative

regret to time to convergence. The effect of increasing d versus n is less noticeable,

and we observe that in the most complicated joint learning scenarios, the ratio of re-

gret to length of convergence remains at a reasonable proportion. This demonstrates

the robustness of our approach to increases in the size and difficulty of the learning

problem.
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Regret to Convergence Arrival Ratio for Taylor Series Algorithm

Features (d) x Products (n) n=1 n = 2 n = 3 n = 5 n = 10 n = 15

d = 1 9.2% 9.9% 13.7% 18.2% 23.2% 28.7%

d = 2 11.1% 12.4% 14.7% 20.2% 25.3% 29.2%
d = 3 14.0% 15.5% 16.3% 22.1% 28.7% 30.7%

d = 5 18.7% 20.5% 22.8% 24.1% 30.1% 33.2%

d = 10 23.5% 24.4% 26.9% 28.0% 33.2% 35.6%

d = 15 29.2% 30.2% 31.3% 34.4% 35.7% 36.8%

Table 4.2: This table summarizes the ratio of the cumulative regret to the length of
the arrival sequence needed for the convergence of the Taylor series approximation
algorithm, when we jointly vary the number of products offered n and the number of
consumer features d.

Performance under Misspecification of Demand

In addition to the effects of variations in demand functional forms and problem com-

plexity (through number of available products and number of consumer demand func-

tion covariates), we are also interested in observing the effect of misspecification of

demand on the performance of our proposed approach. More specifically, we test

cases in which the true demand function is of some parametric form which we assume

incorrectly, and observe the resulting error in the ultimate demand estimation of our

methodology. This is a particular important setting due to the fact that true demand

is often unknown and in many bundling-related scenarios there may not be enough

adequate historical transaction information for initial assumptions regarding the form

of the consumer demand. Proceeding along the same lines as in prior experiments, we

test two particular such cases: (i) when the true demand is logarithmic (log(0 2 X+C)),

and, (ii) when the true demand is exponential (e6 2
X). We summarize the results below

in Table 4.3 below.

Average Error in Demand Estimation Due to Misspecification of Demand
True Demand = Logarithmic True Demand = Exponential

Exponential Multinomial Logit Linear Logarithmic Multinomial Logit Linear

2.1% 1.7% 3.6% 1.5% 1.1% 3.3%

Table 4.3: This table summarizes the performance gaps of the proposed additive and multiplicative algorithms,
as well as some hybrid algorithms, in the airline case study in percent of expected revenue attained relative to the
full-knowledge Clairvoyant strategy.

112



The above results are based on averages across scenarios in which the true demand

is misspecified and after convergence, we record the average of the error between the

true value of the demand for a given consumer and its estimated value. We find that

the largest error result from linear misspecifications as these are over-simplifications

of the underlying modeling structure. Disregarding these cases, the average error

is between 1.3% and 1.9%. While this error does not seem particularly large, as a

proportion of the value of an average buy probability (which ranges from 5-12%), this

is a significant proportion.

Thus having analyzed the effects on our algorithm's performance when influenced

by changes in demand function, number of products, and number of consumer fea-

tures, we can conclude that our approach efficiently converges to a reasonable estimate

of the true distribution, as approximated by the first-order Taylor series expansion.

However, we also observe that under misspecification of demand functional form,

there may be error up to the order of 2% across all possible cases, which can poten-

tially be problematic when using these estimates for personalized bundle and pricing

recommendations as is done in Chapters 2 and 3. Thus, we aim to further broaden

this approach by incorporating some sort of protection against demand estimation

error in the following work in Section 4.3.

4.3 Robust Optimization Approach

The second method of incorporating demand uncertainty into the personalized bundle

recommendation problem relies on techniques developed in robust optimization. Note

the above results in Section 4.2 indicate that we have constructed a dynamic learning

approach that is relatively stable with growing problem complexity through changes

in demand functions, number of available products and number of consumer features.

However, the results of the study from Table 4.3 demonstrate that we can expect

between 1-2% error in demand function value estimation when we misspecify the true

functional form of the demand. In order to better understand the magnitude of this

effect and establish a method of mitigating it, as a second step we propose to incor-
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porate a robust optimization approach to the personalized bundle recommendation

problem.

4.3.1 Problem Setting and Model Formulation

As in our initial setting, we consider a monopolist online seller that makes a dynamic

bundle offer to each arriving consumer who may choose to accept the offer, purchase

individual items separately at full price, or choose to purchase nothing at all. If the

consumer chooses to purchase either the bundle or some other collection of items at

their full prices, we assume that they only purchase one unit of each item. Let us

consider a set of items i 1,..., In denoted by S. These items' prices may affect one

another and they can be complementary, substitutable, or even independent as is often

the case in the travel industry. Given a captive online consumer considering products

within 5, or a specific ticket itinerary for which S is the set of ancillary goods, our

model offers a relevant bundle of products from S. We are interested in cases where S

contains inventory-constrained products that we leverage to maximize expected long-

run profitability by accounting for future demand. Therefore, we consider a finite

selling horizon with a fixed number of periods T with no replenishments.

Each arriving consumer is uniquely described by a combination of categorical and

continuous features related to preferences, demographics, purchase history, loyalty,

and online shopping context. Thus, we do not consider a discrete set of consumer

types as is traditionally done in segmentation and instead assume that there is an

infinite set of continuous consumer types. Furthermore, since we address a bi-level

pricing problem, we index consumers within a given period t by (k, t), where k =

1, ... , Kt and the total number of arrivals Kt in each period can differ. We define the

full price of item i in period t as p'; thus, the full price pskt of a bundle Sk,t offered

to consumer (k, t) is defined by,

PSk y iESk gt (4.4

The full prices ptare not necessarily fixed throughout the horizon and may follow
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some dynamic trajectory, summarized in each period by vector p' = [P, , .. , Pt].

We thus define price vector,

PSk,, = [{ , Pst,]= [PDi p2, -2 - , I , PSktl, (4.5)

in which we append the discounted price of the personalized bundle for consumer

(k, t) to the vector of full price settings for period t. It is common in business practice

for sellers to consider discrete price ladders. Therefore, we make the assumption that

we have a fixed set of price levels for every product i from which we can choose

to construct bundle offers. We define the individual consumer propensity-to-buy

S't (Pst) as the probability that consumer (k, t) will purchase the combination of

products S : S # Sk,t (and nothing else) at their full prices if their personalized

bundle Sk,t is offered at price Ps,t. We similarly define the probability that consumer

(k, t) will purchase only the bundle Sk,t (and no other products) when it is offered

ktat the discounted price Ps,,t as Q,, (ps,,). We will refer to es t as the bundle unit

vector that takes the value 1 for all i G Sk,t and 0 otherwise. Finally, we define Ikt

as the vector of inventory levels of all i E S at the time when consumer (k, t) arrives,

written explicitly as Ikt [f',t 1 2kJ' . k. , . This leads to the following decision

variables for any given consumer (k, t): the optimal bundle to recommend Sk,t G 5,

and, its personalized price psk, < PSk.t.

We now consider the optimal benchmarking baseline for this setting, given by

the Clairvoyant problem of making a personalized bundle recommendations given a

known consumer sequence {k, t}QNtl t, which is formulated as follows:

maximize T s(PicS = s)
YSk t

subject to sT sKt  
t V

sk,t c y ' = V(k, t)

ySk, > 0 V(k, t), Sk, c C
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where , (Ps,) = SCs:SDSkt S'(Ps,, '

and, #l (Psp) Zscs:Si s (I Pss)

The decision variables y 0 correspond to the probability with which bundle Sk,t

is offered at price PSk,t to consumer (k, t) when the full product prices are set at p'.

In this perfect information setting, assume that the entire consumer arrival sequence

{k, t}ly' T'f is known in advance, as well as the full price trajectories pt for all

products i in all periods t, which we assume are provided by an oracle. The rec-

ommendations, denoted by y , that are made by this model are based on the

knowledge of the individual consumer propensity-to-buy $''(pskt ), defined as the

probability that consumer (k, t) will purchase item i if their personalized bundle Sk,t

is offered at price Ps ,t. Furthermore, all algorithms benchmarked against this perfect

information setting make decisions based on this same knowledge upon the arrival

of each (k, t). We now want to robustify this Clairvoyant problem and analyze its

performance under various uncertainty settings.

4.3.2 Analyzing Uncertainty in Demand

We begin by observing that the Clairvoyant problem is an linear optimization prob-

lem, so we approach this using robust linear optimization (RLO) methods. We

first consider the general infeasibility of this offline full-knowledge problem when we

marginally perturb the demand and observe the effect on the corresponding inven-

tory constraints. We then introduce uncertainty sets and formulate the RLO problem,

and analyze the performance (with respect to the price of robustness) relative to the

nominal problem objective value.

Summary of Data

We consider the airline case study data in order to practically assess the performance

of our various robust methodologies. We analyzed the one-month period of approx-

imately 640,000 ticket transactions from a premier international airline. There are
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no repeat consumers in this short time frame and thus no details from previously

purchased flight itineraries. Every transaction is described by a set of features cate-

gorized into two types: (i) personal consumer information including tier level, mileage

balance, time since joining rewards, and number of previous business and economy

flights taken; and, (ii) contextual itinerary booking data that includes transaction

date, fare paid (USD), connection time, time to departure, day of travel, and number

of passengers. For these computations we focused on the products with inventory lim-

itations such as priority security, priority boarding, priority baggage handling, seat

upgrades, checked excess baggage, VIP lounge access, and gourmet in-flight meals.

We were provided with the corresponding prices for these products, which varied his-

torically across flight itineraries and weeks. Note that in this data set the products

are independent by definition since they correspond to distinct unrelated products

that are neither substitutable nor complementary and are priced separately. We used

k-means clustering to analyze the personalized features in the data and develop dis-

tinct consumer profiles that we used to map the historical transactions for demand

model estimations. We constructed 7 unique consumer personas and estimated all

of the personalized pairwise demand models for each (persona, product) combination

and treat this estimation as our nominal value.

4.3.3 Perturbations in Nominal Demand

Our initial analysis is divided into three sets of cases, in each of which we assess the

level of infeasibility provided by the nominal problem solution (at the nominal values

of the demand function values as provided by the demand estimation).

Analyzing Feasibility Across Personas and Products

We first consider a classic exercise in the benefit of robust optimization in which we

perturb the estimated nominal values that are uncertain and observe the effect of the

feasibility of the nominal optimal solution. In this case we perturb the demand models

by different margins and observe the results over 10,000 iterations when averaged over
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all products and personas. Notice that as the problem becomes increasingly inventory

constrained, we intuitively see a significantly more drastic level of potential infeasi-

bility when demand estimations are inaccurate. Furthermore, we consider these more

constrained instances in order to extract the value of the demand estimation in the

feasibility of the optimal solution. Were we to also consider less constrained problem

instances with higher levels of initial stock, we would rarely observe infeasibility at

all due to the lack of importance of inventory in such settings.

Percentage of Violated Constraints

Perturbation Inventory 25% Inventory 10% Inventory 5%

0.01% 1.12% 8.99% 40.52%

0.10% 1.98% 11.34% 49.67%

0.50% 2.79% 15.27% 56.98%

1.00% 3.55% 20.86% 64.33%

1.50% 5.04% 26.19% 70.09%

2.00% 7.11% 32.05% 77.21%

Table 4.4: This table summarizes the percentage of total constraints that are violated
by the nominal solution when the demand is marginally perturbed, averaged over
10,000 across all personas and products.

Now let us recall the dynamic learning results from Table 4.3 in Section 4.2. On

average, we expect 1.3%-1.9% error in demand estimation due to misspecification of

the true underlying demand model. The above study in Table 4.4 clearly demonstrates

that in highly constrained inventory problems, this could lead to infeasibility in the

range of 20-70% of problem instances. This demonstrates the absolute necessity for

incorporating robustness explicitly into our modeling approach, as dynamic learning

captures enough error to greatly de-stabilize and invalidate "optimal" offer solutions

in particularly inventory constrained settings.

Analyzing Feasibility for Specific Products

We conduct a similar exercise but here we consider the inventory constraints as iso-

lated by product, as shown in Table 4.5 below.

We perturb the estimated nominal demand by 0.05% and see what percentage of

instances had violated that product's specific inventory constraint. We again average
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Percentage of Violated Constraints

Product Inventory 25% Inventory 10% Inventory 5%

Priority Security 3.84% 22.31% 56.44%

Priority Boarding 3.95% 8.32% 46.87%

Priority Baggage Handling 1.13% 6.34% 22.16%

Seat Upgrades 3.00% 20.02% 70.86%

Excess Checked Baggage 2.30% 11.23% 50.34%

VIP Lounge Access 4.05% 25.17% 87.13%

Gourmet In-Flight Meals 1.36% 17.25% 68.12%

Table 4.5: This table summarizes the percentage of total constraints that are violated
by the nominal solution when the demand is perturbed by 0.05%, averaged over 10,000
across all personas. It is particularly interesting to see the effect over products as we
can see which are in higher demand and how this perturbation effects their particular
constraint.

over 10,000 iterations of perturbations. Note that now we see the effects of product

popularity and consumer price elasticities for certain goods. Goods that have gen-

erally higher demand such as lounge access and seat upgrades are subject to much

greater potential infeasibility due to demand estimation error as the setting becomes

more highly constrained.

Percentage of Constraint Violations by Scale for Fixed Perturbations

Finally, we consider the percentage of instances in which we have infeasibility, and

also measure the extent to which they are violated by using the metric,

Xi -max jo - Demand 1Xi ~ =11 1a

for each constraint corresponding to product i, which we then average across all

products (note that Demand is defined through 4, based on our nominal covariate

values that come from the demand estimation models). In this case we considered

highly constrained inventory stock levels of 5%.

We note again here that the extent of constraint violation is quite high, ranging

from 64% to 77% for demand value perturbations of 1% to 2%. Given that this is the

range of estimation error (on average from 1.3% to 1.9%) established in the results
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Percentage of Violated Constraints

Perturbation % Violated Constraints % Violated by over 50% % Violated by over 100%

0.01% 40.52% 50.13% 17.46%

0.10% 49.67% 53.62% 19.12%

0.50% 56.98% 57.94% 21.55%

1.00% 64.33% 61.53% 23.67%

1.50% 70.09% 64.72% 26.02%

2.00% 77.21% 69.33% 28.44%

Table 4.6: This table summarizes the percentage of total constraints that are vio-
lated by the nominal solution when the demand is perturbed by a marginal percent,
averaged over 10,000 across all personas and all products. Here we narrow to a lower
inventory level of 5% and consider the scale of the constraint violations by the nominal
solutions on average.

in Section 4.2, we can conclude that it is critical to incorporate robust optimization

into a modeling framework in which the recommendation and pricing system is based

on nominal demand estimates.

4.3.4 Comparison of Uncertainty Sets

Let us revisit our initial problem, given by Formulation (2.4) before. Note that this

is a linear optimization problem with row-wise uncertainty in the demand. By incor-

porating this uncertainty, we define the following robust version of our Clairvoyant

problem:

jT I K

max mi t= k s (PSkt) -+ (psk )- (PSk, -sk,)

Al + [0t~) . -, F -) YSktJ

kk,. S t

yt V(k, t),

(4.6)

Note that while this appears to look like a MIO problem, the "binary" variables yk,t
~Sk, t

in our original Clairvoyant model are relaxed, thus ultimately providing us with a

linear optimization problem. We consider two types of uncertainty sets, for each of

which we define the subproblems of interest and their respective contributions to the
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robust counterparts:

1. Polyhedral - U {a : ai = di + A'uiIIuiI1 p}

2. Ellipsoidal - i = {a : ai = i + A'Ui, I Iu 112  p}

Polyhedral Uncertainty Sets

We first consider the polyhedral uncertainty set U. The first subproblem arises from

the objective value under a fixed value of y; note that this is very similar to the second

subproblem that results from the inventory constraint, but does not contain the prices

from the objective function. Considering first the initial subproblem, a fixed solution

y corresponds to a fixed discounted bundle offer and price path corresponding to

known arrival sequence (k, t) over the entire selling horizon. We assume in this case

that the value of each consumer (k, t)'s willingness-to-pay falls into the polyhedral

uncertainty set:

Uk = { k't - yk' - 6 kO'k,t - -kt 0 yk't + Jk,t-Yk,t, \II1 p} (4.7)

Using definition (4.7) of our desired uncertainty set, we establish the following as our

subproblem for the personalized willingness-to-pay functions #:

T K' ~n

min ]+O~ ~

to ~ ~] ~ (Skt PSk.t) Y't=1 k=1 SkJC .i=1

subject to 6 ps k,t~k,t < i (Pskt) V,(,

- k,t (Ps -
6

k,tYk,t - -k )t Vi, (k, t)

k/tPsk,) - 3
k,t-Yk,t ,Ps ) VSkt, (k, t) (4.8)

A- 6k,t'Yk,t < -- (Ps,) VSk,t, (k, t)
T KP

YE'k,t <- P
t=1 k=1

Yk,t > 0 V(k, t)

Based on this, we can now formulate this subproblem's dual in order to develop the

robust counterpart to the original Clairvoyant problem:
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T Kt

max 1 S Vi,k,tki (Psk,) - Ui,k,t ,t (Pskt) + VS,k,t( s'(psI)
t=1 k=1 Sk ctO

- US,k,tcbS> (PskI) + pw

subject to V,k,t - Ui,k,t p Vi, (k, t)
(4.9)

VS,k,t US,k,t = PS - PSk,t VSk,t, (k, t)

- tk,tVi,k,t zkJt (Psk ,) - 6k,tUi,k,t i (PSk,) -- k,tVS,k st (Psk,t)

-
3

k,tUS,k,t OS'k, (Psk,t) + w > 0 Vi, Sk,t, (k, t)

Vi,k,t, VS,k,t, Ui,k,t, US,k,t, w > 0 V(i, S, (k, t)

Note that the second subproblem that corresponds to the demand uncertainty in the

inventory constraints is trivial and a simplified case of the first subproblem, with

two less decision variables. Combining the above dual from (4.9) with the constraint

subproblem's dual, when substituted back into the original problem to replace the

demand uncertainty, ultimately provides us with the following robust counterpart

with a polyhedral uncertainty set:

r T Kt
IP~x ~ ~ >15 >1 Vk(zpsk,) Uik,ti(s) vsk,t4Yjs)

YSk, 1 = Sk, 105

m a k t /4'k , (PS () pw}

subject to =S,1 kt V(k, )

yI 0 V(k, t), Sk,t C- S

Vi,kjc t ,k,t - ik j Vi,(k, t)

Vskt - Us,k,t =Ps -- s VSk,t, (k, t)

- UkktPsk) -=k tkt (Ps,) -
6ktVsktcst (Psk)

-
6

ktUS,k,tOSk., (PskI) + w > 0 Vi, Sk,t, (k, t)

T Kt

ki,tk,t P Ui,k,t N (s )+p ,I:> > I: E t4(PSk,) -Uikf/i (Psk t) + pw < -i V'
t=1 k=1 Sk AC

- ,k,U t psk,) - ok t (ps ) + w' >0 Vi, Skt, (k, t)

Vi,k,t, VS k,t, Vi,kt, Ui,k,t , US k,t, Ui,k,t, W, w' 0 Vi, S, (k, t)
(4.10)
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The resulting robust counterpart in (4.10) is also a linear program under polyhedral

uncertainty, and thus also possible to solve using the same methods as the original

Clairvoyant problem. We demonstrate the empirical performance of this approach,

compared to the ellipsoidal uncertainty set counterpart that we derive below, on the

airline case study data from the previous chapter. The result are summarized in

Section 4.3.4 below.

Ellipsoidal Uncertainty Sets

We similarly derive a robust counterpart for the Clairvoyant problem using an ellip-

soidal uncertainty set U, based on the approach above but using the L2 norm. This

gives us the following uncertainty set:

{ kt - yk't - 6 k,tfk,t - -k't < 0k't + 6,Yk,t,| Y112 P} (4.11)

We then consider the vector notation of the uncertainty set definition, as defined

below, so that we can apply a result from robust optimization theory in constructing

robust counterparts using ellipsoidal uncertainty sets.

Ukt ={f k4 : k,t - ~~~t< Ok,t < -k~t ~ I'12 p

k k,t _ k,t + 6
k,tk,t, 1h7112 P}

= {q: 5 = (+ A', I||12 _ P}

We make use of a well-established result, which allows us to re-write the desired

subproblem for the inventory constraint:

ma E T  EKt Z~tS(qkt ~)

max T KZ

t t=1 k=1 FSk,

T Kt  (( 0 'y I I1 (4.12)
t= k=1 ESk C 1

T Kt T Kt

5=1 (PS= ).Y + P E E= 6k= , )
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Using an identical process to that above, we can formulate the subproblem for the

objective function as well, and thus obtain the following robust counterpart to the

Clairvoyant problem using ellipsoidal uncertainty sets:

max ZTl Z kt kll ~
YSkt T k=1 

2
:SktCS (5 A Y-kt

T Kt)

q~t (PSk) (PktP k,t + P EZZ 62t (yk t t
t=1 k=1 /

T Kt T Kt

sAt. >EE O (PSk,) -k y k

t=1 k=1 Ske C5 t=1 k=1

kt=c
ZSk, ICS YSkt V(k, t)

k,t > 0 V(k, t), Sk, t C
(4.13)

Comparison

We now compare these formulations across different levels of inventory constraints and

observe the price of robustness that comes from decreasing the objective function rel-

ative to the nominal optimal solution, over various levels of robustness p. Specifically,

we use the well-known theoretical that the probability of infeasibility is bounded by

c when p 2 * (ln(1)). This provides us with increasing probability of feasibility

as p increases. We first consider the case where we have an initially constraining

inventory level of 10%. We obtain the following results over 10,000 iterations. This

is further visualized in Figure 4-11 below.

We observe that the ellipsoidal uncertainty set achieves better results in terms of

price of robustness overall and dominates the polyhedral approach. We also see that

as we drastically increase robustness and implement an overly conservative approach

under highly constrained inventory, we suffer more in objective value because the

model prices bundles much lower and lose more revenue in margin when attempting

to incentivize consumers to buy.

We achieve a similar result from the more highly inventory-constrained setting in
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Price of Robustness at 10% Inventory Level

p P of Feasibility % of Obj Value % Actual Feas. % of Obj Value % Actual Feas.

0 66% 100% 75.4% 100% 76.8%
1.67 75% 92.3% 80.1% 95.6% 82.2%

1.79 80% 90.4% 85.5% 91.1% 87.0%
2.15 90% 81.3% 90.2% 85.8% 92.1%

3.03 99% 76.6% 95.6% 81.6% 96.7%

3.26 99.5% 75.4% 97.3% 79.1% 98.4%

3.72 99.9% 71.8% 100% 75.4% 100%
4.29 99.99% 70.9% 100% 72.3% 100%
4.80 99.999% 62.7% 100% 68.1% 100%

Table 4.7: This table summarizes the percentage of total constraints that are violated
by the nominal solution when the demand is marginally perturbed, averaged over
10,000 across all personas and products.

Average Percent of Objective Value Achieved

D P 1 .103 i2 W 1 2 4 2 481,

-07'~

-El-al

Figure 4-11: This shows the tradeoff in
objective value with increasingly conser-
vative robust parameter p when inven-
tory is initialized at 10%.

Average Percent of Objective Value Achieved

100%

95%

'070%

55%

17% 16? J Z1, W 16 17 4

Figure 4-12: This shows the tradeoff in
objective value with increasingly conser-
vative robust parameter p when inven-
tory is initialized at 5%.

which the stock is initialized to 5%. Notice that in Figure 4-12, the price becomes

even steeper. This is primarily motivated by the pricing aspect of the model, which

adjusts for worst-case realizations of demand and does not price accordingly, resulting

in significantly lower revenues because consumers are not being used to full paying

potential.
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4.4 Conclusions

As is increasingly the case in the majority of online retail settings, the introduction of

new products and arrival of new consumers to the market results in a lack of historical

data from which consumer preferences and demand can be adequately estimated. We

adapt our model of personalized bundle pricing and recommendation in two settings

in order to, (i) incorporate dynamic demand learning within the objective of long-

term profitability over the selling horizon and (ii) incorporate robust optimization

methods. Under setting (i) we construct a generalized modeling framework for this

problem using contextual non-linear multi-armed bandits. To adapt this model to

practical implementation, we develop an approximation method based the coupling

of the first-order Taylor series of the expected reward function with upper confidence

bound approaches. Our method requires no assumptions on the functional form of

the demand other than it being differentiable and generalizes many of the convex

optimization methods in the existing literature. We provide analytical guarantees

on the asymptotic behavior of our algorithm's regret relative to an oracle strategy

that knows the true demand distribution in advance and show that the regret is on

the order of O(V/T), which is independent of the number of products and bundles.

We also present empirical results that show the robust performance of this algorithm

over relevant benchmarks from the existing literature across various functional forms

of demand and numbers of available products, as well as over different lengths con-

sumer arrival sequences. However, we also find that in the cases of demand function

misspecification, the learning model may produce estimation errors that on average

fall into the range of 1-2% in nominal value. Therefore, it is necessary to capture the

uncertainty in the estimated demand values in order to develop a generally robust

modeling approach to our recommendation problem. In setting (ii) we address this

by constructing and analyzing the robust counterparts to our personalized bundle

recommendation model under both polyhedral and ellipsoidal uncertainty sets. Our

results demonstrate that under highly constrained inventory setting it is crucial to

implement robust optimization in the Clairvoyant problem in order to account for
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even very minor errors in demand estimation. More specifically, perturbations in

nominal demand values on the order of the 1% to 2% error resulting from demand

learning errors can result in infeasibility of the recommended offers in up to 70%

of problem instances when inventory is highly constrained. We also gain interesting

insights into the price of robustness as related to the underlying recommendation

problem structure. We find that the incorporation of a pricing problem also shows

that overly conservative methods steeply increase the price of robustness because the

bundle offers are made with unnecessarily low discounts, sacrificing margin that could

potentially be extracted from consumers.
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Chapter 5

Conclusions

The work in this thesis spans several prevalent fields of research within the grow-

ing revenue management literature, including personalized assortment optimization,

assortment planning under inventory constraints, dynamic pricing, cross-selling and

online demand learning. Specifically, we study the intersection of these methodologies

within the context of data-driven personalized bundle pricing and product recommen-

dation in the online setting.

As demonstrated by leading market forecasts, the online channel stands to inherit

a significant proportion of the market across all industries, and is also a rapidly grow-

ing avenue of opportunity for any business interested in offering customized consumer

experiences. Thus, gaining the competitive edge this sector is of utmost importance

to any firm's online success. We delve into this problem by developing a new modeling

approach that combines many existing branches of literature and is thus innovative

from an analytical standpoint and potentially promising from a practical one. Having

constructed the analytical framework, it is also important to emphasize the need for

tractability due to the particular context of this problem. Therefore, the development

of approximation algorithms is crucial in order to apply this complex model to the

online setting as originally intended. We find that the analytical guarantees of such

approximation approaches are often conservative relative to their actual empirical

performance on real data.

In addition to providing analytical insights into the structure of this complicated
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problem, it is important to also demonstrate the practical performance of approxi-

mation methods in order to justify the use of these approaches in business implemen-

tations. The case study analyses show that these algorithms are not only viable by

providing real-time outputs, but also perform significantly better than their analytical

guarantees and can obtain expected revenues of up to 98% of a full-knowledge oracle

strategy that is an unattainable benchmark in practice. Developing methods whose

outputs that are not only efficient in real-time but also of good quality is imperative

to practical applications. Furthermore, in-depth analysis of each case study in detail

allowed us to extract a wide range of insights that could potentially be of great use

to online sellers employing personalized targeting and pricing strategies.

Lastly, we extend the original framework of our problem to the setting where de-

mand may be subject to various forms of uncertainty, which is increasingly becoming

the case in many business practices with an online channel. We develop two ap-

proaches in this context, based on (i) dynamic learning and (ii) robust optimization.

For the dynamic learning setting we construct a generalized approach in the form of

a model for personalized bundle offers that incorporates learning, along with a cor-

responding approximation algorithm that applies to very general demand functions.

This method generalizes many current optimization approaches for dynamic learning

in the literature and provides analytical guarantees on the asymptotic behavior of the

regret, which is important to developing practical applications. Our empirical studies

confirm that this approach is effective and outperforms existing baseline methods,

and is thus a feasible and promising option for business implementation. However,

we also establish that demand learning is inherently subject to error, particularly in

a personalized dynamic setting. Therefore, we extend our analysis of demand uncer-

tainty to the robust optimization setting, in which we develop the robust counterparts

to the product recommendation problem under both polyhedral and ellipsoidal uncer-

tainty sets. We demonstrate that under increasingly constrained inventory settings,

it is crucial to capture demand uncertainty to mitigate the effects of error in estima-

tion. Furthermore, we conclude that the cost of robustness is marginal relative to the

likelihood of infeasibility in these scenarios.

134



Thus, this thesis demonstrates the benefits of adapting realistic business problems

to revenue management in order to both expand analytical developments in this

field, as well as develop methods to improve and significantly impact current business

operations across a wide range of industries. A potential extension to this work could

include the consideration of other learning algorithms, as well as the incorporation of

external factors such as competition between firms and their corresponding effect on

personalized pricing strategies.
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Appendix A

Appendix of Chapter 2

A.1 Modeling Notation

We provide the following summary of model parameters for the dynamic programming

formulation of the personalized bundle pricing and recommendation model presented

in Section 2.2. We provide the formulation below again for reference:

maximize
Sk,t CS, PSk.t 1t

Vkt(Ikt)

subject to Vk,t(Ik ) > s (PSk,t) 1' P
scS ~ ~ y Z.dS)

S(PSkt - PSk,t)

VKt+1,t(I) 1,t+1)

(1 - OPSk~t < PS'k,t < PSk.

]{Sk,tCS} + k+,t(I' - es))

VKt, t = 1, . IT
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Data Parameters for Dynamic Programming Formulation

A demand group; related items whose respective demand depends on the prices of the other items.
S

This set is indexed by i 1.n and can include substitutable, complementary and independent items.

K
t  

The total number of consumers that arrive during period t, indexed by k 1 K
t

.

The nominal price of a given product i E S during period t.

Psi, The nominal price of bundle Ski; a scalar value given by pSfg = teSt P
pt The vector of all nominal prices [pt pt ... pt ] for the demand group S during period t.

PSk, The vector appended with the nominal price of the bundle: ps t p ] = [p p ... Pt PsJ.
The vector appended with the discounted price of the bundle: Pgk= [pi iss] = [pi Pl ... Pi psj.

k,t The probability that consumer k will purchase product set S if the personalized bundle Skt is offered at the price pSk.

es A bundle (or single product) unit vector that is 0 for all i S and 1 for all i E S.

Ik,t Inventory of all SKUs at time of arrival of consumer k during period t. This a vector representing the state

of the system, explicity defined by I Ik-t [t 1 kt k

Decision Variables (Output)

Skt The optimal bundle to recommend for consumer k at their arrival during period t.

PSk, The optimal price of the recommended bundle Skt for consumer k during period t.

Table A.1: This table summarizes the data parameters and the decision variables for
the full model formulation written in (A.1) above.

A.2 Proofs of Multiplicative Algorithm Results

A.2.1 Proof of Theorem 1

Proof of Lower Bound:

Proof. Proof of Theorem 1 We are interested in providing an analytical guarantee on

the competitive ratio between the multiplicative algorithm and the optimal clairvoy-

ant strategy. Specifically, we want to attain a lower bound on the performance of the

following model, whose objective we will now refer to as {MultAlg}V(k,t):

{MultAlg}V(k,t) = maximize
SktCS, PSk

subject to

n/ kt 
(PSkt) A Ji- 9

+ S(Ps.)(Psk, - s,, -min

(1 - VPskt 5 PSk.t < Pskt V(k, t), Sk,t C S

For any given sequence of customers {k, t}kT t, we have the following primal

{Clairvoyant} problem that has full knowledge of all arrival types in advance, as
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presented in Section 2.2:

ET 1 K
t  

([n kI(maximize ps )

+ O'(Ps) PS -Ps -
2 )'

/ (A.1)
T Kt  Kkt(1 (kj kt(A1

subject to [ sk, k s V

Z S Y kC t =1 V (k, t)

Y k t 0 V(k, t), c
YSkt 0 Sk,t C

By weak duality we aim to find the following lower bound on the competitive ratio

between our algorithm and the clairvoyant primal problem:

{MultAlg}V(k,t) {MultAlg}V(k,t)

{Clairvoyant} - {Dual}

We let the price of the bundle Sk,t offered to consumer (k, t) be PSk,, defined explicitly

by the bundle discount price ratio dskt as follows,

d~t PSk~td Sk,= --
PSk.t

Thus in order to derive the desired bound on the ratio of the primal problem using

weak duality, we consider its dual given by {Dual}V(k,t) below,

n T

mi E ,0 - i+EEAk,t
i=1 t=1 kEKt

subject to A (PS 0-)
I 2](A.2)

+~ [s'X(Ps2 ,) 5 - (dsk, - 1) V(k, t),Skt cS
iESk

Oi > 0 Vi

For the dual problem in equation (A.2), based on the choices of consumers in the

sequence {k, t}T(kt)t=1, we utilize the result from Proposition 1 to consider the fol-

lowing dual feasible solution, where Ii is the initial inventory of product i and p' is
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the corresponding initial nominal price setting:

oi - ,P (10 Vi

k~ k, (Pk. +~ S [.:P~ (dsk -1)1 , t
i1 -iESk .t

We now want to find the expected value of this dual feasible solution as it will give

us an upper bound on the expected objective of the primal problem by weak duality.

Since we have a fixed sequence {k, t}kT the expectation is taken relative to each

consumer's purchase decision, given the current state of inventory {f It 1 , Ik}.

By Lemma 4, we obtain the following expression for the expectation over the dual

feasible variables ^kt:

T Kt n (T T

t=1 k=1 i=1 t=1 J=j +1 t=1

We define the time-dependent constant Mt with the following expression:

Kt

M t - max Ok5 t -b> pt)>V(dk
Sk~tC, dsSk (PSk (t)- Sk, )

Sk.tCSdskt k=1 iESk t

We thus get the following form for our expected dual objective denoted {Dual}:

T Kt n n - T T

t=1 k=1 i=1 i=1 -t=1 1=1Z +I t=1

We want to now compare the expected objective values of the dual problem calculated

above to the expected value of the proposed heuristic approach, which we defined as

{ MultAlg}V(k,t). The expected revenue can be written as follows from Proposition 5,

denoted {MultAlg}V(k,t):

T Kt n T

S(PSk ) - - M
t=1 k=1 i=1 t=1

We can now revisit the original goal to use weak duality and finally derive the following
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desired ratio:

{MultAlg}V(k,t) >
{Clairvoyant} -

=1  = Zi k1'
t (PSkt) ' - U1

Ez 1 [z_1 + I) + pi (1 - -I =PMt

However, this bound is path-dependent and relies on knowledge of the final inventory

levels in order to calculate a value. We want to now develop a bound that depends

solely on the initial conditions to compare our algorithm to the clairvoyant approach.

We therefore work to bound it further to develop a worst-case analytical guarantee

that is dependent only on initial inventory levels and expected demand (by using

arrival rate estimates for consumer types to calculate C1 = q'(ps )). We

recall the time-dependent price trajectory definitions:

at = -i Vi, t, as determined by formulation (2.8) of the upper-level problem

in Section 2.3.1,
-t

S= Pit Vi, t, as determined by formulation (2.4) of the Clairvoyant problem.
-o

(A.3)

Based on the above expression, cf and Ot are the extent of the discount on the full

price of item i in period t from its initial setting at p2, which is common to both

the Clairvoyant and our upper-level method from formulation 2.8. Note that both

algorithms are provided with these nominal price discounts in advance. Thus, we get

the result below:

{MultAlg}V(kt) 

{Clairvoyant}

T 1 + En 1  1k'
t Ms) -z

T  M t

> Et= k=~ i=1 i (PSk.f) - t= T=1M
9 ET 1 1~t ok S ET Mt

by Eq. (A.3),
P . T1 +1 T Mt

T1 K
t kt1 T Mt

Et=k=1 ki (PSk#t) at E t-i
> min Lemma 6.

(10,IT):IT< I - +-1 1
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By considering the discount factors a' and Of for each product i in period t, we are

able to isolate the constant p and reduce the outer summation using a minimization,

as a result of Lemma 6. We now introduce a change of variable by considering x =T

and get the following equivalent expressions.

T 1  1  S' ) - 1 
T M t

min
(I9'x):X<1i 1 T I E -t

i i M (1

1 ET 1 ZK1l k T 1

= minT1 Pk)

(I9,x):x$1- 1 T li - +T t

In the second expression we scale all of the terms by , so that we can apply the

property below, which is the result of Lemma 7.
10

< + 7+1 j (y)dy
l =IT+l 1 '

By applying this to the previous expression we get the following result,

1 E 1 7Kt Z~ 1 1T zT A t
k= i'P )-4- 7k

(I9,x):x - 2 1  ( ) 1 .f itlMT

Finally we introduce In min 'I (and symmetrically also Inax, and Imax). We also

define i m t 
t (ps) - a and by definition conclude the following result,

1 T Kt Rkt 1 1 T Mt
mm E=1 l Rt - -m M

(I _X):Xx1- 1 x(y)dy .1+=(+- J =Z Mt

This completes the proof of Theorem 1. El
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A.2.2 Proof of Proposition 1

Proposition 1. For the dual problem presented in formulation (A.2), the following

is a dual feasible solution, where Ii is the initial inventory of product i and pi is the

initial nominal price setting for product i:

'110 =Vi

+ A - s (Ps, ) dsk, + -1) 1) - S, (Psk,t) - 1 V(k, t)

Proof. Proof of Proposition 1 Given the formulation of {Dual}v(k,t) presented in equa-

tion (A.2), we want to show the following two conditions:

(1) Akk t 5 [ k'(PS)(p - 0i)

+ E $*t(Ps.) (p -ds -2)- 's.(Ps.) (p - ) VkSk, t C

(2) Oi > 0 Vi

Let us first focus on the more challenging condition (1). We define a new term as

follows:

Ot = - t Vi, t (A.4)

Note that this new term Ot is based on the nominal price pt for product i in period

t. Thus, pt < p', because all nominal prices follow a markdown trajectory over time.

Therefore,

< = bi (A.5)
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We can now show feasibility using this new terminology as follows:

(P ) p. [ -:(~~(s.+ <)~-4XPk~ ,(~)

n [( )T -I(

F (P

+ z - ( $L (PSk )9- ($k't9 ) + s4 Psk ) p (ds, - 1)

= ~[<tPsi ) - o]+ iz [~:Sk(pI )-pd ) - '4(PSk(P - D

+ .3 q5 -k~ (Pki)d + [ _110k - O) - - f)]

i= iESk1

We get the second inequality from the fact that 4'(-) is concave and increasing and

IK J I Vt =1, ... , T. Note that it is key here that the expression ,s(Psk,) -

s (PSk ,) ;> 0, ensuring that all the quantities by which (-) is multiplied are pos-

itive. The third equality comes directly from the definition of O in equation (A.4);

finally this leads to the last inequality by applying equation (A.5). For condition (2)

concerning Oi, showing feasibility is trivial. As stated, 4'(-) is a concave monotone

increasing function defined on [0,1], so p- (-) k Nk . Thus 0 =t > 0 Vi by

definition.D

A.2.3 Proof of Lemma 4

Lemma 4. For a fixed arrival sequence {k, t}v tt, the expected value of the ex-

pectation of the duals variables \k~ is defined by the expression:

T Kt n T I T

E AZ ' : -kt E E E t + E Mt. Lt -I
t=1 k=1 i=1 t=1 J=J +1 t=1
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Proof. For a fixed arrival sequence {k, t}k _1, we want to find the expected value

of the objective function of the dual of the Clairvoyant problem. We define a binary

variable Q' t 1 if item i is purchased at time t, and is 0 otherwise. We first use this

to consider the expectation E _ ] over consumer choices below:

ktjI -
T Kt

E E
t=1 k=1 (kt

'10

S Psk

]
+ :(Psk ,) '-' (ds, - 1)])+ 1S -

4~k, 2

Ik+t t')~ ib

(4sk, 2 )
O~k (Psk.2 ) - +4: (PSk,t ) i Sk~

- 1)]1

(io t)I

-ds ) + s .sk, 2 )- (dt

n T

t=1 J jt+j

1)]

)
- ds, -

n

=1

=1

Tf

t=1 J=jt+1

T 1 1+

t=1 J=jt+1 ( T1io)

)

)

T

+ z
t=1

T

+E Mt
t=1

(L

(L -1)

(A.7)

Note that the first inequality comes from the fact that the discount dskt PSk < 1
PSk,t

and (Ps ) > s) The second inequality comes from applying Lipschitz

continuity to the expression s(t - ( , from which we derive the fol-
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lowing value of Lt:

Lt = E-pt - (I - -Y) Vt = 1, ...,I T,
i=1

where e't min0 $kt (skt) for all t = 1, ... , T, and the maximum discount of any
Sk,te S '

given bundle is lower bounded by a constant, resulting in dsk,, > 7Y. We derive this

in detail in Proposition 2. In the third inequality we use the fact that 0(-) C [0, 1]

and finally that the discount ratio dsk,, will be at most some 6 < 1 within any given

period t, providing us with the following expression:

Mt = max
Sk,teS

Kt

$k,t(f)Sk ) - P '-

k=1 iESk,t

Eli

A.2.4 Proof of Proposition 2

Proposition 2. The Lipschitz continuity factor Lt representing the quantity s Ps)

kt (Psz,,) is given by,

Lt = Lt = C- (1 - -Y), where e = min p/sj (Pskt) Vt
i=1 Sk, GS

where the minimum in c is taken over all arrivals k = 1, ... , Kt in a given period

t, -y is the maximum possible bundle discount available in any period, and Ct is the

Lipschitz continuity constant that depends on the nominal price settings pt.

Proof. Proof of Proposition 2 We are interested in approximating the quantity,

#<t(Ps ) - 0 St (PSkl)
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used in the calculation of equation (A.7) of the expectation of Ak't We apply the

definition of Lipschitz continuity to the demand function 0(-) to derive Lt as follows:

k(Ps, - k,t)| C IPS - PSk,, by Lipschitz continuity of #(-),

Sk,,t (Pskf)- 1 ( -|I -PS
kt0 skj (P Sk.

Osk (P,) kt C -iSk - PSk110 S 
Ii P I

~,k,t Sk t (SIi) -1 Ct 
i)Sk,< PSkjt

Sk,1 - 1 C- p -11 - dskj, by definition of pSk, and ds

kS (P), 1 P Ct (-0 (Ps,)- (1 dsk t ft m m !(Psk.)
#0Skt (Psk) se

Note that ct is defined differently in each period t depending on both the settings of

the nominal prices p' and the bundles Sk,t (and corresponding discounts dsk,) offered

in that period. In the calculation of the expectation of Akt in equation (A.7) we

use an additional 0s (Ps,) in order to construct our period dependent profit loss

term Mt and thus introduce et to maintain the final inequality with this extra term.

Furthermore, it is a realistic business assumption that the maximum discount given

on any product i in any period t is bounded, giving us dsk., > 7y. Thus we define our

desired Lipschitz continuity factor by,

Lt = C- pt - (I - - ) Vt = 1,.. T.

Note that the above definition can be further simplified to a single constant with a

maximization over all time periods t. El

A.2.5 Proof of Lemma 5

Lemma 5. Given a fixed consumer arrival sequence {k, t}T 1 , the expected value

of the objective function of {MultAlg}v(kt) is given by the expression:

n TK 1 Kn T K

i=1 t=1 k=1 l= 1i=1 t=1 k=1 lI+
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Proof. Given a fixed consumer arrival sequence {k, t} t we can derive the ob-

jective value of the multiplicative approximation algorithm as follows:

E [{MultAlg}V(kt) =

T Kt

= E E
t=1 k=1

T Kt

> E E1
t=1 k=1

T Kt

E E
t=1 k=1

T Kt

=E E1
t=1 k=1

T Kt

>E EE
t=1 k=1

T Kt

> E E
t=1 k=1

O/4'(PSk,l)

~k,t (P
#i (ps,) - )

n

# (P ~)

n

n

(ps

n
(ps

i= (P kt

+ s (PSk,)PSk.. -s

- t (Ps, I s

i -0 t (p ) -m
ESk iES.2 ES

-t Ok~ ~b'~s) minb

- sk' (Ps~ ) - nEk~
iESkEk

iESk t

n

i (P kt

( k,t jO12

k(t

b _1
101

it

101

/ ktk ~ V \li

Kt n

k=1 (i=1 ( kj

Kt

1 (PS -

The second equality comes directly from the definition of a nominal bundle price psk.

The third inequality comes from the fact that by definition, <bC'>(ps,) sks)

as it encompasses the bundle purchase probability at nominal price. In the fourth

inequality we remove the minimum, giving us a lower bounding quantity since this

term is negative. El
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A.2.6 Proof of Lemma 6

Lemma 6. Given a fixed set of constants a Vi = 1, ... , n and corresponding variables

xi and yi, the following property holds:

E n > min -

Proof. Proof of Lemma 6 We want to show that we can lower bound the ratio of two

sums with the same weights ai and different variable values xi and yj using a minimum

over the ratios of all the variable pairs xi, yi. Let us first define the following term,

& = min
i y

By the definition of a we know that xi > - y, Vi. Therefore, we get the following

result as desired,

En aixi n Z~-ai(&yi) Xim
n=a > ne cea d = min .

K_1 ai -y E= ai yi i yi

A.2.7 Proof of Lemma 7

Lemma 7. Given a monotone increasing function V)(.) and an increasing set of con-

stants x = XO,..., XN, the following condition holds,

XN-1 xN

Z b (X) < JX V(y)dy
X=EQ

Proof. Proof of Lemma 7 By definition of the values of x, we know that xo < x1 <

... <X N. Since V(.) is a monotone increasing function we have that V) (x) ;> V(xi) Vx e

[xi, Xi + 1]. If we integrate this expression over [xi, xi + 1] for a fixed value of xi we
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get,

I x +1
jXi

O(x)dx

Rewriting the left hand expression through a summation we precisely get the desired

result,

XN-1 XN

E )(X) < JXX )(y) dy.
X=30 =3

El
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Appendix B

Appendix of Chapter 3

B.1 Supplemental Figures for Airline Case Study

Distribution of Consumers Across Tier Levels

In Figure B-1 below is a summary of the distribution of consumers in the airline case

study across the four possible tier levels, as provided by the airline. Note that very

few consumers attain the higher levels, which require a great deal of very frequent

travel.

Percentage of Members per Tier Level

Platinum 152%

Sliver, 13.33%

Bronze, 74.53%

Figure B-1: This chart summarizes the distribution
airline tier levels.

of consumers across the various
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Description of Persona Clusters

We used k-means clustering to develop the persona groups in the airline case study.

We ultimately constructed 7 distinct clusters based on both personalized and itinerary

context related features. The below descriptions in Figure B-2 explain how some of

these features influenced the various cluster compositions.

Premium Business Traveler

Economy Business Traveler

Famrlies

Leisure Couples

High-End Couples

Leisure Individuals

High-End Individuals

High tier level, short time to departure, high fare, traveling on week days, single passenger

High tier level, short time until departure, lower fare, traveling on week days, single passenger

At least 3 passengers in booking, longer time before departure, most previous trips in econ.

Tier level Skywards or Silver, 2 passengers in booking, previous trips in econ. class

Tier level Gold or Platinum, 2 passengers in booking, at least 1 trip in prem. class

Tier level Skywards or Silver, single passenger, longer time before departure

Gold or Platinum Tier, single passenger, min. 1 trip in prem. class, longer time before departure

Figure B-2: This table details some of the descriptive features that define each of the
airline persona clusters.

Price Elasticities by Persona Type

We extracted the following price elasticity relationships between each (persona type,

ancillary service) pair as a result of fitting our pairwise models of propensity-to-buy.

Note that Figure B-3 is fairly intuitive: lower-elasticity types are more frequent and

higher tier consumers such as business travelers in premium, as well as higher-end

leisure single travelers and couples. Similarly, family groups have typically higher

elasticities across all products unanimously.

Wifl Prenium on board Priority Priority Priority baggage Comfort seats Checked /Excess VIP lounge Gourmet Bonus miles Bonus miles
access entertainment security boarding handling /upgrade seats baggage access meals 2000 4000

BusTravPREM 11" .. - - - - - - ,07 -2,03

BusTravECON -1.58 -186 -1.22 -1.51 -2.63 -1.82 -2.43 -1.87 -1.53 -. 10 -2.43

Family -2.26 -2.32 -3,15 -2.66 -3.04 -2.60 -2.78 -1.89

LastMinGroup -2.56 -3.21 -321 -3.14 4 -2.06 -2.06

CoupleNormal -1.92 3 -2.96 -2.68 -2.84 -2.93 -2.07 -2.47 -283 1.25 -2.76

CoupleHighEnd 1L -1.86 -134 -1.07 -2.17 -1.85 -1.41 -1.85 -1.95 -1.93 -2.98

LeisTravNornal -2.33 -2.17 -2.35 -2.15 , -1.59 -2.56 -2.22 -2.65 -1.19 -2.79

LeisTravHighEnd R -, 4ka-, -1.83 -1.71 -1.47 -1.20 -1.03 -L69

Figure B-3: This table details the pairwise price elasticities between each consumer
persona cluster and ancillary service.
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Expected Gains in Revenue and Sales for Various Levels of Lost Sales

By introducing parameter a, we are able to capture the percentage of consumers who

are entirely unaware of the existence of ancillary services, and simply exit the ticket

transaction without considering them at all. By considering varying levels of a we

can objectively weigh the effect of product recommendation of ancillary goods in this

setting. The below tables are the expected lifts in revenue, Figure B-4, and expected

lifts in sales volume, Figure B-5, over the baseline method which offers all of the

ancillary products at their full prices. Notice that as we reach higher levels of lost

sales, the method proposed by our personalized pricing and recommendation model

shows significantly more improvement over this baseline.

Total Lift in Rcvowmi Total Lift in Sales

.00% -00%
100% 7.00%

.00% .-00%
0.00% 5.00%

4.00% -- 4.00% O-0
.00 003 3.00% - oo0

23.00% N -.0ggaeaO0.10

100%Uno

Figure B-4: This graph shows the Figure B-5: This graph shows the ex-
expected improvement in revenue by pected improvement in sales volume
implementing our model over the by implementing our model over the
no-pricing benchmark across various no-pricing benchmark across various
levels of lost sales. levels of lost sales.

Empirical Model Performance with Simulated Inventory

While inventory constraints were not inherently present in this data set, we narrowed

our scope to consider ancillary services with reasonably limited stock, such as in-

flight wi-fi, excess checked baggage, VIP lounge access, and seating upgrades. Across

all of these products, we measured the average expected revenue achieved by each

of our various approximation heuristics and benchmark methods relative to the full-

knowledge Clairvoyant model and summarized the results in Figure B-6 below.

Note that using a dynamic pricing approach over a rolling LP model with static price

settings improves expected revenue by 5.4%. Incorporating inventory considerations

as opposed to implementing a myopic profit-maximizing approach improves the ex-

pected revenue by 3.7%. Furthermore, our best-performing approximation method,
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Empirical Results Across Models
IO%- 10%

90% 9%

110% 3

70% 1%
20% 2%

10% 1%

0% 0%
Aaeal Ro~iog LP Myoic Model Exponeiml Segambl~e LAFmigm Cb&amYNU

HWGtica model Madujdleozive Additive Additive Model
Prices AlPetbar Aipeilem Aipahm

m%ctaaioyWot Oens. *Cmvumore gula

Figure B-6: This table summarizes the average empirical performance of the various
approximation methods and benchmarks with simulated inventory, relative to the
full-knowledge strategy.

the ALA, achieves on average up to 98.4% of the Clairvoyant revenue across all prod-

ucts, personas and inventory scenarios. When compared to the currently implemented

baseline approach of offering all ancillary products at full prices, we obtain up to a

12.6% expected gain in revenue overall.
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B.2 Supplemental Figures for Retail Case Study

Distribution of Expenditure and Market Basket Size per Transaction

In order to develop our personalization metrics we analyzed population-level behavior

of the cumulative expenditure and number of consumer visits in the entire two year

selling period. To initially understand the consumer spending behavior in this data

set, we analyzed the distribution of market basket sizes, as shown in Figure B-7, and

corresponding transaction-level expenditure, as shown in Figure B-8.

Figure B-7: This plot shows distribution Figure B-8: This plot shows distribution

of market basket sizes per transaction of expenditure per transaction across the

across the entire data set. entire data set.

Distribution of Cumulative Expenditure Across Entire Population

Having noted the general low transaction-level spending and market basket compo-

sition size, we decided to focus on cumulative metrics in order to construct person-

alization in this data set. The plot below in Figure B-9 summarizes the cumulative

expenditure for all the consumers in the retail data set.
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Distibution of Cumulative Expenditure

4,00,000 - - - -- - - - - - -- - - - --- --- - - ---

1000

800

S2 0 660 OW0 1000
CunUidive EapeMabif

Figure B-9: This histogram summarizes cumulative consumer expenditure across all
of the consumer population in the entire two year selling period.

Cumulative Number of Consumer Visits by Loyalty Group

As the retail data was innately missing individualized features outside of customer IDs

and transaction IDs, we developed our own metrics of personalization in order to fit

the desired models of propensity-to-buy. We focused on cumulative expenditure and

cumulative number of shopping visits to distinguish consumers into various loyalty

groups.

Figure B-10: This plot shows the cumula- Figure B-11: This plot shows the cumu-
tive expenditure over time of the medium lative expenditure over time of the high
frequency loyalty group. frequency loyalty group.

In Figures B-10 and B-11 we show the time-dependent behavior of cumulative con-

sumer expenditure across the two more frequency loyalty groups. Note that high

frequency consumers spend above the mean amount as determined by the previous
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histogram in Figure B-9.

Sold Quantities and Charged Amounts for Products in Demand Group 4

We chose to analyze products in the seasonal home decor department due to their

inherent full pricing strategies. These products, as demonstrated in Figures B-12 and

B-13 generate the most revenue when sold as bundles, but also the least sales. From

a business perspective, the goal of our bundle recommendation system is precisely

to convert the lower sales in Figure B-12 in order to improve revenues of the higher

charged quantities in Figure B-13.

Total Sold Quantity
3500

3000

2500

2000 -T

1000 
- - PH

500

0
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 27 28 29 30 31 32 33 34 35 36 37 38

Week Number

Figure B-12: This plot shows the sold quantity of product combinations from Demand
Group 4.

Mean Net Charged Amount

$14

512

510

-PH

Z -T+PH

52

5- -

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Week Numbe

Figure B-13: This plot shows the charged amount for product combinations from
Demand Group 4.
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Appendix C

Appendix of Chapter 4

C.1 Positioning Relative to Existing Literature
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Relevant Literature on Contextual Multi-Armed Bandit Theory

Reward Number Reward Problem Regret
Paper Structure of Depend- Constr- Similarity Difference Character- Description

Pulls ence aints izations

Contextual
Auer'02 Linear 1 None None (changing Non-linear Depend First paper

_______________ ~contexts)eneoK dipar

Improved

Contextual Conditional No bounds

Yadkori'11 Linear 1 None None (changing R-sub depend- using
contexts) Gaussian ence on K alizednor-

bounds

First

Badanidi- Knapsack Knapsack Depend- paper

yuru'13 None 1 None con- con- No contexts ence on K on ban-
straint straint dits with

knapsack

Arbitrary First pa-
contexts Regret on per for

Badanidi- Knapsack allowed; policy space, contextual
yuru'14 None 1 None con- reward Distribution bandits

straints can be of reward, with
non- context knapsacks

linear.

First pa-

Contexts are per with
Non- Convex Convex known before Independ- concave

Agarwal'14 linear 1 None con- con- starting the ence from rewards
straet straat algorithm K and knap-

sack con-
straints

Reward and
Extension consumption Main fo-to IID drawnKnapsack to IDdancus on

, Non- Knapsao k concave from a joint cospu-
garwlinear stNrne ain-s objective, distribution. tonal

con- Policy space efficiency
straints to bound

regret

Extension
Linear of BaA214

Knapsack reward Independ- but only

Agarwal'16 Linear 1 None con- whits it Reward is ence from
straints generated linear K case. No

from IID policy
sample space

needed

Each arm

Non- Multiple score is
Qin'14 lin- Subset None None Mull created which Depend-linear pulls can be ence on K

observed.

Non- Can Can Knapsack RegretThis Work be be con-
r either either straints

Table C.1: This table summarizes the relevant literature on contextual multi-armed
bandit theory and positions our work relative to the existing models in this field.
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