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REGULARITY THEORY FOR 2-DIMENSIONAL ALMOST MINIMAL
CURRENTS II: BRANCHED CENTER MANIFOLD

CAMILLO DE LELLIS, EMANUELE SPADARO AND LUCA SPOLAOR

Abstract. We construct a branched center manifold in a neighborhood of a singular
point of a 2-dimensional integral current which is almost minimizing in a suitable sense.
Our construction is the first half of an argument which shows the discreteness of the
singular set for the following three classes of 2-dimensional currents: area minimizing in
Riemannian manifolds, semicalibrated and spherical cross sections of 3-dimensional area
minimizing cones.

This paper is the third in a series of works aimed at establishing an optimal regular-
ity theory for 2-dimensional integral currents which are almost minimizing in a suitable
sense. Building upon the monumental work of Almgren [1], Chang in [4] established that
2-dimensional area minimizing currents in Riemannian manifolds are classical minimal
surfaces, namely they are regular (in the interior) except for a discrete set of branching
singularities. The argument of Chang is however not entirely complete since a key start-
ing point of his analysis, the existence of the so-called “branched center manifold”, is only
sketched in the appendix of [4] and requires the understanding (and a suitable modification)
of the most involved portion of the monograph [1].

An alternative proof of Chang’s theorem has been found by Rivière and Tian in [16] for
the special case of J-holomorphic curves. Later on the approach of Rivière and Tian has
been generalized by Bellettini and Rivière in [3] to handle a case which is not covered by
[4], namely that of special Legendrian cycles in S5 (see also [2] for a further generalization).

Meanwhile the first and second author revisited Almgren’s theory giving a much shorter
version of his program for proving that area minimizing currents are regular up to a set of
Hausdorff codimension 2, cf. [6, 8, 7, 9, 10]. In this note and its companion papers [11, 12]
we build upon the latter works in order to give a complete regularity theory which includes
both the theorems of Chang and Bellettini-Rivière as special cases. In order to be more
precise, we introduce the following terminology (cf. [13, Definition 0.3]).

Definition 0.1. Let Σ ⊂ Rm+n be a C2 submanifold and U ⊂ Rm+n an open set.

(a) An m-dimensional integral current T with finite mass and spt(T ) ⊂ Σ ∩ U is area
minimizing in Σ ∩ U if M(T + ∂S) ≥ M(T ) for any m + 1-dimensional integral
current S with spt(S) ⊂⊂ Σ ∩ U .

(b) A semicalibration (in Σ) is a C1 m-form ω on Σ such that ‖ωx‖c ≤ 1 at every
x ∈ Σ, where ‖·‖c denotes the comass norm on ΛmTxΣ. An m-dimensional integral

current T with spt(T ) ⊂ Σ is semicalibrated by ω if ωx(~T ) = 1 for ‖T‖-a.e. x.
1
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(c) An m-dimensional integral current T supported in ∂BR̄(p) ⊂ Rm+n is a spherical
cross-section of an area minimizing cone if p××T is area minimizing.

In what follows, given an integer rectifiable current T , we denote by Reg(T ) the subset
of spt(T ) \ spt(∂T ) consisting of those points x for which there is a neighborhood U such
that T U is a (constant multiple of) a C2 submanifold. Correspondingly, Sing(T ) is the
set spt(T )\(spt(∂T )∪Reg(T )). Observe that Reg(T ) is relatively open in spt(T )\spt(∂T )
and thus Sing(T ) is relatively closed. The main result of this and the works [11, 12] is then
the following

Theorem 0.2. Let m = 2 and T be as in (a), (b) or (c) of Definition 0.1. Assume in
addition that Σ is of class C3,ε0 (in case (a) and (b)) and ω of class C2,ε0 (in case (b)) for
some positive ε0. Then Sing(T ) is discrete.

Clearly Chang’s result is covered by case (a). As for the case of special Lagrangian cycles
considered by Bellettini and Rivière in [3] observe that they form a special subclass of both
(b) and (c). Indeed these cycles arise as spherical cross-sections of 3-dimensional special
L.agrangian cones: as such they are then spherical cross sections of area minimizing cones
but they are also semicalibrated by a specific smooth form on S5.

Following the Almgren-Chang program, Theorem 0.2 will be established through a suit-
able “blow-up argument” which requires several tools. The first important tool is the
theory of multiple valued functions, for which we will use the results and terminology of
the papers [6, 8]. The second tool is a suitable approximation result for area minimizing
currents with graphs of multiple valued functions, which for the case at hand has been
established in the preceding note [11]. The last tool is the so-called “center manifold”:
this will be constructed in the present paper, whereas the final argument for Theorem
0.2 will then be given in [12]. We note in passing that all our arguments use heavily the
uniqueness of tangent cones for T . This result is a, by now classical, theorem of White for
area minimizing 2-dimensional currents in the euclidean space, cf. [19]. Chang extended
it to case (a) in the appendix of [4], whereas Pumberger and Rivière covered case (b) in
[15]. A general derivation of these results for a wide class of almost minimizers has been
given in [13]: the theorems in there cover, in particular, all the cases of Definition 0.1.

The proof of Theorem 0.2 is based, as in [4], on an induction statement, cf. Theorem
1.8 below. This and the next paper [12] can be thought as the two main steps in its proof.
For this reason, before detailing the construction of the branched center manifold, which
is the main object of this note, we will state Theorem 1.8, show how Theorem 0.2 follows
from it and give a rough outline of the contributions of this and the next note [12].

0.1. Acknowledgments. The research of Camillo De Lellis and Luca Spolaor has been
supported by the ERC grant RAM (Regularity for Area Minimizing currents), ERC 306247.

1. Preliminaries and the main induction statement

1.1. Basic notation and first main assumptions. For the notation concerning sub-
manifolds Σ ⊂ R2+n we refer to [7, Section 1]. With Br(p) and Br(x) we denote, respec-
tively, the open ball with radius r and center p in R2+n and the open ball with radius r
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and center x in R2. Cr(p) and Cr(x) will always denote the cylinder Br(x) × Rn, where
p = (x, y) ∈ R2 × Rn. We will often need to consider cylinders whose bases are parallel
to other 2-dimensional planes, as well as balls in m-dimensional affine planes. We then
introduce the notation Br(p, π) for Br(p) ∩ (p+ π) and Cr(p, π) for Br(p, π) + π⊥. ei will
denote the unit vectors in the standard basis, π0 the (oriented) plane R2 × {0} and ~π0 the
2-vector e1∧ e2 orienting it. Given an m-dimensional plane π, we denote by pπ and p⊥π the
orthogonal projections onto, respectively, π and its orthogonal complement π⊥. For what
concerns integral currents we use the definitions and the notation of [17]. Since π is used
recurrently for 2-dimensional planes, the 2-dimensional area of the unit circle in R2 will be
denoted by ω2.

By [11, Lemma 1.1] in case (b) we can assume, without loss of generality, that the
ambient manifold Σ coincides with the euclidean space R2+n. In the rest of the paper we
will therefore always make the following

Assumption 1.1. T is an integral current of dimension 2 with bounded support and it
satisfies one of the three conditions (a), (b) or (c) in Definition 0.1. Moreover

• In case (a), Σ ⊂ R2+n is a C3,ε0 submanifold of dimension 2 + n̄ = 2 + n− l, which
is the graph of an entire function Ψ : R2+n̄ → Rl and satisfies the bounds

‖DΨ‖0 ≤ c0 and A := ‖AΣ‖0 ≤ c0, (1.1)

where c0 is a positive (small) dimensional constant and ε0 ∈]0, 1[.
• In case (b) we assume that Σ = R2+n and that the semicalibrating form ω is C2,ε0 .
• In case (c) we assume that T is supported in Σ = ∂BR(p0) for some p0 with
|p0| = R, so that 0 ∈ ∂BR(p0). We assume also that T0∂BR(p0) is R2+n−1 (namely
p0 = (0, . . . , 0,±|p0|) and we let Ψ : R2+n−1 → R be a smooth extension to the
whole space of the function which describes Σ in B2(0). We assume then that (1.1)
holds, which is equivalent to the requirement that R−1 be sufficiently small.

In addition, since the conclusion of Theorem 0.2 is local, by [13, Proposition 0.4] we can
also assume to be always in the following situation.

Assumption 1.2. In addition to Assumption 1.1 we assume the following:

(i) ∂T C2(0, π0) = 0;
(ii) 0 ∈ spt(T ) and the tangent cone at 0 is given by Θ(T, 0) Jπ0K where Θ(T, 0) ∈

N \ {0};
(iii) T is irreducible in any neighborhood U of 0 in the following sense: it is not possible

to find S, Z non-zero integer rectifiable currents in U with ∂S = ∂Z = 0 (in U),
T = S + Z and spt(S) ∩ spt(Z) = {0}.

In order to justify point (iii), observe that we can argue as in the proof of [13, Theorem
3.1]: assuming that in a certain neighborhood U there is a decomposition T = S + Z as
above, it follows from [13, Proposition 2.2] that both S and Z fall in one of the classes
of Definition 0.1. In turn this implies that Θ(S, 0),Θ(Z, 0) ∈ N \ {0} and thus Θ(S, 0) <
Θ(T, 0). We can then replace T with either S or Z. Let T1 = S and argue similarly if it
is not irreducible: obviously we can apply the argument above one more time and find a
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T2 which satisfies all the requirements and has 0 < Θ(T2, 0) < Θ(T1, 0). This process must
stop after at most N = Θ(T, 0) steps: the final current is then necessarily irreducible.

1.2. Branching model. We next introduce an object which will play a key role in the rest
of our work, because it is the basic local model of the singular behavior of a 2-dimensional
area minimizing current: for each positive natural number Q we will denote by BQ,ρ the
flat Riemann surface which is a disk with a conical singularity, in the origin, of angle 2πQ
and radius ρ > 0. More precisely we have

Definition 1.3. BQ,ρ is topologically an open 2-dimensional disk, which we identify with
the topological space {(z, w) ∈ C2 : wQ = z, |z| < ρ}. For each (z0, w0) 6= 0 in BQ,ρ we
consider the connected component D(z0, w0) of BQ,ρ ∩ {(z, w) : |z − z0| < |z0|/2} which
contains (z0, w0). We then consider the smooth manifold given by the atlas

{(D(z, w)), (x1, x2)) : (z, w) ∈ BQ,ρ \ {0}} ,
where (x1, x2) is the function which gives the real and imaginary part of the first complex
coordinate of a generic point of BQ,ρ. On such smooth manifold we consider the following
flat Riemannian metric: on each D(z, w) with the chart (x1, x2) the metric tensor is the
usual euclidean one dx2

1 + dx2
2. Such metric will be called the canonical flat metric and

denoted by eQ.

When Q = 1 we can extend smoothly the metric tensor to the origin and we obtain
the usual euclidean 2-dimensional disk. For Q > 1 the metric tensor does not extend
smoothly to 0, but we can nonetheless complete the induced geodesic distance on BQ,ρ in
a neighborhood of 0: for (z, w) 6= 0 the distance to the origin will then correspond to |z|.
The resulting metric space is a well-known object in the literature, namely a flat Riemann
surface with an isolated conical singularity at the origin (see for instance [20]). Note that
for each z0 and 0 < r ≤ min{|z0|, ρ− |z0|} the set BQ,ρ ∩ {|z − z0| < r} consists then of Q
nonintersecting 2-dimensional disks, each of which is a geodesic ball of BQ,ρ with radius

r and center (z0, wi) for some wi ∈ C with wQi = z0. We then denote each of them by
Br(z0, wi) and treat it as a standard disk in the euclidean 2-dimensional plane (which is
correct from the metric point of view). We use however the same notation for the distance
disk Br(0), namely for the set {(z, w) : |z| < r}, although the latter is not isometric to
the standard euclidean disk. Since this might be create some ambiguity, we will use the
specification R2 ⊃ Br(0) (or R2 ⊃ Br) when referring to the standard disk in R2.

1.3. Admissible Q-branchings. When one of (or both) the parameters Q and ρ are clear
from the context, the corresponding subscript (or both) will be omitted. We will always
treat each point of B as an element of C2, mostly using z and w for the horizontal and
vertical complex coordinates. Often C will be identified with R2 and thus the coordinate z
will be treated as a two-dimensional real vector, avoiding the more cumbersome notation
(x1, x2).

Definition 1.4 (Q-branchings). Let α ∈]0, 1[, b > 1, Q ∈ N \ {0} and n ∈ N \ {0}. An
admissible α-smooth and b-separated Q-branching in R2+n (shortly a Q-branching) is the
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graph
Gr(u) := {(z, u(z, w)) : (z, w) ∈ BQ,2ρ} ⊂ R2+n (1.2)

of a map u : BQ,2ρ → Rn satisfying the following assumptions. For some constant Ci > 0
we have

• u is continuous, u ∈ C3,α on BQ,2ρ \ {0} and u(0) = 0;
• |Dju(z, w)| ≤ Ci|z|1−j+α ∀(z, w) 6= 0 and j ∈ {0, 1, 2, 3};
• [D3u]α,Br(z,w) ≤ Ci|z|−2 for every (z, w) 6= 0 with |z| = 2r;
• If Q > 1, then there is a positive constant cs ∈]0, 1[ such that

min{|u(z, w)− u(z, w′)| : w 6= w′} ≥ 4cs|z|b for all (z, w) 6= 0. (1.3)

The map Φ(z, w) := (z, u(z, w)) will be called the graphical parametrization of the Q-
branching.

Any Q-branching as in the Definition above is an immersed disk in R2+n and can be given
a natural structure as integer rectifiable current, which will be denoted by Gu. For Q = 1
a map u as in Definition 1.4 is a (single valued) C1,α map u : R2 ⊃ B2ρ(0)→ Rn. Although
the term branching is not appropriate in this case, the advantage of our setup is that Q = 1
will not be a special case in the induction statement of Theorem 1.8 below. Observe that
for Q > 1 the map u can be thought as a Q-valued map u : R2 ⊃ B2ρ(0)→ AQ(Rn), setting
u(z) =

∑
(z,wi)∈B Ju(z, wi)K for z 6= 0 and u(0) = Q J0K. The notation Gr(u) and Gu is

then coherent with the corresponding objects defined in [8] for general Q-valued maps.

1.4. The inductive statement. Before coming to the key inductive statement, we need
to introduce some more terminology.

Definition 1.5 (Horned Neighborhood). Let Gr(u) be a b-separated Q-branching. For
every a > b we define the horned neighborhood Vu,a of Gr(u) to be

Vu,a := {(x, y) ∈ R2 × Rn : ∃(x,w) ∈ BQ,2ρ with |y − u(x,w)| < cs|x|a} , (1.4)

where cs is the constant in (1.3).

Definition 1.6 (Excess). Given an m-dimensional current T in Rm+n with finite mass, its
excess in the ball Br(x) and in the cylinder Cr(p, π

′) with respect to the m-plane π are

E(T,Br(p), π) := (2ωm r
m)−1

∫
Br(p)

|~T − ~π|2 d‖T‖ (1.5)

E(T,Cr(p, π
′), π) := (2ωm r

m)−1

∫
Cr(p,π′)

|~T − ~π|2 d‖T‖ . (1.6)

For cylinders we omit the third entry when π = π′, i.e. E(T,Cr(p, π)) := E(T,Cr(p, π), π).
In order to define the spherical excess we consider T as in Assumption 1.1 and we say that
π optimizes the excess of T in a ball Br(x) if

• In case (b)

E(T,Br(x)) := min
τ

E(T,Br(x), τ) = E(T,Br(x), π); (1.7)
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• In case (a) and (c) π ⊂ TxΣ and

E(T,Br(x)) := min
τ⊂TxΣ

E(T,Br(x), τ) = E(T,Br(x), π) . (1.8)

Note in particular that, in case (a) and (c), E(T,Br(x)) differs from the quantity defined
in [10, Definition 1.1], where, although Σ does not coincide with the ambient euclidean
space, τ is allowed to vary among all planes, as in case (b). Thus a notation more consistent
with that of [10] would be, in case (a) and (c), EΣ(T,Br(x)). However, the difference is a
minor one and we prefer to keep our notation simpler.

Our main induction assumption is then the following

Assumption 1.7 (Inductive Assumption). T is as in Assumption 1.1 and 1.2. For some
constants Q̄ ∈ N \ {0} and 0 < α < 1

2Q̄
there is an α-admissible Q̄-branching Gr(u) with

u : BQ̄,2 → Rn such that

(Sep) If Q̄ > 1, u is b-separated for some b > 1; a choice of some b > 1 is fixed also in the
case Q̄ = 1, although in this case the separation condition is empty.

(Hor) spt(T ) ⊂ Vu,a ∪ {0} for some a > b;
(Dec) There exist γ > 0 and a Ci > 0 with the following property. Let p = (x0, y0) ∈

spt(T ) ∩C√2(0) and 4d := |x0| > 0, let V be the connected component of Vu,a ∩
{(x, y) : |x − x0| < d} containing p and let π(p) be the plane tangent to Gr(u) at
the only point of the form (x0, u(x0, wi)) which is contained in V . Then

E(T V,Bσ(p), π(p)) ≤ C2
i d

2γ−2σ2 ∀σ ∈
[

1
2
d(b+1)/2, d

]
. (1.9)

The main inductive step is then the following theorem, where we denote by Tp,r the
rescaled current (ιp,r)]T , through the map ιp,r(q) := (q − p)/r.

Theorem 1.8 (Inductive statement). Let T be as in Assumption 1.7 for some Q̄ = Q0.
Then,

(a) either T is, in a neighborhood of 0, a Q multiple of a Q̄-branching Gr(v);
(b) or there are r > 0 and Q1 > Q0 such that T0,r satisfies Assumption 1.7 with Q̄ = Q1.

Theorem 0.2 follows then easily from Theorem 1.8 and [13].

1.5. Proof of Theorem 0.2. As already mentioned, without loss of generality we can
assume that Assumption 1.1 holds, cf. [13, Lemma 1.1] (the bounds on A and Ψ can be
achieved by a simple scaling argument). Fix now a point p in spt(T ) \ spt(∂T ). Our aim
is to show that T is regular in a punctured neighborhood of p. Without loss of generality
we can assume that p is the origin. Upon suitably decomposing T in some neighborhood
of 0 we can easily assume that (Sep) in Assumption 1.7 holds, cf. the argument of Step
4 in the proof of [13, Theorem 3.1]. Thus, upon suitably rescaling and rotating T we can
assume that π0 is the unique tangent cone to T at 0, cf. [13, Theorem 3.1]. In fact, by
[13, Theorem 3.1] T satisfies Assumption 1.7 with Q̄ = 1: it suffices to chose u ≡ 0 as
admissible smooth branching. If T were not regular in any punctured neighborhood of 0,
we could then apply Theorem 1.8 inductively to find a sequence of rescalings T0,ρj with
ρj ↓ 0 which satisfy Assumption 1.7 with Q̄ = Qj for some strictly increasing sequence of
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integers. It is however elementary that the density Θ(0, T ) bounds Qj from above (see for
instance the argument of the next section leading to Lemma 2.1), which is a contradiction.

2. The branched center manifold

2.1. The overall approach to Theorem 1.8. From now on we fix T satisfying Assump-
tion 1.7. Observe that, without loss of generality, we are always free to replace T by T0,r

with r sufficiently small (and ignore whatever portion falls outside C2(0)). Indeed we will
do this several times. Hence, if we can prove that something holds in a sufficiently small
neighborhood of 0, then we can assume, without loss of generality, that it holds on C2(0).
For this reason we can assume that the constant Ci in Definition 1.4 and Assumption 1.7 is
as small as we want. In turns this implies that there is a well-defined orthogonal projection
P : Vu,a ∩C1 → Gr(u) ∩C2, which is a C2,α map.

By the constancy theorem, (P](T C1)) C1/2 coincides with the current QGu C1/2

(again, we are assuming Ci in Definition 1.4 sufficiently small), where Q ∈ Z. If Q were
0, condition (Dec) in Assumption 1.7 and a simple covering argument would imply that
‖T‖(C1/2(0)) ≤ C0C

2
i , where C0 is a constant depending on n and Q̄. In particular, when

Ci is sufficiently small, this would violate, by the monotonicity formula, the assumption
0 ∈ spt(T ). Thus Q 6= 0. On the other hand condition (Dec) in Assumption 1.7 implies
also that Q must be positive (again, provided Ci is smaller than a geometric constant).

Now, recall from [13, Theorem 3.1] that the density Θ(p, T ) is a positive integer at
any p ∈ spt(T ) \ spt(∂T ). Moreover, the rescaled currents T0,r converge to Θ(0, T ) Jπ0K.
It is easy to see that the rescaled currents (Gu)0,r converge to Q̄ Jπ0K and that (P]T )0,r

converges to Θ(0, T ) Jπ0K. We then conclude that Θ(0, T ) = Q̄Q.
We summarize these conclusions in the following lemma, where we also claim an addi-

tional important bound on the density of T outside 0, which will be proved later.

Lemma 2.1. Let T and u be as in Assumption 1.7 for some Q̄ and sufficiently small Ci.
Then the nearest point projection P : Vu,a ∩ C1 → Gr(u) is a well-defined C2,α map. In
addition there is Q ∈ N \ {0} such that Θ(0, T ) = QQ̄ and the unique tangent cone to T at
0 is QQ̄ Jπ0K. Finally, after possibly rescaling T , Θ(p, T ) ≤ Q for every p ∈ C2 \ {0} and,
for every x ∈ B2(0), each connected component of ({x} ×Rn) ∩Vu,a contains at least one
point of spt(T ).

Since we will assume during the rest of the paper that the above discussion applies, we
summarize the relevant conclusions in the following

Assumption 2.2. T satisfies Assumption 1.7 for some Q̄ and with Ci sufficiently small.
Q ≥ 1 is an integer, Θ(0, T ) = QQ̄ and Θ(p, T ) ≤ Q for all p ∈ C2 \ {0}.

The overall plan to prove Theorem 1.8 is then the following:

(CM) We construct first a branched center manifold, i.e. a second admissible smooth
branching ϕ on BQ̄, and a corresponding Q-valued map N defined on the normal
bundle of Gr(ϕ), which approximates T with a very high degree of accuracy (in
particular more accurately than u) and whose average η ◦N is very small;
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(BU) Assuming that alternative (a) in Theorem 1.8 does not hold, we study the asymp-
totic behavior of N around 0 and use it to build a new admissible smooth branching
v on some BkQ̄ where k ≥ 2 is a factor of Q: this map will then be the one sought
in alternative (b) of Theorem 1.8 and a suitable rescaling of T will lie in a horned
neighborhood of its graph.

The first part of the program is the one achieved in this paper, whereas the second part
will be completed in [12]: in the latter paper we then give the proof of Theorem 1.8. Note
that, when Q = 1, from (BU) we will conclude that alternative (a) necessarily holds: this
will be a simple corollary of the general case, but we observe that it could also be proved
resorting to the classical Allard’s regularity theorem.

2.2. Smallness condition. In several occasions we will need that the ambient manifold
Σ is suitably flat and that the excess of the current T is suitably small. This can, however,
be easily achieved after scaling. More precisely we have the following

Lemma 2.3. Let T be as in the Assumptions 1.7. After possibly rescaling, rotating and
modifying Σ outside C2(0) we can assume that, in case (a) and (c) of Definition 0.1,

(i) Σ is a complete submanifold of R2+n;
(ii) T0Σ = R2+n̄×{0} and, ∀p ∈ Σ, Σ is the graph of a C3,ε0 map Ψp : TpΣ→ (TpΣ)⊥.

Under these assumptions, we denote by c and m0 the following quantities

c := sup{‖DΨp‖C2,ε0 : p ∈ Σ} in the cases (a) and (c) of Definition 0.1 (2.1)

c := ‖dω‖C1,ε0 in case (b) of Definition 0.1 (2.2)

m0 := max
{
c2,E(T,C2, π0), C2

i , c
2
s

}
, (2.3)

where Ci and cs are the constants appearing in Definition 1.4 and Assumption 1.7. Then,
for any ε2 > 0, after possibly rescaling the current by a large factor, we can assume

m0 ≤ ε2 . (2.4)

We postpone the proof of this (simple) technical lemma to a later section.

2.3. Conformal parametrization. In order to carry on the plan outlined in the previous
subsection, it is convenient to use parametrizations of Q-branchings which are not graphical
but instead satisfy a suitable conformality property. To simplify our notation, the map Ψ0

will be simply denoted by Ψ.
If we remove the origin, any admissible Q-branching is a Riemannian submanifold of

R2+n \{0}: this gives a Riemannian tensor g := Φ]e (where e denotes the euclidean metric
on R2+n) on the punctured disk BQ,2ρ \{0}. Note that in (z, w) the difference between the
metric tensor g and the canonical flat metric eQ can be estimated by (a constant times)
|z|2α: thus, as it happens for the canonical flat metric eQ, when Q > 1 it is not possible
to extend the metric g to the origin. However, using well-known arguments in differential
geometry, we can find a conformal map from BQ,r onto a neighborhood of 0 which maps
the conical singularity of BQ,r in the conical singularity of the Q-branching. In fact, we
need the following accurate estimates for such a map.
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Proposition 2.4 (Conformal parametrization). Given an admissible b-separated α-smooth
Q-branching Gr(u) with α < 1/(2Q) there exist a constant C0(Q,α) > 0, a radius r > 0
and functions Ψ : BQ,r → Gr(u) and λ : BQ,r → R+ such that

(i) Ψ is a homeomorphism of BQ,r with a neighborhood of 0 in Gr(u);
(ii) Ψ ∈ C3,α(BQ,r \ {0}), with the estimates

|Dl
(
Ψ(z, w)− (z, 0)

)
| ≤C0Ci|z|1+α−l for l = 0, . . . , 3, z 6= 0 , (2.5)

[D3Ψ]α,Br(z,w) ≤C0Ci|z|−2 for z 6= 0 and r = |z|/2 ; (2.6)

(iii) Ψ is a conformal map with conformal factor λ, namely, if we denote by e the
ambient euclidean metric in R2+n and by eQ the canonical euclidean metric of BQ,r,

g := Ψ]e = λ eQ on BQ,r \ {0}. (2.7)

(iv) The conformal factor λ satisfies

|Dl(λ− 1)(z, w)| ≤C0Ci|z|2α−l for l = 0, 1, . . . , 2 (2.8)

[D2λ]α,Br(z,w) ≤C0Ci|z|α−2 for z 6= 0 and r = |z|/2 . (2.9)

A proof of Proposition 2.4 is given in Appendix B.

Definition 2.5. A map Ψ as in Proposition 2.4 will be called a conformal parametrization
of an admissible Q-branching.

2.4. The center manifold and the approximation. We are finally ready to state the
main theorem of this note.

Theorem 2.6 (Center Manifold Approximation). Let T be as in Assumptions 1.7 and
2.2 and assume in addition that the conclusions of Lemma 2.3 apply (in particular we
might need to replace T by T0,r for r sufficiently small). Then there exist η0, γ0, r0, C > 0,
b > 1, an admissible b-separated γ0-smooth Q̄-branching M, a corresponding conformal
parametrization Ψ : BQ̄,2 → M and a Q-valued map N : BQ̄,2 → AQ(R2+n) with the
following properties:

(i) Q̄Q = Θ(T, 0) and

|D(Ψ(z, w)− (z, 0))| ≤Cm1/2
0 |z|γ0 (2.10)

|D2Ψ(z, w)|+ |z||D3Ψ(z, w)| ≤Cm1/2
0 |z|γ0−1 ; (2.11)

in particular, if we denote by AM the second fundamental form of M\ {0},

|AM(Ψ(z, w))|+ |z||DMAM(Ψ(z, w))| ≤ Cm
1/2
0 |z|γ0−1 .

(ii) N i(z, w) is orthogonal to the tangent plane, at Ψ(z, w), to M.
(iii) If we define S := T0,r0, then spt(S) ∩ C1 \ {0} is contained in a suitable horned

neighborhood of the Q̄-branching M, where the orthogonal projection P onto it is
well-defined. Moreover, for every r ∈]0, 1[ we have

‖N |Br‖0 + sup
p∈spt(S)∩P−1(Ψ(Br))

|p−P(p)| ≤ Cm
1/4
0 r1+γ0/2 . (2.12)
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(iv) If we define

D(r) :=

∫
Br

|DN |2 and H(r) :=

∫
∂Br

|N |2 ,

F(r) :=

∫ r

0

H(t)

t2− γ0
dt and Λ(r) := D(r) + F(r) ,

then the following estimates hold for every r ∈]0, 1[:

Lip(N |Br) ≤C min{Λη0(r),mη0

0 r
η0} (2.13)

mη0

0

∫
Br

|z|γ0−1|η ◦ N (z, w)| ≤C Λη0(r) D(r) + C F(r) . (2.14)

(v) Finally, if we set

F (z, w) :=
∑
i

JΨ(z, w) + N i(z, w)K ,

then

‖S −TF ‖
(
P−1(Ψ(Br))

)
≤C Λη0(r) D(r) + C F(r) . (2.15)

The rest of this note is dedicated to prove the above theorem. We first outline how the
center manifold is constructed. We then construct an approximating map N taking values
on its normal bundle. Finally we change coordinates using a conformal parametrization Ψ
and prove the above theorem for the map N = N ◦Ψ.

3. Center manifold: the construction algorithm

3.1. Choice of some parameters and smallness of some other constants. As in [9]
the construction of the center manifold involves several parameters. We start by choosing
three of them which will appear as exponents of (two) lenghtscales in several estimates.

Assumption 3.1. Let T be as in Assumptions 1.7 and 2.2, assume in addition that the
conclusions of Lemma 2.3 apply (we might therefore need to replace T with T0,r for a
sufficiently small r) and in particular recall the exponents ε0, α, b, a and γ defined therein.
We choose the positive exponents γ0, β2 and δ1 (in the given order) so that

γ0 < min{γ, α, a− b, b− b+1
2
, log2

6
5
} (3.1)

β2 < min{ε0,
γ0

4
, a
b
− 1, α

2
, β0γ0

2
} b > 1+b

2
(1 + β2) (3.2)

β2 − 2δ1 ≥ β2

3
β0(2− 2δ1)− 2δ1 ≥ 2β2 (3.3)

(where β0 is the constant of [11, Theorem 5.2] and in this paper we assume it is smaller
than 1/2)

Having fixed γ0, β2 and δ1 we introduce five further parameters: M0, N0, Ce, Ch and
ε2. We will impose several inequalities upon them, but following a very precise hierarchy,
which ensures that all the conditions required in the remaining statements can be met.
We will use the term “geometric” when such conditions depend only upon n̄, n,Q, Q̄, γ0, β2
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and δ1, whereas we keep track of their dependence on M0, N0, Ce and Ch using the notation
C = C(M0), C(M0, N0) and so on. ε2 is always the last parameter to be chosen: it will be
small depending upon all the other constants, but constants will never depend upon it.

Assumption 3.2 (Hierarchy of the parameters). In all the statements of the paper

• M0 ≥ 4 is larger than a geometric constant and N0 is a natural number larger than
C(M0); one such condition is recurrent and we state it here:

√
2M0210−N0 ≤ 1 ; (3.4)

• Ce is larger than C(M0, N0);
• Ch is larger than C(M0, N0, Ce);
• ε2 > 0 is smaller than c(M0, N0, Ce, Ch) > 0.

3.2. Whitney decomposition of BQ̄,2. From now on we will use B for BQ̄,2, since the
positive natural number Q̄ is fixed for the rest of the paper. In this section we decompose
B \ {0} in a suitable way. More precisely, a closed subset L of B will be called a dyadic
square if it is a connected component of B ∩ (H × C) for some euclidean dyadic square
H = [a1, a1 + 2`]× [a2, a2 + 2`] ⊂ R2 = C with

• ` = 2−j, j ∈ N, j ≥ 3, and a ∈ 21−jZ2;
• H ⊂ [−1, 1]2 and 0 6∈ H.

Observe that L is truly a square, both from the topological and the metric point of view.
2` is the sidelength of both H and L. Note that B ∩ (H × C) consists then of Q̄ distinct
squares L1, . . . , LQ̄. zH := a + (`, `) is the center of the square H. Each L lying over H
will then contain a point (zH , wL), which is the center of L. Depending upon the context
we will then use zL rather than zH for the first (complex) component of the center of L.

The family of all dyadic squares of B defined above will be denoted by C . We next
consider, for j ∈ N, the dyadic closed annuli

Aj := B ∩
(
([−2−j, 2−j]2\]− 2−j−1, 2−j−1[2)× C

)
.

Each dyadic square L of B is then contained in exactly one annulus Aj and we define
d(L) := 2−j−1. Moreover `(L) = 2−j−k for some k ≥ 2. We then denote by C k,j the
family of those dyadic squares L such that L ⊂ Aj and `(L) = 2−j−k. Observe that,
for each j ≥ 1, k ≥ 2, C k,j is a covering of Aj and that two elements of C k,j can only
intersect at their boundaries. Moreover, any element of C k,j can intersect at most 8 other
elements of C k,j. Finally, we set C k :=

⋃
j≥2 C

k,j. Observe now that C k covers a punctured

neighborhood of 0 and that if L ∈ C k, then

• L intersects at most 9 other elements J ∈ C k;
• If L ∩ J 6= ∅, then `(J)/2 ≤ `(L) ≤ 2`(L) and L ∩ J is either a vertex or a side of

the smallest among the two.

More in general if the intersection of two distinct elements L and J in C =
⋃
k C

k has
nonempty interior, then one is contained in the other: if L ⊂ J we then say that L is a
descendant of J and J an ancestor of L. If in addition `(L) = `(J)/2, then we say that L
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is a son of J and J is the father of L. When L and J intersect only at their boundaries,
we then say that L and J are adjacent.

Next, for each dyadic square L we set rL :=
√

2M0`(L). Note that, by our choice of N0,
we have that:

if L ∈ C k,j and k ≥ N0, then C64rL(zL) ⊂ C21−j \C2−2−j . (3.5)

In particular Vu,a ∩C64rL(zL) consists of Q̄ connected components and we can select the
one containing (zL, u(zL, wL)), which we will denote by VL. We will then denote by TL the
current T VL. According to Lemma 2.1, VL ∩ {zL} × Rn contains at least one point of
spt(T ): we select any such point and denote it by pL = (zL, yL). Correspondingly we will
denote by BL the ball B64rL(pL).

Definition 3.3. The height of a current S in a set E with respect to a plane π is given by

h(S,E, π) := sup{|p⊥π (p− q)| : p, q ∈ spt(S) ∩ E} . (3.6)

If E = Cr(p, π) we will then set h(S,Cr(p, π)) := h(S,Cr(p, π), π). If E = Br(p), T
is as in Assumption 1.1 and p ∈ Σ (in the cases (a) and (c) of Definition 0.1), then
h(T,Br(p)) := h(T,Br(p), π) where π gives the minimal height among all π for which
E(T,Br(p), π) = E(T,Br(p)) (and such that π ⊂ TpΣ in case (a) and (c) of Definition
0.1). Moreover, for such π we say that it optimizes the excess and the height in Br(p).

We are now ready to define the dyadic decomposition of B \ 0.

Definition 3.4 (Refining procedure). We build inductively the families of squaresS ,W =
We ∪ Wh ∪ Wn and their subfamilies S k = S ∩ C k, S k,j = S ∩ C k,j and so on. First
of all, we set S k = W k = ∅ for k < N0. For k ≥ N0 we use a double induction. Having
defined S k′ ,W k′ for all k′ < k and S k,j′ ,W k,j′ for all j′ < j, we pick all squares L of C k,j

which do not have any ancestor already assigned to W and we proceed as follows.

(EX) We assign L to W k,j
e if

E(TL,BL) > Cem0d(L)2γ0−2+2δ1`(L)2−2δ1 ; (3.7)

(HT) We assign L to W k,j
h if we have not assigned it to We and

h(TL,BL) > Chm
1/4
0 d(L)

γ0/2−β2`(L)1+β2 ; (3.8)

(NN) We assign L to W k,j
n if we have not assigned it to We∪Wh and it intersects a square

J already assigned to W with `(J) = 2`(L).
(S) We assign L to S k,j if none of the above occurs.

We finally set

Γ := ([−1, 1]2 × R2) ∩B \
⋃
L∈W

L = {0} ∪
⋂
k≥N0

⋃
L∈S k

L. (3.9)

Proposition 3.5 (Whitney decomposition). Let T , γ0, β2 and δ1 be as in the Assumptions
1.7, 2.2 and 3.1. If M0 ≥ C, N0 ≥ C(M0), Ce, Ch ≥ C(M0, N0) (for suitably large
constants) and ε2 is sufficiently small then:

(i) `(L) ≤ 2−N0+1|zL| ∀L ∈ S ∪W ;
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(ii) W k = ∅ for all k ≤ N0 + 6;
(iii) Γ is a closed set and sep(Γ, L) := inf{|x− x′| : x ∈ Γ, x′ ∈ L} ≥ 2`(L) ∀L ∈ W .

Moreover, the following estimates hold with C = C(M0, N0, Ce, Ch):

E(TJ ,BJ) ≤ Cem0d(J)2γ0−2+2δ1`(J)2−2δ1 ∀J ∈ S , (3.10)

h(TJ ,BJ) ≤ Chm
1/4
0 d(J)

γ0/2−β2`(J)1+β2 ∀J ∈ S , (3.11)

E(TH ,BH) ≤ C m0d(H)2γ0−2+2δ1`(H)2−2δ1 ∀H ∈ W , (3.12)

h(TH ,BH) ≤ C m
1/4
0 d(H)

γ0/2−β2`(H)1+β2 ∀H ∈ W . (3.13)

3.3. Approximating functions and construction algorithm. We will see below that
in (a suitable portion of) each BL the current TL can be approximated efficiently with a
graph of a Lipschitz multiple-valued map. The average of the sheets of this approximating
map will then be used as a local model for the center manifold.

Definition 3.6 (π-approximations). Let L ∈ S ∪W and π be a 2-dimensional plane. If
TL C32rL(pL, π) fulfills the assumptions of [11, Theorem 1.5] in the cylinder C32rL(pL, π),
then the resulting map f : B8rL(pL, π) → AQ(π⊥) given by [11, Theorem 1.5] is a π-
approximation of TL in C8rL(pL, π).

As in [9], we wish to find a suitable smoothing of the average of the π-approximation
η ◦ f . However the smoothing procedure is more complicated in the case (b) of Definition
0.1: rather than smoothing by convolution, we need to solve a suitable elliptic system of
partial differential equations. This approach can in fact be used in cases (a) and (c) as well.
In several instances regarding case (a) and (c) we will have to manipulate maps defined
on some affine space q + π and taking value on π⊥, where q ∈ Σ and π ⊂ TqΣ. In such
cases it is convenient to introduce the following conventions: the maps will be regarded as
maps defined on π (requiring a simple translation by q), the space π⊥ will be decomposed
into κ := π⊥ ∩ TqΣ and its orthogonal complement TqΣ

⊥ and we will regard Ψq as a map
defined on π×κ and taking values in TqΣ

⊥. Similarly, elements of π⊥ will be decomposed
as (ξ, η) ∈ κ × TqΣ⊥.

Lemma 3.7. Let the assumptions of Proposition 3.5 hold and assume Ce ≥ C? and Ch ≥
C?Ce for a suitably large C?(M0, N0). For each L ∈ W ∪ S we choose a plane πL in
BL which optimizes the excess and which, among all the ones optimizing the excess, also
optimizes the height in BL. For any choice of the other parameters, if ε2 is sufficiently
small, then TL C32rL(pL, πL) satisfies the assumptions of [11, Theorem 1.5] for any L ∈
W ∪S .

Indeed Lemma 3.7 is a cororollary of the much more general Proposition 6.1 and we will
not give a separate proof.

Definition 3.8 (Smoothing). Let L and πL be as in Lemma 3.7 and denote by fL
the corresponding πL-approximation. In case of Definition 0.1 (a)&(c) we let f̄(x) :=∑

i

q
pTpLΣ(fi)

y
be the projection of fL on the tangent TpLΣ, whereas in the other case
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(Definition 0.1(b)) we set f̄ = f . We let h̄L be a solution (provided it exists) of
LLh̄L = FL

h̄L
∣∣
∂B8rL

(pL,πL)
= η ◦ f̄L ,

(3.14)

where LL is a suitable second order linear elliptic operator with constant coefficients and
FL a suitable affine map: the precise expressions for LL and FL depend on a careful
Taylor expansion of the first variations formulae and are given in Proposition 6.4. We then
set hL(x) := (h̄L(x),ΨpL(x, h̄L(x)) in case (a) and (c) and hL(x) = h̄L(x) in case (b). The
map hL is the tilted interpolating function relative to L.

In what follows we will deal with graphs of multivalued functions f in several system
of coordinates. These objects can be naturally seen as currents Gf (see [8]) and in this
respect we will use extensively the notation and results of [8] (therefore Gr(f) will denote
the “set-theoretic” graph).

Lemma 3.9. Let the assumptions of Proposition 3.5 hold and assume Ce ≥ C? and Ch ≥
C?Ce (where C? is the constant of Lemma 3.7). For any choice of the other parameters, if
ε2 is sufficiently small the following holds. For any L ∈ W ∪S , there is a unique solution
h̄L : B8rL(pL, πL) → κL = π⊥L ∩ TpLΣ of (3.14) and there is a smooth gL : B4rL(zL, π0) →
π⊥0 such that GgL = GhL C4rL(pL, π0), where hL is the tilted interpolating function of
Definition 3.8. Using the charts introduced in Definition 1.3, the map gL will be considered
as defined on the ball B4rL(zL, wL) ⊂ B.

The center manifold is defined by gluing together the maps gL.

Definition 3.10 (Interpolating functions). The map gL in Lemma 3.7 will be called the
L-interpolating function. Fix next a ϑ ∈ C∞c

(
[−17

16
, 17

16
]m, [0, 1]

)
which is identically 1 on

[−1, 1]m. For each k let Pk := S k ∪
⋃k
i=N0

W i and for L ∈ Pk define ϑL((z, w)) :=

ϑ( z−zL
`(L)

). Set

ϕ̂j :=

∑
L∈Pj ϑLgL∑
L∈Pj ϑL

on {(z, w) ∈ B : z ∈ [−1, 1]2 \ {0}} (3.15)

and extend the map to 0 defining ϕ̂j(0) = 0. In case (b) of Definition 0.1 we set ϕj := ϕ̂j.
In cases (a) and (c) we let ϕ̄j(z, w) be the first n̄ components of ϕ̂j(z, w) and define
ϕj(z, w) =

(
ϕ̄j(z, w),Ψ(z, ϕ̄j(z, w))

)
. ϕj will be called the glued interpolation at step j.

We now come to the first main theorem, which yields the surface which we call “branched
center manifold” (again notice that for Q̄ = 1 there is certainly no branching, since the
surface is a classical C1,α graph, but we keep nonetheless the same terminology). In the
statement we will need to “enlarge” slightly dyadic squares: given L ∈ C let H be the
dyadic square of R2 = C so that L is a connected component of B ∩ (H × C). Given√

2σ < |zL| = |zH |, we let H ′ be the closed euclidean square of R2 which has the same
center as H and sides of length 2σ, parallel to the coordinate axes. The square L′ concentric
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to L and with sidelength 2`(L′) = 2σ is then defined to be that connected component of
B ∩ (H ′ × C) which contains L.

Theorem 3.11. Under the same assumptions of Lemma 3.7, the following holds provided
ε2 is sufficiently small.

(i) For κ := β2/4 and C = C(M0, N0, Ce, Ch) we have (for all j)

|ϕj(z, w)| ≤ Cm
1/4
0 |z|1+γ0/2 for all (z, w) (3.16)

|Dlϕj(z, w)| ≤ Cm
1/2
0 |z|1+γ0−l for l = 1, . . . , 3 and (z, w) 6= 0 (3.17)

[D3ϕj]Aj ,κ ≤ Cm
1/2
0 22j . (3.18)

(ii) The sequence ϕj stabilizes on every square L ∈ W : more precisely, if L ∈ W i and H
is the square concentric to L with `(H) = 9

8
`(L), then ϕk = ϕj on H for every j, k ≥

i+2. Moreover there is an admissible smooth branching ϕ : B∩([−1, 1]2×C)→ Rn

such that ϕk → ϕ uniformly on B ∩ ([−1, 1]2 × C) and in C3(Aj) for every j ≥ 0.
Note in particular that ϕ coincides with gL on a nonempty open subset of each
L ∈ W .

(iii) For some constant C = C(M0, N0, Ce, Ch) and for a′ := b+ γ0 > b we have

|u(z, w)−ϕ(z, w)| ≤ Cm
1/2
0 |z|a

′
. (3.19)

Definition 3.12 (Center manifold, Whitney regions). The manifold M := Gr(ϕ), where
ϕ is as in Theorem 3.11, is called a branched center manifold for T relative to Gu. It
is convenient to introduce the map Φ : B ∩ ([−1, 1]2 × C) → R2+n given by Φ(z, w) =
(z,ϕ(z, w)). If we neglect the origin, Φ is then a classical (C3) parametrization of M.
Φ(Γ) will be called the contact set. Moreover, to each L ∈ W we associate a Whitney
region L on M as follows:

(WR) L := Φ(H ∩ ([−1, 1]2 × C)), where H is the square concentric to L with `(H) =
17
16
`(L).

4. The normal approximation

In what follows we assume that the conclusions of Theorem 3.11 apply and denote by
M the corresponding center manifold. For any Borel set V ⊂M we will denote by |V| its
H2-measure and will write

∫
V f for the integral of f with respect to H2. Br(q) denotes the

geodesic balls in M. Moreover, we refer to [8] for all the relevant notation pertaining to
the differentiation of (multiple valued) maps defined on M, induced currents, differential
geometric tensors and so on.

We next define the open set

(V) V := {(x, y) ∈ R2 × Rn : x ∈ [−1, 1]2 and |ϕ(x,w)− y| < cs|x|b/2}.
V is clearly a horned neighborhood of the graph of ϕ. By (1.3), Assumption 1.7 and
Theorem 3.11 it is clear that the following corollary holds

Corollary 4.1. Under the hypotheses of Theorem 3.11, there is r > 0 such that
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(i) For every x ∈ R2 with 0 < |x| = 2ρ < 2r, the set Cρ(x) ∩V consists of Q̄ distinct
connected components and spt(T ) ∩C3r ⊂ V.

(ii) There is a well-defined nearest point projection p : V ∩ C4r → Gr(ϕ), which is a
C2,κ map.

(iii) For every L ∈ W with d(L) ≤ 2r and every q ∈ L we have

spt(〈T,p,Φ(q)〉) ⊂
{
y ∈ R2+n : |Φ(q)− y| ≤ Cm

1/4
0 d(L)

γ0/2−β2`(L)1+β2
}
.

(iv) 〈T,p, p〉 = Q JpK for every p ∈ Φ(Γ) ∩C2r \ {0}.

The main goal of this paper is to couple the branched center manifold of Theorem 3.11
with a good map defined onM and taking values in its normal bundle, which approximates
accurately T in a neighborhood of the origin.

Definition 4.2 (M-normal approximation). Let r be as in Corollary 4.1 and define

(U) U := p−1(C2r ∩M).

An M-normal approximation of T is given by a pair (K, F ) such that

(A1) F : C2r ∩M → AQ(U) is Lipschitz and takes the form F (x) =
∑

i Jx+Ni(x)K,
with Ni(x) ⊥ TxM and x+Ni(x) ∈ Σ for every x and i.

(A2) K ⊂M is closed, contains Φ
(
Γ ∩C2r) and TF p−1(K) = T p−1(K).

The map N =
∑

i JNiK :M∩C2r → AQ(R2+n) is the normal part of F .

In the definition above it is not required that the map F approximates efficiently the
current outside the set Φ(Γ). However, all the maps constructed in this paper and used
in the subsequent note [10] will approximate T with a high degree of accuracy in each
Whitney region: such estimates are detailed in the next theorem. In order to simplify the
notation, we will use ‖N |V‖C0 (or ‖N |V‖0) to denote the number supx∈V G(N(x), Q J0K) =
supx∈V |N(x)|.

Theorem 4.3 (Local estimates for theM-normal approximation). Let r be as in Corollary
4.1 and U as in Definition 4.2. Then there is an M-normal approximation (K, F ) such
that the following estimates hold on every Whitney region L associated to L ∈ W with
d(L) ≤ r:

Lip(N |L) ≤ Cmβ0

0 d(L)β0 γ0 `(L)β0γ0 and ‖N |L‖C0 ≤ Cm
1/4
0 d(L)

γ0/2−β2`(L)1+β2 , (4.1)

|L \ K|+ ‖TF − T‖(p−1(L)) ≤ Cm1+β0

0 d(L)(1+β0)(2γ0−2+2δ1) `(L)2+(1+β0)(2−2δ1), (4.2)∫
L
|DN |2 ≤ Cm0 d(L)2γ0−2+2δ1 `(L)4−2δ1 . (4.3)

Moreover, for every Borel V ⊂ L, we have∫
V
|η ◦N | ≤ Cm0d(L)2(1+β0)γ0−2−β2 `(L)5+β2/4

+ Cm
1/2+β0

0 d(L)2β0γ0+γ0−1−β2 `(L)1+β2

∫
V
G
(
N,Q Jη ◦NK ) . (4.4)

The constant C = C(M0, N0, Ce, Ch) does not depend on ε2.
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4.1. Separation and splitting. We conclude this section with two theorems which allow
us to estimate the sidelengths of the squares of type Wh and We. The squares in Wn do
not enjoy similar bounds, but they can be partitioned in families, each of which consists
of squares sufficiently close to an element of We.

Proposition 4.4 (Separation). There is a dimensional constant C] > 0 with the following
property. Assume the hypotheses of Theorem 4.3, and in addition C4

h ≥ C]Ce. If ε2 is
sufficiently small, then the following conclusions hold for every L ∈ Wh with d(L) ≤ r :

(S1) Θ(TL, p) ≤ Q− 1 for every p ∈ B16rL(pL).
(S2) L ∩H = ∅ for every H ∈ Wn with `(H) ≤ 1

2
`(L).

(S3) G
(
N(x), Q Jη ◦N(x)K ) ≥ 1

4
Chm

1/4
0 d(L)

γ0/2−β2`(L)1+β2 ∀x ∈ Φ(B8`(L)(zL, wL)).

A simple corollary of the previous proposition is the following.

Corollary 4.5 (Domains of influence). For any H ∈ Wn there is a chain L = L0, . . . , Lr =
H such that

(a) L0 ∈ We and Lk ∈ Wn for all k > 0;

(b) Lk ∩ Lk−1 6= ∅ and `(Lk) = `(Lk−1)

2
for all k > 0.

In particular H ⊂ B3
√

2`(L)(zL, wL).

We use this last corollary to partition Wn.

Definition 4.6 (Domains of influence). We first fix an ordering of the squares in We as
{Ji}i∈N so that their sidelengths do not increase. Then H ∈ Wn belongs to Wn(J0) (the
domain of influence of J0) if there is a chain as in Corollary 4.5 with L0 = J0. Inductively,
Wn(Jr) is the set of squares H ∈ Wn \∪i<rWn(Ji) for which there is a chain as in Corollary
4.5 with L0 = Jr.

Proposition 4.7 (Splitting). There are positive constants C1,C2(M0), r̄(M0, N0, Ce) such
that, if M0 ≥ C1, Ce ≥ C2(M0), if the hypotheses of Theorem 4.3 hold and ε2 is cho-
sen sufficiently small, then the following holds. If L ∈ We with d(L) ≤ r̄, q ∈ B with
dist(L, q) ≤ 4

√
2 `(L) and Ω := Φ(B`(L)/8(q)), then:

Cem0 d(L)2γ0−2+2δ1`(L)4−2δ1 ≤ `(L)2E(TL,BL) ≤ C

∫
Ω

|DN |2 , (4.5)∫
L
|DN |2 ≤ C`(L)2E(TL,BL) ≤ C`(L)−2

∫
Ω

|N |2 , (4.6)

where C = C(M0, N0, Ce, Ch).

5. Center manifold construction

5.1. Technical preliminaries. In this section we prove the two technical Lemmas 2.1
and 2.3.

Proof of Lemma 2.1. Consider x0 ∈ π0 with 2ρ = |x0|, a smooth C2 function φ : Bρ(x0)→
Rn and the open set V% := {(x, y) : x ∈ Bρ/2(x0), |y − φ(x)| < %}. Recall that there
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is a geometric constant C such that, if % ≤ C/‖D2φ‖Bρ(x0), then for each p ∈ V% there
is a unique nearest point P(p) ∈ Gr(φ) (which defines a C1 map P : V% → Gr(φ)). In
particular, if ‖D2φ‖Bρ(x0) ≤ Cρα−1, the existence of such point is guaranteed under the
assumption that % ≤ cρ1−α (where c is a, possibly small but positive, constant). Consider
now an admissible smooth branching u : BQ̄ → Rn. If Q̄ = 1, the above discussion shows
easily the existence of a well defined C1 map P : Vu,a ∩ C2r → Gr(u), provided r is
sufficiently small. If Q̄ > 1, the same conclusion holds under the assumption that u is
b-separated and a > b > 1. Indeed consider p = (z, y) ∈ Vu,a and (z, wi) ∈ BQ such
that |y − u(z, wi)| ≤ cs|z|a. The assumptions of being well-separated implies easily that
|p− u(ζ, ω)| ≥ cs|z|b whenever ζ 6∈ B|z|/2(z, wi) and thus we can argue locally on the sheet
Gr(u|B|z|/2(z,wi)).

Next, up to rescaling we can assume that P is well-defined on Vu,a∩C2. The discussion
before Lemma 2.1 applies now verbatim and we conclude that the unique tangent cone at
0 is QQ̄ Jπ0K.

To reach the other two conclusions of the Lemma we argue by contradiction: if they
were wrong, then we would find a sequence of points {xk} ⊂ B2(0) \ {0} converging to 0
for which one of the following two conditions hold:

• either {xk} × Rn contains a point pk ∈ spt(T ) with Θ(pk, T ) ≥ Q + 1 (recall that
the density of T is an integer at every point, cf. [13]);
• or one connected component Ωk of ({xk} × Rn) ∩Vu,a does not intersect spt(T ).

Set 2rk := |xk| and consider the connected component Vk of Vu,a∩Crk(xk) which contains
pk (in the first case) or Ωk (in the second). Let Sk := Tk Vk and let qk = (xk, u(xk, wk))
be such that qk ∈ Vk. Finally set Zk := (Sk)qk,rk . Observe that spt(Zk) is contained in
a neighborhood of height Cra−1

k of π0 and we therefore conclude that Zk converges to a
current Z which is an integer multiple of JB1(0)K. On the other hand, since

(P]Sk) Crk/2(xk) = QGu Crk/2(xk) ∩Vk

for k large enough, we conclude that Z = Q JB1(0)K. Now, either spt(Zk) ∩ ({0} × Rn)
contains a point q̄k of multiplicityQ+1 or it is empty. By the constancy theorem (pπ0)]Zk =
Qk JB1(0)K for some integer Qk and, since (pπ0)]Zk → (pπ0)]Z, for k large enough we would
have (pπ0)]Zk = Q JB1(0)K. This is then incompatible with the emptiness of spt(Zk) ∩
({0} × Rn) = ∅ because Q ≥ 1. As for the other alternative, we must have, by the almost
minimality of Zk (see [13])

lim sup
k→∞

‖Zk‖(B1/2−|q̄k|(q̄k)) ≤ lim
k→∞
‖Zk‖(B1/2(0)) = Q

4
ω2 .

Since q̄k → 0, the almost monotonicity formula (see [13]) would imply Θ(q̄k, Zk) ≤ Q +
o(1). �

Proof of Lemma 2.3. Since QQ̄ Jπ0K is tangent to T at 0, we obviously must have T0Σ ⊃
π0 and thus T0Σ = R2+n̄ × {0} can be achieved suitably rotating the coordinates. To
achieve the other two conclusions we scale Σ and intersect it with C4(0, T0Σ) to reach that
Σ ∩ C4(0, T0Σ) is the graph of some Ψ with very small C3,ε0 norm. We can then extend
Ψ outside B4(0, T0Σ) without increasing the C3,ε0 norm by more than a factor: this gives
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(i) and (ii) and also shows that c can be assumed smaller than ε2 in case (a) and (c) of
Definition 0.1. For the details we refer the reader to the proof of [9, Lemma 1.5]. The rest
of the Lemma is a simple scaling argument. �

5.2. Proof of Proposition 3.5. In this section we prove several estimates on the excess,
height and tilting of planes πL in the cubes L ∈ W ∪S . Proposition 3.5 will then be a
simple corollary of these more general statements.

Proposition 5.1 (Tilting of optimal planes). Let T be as in Assumptions 1.7 and 2.2 and
assume the various parameters satisfy Assumption 3.1. If Ce, Ch ≥ C(M0, N0) and ε2 is
sufficiently small then:

(i) The conclusions (i), (ii) and (iii) of Proposition 3.5 hold.
(ii) BH ⊂ BL ⊂ Bd(L)/10(pL) and TH = TL VH for all H,L ∈ W ∪S with H ⊂ L;

Moreover, if H,L ∈ W ∪S and either H ⊂ L or H ∩L 6= ∅ with `(L)
2
≤ `(H) ≤ `(L), then

the following holds, for C̄ = C̄(M0, N0, Ce) and C = C(M0, N0, Ce, Ch):

(iii) d(L)/2 ≤ d(H) ≤ 2d(L) (and d(L) = d(H) when H ⊂ L);

(iv) |πH − πL| ≤ C̄m
1/2
0 d(L)γ0−1+δ1`(L)1−δ1;

(v) |πH − π0| ≤ C̄m
1/2
0 d(H)γ0;

(vi) h(TH ,C36rH (pH , π0)) ≤ Cm
1/4
0 d(H)

γ0/2`(H) and spt(TH) ∩C36rH (pH , π0) ⊂ BH ;

(vii) h(TL,C36rL(pL, πH)) ≤ Cm
1/4
0 d(L)

γ0/2−β2`(L)1+β2 and spt(TL) ∩ C36rL(pL, πH) ⊂
BL.

In particular, the estimates (3.12) and (3.13) hold.

The proof of the proposition will use repeatedly a few elementary observations concerning
the excess and the height, which we collect in the following lemma.

Lemma 5.2. If T is as in Proposition 5.1 there is a geometric constant C0 with the
following properties. Assume the points p, q belong to spt(T ) ∩C√2, Br(p) ⊂ Bρ(q) ⊂ C2

and r ≥ ρ/4. Then, if ε2 ≤ C−1
0

(i) E(T,Bρ(q)) ≤ C0 minτ E(T,Bρ(q), τ) + C0m0ρ
2;

(ii) E(T,Br(p)) ≤ C0E(T,Bρ(q)) + C0m0r
2;

(iii) |π − τ |2 ≤ C0[E(T,Br(p), π) + E(T,Bρ(q), τ)];
(iv) h(T, F, π) ≤ h(T, F, τ) + C0|π − τ |diam(spt(T ) ∩ F ) for any set F ;

(v) h(T,Cr(0, π)) ≤ C0m
1/2
0 r1+γ0 +C0|π − π0|r whenever |π − π0| ≤ C−1

0 and r < 7/4.

Proof. Recall that, by Lemma A.1 and Allard’s monotonicity formula (which can be applied
by [13, Proposition 1.2]), we have

3ω2

4
ρ2 ≤ ‖T‖(Bρ(p)) ≤ C0ρ

2 . (5.1)

(i) is trivial in (b) of Definition 0.1, since E(T,Bρ(q)) = minτ E(T,Bρ(q), τ). In the cases
(a) and (c) recall that

E(T,Bρ(q)) = min
τ⊂TqΣ

E(T,Bρ(q), τ) .
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Let now π be such that E(T,Bρ(q), π) = minτ E(T,Bρ(q), τ) =: E. Then, by the Cheby-
shev inequality there is a point q′ ∈ Bρ(q) ∩ spt(T ) such that

|~T (q′)− ~π|2 ≤ ω2ρ
2

‖T‖(Bρ(q))
E ≤ C0E .

Observe that ~T (q′) is the orienting 2-vector of some space ξ ⊂ Tq′Σ and that

|Tq′Σ− TqΣ|2 ≤ C0‖AΣ‖2
C0ρ2 ≤ C0m0ρ

2 .

Thus there is a 2-plane τ ⊂ TqΣ such that |τ − π|2 ≤ C0E + C0m0ρ
2. Hence

E(T,Bρ(p)) ≤ E(T,Bρ(q), τ) ≤ C0(E + C0m0ρ
2)‖T‖(Bρ(q))/(ω2ρ

2) ≤ C0E + C0m0ρ
2 .

Keeping the notation of the argument above, in the case (b) of Definition 0.1 statement
(ii) follows from the simple observation

E(T,Br(p)) ≤ E(T,Br(p), π) ≤ 42E(T,Bρ(q), π) = 16E(T,Bρ(q)) .

In the cases (a) and (c) of Definition 0.1 we combine the same idea with (i).
(iii) is a simple consequence of

|π − τ |2 ≤ 2

‖T‖(Bρ(q))

∫
Bρ(q)

(|~T − ~π|2 + |~τ − ~T |2)d‖T‖

(5.1)

≤ C0

(
E(T,Bρ(q), π) + E(T,Bρ(q), τ)

)
, (5.2)

and E(T,Bρ(q), π) ≤ 16E(T,Br(p), π). Next, for p, q ∈ spt(T ) ∩ F we compute

|p⊥π (p− q)| ≤ |p⊥τ (p− q)|+ |(p⊥τ − p⊥π )(p− q)| ≤ h(T, F, τ) + C|π − τ ||p− q| .
Taking the supremum over p, q ∈ F ∩ spt(T ) we reach (iv).

We finally argue for (v). Fix r < 7/8, π with |π − π0| ≤ C−1
0 and the cylinder C :=

Cr(0, π). Observe that, by Assumption 1.7, for every p = (x, y) ∈ spt(T ) ∩ (R2 × Rn)

we have |y| ≤ ε
1/2
2 |x|1+α ≤ ε

1/2
2 |x|1+γ0 . It follows easily that, for C0 sufficiently large and

ε2 sufficiently small, this implies that spt(T ) ∩ C ⊂ C8r/7(0, π0). Hence, h(T,C, π0) ≤
h(T,C8r/7(0, π0)) ≤ C0m

1/2
0 r1+γ0 . As a consequence diam(T ∩ C) ≤ C0r and (v) follows

from (iv). �

Proof of Proposition 5.1. In this proof we will use the following convention: geometric
constants will be denoted by C0 or c0, constants depending upon M0, N0, Ce will be denoted
by C̄ or c̄ and constants depending upon M0, N0, Ce and Ch will be denoted by C or c.
Next observe that the second inclusion in (ii) is in fact correct for any cube L ∈ C j with
j ≥ N0, provided N0 is chosen sufficiently large compared to M0. (iii) is instead an obvious
consequence of the construction.

Proof of (i), (ii) and (iii) in Proposition 3.5. The conclusion (i) is obvious since
indeed it also holds for every L ∈ C N0 . (iii) is a simple consequence of the fact that, because
of (NN) in the refining procedure, given any pair H,L ∈ W with nonempty intersection,
1
2
`(H) ≤ `(L) ≤ 2`(H). Consider now any L ∈ C j with N0 ≤ j ≤ N0 + 6. Observe first

that 2−N0−10d(L) ≤ `(L) ≤ 2−N0d(L). Consider now the point p ∈ Gr(u) which has the
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same projection onto π0 as pL (namely zL) and which is closest to pL. Recall that π(p) is
the tangent to Gr(u) in p. We thus can use (1.9) to estimate

E(TL,BL, π(p)) ≤ E(T,B|zL|/4(p))) ≤ C(M0, N0)m0d(L)2γ0−2+2δ1`(L)2−2δ1 . (5.3)

In order to derive the latter inequality we need that BL ⊂ B|zL|/4(p). Since |zL| is com-

pable, up to a geometric constant, to d(L), whereas the radius rL equals 64
√

2M0`(L) and
is comparable, up to a geometric constant, to M02−N0d(L), we just need to choose N0

sufficiently large compared to M0.
By Lemma 5.2(i), from (5.3) we conclude

E(TL,BL) ≤ C(M0, N0)m0d(L)2γ0−2+2δ1`(L)2−2δ1 + C(M0)m0`(L)2 .

Hence, for Ce sufficiently large, condition (EX) of Definition 3.4 cannot be a reason to stop
the refining procedure of any cube L ∈ C j when N0 ≤ j ≤ N0 + 6.

Recall next the chosen plane πL such that E(TL,BL, πL) = E(TL,BL) and h(TL,BL) =
h(TL,BL, πL). By Lemma 5.2(iii) we easily conclude that

|πL − π(p)| ≤ C(M0, N0)C
1/2
e m

1/2
0 d(L)γ0 .

On the other hand |π(p)− π0| ≤ C0[Du]0,α,BC0d(L)
d(L)α ≤ C0m

1/2
0 d(L)γ0 and thus

|πL − π0| ≤ C(M0, N0)C
1/2
e m

1/2
0 d(L)γ0 ∀L ∈ C N0 . (5.4)

Setting ρ := (2
√

2 + 1/10)d(L) we have

BL ⊂ Cd(L)/10(pL, π0) ⊂ Cρ(0, π0) .

Note that ρ ≤ (2
√

2 + 1
10

)1
2
≤ 3

2
and we can apply Lemma 5.2(v) to conclude

h(T,BL, π0) ≤ h(T,Cρ(0, π0), π0) ≤ C0m
1/2
0 d(L)1+γ0 . (5.5)

In particular diam spt(T ) ∩ BL) ≤ d(L), provided ε2 is small enough. We can therefore
apply Lemma 5.2(iv) and use (5.4) and (5.5) to infer

h(TL,BL) ≤ C̄m
1/2
0 d(L)1+γ0 ≤ C̄m

1/4
0 d(L)

γ0/2−β2`(L)1+β2 .

Thus, choosing Ch large depending upon M0, N0 and Ce, we conclude that condition (HT)
in Definition 3.4 cannot be a reason to stop the refining procedure of a cube L ∈ C j when
N0 ≤ j ≤ N0 + 6.

This means that: for k = N0 and j = 0 all cubes of C N0,0 are assigned to S and refined
at the subsequent step (the condition (NN) is empty here). But then the same happens
for k = N0 and j = 1, since W N0,0 is empty. Proceeding inductively we conclude this for
every j and thus obtain that W N0 is empty. We now repeat the argument with W N0+1,j

to conclude that W N0+1 is also empty. Proceeding for other 5 steps we conclude then that
(ii) holds.

Proof of (ii)-(iv)-(v)-(vi)-(vii) when H ⊂ L. The proof is by induction over i, where
H ∈ C i. We thus prove first the claims when i = N0. Under this assumption H = L and
hence (iv) is trivial. The second inclusion in (ii) has already been proved above and the
remaining assertions of (ii) are obvious because H = L. (v) has been shown above, cf. (5.4).
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The first conclusion in (vi) follows easily, since h(TH ,C36rH (pH , π0)) ≤ C0m
1/2
0 d(H)1+γ0 by

Lemma 5.2(v) and `(H) ≥ d(H)/C(N0). The inclusion in (vi) follows then trivially from
this bound when m0 ≤ ε2 is small enough, because pH ∈ spt(TH). As for (vii), recall
that L = H in our case. First observe that |πH − π0| ≤ C0Ced(L)γ0 , simply by (5.4)
(assuming Ce ≥ C(M0, N0)). Thus we can apply Lemma 5.2(iv)&(v): since d(L) and
`(L) are comparable up to a constant C(N0), we conclude that h(TL,C36rL(pL, πH)) ≤
Cm

1/4
0 d(L)

γ0/2−β2`(L)1+β2 . As we already argued for (vi), the inclusion is a consequence of
the bound.

We now pass to the inductive step. Thus fix some Hi+1 ∈ S i+1 ∪W i+1 and consider a
chain Hi+1 ⊂ Hi ⊂ . . . ⊂ HN0 with Hl ∈ S l for l ≤ i. We wish to prove all the conclusions
(ii)-(iv)-(v)-(vi)-(vii) when H = Hi+1 and L = Hj for some j ≤ i + 1, recalling that, by
inductive assumption, all the statements hold when H = Hk and L = Hl for l ≤ k ≤ i.
Note also that d(Hk) = d(Hi+1) for all k.

With regard to (ii), it is enough to prove that BHi+1
⊂ BHi and VHi+1

⊂ VHi . Note

that |zHi − zHi+1
| ≤ 2

√
2 `(Hi) (recall the notation pH = (zH , yH)). In particular no-

tice that CrHi+1
(pHi+1

, π0) ⊂ CrHi
(pHi , π0). Recall the open sets VHi and VHi+1

defined

in Section 3.2. Since Hi and Hi+1 are nearby cubes in B, it is clear that the points
(zHi+1

, u(zHi+1
, wHi+1

)) and (zHi , u(zHi , wHi)) must be in the same connected component of
Vu,a ∩CrHi

(pHi , π0). It then follows that VHi+1
⊂ VHi . In particular pHi+1

∈ spt(THi) and

(vi) applied to H = Hi implies then that |pHi+1
− pHi | ≤ 2(

√
2 + Cm

1/4
0 )`(Hi). In partic-

ular, assuming that ε2 ≤ c for some positive constant c = c(M0, N0, Ce, Ch), we conclude
|pHi+1

−pHi| ≤ 3
√

2`(Hi) and BHi+1
⊂ BHi follows from the fact that M0 is assumed larger

than a suitable geometric constant.
We now come to (iv). Recall that Hi belongs to S (indeed Hi+1 is a son of Hi). Hence,

from the inclusion BHi+1
⊂ BHi , from the identity THi+1

= THi BHi+1
and from Lemma

5.2(ii) we easily infer that

E(THi+1
,BHi+1

) ≤ C0E(THi ,BHi) + C0m0`(Hi+1)2 ≤ C̄m0d(Hi+1)2γ0−2+2δ1`(Hi+1)2−2δ1 .

We thus have, from Lemma 5.2(iii),

|πHi − πHi+1
| ≤ C̄m

1/2
0 d(Hi+1)γ0−1+δ1`(Hi+1)1−δ1 .

On the other hand, since d(Hl) = d(Hj) for every l ≥ j, by the same argument with l in
place of i we also get

|πHl − πHl+1
| ≤ C̄m

1/2
0 d(Hi+1)γ0−1+δ1`(Hl+1)1−δ1 .

Summing the latter estimates for l between i and j, we easily reach (iv) for H = Hi+1 and
L = Hj.

As for (v), note that it holds for HN0 and moreover we just proved (iv) for H = Hi+1

and L = HN0 , and thus, by triangular inequality, we get (v) (with a constant independent
of the index i!).

As for (vi), note first that spt(THi+1
)∩C36rHi+1

(pHi+1
, π0) ⊂ spt(THi)∩C36rHi

(pHi , π0) ⊂
BHi (the latter because (vi) holds for H = Hi by inductive hypothesis). Thus we can apply



BRANCHED CENTER MANIFOLD 23

Lemma 5.2(iv) to conclude

h(THi+1
,C36rHi+1

(pHi+1
, π0)) ≤ Ch(THi ,BHi) + C0|πHi − π0| diam(spt(THi) ∩BHi) .

On the other hand we already noticed that Hi ∈ S . Taking into account (v) we then
conclude the inequality of (vi) for H = Hi+1 and, as already noticed in other cases, the
inclusion follows from the estimate and pHi+1

∈ BHi+1
∩ spt(THi+1

).
We finally come to (vii). Fix H = Hi+1. First we prove it for L = HN0 . Observe that by

the bound from (iv) on |πH−π0|, we can bound h(THN0
,C36rHN0

(pHN0
, πH)) with the same

argument used for h(THN0
,C36rHN0

(pHN0
, πHN0

)). As already argued several times, we then

conclude the inclusion spt(THN0
)∩C36rHN0

(pHN0
, πH) ⊂ BHN0

. We now argue inductively on

j: assuming that we know (vii) for H and L = Hj, we now wish to conclude it for L = Hj+1.
Notice that C36rHj+1

(pHj+1
, πH) ⊂ C36rHj

(pHj , πH). Then the inductive assumption gives

spt(THj) ∩ C36rHj+1
(pHj+1

, πH) ⊂ BHj and recalling that THj+1
= THj BHj+1

and that

Hj ∈ S , we can use Lemma 5.2(iv) to bound

h(THj+1
,C36rHj+1

(pHj+1
, πH)) ≤ h(THj ,BHj) + C0|πH − πHj |diam(spt(THj) ∩BHj) .

However, having already shown (iv), this easily shows the bound in (vii). The inclusion
then follows with the usual argument used above.

Proof of (3.12) and (3.13). Fix H ∈ W and let L be its father (recall Proposition
3.5(ii)). Having shown (ii), we know that BH ⊂ BL. We then use d(L) = d(H), `(L) =
2`(H), and L ∈ S to estimate

E(TL,BL) ≤ Cem0d(H)2γ0−2+2δ1`(H)2−2δ1

and Lemma 5.2(i) to conclude (3.12) as follows

E(TH ,BH) ≤C0E(TH ,BH , πL) + C̄m0r
2
L ≤ C̄E(TL,BL) + C̄m0`(H)2

≤C̄m0d(H)2γ0−2+2δ1`(L)2−2δ1

Next, we use Lemma 5.2, (iv) and

h(TL,BL) ≤ Chm
1/4
0 d(L)

γ0/2−β2`(L)1+β2

to conclude (3.13).

Proof of (iv) and (vii) when H and L are neighbors. Without loss of generality
assume `(L) ≥ `(H). If L 6∈ C N0 , then let J be the father of L (and observe that it belongs
toS ). Observe that |zH−zJ |, |zL−zJ | ≤ 2

√
2`(J). On the other hand, observe that pH , pL

are both elements of C36rJ (pJ , π0) (provided M0 is larger than a geometric constant). Thus,
by (vi) (applied to J), for ε2 sufficiently small we easily conclude |pH − pJ |, |pL − pJ | ≤
3
√

2`(J). Since `(L), `(H) ≤ `(J)/2, again assuming that M0 is larger than a geometric
constant we have the inclusion BH ∪BL ⊂ BJ . It is also easy to see that VH ∪VL ⊂ VJ .
Now, we can use (3.10), (3.12) and (iii) to achieve

|πH − πJ |, |πL − πJ | ≤ C̄m
1/2
0 d(J)γ0−1+δ1`(J)1−δ1 .
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Next we use again (iii), the triangle inequality and `(H) ≤ `(L) ≤ `(J) ≤ 4`(H) to show
(iv). The case L ∈ C N0 can be handled similarly, just using a ball concentric to BL and
slightly larger so to include BH : the excess and the height in this ball is then estimated
with the same argument used for estimating them in BL.

As for (vii) we fix a chain of ancestors L = Lj, Lj−1, . . . , Li, . . . . . . , LN0 and, as in the
proof of (vii) for the case H ⊂ L, we argue inductively over i. The argument is precisely
the same and can be applied because, using (iv) for H and L and for Li and Li+1, we can
sum the corresponding estimate to show that

|πH − πLi | ≤ C̄m
1/2
0 d(Li)

γ0−1+δ1`(Li)
1−δ1 . �

6. π-approximations and elliptic regularizations

In this section we introduce the π-approximations and define the corresponding elliptic
regularizations of their averages, which in turn will be the building blocks of the center
manifold. We begin with the following:

Proposition 6.1. Assume the hypotheses and the conclusions of Proposition 5.1 apply
and let ε2 be sufficiently small. If H,L ∈ W ∪S and either H ⊂ L or H ∩ L 6= ∅ with
`(L)

2
≤ `(H) ≤ `(L), then

(pπH )](TL C32rL(pL, πH)) = Q JB32rL(pπH (pL), πH)K , (6.1)

∂TL C32rL(pL, πH) = 0 . (6.2)

Moreover
E(TL,C32rL(pL, πH)) ≤ C̄m0d(L)2γ0−2+2δ1`(L)2−2δ1 (6.3)

and hence [11, Theorem 1.5] applies to the current TL C32rL(pL, πH) in C32rL(pL, πH).

Proof. (6.2) is rather straightforward: by the height estimate in Proposition 5.1(vii) we
conclude easily spt(TL) ∩C32rL(pL, πH) ⊂ C36rL(pL, π0). On the other hand by definition
of TL = T VL and by Assumption 1.7(Hor), we have spt(∂TL) ⊂ ∂C64rL(pL, π0), implying
spt(∂TL) ∩C36rL(pL, π0) = ∅ and thus also spt(∂TL) ∩C32rL(pL, πH) = ∅.

In order to prove (6.1) we argue as follows. First consider the chain of ancestors
of L:= L = Lj ⊂ Lj−1 ⊂ . . . ⊂ LN0 =: J , where J ∈ S N0 . We first show that
(pπ0)](TJ C36rJ (pJ , π0)) = Q JB36rJ (zJ , π0)K. This is done in the following way: con-

sider that Gr(u) ∩C64rJ (pJ , π0) is the graph of a C1,α function v with ‖v‖C1,α ≤ C0m
1/2
0 .

Define the function vt(x) := tv(x) and let pt be the orthogonal projection onto Gr(vt),
which is well-defined on VJ provided m0 is sufficiently small (the smallness being inde-
pendent of J). The currents St := (pt)](TJ C64rJ (pJ , π0)) are easily seen to coincide with
QtGv C36rJ (zJ , π0) for some integers Qt in the cylinder C36rJ (pJ , π0) by the constancy
theorem. On the other hand such currents vary continuously and thus the integer Qt must
be constant. This implies that Q0 = Q1 = Q. On the other hand p0 = pπ0 and we have
thus proved our claim.

Observe that (pπ0)](TL C36rL(pL, π0)) = Q JB36rL(zL, π0)K because TL C36rL(pL, π0) =
TJ C36rL(pL, π0). Choose next a continuous path of planes πt which connects π0 and πH
and satisfies the bound |πt − π0| ≤ C0|πH − π0| for some geometric constant C0. We then
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look at Zt = (pπt)](TL C36rL(pL, π0)) and conclude, similarly to the previous paragraph,
that ((pπH )](TL C36rL(pL, π0))) C32rL(pL, πH) = Q JB32rL(pπH (pL), πH)K. On the other
hand since (TL C36rL(pL, π0))) C32rL(pL, πH) = TL C32rL(pL, πH), this concludes the
proof of (6.1).

Now, by Proposition 5.1(iv)&(vii)

E(TL,C32rL(pL, πH)) ≤ C̄E(TL,BL) + C̄|πL − πH |2 ≤ C̄m0d(L)2γ0−2+2δ1`(L)2−2δ1 ≤ C̄m0

and in order to apply [11, Theorem 1.5] we just need to choose ε2 sufficiently small. �

We next generalize slightly the terminology of Section 3.2.

Definition 6.2. Let H and L be as in Proposition 6.1. After applying [11, Theorem 1.5]
to TL C32rL(pL, πH) in the cylinder C32rL(pL, πH) we denote by fHL the corresponding
πH-approximation. However, rather then defining fHL on the disk B8rL(pL, πH), by ap-
plying a translation we assume that the domain of fHL is the disk B8rL(pHL, πH) where
pHL = pH +pπH (pL−pH). Note in particular that Cr(pHL, πH) equals Cr(pL, πH), whereas
B8rL(pHL, πH) ⊂ pH + πH and pH ∈ B8rL(pHL, πH).

Observe that fLL = fL.

6.1. First variations. The next proposition is the core in the construction of the center
manifold and it is the main reason behind the C3,γ0 estimate for the glued interpolation.
It is also the place where our proof differs most from that of [9].

Definition 6.3. Let H and L be as in Proposition 6.1. In the cases (a) and (c) of Definition
0.1 we denote by κH the orthogonal complement in TpHΣ of πH and we denote by f̄HL the
map pκH ◦ fHL.

In what follows we will consider elliptic systems of the following form. Given a vector
valued map v : pH + πH ⊃ Ω → κH and after introducing an orthonormal system of
coordinates x1, x2 on πH and y1, . . . , yn̄ on κH , the system is given by the n̄ equations

∆vk + (L1)kij∂jv
i + (L2)ki v

i︸ ︷︷ ︸
=:E k(v)

= (L3)ki (x− xH)i + (L4)k︸ ︷︷ ︸
=:Fk

, (6.4)

where we follow Einstein’s summation convention and the tensors Li have constant coeffi-
cients. After introducing the operator L (v) = ∆v+E (v) we summarize the corresponding
elliptic system (6.4) as

L (v) = F . (6.5)

We then have a corresponding weak formulation for W 1,2 solutions of (6.5), namely v is a
weak solution in a domain D if the integral

I (v, ζ) :=

∫
(Dv : Dζ + (F − E (v)) · ζ) (6.6)

vanishes for smooth test functions ζ with compact support in D.
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Proposition 6.4. Let H and L be as in Proposition 6.1 (including the possibility that
H = L) and let fHL, f̄HL and κH be as in Definition 6.2 and Definition 6.3. Then, there
exist tensors with constant coefficients L1, . . . ,L4 and a constant C = C(M0, N0, Ce, Ch),
with the following properties:

(i) The tensors depend upon H and Σ (in the cases (a) and (c) of Definition 0.1) or

ω (in case (b) of Definition 0.1) and |L1|+ |L2|+ |L3|+ |L4| ≤ Cm
1/2
0 .

(ii) If LH , IH , and FH are defined through (6.4), (6.5) and (6.6), then

IH(η ◦ f̄HL, ζ) ≤ Cm0 d(L)2(1+β0)γ0−2−β2 r4+β2

L ‖Dζ‖0 (6.7)

for all ζ ∈ C∞c (B8rL(pHL, πH),κH).

Proof. Set for simplicity π = πH , κ := κH r = rL, p = pHL, f = fHL, B = B8r(p, π) and
T = TL.

Cases (a) and (b) of Definition 0.1. The proof is very similar to the one of [9, Proposi-
tion 5.2]. Nevertheless, for the sake of completeness, we give here all the details. We fix
a system of coordinates (x, y, w) ∈ π × κ × (TpHΣ)⊥ so that pH = (0, 0, 0). We drop the
subscript pH for the map ΨpH . Recall that, by Lemma 2.3,

Ψ(0, 0) = 0, DΨ(0, 0) = 0 and ‖DΨ‖C2,ε0 ≤ Cm
1/2
0 .

Let ζ ∈ Cc(B8r(p, π),κ) be a test function. We consider the vector field χ : Σ → R2+n

given by χ(q) = (0, ζ(x), DyΨ(x, y) · ζ(x)) for every q = (x, y,Ψ(x, y)) ∈ Σ. Note that χ is
tangent to Σ. Therefore we infer that δT (χ) = 0 and

|δGf (χ)| = |δGf (χ)− δT (χ)| ≤ C

∫
C8r(p,π)

|Dχ| d‖Gf − T‖ . (6.8)

Observe also that |χ| ≤ C|ζ| and |Dχ| ≤ C|ζ|+C|Dζ| ≤ C|Dζ|. Set E := E
(
T,C32r(p, π)

)
.

Thus, by (6.3) and Proposition 5.1(vii) we have

E ≤Cm0d(L)2γ0−2+2δ1`(L)2−2δ1 ,h(T,C32r(p, π)) ≤ Cm
1/4
0 d(L)

γ0/2−β2`(L)1+β2 . (6.9)

Recall that, by [11, Theorem 1.5] we have

|Df | ≤ CEβ0 + Cm
1/2
0 r ≤ Cmβ0

0 d(L)(2γ0−2+2δ1)β0rβ0(2−2δ1) (6.10)

|f | ≤ Ch(T,C32r(p, π)) + (E
1/2 + rm

1/2
0 )r ≤ Cm

1/4
0 d(L)

γ0/2−β2r1+β2 , (6.11)∫
B

|Df |2 ≤ C r2E ≤ Cm0 d(L)2γ0−2+2δ1 r4−2δ1 , (6.12)

(although (6.12) is not explicitely stated in [11, Theorem 1.5] it follows from the estimates
therein as in [7, Remark 4.5]) and

|B \K| ≤ Cm1+β0

0 d(L)(1+β0)(2γ0−2+2δ1)r2+(1+β0)(2−2δ1) , (6.13)∣∣∣∣‖T‖(C8r(p, π))− |B| − 1

2

∫
B

|Df |2
∣∣∣∣ ≤ Cm1+β0

0 d(L)(1+β0)(2γ0−2+2δ1)r2+(1+β0)(2−2δ1) ,

(6.14)
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where K ⊂ B is the set

B \K = pπ ((spt(T )∆spt(Gf )) ∩C8rL(pL, π)) . (6.15)

Writing f =
∑

i JfiK and f̄ =
∑

i

q
f̄i
y
, since Gr(f) ⊂ Σ, we have f =

∑
i

q
(f̄i,Ψ(x, f̄i))

y
.

From [8, Theorem 4.1] we can infer that

δGf (χ) =

∫
B

∑
i

(
DxyΨ(x, f̄i) · ζ︸ ︷︷ ︸

(A)

+ (DyyΨ(x, f̄i) ·Df̄i) · ζ︸ ︷︷ ︸
(B)

+DyΨ(x, f̄i) ·Dxζ︸ ︷︷ ︸
(C)

)

:
(
DxΨ(x, f̄i)︸ ︷︷ ︸

(D)

+DyΨ(x, f̄i) ·Df̄i︸ ︷︷ ︸
(E)

)
+

∫
B

∑
i

Dζ : Df̄i︸ ︷︷ ︸
(F )

+Err , (6.16)

where the error term Err in (6.16) satisfies the inequality

|Err| ≤ C

∫
|Dχ||Df |3 ≤ ‖Dζ‖L∞‖|Df |‖L∞

∫
|Df |2

≤ C‖Dζ‖0m
1+β0

0 d(L)(1+β0)(2γ0−2+2δ1)r4−2δ1+β0(2−2δ1) . (6.17)

The integral (F) in (6.16) is

(F ) = Q

∫
B

Dζ : D(η ◦ f̄) . (6.18)

We therefore expand the product in the other integral and estimate all terms separately,
using the Taylor expansion

DΨ(x, y) = DxDΨ(0, 0) · x+DyDΨ(0, 0) · y +O
(
m

1/2
0 (|x|2 + |y|2)

)
so that

|DΨ(x, f̄i)| ≤ Cm
1/2
0 r

DΨ(x, f̄i) = DxDΨ(0, 0) · x+O
(
m

1/2+1/4
0 d(L)

γ0/2−β2r1+β2
)
,

|D2Ψ(x, f̄i)| ≤ Cm
1/2
0 and D2Ψ(x, f̄i) = D2Ψ(0, 0) +O

(
m

1/2
0 r
)
.

We compute as follows:∫ ∑
i

(A) : (D) =

∫ ∑
i

(DxyΨ(0, 0) · ζ) : DxΨ(x, f̄i) +O
(
m0 r

2

∫
|ζ|
)

=

∫
Q(DxyΨ(0, 0) · ζ) : (DxxΨ(0, 0) · x) (6.19)

+O
(
m0 d(L)

γ0/2−β2 r1+β2

∫
|ζ|
)
.
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The integral in (6.19) has the form
∫

LAD x · ζ. Next, we estimate∫ ∑
i

(
(A) : (E)+(B) : (D) + (B) : (E)

)
= O

(
m1+β0

0 d(L)β0(2γ0−2+2δ1)r1+β0(2−2δ1)

∫
|ζ|
)

(6.20)

and ∫ ∑
i

(C) : (E) = O
(
m1+β0

0 d(L)β0(2γ0−2+2δ1)r2+β0(2−2δ1)

∫
|Dζ|

)
. (6.21)

Finally we compute∫ ∑
i

(C) : (D) =

∫ ∑
i

((DxyΨ(0, 0) · x) ·Dxζ) : DxΨ(x, f̄i)

+O
(
m0 d(L)

γ0/2−β2r2+β2

∫
|Dζ|

)
= Q

∫
(DxyΨ(0, 0) · x) ·Dxζ) : (DxxΨ(0, 0) · x)

+O
(
m0 d(L)

γ0/2−β2r2+β2

∫
|Dζ|

)
.

Integrating by parts in the last integral we reach∫ ∑
i

(C) : (D) =

∫
LCD x · ζ +O

(
m0 d(L)

γ0/2−β2r2+β2

∫
|Dζ|

)
. (6.22)

Set next L3 := LAD+LCD. Clearly L3 is a quadratic function of D2Ψ(0, 0), i.e. a quadratic
function of the tensor AΣ at the point pH . From (6.8), (6.17), (6.19) – (6.22), we infer
(6.7) and (i). Indeed we have to compare the following three types of errors

E1 := m1+β0

0 d(L)(1+β0)(2γ0−2+2δ1)r4−2δ1+β0(2−2δ1) (6.23)

E2 := m1+β0

0 d(L)β0(2γ0−2+2δ1)r4+β0(2−2δ1) (6.24)

E3 := m0d(L)
γ0/2−β2r4+β2 (6.25)

with m0d(L)2(1+β0)γ0−2−β2r4+β2 . It is easy to see that if

−2δ1 + β0(2− 2δ1)− β2 > 0 (6.26)

then

E2 ≤ E1 ≤m1+β0

0 d(L)(1+β0)(2γ0−2+2δ1)−2δ1+β0(2−2δ1)−β2r4+β2

≤m1+β0

0 d(L)2(1+β0)γ0−2−β2r4+β2 (6.27)

Therefore

E1, E2, E3 ≤m0d(L)2(1+β0)γ0−2−β2r4+β2 . (6.28)
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To conclude the proof we observe that, by the bound (6.12) and [11, Theorem 5.2]∫
C8r(p,π)

|Dχ| d‖Gf − T‖ ≤ C‖Dζ‖0M(T C8r(p, π)−Gf )

≤ C0‖Dζ‖0r
2Eβ0(E +m0r

2) ≤ CE2 .

Case (b) of Definition 0.1. Fix coordinates (x, y) ∈ R2 × Rn such that pH = (0, 0).
Consider the vector field χ(x, y) := (0, ζ(x)) for some ζ as in the statement. Recalling [13,
Proposition 1.2] we infer

δGf (χ) = δT (χ) + Err0 = T (dω χ) + Err0 = Gf (dω χ) + Err0 + Err1

with

|Err0|+ |Err1| = |δT (χ)− δGf (χ)|+
∣∣T (dω χ)−Gf (dω χ)

∣∣
≤ C

(
‖Dζ‖0 + ‖dω χ‖0

)
‖T −Gf‖(C8r(p, π))

≤ C
(
‖Dζ‖0 + ‖ζ‖0

)
Eβ0 (E + r2m0) r2

≤ C ‖Dζ‖0m
1+β0

0 d(H)(2γ0−2+2δ1)(1+β0) r2+(2−2δ1)(1+β0). (6.29)

From [8, Theorem 4.1]

δGf (χ) = Q

∫
D(η ◦ f) : Dζ + Err2

with

|Err2| ≤ C

∫
|Dζ| |Df |3 ≤ C ‖Dζ‖0E

1+β0 r2

(6.12)

≤ C ‖Dζ‖0m
1+β0

0 d(H)(2γ0−2+2δ1)(1+β0) r2+(2−2δ1)(1+β0).

Next we proceed to expand Gf (dw χ). To this aim we write

dω(x, y) =
n∑
l=1

al(x, y) dyl ∧ dx1 ∧ dx2 +
∑
j=1,2

∑
l<k

blk,j(x, y) dyl ∧ dyk ∧ dxj

+
∑
l<k<j

clkj(x, y) dyl ∧ dyk ∧ dyj (6.30)

and get

dω χ =
n∑
l=1

al ζ
l dx1 ∧ dx2

︸ ︷︷ ︸
ω(1)

+
∑
j=1,2

∑
l<k

blk,j ζ
ldyk ∧ dxj︸ ︷︷ ︸

ω(2)

+
∑
l<k<j

clkj ζ
l dyk ∧ dyj︸ ︷︷ ︸

ω(3)

. (6.31)

We consider separately Gf (ω
(1)),Gf (ω

(2)),Gf (ω
(3)). We start with the latter

Gf (ω
(3)) ≤ C ‖dω‖0 ‖ζ‖0

∫
B

|Df |2
(6.12)

≤ Cm2
0 d(H)2γ0−2+2δ1 r5−2δ1‖Dζ‖0. (6.32)
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Next

Gf (ω
(2)) =

∑
l<k

Q∑
i=1

∫
ζ l(x)

(
blk,2(x, fi(x))

∂fki
∂x1
− blk,1(x, fi(x))

∂fki
∂x2

)
dx

= Q
∑
l<k

∫
ζ l(x)

(
blk,2(0, 0)

∂(η ◦ f)k

∂x1
− blk,1(0, 0)

∂(η ◦ f)k

∂x2

)
dx+ Err3,

=

∫
L1D(η ◦ f) · ζ + Err3 (6.33)

with

|Err3| ≤ C‖ζ‖0 ‖D(dω)‖0

∫
B

(r |Df |+ |f | |Df |) dx

(6.10)&(6.11)

≤ C‖Dζ‖0 m1+β0

0 r4+(2−2δ1)β0 d(H)(2γ0−2+2δ1)β0 (6.34)

and L1 : Rn×2 → Rn given by

L1A · el := Q
n∑
k=1

(
blk,2(0, 0)Ak1 − blk,1(0, 0)Ak2

)
∀ A = (Akj)

j=1,2
k=1,...,n ∈ Rn×2.

Finally

Gf (ω
(1)) =

∑
l

Q∑
i=1

∫
ζ l(x) al(x, fi(x)) dx

= Q
∑
l

∫
ζ l(x) (al(0, 0) +Dxal(0, 0) · x+ Dyal(0, 0) · (η ◦ f)) dx+ Err4,

=

∫ (
L2 (η ◦ f) + L3 x+ L4

)
· ζ + Err4 (6.35)

where L2 : Rn → Rn, L3 : R2 → Rn L4 ∈ Rn are given by

L2 v · el :=
n∑
k=1

∂al
∂yk

(0, 0) vk ∀ v ∈ Rn, ∀ l = 1, . . . , n (6.36)

L3w · el :=
2∑
j=1

∂al
∂xj

(0, 0)wj ∀ w ∈ Rn, ∀ l = 1, . . . , n (6.37)

L4 · el := al(0, 0) ∀ l = 1, . . . , n (6.38)

and arguing as above

|Err4| ≤ C‖ζ‖0 [D(dω)]ε0

∫
B

(
r1+ε0 + |f |1+ε0

)
dx ≤ C‖Dζ‖0m0 r

4+ε0 . (6.39)
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In order to deduce (6.7) we need to compare, using (6.24) and (6.28),

|Err0 + Err1 + Err2| ≤ ‖Dζ‖0E1 ≤ ‖Dζ‖0m0d(L)2(1+β0)γ0−2−β2r4+β2

E2 = C m1+β0

0 d(H)(2γ0−2+2δ1)β0 r4+(2−2δ1)β0

E2.5 = Cm2
0 d(H)2γ0−2+2δ1 r5−2δ1

E4 = Cm0 r
4+ε0

with m0d(L)2(1+β0)γ0−2−β2r4+β2 . As before, if (6.26) holds, then E2 ≤ E1. Moreover, since
E4 ≤ r4+β2 , to conclude (6.7) it is enough to observe that if

1 ≥ β0(2− 2δ1) (6.40)

then 0 > 2γ0− 2 + 2δ1 > (2γ0− 2 + 2δ1)(1 +β0) and 5− 2δ1 > 2 + (2− 2δ1)(1 +β0), so that

d(H)2γ0−2+2δ1 r5−2δ1 ≤ d(H)(2γ0−2+2δ1)(1+β0) r2+(2−2δ1)(1+β0) ,

that is E2.5&4 ≤ E1. �

6.2. Tilted interpolating functions, L1 and L∞ estimates. In this subsection we
generalize the definition of the tilted interpolating functions hL. More precisely we consider

Definition 6.5. Let H and L be as in Proposition 6.1, assume that the conclusions of
Proposition 6.4 applies and letLH andFH be the corresponding operator and map as given
by Proposition 6.4 in combination with (6.4), (6.5) and (6.6). Let fHL be as in Definition
6.2, κH and f̄HL be as in Definition 6.3 and fix coordinates (x, y, z) ∈ πH × κH × TpHΣ⊥

as in the proof of Proposition 6.4. We then let h̄HL be the solution of
LH h̄HL = FH

h̄HL
∣∣
∂B8rL

(pHL,πH)
= η ◦ f̄HL .

(6.41)

In case (b) of Definition 0.1 we then define hHL = h̄HL, whereas in the other cases we
define hHL(x) = (h̄HL(x),ΨpH (x, h̄HL(x))).

In order to show that the maps h̄HL are well defined, we need to show that there is a
solution of the system (6.41).

Lemma 6.6. Under the assumptions of Definition 6.5, if ε2 is sufficiently small, then the
elliptic system 

LHv = F

v|∂B8rL
(pHL,πH) = g .

(6.42)

has a unique solution for every F ∈ W−1,2 (the latter being the usual space of distri-
butions which can be represented as first partial derivatives of L2 functions) and every

g ∈ W 1,2(B8rL(pHL, πH)). Observe moreover that ‖Dv‖L2 ≤ C0rL(‖F‖L2 +m
1/2
0 ‖g‖L2) +

C0‖Dg‖L2 whenever F ∈ L2.
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Proof. As for the first assertion, it suffices to show the Lemma for g = 0, since we can define
w = v− g and solve LH(w) = F +LH(g) . Setting B = B8rL(pHL, πH), the existence and
uniqueness for the latter case reduces, by Lax-Milgram, to the coercivity of the suitable
quadratic form Q(v, v) on W 1,2

0 (B). The latter follows easily from

Q(w,w) :=

∫
(|Dw|2 − L1Dw · w − L2w · w)

≥ ‖Dw‖2
L2(B) −

|L1|
2
‖Dw‖2

L2(B) −
(
|L1|

2
+ |L2|

)
‖w‖2

L2(B) .

Since rL ≤ 1, by the Poincaré inequality ‖w‖2
L2 ≤ C0‖Dw‖2

L2 for every w ∈ W 1,2
0 (B). The

coercivity follows then from |L1| + |L2| ≤ Cm
1/2
0 ≤ Cε2, where the constant C depends

only upon M0, N0, Ce and Ch. In particular we can assume the coercivity factor to be 1
2
.

On the other hand, multiplying the equation by w and integrating by parts we easily
see (using the coercivity) that

1

2

∫
|Dw|2 ≤

∫
(|Dw||Dg|+ |F ||w|) + Cm

1/2
0

∫
(|g||w|+ |w||Dg|)

≤1

4

∫
|Dw|2 +

r2
L

γ

∫
|F |2 +

2γ

r2
L

∫
|w|2 + C

∫
(|Dg|2 + m0

γ
r2
L|g|2) ,

where γ is any fixed positive number and C does not depend upon it.
We choose γ smaller than a geometric constant, so that we can use the Poincaré in-

equality to absorb the terms
∫
|w|2 on the right hand side. We then conclude the desired

estimate ‖Dw‖L2 ≤ C(‖Dg‖L2 + m
1/2
0 rL‖g‖L2 + rL‖FL‖L2). Since v = w + g, we then

conclude ‖Dv‖L2 ≤ C(‖Dg‖L2 +m
1/2
0 rL‖g‖L2 + CrL‖FL‖L2) . �

Observe that hHH = hH . We next record three fundamental estimates, which regard,
respectively, the L∞ norms of derivatives of solutions of LH(v) = F , the L∞ norm of
h̄HL − η ◦ f̄HL and the L1 norm of h̄HL − η ◦ f̄HL.

Proposition 6.7. Let H and L be as in Proposition 6.4 and assume the conclusions in
there apply. Then the following estimates hold for a constant C = C(m0, N0, Ce, Ch) for

B̂ := B8rL(pHL, πH) and B̃ := B6rL(pHL, πH):

‖h̄HL − η ◦ f̄HL‖L1(B̂) ≤ Cm0d(L)2(1+β0)γ0−2−β2`(L)5+β2 (6.43)

‖h̄HL − η ◦ f̄HL‖L∞(B̃) ≤ Cm0d(L)2(1+β0)γ0−2−β2`(L)3+β2 + Cm
1/2
0 `(L)2 . (6.44)

Moreover, if LH is the operator of Proposition 6.4, r a positive number no larger than 1
and v a solution of LH(v) = F in B8r(q, πH) for some smooth F , then

‖v‖L∞(B6r(q,πH)) ≤
C0

r2
‖v‖L1(B8r(q,πH)) + Cr2‖F‖L∞(B8r(q,πH)) (6.45)
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and, for l ∈ N

‖Dlv‖L∞(B6r(q,πH)) ≤
C0

r2+l
‖v‖L1(B8r(q,πH)) + Cr2

l∑
j=0

rj−l‖DjF‖L∞(B8r(q,πH)), (6.46)

where the latter constants depend also upon l.

Proof. Proof of (6.45). The estimate will be proved for a linear constant coefficient
operator of the form L = ∆ + L1 ·D + L2 when L1 and L2 are sufficiently small. We can
then assume πH = R2 and q = 0. Besides, if we define u(x) := v(rx) we see that u just
satisfies ∆u+ rL1 ·Du+ r2L2 · u = 0 and thus, without loss of generality, we can assume
r = 1. We thus set B = B8(0) ⊂ R2.

We recall the following interpolation estimate on the ball of radius 1, see [14, Theorem
1]. For 0 ≤ j ≤ m and j

m
≤ a ≤ 1 we have, for a constant C0 = C0(m, j, q, s),

‖Dju‖Lp(B1) ≤ C‖Dmu‖aLs(B1) ‖u‖1−a
Lq(B1) + C ‖u‖Lq(B1) , (6.47)

where
1
p

= j
2

+ a
(

1
s
− m

2

)
+ (1− a)1

q
.

We apply the estimate (6.47) for j = 1, m = 2, q = 1 and p = s = 2, a = 2/3 and use
Young’s inequality and a simple scaling argument to achieve the inequality

‖Du‖L2(Bρ(x)) ≤ C0ρ‖D2u‖L2(Bρ(x)) + C0ρ
−2‖u‖L1(Bρ(x)) . (6.48)

Moreover, by the Poincaré inequality:

‖u‖L2(Bρ(x)) ≤ C0ρ‖Du‖L2(Bρ(x)) + C0ρ
−1‖u‖L1(Bρ(x)) . (6.49)

Next, recall the standard L2 estimates for second order derivatives of solutions of the
Laplace equations: if B2ρ(x) ⊂ B, then

‖D2u‖L2(Bρ(x)) ≤ C0‖∆u‖L2(B2ρ(x)) + C0ρ
−3‖u‖L1(B2ρ(x)) . (6.50)

Now, recall that ∆u = −L1 ·Du − L2 · u + F . Using the fact that |L1| + |L2| ≤ C0m
1/2
0 ,

we can combine all the inequalities above to conclude

ρ6‖D2u‖2
L2(Bρ(x)) ≤ C0ρ

6m0‖D2u‖2
L2(B2ρ(x)) + C0‖u‖2

L1(B8) + C0‖F‖2
L∞(B8) . (6.51)

Define next

S := sup{ρ3‖D2u‖L2(Bρ(x)) : B2ρ(x) ⊂ B8} (6.52)

and let % and ξ be such that B2%(ξ) ⊂ B8 and

%3‖D2u‖L2(B%(ξ)) ≥
S

2
. (6.53)

We can cover B%(ξ) with N̄0 balls B%/2(xi) with xi ∈ B%(ξ), where N̄0 is only a geometric
constant. We then can apply (6.51) to conclude that

S

2
≤ C0N̄0m

1/2
0 S + C0N̄0‖u‖L1(B8) + C0N̄0‖F‖L∞(B8) .
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Therefore, when m
1/2
0 is smaller than a geometric constant we conclude S ≤ C0‖u‖L1(B8) +

C0‖F‖L∞(B8). By definition of S, we have reached the estimate

ρ3‖D2u‖L2(Bρ(x)) ≤ C0‖u‖L1(B8) + C0‖F‖L∞(B8) whenever B2ρ(x) ⊂ B8.

Of course, with a simple covering argument, this implies

‖D2u‖L2(B6) ≤ C0‖u‖L1(B8) + C0‖F‖L∞(B8) . (6.54)

Next, again using the interpolation inequality (6.48) we get

‖Du‖L2(B6) ≤ C0‖u‖L1(B8) + C0‖F‖L∞(B8) .

So, by Sobolev embedding

‖Du‖L4(B6) ≤ C0‖Du‖W 1,2(B6) ≤ C0‖u‖L1(B8) + C0‖F‖L∞(B8) .

Again using interpolation and Sobolev we finally achieve

‖u‖L∞(B6) ≤ C0‖u‖W 1,4(B6) ≤ C0‖u‖L1(B8) + C0‖F‖L∞(B8) .

Proof of (6.46). As in the previous step, we can, without loss of generality, assume
r = 1. Note that a byproduct of the argument given above is also the estimate

‖Du‖L1(B6) ≤ C0‖u‖L1(B8) + C0‖F‖L∞(B8) .

In fact, by a simple covering and scaling argument one can easily see that

‖Du‖L1(Bτ ) ≤ C0(τ)‖u‖L1(B8) + C0(τ)‖F‖L∞(B8) for every τ < 8.

We can then differentiate the equation and use the proof of the previous paragraph to show

‖Du‖L∞(Bσ) ≤ C0(σ, τ)‖Du‖L1(Bτ ) + C0(σ, τ)‖DF‖L∞(Bτ ) .

Again, arguing as above, a byproduct of the proof is also the estimate

‖D2u‖L1(Bσ) ≤ C0(σ, τ)‖Du‖L1(Bτ ) + C0(σ, τ)‖DF‖L∞(Bτ ) .

This can be applied inductively to get estimates for all higher derivatives.

Proof of (6.43). Let B := B8rL(pHL, πH). We use the coordinates introduced in the
proof of Proposition 6.4. We set w := h̄HL − η ◦ f̄HL and observe that Lw = FH −LH(η ◦ f̄HL)

w|∂B = 0

Next, for 1 < p < ∞, we define the continuous (by Calderon-Zygmund theory) linear
operator T : Lp(B)→ W 1,p

0 (B) ∩W 2,p(B) by T (g) = ψ where
−∆ψ = g in B

ψ = 0 on ∂B.
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Applying the Sobolev embedding W 1,3(B) ↪→ C0(B) to the derivative of ζ ∈ W 2,3 ∩W 1,3
0

we conclude that

‖Dζ − −
∫
Dζ‖0 ≤ C0r

1− 2
3

L ‖D2ζ‖L3 .

On the other hand, by interpolation and Poincaré we conclude

‖Dζ‖L3 ≤ ‖ζ‖1/2L3‖D2ζ‖1/2L3 ≤
ε

2rL
‖ζ‖L3 +

rL
2ε
‖D2ζ‖L3 ≤ C0ε‖Dζ‖L3 +

rL
2ε
‖D2ζ‖L3 ,

for every positive ε. Choosing the latter accordingly we achieve ‖Dζ‖L3 ≤ C0rL‖D2ζ‖L3

and thus ‖Dζ‖0 ≤ C0rL‖D2ζ‖L3 .
We now use these bounds in (6.7) to get∣∣∣∣∫

B

(Dw : Dζ − L1Dw · ζ − L2w · ζ)

∣∣∣∣ ≤ Cm0 d(L)2(1+β0)γ0−2−β2 r4+β2

L r
1− 2

3
L ‖D2ζ‖L3 .

Then, we can estimate the L
3/2-norm of w as follows:

‖w‖L3/2(B) = sup
‖h‖L3(B)=1

∫
B

w h = − sup
‖h‖L3(B)=1

∫
B

w∆T (h)

≤ sup
‖h‖L3(B)=1

∫
B

Dw ·DT (h)

≤ Cm0 d(L)2(1+β0)γ0−2−β2 r
5+β2−2/3
L sup

‖h‖L3(B)=1

‖D2T (h)‖L3

+ sup
‖h‖L3(B)=1

∫
B

(−L1Dw · T (h)− L2w · T (h)) .

Recalling the Calderon-Zygmund estimates we have

‖D2T (h)‖L3 ≤ C0‖h‖L3

‖DT (h)‖L3 ≤ C0rL‖h‖L3

‖T (h)‖L3 ≤ C0r
2
L‖h‖L3 .

Integrating by parts we then achieve

‖w‖L3/2(B) ≤ Cm0 d(L)2(1+β0)γ0−2−β2 r
5+β2−2/3
L + sup

‖h‖L3(B)=1

∫
B

w · (L1DT (h)− L2T (h))

≤ Cm0 d(L)2(1+β0)γ0−2−β2 r
5+β2−2/3
L + Cm

1/2
0 ‖w‖L3/2(B) .

Therefore, if m
1/2
0 is sufficiently small, that is ε2 is sufficiently small, we deduce that

‖w‖L1 ≤ C r
2/3
L ‖w‖L3/2(B) ≤ Cm0 dist(H)2(1+β0)γ0−2−β2 r5+β2

L .

Proof of (6.44). The estimate follows easily from (6.43) and (6.45), recalling that

‖FH‖0 ≤ Cm
1/2
0 . �
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7. Main estimates on the interpolating functions

In this section we adopt the terminology of the previous subsection and we show that

Proposition 7.1. Assume the conclusions of Proposition 6.1 applies, let κ := β2/4 and
assume ε2 is sufficiently small, depending upon the other parameters. Then there exists
a constant C = C(M0, N0, Ce, Ch) such that for any cube H ∈ W ∪ S , the following
conclusions hold.

(i) Lemma 3.9 applies and thus gH is well-defined.
(ii) The following estimates hold:

‖hH − p⊥πH (pH)‖C0(B6rH
(pH ,πH)) ≤ Cm

1/4
0 d(H)

γ0/2−β2`(H)1+β2 (7.1)

‖gH‖C0 ≤ Cm
1/4
0 d(H)1+γ0/2 (7.2)

‖DgH‖C0 + d(H)‖D2gH‖C0 + d(H)2‖D3gH‖Cκ ≤ Cm
1/2
0 d(H)γ0 (7.3)

‖gH − u(zH , wH)‖C0 ≤ Cm
1/4
0 d(H)

γ0/2`(H) + csd(H)a (7.4)

|πH − T(x,gH(x))GgH | ≤ Cm
1/2
0 d(H)γ0−1+δ1`(H)1−δ1 ∀x ∈ B4rH (zH , wH) . (7.5)

(iii) If L ∈ W ∪S , L ∩H 6= ∅ and `(H) ≤ `(L) ≤ 2`(H), then

‖DlgL −DlgH‖C0(BrL (zL,wL)) ≤ Cm
1/2
0 d(H)2(1+β0)γ0−β2−2 `(H)3+κ−l ∀ l = 0, . . . , 3 .

(7.6)

(iv) If L ∈ S ∪W and d(H) ≤ d(L) ≤ 2d(H), then

|D3gH(zH , wH)−D3gL(zL, wL)| ≤ Cm
1/2
0 d(H)2(1+β0)γ0−β2−2 d((zH , wH), (zL, wL))κ , (7.7)

where d(·, ·) denotes the distance in B.

7.1. Proof of (i) and (ii) in Proposition 7.1. iF H ∈ C N0 , then the estimates follow
from the standard elliptic theory for the system of equations defining the interpolating
functions. We start by fixing H,L, J so that H ∈ S ∪W , L is an ancestor of H (possibly
H itself) and J is the father of L. We denote by B′ the ball B8rJ (pHJ , πH), by B the
ball B8rL(pHL, πH), by C′ the cylinder C8rJ (pJ , πH) and by C the cylinder C8rL(pL, πH).
Observe that B ⊂ B′ (this just requires M0 sufficiently large, given the estimate |pJ −
pL| ≤ 2

√
2`(J)) and thus C ⊂ C′. Next, set E := E(TL,C32rL(pL, πH)) and E ′ :=

E(TJ ,C32rJ (pJ , πH)) and recalling Proposition 5.1(vii) and (6.3) we record

E ≤Cm0d(L)2γ0−2+2δ1`(L)2−2δ1 ≤ Cm0d(H)2γ0−2+2δ1`(J)2−2δ1 (7.8)

E ′ ≤Cm0d(J)2γ0−2+2δ1`(J)2−2δ1 ≤ Cm0d(H)2γ0−2+2δ1`(J)2−2δ1 (7.9)

h(TL,C) ≤Cm
1/4
0 d(L)

γ0/2−β2`(L)1+β2 ≤ Cm
1/4
0 d(H)

γ0/2−β2`(J)1+β2 (7.10)

h(TJ ,C
′) ≤Cm

1/4
0 d(J)

γ0/2−β2`(J)1+β2 ≤ Cm
1/4
0 d(H)

γ0/2−β2`(J)1+β2 . (7.11)

Next let K̄ be the projection of Gr(fHL) ∩ Gr(fHJ) onto pHL + πH . Since TJ BL = TL,
we can estimate

|B \ K̄| ≤ H2(Gr(fHL) \ spt(TL)) +H2(Gr(fHJ) \ spt(TJ))
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and recalling the estimates of [11, Theorem 1.5] we achieve

|B \ K̄| ≤ C0r
2
J(Eβ0(E + C0m0r

2
J) + E ′β0(E ′ + C0m0r

2
J)) ≤ Cm1+β0

0 d(H)2(1+β0)γ0−2`(J)4 .

In particular K̄ is certainly nonempty, provided ε2 is small enough. Using the estimates of
[11, Theorem 1.5] on the oscillation of fHL and fHJ we conclude that

‖η ◦ fHL − η ◦ fHJ‖L∞(B) ≤ Cm
1/4
0 d(H)

γ0/2−β2`(J)1+β2 .

Set therefore ζ := η ◦ f̄HL − η ◦ f̄HJ and conclude that

‖ζ‖L1(B) ≤ ‖η ◦ fHL− η ◦ fHJ‖L∞(B) |B \ K̄| ≤ Cm
1+β0+1/4
0 d(H)

γ0/2−β2+2(1+β0)γ0−2`(J)5+β2 .

If we define ξ := h̄HL − h̄HJ we can use (6.43) of Proposition 6.7 and the triangular
inequality to infer

‖ξ‖L1(B) ≤ Cm0d(H)2(1+β0)γ0−2−β2`(J)5+β2 .

In turn, again by Proposition 6.7, this time using the fact that LHξ = 0 and (6.46), we
infer

‖Dl(h̄HL − h̄HJ)‖C0(B̂) ≤ Cm0d(H)2(1+β0)γ0−2−β2`(J)3+β2−l

≤ Cm0d(H)2(1+β0)γ0−2−β2`(J)3+2κ−l for l = 0, 1, 2, 3, 4, (7.12)

where B̂ = B6rL(pHL, πH). Interpolating we also get easily

[D3(h̄HL − h̄HJ)]0,κ,B̂ ≤ Cm0d(H)2(1+β0)γ0−2−β2`(J)κ . (7.13)

In case (b) of Definition 0.1 we have hHL = h̄HL and hHJ = h̄HJ . In case (a) and (c),
using the system of coordinates introduced in the proof of Proposition 6.7 we have

hHL(x) = (h̄HL(x),ΨpH (x, h̄HL(x)))

hHJ(x) = (h̄HJ(x),ΨpH (x, h̄HJ(x)))

and we use the chain rule and the regularity of ΨpH to achieve the corresponding estimates

‖Dl(hHL − hHJ)‖C0(B̂) ≤ Cm0d(H)2(1+β0)γ0−2−β2`(J)3+2κ−l for l = 0, 1, 2, 3. (7.14)

[D3(hHL − hHJ)]0,κ,B̂ ≤ Cm0d(H)2(1+β0)γ0−2−β2`(J)κ . (7.15)

Fix now a chain of cubes H = Hj ⊂ Hj−1 ⊂ . . . ⊂ HN =: L, where each Hi−1 is the
father of Hi. Summing the estimates above and using the fact that `(Hj) = 2−jd(H) and
`(H) ≤ d(H) = d(HN0), we infer

‖Dl(hHL − hH)‖C0(B̃) ≤ C d(H)2(1+β0)γ0+1−l for l = 0, 1, 2, 3 (7.16)

[D3(hHL − hH)]0,κ,B̃ ≤ C d(H)2(1+β0)γ0−β2+κ−2 , (7.17)

where B̃ = B6rH (pH , πH). Observe that, assuming that we have fixed coordinates so that
pH = (0, 0, 0) we also know, arguing as in the proof of Proposition 6.4, that, if we set
B̄ := B8rL(pHL, πH), then

‖η ◦ f̄HL‖L∞(B̄) ≤ Cm
1/4
0 d(H)1+γ0/2 .
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In particular, applying (6.44) of Proposition 6.7, we conclude

‖h̄HL‖C0(B̂) ≤ Cm
1/4
0 d(H)1+γ0/2 .

Recalling the height estimate Proposition 5.1(vii) (taking into account that pH = 0 ∈
spt(T )) we have

‖η ◦ f̄H‖C0 ≤ Cm
1/4
0 d(H)

γ0/2−β2`(H)1+β2

and thus
‖η ◦ f̄H‖L1(B8rH

(pH ,πH)) ≤ Cm
1/4
0 d(H)

γ0/2−β2`(H)3+β2

Using (6.43) we conclude

‖h̄H‖L1(B8rH
(pH ,πH)) ≤ Cm

1/4
0 d(H)

γ0/2−β2`(H)3+β2

and with the help of (6.45) we achieve

‖h̄H‖L∞(B6rH
(pH ,πH)) ≤ Cm

1/4
0 d(H)

γ0/2−β2`(H)1+β2 . (7.18)

Using the estimates upon ΨpH and the fact that ΨpH (0) = 0, DΨpH (0) = 0 we easily
conclude

‖hH‖L∞(B6rH
(pH ,πH)) ≤ Cm

1/4
0 d(H)

γ0/2−β2`(H)1+β2 , (7.19)

which in fact is (7.1).
We next estimate the derivatives of hHL. Let E := E(TL,C32rL(pL, πH)) and recall the

discussion above and the estimates of [11, Theorem 1.5] to conclude that∫
B̄

|DfHL|2 ≤ C0r
2
LE ≤ Cm0d(H)2γ0−2+2δ1`(L)4−2δ1 . (7.20)

We thus conclude that ‖Dη ◦ f̄HL‖L2(B̄) ≤ Cm
1/2
0 d(H)γ0−1+δ1 `(H)2−δ1 . An analogous

estimate can be derived for ‖η◦f̄HL‖L2(B̄) using the L∞ bound already derived. We can now

use Lemma 6.6 to estimate ‖Dh̄HL‖L2 ≤ Cm
1/2
0 d(H)γ0−1+δ1 `(H)2−δ1 (recall the estimate on

FH derived in the previous section) and thus ‖Dh̄HL‖L1(B̄) ≤ Cm
1/2
0 d(H)γ0−1+δ1 `(H)3−δ1 .

If we differentiate the equation defining h̄HL we then find

LH∂jh̄
i
HL = (L3)ij

and we can thus apply (6.45) of Proposition 6.7, with v = Dh̄HL, to conclude that

‖Dlh̄HL‖L∞(B6rL
) ≤ Cm

1/2
0 d(H)γ0−1+δ1`(L)2−δ1−l ≤ Cm

1/2
0 d(H)γ0+1−l for l = 1, 2, 3, 4,

(7.21)
where we used that, for the starting cubes L = HN0 , d(H) = d(L) ≤ C(M0)`(L).

Arguing as above we achieve a similar estimate for hHL. We observe however that the
condition DΨpH (0, 0) = 0 plays an important role (assuming to have moved the origin so
that it coincides with pH). For instance we have

DhHL = (Dh̄HL, DxΨpH (x, h̄HL(x)) +DyΨpH (x, h̄HL(x))Dh̄HL(x)) .

Thus we can easily estimate

|DhHL(x)| ≤ Cm
1/2
0 d(H)γ0 + |DΨpH (x, h̄HL(x))| . (7.22)
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Now, the second summand in (7.22) is estimated with ‖D2ΨpH‖`(H) ≤ Cm
1/2
0 d(H), pre-

cisely because DΨpH (0, 0) = 0.

It follows by (7.14), (7.15), (7.21) and the triangular inequality that we have the uniform
estimates

‖DhH‖C0(B) + d(H)‖D2hH‖C0(B) + d(H)2‖D3hH‖Cκ(B) ≤ Cm
1/2
0 d(H)γ0 (7.23)

Recall now that, by Proposition 5.1 we have |πH − π0| ≤ Cm
1/2
0 d(H)γ0 . We can there-

fore apply [9, Lemma B.1] to the rescaling kH(x) := d(H)−1hH(d(H)x) and conclude the
existence of the interpolating functions gH and that the estimates (7.3) hold. Moreover,
combining (7.1) with [9, Lemma B.1] we also get

‖gH − p⊥π0
(pH)‖C0 ≤ Cm

1/4
0 d(H)

γ0/2`(H) . (7.24)

On the other hand pπ0(pH) = zH and since pH ∈ spt(TH)∪Vu,a, we conclude immediately
|p⊥π0

(pH) − u(zH , wH)| ≤ csd(H)a. Combining this last estimate with (7.24) we conclude
(7.4).

Finally, recall that, if E := E(T,C32rH (pH , πH)), then∫
B8rH

(pH ,πH)

|DfH |2 ≤ Cm0d(H)2γ0−2+2δ2`(H)4−2δ1 ,

from which clearly we get∫
B8rH

(pH ,πH)

|Dη ◦ fH |2 ≤ Cm0d(H)2γ0−2+2δ1`(H)4−2δ1 .

By the last estimate in Lemma 6.6 (recalling again the bounds on FH and η ◦ fH), we
deduce ∫

B8rH
(pH ,πH)

|Dh̄H |2 ≤ Cm0d(H)2γ0−2+2δ1`(H)4−2δ1 .

Thus we conclude the existence of a point p ∈ B8rH (pH , πH) such that

|Dh̄H(p)| ≤ Cm
1/2
0 d(H)γ0−1+δ1`(H)1−δ1 . (7.25)

Assume now to be in the case (a) or (c) of Definition 0.1 and shift the origin so that it
coincides with pH . Given the bound (7.23) on D2h̄H we then conclude

|Dh̄H(0)| ≤ Cm
1/2
0 d(H)γ0−1+δ1`(H)1−δ1

and, since DΨpH (0) = 0, we also have |DhH(0)| ≤ Cm
1/2
0 d(H)γ0−1+δ1`(H)1−δ1 . Hence

using the bound on ‖D2hH‖0, we finally conclude |Dh̄H(q)| ≤ Cm
1/2
0 d(H)γ0−1+δ1`(H)1−δ1

for all q’s in the domain of h̄H . This implies the estimate

|TpGhH − πH | ≤ Cm
1/2
0 d(H)γ0−1+δ1`(H)1−δ1 ∀p ∈ Gr(hH) ∩C6rH (pH , πH) .

Since however Gr(gH) ⊂ Gr(hH) ∩ C6rH (pH , πH), we then conclude (7.5). The same
conclusion for case (b) in Definition 0.1 follows directly from (7.25).
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7.2. Proof of (iii) and (iv). We observe first that (iv) is a rather simple consequence of
(iii). Indeed fix H and L as in the statements and consider H = Hi ⊂ Hi−1 ⊂ . . . ⊂ HN0 ∈
C N0 and L = Lj ⊂ Lj−1 ⊂ . . . ⊂ LN0 ∈ C N0 so that Hl is the father of Hl+1 and Ll is the
father of Ll+1. We distinguish two cases:

(A) If HN0 ∩ LN0 6= ∅, we let i0 be the smallest index so that Hi0 ∩ Li0 6= ∅;
(B) HN0 ∩ LN0 = ∅.

In case (A) observe that max{`(Hi0), `(Li0)} ≤ d((zH , wH), (zL, wL)) := d. On the other
hand, recalling that d(Hl) = d(H), d(Li) = d(L) and d(L) ≤ 2d(H), by (iii) with l = 3 we
have

|D3gH(zH , wH)−D3gHi0 (zHi0 , wHi0 )| ≤
i−1∑
l=i0

|D3gHl(zHl , wHl)−D3gHl+1
(zHl+1

, wHl+1
)|

≤Cm1/2
0 d(H)2(1+β0)γ0−β2−2`(Hi0)κ

i−1∑
l=i0

2(i0−l)κ ≤ Cm
1/2
0 d(H)2(1+β0)γ0−β2−2dκ

|D3gL(zL, wL)−D3gLi0 (zLi0 , wLi0 )| ≤
j−1∑
l=i0

|D3gLl(zLl , wLl)−D3gLl+1
(zLl+1

, wLl+1
)|

≤Cm1/2
0 d(L)2(1+β0)γ0−β2−2`(Li0)κ

j−1∑
l=i0

2(i0−l)κ ≤ Cm
1/2
0 d(H)2(1+β0)γ0−β2−2dκ

|D3gLi0 (zLi0 , wLi0 )−D3gHi0 (zHi0 , wHi0 )| ≤ Cm
1/2
0 d(Hi0)2(1+β0)γ0−β2−2`(Hi0)κ

≤m1/2
0 d(H)2(1+β0)γ0−β2−2dκ .

The triangle inequality implies then the desired estimate.
In case (B) we first notice that by the very same argument we have the estimates

|D3gH(zH , wH)−D3gHN0
(zHN0

, wHN0
)| ≤ Cm

1/2
0 d(H)2(1+β0)γ0−β2−2dκ

|D3gL(zL, wL)−D3gLN0
(zLN0

, wLN0
)| ≤ Cm

1/2
0 d(H)2(1+β0)γ0−β2−2dκ .

Next we find a chain of cubes HN0 = J0, J1, . . . , JN = LN0 , all distinct and belonging to
S N0 , so that

• d(H) ≤ d(Jl) ≤ d(L) ≤ 2d(H);
• Jl ∩ Jl+1 6= ∅ and thus `(HN0) ≤ `(Jl) ≤ `(LN0);
• N is smaller than a constant C(N0, Q̄).

Using again (iii) and arguing as above we conclude

|D3gHN0
(zHN0

, wHN0
)−D3gLN0

(zLN0
, wLN0

)|

≤
N∑
l=1

|D3gJl(zJl , wJl)−D3gJl−1
(zJl−1

, wJl−1
)| ≤ CNm

1/2
0 d(H)2(1+β0)γ0−β2−2dκ .

Again, using the triangular inequality we conclude (iv).
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We now come to (iii). Fix therefore two cubes H and L as in the statement and set
r := rL. Observe that, by (ii) and [9, Lemma C.2], it suffices to show that ‖gH−gL‖L1(B) ≤
Cm

1/2
0 d(H)

γ0/2−2`(H)5+κ. where B = Br(zL, π0). Consider now the two corresponding
tilted interpolating functions, namely hL and hH . Given the estimate on the Lipschitz
constant and the C0 norm upon hL proved in the previous paragraph, we can find a
function ĥL : B7r(pHL, πH)→ π⊥H such that GĥL

= GhL C6r(pL, πH) applying [9, Lemma
B.1] (in this paragraph ·̂ will always denote the reparametrization on πH). By (i) clearly
GĥL

Cr(zL, π0) = GgL . We can therefore apply [9, Lemma B.1] to conclude that

‖gH − gL‖L1(B) ≤ C‖hH − ĥL‖L1(B5r(pL,πH)) .

Consider next the tilted interpolating function hHL and observe that, by (7.12) and the
usual estimates on Ψ, we know

‖hH − hHL‖L1(B5r(pH ,πH)) ≤ Cm
1/2
0 d(H)2(1+β0)γ0−β2−2`(H)5+β2 .

Indeed, by (6.43) and the usual estimates on Ψ, it is enough to see that

‖η ◦ fHH − η ◦ fHL‖L1(B5r(pH ,πH)) ≤ ‖η ◦ fHH − η ◦ fHL‖L∞(B5r(pH ,πH)) |B5r(pH , πH) \ K̄|

≤ Cm
1+β0+1/4
0 d(H)

γ0/2−β2+2(1+β0)γ0−2`(H)5+β2 ,

where, as above, we used the estimates of [11, Theorem 1.5] on the oscillation of fHH and
fHL (with K̄ the projection of Gr(fHH) ∩ Gr(fHL) onto pHL + πH) and B5r(pH , πH) ⊂
B8r(pHL, πH). Hence, since β2 ≥ κ, we are reduced to show

‖hHL − ĥL‖L1(B5r(pH ,πH)) ≤ Cm
1/2
0 d(H)2(1+β0)γ0−β2−2`(H)5+κ . (7.26)

In turn, consider the πH-approximating function fHL and the πL-approximating function
fLL = fL. In the πH × κH × TpHΣ⊥ coordinates we set

fHL(x) = (pκH (η ◦ fHL(x)),ΨpH (x,pκH (η ◦ fHL(x))))

and recall that, by Proposition 6.7, we have

‖hHL − fHL‖L1(B8rL
(pHL,πH)) ≤ Cm

1/2
0 d(L)2(1+β0)γ0−β2−2`(L)5+β2 . (7.27)

Similarly, in the πL × κL × TpLΣ⊥ coordinates we set

fL(x) = (pκL(η ◦ fL(x)),ΨpL(x,pκL(η ◦ fL(x))))

and get

‖hL − fL‖L1(B8rL
(pL,πL)) ≤ Cm

1/2
0 d(L)2(1+β0)γ0−β2−2`(L)5+β2 .

Next we denote by f̂L the map f̂L : B6rL(pHL, πH)→ π⊥H such that Gf̂L
= GfL C6rL(pL, πH)

and we use again [9, Lemma B.1] to infer

‖ĥL − f̂L‖L1(B6rL
(pHL,πH)) ≤ C‖hL − fL‖L1(B8rL

(pL,πL) ≤ Cm
1/2
0 d(L)2(1+β0)γ0−β2−2`(L)5+β2 .

(7.28)
In view of (7.27) and (7.28), (7.26) is then reduced to

‖fHL − f̂L‖L1(B5rL
(pHL,πH)) ≤ Cm

1/2
0 d(H)2(1+β0)γ0−β2−2`(H)5+κ . (7.29)
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Consider now the map f̂L : B6rL(pHL, πH)→ AQ(π⊥H) such that Gf̂L
= GfL C6rL(pL, πH).

Let A and Â be the projections on pH +πH = pHL+πH of the Borel sets Gr(fHL))\ spt(T )

and Gr(f̂L) \ spt(T ) ⊂ Gr(fL) \ spt(T ). We know that

|A ∪ A′| ≤‖GfHL − T‖(C8rL(pL, πH)) + ‖GfL − T‖(C8rL(pL, πL))

≤Cm1+β0

0 d(H)2(1+β0)γ0−2`(H)4 .

On the other hand, thanks to the height bound Proposition 5.1(vii) and the estimates of

[11, Theorem 1.5], that ‖η ◦ fHL − η ◦ f̂L‖L∞(B7rL
(pHL,πH)) ≤ Cm

1/4
0 d(H)

γ0/2−β2`(H)1+β2 .
We thus conclude that

‖η ◦ fHL − η ◦ f̂L‖L1(B6rL
(pHL,πH)) ≤ Cm

1/2
0 d(H)2(1+β0)γ0−β2−2`(H)5+β2 .

Define in the πH × κH × TpHΣ⊥ coordinates the function

g(x) := (pκH (η ◦ f̂L(x)),ΨpH (x,pκH (η ◦ f̂L(x)))) .

We can thus conclude that

‖fHL − g‖L1(B6rL
(pHL,πL)) ≤ Cm

1/2
0 d(L)2(1+β0)γ0−β2−2`(L)5+β2 . (7.30)

Thus, (7.29) is now reduced to

‖g − f̂L‖L1(B5rL
(pHL,πH)) ≤ Cm

1/2
0 d(H)2(1+β0)γ0−β2−2`(H)5+κ . (7.31)

Denoting by An the distance |πH − πL|, by B̂ the ball B6rL(pHL, πH) and by B̃ the ball
B8rL(pL, πL), we then have, by [9, Lemma 5.6]

‖g − f̂L‖L1(B̂) ≤ C0(osc (fL) + rLAn)

(∫
|DfL|2 + r2

L(‖DΨpL‖2
C0(B̃)

+ An2)

)
.

Recall that DΨpL(pL) = 0 and thus ‖DΨpL‖2
C0(B̃)

≤ C0m0r
2
L. Recalling the estimate of

Proposition 5.1 on |πH −πL| and upon the Dirichlet energy of fL (namely (6.12)), we then
conclude ∫

|DfL|2 + r2
L(‖DΨpL‖2

C0(B̃)
+ An2) ≤ Cm0d(L)2γ0−2+2δ1`(H)4−2δ1 .

On the other hand

osc (fL) + rLAn ≤ Cm
1/4
0 d(H)

γ0/2−β2`(H)1+β2 .

Thus (7.31) follows by our choice of the various parameters, in particular β2−2δ1 ≥ β2/4 =
κ.
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8. Proof of Theorem 3.11

8.1. Proof of (i). As in all the proofs so far, we will use C0 for geometric constants and
C for constants which depend upon M0, N0, Ce and Ch. Define χH := ϑH/(

∑
L∈Pj ϑL) for

each H ∈Pj(cf. Definition 3.10) and observe that∑
H∈Pj

χH = 1 on Ak ∀k ∈ N and ‖χH‖Ci ≤ C0 `(H)−i ∀i ∈ {0, 1, 2, 3, 4} . (8.1)

Fix anyH ∈Pj and let k be such thatH ⊂ Ak. SetPj(H) := {L ∈Pj : L∩H 6= ∅}\{H}
for each H ∈ Pj. By construction 1

2
`(L) ≤ `(H) ≤ 2 `(L) and 2−k−1 ≤ d(L) ≤ 2−k+1

for every L ∈ Pj(H). Moreover the cardinality of Pj(H) is at most 12. Fix a point
p = (z, w) ∈ H and observe that C−1

0 2−k ≤ |z| ≤ C02−k. From (7.2) of Proposition 7.1 we
then conclude

|ϕ̂j(z, w)| ≤ Cm
1/4
0 d(H)1+γ0/2 ≤ Cm

1/4
0 |z|1+γ0/2 .

Recall now that Ψ(0) = 0, DΨ(0) = 0 and ‖D2Ψ‖C0 ≤ Cm
1/2
0 . Considering that

ϕj(z, w) = (ϕ̄j(z, w),Ψ(z, ϕ̄j(z, w))) (8.2)

(where ϕ̄j(z, w) is the vector consisting of the first n̄ components of ϕ̂j(z, w)), we easily
conclude

|ϕj(z, w)| ≤ Cm
1/4
0 |z|1+γ0/2 + C‖D2Ψ‖C0|z|2 ≤ Cm

1/4
0 |z|1+γ0/2 .

This gives (3.16) and the continuity of ϕj, since by definition ϕj(0, 0) = 0.
For (z, w) ∈ H we next write

ϕ̂j(z, w) =
(
gHχH +

∑
L∈Pj(H)

gLχL

)
(z, w) = gH(x) +

∑
L∈Pj(H)

(gL − gH)χL (z, w) , (8.3)

because H does not meet the support of ϑL for any L ∈Pj which does not meet H. Using
the Leibniz rule, (8.1) and the estimates of Proposition 7.1, for l ∈ {1, 2, 3} we get

‖Dlϕ̂j −DlgH‖C0(H) + C0

∑
0≤i≤l

∑
L∈Pj(H)

‖gL − gH‖Ci(H)`(L)i−l

≤Cm1/2
0 d(H)γ0+1−l + Cm

1/2
0 d(H)2(1+β0)γ0−β2−2

∑
0≤i≤l

`(H)3+κ−i`(H)i−l

≤Cm1/2
0 d(H)γ0+1−l .

Again using the formula (8.2) and the estimate ‖Ψ‖C3,ε0 ≤m
1/2
0 (together with DΨ(0) = 0

and Ψ(0) = 0) we easily reach (3.17). In fact we can also see that

‖Dlϕj −DlgH‖C0(H) ≤ Cm
1/2
0 d(H)2(1+β0)γ0−β2−2`(H)3+κ−l . (8.4)

With an argument entirely similar we obtain

[D3ϕj]κ,H ≤ Cm
1/2
0 d(H)γ0−2 . (8.5)
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Thus, pick any two points (z, w), (z′w′) ∈ Ak. If they belong to the same cube H ∈ Pj

with H ⊂ Ak, then

|D3ϕj(z, w)−D3ϕj(z
′, w′)| ≤Cm1/2

0 d(H)−2d((z′, w′), (z, w))κ

≤Cm1/2
0 22kd((z′, w′), (z, w))κ . (8.6)

If they do not belong to the same cube, then let H,L ∈ Pj be two cubes contained in
Ak such that (z, w) ∈ H and (z′, w′) ∈ L. Next observe that, by our choice of the cut-off
functions ϑJ , ϕj = gH in a neighborhood of (zH , wH) and ϕj = gL in a neighborhood of
(zL, wL). We can then estimate, using Proposition 7.1(iv) and (8.5)

|D3ϕj(z, w)−D3ϕj(z
′, w′)| ≤ |D3ϕj(z, w)−D3gH(zH , wH)|

+ |D3gH(zH , wH)−D3gL(zL, wL)|+ |D3ϕj(zL, wL)−D3ϕj(z
′, w′)|

≤Cm1/2
0 d(H)−2 (`(H)κ + d((zH , wH), (zL, wL))κ + `(L)κ))

≤Cm1/2
0 d(H)−2d((z, w), (z′, w′))κ ≤ Cm

1/2
0 22kd((z′, w′), (z, w))κ . (8.7)

From (8.6) and (8.7) we conclude (3.18) and thus the proof of Theorem 3.11(i).

8.2. Proof of (ii). The first statement is an obvious consequence of the construction
algorithm: indeed note that, if i, j, k, L andH are as in the statement thenPj(L) = Pk(L)
and moreover χJ = 0 on H for any J ∈Pj \Pj(L) and for any J ∈Pk \Pk(L). Then
it turns out that ϕ̂j = ϕ̂k on H, which in turn obviously implies that ϕj and ϕk coincide
on H.

As for the second statement (ii), if we can show that there is a uniform limit ϕ for ϕj,
the C3 convergence and the regularity of ϕ will follow from the estimates of point (i). Fix
a point (z, w) 6= 0 and let H ∈Pj which contains it. If H ∈ W i and i ≤ j − 2, then ϕ̂j+1

and ϕ̂j coincide on it. Otherwise we can assume that H ∈ C j−1 ∪ C j. In this case we can
estimate

|ϕj(z, w)− ϕj(zH , wH)| ≤ Cm
1/2
0 d(H)κ`(H) ≤ C2−j .

A similar estimate holds for ϕj+1: notice that we can choose L ∈Pj+1 such that (z, w) ∈ L
and L is either H or a son of H. Moreover, we can estimate

|ϕj+1(z, w)− ϕj+1(zL, wL)| ≤ C2−j .

Next, recall that ϕj(zH , wH) = gH(zH , wH) and that ϕj+1(zL, wL) = gL(zL, wL). Since
moreover L = H or L is a son of H, by Proposition 7.1 we achieve

|ϕj+1(zL, wL)− ϕj(zH , wH)| ≤ C0‖DgH‖C0`(H) + C‖gH − gL‖C0 ≤ C2−j .

Summarizing, we conclude that

‖ϕj+1 − ϕj‖C0 ≤ C2−j .

The latter estimate gives that ϕj is a Cauchy sequence in C0 and thus that it converges
uniformly to some ϕ.

We record in particular an important consequence which will be useful later: If L ∈ W ,
then

‖ϕ− gL‖Cj(L) ≤ Cm
1/2
0 d(L)2(1+β0)γ0−β2`(L)3+κ . (8.8)
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Indeed we have already shown the estimate (8.4) (which corresponds to (8.8) with ϕj in
place of ϕ) whenever j ≥ k and L ∈ W k, but on the other hand we know now that ϕ = φj
on L for j large enough. Finally, recall that the graph of gL coincides with the graph of hL
and that the graph of ϕ coincide with that of gL in an open subset of L. By the estimates
on hL, this implies that on such set the distance between any tangent π to the graph of

ϕ and πL is bounded by m
1/2
0 . Given the bounds on the second derivative of ϕ we easily

conclude that

|π−πL| ≤ Cm
1/2
0 d(L)

γ0/2−1`(L) ∀L ∈ W and any tangent π to Gr(ϕ|B64`(L)(pL)). (8.9)

8.3. Proof of (iii). Observe first that, if (z, w) does not belong to some H ∈ W , then
Φ(z, w) is necessarily a point in the support of T and we can estimate

|ϕ(z, w)− u(z, w)| ≤ cs|z|a . (8.10)

To see this note that for every j ≥ N0 there is Hj ∈ S j such that (z, w) ∈ Hj. Observe
that ϕj(zHj , wHj) = gHj(zHj , wHj) and that

lim
j→∞

(
d((zHj , wHj), (z, w)) + |gHj(zHj , wHj)−ϕ(z, w)|

)
= 0 .

But we also have, by (7.1),

lim
j→∞
|(zHj , gHj(zHj , wHj))− pHj | = 0 .

On the other hand, since

|pHj − (zHj , u(zHj , wHj))| ≤ cs|zHj |a ,

we then conclude (8.10) taking the limit in j →∞.
From now on we therefore assume that (z, w) ∈ H for some H ∈ W .

Step 1. In this step we show that

64rH ≤
1

2
d(H)(b+1)/2 . (8.11)

In fact we claim that this is the case for any H ∈ W . First of all we observe that it
suffices to show it for H ∈ We ∪ Wh: given indeed any H ∈ Wn we find a chain of cubes
H = Hl, Hl−1, . . . , Hi with the properties that

• Hk ∩Hk+1 6= ∅;
• `(Hk) = 2`(Hk+1);
• Hl ∈ Wn for any l ≥ i+ 1 and Hi ∈ We ∪Wh.

It is easy to see that, provided N0 is larger than a geometric constant, 1
2
d(H) ≤ d(Hi) ≤

2d(H). Since `(H) ≤ 1
2
`(Hi), it suffices to show 64rH ≤ 1

16
d(Hi)

(b+1)/2.
Next, assume H ∈ We. Then we know that

E(TH ,BH) > Cem0d(H)2γ0−2+2δ1`(H)2−2δ1 ≥ Cem
1/2
0 d(H)2γ0−2`(H)2 . (8.12)
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Now recall that d = |zH | ≤ 2
√

2d(H) and that, for N0 large enough depending on M0, we
have 64rH ≤ d

2
. Moreover, if rH were larger than 1

16
d(b+1)/2, then by (1.9) there would be

a π such that (recall that C2
i ≤m0)

E(TH ,BH , π) ≤m0d(H)2γ−2r2
H .

By Lemma 5.2(i), we then would have

E(TH ,BH) ≤ C0m0d(H)2γ−2r2
H + C0m0r

2
H ≤ C(M0)m0d(H)2γ0−2`(H)2 (8.13)

(recall that γ0 < γ). Thus we conclude that (8.13) contradicts (8.12), provided Ce ≥
C(M0).

It remains to show (8.11) when H ∈ Wh. Assume therefore that rH ≥ 1
2
d(b+1)/2. Notice

that, by (1.9), we know

E(TH ,BH , πH) =E(TH ,BH) ≤ C̄m0d(H)2γ−2`(H)2 (8.14)

where the constant C̄ does not depend on H. We thus conclude from Lemma 5.2(iii) that

|π − πH | ≤ C̄m
1/2
0 d(H)γ−1`(H) . (8.15)

We next wish to estimate h(TH ,BH , π). π is tangent to Gu at qH := (zH , u(zH , wH)).
Recall that |pH − qH | ≤ cs|d|a. Fix a point p ∈ BH ∩ spt(TH) and recall that there is

a point p′ in Gr(u) ∩ VH such that |p − p′| ≤ 2am
1/2
0 da, since |pπ0(p′)| ≥ d

2
. Obviously

|pπ(p′)| ≤ 2rH and since π is tangent to Gr(u) at qH , we have the estimate

|p⊥π (p′)| ≤ C0m
1/2
0 dα−1|pπ(p′)|2 ≤ C̄m

1/2
0 d(H)α−1`(H)2 .

We can therefore estimate

|p⊥π (p)| ≤ C̄m
1/2
0 d(H)α−1`(H)2 + C̄m

1/2
0 d(H)a .

This implies the estimate

h(TH ,BH , π) ≤ C̄m
1/2
0 d(H)α−1`(H)2 + C̄m

1/2
0 d(H)a . (8.16)

Using now Lemma 5.2 and (8.15) we then estimate

h(TH ,BH) ≤ C̄m
1/2
0 d(H)α−1`(H)2 + C̄m

1/2
0 d(H)a + C̄m

1/2
0 d(H)γ−1`(H)2 , (8.17)

where C̄ depends upon M0, N0 and Ce, but not upon Ch.
On the other hand, since H ∈ Wh, we then have

h(TH ,BH) > Chm
1/4
0 d(H)γ0−β2`(H)1+β2 . (8.18)

By our choice of the exponents it is obvious that the first and third summand in (8.17) are

smaller than a fraction (say 1
4
) of Chm

1/4
0 d(H)γ0−β2`(H)1+β2 , provided that Ch is chosen

large enough. Recalling that we are assuming `(H) ≥ C̄d(H)(1+b)/2, to achieve the same
conclusion with the second summand we need

1 + b

2
(1 + β2)− β2 + γ0 < a .

However, since a > b, the latter inequality is implied by (3.2), and we reach a contradiction.
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Step 2. Recall that we have fixed (z, w) ∈ H with H ∈ W and that our aim is
to establish (3.19). From the previous step we know that `(H) ≤ C|z|(1+b)/2 and that
d(H) ≤ C0|z|. Assume H ∈ W j and pick any k ≥ j + 2. By Theorem 3.11(ii), we know
that ϕ = ϕk on H. Recalling the arguments above (in particular (7.6)), we also have

‖ϕj−gH‖C0 ≤
∑

L∈Pk(H)

‖gH−gL‖C0 ≤ Cm
1/2
0 d(H)γ0−2−β2`(H)3+κ ≤ Cm

1/2
0 dγ0−2+(3+κ)(b+1)/2

Since γ0 − 2 + (3 + κ)(b+ 1)/2 > γ0 + 3 b
2
− 1

2
> γ0 + b, it suffices then to show that

|u(z, w)− gH(z, w)| ≤ Cm
1/4
0 |z|a

′
. (8.19)

We next consider both u and gH as two functions defined on π0 and having defined the
ball B := BrH (zH , π0), our goal is indeed to show that

‖u− gH‖C0(B) ≤ Cm
1/4
0 d(H)a

′
.

Recall next that the graph of gH is indeed a subset of the graph of the tilted interpolating
function hH . If v : B8rH (pH , πH) → π⊥H is the function which gives the graph of u in the
system of coordinates πH×π⊥H and we set B′ := B6rH (pH , πH), we then claim that it suffices
to show

‖v − hH‖C0(B′) ≤ Cm
1/4
0 d(H)a

′
. (8.20)

In fact let p = (ζ, gH(ζ)) ∈ π0×π⊥0 and let ω ∈ πH be such that p = (ω, hH(ω)) ∈ πH×π⊥H .
Consider also q = (ζ, u(z)) and q′ = (ω, v(ω)) and let ζ ′ ∈ π0 such that q′ = (ζ ′, u(ζ ′)). Let
T be the triangle with vertices q, p and q′. The angle θp at p can be assumed to be small,

because |πH − π0| ≤ Cm
1/2
0 . On the other hand the angle θq at q is close to π

2
, since the

Lipschitz constant of u is small. Thus the angle θq′ is also close to π
2
. From the Law of

Sines applied to the triangle T we then conclude

|u(ζ)− gH(ζ)| = |p− q| = sin θq′

sin θq
|p− q′| . (8.21)

By choosing ε2 small we then reach

‖u− gH‖C0(B) ≤ 2‖v − hH‖C0(B′) .

As usual, we assume now to have shifted the origin so that pH = 0. Recall that ΨpH (0) = 0
and DΨpH (0) = 0, so that we can estimate

‖hH − η ◦ fH‖C0(B′) ≤ C0‖h̄H − η ◦ f̄H‖C0 + Cm
1/2
0 `(H)2 .

Using now Proposition 6.7 we then conclude

‖hH − η ◦ fH‖C0(B′) ≤ Cm0d(H)2γ0−2`(H)3 + Cm
1/2
0 `(H)2 . (8.22)

Since `(H) ≤ d(H)(1+b)/2, we again see that (8.20) can be reduced to the estimate

‖η ◦ fH − v‖C0(B′) ≤ Cm
1/4
0 d(H)a

′
. (8.23)

We will in fact show such estimate in the ball B̂ := B8rH (pH , πH). Consider a point
p ∈ spt(TH) ∩ C8rH (pH , πH) and let p = (ζ, η) ∈ π0 × π⊥0 . We also let q be the point
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(ζ, u(ζ)) and q′ = (ω, v(ω)) ∈ πH × π⊥H , where ω = pH(p). The argument above can be
applied literally to the triangle T with vertices p, q and q′ to conclude that

|p− q′| ≤ 2|p− q| ≤ Cm
1/2
0 d(H)a .

Recall that, except for a set of points ω ∈ A of measure no larger than Cm0d(H)2γ0−2`(H)4,
the slice 〈T,pπH , ω〉 coincides with the slice 〈GfH ,pπH , ω〉. Thus on the set A we obviously
have

|η ◦ fH(ω)− v(ω)| ≤ Cm
1/2
0 d(H)a .

Now, for any point ω 6∈ A there is a point ω′ ∈ A at distance at most d(H)γ0−1`(H)2. Since

both Lip(v) and Lip(η ◦ fH) are controlled by m
1/2
0 , this gives the estimate

‖η ◦ fH − v‖C0(B′) ≤ Cm
1/2
0 d(H)a + Cd(H)γ0−1`(H)2 .

On the other hand, since `(H) ≤ Cd(H)(b+1)/2 and a > b + γ0 (recall (3.1)), we easily see
that

‖η ◦ fH − v‖C0(B′) ≤ Cm
1/2
0 d(H)γ0+b .

This completes the proof of (8.23) and hence of (3.19)

9. The construction of the approximating map N

In this section we prove Corollary 4.1 and Theorem 4.3.

9.1. Proof of Corollary 4.1. Statement (i) is an obvious consequence of (1.3) and (3.19).
As for statement (ii), the argument is the same given in the proof of Lemma 2.1 for the
existence of the nearest point projection p : Vu,a ∩C1 → Gr(u).

For what concerns (iii), let L ∈ W , denote by pL = (zL, wL) its center and set p := Φ(q)
We start by observing that spt(〈T,p, p〉) ⊂ spt(TJ) for the ancestor J ∈ C N0 of L, given
estimates on u and the definition of TJ . We next claim that

spt(〈T,p, p〉) ⊂ BrL(p) . (9.1)

Assuming this for the moment, recall that, by (8.8),

‖ϕ− gL‖C0(L) ≤ Cm
1/2
0 d(L)2(1+β0)γ0−β2−2 `(L)3+κ ≤ Cm

1/2
0 d(L)

γ0/2−β2`(L)1+β2

(where in the last inequality we have used that `(L) ≤ d(L) and γ0

4
> β2). Recall also that

the graph of gL coincides with that of hL and, by (7.1),

‖hL − η‖C0(B6rH
(pH ,πH)) ≤ Cm

1/4
0 d(L)

γ0/2−β2`(L)1+β2 ,

where (ξ, η) ∈ πL×π⊥L are the coordinates for pL, cf. (7.1). Since spt(TJ)∩C8rL(pL, πL) ⊂
spt(TL) for every ancestor J of L, we must then have spt(〈T,p, p〉) ⊂ spt(〈T,p, p〉) ∩
BrL(p) ⊂ spt(TL) ∩ C8rL(pL, πL). Recalling that pL ∈ spt(TL) and that, by Proposition
5.1, we have the bound

h(TL,C8rL(pL, πL)) ≤ Cm
1/4
0 d(L)

γ0/2−β2`(L)1+β2 ,

we conclude that no point of spt(〈T,p, p〉) can be at distance larger than

Cm
1/4
0 d(L)

γ0/2−β2`(L)1+β2
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from the graph of hL. Putting all these estimates together, no point of spt(〈T,p, p〉)
can be at a distance larger than Cm

1/4
0 d(L)

γ0/2−β2`(L)1+β2 from Gr(ϕ). Since for every
p′ ∈ spt(〈T,p, p〉) the point p is the closest in the graph of ϕ, this completes the proof of
(iii), provided we show (9.1).

If (9.1) is false, there is a p′ ∈ spt(〈T,p, p) and an ancestor J of L with largest sidelength
among those for which |p′ − p| ≥ rJ/2. Let π be the tangent to M at p and observe that

we have the estimates |π − πJ | ≤ Cm
1/2
0 and |π − π0| ≤ Cm

1/2
0 . The second bound is a

trivial consequence of the estimates on ϕ, whereas the first is a consequence of (8.9) and

|πL − πJ | ≤ Cm
1/2
0 , which in turn follows from Proposition 5.1. If J were an element of

S N0 , Assumption 1.7(Hor) would imply |p′ − p| ≤ Cm
1/4
0 r1+γ0

J . If J 6∈ S N0 and we let
H be the father of J , we then conclude that q, p, p′ ∈ BH and thus we have |p′ − p| ≤
C0h(T,BH) ≤ Cm

1/4
0 `(H)1+β2 by (3.13). In both cases this would be incompatible with

|p′ − p| ≥ rJ = rH/2, provided ε2 ≤ c(β2, δ2,M0, N0, Ce, Ch).

We next prove (iv). Fix a point (z, w) ∈ B which belongs to Γ and set p := (z,ϕ(z, w)) =
Φ(z, w). To prove our statement we claim in fact that:

Q JTpMK is the unique tangent cone to T at p (9.2)

spt(T ) ∩ p−1({p}) = {p}. (9.3)

By construction there is an infinite chain LN0 ⊃ LN0+1 ⊃ . . . ⊃ Li ⊃ . . . where (z, w) ∈
Li ∈ S i for every i. Set πi := πLi . By our construction and the estimates of the
previous sections, it is obvious that πLi → π = TpM. In fact since |πLi − πLi+1

| ≤
Cm

1/2
0 |z|γ0+δ1−1`(Li)

1−δ1 by Proposition 5.1(iv), we easily infer

|π − πLi| ≤ Cm
1/2
0 |z|γ0+δ1−1`(Li)

1−δ1 . (9.4)

On the other hand by the height and excess bounds (3.12) and (3.13), it is also obvious that
TpLi ,rLi converges, in B1, to Q JπK. Since rLi/rLi+1

= 2 and pLi → p (in fact |Φ(z, w)−pLi | ≤
C2−i), (9.2) is then obvious.

Assume now that (9.3) is false and let p′ ∈ spt(〈T,p, p〉). Again by the width of V it turns
out that p′ ∈ spt(TLN0

). Let j be the integer such that 2−j−1|z| ≤ |p− p′| ≤ 2−j|z|. From
Assumption 1.7(Hor) it follows that, if ε2 is sufficiently small, then certainly j ≥ N0 + 2.
This means that there is an Li such that p′ ∈ BLi and obviously `(Li) ≤ C|z|2−j. Recall
that spt(TLN0

) ∩BLi ⊂ spt(TLi) On the other hand, by (9.4), we have

|p− p′| ≤ (1 + C|πLi − π|)h(TLi ,BLi) ≤ Cm
1/4
0 d(Li)

γ0/2−β2`(Li)
1+β2 ≤ Cm

1/4
0 |z|1+γ0/22−j .

Since the constant C depends upon the parameters Ch, Ce,M0 and N0, but not upon ε2,
the latter bound contradicts |p− p′| ≥ 2−j−1|z| provided ε2 is chosen sufficiently small.

9.2. Proof of Theorem 4.3: Part I. We set F (p) = Q JpK for p ∈ Φ(Γ). For every L ∈
W j consider the πL-approximating function fL : C8rL(pL, πL)→ AQ(π⊥L ) of Definition 3.6
and KL ⊂ B8rL(pL, πL) the projection on pL + πL of spt(TL) ∩ Gr(fL). In particular we
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have GfL|KL = TL (KL × π⊥L ). We then denote by D(L) the portions of the supports of

TL and Gr(fL) which differ:

D(L) := (spt(TL) ∪Gr(fL)) ∩
[
(B8rL(pL, πL) \KL)× π⊥L

]
.

Observe that, by [11, Theorem 1.5] and Proposition 6.1 and our choice of the parameters,
we have, for E := E(TL,C32rL(pL, πL)),

Hm(D(L)) ≤ ‖T‖(D(L)) ≤ CEβ0(E + `(L)2m0)`(L)2

≤ Cm1+β0

0 d(L)(1+β0)(2γ0−2+2δ1)`(L)2+(1+β0)(2−2δ1) . (9.5)

Let L be the Whitney region in Definition 3.12 and set L′ := Φ(J) where J is the cube
concentric to L with `(J) = 9

8
`(L). Observe that the graphical structure of Φ, our choice

of the constants and condition (NN) ensure that

L ∩H = ∅ ⇐⇒ L′ ∩H′ = ∅ ∀H,L ∈ W , (9.6)

Φ(Γ) ∩ L′ = ∅ ∀L ∈ W . (9.7)

We then apply [8, Theorem 5.1] to the map fL, the plane πL and the (appropriate portion
of the) center manifoldM as a graph over πL to obtain Lipschitz maps FL : L′ → AQ(U),
NL : L′ → AQ(Rm+n) with the following properties:

• FL(p) =
∑

i Jp+ (NL)i(p)K,
• (NL)i(p) ⊥ TpM for every p ∈ L′
• and GfL (p−1(L′)) = TFL (p−1(L′)).

For each L consider the set W (L) of elements in W which have a nonempty intersection
with L. We then define the set K in the following way:

K = (M∩C2r) \
( ⋃
L∈W

(
L′ ∩

⋃
M∈W (L)

p(D(M))
))

. (9.8)

In other words K is obtained from M by removing in each L′ those points x for which
there is a neighboring cube M such that the slice of TFM at x (relative to the projection
p) does not coincide with the slice of T . Observe that, by (9.7), K contains necessarily
Γ. Moreover, recall that Lip(p) ≤ C, that the cardinality of W (L) is at most 12 and that
each element of W (L) has side-length at most twice that of L. Thus (9.5) implies

|L \ K| ≤ |L′ \ K| ≤
∑

M∈W (L)

∑
H∈W (M)

‖TH‖(D(H))

≤Cm1+β0

0 d(L)(1+β0)(2γ0−2+2δ1)`(L)2+(1+β0)(2−2δ1) . (9.9)

By (9.6), if J and L are such that J ′ ∩ L′ 6= ∅, then J ∈ W (L) and therefore FL = FJ on
K∩ (J ′ ∩L′). We can therefore define a unique map on K by simply setting F (p) = FL(p)
if p ∈ K ∩ L′. Notice that TF = T p−1(K), which implies two facts. First, by Corollary
4.1(iii) we also have that N(p) :=

∑
i JFi(p)− pK enjoys the bound

‖N |L∩K‖C0 ≤ Cm
1/4
0 d(L)

γ0/2−β2 `(L)1+β2 .
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Secondly,

‖T‖(p−1(L \ K)) ≤
∑

M∈W (L)

∑
H∈W (M)

‖TH‖(D(H))

≤Cm1+β0

0 d(L)(1+β0)(2γ0−2+2δ1)`(L)2+(1+β0)(2−2δ1) . (9.10)

Finally, notice that, by the C2 estimate on ϕ and (7.5), M is given on CrL(pL, πL) as the

graph of a map ϕ′ : BrL(pL, πL) → π⊥L with ‖Dϕ′‖C0 ≤ Cm
1/2
0 d(H)γ0−1+δ1`(H)1−δ1 and

‖D2ϕ′‖C0 ≤ Cm
1/2
0 d(H)γ0−1. Hence, the Lipschitz constant of NL can be estimated using

[8, Theorem 5.1] as

Lip(NL) ≤ C
(
‖D2ϕ′‖C0 ‖N‖C0 + ‖Dϕ′‖C0 + Lip(fL)

)
≤ C (m0 d(L)γ0 `(L)γ0)β0 ,

(9.11)
so that our map has the Lipschitz bound of (4.1). We next extend F and N to the whole
center manifold and conclude (4.2) from (9.10) and (9.9). The extension is achieved in
three steps:

• we first extend the map F to a map F̄ taking values in AQ(V);

• we then modify F̄ to achieve the form F̂ (x) =
∑

iJx + N̂i(x)K with N̂i(x) ⊥ TxM
for every x;
• in the cases (a) and (c) of Definition 0.1 we finally modify F̂ to reach the desired

extension F (x) =
∑

i Jx+Ni(x)K, with Ni(x) ⊥ TxM and x+Ni(x) ∈ Σ for every
x.

First extension. We use on M the coordinates induced by its graphical structure,
i.e. we work with variables in flat domains. Note that the domain parameterizing the
Whitney region for L ∈ W is then the cube concentric to L and with side-length 17

16
`(L).

The multivalued map N is extended to a multivalued N̄ inductively to appropriate neigh-
borhoods of the skeleta of the Whitney decomposition (a similar argument has been used
in [6, Section 1.2.2]). The extension of F will obviously be F̄ (x) =

∑
iJx + N̄i(x)K. The

neighborhoods of the skeleta are defined in this way:

(1) if p belongs to the 0-skeleton, we let L ∈ W be (one of) the smallest cubes containing
it and define Up := B`(L)/16(p);

(2) if σ = [p, q] ⊂ L is the edge of a cube and L ∈ W is (one of) the smallest cube

intersecting σ, we then define Uσ to be the neighborhood of size 1
4
`(L)
16

of σ minus
the closure of the unions of the U r’s, where r runs in the 0-skeleton.

Denote by Ū the closure of the union of all these neighborhoods and let {Vi} be the
connected components of the complement. For each Vi there is a Li ∈ W such that
Vi ⊂ Li. Moreover, Vi has distance c0`(L) from ∂Li, where c0 is a geometric constant.
It is also clear that if τ and σ are two distinct facets of the same cube L with the same
dimension, then the distance between any pair of points x, y with x ∈ U τ and y ∈ Uσ is
at least c0`(L). In Figure 1 the various domains are shown in a piece of a 2-dimensional
decomposition.
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V1

V2

V6

Up, Uq

Uσ, Uτ

Figure 1. The sets Up, Uσ and Vi.

At a first step we extend N to a new map N̄ separately on each Up, where p are the
points in the 0-skeleton. In particular, fix p ∈ L and let St(p) be the union of all cubes
which contain p. Observe that the Lipschitz constant of N |K∩St(p) is smaller than

C (m0 d(L)γ0 `(L)γ0)β0

and that

|N | ≤ Cm
1/4
0 d(L)

γ0/2−β2`(L)1+β2 .

We can therefore extend the map N |K∩St(p) to Up∪ (K∩St(p)) at the price of enlarging the
Lipschitz constant and the height bound by a multiplicative constant, using [6, Theorem
1.7]. Being the Up disjoint, the resulting map, for which we use the symbol Ñ , is well-
defined.

It is obvious that this map has the desired height bound in each Whitney region. We
therefore want to estimate its Lipschitz constant. Consider L ∈ W and H concentric to L
with side-length `(H) = 17

16
`(L). Let x, y ∈ H. If x, y ∈ Up ∪ (K ∩ St(p)) for some p, then

there is nothing to check. If x ∈ Up and y ∈ U q with p 6= q, observe however that this
would imply that p, q are both vertices of L. Given that L \ K has much smaller measure
than L there is at least one point z ∈ L ∩ K. It is then obvious that

G(N̄(x), N̄(y)) ≤ G(N̄(x), N̄(z)) + G(N̄(z), N̄(y)) ≤ C (m0d(L)γ0 `(L)γ0)β0 `(L),

and, since |x − y| ≥ c0`(L), the desired bound readily follows. Observe moreover that, if
x is in the closure of some U q, then we can extend the map continuously to it. By the
properties of the Whitney decomposition it follows that the union of the closures of the U q

and of K is closed and thus, w.l.o.g., we can assume that the domain of this new N̄ is in
fact closed.

We can repeat this procedure with the edges of the skeleta, that is in the argument
above we simply replace points p with 1-dimensional faces σ, defining St(σ) as the union
of the cubes which contain σ. In the final step we then extend over the domains Vi’s: this
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time St(Vi) will be defined as the union of the cubes which intersect the cube Li ⊃ Vi. The
correct height and Lipschitz bounds follow from the same arguments. Since the algorithm
is applied 3 times, the original constants have been enlarged by a geometric factor.

Second extension. For each x ∈ M let p⊥(x, ·) : Rm+n → Rm+n be the orthogonal

projection on (TxM)⊥ and set N̂(x) =
∑

iJp⊥(x, Ñi(x))K. Obviously |N̂(x)| ≤ |Ñ(x)|, so
the L∞ bound is trivial. We now want to show the estimate on the Lipschitz constant. To
this aim, fix two points p, q in the same Whitney region associated to L and parameterize
the corresponding geodesic segment σ ⊂M by arc-length γ : [0, d(p, q)]→ σ, where d(p, q)
denotes the geodesic distance onM. Use [6, Proposition 1.2] to select Q Lipschitz functions
N ′i : σ → U such that Ñ |γ =

∑ JN ′iK and Lip(N ′i) ≤ Lip(Ñ). Fix a frame ν1, . . . , νn on the

normal bundle of L ⊂ M with the property that ‖νi‖C0(L) ≤ C‖Dϕ‖C0 ≤ Cm
1/2
0 d(L)γ0

and ‖Dνi‖C0(L) ≤ C‖D2ϕ‖C0 ≤m
1/2
0 d(L)γ0−1 (which is possible by [8, Appendix A], indeed

we do this inM\{0}, where our manifold is C3,γ0). We have N̂(γ(t)) =
∑

iJN̂i(t)K, where

N̂i(t) =
∑

[νj(γ(t)) ·N ′i(γ(t))] νj(γ(t)).

Hence we can estimate∣∣∣∣∣dN̂i

dt

∣∣∣∣∣ ≤ C
∑
j

[‖Dνj‖‖N ′i‖C0 + Lip(N ′i)] ≤ C (m0 d(L)γ0 `(L)γ0)β0 .

Integrating this inequality we find

G(N̂(p), N̂(q)) ≤
Q∑
i=1

|N̂i(d(p, q))− N̂i(0)| ≤ C (m0 d(L)γ0 `(L)γ0)β0 d(p, q) .

Since d(p, q) is comparable to |p− q|, we achieve the desired Lipschitz bound.

Third extension and conclusion. We still need to modify the map N̂ in the cases (a)
and (c) of Definition 0.1. For each x ∈M ⊂ Σ consider the orthogonal complement κx of
TxM in TxΣ. Let T be the fiber bundle

⋃
x∈M\{0} κx and observe that, by the regularity

of both M\ {0} and Σ, there is a C2,γ0 trivialization (argue as in [8, Appendix A]). It is
then obvious that there is a C0,γ0 map Ξ : T → Rm+n with the following property: for
each (x, v), q := x + Ξ(x, v) is the only point in Σ which is orthogonal to TxM and such
that pκx(q− x) = v. Let us denote by Ω(x, q) the map Ξ(x,pκx(q)). This map extends to
a C0,γ0 map at the origin with the estimates

|DxΩ(x, q)| ≤ Cm
1/2
0 |x|γ0−1 ∀x ∈ B \ {0} ∀q with |q| ≤ 1 (9.12)

|D2
xΩ(x, q)| ≤ Cm

1/2
0 |x|γ0−2 ∀x ∈ B \ {0} ∀q with |q| ≤ 1 (9.13)

We then set N(x) =
∑

iJΩ(x, N̂i(x))K. Obviously, N(x) = N̂(x) = 0 for x ∈ K, simply

because in this case x+ N̂i(x) = x belongs to Σ.
In order to show the Lipschitz bound, notice that, by the regularity of M and Σ,

|Ω(x, q)− Ω(x, p)| ≤ C |q − p| . (9.14)
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Moreover, since Ω(x, 0) = 0 for every x ∈ M ⊂ Σ, we have DxΩ(x, 0) = 0. We therefore

conclude that |DxΩ(x, q)| ≤ Cm
1/2
0 |x|γ0−1|q| and hence that

|Ω(x, q)− Ω(y, q)| ≤ Cm
1/2
0 |x|γ0−1|q||y − x| . (9.15)

Thus, fix two points x, y in any Whitney region L and let us assume that G(N̂(x), N̂(y))2 =∑
i |N̂i(x)− N̂i(y)|2 (which can be achieved by a simple relabeling). We then conclude

G(N(x), N(y))2 ≤ 2
∑
i

|Ω(x, N̂i(x))− Ω(x, N̂i(y))|2 + 2
∑
i

|Ω(x, N̂i(y))− Ω(y, N̂i(y))|2

≤ Cm
1/2
0 G(N̂(x), N̂(y))2 + C |x|2γ0−2

∑
i

|N̂i(y)|2|x− y|2

≤ C (m0 d(L)γ0 `(L)γ0)2β0 |x− y|2 (9.16)

+ Cm0d(L)2γ0−2+γ0−2β2`(L)2+2β2|x− y|2

≤ C (m0 d(L)γ0 `(L)γ0)2β0 |x− y|2 , (9.17)

which proves the desired Lipschitz bound. Finally, using the fact that Ω(x, 0) = 0, we have
|Ω(x, v)| ≤ C|v| and the L∞ bound readily follows.

9.3. Proof of Theorem 4.3, Part II. In this section we show the estimates (4.3) and
(4.4). We start with the first one. Fix a Whitney region L and a corresponding square
L ∈ W . First consider the cylinder C := C8rL(pL, πL), the interpolating function gL and

the tilted interpolating function hL. Denote by ~M the unit m-vector orienting TM and
by ~τ the one orienting TGhL = TGgL . Recalling that gL and ϕ coincide in a neighborhood
of (zL, wL) of L, by Theorem 3.11 we have

sup
p∈M∩C

|~τ(zL, gL(zL, wL))− ~M(p)| ≤ C‖D2ϕ‖C0 `(L) ≤ Cm
1/2
0 d(L)γ0−1`(L).

On the other hand recalling (7.5) in Proposition 7.1, we have

|πL − ~τ(zL, gL(zL, wL))| ≤ Cm
1/2
0 d(L)γ0−1+δ1`(L)1−δ1 .

This in turn implies that

sup
C∩M

| ~M− πL| ≤ Cm
1/2
0 d(L)γ0−1+δ1`(L)1−δ1 . (9.18)

Therefore, we can estimate∫
p−1(L)

|~TF (x)− ~M(p(x))|2 d‖TF‖(x)

≤ C

∫
p−1(L)

|~T (x)− ~M(p(x))|2 d‖T‖(x) + Cm1+β0

0 d(L)2(1+β0)γ0−2`(L)4

≤ C

∫
p−1(L)

|~T (x)− πL|2 d‖T‖(x) + Cm0d(L)2γ0−2+2δ1`(L)4−2δ1 . (9.19)
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Since p−1(L) ∩ spt(TL) ⊂ C, the integral in (9.19) is bounded by C`(L)2E(TL,C, πL). By
[8, Proposition 3.4] and using Proposition 6.1 we then conclude∫
L
|DN |2 ≤ C

∫
p−1(L)

|~TF (x)− ~M(p(x))|2 d‖TF‖(x) + C‖AM‖2
C0(Cd(L))\Cd(L)/4)

∫
L
|N |2

≤ Cm0 d(L)2γ0−2+2δ1 `(L)4−2δ1 + Cm0 d(L)2γ0−2`(L)4+2β2 ,

where we have used ‖AM‖C0(Cd(L))\Cd(L)/4) ≤ Cm
1/2
0 dist(L, 0)γ0−1. This shows (4.3).

We finally come to (4.4). First observe that, by (4.1) and (4.2),∫
L\K
|η ◦N | ≤ Cm

1/4
0 d(L)

γ0/2−β2`(L)1+β2|L \ K|

≤ Cm
1+β0+1/4
0 d(L)(1+β0)(2γ0−2+2δ1)+(γ0/2−β2)`(L)3+β2+(1+β0)(2−2δ1) . (9.20)

Fix now p ∈ K. Recalling that FL(p) =
∑

j Jp+Nj(p)K is given by [8, Theorem 5.1] applied

to the map fL, we can use [8, Theorem 5.1(5.4)] to conclude

|η ◦NL(p)| ≤ C |η ◦ fL(pπL(p))− p⊥πL(p)|+ C Lip(fL) |TpM− πL| |NL|(p)
(9.18)

≤ C|η ◦ fL(pπL(p))− p⊥πL(p)|

+ Cm
1/2+β0

0 d(L)β0(2γ0−2+2δ1)+γ0−1+δ1`(L)1−δ1+β0(2−2δ1) (9.21)

·
[
G(NL(p), Q Jη ◦NL(p)K) +Q|η ◦NL|(p)

]
.

Note that with a slight abuse of notation we have denoted by pπL the orthogonal projection
onto pL + πL (rather than onto πL; alternatively we could shift the origin so that pL = 0).
For ε2 sufficiently small (depending only on β2, γ2,M0, N0, Ce, Ch), we then conclude that

|η ◦NL(p)| ≤ C |η ◦ fL(pπL(p))− pπ⊥L (p)|

+ Cm
1/2+β0

0 d(L)β0(2γ0−2+2δ1)+γ0−1+δ1 `(L)1−δ1+β0(2−2δ1)G(NL(p), Q Jη ◦NL(p)K)
(9.22)

Let next ϕ′ : pL + πL → π⊥L such that Gϕ′ = M. Applying [9, Lemma B.1] we conclude
that∫

K∩V
|η ◦ fL(pπL(p))− pπ⊥L (p))| ≤

∫
pπL (K∩V)

|η ◦ fL(x)−ϕ′(x)| ≤ C‖gL −ϕ‖L1(H) ,

where H is a cube concentric to L with side-length `(H) = 9
8
`(L). Next assume L ∈ W j

and let k ≥ j + 2. Consider the subset Pk(L) of all cubes in Pk which intersect L and
recall that ϕ coincides with the map ϕk on H (recall Definition 3.10 and Theorem 3.11).
Thus we can estimate

‖ϕ− gL‖L1(H) ≤ C
∑

L′∈Pk(L)

‖gL′ − gL‖L1(BrL (pL,π0))

≤ Cm0 d(L)2(1+β0)γ0−2−β2`(L)5+κ , (9.23)
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where in the last inequality we used (7.6). We then conclude

‖ϕ− gL‖L1(H) ≤ Cm0dist(L)2(1+β0)γ0−2−β2`(L)5+κ

and (4.4) follows integrating (9.22) over V ∩ K and using (9.20).

10. Separation and splitting before tilting

10.1. Vertical separation. In this section we prove Proposition 4.4 and Corollary 4.5.

Proof of Proposition 4.4. Let J be the father of L. By Lemma 3.7 and Proposition 3.5,
Theorem A.2 can be applied to the cylinder C := C32rJ (pJ , πJ). Moreover, |pJ − pL| ≤
C0`(J), where C0 is a geometric constant, and rJ = 2rL. Thus, if M0 is larger than a
geometric constant, we have BL ⊂ C31rJ (pJ , πJ). Denote by qL, qJ the projections pπ⊥L
and pπ⊥J respectively. Since L ∈ Wh, there are two points p1, p2 ∈ spt(TL) ∩BL such that

|qL(p1 − p2)| ≥ Chm
1/4
0 d(L)

γ0/2−β2`(L)1+β2 .

On the other hand, recalling Proposition 5.1(iv), |πJ − πL| ≤ C̄d(L)γ0−1+δ1`(L)1−δ1 , where
C̄ depends upon all the parameters except Ch and ε2. Thus,

|qJ(p1 − p2)| ≥ |qL(p1 − p2)| − C0|πL − πJ ||p1 − p2|
≥ Chm

1/4
0 d(L)

γ0/2−β2 `(L)1+β2 − C̄m1/2
0 d(L)γ0−1+δ1 `(L)2−δ1

≥ Chm
1/4
0 d(L)

γ0/2−β2 `(L)1+β2 − C̄m1/2
0 d(L)

γ0/2−β2 `(L)1+β2 ,

where C0 is a geometric constant and C̄ a constant which does not depend on Ch and ε2.
Hence, if ε2 is sufficiently small, we actually conclude

|qJ(p1 − p2)| ≥ 15

16
Chm

1/4
0 d(L)

γ0/2−β2 `(L)1+β2 . (10.1)

Set E := E(TJ ,C32rJ (pJ , πJ)) and apply Theorem A.2 to TJ and C: the union of the
corresponding “stripes” Sj contain the set spt(TJ) ∩C32rJ (1−CE1/24| logE|)(pJ , πJ)), where C
is a geometric constant. We can therefore assume that they contain spt(TL)∩C31rJ (pJ , πJ).
The width of these stripes is bounded as follows:

sup
{
|qJ(x− y)| : x, y ∈ Sj

}
≤ C0E

1/4rJ ≤ C0C
1/4
e m

1/4
0 d(L)(2γ0−2+2δ1)/4`(L)1+(2−2δ1)/4

≤ C0C
1/4
e m

1/4
0 d(L)

γ0/2−β2 `(L)1+β2

where C0 is a geometric constant. So, if C] is chosen large enough, we actually conclude
that p1 and p2 must belong to two different stripes, say S1 and S2. By Theorem A.2(iii)
we conclude that all points in C31rJ (pJ , πJ) have density Θ strictly smaller than Q − 1
(because in our case we know that Θ is everywhere integer-valued), thereby implying (S1).
Moreover, by choosing C] appropriately, we achieve that

|qJ(x− y)| ≥ 7

8
Chm

1/4
0 d(L)

γ0/2−β2 `(L)1+β2 ∀x ∈ S1, y ∈ S2 . (10.2)

Assume next there is H ∈ Wn with `(H) ≤ 1
2
`(L) and H ∩ L 6= ∅. From our construction

and Proposition 5.1(iv) it follows that `(H) = 1
2
`(L), d(H) ≤ 2d(L), BH ⊂ C31rJ (pJ , πJ)
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and |πH − πJ | ≤ C̄m
1/2
0 d(L)γ0−1+δ1`(H)1−δ1 , with C̄ which does not depend upon Ch and

ε2. Hence choosing ε2 sufficiently small we conclude

|qH(x− y)| ≥ 3

4
Chm

1/4
0 d(L)

γ0/2−β2 `(L)1+β2

≥ 3

2

(1

2

)γ0/2

Chm
1/4
0 d(H)

γ0/2−β2`(H)1+β2

≥ 5

4
Chm

1/4
0 d(H)

γ0/2−β2`(H)1+β2 ∀x ∈ S1, y ∈ S2 , (10.3)

where the latter inequality holds because γ0 ≤ log2
6
5
. Now, recalling Proposition 5.1,

if ε2 is sufficiently small, C30rH (pH , πH) ∩ spt(TH) ⊂ BH and spt(TJ) ∩ BH ⊂ spt(TH).
Moreover, by Theorem A.2(ii) ,

(pπJ )](TJ (Sj ∩C30rH (pH , πJ))) = Qj JB30rH (pH , πJ)K for j = 1, 2, Qj ≥ 1.

A simple argument already used several other times allows to conclude that indeed

(pπH )](TH (Sj ∩C30rH (pH , πH))) = Qj JB30rH (pH , πH)K for j = 1, 2, Qj ≥ 1.

Thus, BH ∩ spt(TH) must necessarily contain two points x, y with

|qH(x− y)| ≥ 5

4
Chm

1/4
0 d(H)

γ0/2−β2`(H)1+β2 .

But then the refining in H should have stopped because of condition (HT) and so H cannot
belong to Wn.

Coming to (S3), set Ω := Φ(B8`(L)((zL, wL)) and observe that p](T (p−1(Ω) ∩ Si)) =
Qi JΩK. Thus, for each p ∈ K∩Ω, the support of p+N(p) must contain at least one point
p+N1(p) ∈ S1 and at least one point p+N2(p) ∈ S2. Now,

|N1(p)−N2(p)| ≥ 7

8
Chm

1/4
0 d(L)

γ0/2−β2`(L)1+β2 − C0`(L) |TpM− πJ | . (10.4)

Recalling, however, Proposition 7.1 and that M and Gr(gJ) coincide on a nonempty
open set, we easily conclude that (see for instance the proof of (4.3)) |TpM − πJ | ≤
Cm

1/2
0 d(L)γ0−1+δ1`(L)1−δ1 and, via (10.4),

G
(
N(p), Q Jη ◦N(p)K ) ≥ 1

2
|N1(p)−N2(p)| ≥ 3

8
Chm

1/4
0 d(L)

γ0/2−β2`(L)1+β2 .

Next observe that, by the property of the Whitney decomposition, any cube touching
B4`(L)((zL, wL)) has sidelength at most 4`(L). Thus the sum of `(H)2 over all such H is
the 2-dimensional measure of a region of diameter comparable to `(L) and from (4.2) we
infer

|Ω \ K| ≤ Cm1+β0

0 d(L)(1+β0)(2γ0−2+2δ1)`(L)2+(1+β0)(2−2δ1) .

So, for every point x ∈ Ω there exists q ∈ K ∩ Ω which has geodesic distance to x at most

Cm
1/2+β0/2
0 d(L)(1+β0)(γ0−1+δ1)`(L)1+(1+β0)(1−δ1). Given the Lipschitz bound for N and the
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choice β2 ≤ 1
4
, we then easily conclude (S3):

G(N(x), Q Jη ◦N(x)K) ≥3

8
Chm

1/4
0 d(L)

γ0/2−β2`(L)1+β2

− Cm1/2+3β0/2
0 d(L)(3β0/2+1)γ0−β2`(L)1+β2

≥1

4
Chm

1/4
0 d(L)

γ0/2−β2`(L)1+β2 ,

where again we need ε2 < c(β2, δ2,M0, N0, Ce, Ch) for a sufficiently small c. �

Proof of Corollary 4.5. The proof is straightforward. Consider any H ∈ W j
n . By definition

it has a nonempty intersection with some cube J ∈ W j−1: this cube cannot belong toWh by
Proposition 4.4. It is then either an element of We or an element Hj−1 ∈ W j−1

n . Proceeding
inductively, we then find a chain H = Hj, Hj−1, . . . , Hi =: L, where Hl̄∩Hl̄−1 6= ∅ for every

l̄, Hl̄ ∈ W l̄
n for every l̄ > i and L = Hi ∈ W i

e . Observe also that

|xH − xL| ≤
j−1∑
l̄=i

|xHl̄ − xHl̄+1
| ≤
√

2 `(L)
∞∑
l̄=0

2−l̄ ≤ 2
√

2 `(L) .

It then follows easily that H ⊂ B3
√

2`(L)(L). �

10.2. Unique continuation for Dir-minimizers. We recall for completeness the fol-
lowing two Propositions, whose proof can be found in [9], cf. Lemmas 7.1 and 7.2 therein.

Lemma 10.1 (Unique continuation for Dir-minimizers). Let n ∈ N \ {0} be fixed. For
every η ∈ (0, 1) and c > 0, there exists γ > 0 with the following property. If w : R2 ⊃
B2 r → AQ(Rn) is Dir-minimizing, Dir(w,Br) ≥ c and Dir(w,B2r) = 1, then

Dir(w,Bs(q)) ≥ γ for every Bs(q) ⊂ B2r with s ≥ η r.

In the sequel we fix λ > 0 such that

(1 + λ)4 < 2δ1 . (10.5)

Proposition 10.2 (Decay estimate for Dir-minimizers). Let n ∈ N\{0}. For every η > 0,
there is γ > 0 with the following property. Let w : R2 ⊃ B2r → AQ(Rn) be Dir-minimizing
in every Ω′ ⊂⊂ B2r such that∫

B(1+λ)r

G
(
Dw,Q JD(η ◦ w)(0)K )2 ≥ 2δ1−4Dir(w,B2r) . (10.6)

Then, if we set w̃ =
∑

i Jwi − η ◦ wK, we have

γDir(w,B(1+λ)r) ≤
∫
Bs(q)

G(Dw,Q JD(η ◦ w)K)2

≤ 1

γ r2

∫
Bs(q)

G(w,Q Jη ◦ wK)2 ∀ Bs(q) ⊂ B2 r with s ≥ η r . (10.7)
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10.3. Splitting before tilting: Proof of Proposition 4.7. As customary we use the
convention that constants denoted by C depend upon all the parameters but ε2, whereas
constants denoted by C0 depend only upon n, n̄ and Q.

Given L ∈ W j
e , let us consider its ancestors H ∈ S j−1 and J ∈ S j−6, which exists

thanks to Proposition 3.5. Set ` = `(L), π = πH and C := C8rJ (pJ , π), and let f :
B8rJ (pHJ , π) → AQ(π⊥) be the π-approximation of Definition 3.6, which is the result of
[11, Theorem 1.5] applied to TJ in C32rJ (pJ , π) (recall that Proposition 5.1 ensures the
applicability of [11, Theorem 1.5] in the latter cylinder).

The following are simple consequences of Proposition 5.1 and Proposition 6.1:

E := E(TJ ,C32rJ (pJ , π)) ≤ Cm0 d(L)2γ0−2+2δ1 `2−2δ1 , (10.8)

h(TJ ,C, πH) ≤ Cm
1/4
0 d(L)

γ0/2−β2`1+β2 , (10.9)

cCem0 d(L)2γ0−2+2δ1`2−2δ1 ≤ E, (10.10)

where (10.10) follows from BL ⊂ C, L ∈ We and rL/rJ = 2−6. In particular the positive
constants c and C do not depend on ε2. We divide the proof of Proposition 4.7 in three
steps.

Step 1: decay estimate for f . Let 2ρ := 64rH − Cm
1/4
0 d(L)

γ0/2−β2`1+β2 : since
pH ∈ spt(TJ), it follows from (10.9) that, upon having chosen C appropriately, spt(TJ) ∩
C2ρ(pH , π) ⊂ spt(TH) ∩ BH ⊂ C. Observe in particular that C does not depend on ε2,
although it depends upon the other parameters. Thus, setting B = B2ρ(pH , π), using the
Taylor expansion in [8, Corollary 3.3] and the estimates in [11, Theorem 1.5], we get

Dir(B, f) ≤ 2|B|E(TJ ,C2ρ(pH , π)) + Cm1+β0

0 d(L)(1+β0)(2γ0−2+2δ1)`2+(1+β0)(2−2δ1)

≤ 2ω2(2ρ)2E(TH ,BH) + Cm1+β0

0 d(L)(1+β0)(2γ0−2+2δ1)`2+(1+β0)(2−2δ1) . (10.11)

Recall that |pH−pHL| ≤ |pH−pL| ≤ C0`(H), where C0 is a geometric constant (cf. Propo-
sition 5.1), and set σ := 64rL + C`(H) = 32rH + C`(H). If λ is as in (10.5) and M0 is
sufficiently large (thus fixing a lower bound for M0 which depends only on δ1) we reach

σ ≤
(

1

2
+
λ

4

)
64 rH ≤

(
1 +

λ

2

)
ρ+ C̄m

1/4
0 d(L)

γ0/2−β2 `1+β2 .

In particular, choosing ε2 sufficiently small we get σ ≤ (1+λ)ρ and BL ⊂ C(1+λ)ρ(pL, π) =:
C′. Define B′ = B(1+λ)ρ(pH , π). Set A := −

∫
B′
D(η ◦ f), Ā : πH → π⊥H the linear map

x 7→ A · x and π̄ for the plane corresponding to GĀ. Using [8, Theorem 3.5] and [11,
Theorem 5.2], we estimate

1
2

∫
B′
G(Df,Q JAK)2 ≥ |B′|E(TJ ,C

′, π̄)− Cm1+β0

0 d(L)(1+β0)(2γ0−2+2δ1)`2+(1+β0)(2−2δ1)

≥ |B′|E(TJ ,BL, π̄)− Cm1+β0

0 d(L)(1+β0)(2γ0−2+2δ1)`2+(1+β0)(2−2δ1)

≥ ω2((1 + λ)ρ)2E(TL,BL)− Cm1+β0

0 d(L)(1+β0)(2γ0−2+2δ1)`2+(1+β0)(2−2δ1). (10.12)

Next, considering that BH ⊃ BL and that, by L ∈ W j
e ,

E(TL,BL) ≥ Cem0 d(L)2γ0−2+2δ1`2−2δ1 ,
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we conclude from (10.11) and (10.12) that

Dir(B, f) ≤ 2ω2(2ρ)2(1 + Cmβ0

0 )E(TH ,BH) . (10.13)∫
B′
G(Df,Q JAK)2 ≥ 2ω2((1 + λ)ρ)2(1− Cmβ0

0 )E(TL,BL) . (10.14)

Step 2: harmonic approximation. From now on, to simplify our notation, we use
Bs(y) in place of Bs(y, π) (and recall that π = πH). Consistently with [13, 11, 7] we
introduce the parameter Ω, which equals

• A = ‖AΣ‖C0 in case (a) of Definition 0.1;
• max{‖dω‖C0 , ‖AΣ‖C0} in case (b);
• C0R

−1 in case (c).

From (10.10) we infer that, for any ε32 > 0, if r̄ is chosen sufficiently small, we have

8rJ Ω ≤ C`(L)m
1/2
0 ≤ ε32C

1/2
e m

1/2
0 d(L)γ0−1+δ1`(L)1−δ1 ≤ ε32E

1/2, (10.15)

because `(L) ≤ d(L) ≤ r̄. Therefore, for every positive η̄, we can apply [7, Theorem
1.6] (in case (a) of Definition 0.1) and [11, Theorem 3.1] (in the cases (b) and (c) of
Definition 0.1) to the cylinder C and achieve a map w : B8rJ (pHJ , π) → AQ(π⊥) of the
form w = (u,Ψ(y, u)) (in fact w = u in case (b) of definition 0.1) for a Dir-minimizer u
and such that

(8 rJ)−2

∫
B8rJ

(pHJ )

G(f, w)2 +

∫
B8rJ

(pHJ )

(|Df | − |Dw|)2 ≤ η̄ E (8 rJ)2, (10.16)∫
B8rJ

(pHJ )

|D(η ◦ f)−D(η ◦ w)|2 ≤ η̄ E (8 rJ)2 . (10.17)

In the cases (a) and (c) of Definition 0.1, by the chain rule we have D(Ψ(y, u(y))) =∑
j JDxΨ(y, uj(y)) +DvΨ(y, uj(y)) ·Duj(y)K, so that

∫
B(1+λ)ρ(pH)

|D(Ψ(y, u))|2 ≤ C0m0

∫
B(1+λ)ρ(pH)

|Du|2 + C0m0ρ
4, (10.18)

where C0 is a geometric constant. Consider now Ã := −
∫
B′
D(η ◦ w), and observe that,

since D (η ◦ u) = η ◦ Du is harmonic, we have A′ := D (η ◦ u)(pH) = −
∫
B′
η ◦ Du, where

B′ = B(1+λ)ρ(pH). We can use (10.16), (10.17) and (10.18), together with (10.14) to infer,
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for ε2 small enough,∫
B′
G
(
Du,Q Jη ◦Du(pH)K )2

=

∫
B′
G
(
Du,Q JA′K)2

)2 (10.18)

≥
∫
B′
G(Dw,QJÃK)2 − C0m0ρ

4

(10.16)&(10.17)

≥
∫
B′
G
(
Df,QJAK)2 − C0m0ρ

4 − C0η̄Eρ
2

(10.14)

≥ 2ω2((1 + λ)ρ)2(1− Cmβ0

0 )E(TL,BL)− C0m0ρ
4 − C0η̄Eρ

2. (10.19)

Analogously, using (10.13) and (10.16), we easily deduce∫
B2ρ(pH)

|Du|2 ≤ 2ω2(2ρ)2(1 +mβ0

0 )E(TH ,BH) + C0m0ρ
4 + C0η̄Eρ

2 (10.20)

Now recall that, since d(L) = d(H) = d(J), and L ∈ We,

E(TL,BL) ≥ Cem0d(L)2γ0−2+2δ1`(L)2−2δ1 ≥ 22δ1−2E(TH ,BH) ,

and combining this with (10.20) and (10.19) we achieve∫
B′
G
(
Du,Q JD(η ◦ u)(pH)K )2 ≥ (22δ1−4 − Cmβ0

0 )

∫
B2ρ(pH)

|Du|2 − C0m0ρ
4 − C0η̄Eρ

2 .

(10.21)
To estimate the last two errors in terms of the energy of u we use again we use (10.19) to
estimate

Eρ2 ≤ C0ρ
2 E(TL, BL) ≤ C0

∫
B′
|Du|2 + C0m0 ρ

4 + C0η̄Eρ
2

so that, for η̄ ≤ 1/2C0 we have

Eρ2 ≤ C0 ρ
2E(TL, BL) ≤ C0

∫
B′
|Du|2 + C0m0 ρ

4 . (10.22)

Next, using once again, L ∈ We and this last inequality,

m0ρ
4 ≤ C0ρ

2

Ce
d(L)2−2γ0−2δ1E(TL,BL) ≤ C0

Ce

∫
B′
|Du|2 +

C0

Ce
m0ρ

4 ,

which for Ce bigger than a geometric constant implies

m0ρ
4 ≤ C0

Ce

∫
B′
|Du|2 . (10.23)

We can therefore combine (10.21) with (10.22) and (10.23) to achieve∫
B(1+λ)ρ(pH)

G
(
Du,Q JD(η ◦ u)(pH)K )2 ≥

(
22δ1−4 − C0

Ce
− Cmβ0

0 − C0η̄
)∫

B2ρ(pH)

|Du|2 .

(10.24)

It is crucial that the constant C, although depending upon β2, δ2,M0, N0, Ce and Ch, does
not depend on η and ε2, whereas C0 depends only upon Q, n̄ and n. So, if Ce is chosen
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sufficiently large, depending only upon λ (and hence upon δ1), we can require that 22δ1−4−
C0

Ce
≥ 23δ1/4−4. We then require η̄ and ε2 to be sufficiently small so that 23δ1/4−4−Cmβ0

0 −
Cη̄ ≥ 2δ1−4.

We can now apply Proposition 10.2 to u and conclude

Ĉ−1

∫
B(1+λ)ρ(pH)

|Du|2 ≤
∫
B`/8(q)

G(Du,Q JD(η ◦ u)K)2 ≤ Ĉ`−2

∫
B`/8(q)

G(u,Q Jη ◦ uK)2 ,

(10.25)

for any ball B`/8(q) = B`/8(q, π) ⊂ B2ρ(pH), where Ĉ depends upon δ1 and M0. In
particular, being these constants are independent of ε2 and Ce.

Next recall that L ∈ We, therefore

m0d(L)2γ0−2+2δ1 `4−2δ1 ≤ C̃`2 E(T,BL) . (10.26)

On the other hand by (10.19), (10.22) and (10.23), a suitable choice of ε2, η and Ce yields

`2E(T,BL) ≤
∫
B(1+λ)ρ(pH)

|Du|2 ≤ C

∫
B`/8(q)

G(Du,Q JD(η ◦ u)K)2 . (10.27)

In turn, (10.17) and the definition of w implies∫
B`/8(q)

G(Du,Q JD(η ◦ u)K)2 ≤
∫
B`/8(q)

G(Df,Q JD(η ◦ f)K)2 + ηE

and taking into account (10.23) and (10.25) we can once again assume that, for an appro-
priate choice of the parameters ε2, η and Ce we achieve∫

B`/8(q)

G(Du,Q JD(η ◦ u)K)2 ≤ 2

∫
B`/8(q)

G(Df,Q JD(η ◦ f)K)2 .

Finally, using again (10.16), (10.23) and (10.25) we conclude in analogous way that∫
B`/8(q)

G(u,Q Jη ◦ uK)2 ≤ 2

∫
B`/8(q)

G(f,Q Jη ◦ fK)2 .

Summarizing all the conclusions reached so far, we have

m0d(L)2γ0−2+2δ1 `4−2δ1 ≤ C̃`2 E(T,BL) ≤ C̄

∫
B`/8(q)

G(Df,Q JD(η ◦ f)K)2

≤ Č`−2

∫
B`/8(q)

G(f,Q Jη ◦ fK)2, (10.28)

where C̃, C̄ and Č are constants which depend upon δ1, M0 and Ce, but not on ε2.

Step 3: Estimate for the M-normal approximation. We next complete the proof
showing (4.5) and (4.6). Now, consider any ball B`/4(q, π0) with q ∈ B and dist(L, q) ≤
4
√

2 ` and let Ω := Φ(B`/4(q, π0)). Recall that π = πH and by a slight abuse of notation
let pπ be the projection onto pH + π. Observe that pπ(Ω) must contain a ball B`/8(q′, π),
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because of ‖Dϕ‖C0 ≤ Cm
1/2
0 and |π0 − π| ≤ Cm

1/2
0 , and in turn it must be contained in

B8rJ (pHJ , π).
Applying [9, Lemma B.1] letϕ′ : B8rJ (pHJ , π)→ π⊥ be such that Gϕ′ = JMK C8rJ (pJ , π)

and let Φ′(z) = (z,ϕ′(z)). Since D(η ◦ f)(z) = η ◦Df(z) for a.e. z, we obviously have∫
B`/8(q′,π)

G(Df,Q JD(η ◦ f)K)2 ≤ C0

∫
B`/8(q′,π)

G(Df,Q JDϕ′K)2 . (10.29)

Let now ~Gf be the orienting tangent 2-vector to Gf and τ the one to M. For a.e. z we
have the inequality

C0

∑
j

|~Gf (z, fj(z))− ~τ(z,ϕ′(z))|2 ≥ G(Df(z), Q JDϕ′(z)K)2 ,

for some geometric constant C0, because |~Gf (z, fj(z)) − ~τ(z,ϕ′(z))| ≤ mβ0

0 . Therefore,
using [11, Theorem 5.2],

−
∫
B`/8(q′,π)

G(Df,Q JDϕ′K)2 ≤ C−
∫

C`/8(q′,π)

|~Gf (z)− ~τ(Φ′(pπH (z))|2d‖Gf‖(z)

≤ C−
∫

C`/8(q′,π)

| ~TL(z)− ~τ(Φ′(pπH (z))|2d‖TL‖(z)

+ Cm1+β0

0 d(L)(1+β0)(2γ0−2+2δ2)`2+(2−2δ2)(1+β0) . (10.30)

Now, thanks to the height bound (3.13) and to the fact that |~τ − πH | ≤ Cm
1/2
0 d(L)

γ0/2−1`

in the cylinder Ĉ = C`/8(q′, πH) (recall (8.9)), we have the inequality

|p(z)−Φ′(pπ(z))| ≤ Cm
1/4+1/2
0 d(L)γ0−β2`2+β2 ∀z ∈ spt(T ) ∩ Ĉ .

Using the estimate |D2ϕ′(pπ(z))| ≤ Cm
1/2
0 d(L)

γ0/2−1 (which is valid for any z ∈ spt(T )∩ Ĉ
by (3.17) and [9, (B.3)]) we then easily conclude from (10.30) that

−
∫
B`/8(q′,π)

G(Df,Q JDϕ′K)2

≤C−
∫

Ĉ

|~TL(z)− ~τ(p(z))|2d‖TL‖(z) + Cm1+β0

0 d(L)2γ0−2−2β2`2+2β2

≤C−
∫

p−1(Ω)

|~TF (z)− τ(p(z))|2d‖TF‖(z) + Cm1+β0

0 d(L)2γ0−2+2δ1`2−2δ1 ,

where we used (4.2).
Since, on the region where we are interested, namely Ω, we have the bounds |DN | ≤

Cmβ0

0 d(L)β0γ0 , |N | ≤ Cm
1/4
0 d(L)

γ0/2−β2`1+β2 and ‖AM‖2 ≤ Cm0d(L)γ0−2, applying now
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[8, Proposition 3.4] we conclude

−
∫

p−1(Ω)

|~TF (x)− τ(p(x))|2d‖TF‖(x) ≤(1 + Cm2β0

0 d(L)2γ0β0)

∫
Ω

|DN |2

+ Cm
1+1/2
0 d(L)2γ0−2−2β2`2+2β2 .

Thus, combining the latter estimate with (10.28) and (10.30) we achieve

m0 d(L)2γ0−2+2δ1`2−2δ2 ≤ C(1 + Cm2β0

0 d(L)2γ0β0)−
∫

Ω

|DN |2 + Cm1+β0

0 d(L)2γ0−2+2δ1`2−2δ2 .

(10.31)
Since the constant C might depend on M0, N0, Ce and Ch but not on ε2, we conclude that
for a sufficiently small ε2 we have

m0d(L)2γ0−2+2δ1`2−2δ1 ≤ C−
∫

Ω

|DN |2 . (10.32)

But E(TL,BL) ≤ Cm0 d(L)2γ0−2+2δ1`2−2δ2 and thus (4.5) follows.

We finally show (4.6). Observe that p−1(Ω)∩ spt(T ) ⊃ C`/8(q′, π)∩ spt(TL) and, for an
appropriate geometric constant C0, Ω cannot intersect a Whitney region L′ corresponding
to an L′ with `(L′) ≥ C0`(L) or d(L′) ≥ 2d(L). In particular, Theorem 4.3 implies that

‖TF − TL‖(p−1(Ω)) + ‖TF −Gf‖(p−1(Ω)) ≤ Cm1+β0

0 d(L)(1+β0)(2γ0−2+2δ1) `2+(1+β0)(2−2δ1) .
(10.33)

Let now F ′ be the map such that TF ′ (p−1(Ω)) = Gf (p−1(Ω)) and let N ′ be the corre-
sponding normal part, i.e. F ′(x) =

∑
i Jx+N ′i(x)K (the existence of F ′ is guaranteed by

[8, Theorem 5.1]). The region over which F and F ′ differ is contained in the projection
onto Ω of (Im(F ) \ spt(T )) ∪ (Im(F ′) \ spt(T )) and therefore its Hm measure is bounded
as in (10.33). Recalling the bound on ‖N‖C0 given by (4.1) and that

G(f,Q JϕK) ≤ Ch(TL,BL) ,

we easily conclude |N |+ |N ′| ≤ Cm
1/4
0 d(L)

γ0/2−β2`1+β2 , which in turn implies∫
Ω

|N |2 ≥
∫

Ω

|N ′|2 − Cm1+1/4+β0

0 d(L)(1+β0)(2γ0−2+2δ1)+γ0−2β2`4+2β2+(2−2δ1)(1+β0) . (10.34)

On the other hand, applying [8, Theorem 5.1 (5.3)], we conclude

|N ′(Φ′(z))| ≥ 1

2
√
Q
G(f(z), Q Jϕ′(z)K) ≥ 1

4
√
Q
G(f(z), Q Jη ◦ f(z)K) ,

which in turn implies

m0 d(L)2γ0−2+2δ1 `2−2δ2
(10.28)

≤ C`−2

∫
B`/8(q′,π)

G(f,Q Jη ◦ fK)2 ≤ C`−2

∫
Ω

|N ′|2 . (10.35)

For ε2 sufficiently small, (10.34) and (10.35) lead to the second inequality of (4.6), while
the first one comes from Theorem 4.3 and E(T,BL) ≥ Cem0 d(L)2γ0−2+2δ1`2−2δ2 .
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11. Proof of Theorem 2.6

We are now ready to define the relevant objects of Theorem 2.6. The center manifold
M is given by Theorem 3.11: the fact that M is a b-separated admissible Q̄-branching is
a simple consequence of the estimates in Theorem 3.11. We then apply Proposition 2.4 to
find the map Ψ which is a conformal parametrization of M in a neighborhood of 0 and,
after a suitable scaling, we assume that it is defined on BQ̄,2. Secondly we consider the
normal approximation N of the current T onM constructed in Theorem 4.3. The relation
Q̄Q = Θ(T, 0) is obvious from the construction. Again, after scaling, we assume that:

• The radius r0 of Theorem 2.6 is 4;
• Ψ(B) ⊂ C3(0);

Rather than call the rescaled current S, as it is done in the statement of Theorem 2.6, we
keep denoting it by T .

The maps N and F are then defined as

N (z, w) :=N(Ψ(z, w)) =
∑
i

JNi(Ψ(z, w))K (11.1)

F (z, w) :=
∑
i

JΨ(z, w) + N i(z, w)K =
∑
i

JΨ(z, w) +Ni(Ψ(z, w))K . (11.2)

By the estimate (3.17) it follows immediately that

|AM(ζ, ξ)|+ |ζ||DMAM(ζ, ξ)| ≤ Cm
1/2
0 |ζ|γ0−1

at any point p = (ζ, ξ) ∈ M with ζ ∈ R2 \ 0. On the other hand by (2.5), if we set
(ζ, ξ) := Ψ(z, w), then we have

|z| − Cm1/4
0 |z|1+γ0 ≤ |ζ| ≤ |z|+ Cm

1/2
0 |z|1+γ0 (11.3)

and thus the estimates in (i) follow. By construction N i(z, w) = Ni(Ψ(z, w)) is orthogonal
to TΨ(z,w)M, which shows (ii).

The fact that T is contained in a horned neighborhood of M where the projection p
is well defined is a consequence of Corollary 4.1. Moreover, by (11.3) we can assume
Ψ(Br(0)) ⊂ C2r (this is true for a sufficiently small r and hence, after scaling, we can
assume it holds for any r ≤ 1). On the other hand, consider a cube L of W which
intersects B3r/2(0). By construction its sidelength is necessarily smaller than r. Thus
(2.12) is a simple consequence of (4.1), Corollary 4.1(iii) and Corollary 4.1(iv).

We are left to show the three estimates claimed in point (iv) of Theorem 2.6: the rest
of the section is devoted to this task.

11.1. The special covering. First of all consider the set Ψ(Br(0)) and let Br ⊂ B be
defined by

Br := {(z, w) ∈ B : Φ(z, w) ∈ Ψ(Br(0))} . (11.4)

Observe that, by the estimates on Ψ, the following two facts are obvious for r small:

(g1) Br is star-shaped with respect to the origin, more precisely if q = (z, w) ∈ ∂Br,
then the geodesic segment σ in B joining (0, 0) and q is contained in Br;
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(g2) If q̄ denotes the point on σ at distance r
4

from the origin, the diskBr/4(q̄) is contained
in Br.

We next select an (at most countable) family of triples {(Lj, Bj, Uj)}j∈N of subsets of BQ̄

with the following properties:

(c1) The Lj’s are distinct cubes of the Whitney decomposition with Lj ∈ We ∪Wh and
Lj ⊂ B̄2r+6`(Lj);

(c2) Bj = B`(Lj)/4(zj, wj) ⊂ Br are disjoint balls such that |zLj − zj| ≤ 7 `(Lj);

(c3) Uj is the union of an at most countable family of cubes W̄ (Lj) ⊂ W where H ⊂
B30`(Lj)(zLj , wLj) for every H ∈ W̄ (Lj) and ∪jW̄ (Lj) consists of all cubes in W
which intersect Br; in particular

Br ⊂ Γ ∪
⋃
j

Uj . (11.5)

To this aim we start by selecting all the cubes L ∈ We ∪ Wh such that either L ∩ Br 6= ∅
or there exists H ∈ Wn in the domain of influence of L with H ∩ Br 6= ∅, and we denote
the collection of such cubes by W (r). Observe that, `(L) ≤ C02−N0r and thus, provided

N0 is chosen sufficiently large, we can assume that the ratio `(L)
r

is smaller than any fixed
geometric constant. Moreover, by Corollary 4.5, it is obvious that L ⊂ B2r+6`(L).

The triples above are then chosen according to the following procedure:

• We start selecting recursively {Lj} ⊂ W (r). L0 is a cube with the largest sidelength
in W (r). Having chosen {L0, . . . , Lj} we select Lj+1 as a cube with the largest
sidelength among those L ∈ W (r) such that B15`(L)(zL, wL)∩B15`(Li)(zLi , wLi) = ∅
for all i ≤ j.
• For every Lj we use the geometric properties (g1) and (g2) to choose a ball Bj

as in (c2): for instance we consider zj :=
zLj
|zLj |

(
|zLj | − 7

√
2

2
`Lj
)

and let (zj, wj) be

the unique point of B that belongs to the connected component of B ∩ (BLj ×
C) that contains (zLj , wLj). The Bj’s are disjoint because they are contained in
B15`(Lj)(zLj , wLj);

• For what concerns Uj, we need to define W̄ (Lj). First of all Lj ∈ W̄ (Lj). We then
consider any other H ∈ W such that H ∩Br 6= ∅ and we assign it to one (and only
one) family W̄ (Lj) according to the following rules:
(a) If H ∈ We ∩Wh, then H ∈ W (r) and we select one Lj with largest sidelength

such that B15`(Lj)(zLj , wLj) ∩B15`(H)(zH , wH) 6= ∅;
(b) IfH ∈ Wn, thenH belongs to the domain of influenceWn(L) of some L ∈ W (r);

we then assign H to the family W̄ (Lj) which already contains L.

11.2. Estimates on Uj and Λ. Let Uj = Φ(Uj) and Bj := Φ(Bj) and set, for notational
convenience, dj := d(Lj) and `j := `(Lj). As a simple consequence of Theorem 4.3 and of
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Corollary 4.1(iii)we deduce the following estimates for every j ∈ N:∫
Uj
|η ◦N | ≤ Cm0 d2γ0−2+2β0γ0−β2

j `
5+β2/4
j + Cm

1/2+β0

0 dγ0−1
j `1+β2

j

∫
Uj

|N | (11.6)∫
Uj
|DN |2 ≤ Cm0 d2γ0−2+2δ1

j `4−2δ1
j , (11.7)

‖N‖C0(Uj) + sup
p∈spt(T )∩p−1(Uj)

|p− p(p)| ≤ Cm
1/4
0 d

γ0/2−β2

j `1+β2

j , (11.8)

Lip(N |Uj) ≤ C
(
m0dγ0

j `
γ0

j

)β0 , (11.9)

‖T −TF‖(p−1(Uj)) ≤ Cm1+β0

0 d
(1+β0)(2γ0−2+2δ1)
j `

2+(1+β0)(2−2δ1)
j . (11.10)

Indeed, observe that d(H) ≤ dj ≤ 2d(H) for everyH ∈ W̄ (Lj) and
∑

H∈W̄ (Ji)
`(H)2 ≤ C`2

j ,

because all H ∈ W̄ (Ji) are disjoint and contained in a ball of radius comparable to `j. This
in turn implies that

∑
H∈W̄ (Jj)

`(H)2+ε ≤ C`2+ε
j , because `(H) ≤ `j for any H ∈ W̄ (L), and

(11.6) - (11.10) follows easily because the exponents 5+β2/4, 4−2δ1 and 2+(1+β0)(2−2δ1)
are all larger than 2.

Next we claim the following inequality for every t > 0, where η(t) and C(t) are suitable
positive functions,

sup
j

(m0 dj `j)
t ≤ C(t) Λη(t)(r) , (11.11)

Indeed, using Propositions 4.4 and 4.7 we have

Cem0 d2γ0−2+2δ1
j `4−2δ1

j ≤ C

∫
Bj
|DN |2 if Lj ∈ We , (11.12)

C2
hm

1/2
0 dγ0−2β2

j `4+2β2

j ≤ C

∫
Bj
|N |2 if Lj ∈ Wh . (11.13)

On the other hand, since the Bj are disjoint and contained in Br = Ψ(Br),∑
j

∫
Bj
|DN |2 ≤

∫
Br
|DN |2 =

∫
Br

|DN |2

by conformality of Ψ and ∑
j

∫
Bj
|N |2 ≤

∫
Br
|N |2 ≤ C

∫
Br

|N |2

by the Lipschitz regularity of Ψ. Thus (11.11) follows easily by suitably choosing C(t) and
η(t).

Observe therefore that (2.13) is an obvious consequence of (11.11), (11.9) and the uniform
bound on |DΨ| given in Proposition 2.4.
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11.3. Proof of (2.14). First of all observe that, by the bounds on Ψ of Proposition 2.4,∫
Br

|ζ|γ0−1|η ◦ N (ζ, ξ)| ≤ C

∫
Br
|z|γ0−1|η ◦N(z, w)| .

On the other hand, since Uj ⊂ B30`j(zLj , wLj) and
dj
2
≤ |zLj | ≤ 2dj, we compute∫

Br
|z|γ0−1|η ◦N(z, w)| ≤ C

∑
j

dγ0−1
j

∫
Uj
|η ◦N(z, w)| .

Now considering that d3γ0−3+2β0γ0−β2

j `
5+β2/4
j ≤ d3γ0−2

j `4+2β2

j (recall 2β2 ≤ β0γ0), we have∫
Br
|z|γ0−1|η ◦N(z, w)|

(11.6)

≤ C
∑
j∈N

(
m0 d3γ0−2

j `4+2β2

j + Cm
1/2+β0

0 dγ0−1
j `1+β2

j

∫
Uj

|N |
|z|1−γ0︸ ︷︷ ︸

=:A

)
.

We treat the second term in the summand above via Young’s inequality inequality;

A ≤ 2
(
m

1/2+β0

0 dγ0−1
j `2+β2

j

)2

+ 2

(
`−1
j

∫
Uj

|N |
|z|1−γ0/2

)2

≤ 2m1+2β0

0 d2γ0−2
j `4+2β2

j + C

∫
Uj

|N |2

|z|2−γ0
,

where in the second line we have used Cauchy-Schwartz and |Uj| ≤ C`2
j . Summarizing,

mη0

0

∫
Br
|z|γ0−1|η ◦N(z, w)| ≤ C

∑
j

(
m1+η0

0 d2γ0−2
j `4+2β2

j + Cmη0

0

∫
Uj

|N |2

|z|2−γ0

)
. (11.14)

Moreover, observe that, if Lj ∈ Wh, then by (11.13) and
dj
2
≤ |z| ≤ 2dj,

m0 d2γ0−2
j `4+2β2

j ≤ Cm
1/2
0

∫
Uj

|N |2

|z|2−γ0
(11.15)

while, if Lj ∈ We, using (11.12) and (11.11), we deduce, for a suitable choice of η0,

m1+η0

0 d2γ0−2
j `4+2β2

j ≤ Cmη0

0 dβ2

j `β2

j

∫
Uj
|DN |2 ≤ C Λ(r)η0

∫
Uj
|DN |2 . (11.16)

Using (11.14), (11.15) and (11.16), the conformality of Ψ (which in particular leaves the
Dirichlet energy invariant) and the bounds in Proposition 2.4 we conclude

mη0

0

∫
Br

|ζ|γ0−1|η ◦ N (ζ, ξ)| ≤ CΛ(r)η0D(r) + C

∫
Br

|N |2(ζ, ξ)

|ζ|2−γ0
.
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However the later integral is precisely ∫ t

0

H(t)

t2−γ0
.

This shows (2.14).

11.4. Proof of (2.15). Observe that TF = TF . Thus using (11.10) we have

‖T −TF ‖(p−1(Ψ(Br)))
(11.10)

≤ C
∑
j∈N

m1+β0

0 d
(2γ0−2+2δ1)(1+β0)
j `

2+(2−2δ1)(1+β0)
j .

Now, if Lj ∈ We, then using (11.11) and (11.12) with a suitable η, we have

m1+β0

0 d
(2γ0−2+2δ1)(1+β0)
j `

2+(2−2δ1)(1+β0)
j ≤

(
m0 dγ0

j `γ0

j

)β0
(
m0 d2γ0−2+2δ1

j `4−2δ1
j

)
≤ C Λη(r)

∫
Uj
|DN |2 .

On the other hand, if Lj ∈ Wh, then by (11.13) and our choice of the constants,

m1+β0

0 d
(2γ0−2+2δ1)(1+β0)
j `

2+(2−2δ1)(1+β0)
j = m1+β0

0 d
(2γ0−2+2δ1)(1+β0)
j `

−2δ1+β0(2−2δ1)−2β2

j `4+2β2

j

≤m1/2+β0

0 d2γ0β0

j m
1/2
0 dγ0−2β2+γ0−2

j `4+2β2

j

≤m1/2+β0

0 d2γ0β0

j

∫
Uj

|N |2

|z|2−γ0

where we used that −2δ1 +β0(2−2δ1)−2β2 > 0. Summing both contributions and arguing
as in the previous paragraph we conclude the proof of (2.15).

Appendix A. Density and height bound

In this appendix we record two estimates which are standard for area minimizing currents
and can be extended with routine arguments to the three cases of Definition 0.1. Both
statements are valid for general m without additional efforts and we therefore do not
restrict to m = 2 here. Consistently with [13, 8] we introduce the parameter Ω, which
equals

• A = ‖AΣ‖C0 in case (a) of Definition 0.1;
• max{‖dω‖C0 , ‖AΣ‖C0} in case (b);
• C0R

−1 in case (c).

Lemma A.1. There is a positive geometric constant c(m,n) with the following property.
If T is a current as in Definition 0.1, where Ω ≤ c(m,n), then

‖T‖(Bρ(p)) ≥ ωm(Θ(T, p)− 1
4
)ρm ≥ ωm

3
4
ρm ∀p ∈ spt(T ),∀r ∈ dist(p, ∂U) . (A.1)

Proof. By [13, Proposition 1.2] ‖T‖ is an integral varifold with bounded mean curvature
in the sense of Allard, where C0Ω bounds the mean curvature for some geometric constant
C0. It follows from Allard’s monotonicity formula that eC0Ωr‖T‖(Br(x)) is monotone
nondecreasing in r, from which the first inequality in (A.1) follows. The second inequality
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is implied by Θ(T, p) ≥ 1 for every p ∈ spt(T ): this holds because the density is an upper
semicontinuous function which takes integer values ‖T‖-almost everywhere. �

For the proof of the next statement we refer to [9, Theorem A.1]: in that theorem T
satisfies the stronger assumption of being area minimizing (thus covering only case (a) of
Definition 0.1), but a close inspection of the proof given in [9] shows that the only property
of area minimizing currents relevant to the arguments is the validity of the density lower
bound (A.1).

Theorem A.2. Let Q, m and n be positive integers. Then there are ε > 0, c > 0 and C
geometric constants with the following property. Assume that π0 = Rm × {0} ⊂ Rm+n and
that:

(h1) T is an integer rectifiable m-dimensional current as in Definition 0.1 with U =
Cr(x0) and Ω ≤ c;

(h2) ∂T Cr(x0) = 0, (pπ0)]T Cr(x0) = Q JBr(pπ0(x0))K and E := E(T,Cr(x0)) < ε.

Then there are k ∈ N, points {y1, . . . , yk} ⊂ Rm+n and positive integers Q1, . . . , Qk such
that:

(i) having set σ := CE
1/2m, the open sets Si := Rm × (yi+ ] − rσ, rσ[n) are pairwise

disjoint and spt(T ) ∩Cr(1−σ| logE|)(x0) ⊂ ∪iSi;
(ii) (pπ0)][T (Cr(1−σ| logE|)(x0) ∩ Si)] = Qi

q
Br(1−σ| logE|)(pπ0(x0), π0)

y
∀i ∈ {1, . . . , k}.

(iii) for every p ∈ spt(T ) ∩Cr(1−σ| logE|)(x0) we have Θ(T, p) < max{Qi}+ 1
2
.

Appendix B. Proof of Proposition 2.4

In order to prove the Proposition we recall the following classical fact about the existence
of conformal coordinates. As in the rest of the paper, e denotes the standard euclidean
metric.

Lemma B.1. For every k ∈ N and α, β ∈]0, 1[ there are positive constants C0 and c0 with
the following properties. Let g be a Ck,β Riemannian metric on the unit disk B2 ⊂ R2 with
‖g − e‖C0,α ≤ c0. Then there exists an orientation preserving diffeomorphism Λ : Ω→ B2

and a positive function λ : Ω→ R such that

(i) Λ]g = λe;
(ii) ‖Λ− Id‖C1,α + ‖λ− 1‖C0,α ≤ C0‖g − e‖C0,α;
(ii) ‖Λ− Id‖Ck+1,β + ‖λ− 1‖Ck,β ≤ C0‖g − e‖Ck,β .

Although the statement above is a well-known fact (and it follows, for instance, from the
treatment of the problem given in [18, Addendum 1 to Chapter 9]), we have not been able
to find a classical reference for it. However a complete proof can be found in the Appendix
of [5].

Proof of Proposition 2.4. After rescaling we can assume that ρ ≥ 2Q. We fix Q and drop
subscripts in BQ,2. Observe also that, if we rescale by a large factor R, the constants Ci in
Definition 1.4 can then replaced by the constants CiR

−α. Hence, without loss of generality
we can assume that Ci is sufficiently small.
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Let Φ : B → Rn+2 be the graphical parametrization of the branching and recall that
g = Φ]e. Fix a point (z0, w0) ∈ B \ {0}, let r := |z0|/2 and observe that on Br(z0, w0) we
can use z as a chart and compute the metric tensor explicitely as

gij(z, w) = δij + ∂iu(z, w)∂ju(z, w) =: δij + σij .

It then follows easily that

|Djσ(z)| ≤C0C
2
i |z|2α−j for j ∈ {0, 1, 2} (B.1)

[D2σ]α,Br(z0,w0) ≤C0C
2
i r

α−2 . (B.2)

Step 1. Next consider the map W : C = R2 ⊃ B2 → B defined by W(z) := (zQ, z).
We set

ḡ = W]g = (Φ ◦W)]e .

We then infer that (following Einstein’s convention on repeated indices)

ḡij(z) = Q2|z|2Q−2δij + σkl(W(z))∂iWl∂jWk ,

and we set
τ(z) := (Q2|z|2Q−2)−1ḡ(z) .

We then easily see that

|τ(z)− e| ≤ C0|z|−(2Q−2)|DW(z)|2|W(z)| ≤ C0C
2
i |z|2Qα .

Differentiating the identity which defines τ we also get

|Dτ(z)| ≤C0|z|−(2Q−1)|DW(z)|2|σ(W(z))|+ C0|z|−(2Q−2)|D2W(z)||DW(z)||σ(W(z))|
+ C0|z|−(2Q−2)|DW(z)|2|Dσ(W(z))||z|Q−1

≤C0C
2
i |z|2Qα−1 .

Analogous computations lead then to the estimates

|Dj(τ − e)|(z) ≤C0C
2
i |z|2Qα−j for j ∈ {0, 1, 2} (B.3)

[D2τ ]α,Bs(z) ≤C0C
2
i |z|2Qα−2−α for s = |z|/2. (B.4)

Interpolating between the C1 and the C0 bound, we easily conclude that

[τ ]2Qα,B2r\Br ≤ C0C
2
i .

Note in particular that τ (unlike g) can be extended to a nondegenerate C0,Qα metric to
the origin.

Since Ci can be assumed sufficiently small, we can apply Lemma B.1 to find an orienta-
tion preserving diffeomorphism Λ: Ω→ B2 and a function λ : Ω→ R+ such that

Λ]τ =λ̄e (B.5)

‖Λ− Id‖C1,2Qα + ‖λ̄− 1‖C0,2Qα ≤C0Ci . (B.6)

Observe that, without loss of generality, we can assume that 0 ∈ Ω and Λ(0) = 0. In
particular (B.6) implies that, for Ci suitably small, B1 ⊂ Ω and hence we will regard Λ
and λ as defined on B1. Next divide Λ by λ̄(0)

1/2 and keep, by abuse of notation, the
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same symbols for the resulting map and the resulting conformal factor in (B.5). After this
normalization we achieve that λ̄(0) = 1 and that the estimates (B.6) still hold with a larger
C0. Moreover, λ̄(0) = 1 implies that DΛ(0) ∈ SO(2): composing Λ with an appropriate
rotation we can then assume that DΛ(0) is the identity. This implies that

|λ̄(z)− 1| ≤C0Ci|z|2Qα (B.7)

|Dj(Λ(z)− z)| ≤C0Ci|z|1+2Qα−j for j ∈ {0, 1} . (B.8)

Step 2. We next wish to estimates the higher derivatives of both Λ and λ̄. We adopt
the following procedure. We fix a point p 6= 0 and let r := |p|/2. We then apply a simple
scaling argument to rescale Br(p) to a ball of radius 2 so that we can apply Lemma B.1.
If we rescale back to Br(p) it is then easy to see that we find maps Λp : Ωp → Br(p),
λp : Ωp → R+ with the properties properties:

Λ]
pτ =λpg (B.9)

‖Λp − Id‖C1,2Qα + ‖λp − 1‖C0,2Qα ≤C0Ci (B.10)

[Λp − Id]3,α + [λp − 1]2,α ≤C0Cir
2Qα−2−α . (B.11)

Define Ξ := Λ ◦ Λ−1
p Moreover, its domain is Br(p). Since

sup
z∈Br(p)

|∂z(Ξ(z)− z)| ≤ C0r
2Qα ,

we easily conclude the higher derivative estimates

‖∂kz (Ξ(z)− z)‖ ≤ C0Cir
2Qα−k for k ∈ {1, 2, 3, 4} ,

which, by holomorphicity, are actually estimates on the full derivatives. Since Λ = Ξ ◦ Λp

we then easily conclude that

|Dj+1Λ(z)|+ |Dj(λ̄(z)− 1)| ≤C0Ci|z|2Qα−j for j ∈ {0, 1, 2} (B.12)

[D3Λ]α,Br(z) + [D2λ̄]α,Br(z) ≤C0Cir
2Qα−2−α for r = |z|/2 > 0 . (B.13)

Finally notice that

(Λ]ḡ) (z) = Q2|Λ(z)|2Q−2λ̄(z)e . (B.14)

Step 3. We are finally ready to define Ψ := Φ ◦W ◦Λ ◦W−1. First of all observe that

(Ψ]e)(z, w) = ((W−1)]Λ]ḡ)(z, w) =
|Λ(W−1(z, w))|2Q−2

|z|2−2/Q
λ̄(W−1(z, w))eQ =: λ(z, w)eQ .

Since |W−1(z, w)| = |z|1/Q, we can also estimate

|λ(z, w)− 1| ≤|Λ(W−1(z, w))|2Q−2

|z|2−2/Q
|λ̄(W−1(z, w))− 1|+ C

|Λ(W−1(z, w))|2Q−2 − |z|2−2/Q

|z|2−2/Q

≤C0C
2
i |W−1(z, w)|2Qα + C0|z|−1/Q

(
|Λ(W−1(z, w))| − |W−1(z, w)|

)
≤C0C

2
i |z|2α + C0C

2
i |z|−1/Q|W−1(z, w)|1+2Qα ≤ C0C

2
i |z|2α .
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Similarly

|Dλ(z, w)| ≤C0|Dλ̄(W−1(z, w))||z|−1 + C0

∣∣∣∣D |Λ(W−1(z, w))|2Q−2

|W−1(z, w)|2Q−2

∣∣∣∣
≤C0C

2
i |z|2α−1 + C0

∣∣∣∣D |Λ(W−1(z, w)|
|W−1(z, w)|

∣∣∣∣
and observe that∣∣∣∣D |Λ(W−1)|

|W−1|

∣∣∣∣ =

∣∣∣∣( DΛ(W−1)

|Λ(W−1)||W−1|
− |Λ(W−1)|
|W−1|3

Id

)
DW−1W−1

∣∣∣∣
≤C0|DW−1||W−1|−1

(
|DΛ(W−1)− Id|+ |W−1|

(
|Λ(W−1)− (W−1)|

))
≤C0C

2
i |DW−1||W−1|2Qα−2 .

Recalling that |DW−1(z, w)| ≤ |z|1/Q−1, |W−1(z, w)| = |z|1/Q, we conclude

|Dλ(z, w)| ≤ C0C
2
i |z|2α−1 .

The estimates on the second derivative and its Hölder norm follow from similar computa-
tions.

We now come to the estimates on Ψ. Let Λ̄ := W ◦ Λ ◦W−1. Fix (z0, w0) 6= 0, let
r := |z0|/2 and use z as a local chart. It will then suffice to show that

|Dj(Λ̄(z)− z)| ≤C0Ci|z|1+α−l for j ∈ {0, 1, 2, 3} (B.15)

[D3Λ̄]α,Br(z0,w0) ≤C0Ci|z|−2 . (B.16)

On the other hand since Λ̄(0, 0) = (0, 0), it actually suffices to show the first estimate for
j = 1 to obtain it in the case j = 0.

We start computing the first derivatives:

DΛ̄ = DW(Λ ◦W−1)DΛ(W−1)DW−1 .

Recalling that DW(W−1)DW−1 = Id, we estimate

|DΛ̄(z)− Id| ≤|DW(Λ(W−1(z)))−DW(W−1(z))||DΛ(W−1(z))||DW−1(z)|
+ |DW(W−1(z))||DΛ(W−1(z))− Id||DW−1(z)|
≤C0|W−1(z)|Q−1|Λ(W−1(z))−W−1(z)||z|1/Q−1

≤+ C0C
2
i |W−1(z)|Q−1||W−1(z)|2Qα|z|1/Q−1

≤C0C
2
i |W−1(z)|Q+2Qα|z|1/Q−1 + C0C

2
i |z|2α ≤ C0C

2
i |z|2α .

Similar computations give the estimates on the higher derivatives. �
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