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FINITE DIMENSIONAL HOPF ACTIONS

ON DEFORMATION QUANTIZATIONS

PAVEL ETINGOF AND CHELSEA WALTON

(Communicated by Kailash C. Misra)

Abstract. We study when a finite dimensional Hopf action on a quantum

formal deformation A of a commutative domain A0 (i.e., a deformation quan-
tization) must factor through a group algebra. In particular, we show that
this occurs when the Poisson center of the fraction field of A0 is trivial.

1. Introduction

Throughout the paper, we will work over an algebraically closed field k of char-
acteristic zero. Let us say that an associative algebra B has No Finite Quan-
tum Symmetry (NFQS) if any action of a finite dimensional Hopf algebra H on B
factors through a group algebra, and has No Semisimple Finite Quantum Sym-
metry (NSFQS) if this holds for semisimple Hopf actions. In previous papers
([CEW1,CEW2,EGMW,EW1]), we and coauthors established these properties for
various classes of algebras. In particular, in [EW1] we proved the NSFQS property
when B =: A0 is a commutative domain.

The aim of this work is to investigate when these properties hold for Hopf actions
on quantum formal deformations A of a commutative domain A0. To do so, we use
the Poisson structure on A0 and on its fraction field Q(A0), which are induced by
the multiplication of A. Namely, we show that if the Poisson center of Q(A0) is
trivial, then the NFQS property holds. We summarize our main results in Table 1
below, along with recalling related results in the literature.

2. Preliminaries

In this section, we recall the basic terminology pertaining to deformations of k-
algebras, including quantum deformations of commutative algebras. We also discuss
localizations of such quantum deformations. The section ends with material on
inner-faithful Hopf actions.

2.1. Deformations. Let us introduce the following definitions.

Definition 2.1 (A, AN ). Let A0 be an arbitrary k-algebra.

(a) A (flat) formal deformation of A0 is a k[[�]]-algebra A which is topologically
free over k[[�]] (i.e., A ∼= A0[[�]] as k[[�]]-modules) and equipped with an
algebra isomorphism A/�A ∼= A0.
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1918 PAVEL ETINGOF AND CHELSEA WALTON

Table 1. Various settings for No (Semisimple) Finite Quantum
Symmetry, including our main results here

Property module algebra B
H � B preserves
filtration of B?

Poisson center
of Q(A0) triv.?

Reference

NSFQS A0 (commutative domain) not required not required [EW1, Thm 1.3]

NSFQS filtered deformation sufficient not required [EW1, Prop 5.4]

˜A of A0

NFQS An(k) (Weyl algebra) not required not required [CEW2, Thm 1.1]

NSFQS An(k[z1, . . . , zs]) not required not required [CEW1, Prop 4.3]

NFQS D(X) not required not required [CEW2, Thm 1.2]

(algebra of diff’l ops)

NSFQS quantum deformation not required not required Proposition 3.1
A of A0/k[[�]]

NFQS quantum deformation not required sufficient Theorem 3.3
A of A0/k[[�]]

NFQS filtered deformation sufficient sufficient Corollary 3.4
˜A of A0

(b) Given a nonnegative integer N , we say that a (flat) N-th order deformation
of A0 is a k[�]/(�N+1)-algebra AN which is free as a k[�]/(�N+1)-module
and equipped with an algebra isomorphism AN/�AN

∼= A0.
(c) If, further, A0 is a commutative k-algebra, then the not necessarily commu-

tative algebras A and AN above are referred to as quantum deformations
of A0.

Clearly, if A is a formal deformation of A0, then A/�N+1A is anN -th order defor-
mation of A0 for any N ≥ 0, and A = lim←−(A/�N+1A). Thus, formal deformations

may be viewed as deformations of infinite order.
Given a Hopf algebraH0, a formal deformationH and anN-th order deformation

HN of H0 are defined similarly to Definition 2.1.

Definition 2.2 (Ã). Let A0 be a graded k-algebra. A Z+-filtered algebra Ã =⋃
n≥0 F

nÃ is a Z+-filtered deformation of A0 if we are given an isomorphism grF Ã ∼=
A0 as graded k-algebras. (The algebra Ã is also called a PBW deformation of A0.)

Any Z+-filtered deformation Ã =
⋃

n≥0 F
nÃ of a graded algebra A0 gives rise

to its formal deformation via the Rees algebra construction.

Definition 2.3 (R(Ã), R̂(Ã)). With the notation above, the Rees algebra R(Ã) is⊕
n≥0 �

nFnÃ and the completed Rees algebra R̂(Ã) is
∏

n≥0 �
nFnÃ.

Clearly, R(Ã) carries a grading, and is the span of the homogeneous elements

of R̂(Ã). Thus, A := R̂(Ã) is a homogeneous formal deformation of A0 with

deg(�) = 1. Note also that Ã with its filtration can be recovered from R(Ã) by the

formula Ã = R(Ã)/(�− 1). In fact, any homogeneous formal deformation A of A0

gives rise to a Z+-filtered deformation via Ã = Ahom/(� − 1), where Ahom is the
span of the homogeneous elements of A.

Now take A0 to be a commutative k-algebra. Suppose A is a quantum N -th order
deformation of A0 for 1 ≤ N ≤ ∞. Define the bilinear map { , } : A0 ×A0 → A0 as
follows: for any a0, b0 ∈ A0, let {a0, b0} be the image of [a, b] in �A/�2A ∼= A0, where
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FINITE DIMENSIONAL HOPF ACTIONS ON QUANTIZATIONS 1919

a, b are any lifts of a0, b0 to A. (This map is well defined since A0 is commutative.)
It is well known that { , } is a derivation in each argument, which is a Lie bracket
(i.e., a Poisson bracket) if N ≥ 2.

Definition 2.4. Given A0, a commutative k-algebra with Poisson structure as
above, we say that the N -th order quantum deformation A of A0 is an N -th order
deformation quantization of the Poisson algebra (A0, { , }). (If we do not specify
the order, then we mean that N = ∞.)

Example 2.5. (1) Take A0 = k[x, y] with Poisson bracket {y, x} = 1. Then,
the Weyl algebra A1(k) = k〈x, y〉/(yx − xy − 1) is a filtered deformation of A0

(with deg(x) = 0, deg(y) = 1), and gives rise to the quantum formal deformation
A = k[x, y][[�]] of A0 with multiplication defined by the Moyal formula

f ∗ g =
∑
i≥0

�
i

i!
∂i
yf · ∂i

xg.

(2) Take A0 = k[x1, . . . , xn] with {xi, xj} = λijxixj , λij ∈ k. Let qij ∈ 1 +
�λij + O(�2) ∈ k[[�]], with qijqji = 1. Then, the �-adically completed quantum
polynomial algebra A generated by x1, . . . , xn with relations xixj = qijxjxi is a
quantum formal deformation of A0.
(3) Take a Lie algebra g and let A0 be the symmetric algebra S(g), with {x, y} =
[x, y]g for x, y ∈ g. Then, the enveloping algebra U(g) is a Z+-filtered deformation
of A0.
(4) Let X be an abelian variety over k, L be an ample line bundle on X, and σ ∈
Aut(X(k[[�]])) be such that σ = id mod �. Define the line bundles Ln := L⊗Lσ ⊗
· · ·⊗Lσn−1

on X (with L0 := OX). Take A := B(X,L, σ) =
⊕̂

n≥0H
0(X,Ln), the

�-adically completed twisted homogeneous coordinate ring of X ([ATV]). Given an
ample line bundle E onX, we have that dimH0(X, E) equals the Euler characteristic
of E , and hence is deformation-invariant. Therefore, A is a torsion-free, separated,
and �-adically complete k[[�]]-module such that A/�A = A0, i.e., A ∼= A0[[�]] as
a k[[�]]-module (since a similar statement holds for every homogeneous component
of A). Therefore, A is a quantum formal deformation of a homogeneous coordinate
ring A0 :=

⊕
n≥0 H

0(X,L⊗n).

2.2. Localization of quantum deformations.

Lemma 2.6. Let A0 be a commutative domain, and let AN be an N-th order
quantum deformation of A0, for N < ∞. Take S to be the set of all regular
elements of AN (i.e., S = AN \ �AN ). Then,

(1) there exists the classical quotient ring Q(AN ) = S−1AN ,
(2) Q(AN ) is an N-th order deformation of the quotient field Q(A0), and
(3) Q(AN ) is both left and right Artinian.

Proof. To prove (1), we show that S satisfies both the right and left Ore conditions.
Let a ∈ AN and s ∈ S. Note that ad(s)(a) ∈ �A, and so ad(s)N+1a = 0. Hence,

sN+1a =
(∑N

j=0 s
N−jad(s)j(a)

)
s,

and S satisfies the left Ore condition. The right Ore condition is proved similarly.
Now (1) follows from Ore’s theorem.

Part (2) follows easily from (1), and (3) follows immediately from (2). �
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1920 PAVEL ETINGOF AND CHELSEA WALTON

Now let A be a quantum formal deformation of A0 (i.e., a deformation of infinite
order). Define

Q(A) := lim←− Q(A/�N+1A).

Example 2.7. If A0 is a field, then Q(A) = A since all elements not in �A are
already invertible. Therefore, A[�−1] is a division algebra.

2.3. Inner-faithful Hopf actions. Recall that a Hopf algebra H acts on an al-
gebra B (from the left) if B is a (left) H-module algebra, or equivalently, if B is an
algebra object in the category of (left) H-modules.

Definition 2.8. We say that an action of a Hopf algebra H on an algebra B is
inner-faithful if there does not exist a nonzero Hopf ideal of H that annihilates the
H-module B.

One can always pass to an inner-faithful Hopf action by considering an action of
a quotient Hopf algebra.

We will need the following auxiliary result; the standard proofs are omitted.

Lemma 2.9. Let H be a finite dimensional Hopf algebra.

(1) Suppose that H acts on a Z+-filtered algebra Ã =
⋃

n≥0 F
nÃ so that FnÃ

is H-stable for all n ≥ 0. Then, there is an induced H-module algebra

structure on grF Ã given by h · a = (h · a)n where a ∈ FnÃ is any lift of

a ∈ FnÃ/Fn−1Ã. Also, there is an induced H-action on the Rees algebra

R(Ã) and the completed Rees algebra R̂(Ã) so that �nFnÃ is H-stable for
all n ≥ 0; this action is inner-faithful if and only if the given H-action on

Ã is inner-faithful.
(2) Suppose H acts on a formal deformation A of an algebra A0. If the action

of H on A0 is inner-faithful, then so is the H-action on A. The converse
holds if H is semisimple.

Proof. We will only prove (2). If I ⊂ H is a Hopf ideal annihilating A, then it
clearly annihilates A0, implying the forward direction. The converse follows from
the following standard fact: ifH is a semisimple algebra and V a formal deformation
of an H-module V0, then V is isomorphic to V0[[�]] as an H-module. �

Remark 2.10. The converse in Lemma 2.9(2) may fail if H is not semisimple, as
shown by [CWWZ, Example 3.2(d)].

3. The main results

In this section we present the main results, including the results highlighted in
Table 1, along with Theorem 3.2 which is needed for the proof of Theorem 3.3. The
proof of Theorem 3.2 is postponed to the next section.

First, we obtain the following generalization of [EW1, Proposition 5.4].

Proposition 3.1. If H0 is a semisimple Hopf algebra and A0 is a commutative
domain, then the action of H0 on a quantum formal deformation A of A0 factors
through a group action.

Proof. Without loss of generality, we may assume that the H0-action on A is inner-
faithful. Since H0 is semisimple, by Lemma 2.9(2) the induced action of H0 on A0

is inner-faithful. Hence, H0 is a finite group algebra by [EW1, Theorem 1.3]. �
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FINITE DIMENSIONAL HOPF ACTIONS ON QUANTIZATIONS 1921

We would like to generalize this result to the case when H0 is not necessarily
semisimple and, still more generally, to the case when we have an action of a formal
deformation H of a finite dimensional Hopf algebra H0. In this case, nontrivial
actions of H0 on a commutative domain A0 (that is, ones not factoring through a
group action) are possible; see e.g., [EW2]. We want to see when these actions can
lift to actions of H on A.

Recall that A0 carries a Poisson bracket induced by the deformation A, and by
virtue of being a biderivation, this bracket extends uniquely to the quotient field
Q(A0). The following theorem shows that a nontrivial action of H0 on A0 cannot
lift if the induced Poisson bracket on the fraction field Q(A0) has trivial center; the
proof is presented in Section 4.

Theorem 3.2. Let H be a formal deformation of a finite dimensional Hopf algebra
H0 which acts on a quantum formal deformation A of a commutative domain A0.
If the Poisson center of Q(A0) is trivial (i.e., {f, g} = 0 for all g ∈ Q(A0) implies
f ∈ k), then the induced action of H0 on A0 factors through a group action.

Using Theorem 3.2, we prove our main result, which is the following theorem.

Theorem 3.3. Let H0 be a finite dimensional Hopf algebra which acts on a quan-
tum formal deformation A of a commutative domain A0. If the Poisson center of
Q(A0) is trivial, then the action of H0 on A factors through a group action.

Proof. Without loss of generality, we may assume that the action of H0 on A is
inner-faithful.

Let I be the annihilator of A0 as an H0-module, i.e., the set of x ∈ H0 such
that xA ⊂ �A. The action of H := H0[[�]] (the trivial deformation) on A satisfies
the assumptions of Theorem 3.2. Thus, by Theorem 3.2, the action of H0 on A0

factors through a group algebra; in other words, H0/I = kG for some finite group
G. In particular, I is a Hopf ideal. Then, I∞ :=

⋂
m≥0 I

m is a Hopf ideal in H0

acting trivially on A. So I∞ = 0 by inner-faithfulness. Hence, there is r > 0 such
that Ir = 0; let us take the smallest such r. Since I is a nilpotent ideal and H0/I
is semisimple, we get that I = Rad(H0). So the radical of H0 is a Hopf ideal.

Our job is to show that I acts by zero on A (then it would follow that H0 = kG).
Assume the contrary. Let s be the largest integer such that IA ⊂ �

sA (it exists

since we have assumed that IA �= 0). Consider H ′ :=
∑r−1

m=0 �
−msIm[[�]] ⊂ H[�−1]

(where I0 = H0); it is the Rees algebra of H0 with respect to the decreasing
filtration by powers of I, with deg(I) = s. Since I is a Hopf ideal, we have Δ(I) ⊂
H ⊗ I + I ⊗H. Hence

Δ(�−msIm) ⊂
∑

p+q=m

(�−mpIp)⊗ (�−mqIq),

so Δ(H ′) ⊂ H ′ ⊗H ′, and we obtain that H ′ is a Hopf algebra. Furthermore, H ′ is

a formal deformation of the Hopf algebra grH0 :=
⊕r−1

m=0 I
m/Im+1, the associated

graded algebra of H0 under the radical filtration (which, in this case, is a Hopf
algebra filtration, as Rad(H0) is a Hopf ideal of H0). Moreover, by definition H ′

acts on A. Hence grH0 acts on A0 by reducing modulo �.
By Theorem 3.2, the action of grH0 on A0 must factor through a group algebra.

In particular, the radical grI (which is a Hopf ideal of grH0) acts by zero on A0.
On the other hand, by our assumption, there exists x ∈ I and a ∈ A such that

xa = �
sb, where b has a nonzero image b0 in A0. Then, (�

−sx)a = b. So, denoting
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1922 PAVEL ETINGOF AND CHELSEA WALTON

by x0 the image of �−sx ∈ �
−sI ⊂ H ′ in grI ⊂ grH0, and denoting by a0 the image

of a in A0, we obtain x0a0 = b0 �= 0. This means that grI acts by nonzero on A0,
a contradiction. The theorem is proved. �

Corollary 3.4. Let Ã be a Z+-filtered algebra such that A0 = grÃ is a commutative

domain. Suppose that a finite dimensional Hopf algebra H acts on Ã preserving

the filtration of Ã. If the Poisson center of Q(A0) is trivial, then the action of H
factors through a group action.

Proof. Without loss of generality, we assume that H acts on Ã inner-faithfully.

Since the H-action on Ã preserves the filtration of Ã, it extends to an inner-faithful

H-action on the completed Rees algebra R̂(Ã) by Lemma 2.9(1). Now H is a finite
group algebra by Theorem 3.3. �

Remark 3.5. Suppose that A0 is a finitely generated commutative domain, that is,
A0 = O(X), the algebra of regular functions on some irreducible affine variety X
over k. Then, the condition that the Poisson center ofQ(A0) = k(X) is trivial holds,
in particular, when the induced Poisson bracket on X is generically symplectic (i.e.,
there exists a dense smooth affine open set U ⊂ X and a closed nondegenerate
2-form ω on U such that {f, g} = (df ⊗ dg, ω−1) for any f, g ∈ O(X)). For
example, one may take X to be any affine symplectic variety, and A a deformation
quantization of O(X) (e.g., Fedosov’s quantization); see [BK].

Example 3.6. The condition in Theorem 3.2 and Theorem 3.3 that the Poisson
center of Q(A0) is trivial cannot be replaced by a weaker condition that the Poisson
center of A0 is trivial. For example, consider the quantum polynomial algebra
A with generators x, y, z and relations xy = qyx, xz = qzx, zy = qyz, where
q = exp(�). Then, the induced Poisson bracket on A0 = k[x, y, z] is given by
{x, y} = xy, {z, y} = yz, {x, z} = xz, and it is easy to see that the Poisson center
of A0 is trivial. On the other hand, the Poisson center of Q(A0) contains the
element xy/z.

Let H0 be the Sweedler Hopf algebra with grouplike generator g such that g2 = 1
and (1, g)-skew-primitive generator a such that ga = −ag and a2 = 0. Define an
action of H0 on A by

g · x = x, g · y = y, g · z = −z, a · x = 0, a · y = 0, a · z = xy.

It is easy to check that this action is well defined, and does not factor through a
group algebra, even after reducing modulo �.

4. Proof of Theorem 3.2

Since H acts on A, it acts on A/�N+1A for any N . Hence, H acts on the classical
quotient ring Q(A/�N+1A) by [SV, Theorem 2.2], and by taking the inverse limit
in N , we get an action of H on Q(A). Thus, without loss of generality we may
assume that A0 is a field.

One of the main steps of the proof is to show that many invariants in AH0
0 lift

to invariants in AH . Namely, let us say that an element a0 ∈ AH0
0 is a liftable

invariant if there exists a ∈ AH equal to a0 modulo �.

Notation (K). Let K ⊂ A0 be the subset (in fact, subfield) of liftable invariants
under the action of H0.
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FINITE DIMENSIONAL HOPF ACTIONS ON QUANTIZATIONS 1923

Lemma 4.1. The field A0 is an algebraic extension of K.

Proof. Let d := dimH0 = dimk((�))H[�−1]. Let D := A[�−1], which is a division

algebra over k((�)) by Example 2.7. Further, H[�−1] acts k((�))-linearly on D.

Thus, by [BCF, Corollary 2.3], D has dimension ≤ d over DH[�−1] as a left vector

space. Now let x0 ∈ A0 and x ∈ A be its lift to A. As [D : DH[�−1]] ≤ d, we have
that x satisfies an equation

(1) b0x
n + b1x

n−1 + · · ·+ bn = 0,

where b0 = 1, bi ∈ DH[�−1] and n ≤ d. Let m be the smallest value of the �-adic
valuation of bi in D (over all i); clearly, m ≤ 0. Projecting (1) to �

mA/�m+1A, we
get a nontrivial equation

(2) c0x
s
0 + c1x

s−1
0 + · · ·+ cs = 0

of possibly lower degree s ≤ n. Note that ci ∈ K by definition, so x0 is algebraic
over K. �

Now we proceed with the proof of Theorem 3.2. Consider the Galois map

β : A0 ⊗A0 → A0 ⊗H∗
0 , f ⊗ g �→ (f ⊗ 1)ρ(g),

where ρ : A0 → A0 ⊗H∗
0 is the coaction map. Then,

B := Imβ

is a commutative coideal subalgebra in the Hopf algebra A0 ⊗ H∗
0 (regarded as a

finite dimensional Hopf algebra over A0); the commutativity is clear and the coideal
subalgebra condition follows from an argument similar to [EW1, Lemma 3.2]. More-
over, by [CEW2, Lemma 3.3] it suffices to show that

(†) B is defined over k, that is, B = A0 ⊗B0, where B0 is a subalgebra of H∗
0 .

Let {hi} be a basis of H0, and let {h∗
i } be the dual basis of H∗

0 . Then for f ∈ A0

ρ(f) =
∑d

i=1 ρi(f)⊗ h∗
i ,

where ρi : A0 → A0.

Lemma 4.2. Suppose a0 ∈ K is a liftable invariant. Then for any f0 ∈ A0 and
all i, one has

ρi({a0, f0}) = {a0, ρi(f0)}.

Proof. Let us fix an isomorphism H ∼= H0[[�]] as k[[�]]-modules, and by abusing
notation, denote the coaction of H∗ on A also by ρ and its components by ρi. Let
a be a lift of a0 to AH , and let f be a lift of f0 to A. We have

ρi([a, f ]) = [a, ρi(f)].

Projecting this equation to �A/�2A ∼= A0, we obtain the desired statement. �

Introduce the following notation. Let r := dimB, and v1, . . . , vr be elements
of A0 such that ρ(v1), . . . , ρ(vr) are linearly independent, and hence form a basis
of B over A0. Let h1, . . . , hd be a basis of H0, and let B := (bij) be the matrix
representing B in the Grassmannian Grr(A0 ⊗ H∗

0 ) =: Grr(d) of r-dimensional
subspaces in a d-dimensional space with respect to these bases. Namely, ρ(vi) =∑

j bij ⊗ h∗
j where bij = ρj(vi) ∈ A0.
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1924 PAVEL ETINGOF AND CHELSEA WALTON

Recall that the homogeneous coordinate ring of Grr(d) under the Plücker em-
bedding is generated by the minors ΔI of an r-by-d matrix attached to subsets
I ⊂ {1, . . . , d} with |I| = r. Pick I so that ΔI(B) �= 0. Let J ⊂ {1, . . . , d} with
|J | = r be such that |J ∩ I| = r − 1. Then, the Plücker coordinates pIJ := ΔJ/ΔI

are rational functions on Grr(d) which form a local coordinate system near B.
Note that B is defined over k precisely when B ∈ Grr(H

∗
0 ) ⊂ Grr(A0 ⊗H∗

0 ). So
property (†) is equivalent to the property that for all J , the ratios pIJ (B) lie in k,
which is what remains to be shown.

To this end, let a0 ∈ K be a liftable invariant. Since the vectors ρ(vi) form a
basis of B, there exists an r-by-r matrix C = (cim) with cim ∈ A0, such that

ρ({a0, vi}) =
∑

m cimρ(vm).

By Lemma 4.2, ∑
j

{a0, ρj(vi)} ⊗ h∗
j =

∑
m,j

cimρj(vm)⊗ h∗
j .

So,

{a0, bij} =
∑

m cimbmj .

This implies that {a0,ΔI(B)} = Tr(C)ΔI(B), and thus

(3) {a0, pIJ(B)} =
1

ΔI(B)2

(
ΔI(B){a0,ΔJ (B)} −ΔJ (B){a0,ΔI(B)}

)
= 0.

Now by Lemma 4.1, any f ∈ A0 satisfies an equation c0f
s+c1f

s−1+ · · ·+c0 = 0
for some ci ∈ K, with s minimal. Since the Poisson bracket is a biderivation, we
have

0 = {
∑s

i=0 cs−if
i, pIJ(B)} (3)

=
(∑s

i=1 ics−if
i−1

)
{f, pIJ(B)}.

Since s is minimal,
∑s

i=1 ics−if
i−1 �= 0. This implies that {f, pIJ(B)} = 0 for any

f ∈ A0. Finally, since the Poisson center of A0 is trivial, we obtain that pIJ(B) ∈ k.
Theorem 3.2 is proved.

Remark 4.3. One can generalize the main results of this article by replacing the
induced Poisson bracket on A0 with the induced Poisson bracket of depth m as
follows.

Let A be a noncommutative formal deformation of A0, and let m be the largest
integer such that [a, b] ∈ �

mA for all a, b ∈ A. Given a0, b0 ∈ A0, pick lifts a, b of
a0, b0 to A, and consider the projection {a0, b0} of [a, b] to �

mA/�m+1A. Then, it is
well known that { , } is a nonzero Poisson bracket for A0; let us call it the induced
Poisson bracket of depth m. The same construction applies to filtered deformations,
by passing to the completed Rees algebra.

This generalizes the above setting, in which m = 1. More precisely, the usual
induced Poisson bracket is the bracket of depth 1. If it turns out to be zero, then we
can define the Poisson bracket of depth 2. If it also turns out to be zero, then we can
define a Poisson bracket of depth 3, and so on, until we reach some depth m where
the bracket is nonzero (which will necessarily happen if A is noncommutative).

Now Theorem 3.2, Theorem 3.3, and Corollary 3.4 generalize to this setting in
a straightforward fashion, with the same proofs. In other words, if the Poisson
center of Q(A0) with respect to a Poisson bracket of any depth m is trivial, then
the appropriate Hopf action must factor through a group action.
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