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A Multiple-Predictor Approach to Human Motion Prediction

Przemyslaw A. Lasota*1 and Julie A. Shah1

Abstract— The ability to accurately predict human motion
is imperative for any human-robot interaction application in
which the human and robot interact in close proximity to
one another. Although a variety of human motion prediction
approaches have already been developed, they are often de-
signed for specific types of tasks or motions, and thus do not
generalize well. Furthermore, it is not always obvious which of
these methods is appropriate for a given task, making human
motion prediction difficult to implement in practice.

We address this problem by introducing a multiple-predictor
system (MPS) for human motion prediction. In our approach,
the system learns directly from task data in order to determine
the most favorable parameters for each implemented prediction
method and which combination of these predictors to use.
Our implementation consists of three complementary methods:
velocity-based position projection, time series classification,
and sequence prediction. We describe the process of forming
the MPS and our evaluation of its performance against the
individual methods in terms of accuracy of predictions of
human position over a range of look-ahead time values. We
report that our method leads to a reduction in mean error
of 18.5%, 28.9%, and 37.3% when compared with the three
individual methods, respectively.

I. INTRODUCTION

A large variety of fields and applications stand to benefit
from human-robot interaction and collaboration. In recent
years, there has been a significant push toward introducing
robots on factory floors [1], in homes [2], and even as
assistants on board the International Space Station [3]. In
these and other applications, close-proximity physical inter-
action is often required in order for robots to effectively
collaborate with people. Consequently, there is a need for
the development of techniques and methods that support safe
and efficient physical human-robot interaction.

One way in which such interaction can be achieved is
through robot adaptation based on prediction of human
motion. By being able to anticipate where a person might
be reaching or walking toward next, a robot can choose its
actions or adjust its movement such that potential motion
conflicts are avoided. Results from prior work indicate that
the use of a human-aware motion planner, which avoids
moving through locations of upcoming human occupancy,
leads to more efficient teamwork, increased satisfaction with
the robot, and higher perceived safety and comfort [4]. The
ability to predict where a person will move to next is a key
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component of such an approach, motivating the development
of accurate, real-time prediction of human motion.

As discussed in the following section, a variety of human
motion prediction techniques have been recently developed;
these include goal-based methods [5], [6], [7], [8], [9],
[10], [11] and prediction based on the study of natural
human motion [12], [13], [14], [15]. The majority of these
approaches, however, were designed and tuned for specific
types of motions or tasks, and thus would not necessarily
generalize well to prediction in other domains; for example,
predictors based on action models would not work well when
applied to loosely structured tasks. This creates a barrier for
utilizing human motion prediction, as it may not always be
clear which approach is best suited for a specific task. In fact,
it might even be possible that no single technique works well,
and that a combination of approaches is required.

In order to address this drawback, we envisioned a data-
driven approach to human motion prediction that, based on
a variety of data encoding how a person moves within a
shared workspace and how he or she performs tasks, will
automatically select a favorable combination of prediction
methods to accurately predict human occupancy at various
future time frames. Such a technique would enable robust
and generalizable prediction of human motion.

In this paper, we present a method that utilizes the relative
performances of individual prediction methods — a velocity-
based position projection method, a time series classification
method, and a sequence prediction method — to form a
multiple-predictor system (MPS) for human motion predic-
tion. We show that by training on available task data, our
method automatically learns to exploit the complementary
strengths of each method to form a combined predictor that
outperforms the three methods individually for a variety of
task data variants that differ with respect to the number and
sequence of actions.

II. RELATED WORK

Prior work in the field of human motion prediction can be
classified into two main categories: works that rely upon pre-
diction of goals and those that utilize motion characteristics
without goal prediction.

The former category involves predicting the target or goal
that a person is reaching or walking toward and then utilizing
an appropriate motion model to predict how that person
will move in transit to that goal. In one example of this
approach, Gaussian Mixture Models (GMMs) are trained
for each reaching goal position of a particular task, and
Gaussian Mixture Regressions (GMRs) are used to generate
representative reaching motions. Based on observations of
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the beginning segment of a new reaching motion and the
computed GMMs and GMRs, the framework calculates the
likelihood of human occupancy of the shared workspace
via computed swept volumes [5]. Another recent goal-based
prediction approach utilizes a time series analysis in which
multivariate Gaussian distributions over tracked degrees of
freedom of the human arm are computed for each time step
of the motion. The learned models are then used to perform
Bayesian classification on the initial stages of motion to
predict what goal location the person is reaching toward [6].

Another method for anticipating motion through goal
prediction explored in prior work is based on modeling of
motions via inverse optimal control. In one such approach,
the authors leveraged the assumption that people move effi-
ciently when navigating a space and modeled human motions
using maximum entropy inverse optimal control. By learning
a cost function that is a linear combination of features based
on objects in the environment, the approach can generalize
to new situations in which objects change locations [7]. A
different method, specifically designed for reaching motions
performed during known, collaborative tasks, also utilizes
inverse optimal control for predicting human motion, but in
a manipulation scenario. This method incorporates example
data of pairs of people performing a manipulation task to
learn reaching motion cost functions that are then used with
a human kinematic model and an iterative motion planner to
predict where the person will reach [8].

The concept of social forces is also useful in the context
of motion prediction. For example, Growing Hidden Markov
Models (GHMMs) and the social forces method are used to
infer goals from partial trajectories and to then predict the
path a person will take toward that goal [16]. This work
builds upon the social forces-based human motion models
and predictors presented by Luber et al [9].

Objects and other constraints in the environment can also
prove useful for goal-based prediction of human motion.
In one example of such work, RGB-D input and object
affordances are used to make goal predictions based on the
human’s current pose and surroundings. Bzier curves are then
used to define the potential paths of the human hand toward
the predicted goal [10]. An extension of this work combines a
high-dimensional model, used for properly assessing physical
plausibility, with a low-dimension representation used in
learning relationships between people and objects, allowing
for improved motion trajectory prediction [11].

Another approach to goal prediction is to reason directly
on previously observed action sequences. One technique ex-
plored in prior work is to compare a current action sequence
to all those observed in the past to determine whether the
current sequence is an instance of an action that has been
previously observed. As the system correctly anticipates a
particular sequence and the user validates the prediction, the
system builds confidence about that sequence and adjusts
its anticipatory actions accordingly [17]. In another work on
sequence prediction, the developed framework is built on the
concept that the set of actions in a sequence has predictive
power over future actions and not the specific order of that

set. This approach incorporates a vector of variables that
defines relationships between items in the observed part of
the sequence and potential future items, which is learned via
an optimization process [18].

The second major category of human motion prediction
focuses on analyzing how people move and plan natural
paths without predicting specific goal locations. One such
method employs motion capture data to encode skeletal
motion patterns as Hidden Markov Models, with the goal
of encoding likely transitions between motion patterns [12].

A different approach, based on the principle of max-
imum entropy, considers features such as the amount of
time needed to reach a goal, acceleration profiles, walking
velocity, and collision avoidance behavior. The authors in-
vestigated which of these features of walking motion could
be utilized to learn how to characterize and predict typical
human walking behavior [13].

Xiao et al. [14] developed a framework that uses previ-
ously observed human trajectories to train an SVM classifier
into high-level classes (e.g., “wandering” or “stopping”) and
then forms clusters within these classes. The clusters are
then used to develop prototypes that are matched to observed
partial trajectories for prediction.

Finally, Unhelkar et al. instructed study participants to
walk toward several locations in a room and recorded their
position and head orientation [15]. Results from this work
indicated that the head orientation and body velocity normal-
ized by height can signal the direction in which a person will
turn prior to the physical turn itself. These indicators were
also employed successfully for goal-based prediction using
the method by Pérez-D’Arpino and Shah [6].

While many of the approaches mentioned above are capa-
ble of accurate motion prediction, they are often developed
with a certain class of tasks in mind, and thus might
not generalize well to other scenarios. The algorithms and
techniques used also require careful tuning of various model
parameters in order to achieve accurate prediction. We aimed
to learn the parameters for different methods and form a
combined predictor that is automatically tuned to perform
well across different classes of tasks.

III. METHODS OF HUMAN MOTION PREDICTION

Multiple classifier systems (MCS) are often designed to
incorporate mutually complementary individual classifiers
[19]. Following this guiding principle, we selected a set of
three methods of predicting human motion for our multiple-
predictor system: velocity-based position projection, time
series classification, and action sequence prediction.

The complementary nature of these techniques is derived
from their spanning many categories and sub-categories
of motion prediction. The first two methods, for example,
reason directly on observed human motion, while the third
technique utilizes discrete action labels as input. The last two
methods focus on predicting action goals as a proxy for pre-
dicting position, while the velocity-based position projection
technique assesses motion directly without predicting goals.
By combining these three techniques, we aimed to form a



multiple-predictor system capable of producing accurate pre-
dictions under a variety of scenarios that no single predictor
could adequately address alone.

A. Velocity-Based Position Projection

The first method of human motion prediction used in
our framework is based on projecting the human’s current
position through an estimate of his or her velocity. Namely,
once an estimate of the current velocity, ṽvvt, is obtained,
this method computes x̂xxt+∆T , the predicted position in ∆T
seconds, by assuming the human will maintain the same
velocity for that time period:

x̂xxt+∆T = xxxt + ṽvvt ·∆T (1)

To allow for the use of this technique in online motion
prediction, ṽvvt must be computed from observed position data
prior to t, {xxxi}i=1..t. This precludes the use of many com-
mon filtering techniques that utilize the complete position
time series to calculate estimates of velocity at each time t.
Furthermore, online prediction necessitates a computation-
ally efficient approach for calculating ṽvvt, so that predictions
can be made rapidly as new position data is gathered.

Consequently, we elected to use the Savitzky-Golay Filter
[20] to smooth position data and compute velocity estimates.
This method works by fitting low-degree polynomials to
successive sets of points, and thus does not require the entire
trajectory in order to perform smoothing. Furthermore, if
the position data is sampled at a uniform rate, there exists
an analytical solution to the least-squares fit that can be
represented by a set of coefficients. A simple convolution of
these pre-computed coefficients with the successive position
data can be used to compute a smoothed position signal and
its derivatives, rendering the process of estimating velocity
from observed position data with this method computation-
ally efficient.

The convolution coefficients of the Savitzky-Golay method
are a function of two main parameters. The first is the order
of the polynomial to be fit to the data. The best polynomial
order to select depends upon the attributes of the position
signal, such as the amount of noise present and the sampling
rate. The second parameter is the frame size, which defines
which portion of the observed position signal is to be used
for estimating the current velocity. Namely, for a uniformly
sampled signal with time steps t = 1 . . . T , a frame size of
f indicates that, at time t, the set of positions {xxxi}i=t−f...t
will be used for velocity estimation.

B. Time Series Classification

The second motion prediction method in our framework
is an extension of the goal-based time series classification
method developed by Pérez-D’Arpino and Shah [6]. This
approach uses human demonstrations of motion toward
several goal locations to build a library of representative
motions based on statistical analysis of tracked degrees of
freedom (e.g., positions of various points on the body, head
orientation, etc.). Each time step of the motion is encoded
as a multivariate Gaussian distribution over these degrees

of freedom. The intended goal location is predicted based
on early stages of motion by calculating the maximum
likelihood that a given partial trajectory belongs to one of
the motion classes in the training set.

While this technique can predict the goal location a person
is walking or reaching toward, it does not directly allow for
prediction of that person’s position in a given amount of time,
x̂xxt+∆T , which is the desired output of our framework. Con-
sequently, we extended the approach to utilize the predicted
goals for position prediction by making use of the mean
trajectories of each computed motion class. We denote the
mean trajectory of goal g as the set of positions xxxgt sampled
at uniform time steps t = 1 . . . Tg , or {xxxgi }i=1...Tg

.
The first step of this extension of the original time series

classification method is to search the mean trajectory of
a goal’s motion class to identify a suitable representative
point that corresponds to the current observed position, xxxt.
Specifically, based on the predicted goal g and current time
step t, our method selects a representative point xxxgλ, where
the index λ is selected by identifying the point in the mean
trajectory that is closest to the current position within a
moving window with a size defined by the parameter α:

λ = argmin
i∈[t−α...t+α]

‖xxxgi − xxxt‖ (2)

The motivation for searching within this moving window
is to allow for some temporal misalignment between the
mean and observed trajectories. We also attempted to use an
implementation of online Dynamic Time Warping (DTW)
for this task, which led to poorly selected xxxgλ in practice.
Although we did not do so in our current implementation,
the selection of an algorithm for temporal alignment can
be incorporated as another learned parameter of the time
series classification method, as it is possible that online DTW
would perform well on a different data set.

Once the representative point xxxgλ is identified, the algo-
rithm steps forward in the mean trajectory from time step
λ until it reaches a point that is the desired ∆T ahead.
Assuming a sampling rate of f Hz, the predicted position
is represented as follows:

x̂xxt+∆T = xxxgλ+f ·∆T (3)

There are two main parameters that must be selected
when using this prediction method. The first is the set of
indices of the available degrees of freedom to be used for
prediction. While the coordinates of a person’s hand can
certainly provide a useful signal for predicting the goal that
person is reaching toward, this may not be the case with other
tracked degrees of freedom, such as head orientation. The
degrees of freedom that will be most effective for prediction
will depend upon the given task.

The second tunable parameter is the window size, α.
Higher values of α allow for greater tolerance to temporal
misalignment between the mean and currently observed
trajectories, but setting the value too high can result in a
poor choice of xxxgλ, especially if the given motions pass over
the same regions of space multiple times within a single
trajectory.



C. Sequence Prediction

The final motion prediction method implemented in our
framework is based on the sequence prediction algorithm
developed by Letham et al [18]. One key difference between
this method and other sequence prediction approaches is that
it reasons on what sets of actions occur before others, and not
on the specific order in which these actions occurred. This
dramatically reduces the dimensionality of the problem, as it
is not necessary to consider all specific orderings of actions,
allowing for prediction of sequences with large numbers of
possible actions — a desirable ability for a generalizable
prediction framework.

Similarly to the time series classification method described
in the previous section, the goal of the sequence prediction
method is to predict which action a person will take —
and, therefore, which goal region he or she will move
toward. Unlike the time series classification and velocity-
based position projection methods, however, the sequence
prediction method reasons on discrete action labels as input
instead of working with raw position data.

The implemented sequence prediction approach by
Letham et al. incorporates a set of previously observed
sequences to learn a set of values, λa,b, that describe the
relationship between combinations of actions a and b. Large
values of λa,b indicate that actions a and b appear together
often. The vector of these values, λλλ, is then used in a scoring
function, which, given a partial sequence of actions and a
candidate next action, assigns a score to this action by taking
the sum of the λ values that relate the actions in the partial
sequence and the candidate action. This is the “one stage”
scoring model described in the publication by Letham et al.
The candidate action with the highest score is then selected
as the action most likely to occur next in the sequence.

The vector λλλ is fit through an optimization of a loss
function based on the scoring function, denoted f , and a
rule defining which actions should strictly be ranked higher
than others based on a given partial training sequence and the
known remaining actions. In our implementation, we simply
designated that for any given partial training sequence, the
next action within that sequence should be ranked higher
than all other possible actions.

Using notation from the paper by Letham et al., given a
set of training sequences (denoted Xm

1 ) indexed i = 1 . . .m
of length Ti, with the next action in the training sequence i
at time t being ki,t, the set of all other actions being Li,t,
the partial observed sequence i at time t being xi,t, and N
being the number of possible actions, the loss function we
are trying to minimize is represented as follows:

R(f,Xm
1 ;λλλ) =

1

m

m∑
i=1

Ti−1∑
t=0

1

Ti

1

N − 1

×
∑
l∈Li,t

ef(xi,t,ki,t;λλλ)−f(xi,t,l;λλλ) + β‖λλλ‖22
(4)

The final term is an l2-norm regularization scaled by
β. The vector λλλ is derived by running an unconstrained

optimization routine that minimizes the value of R given the
training set of sequences and the scoring function f .

Once λλλ is computed from the training data, prediction of
the next action in a new sequence is performed by identifying
the candidate action a with the highest value of f(xi,t, a;λλλ).
Similarly to the time series classification method, however,
the sequence prediction method must predict not only the
next goal, but also estimated future positions, x̂xxt+∆T . We
utilized the same approach as that used for the time series
classification method, incorporating the computed mean tra-
jectories for each action and equations (2) and (3).

IV. FORMULATION OF THE
MULTIPLE-PREDICTOR SYSTEM

Next, we discuss the strategy we employed for synthe-
sizing individual predictors into a multiple-predictor system
through a two-stage process. An outline of the system
architecture is depicted in Figure 1. First, a subset of the data,
DTrain, is used to learn the parameters of each individual
prediction method. Next, using the parameters found in
the first step, each prediction method is used to compute
predictions on a second subset of the data, DModelSelection.
The goal of each predictor (and the framework itself) is
to generate a prediction of position for a given amount of
time in the future, x̂xxt+∆T . The prediction results from each
method are employed in the formulation of the rules the
multiple-predictor system uses to select which prediction
methods to use.

DTrain

…

Predictor 2

Predictor n

Predictor 1

Predictor 

Training

…
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π1
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…
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Predictor 2

Predictor n

Predictor 1
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Fig. 1. An outline of the process of forming the multiple-predictor system.

A. Training Individual Component Methods

The first step toward formulating the multiple-predictor
system involves learning the parameters of each individual
prediction method. As the goal is to generate predictions
of position for a given amount of time in the future, a
natural global parameter to consider when training all of the
prediction methods is ∆T , which we refer to as the “look-
ahead time.”

Consider a set of discrete look-ahead times of interest
of length k, defined as L. We denote the individual look-
ahead time values as lp, where p = 1 . . . k. Given n available
prediction methods, for each method i = 1 . . . n, we define
the set of parameters of a method as Zi =

{
zi1 . . . z

i
mi

}
,

where mi is the number of tunable parameters for method
i. Constraining the individual parameter values to given
discrete sets, the goal is to identify a set of assignments to



each zij that minimizes the training error of each prediction
method for each lp ∈ L. If the overall training error of
method i given look-ahead time lp, parameter assignments
Zi, and input data D is defined to be Ei, the parameter
assignment from the specified discrete sets that achieves the
highest performance for that method and look-ahead time is
as follows:

πip = argmin
Zi

Ei(lp, D;Zi) (5)

The training process, therefore, results in k×n set assign-
ments πip. Defining d as the individual trajectories contained
in D and T ∗i,d as the set of time steps of trajectory d for which
a prediction can be produced by predictor i, the training error
Ei is defined as the mean value of these prediction errors:

Ei(lp, D;Zi) =
1

|D|
∑
d∈D

1

|T ∗i,d|
∑
t∈T∗

i,d

‖(x̂xxt+lp)i − xxxt+lp‖

(6)
(x̂xxt+lp)i is the position prediction of method i, which is a

function of the parameter values Zi. Assessing the prediction
methods described in Section III, and indexing them in the
order they were presented, note that for the velocity-based
position projection there are m1 = 2 tunable parameters as
part of Z1. These two parameters are the polynomial order
and frame size for the Savitzky-Golay filter.

For the time series prediction method, Z2 also consists of
two components. The first tunable parameter is the subset
of given degrees of freedom of the input data to use for
prediction. Defining the set of all tracked degrees of freedom
as S, the set of position coordinates as X ⊆ S, and the set
of the remaining degrees of freedom as Q = S \ X , the
combinations of degrees of freedom that are considered in the
training phase, S∗, consist of unions of set X with each of the
elements of the powerset ofQ: S∗ = {X ∪ q∗ | q∗ ∈ P(Q)}.
The second parameter of the time series prediction method
is simply the window size, α.

Finally, based on the given formulation, the sequence pre-
diction method actually contains only one tunable parameter,
the window size α. The training function also incorporates
the set of action sequences in the training data, along with
Equation (4), to compute the vector λλλ via an unconstrained
optimization routine. Unlike the parameter α, however, the λ
values are not a function of look-ahead time and are learned
directly from the sequence data, rather than by minimizing
the position prediction error Ei.

B. Fusion of Prediction Methods

Once the sets of parameters as a function of look-ahead
time for each individual method are learned during the
training phase, the next step in formulating our multiple-
predictor system involves determining how to most effec-
tively combine the outputs of these different methods.

When establishing the combination of position predictors,
it is necessary to combine the output of several independent
learners. Furthermore, the output of the predictors is the
future position x̂xxt+∆T , which is a continuous variable, rather
than an element of a discrete set of classes. This type of

problem lends itself to a class of methods designed for
combining the predictions of several experts by evaluating
their relative performances and learning which experts tend
to produce the best predictions, such as the Hedge Algorithm
[21], or the Weighted Average Algorithm [22]

One algorithm within this class — the one we elected to
use in our framework — is the Polynomial Weights (PW)
algorithm [23]. In this algorithm, each predictor i is treated
as an “expert” and is initially assigned a weight wi0 = 1.
Then, at each successive time step t = 1 . . . T , an expert i
is chosen at random in proportion to its normalized weight,
wit/
∑N
i=1 w

i
t. The weight of each expert is then updated by

setting wit+1 = wit · (1 − εLit), where Lit ∈ [0, 1] is the
prediction loss of expert i at time t and ε is the learning rate.
As the total number of time steps in all of the trajectories in
DModelSelection is known, it is possible to set the learning

rate ε to its optimal value, which is given by ε =
√

ln(N)
T .

Since the output of our multiple-predictor framework is
a continuous variable, the prediction error, defined as the
distance between the predicted and ground truth positions,
is also a continuous variable. Consequently, one of the
main advantages of using PW in our framework over other
“combination of experts” algorithms is that it includes a
continuous loss function. As this function is limited to the
range [0, 1], our fusion method normalizes the prediction
errors with respect to the mean µ and standard deviation σ
of the errors encountered in the training phase. Specifically,
we define our loss function as follows:

Lit = min

{
‖(x̂xxt+∆T )i − xxxt+∆T ‖

µ+ σ
, 1

}
(7)

As mentioned in the previous section, during the training
phase an assignment of individual method parameters for
each method and look-ahead time of interest is computed.
Consequently, when forming the combined predictor, the
predictor fusion routine runs the PW algorithm for each
lp ∈ L. Defining the vector of final method weights for
each look-ahead time lp as WWW p = [w1

T . . . w
n
T ], the predictor

fusion results in k such sets (recall that |L| = k).
Once the final method weight sets WWW p are known, our

predictor fusion method forms the combined predictor by
defining which method should be used at each lp ∈ L. In
our implementation, the predictor to use at look-ahead time
lp, defined as i∗p, is represented as follows:

i∗p = argmax
i

(WWW p(i)) (8)

WWW p(i) returns the ith element ofWWW p. The reason for using
(8) as our predictor selection rule, as opposed to selecting
a method at random in proportion to the values in WWW p, is
that due to potential safety-critical applications of position
prediction (e.g., robot motion planning during human-robot
interaction), it is undesirable to query a predictor that returns
inaccurate positions, even if that predictor is selected with
low probability.



V. EVALUATION
A. Source Data Set

We evaluated the efficacy of our proposed multiple-
predictor method of human motion prediction via a human-
robot interaction data set obtained from a previous exper-
iment [4]. In this prior study, 20 participants collaborated
with an industrial robot arm on a tabletop task that required
participants to place screws at designated locations while the
robot pretended to apply a sealant over the screws. The three-
dimensional position of the participants’ wrist was tracked
using a motion capture system while the person reached
between the screw pickup location and designated placement
locations. The data was collected at an average rate of 140Hz.

The robot operated in one of two motion planning modes:
a human-aware mode in which the robot selected paths that
avoided portions of the shared workspace that the human
was expected to occupy, and a standard mode in which the
robot selected the quickest path to its goals without reason-
ing on where the human would be next. Each participant
performed the task with both robot types, and within each
task performed eight screw placements in a preset sequence.
A video depicting sample task executions of the human-
aware and standard modes is available at the following link:
http://youtu.be/Dk5XVQBDJpU.

B. Data Set Variants

One useful quality of the experiment data set described in
the previous section is that each complete task execution can
be segmented into eight distinct placement trajectories, one
for each screw. Furthermore, due to the participants always
reaching back to the same location in order to pick up a new
screw, it is possible to create new variations of the task in
which the order of the actions is altered (or only a subset of
the actions is performed).

We exploited these qualities to generate 12 variations of
the dataset with which to evaluate our combined predictor. In
these variants, we manipulated the action order by drawing
the next action from a uniform distribution over the set of
actions not yet performed in a given sequence, for either the
data from all 20 subjects, 25% of the subjects, or for none
of the subjects (causing the action sequence to be identical
for all demonstrations). We also manipulated the number of
actions to be either the full set of eight original actions or
a subset of four actions with goal locations spaced roughly
equally apart from one another. The goal of generating these
variants was to evaluate how well our method generalizes
across the spectrum of more- and less-structured tasks, as
well as tasks with several nearby goal locations versus fewer,
more separate goal locations. A summary of these data sets
is depicted in Table I.

C. Evaluation Strategy

In order to evaluate the relative performances of the
individual prediction methods and our combined predictor,
we performed a leave-one-out cross-validation with the 20
sets of trajectories. We repeated this process for each dataset
variant shown in Table I.

TABLE I
DATA SET VARIANTS

Data Set Actions Used Action Order Robot Mode
1 All 1,2,3,4,5,6,7,8 Human-Aware
2 1,4,5,8 1,4,5,8 Human-Aware
3 All Random Human-Aware
4 1,4,5,8 Random Human-Aware
5 All 25% Random Human-Aware
6 1,4,5,8 25% Random Human-Aware
7 All 1,2,3,4,5,6,7,8 Standard
8 1,4,5,8 1,4,5,8 Standard
9 All Random Standard
10 1,4,5,8 Random Standard
11 All 25% Random Standard
12 1,4,5,8 25% Random Standard

For each iteration of the cross-validation, we retained
one subject’s data for testing and randomly assigned the
remaining data to DTrain and DModelSelection, with roughly
70% of the data assigned to the former (13 of 19 subjects’
data) and 30% to the latter (6 of 19).

For each of the tests, we computed the mean prediction
error as a function of look-ahead time for the three inde-
pendent prediction methods, which served as baselines for
evaluation, and the combined predictor. The range of look-
ahead times considered was 0.05s to 0.5s, in increments of
0.025s. The upper bound of the look-ahead-time range was
dictated by the length of the example trajectories, 21% of
which were less than 1.5s in length. We present the results
of our evaluation in the following section.

VI. RESULTS AND DISCUSSION
A. Performance Computations and Statistical Analysis

In order to analyze our results, we retrieved the data
from each of the 20 individual cross-validation outputs (one
per original experiment participant) and computed the mean
prediction errors for each of the four prediction methods
(i.e., the three individual methods and the multiple-predictor
system). We combined these results into separate vectors
of prediction errors for each predictor, with one entry per
participant. We then took the means of these vectors to
calculate the overall mean prediction error of each individual
prediction method, as well as the multiple-predictor system.
This process was repeated for each of the 12 data set variants
depicted in Table I. The final mean prediction errors, in
meters, are shown in Table II, where the velocity-based
position projection method is abbreviated as VBPP, the time
series classification method as TSC, the sequence prediction
method as SP, and the multiple-predictor system as MPS.

As the mean errors of each method evaluated on a spe-
cific participant’s data are dependent values, we utilized
a repeated-measures ANOVA to analyze mean prediction
errors. The treatments of the ANOVA are the four predic-
tor types (the three individual methods and the multiple-
predictor system). The results of the ANOVA indicate that
the effect of the prediction method is significant, at a
confidence level of p<0.05, for all dataset variants, with the
exception of Data Set 5 (p=0.1).



TABLE II
MEAN PREDICTION ERRORS (METERS)

Data Set VBPP TSC SP MPS
1 0.119 0.124 0.101 0.082∗
2 0.117 0.124 0.102 0.082∗
3 0.119 0.129 0.240 0.100∗
4 0.117 0.123 0.205 0.097∗
5 0.119 0.129 0.140 0.105‡
6 0.117 0.124 0.118 0.092∗
7 0.108 0.134 0.110 0.084∗
8 0.106 0.130 0.112 0.085∗
9 0.108 0.134 0.273 0.099∗

10 0.106 0.132 0.245 0.097†
11 0.108 0.134 0.151 0.101∗
12 0.106 0.132 0.138 0.092∗

∗ MPS error lower than all individual methods (p<0.05)
† MPS error lower than TSC and SP only (p=0.058 for VBPP)
‡ Main effect of prediction method not significant (p=0.1)

To assess whether the decrease in mean prediction error
for the multiple-predictor system was statistically significant
with respect to each of the individual methods, we performed
a post-hoc, pairwise comparison with paired samples t-
tests and a Bonferroni correction. The results show that
the mean prediction error of the multiple-predictor system
was statistically significantly lower than all three of the
individual methods, at a confidence level of p<0.05 — with
the exception of Data Set 10, in which the difference between
the multiple-predictor system and the velocity-based position
projection was not significant (p=0.058).

B. Discussion of Key Findings

As indicated by the results in Table II, the multiple-
predictor system nearly always outperformed the three in-
dividual prediction methods (with the two exceptions stated
above). Among the differences in means that were statisti-
cally significant, the overall mean error (across all datasets)
of the multiple-predictor system was 18.5%, 28.9%, and
37.3% lower than that of the individual VBPP, TSC, and SP
methods, respectively. This result provides strong support for
the concept of combining multiple predictors for prediction
of human motion, and for our implementation of this concept.

By manipulating the number and order of actions in our
dataset variants, we generated a variety of representative sce-
narios in which the individual prediction methods achieved
differing levels of performance. For example, in scenarios in
which only four of the eight actions were taken, the time
series classification method generally performed better. This
trend can be observed from lower mean errors for Data Sets
4, 6, 8, 10, and 12 compared with Data Sets 3, 5, 7, 9, 11,
respectively. This is likely due to the fact that there are fewer
possible goal regions that are more physically separated from
each other, making the learned motion classes more distinct
and leading to better prediction performance.

Changing the sequence in which the actions were per-
formed represented another manipulation of the original
dataset. In scenarios in which the next action was drawn
from a uniform distribution over the set of remaining actions,
the sequence prediction method performed poorly compared
with scenarios in which the tasks were always completed in
the same sequence. This can be determined by comparing

the mean prediction error of this method for Data Set 7 and
Data Set 9, in which the random order of actions caused the
sequence prediction method’s mean prediction error to more
than double. One can also observe this effect by comparing
mean prediction errors as a function of look-ahead time for
these data sets shown in Figure 2 and Figure 3.
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Fig. 2. Mean prediction errors as a function of look-ahead time for Data Set 7.
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Fig. 3. Mean prediction errors as a function of look-ahead time for Data Set 9.

As expected, the other two individual methods, which do
not reason on the sequence order, were not affected by the
sequence randomization. Consequently, it is best not to rely
upon the sequence prediction method in this case, and instead
utilize the other two prediction methods.

Figure 3 indicates that the multiple-predictor system auto-
matically learned this concept and constructed the combined
predictor with the use of the time series classification and
velocity-based methods. When the order of actions was
consistent, on the other hand, our method constructed a com-
bined predictor out of the sequence prediction and velocity-
based methods, as depicted in Figure 2.

Besides down-selecting to two of the three methods ap-
propriately, another interesting behavior of the multiple-
predictor system is the way in which it combined the
selected methods. Note from the plots that the velocity-based
prediction method performed very well at low values of
look-ahead time (∆T ), but that performance degraded quite
rapidly as look-ahead time increased. This makes sense, since
at larger look-ahead time values, the person might change
direction during the time interval in question, resulting in
poor prediction and higher mean error.

The time series classification and series prediction meth-
ods also exhibited a trend toward decreased performance at
higher values of ∆T , but their mean error grew at a slower



rate. Furthermore, in cases in which the multiple-predictor
system selected these two methods, the mean error at low
values of ∆T was higher for these methods than for the
velocity-based method, while this trend was reversed at high
values of ∆T . One possible explanation for the relatively
poorer performance at low values of ∆T is the variance in
the example trajectories: If variance is high enough, the mean
trajectory can be quite far from the trajectory being predicted.

While the relatively high error at low values of ∆T is
not ideal, the time series and sequence prediction methods’
performance degrades slowly with increasing values of ∆T .
This is likely due to the fact that when these prediction
methods correctly classify the goal the person is reaching
toward, the mean trajectory of the motion class yields a much
better prediction further into the future than simply assuming
the person will continue to move their hand in a straight line.

These attributes create a natural “cross-over point” at
which one method becomes superior to the other as a
function of look-ahead time. The plots in Figures 2 and 3
indicate that the multiple-predictor system was able to learn
and exploit this concept automatically.

The automatic adjustment in response to action order and
long- versus short-term accuracy showcases the ability of the
multiple-predictor system to learn from the given training
data how best to combine the complementary strengths of
several predictors, greatly improving the robustness and gen-
eralizability of human motion prediction compared with re-
liance upon a single prediction method. Our method achieved
this goal quite well, with the mean error of the multiple-
predictor system closely tracking the mean errors of the
best performing methods at each look-ahead time. The only
points at which our method did not select the best performing
method was at the transition point between two methods,
which is likely due to slight differences between the training
and testing data during the leave-one-out cross-validation.

VII. CONCLUSION

In this work, we presented a novel method of human
motion prediction that utilizes a combination of individual
predictors to form a multiple-predictor system. We showed
that our approach outperforms the individual prediction
methods in terms of mean prediction error for a variety of
scenarios generated from a human-robot interaction data set.
Our results indicate that the multiple-predictor system was
able to adapt to the various conditions of these scenarios
and automatically learn which prediction methods should be
used at the various look-ahead time values, highlighting the
improved robustness and generalizability of our approach to
variations in the number and order of actions.

As generalizability to motion type is important as well, one
avenue of future work involves evaluating the performance of
the MPS on ambulatory motions, such as walking. Another
potential future direction involves extending our predictor
fusion method to continuously adapt the learned weights of
the individual algorithms as new predictions are made. As
the PW algorithm we used for model selection is an online
learning algorithm, our implementation lends itself well to

this extension. We would also like to incorporate a metric of
individual method confidence into the model selection step,
as well as add biasing toward the production of continuous
predicted trajectories. Finally, we intend to incorporate the
MPS with an online planning approach to investigate the
impact of improved prediction on the quality of human-robot
interaction.
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