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Abstract

We prove that with high probability over the choice of a random graph G from the Erdős–Rényi
distribution G(n, 1/2), the nO(d)-time degree d Sum-of-Squares semidefinite programming relax-
ation for the clique problem will give a value of at least n1/2−c(d/ log n)1/2

for some constant c > 0.
This yields a nearly tight n1/2−o(1) bound on the value of this program for any degree d = o(log n).
Moreover we introduce a new framework that we call pseudo-calibration to construct Sum of
Squares lower bounds. This framework is inspired by taking a computational analog of Bayesian
probability theory. It yields a general recipe for constructing good pseudo-distributions (i.e.,
dual certificates for the Sum-of-Squares semidefinite program), and sheds further light on the
ways in which this hierarchy differs from others.
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1 Introduction

The planted clique (also known as hidden clique) problem is a central question in average-case
complexity. Arising from the 1976 work of Karp [Kar76], the problem was formally defined by
Jerrum [Jer92] and Kucera [Kuc95] as follows: given a random Erdős-Rényi graph G from the
distribution G(n, 1/2) (where every edge is chosen to be included with probability 1/2 independently
of all others) in which we plant an additional clique (i.e., set of vertices that are all neighbors of
one another) S of size ω, find S. It is not hard to see that the problem is solvable by brute force
search (which in this case takes quasipolynomial time) whenever ω > c log n for any constant c > 2.
However, despite intense effort, the best polynomial-time algorithms only work for ω = ε

√
n, for

any constant ε > 0 [AKS98].
Over the years the planted clique problem and related problems have been connected to

many other questions in a variety of areas including finding communities [HWX15], finding
signals in molecular biology [PS000], discovering network motifs in biological networks [MSOI+02,
JM15], computing Nash equilibrium [HK11, ABC13], property testing [AAK+07], sparse principal
component analysis [BR13], compressed sensing [KZ14], cryptography [JP00, ABW10] and even
mathematical finance [DBL10].

Thus, the question of whether the currently known algorithms can be improved is of great
interest. Unfortunately, it is unlikely that lower bounds for planted clique (because it is an
average-case problem) can be derived from conjectured complexity class separations such as
P , NP [FF93, BT06]. Our best evidence for the difficulty of this problem comes from works
showing limitations on particular classes of algorithms. In particular, since many of the algorithmic
approaches for this and related problems involve spectral techniques and convex programs,
limitations for these types of algorithm are of significant interest. One such negative result was
shown by Feige and Krauthgamer [FK03a] who proved that the nO(d)-time degree d Lovász-Schrijver
semidefinite programming hierarchy (LS+ for short) can only recover the clique if its size is at least√

n/2d.1

However, recently it was shown that in several cases, the Sum-of-Squares (SoS) hierarchy [Sho87,
Par00, Las01] — a stronger family of semidefinite programs which can be solved in time nO(d)

for degree parameter d — can be significantly more powerful than other algorithms such as
LS+ [BBH+12, BKS14, BKS15]. Thus it was conceivable that the SOS hierarchy might be able to find
cliques that are much smaller than

√
n in polynomial time.

The first SoS lower bound for planted clique was shown by Meka, Potechin and Wigder-
son [MPW15] who proved that the degree d SOS hierarchy cannot recover a clique of size Õ(n1/d).
This bound was later improved on by Deshpande and Montanari [DM15] and then Hopkins et
al [HKP+16] to Õ(n1/2) for degree d = 4 and Õ(n1/(dd/2e+1)) for general d. However, this still left open
the possibility that the constant degree (and hence polynomial time) SoS algorithm can significantly
beat the

√
n bound, perhaps even being able to find cliques of size nε for any fixed ε > 0. This paper

answers this question negatively by proving the following theorem:

1As we discuss in Remark 1.2 below, formally such results apply to the incomparable refutation problem, which is
the task of certifying that there is no ω-sized clique in a random G(n, 1/2) graph. However, our current knowledge is
consistent with these variants having the same computational complexity.
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Theorem 1.1 (Main Theorem). There is an absolute constant c so that for every d = d(n) and large enough
n, the SoS relaxation of the planted clique problem has integrality gap at least n1/2−c(d/ log n)1/2

.

Beyond improving the previously known results, our proof is significantly more general and
we believe provides a better intuition behind the limitations for SoS algorithms by viewing them
from a “computational Bayesian probability” lens that is of its own interest. Moreover, there is
some hope (as we elaborate below) that this view could be useful not just for more negative results
but for SoS upper bounds as well. In particular our proof elucidates to a certain extent the way in
which the SoS algorithm is more powerful than the LS+ algorithm.

Remark 1.2 (The different variants of the planted clique problem). Like other average-case
problems in NP, the planted clique problem with parameter ω has three variants of search,
refutation, and decision. The search variant is the task of recovering the clique from a graph
in which it was planted. The refutation variant is the task of certifying that a random graph
in G(n, 1/2) (where with high probability the largest clique has size (2 + o(1)) log n) does
not have a clique of size ω. The decision problem is to distinguish between a random graph
from G(n, 1/2) and a graph in which an ω-sized clique has been planted. The decision
variant can be reduced to either the search or the refutation variant, but we know of no
reduction between the latter two variants. Integrality gaps for mathematical relaxations
such as the Sum-of-Squares hierarchy are most naturally stated as negative results for the
refutation variant, as they show that such relaxations cannot certify that a random graph
has no ω-sized clique by looking at the maximum value of the objective function. Our
result can also be viewed as showing that the natural SoS-based algorithm for the decision
problem (which attempts to distinguish on the objective value) also fails. Moreover, our
result also rules out some types of SoS-based algorithms for the search problem as it shows
that in a graph with a planted clique, there exists a solution with an objective value of ω
based only on the random part, which means that it does not contain any information about
which nodes participate in the clique and hence is not useful for rounding algorithms.

2 Planted Clique and Probabilistic Inference

We now discuss the ways in which the planted clique problem differs from problems for which
strong SoS lower bounds have been shown before, and how this relates to a “computational
Bayesian” perspective. There have been several strong lower bounds for the SoS algorithm before,
in particular for problems such as 3SAT, 3XOR and other constraint satisfaction problems as well
as the knapsack problem [Gri01, Sch08, BCK15]. However, obtaining strong lower bounds for the
planted clique problem seems to have required different techniques. A high-level way to describe
the difference between the planted clique problems and the problems tackled by previous results is
that lower bounds for the planted clique problem boil down to handling weak global constraints
as opposed to strong local ones. That is, while in the random 3SAT/3XOR setting, the effect of one
variable on another is either extremely strong (if they are "nearby" in the formula) or essentially
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zero, in the planted clique setting every variable has a weak global effect on all other variables. We
now explain this in more detail.

Consider a random graph G in which a clique S of size ω has been planted. If someone tells us
that vertex 17 is not in S, then it makes it slightly less likely that 17’s neighbors are in S and slightly
more likely that 17’s non-neighbors are in S. So, this information has a weak global effect. In contrast,
when we have a random sparse 3SAT formula ϕ in which an assignment x has been planted, if
someone tells us that x17 = 0 then it gives us a lot of information about the local neighborhood
of the 17th variable (the variables that are involved in constraints with 17 or one that have a
short path of constraints to it) but there is an exponential decay of these correlations and so this
information basically tells us essentially nothing about the distribution of most of the variables xi

(that are far away from 17 in the sparse graph induced by ϕ).x2 Thus, in the random 3SAT setting
information about the assignments of individual variables has a strong local effect. Indeed, previous
Sum-of-Squares lower bounds for random 3SAT and 3XOR [Gri01, Sch08], could be interpreted as
producing "distribution like" objects in which, conditioned on the value of a small set of variables S,
some of the variables "close" to S in the formula were completely fixed, and the rest were completely
independent.

This difference between the random SAT and the planted clique problems means that some
subtleties that can be ignored in setting of random constraint satisfaction problems need to be
tackled head-on when dealing with planted cliques. However to make this clearer, we need to take
a detour and discuss Bayesian probabilities and their relation to the Sum of Square Algorithm.

2.1 Computational Bayesian Probabilities and Pseudo-distributions

Strictly speaking, if a graph G contains a unique clique S of size ω, for every vertex i, the probability
that i is in S is either zero or one. But, a computationally bounded observer may not know whether
i is in the clique or not, and we could try to quantify this ignorance using probabilities. These can be
thought of as a computational analogs of Bayesian probabilities, that, rather than aiming to measure
the frequency at which an event occurs in some sample space, attempt to capture the subjective
beliefs of some observer.

That is, the Bayesian probability that an observer B assigns to an event E can be thought of as
corresponding to the odds at which B would make the bet that E holds. Note that this probability
could be strictly between zero and one even if the event E is fully determined, depending on the
evidence available to B. While typically Bayesian analysis does not take into account computational
limitations, one could imagine that even if B has access to information that fully determines whether
E happened or not, she could still rationally assign a subjective probability to E that is strictly
between zero and one if making the inferences from this information is computationally infeasible.
In particular, in the example above, even if a computationally bounded observer has access to the
graph G, which information-theoretically fully determines the planted ω-sized clique, she could

2This exponential decay can be shown formally for the case of satisfiable random 3SAT or 3XOR formulas whose
clause density is sufficiently smaller than the threshold. In our regime of overconstrainted random 3SAT/3XOR formulas
there will not exist any satisfying assignments, and so to talk about “correlations” in the distributions of assignments we
need to talk about the “Bayesian estimates” that arise from algorithms such as Sum-of-Squares or belief propagation.
Both these algorithms exhibit this sort of exponential decay we talk about; see also Remark 2.1
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still assign a probability strictly between zero and one to the event that vertex 17 is in the planted
ω-sized clique, based on some simple to compute statistics such as how many neighbors 17 has, etc.

The Sum-of-Squares algorithm can be thought of as giving rise to an internally consistent set of
such "computational probabilities". These probabilities may not capture all possible inferences that
a computationally bounded observer could make, but they do capture all inferences that can be
made via a certain restricted proof system.

Bayesian estimates for planted clique. To get a sense for our results and techniques, it is
instructive to consider the following scenario. Let G(n, 1/2, ω) be the distribution over pairs (G, x)
of n-vertex graphs G and vectors x ∈ Rn that is obtained by sampling a random graph in G(n, 1/2),
planting an ω-sized clique in it, and letting G be the resulting graph and x the 0/1 characteristic
vector of the clique. Let f : {0, 1}(

n
2) × Rn

→ R be some function that maps a graph G and a vector x
into some real number fG(x). Now imagine two parties, Alice and Bob (where Bob can also stand
for "Bayesian") that play the following game: Alice samples (G, x) from the distribution G(n, 1/2, ω)
and sends G to Bob, who needs to output the expected value of fG(x). We denote this value by ẼG fG.

If we have no computational constraints then it is clear that Bob will simply let ẼG fG be equal
to Ex|G fG(x), by which we mean the expected value of fG(x) where x is chosen according to the
conditional distribution on x given the graph G.3 In particular, the value ẼG fG will be calibrated in
the sense that

E
G∈RG(n,1/2,ω)

ẼG fG = E
(G,x)∈RG(n,1/2,ω)

fG(x) (2.1)

Now if Bob is computationally bounded, then he might not be able to compute the value of
Ex|G fG(x) even for a simple function such as fG(x) = x17. Indeed, as we mentioned, since with high
probability the clique x is uniquely determined by G, Ex|G x17 will simply equal 1 if vertex 17 is in
the clique and equal 0 otherwise. However, note that we don’t need to compute the true conditional
expectation to obtain a calibrated estimate. In particular, in the above example, simply setting
Ẽx17 = ω/n will satisfy (2.1).

Our Sum-of-Squares lower bound amounts to coming up with some reasonable “pseudo-
expectation” that can be efficiently computed, where ẼG is meant to capture a “best effort” of a
computationally bounded party of approximating the Bayesian conditional expectation Ex|G. Our
pseudo-expectation will not be even close to the true conditional expectations, but will at least be
internally consistent in the sense that for “simple” functions f it satisfies (2.1). It will also satisfy
some basic sanity checks such as that for every graph G and “simple” f , ẼG f 2

G > 0. In fact, since the
pseudo-expectation will not distinguish between a graph G drawn from G(n, 1/2, ω) and a random
G from G(n, 1/2) it will also satisfy the following pseudo-calibration condition:

E
G∈RG(n,1/2)

ẼG fG = E
(G,x)∈RG(n,1/2,ω)

fG(x) (2.2)

for all “simple” functions f = f (G, x). Note that (2.2) does not make sense for the estimates of a
truly Bayesian (i.e., computationally unbounded) Bob, since almost all graphs G in G(n, 1/2) are not

3The astute reader might note that this expectation is somewhat degenerate since with very high probability the
graph G will uniquely determine the vector x, but please bear with us, as in the computational setting we will be able to
treat x as "undetermined".

4



even in the support of G(n, 1/2, ω). Nevertheless, our pseudo-distributions will be well defined
even for a random graph and hence will yield estimates for the probabilities over this hypothetical
object (i.e., the ω-sized clique) that does not exist. The “pseudo-calibration” condition (2.2) might
seem innocent, but it turns out to imply many useful properties. In particular is not hard to see
that (2.2) implies that for every simple strong constraint of the clique problem— a function f such
that f (G, x) = 0 for every x that is a characteristic vector of an ω-clique in G— it must hold that
ẼG fG = 0. But even beyond these “strong constraints”, (2.2) implies that the pseudo-expectation
satisfies many weak constraints as well, such as the fact that a vertex of high degree is more likely to
be in the clique and that if i is not in the clique then its neighbors are less likely and non-neighbors
are more likely to be in it.

Indeed, the key conceptual insight of this paper is to phrase the calibration property (2.2) as a
desiderata for our pseudo-distributions. Namely, we define that a function f = f (G, x) is “simple”
if it is a low degree polynomial in both the entries of G’s adjacency matrix and the variables x, and
then require (2.2) to hold for all simple functions. It turns out that once you do so, the choice for
the pseudo-distribution is essentially determined, and hence proving the main result amounts to
showing that it satisfies the constraints of the SoS algorithm. In the next section we will outline
some of the ideas involved in this proof.

Remark 2.1 (Planted Clique vs 3XOR). In the light of the discussion above, it is instructive
to consider the case of random 3XOR discussed before. Random 3XOR instances on n
variables and Θ(n) constraints are easily seen to be maximally unsatisfiable (that is, at
most ≈ 1/2 the constraints can be satisfied by any assignment) with high probability. On
the other hand, Grigorev [Gri01] constructed a sum of squares pseudoexpectation that
pretends that such instances instances are satisfiable with high probability, proving a sum
of squares lower bound for refuting random 3XOR formulas.

Analogous to the planted distribution G(n, 1/2, ω), one can define a natural planted
distribution over 3XOR instances - roughly speaking, this corresponds to first choosing a
random Boolean assignment x∗ to n variables and then sampling random 3XOR constraints
conditioned on being consistent with x∗. It is not hard to show that pseudo-calibrating with
respect to this planted distribution a la (2.2) produces precisely the pseudoexpectation that
Grigoriev constructed. However, unlike in the planted clique case, in the case of 3XOR, the
pseudo-calibration condition implies that for every low-degree monomial xS, either the
value of xS is completely fixed (if it can be derived via low width resolution from the 3XOR
equations of the instance) or it is completely unconstrained.

The pseudoexpectations considered in previous works [FK03b, MPW15, DM15]) are
similar to Grigoriev’s construction, in the sense that they essentially respect only strong
constraints (e.g., that if A is not a clique in the graph, then the probability that it is
contained in the planted clique is zero), but other than that assume that variables are
independent. However, unlike the 3XOR case, in the planted clique problem respecting
these strong constraints is not enough to achieve the pseudo-calibration condition (2.2)
and the pseudoexpectation of [FK03b, MPW15, DM15] can be shown to violate weak
probabilistic constraints imposed by (2.2) even at degree four. See Observation 2.4 for an
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example.

2.2 From Calibrated Pseudo-distributions to Sum-of-Squares Lower Bounds

What do these Bayesian inferences and calibrations have to do with Sum-of-Squares? In this section,
we show how calibration is almost forced on any pseudodistribution feasible for the sum of squares
algorithm. Specifically, to show that the degree d SoS algorithm fails to certify that a random graph
does not contain a clique of size ω, we need to show that for a random G, with high probability
we can come up with an operator that maps a degree at most d, n-variate polynomial p to a real
number ẼGp satisfying the following constraints:

1. (Linearity) The map p 7→ ẼGp is linear.

2. (Normalization) ẼG1 = 1.

3. (Booleanity constraint) ẼGx2
i p = Ẽxip for every p of degree at most d − 2 and i ∈ [n].

4. (Clique constraint) ẼGxix jp = 0 for every (i, j) that is not an edge and p of degree at most d− 2.

5. (Size constraint) ẼG
∑n

i=1 xi = ω.

6. (Positivity) ẼGp2 > 0 for every p of degree at most d/2.

Definition 2.2. A map p 7→ ẼGp satisfying the above constraints 1–6 is called a degree d pseudo-
distribution (w.r.t. the planted clique problem with parameter ω).

We can restate our main result as follows:

Theorem 2.3 (Theorem 1.1, restated). There is some constant c such that if ω 6 n1/2−c(d/ log n)1/2
then

with high probability over G sampled from G(n, 1/2), there is a degree d pseudodistribution ẼG satisfying
constraints 1–6 above.

Note that all of these constraints would be satisfied if ẼGp was obtained by taking the expectation
of p over a distribution on ω-sized cliques in G. However, with high probability there is not event a
2.1 log n-sized clique in G (and let alone a ≈

√
n sized one) so we will need a completely different

mechanism to obtain such a pseudo-distribution.
Previously, the choice of the pseudo-distribution seemed to require a “creative guess” or an

“ansatz”. For problems such as random 3SAT this guess was fairly natural and almost “forced”,
while for planted clique planted clique as well as some related problems [MW15] the choice of
the pseudo-distribution seemed to have more freedom, and more than one choice appeared in the
literature.

For example, Feige and Krauthgamer [FK03b] (henceforth FK) defined a very natural pseudo-
distribution ẼFK for a weaker hierarchy. For a graph G on n vertices, and subset A ⊆ [n], ẼFK

G xA

is equal to zero if A is not a clique in G and equal to 2(|A|2 )
(
ω
n

)|A|
if A is a clique, and extended to

degree d polynomials using linearity.4 [FK03b] showed that that for every d, and ω < O(
√

n/2d),
4The actual pseudo-distribution used by [FK03b] (and the followup works [MPW15, DM15]) was slightly different so

as to satisfy ẼG(
∑m

i=1 xi)` = ω` for every ` ∈ {1, . . . , d}. This property is sometimes described as satisfying the constraint
{
∑

i xi = ω}.
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this pseudo-distribution satisfies the constraints 1–5 as in Definition 2.2 as well as a weaker
version of positivity (this amounts to the so called “Lovász-Schrijver+” SDP). Meka, Potechin and
Wigderson [MPW15] proved that the same pseudo-distribution satisfies all the constraints 1–6 (and
hence is a valid degree d pseudo-distribution) as long as ω < Õ(n1/d). This bound on ω was later
improved to Õ(n1/3) for d = 4 by [DM15] and to Õ(n(bd/2c+1)−1

) for a general d by [HKP15].
Interestingly, the FK pseudo-distribution does not satisfy the full positivity constraint for larger

values of ω. The issue is that while that while the FK pseudo-distribution satisfies the “strong”
constraints that ẼFK

G xA = 0 if A is not a clique, it does not satisfy weaker constraints that are implied
by (2.2). For example, for every constant `, if vertex i participates in

√
n more `-cliques than the

expected number then one can compute that the conditional probability of i belonging in the clique
should be a factor 1 + cω/

√
n larger for some constant c > 0. However, the FK pseudo-distribution

does not make this correction. In particular, for every `, there’s a simple polynomial that shows
that the FK pseudoexpectation is not calibrated.

Observation 2.4. Fix i ∈ [n] and let ` be some constant. If pG = (
∑

j Gi, jx j)` then (i)EG∼G(n,1/2) ẼFK
G [p2

G] 6

ω` and ii E(G,x)∼G(n,1/2,ω)[pG(x)2] > ω2`+1

n . In particular, when ω � n
1
`+1 , EG∼G(n,1/2) ẼFK

G [p2
G] �

E(G,x)∼G(n,1/2,ω) pG(x).

Proof sketch. For 2 note that with probability (ω/n) vertex i is in the clique, in which case∑
j Gi, jx j = ω, and hence the expectation of p2

G is at least (ω/n)ω2`. To compute 1, we
open up the expectation and the definition to get (up to a constant depending on `)∑

j1,..., j2` Gi, j1 . . .Gi, j2`(ω/n)2` EG∼G(n,1/2) 1{i1,...,i2`} is clique. Since this expectation is zero unless every
variable Gi, j is squared, in which case the number of distinct j’s is at most `, which means the sum
is at most n`(ω/n)` = ω`. �

Observation 2.4 notes the failure of calibration for a specific polynomial pG(x) where the
coefficients are (low-degree) functions of the graph G. The polynomial pG above can also be
massaged to obtain a proof (due to Kelner, see [HKP15]) that degree d ẼFK does not satisfy the

positivity constraint at degree d for ω� n
1

d
2 +1 .

Fact 2.5. Let pG be as in the Observation 2.4. Then, there exists a C such that for q = qG = (Cω`xS − pG)
with high probability over the graph G ∼ G(n, 1/2), ẼFK[q2

G] < 0 for ω� n
1
`+1 .

For the case d = 4, Hopkins et al [HKP+16] proposed an “ad hoc” fix for the FK pseudo-
distribution that satisfies positivity up to ω = Õ(

√
n), by explicitly adding a correction term to

essentially calibrate for the low-degree polynomials qG from Fact 2.5.
However, their method did not extend even for d = 6, because of the sheer number of corrections

that would need to be added and analyzed. Specifically, there are multiple families of polynomials
such that their ẼFK value departs significantly from their calibrated value in expectation and gives
multiple points of failure of positivity in a manner similar to Observation 2.4 and Fact 2.5. Moreover,
"fixing" these families by the correction as in case of degree four leads to new families of polynomials
that fail to achieve their calibrated value and exhibit negative pseudoexpectation for their squares
etc.

7



The coefficients of the polynomial pG of Observation 2.4 are themselves low degree polynomials
in the adjacency matrix of G. This turns out to be a common feature in all the families of polynomials
one encounters in the above works. Thus our approach is to fix all these polynomials by fiat, by
placing the constraint that the pseudo-distribution must satisfy (2.2) for every such polynomial, and
using that as our implicit definition of the pseudo-distribution. Indeed it turns our that once we do
so, the pseudo-distribution is essentially determined. Moreover, (2.2) guarantees that it satisfies
many of the “weak global constraints” that can be shown using Bayesian calculations.

Pseudo-calibrating polynomials whose coefficient are low-degree in G amounts to restricting
the pseudo-distribution to satisfy that the map G 7→ ẼG is itself a low degree polynomial in G. Why
is it OK to make such a restriction? One justification is the heuristic that the pseudo-distribution
itself must be simple since we know that it is efficiently computable (via the SoS algorithm) from
the graph G. Another justification is that by forcing the pseudo-distribution to be low-degree we
are essentially making it smooth or “high entropy”, which is consistent with the Jaynes maximum
entropy principle [Jay57b, Jay57a]. Most importantly – and this is the bulk of the technical work of
this paper and the subject of the next subsection – this pseudo-distribution can be shown to satisfy
all the constraints 1–6 of Definition 2.2 including the positivity constraint.

We believe that this principled approach to designing pseudo-distributions elucidates the power
and limitations of the SoS algorithm in cases such as the planted clique, where accounting for weak
global correlations is a crucial aspect of the problem.

Remark 2.6 (Where does the planted distribution arise from?). Theorem 2.3 (as well as Theo-
rem 1.1) makes no mention of the planted distribution G(n, 1/2, ω) and only refers to an
actual random graph. Thus it might seem strange that we base our pseudo-distribution on
the planted distribution via (2.2). One way to think about the planted distribution is that it
corresponds to a Bayesian prior distribution on the clique. Note that this is the maximum
entropy distribution on cliques of size ω, and so it is a natural choice for a prior per Jaynes’s
principle of maximum entropy. Our actual pseudo-distribution can be viewed as correcting
this planted distribution to a posterior that respects simple inferences from the observed
graph G.

2.3 Proving Positivity

Now we have seen that pseudocalibration is desirable both a priori and in light of the failure of
previous lower-bound attempts. We turn to the question: how do we formally define a pseudo-
calibrated linear map ẼG, and how do we show that it satisfies constraints (1) – (6) with high
probability, to prove Theorem 2.3?

Recall that our goal is to give a map from G to ẼG such that when G is taken from G(n, 1/2) then
with high probability ẼG satisfies constraints 1–6 of Definition 2.2. Our strategy is to define ẼG in a
way that it satisfies the pseudo-calibration requirement (2.2) with respect to all functions f = f (G, x)
that are low degree polynomials in both the G and x variables. The above requirements determine
all the low-degree Fourier coefficients of the map G 7→ ẼG. Indeed, instantiating (2.2) with every
particular function f = f (G, x) defines a linear constraint on the pseudo-expectation operator. If
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we require (2.2) to hold with respect to every function f = f (G, x) that has degree at most τ in the
entries of the adjacency matrix G and degree at most d in the variables x, and in addition we require
that the map G 7→ ẼG is itself of degree at most τ in G, then this completely determines ẼG. For any
S ⊆ [n], |S| 6 d, using the Fourier transform it is not too hard to compute ẼG[xS] as an explicit low
degree polynomial in Ge:

ẼG[xS] =
∑

T⊆([n]
2 )

|V(T)∪S|6τ

(
ω
n

)|V(T)∪S|
χT(G), (2.3)

whereV(T) is the set of nodes incident to the subset of edges (i.e., graph) T and χT(G) =
∏

e∈T Ge.
We carry out this computation in Section 5. For ω ≈ n0.5−ε, we will need to choose the truncation
threshold τ ' d/ε. It turns out that constraints 1–5 are easy to verify and thus we are left with
proving the positivity constraint. Indeed this is not surprising as verifying this constraint is always
the hardest part of a sum of squares lower bound.

As is standard, to analyze this positivity requirement we work with the moment matrix of ẼG.
Namely, let M be the

( n
6d/2

)
×

( n
6d/2

)
matrix where M(I, J) = ẼG

∏
i∈I xi

∏
j∈J x j for every pair of

subsets I, J ⊆ [n] of size at most d/2. Our goal can be rephrased as showing thatM � 0 (i.e.,M is
positive semidefinite).

Given a (symmetric) matrix N, to show that N � 0 our first hope might be to diagonalize N.
That is, we would hope to find a matrix V and a diagonal matrix D so that N = VDV†. Then as long
as every entry of D is nonnegative, we would obtain N � 0. Unfortunately, carrying this out directly
can be far too complicated. Even the eigenvectors of very simple random matrices–for example, a
matrix with independent ±1 entries—are not explicitly understood. Our moment matrixM is a
much more complicated random matrix, with intricate dependencies among the entries. However,
as the next example demonstrates, it is sometimes possible to prove PSDness for a random matrix
using an approximate diagonalization.

Example: Planted Clique Lower Bound for d = 2 (a.k.a. Basic SDP). Consider the problem of
producing a pseudodistribution Ẽ satisfying constraints 1–6 of Definition 2.2, but only for d = 2. In
this simple case, it turns out that the subtleties of (pseudo)calibration may safely be ignored, but it
is still instructive to revisit the proof of PSDness. It will be enough to define Ẽxi and Ẽxix j for every

i ∈ [n] and {i, j} ⊆ [n]. Let Ẽxi = (ω/n) for every i, and let Ẽxix j equal
(
ω
n

)2
if (i, j) is an an edge in G

and equal zero otherwise. It’s not hard to show that positivity of this pseudo-expectation reduces to
showing thatN � 0 whereN is the n×n matrix withNi, j = Ẽxix j. Using standard results on random
matrices,N has one eigenvalue (with eigenvector very close to the vector ~u = (1/

√
n, . . . , 1/

√
n)) of

value ω2/n, while all others are distributed in the interval ωn ±O
(
ω2

n2

√
n
)

which is strictly positive as
long as ω�

√
n. Thus, while we cannot explicitly diagonalizeN , we have enough information to

conclude that it is positive semidefinite. In other words, it was enough for us to get an approximate
diagonalization forN of the formN ≈ ω2

n ~u~u
† + ω

n Id + E for some sufficiently small (in spectral norm)
“error matrix” E.
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Approximate Factorization for M. We return now to the moment matrix M for our
(pseudo)calibrated pseudodistribution. Our goal is to give an approximate diagonalization
ofM. There are several obstacles to doing so:

1. In the case d = 2 there was just one rank-1 approximate eigenspace to be handled. The number
of these approximate eigenspaces will grow with d, so we will need a more generic way to
handle them.

2. Each approximate eigenspace corresponds to a family of polynomials {p}whose calibrated pseu-
doexpectations are all roughly equal. (In the case d = 2, the only interesting polynomial was
the polynomial

∑
j x j whose coefficients are proportional to the vector ~u = (1/

√
n, . . . , 1/

√
n).)

As we saw in Observation 2.4, if pG is a polynomial whose coefficients depend on the graph G,
even in simple ways, the calibrated value ẼGpG may also depend substantially on the graph.
Thus, when we writeM ≈ LQL† for some approximately-diagonal matrix Q, we will need
the structured part L = L(G) to itself be graph-dependent.

3. The errors in our diagonalization ofM—corresponding in our d = 2 example to the matrix
E—will not be so small that we can ignore them as we did above. Instead, each error matrix
will itself have to be approximately diagonalized, recursively until these errors are driven
down sufficiently far in magnitude.

We now discuss at a high level our strategy to address items (1) and (2). The resolution to item
(3) is the most technical element of our proof, and we leave it for later. Consider the vector space
of all polynomials f : {0, 1}(

n
2) × Rn

→ R which take a graph and an n-dimensional real vector and
yield a real number. (We write fG(x), where G is the graph and x ∈ Rn.) If we restrict attention to the
subspace of those of degree at most d in x, we obtain the polynomials in the domain of our operator
ẼG. If we additionally restrict to the subspace of polynomials which are low degree in G, we obtain
the family of polynomials so that EG ẼG fG(x) is calibrated. Call this subspaceV.

Our goal would to be find an approximate diagonalization for all the non-trivial eigenvalues
ofM using only elements from V. The advantage of doing so is that for every f ∈ V, we can
calculate EG ẼG f 2

G using the pseudo-calibration condition (2.2). In particular it means that if we
find a function f such that fG is with high probability an approximate eigenvector of G, then we
can compute the corresponding expected eigenvalue λ( f ).

A crucial tool in finding such an approximate eigenbasis is the notion of symmetry. For every f ,
if f ′ is obtained from f via a permutation of the variables x1, . . . , xn, then EG ẼG f 2

G = EG ẼG f ′2G . The
result of this symmetry, for us, is that our approximate diagonalization requires only of a constant
(depending on d) number of eigenspaces. This argument allows us to restrict our attention to a
constant number of classes of polynomials, where each class is determined by some finite graph U
that we call its shape. For every polynomial f with shape U, we compute (approximately) the value
of EG ẼG f 2

G as a function of a simple combinatorial property of U, and our approximate eigenspaces
correspond to polynomials with different shapes.

We can show that that in expectation our approximate eigenspaces will have non-negative
eigenvalues since the pseudo-calibration condition (2.2) in particular implies that for every f that is
low degree in both G and x, EG ẼG f 2

G > 0. However, the key issue is to deal with the error terms
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that arise from the fact that these are only approximate eigenspaces. One could hope that, like in
other “structure vs. randomness” partitions, this error term is small enough to ignore. Alas, this
is not the case, and we need to handle it recursively, which is the cause of much of the technical
complications of this paper.

Remark 2.7 (Structure vs. randomness). At a high level our approach can be viewed as falling
into the general paradigm of “structure vs. randomness” as discussed by Tao [Tao05]. The
general idea of this paradigm is to separate an object O into a “structured” part that is
simple and predictable, and a “random” part that is unpredictable but has small magnitude
or has some global statistical properties.

One example of this is the Szemerédi regularity lemma [Sze78] as well variants such
as [FK96] that partition a matrix into a sum of a low rank and pseudorandom components.
Another example arises from the random models for the primes (e.g., see [Tao15, Gra95]).
These can be thought of positing that, as far as certain simple statistics are concerned, (large
enough) primes can be thought of as being selected randomly conditioned on not being
divisible by 2, 3, 5 etc.. up to some bound w.

All these examples can be viewed from a computationally bounded Bayesian perspective.
For every object O we can consider the part of O that can be inferred by a computationally
bounded observer to be O’s structured component, while the remaining uncertainty can
be treated as if it is random, even if in actuality it is fully determined. Thus in our case,
even though for almost every particular graph G from G(n, 1/2, ω), the clique x is fully
determined by G, we still think of x as having a “structured” part which consists of all the
inferences a “simple” observer can make from G (e.g., that if i and j are non-neighbors then
xix j = 0), and a “random” part that consists of the remaining uncertainty. As in other cases
of applying this paradigm, part of the technical work is bounding the magnitude (in our
case in spectral norm) that arises from the “random” part, though as mentioned above in
our case we need a particularly delicate control of the error terms which ends up causing
much of the technical difficulty.

3 Proving Positivity: A Technical Overview

We now discuss in more detail how we prove that the moment matrixM corresponding to our
pseudo-distribution is positive semidefinite. Recall that this is the

( n
6d/2

)
×

( n
6d/2

)
matrixM such

thatM(I, J) = ẼG
∏

i∈I xi
∏

j∈J x j for every pair of subsets I, J ⊆ [n] of size at most d/2, and that it is
defined via (2.3) as

M(I, J) =
∑

T⊆([n]
2 )

|V(T)∪I∪J|6τ

(
ω
n

)|V(T)∪I∪J|
χT(G) . (3.1)

The matrixM is generated from the random graph G, but its entries are not independent. Rather,
each entry is a polynomial in Ge, and there are some fairly complex dependencies between different
them. Indeed, these dependencies will create a spectral structure forM that is very different from
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the spectrum of standard random matrices with independent entries and makes provingM positive
semidefinite challenging. Our approach to showing thatM is positive semidefinite is through a
type of “symbolic factorization” or “approximate diagonalization,” which we explain next.

3.1 Warm Up

It is instructive to begin with the tight analysis presented in [HKP15] of the moments constructed
in [MPW15]5. These moments can in fact obtained by using truncation threshold τ = |S| in (2.3).
This choice of τ is the smallest possible for which the resulting construction satisfies the hard clique
constraints. [HKP15] show that this construction satisfies positivity for ω / n1/( d

2 +1).
For the purpose of this overview, let us work with the principal submatrix F indexed by subsets

I and J of size exactly d. The analysis in [HKP15] proceeds by first splitting F into d + 1 components
F = F0 + F1 + · · · + Fd where Fi(I, J) = F(I, J) if |I ∩ J| = i and 0 otherwise. Below, we discuss two of
the key ideas involved that will serve as an inspiration for us.

As discussed before, we must approximately diagonalize the matrix F in the sense that the off

diagonals blocks must be "small enough" to be charged to the on diagonal block. Thus the main
question before us is obtain an (approximate) understanding of the spectrum of F that allows us to
come up with a "change of basis" in which the off diagonal blocks are small enough to be charged
to the positive eigenmass in the on-diagonal blocks.

Let us consider the piece F0 for our discussion here. As alluded to in Section 3, we want to
break F into minimal pieces so that each piece is symmetric under the permutation of vertices. We
can hope that each piece will then essentially have a single dominating eigenvalue that can be
determined relatively easily. Below, we will essentially implement this plan.

First, we need to decide what kind of "pieces" we will need. These are the graphical matrices that
we define next.

Definition 3.1 (Graphical Matrices (see Def 7.6 for a formal version)). Let U be a graph on [2d]
with specially identified subsets left and right subsets [d] and [2d] \ [d]. For any I, J ∈

([n]
d
)
, I ∩ J = ∅,

let πI,J be an injective map that takes [d] into I and [2d] \ [d] into J using a fixed convention. The
graphical matrix MU with graph U is then defined by MU(I, J) = χπI,J(U)(G).

The starting point of the analysis is to decompose F0 =
∑

U

(
ω
n

)2d
MU, where MU is the graphical

matrix with shape U. Graphical matrices as above turn out to be the right building blocks for
spectral analysis of our moment matrix. This is because a key observation in [HKP15] shows that a
simple combinatorial parameter, the size of the maximum bipartite matching between the left and
right index in U (i.e. between [d] and [2d] \ [d]), determines the spectral norm of MU. Specifically,
when U has a maximum matching of size t < d, the spectral norm of MU is Õ(nd− t

2 ), with high
probability. Observe that when d = 2 and U is a single edge connecting the left vertex with the
right, MU is just the {−1, 1}-adjacency matrix of the underlying random graph and it is well known
that the spectral norm in this case is Θ(

√
n) matching the more general claim above.

5The construction in [MPW15] actually also satisfies
∑

xi = ω as a constraint which causes the precise form to differ.
We ignore this distinction here.
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In particular, this implies that when U has a perfect matching, MU is pseudorandom in the sense
that FU essentially has the spectral norm ≈ nd/2, the same as that of an independent {−1, 1} random

matrix of the same dimensions. This allows MU to be bounded against the positive eigenvalue
(
ω
n

)d

of the diagonal matrix Fd as
(
ω
n

)d
�

(
ω
n

)2d
nd/2 (even for ω approaching

√
n!). However for MU when

U has a maximum matching of size t < d, one can’t bound against the diagonal matrix Fd anymore.
The next main idea is to note that for every MU there’s an appropriate "diagonal" against which

we must charge the negative eigenvalues of MU. When U has a perfect matching, this is literally the
diagonal matrix Fd as done above. However, when, say, U is a (bipartite) matching of size t < d, we
should instead charge against the "diagonal" matrix that can thought of as obtained by "collapsing"
each matching edge into a vertex in U. In particular, this collapsing produces a matrix that lies in
the decomposition of Ft.

There are a two main takeaways from this analysis that would serve as inspiration in the analysis
of our actual construction. First is the decomposition into graphical matrices in order to have a
coarse handle on the spectrum of the moment matrix. Second, the "charging" of negative eigenvalues
against appropriate "diagonals" is essentially governed by the combinatorics of matchings in U.

3.2 The Main Analysis

We can now try to use the lessons from the warm up analysis to inspire our actual analysis. To
begin with, we recall that each graphical matrix was obtained by choosing an appropriate (set of)
Fourier monomials for any entry indexed by I, J. However, since for our actual construction we
have monomials of much higher degree, we need to extend the notion of graphical matrices with
shapes corresponding to larger graphs U. See Def 7.6 for a formal definition.

It turns out that the right combinatorial idea to generalize the size of the maximum matching and
control the spectral norm of the graphical matricesMU is the maximum number of vertex disjoint
paths between specially designated left and right endpoints of U (themselves the generalization
of the bipartition we had in the warmup). Using Menger’s theorem, this is equal to the size of a
minimal collection of vertices that separates the left and right sets in the graph U, which we call the
separator size of U.

Finally, we need a "charging" argument to work with the approximate diagonalization we end
up with. Generalizing the idea in the warm up here is the hardest part of our proof, but relates
again to the notion of vertex separators defined above. In the warm up, we used a naive charging
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scheme, breaking the moment matrix into simpler (graphical) matrices, each of which was either
a “positive diagonal” mass or a “negative off-diagonal mass”, and pairing up the terms. Such a
crude association doesn’t work out immediately in the general setting. Instead, large groups of
graphical matrices must be treated all at once. In each subspace of our approximate diagonalization
of the moment matrixM, we collect the "positive diagonal mass" and the "negative off digonal
mass" that needs to be charged to it together and build an approximately PSD matrix out of it. As
alluded to before, the error in this approximation is not negligible and thus we must further recurse
on the error terms. In what follows, we discuss the factorization process that accomplishes the
charging scheme implicitly and the recursive factorization for the error terms in some more detail.
Consider some graph T ⊆

([n]
2
)
, that corresponds to one term in the sum in (3.1) above, and let q be

the minimum size of a set that separates I from J in T. Such a set is not necessarily unique but we
can define the leftmost separator left − sep(T) = S` to be the q-sized separator that is closest to I and
the rightmost separator right − sep(T) = Sr to be the q-sized separator that is closest to J.

We can rewrite the (I, J) entry moment matrixM (3.1) by collecting monomials T with a fixed
choice of the leftmost and rightmost separators S` and Sr. This step corresponds to collecting terms
with similar spectral norms together accomplishing the goal of collecting together into a term, the
"positive diagonal mass" and the "negative off diagonal mass" that are implicitly charged to each
other in the intended approximate diagonalization.

M(I, J) =
∑

16q6|I|,|J|

∑
S`,SR:|S` |=|Sr|=q

∑
T⊆([n]

2 )
|V(T)∪I∪J|6τ

left−sep(T)=S`,right−sep(T)=Sr

(
ω
n

)|V(T)∪I∪J|
χT(G) (3.2)

We can then partition T into three subsets R`, Rm and Rr that represent the part of the graph T
between I and S`, the part between S` and Sr and the part between Sr and J respectively (where
edges within S` and edges within Sr are all placed in Rm, see Definition 6.4). We thus immediately
obtain that

χT(G) = χR` (G)χRm(G)χRr(G) .

Thus:

M(I, J) =
∑

16q6|I|,|J|

∑
S`,SR:|S` |=|Sr|=q

∑
T⊆([n]

2 )
|V(T)∪I∪J|6τ
left−sep(T)=S`

right−sep(T)=Sr

((
ω
n

)|V(R`)|
χR` (G)

) ((
ω
n

)|V(Rm)|−2q
χRm(G)

) ((
ω
n

)|V(Rr)|
χRr(G)

)

(3.3)
One could hope that we could replace the RHS of (3.3) by

∑
16q6|I|,|J|
τ1+τ2+τ36τ

∑
S`⊆([n]

q )
Sr⊆([n]

q )


∑
R`

V(R`)⊇I∪S`
|V(R`)|=τ1

(
ω
n

)|V(R`)|
χR` (G)




∑
Rm

V(Rm)⊇S`∪Sr
|V(Rm)|=τ2

(
ω
n

)|V(Rm)|−2q
χRm(G)




∑
Rr

V(Rr)⊇Sr∪J
|V(Rr)|=τ3

(
ω
n

)|V(Rr)|
χRr(G)


(3.4)
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In fact, it turns out we can focus attention (up to sufficiently small error in the spectral norm) to
the case τ1 6 τ/3, τ2 6 τ/3, τ3 6 τ/3 in which case if M(I, J) was equal to (3.4) we could simply
write

M =
∑

q
LqQqL

†

q

where for I,S ⊆ [n] with |I| 6 d and |S| = q, we let Lq(I,S) be the sum of (ω/n)|V(R`)|χR`(G) over all
graphs R` of at most τ/3 vertices connecting I to S, and for S,S′ of size q, we let Qq(S,S′) be the sum
of (ω/n)|Rm|−2qχRm(G) over all graphs Rm of at most τ/3 vertices connecting S to S′.

Thus, in this case, this reduces our task of showing thatM is positive semidefinite to showing
that for every q, the matrix Q = Qq is positive semidefinite. However the main complication is that
there are cross terms in the productLqQqL

†

q that correspond to repeating the same vertex (not in S`
and Sr) in more than one of R`, Rm and Rr. There is no matching term in the Fourier decomposition
ofM(I, J). So at best, for every fixed q, we can write the part ofM corresponding to indices I, J with
minimal vertex separator equal to q as

LQ0L
†
−E1

for some error matrix E1 that exactly cancels out the extra terms contributed by cross terms with
repeated vertices. Unfortunately, the spectral norm of this error matrix E1 is not small enough that
we could simply ignore it. Luckily however, we can recurse and factorize E1 approximately as well.
We can form a new graph T′ by taking the parity of the edge sets in R`, Rm and Rr. Now we find
the leftmost and rightmost separators that separate I and J from each other, and from all repeated
vertices. This gives us another decomposition of a graph into three pieces, from which we can write

E1 = LQ1L
†
−E2

for some other matrix Q1. Continuing this argument gives us for every q a factorization ofMq as

L(Q0 − Q1 + Q2 − . . . − Q2d−1 + Q2d)L† −(ξ0 − ξ1 + ξ2 − . . . − ξ2d−1 + ξ2d)

The error matrices ξ0, ξ1, . . . , ξ2d arise from truncation issues, which we have ignored in the argument
above and turn out to be negligible.

It is not hard to show that Q0 � D for some positive semidefinite matrix D that we define
later. What remains is to bound the remaining matrices Q1, . . .Q2d−1 in order to conclude thatM is
positive semidefinite. Next, we elaborate on the structure of these matrices. It turns out that we can
define the “shape” of a graph Rm in an appropriate way so that

Q
U
i (S`,Sr) =

∑
shape(Rm)=U

ci(Rm)χRm

where U is a finite (for constant d) sized graph with vertex set A ∪ B ∪ C, where we call A the
“left” side of U and B the “right” side of U. Moreover Qi =

∑
U Q

U
i . Now QU

i is a random matrix
and special cases of this general family of matrices (for particular choices of U) arise in several
earlier works on lower bounds for planted clique. Medarametla and Potechin [MP] showed that
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the spectral norm of QU can be controlled by a bound on its coefficients and a few combinatorial
parameters of U — namely |V(U)|, |A ∩ B| and the number of vertex disjoint paths between A/B
and B/A.

A major challenge in our work is to understand and analyze the coefficients ci. In the course of
decomposingM, we are able to characterize ci(Rm) as an appropriately weighted sum over ci−1(R′m)
where R′m ranges over the middle piece of all graphs with leftmost and rightmost separators S`
and Sr that could have resulted in Rm due to repeated vertices. Recall that when there are repeated
vertices, we take the parity of the edge sets of the three pieces and compute a new set of left and
rightmost vertex separators. The set of R′m’s that could result in Rm is complicated. Instead, our
approach is to show that the various combinatorial parameters of R′m (which affect the spectral
norm bounds) tradeoff against each other when accounting for the effect of repeated vertices. This
allows us to bound their contribution and ultimately show that the coefficients ci decay quickly
enough for all values of ω < n1/2−ε that we can bound each Qi for i > 1 as − D

8d � Qi �
D
8d , and this

completes our proof.

4 Preliminaries

4.1 General Notation

• We use small Greek letters indicate constants/parameters.

• Pn
d denotes the linear space of all multilinear polynomials of degree at most d on {0, 1}n.

• We write 1Q for any event Q to be the 0-1 indicator of whether Q happens.

• For a subset T ⊆
([n]

2
)

of edges of a graph on vertex set [n], we writeV(T) ⊆ [n] to denote the
vertices that have at least one edge incident on them in T.

• For a matrix Q ∈ RN×N, ‖Q‖ denotes its spectral norm (or the largest singular value) and

‖Q‖F =
√∑

x,y∈[N] Q(x, y)2 denotes its Frobenius norm.

• For a graph G, let Cq = Cq(G) = {I ⊆ [n] : I is a q-clique in G}, and let C6q =
⋃

q′6q Cd′ . Let
C(G) = C6∞ be the collection of all cliques in G. We count the empty set and all singletons as
cliques.

• We write G(n, 1
2 ) to denote the distribution on graphs on the vertex set [n] where each edge is

included with probability 1/2 independently of others.

• We say that an event E with respect to the probability distribution G(n, 1
2 ) happens with high

probability (w.h.p.) if P[E] > 1 −Ω(1)/n10 log n for large enough n.

• We write f (n) � 1(n) to mean that for every constant c there is an n0 such that if n > n0,
f (n) 6 C1(n).
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4.2 Graphs

We identify a graph G with its {−1, 1} adjacency matrix and write Ge ∈ {−1, 1} for the {−1, 1}-indicator
of whether e ∈ [n] × [n] is an edge (indicated by Ge = +1) in the graph G or not. When G ∼ G(n, 1

2 ),
Ge are independent {−1, 1}-random variables.

A graph function is a real-valued function of the variables Ge ∈ {−1, 1} for e ∈
([n]

2
)
. For

graphs G1,G2, . . . ,Gk on the vertex set [n], we define ∆(G1,G2, . . . ,Gk) to be the graph G satisfying
Ge = Πi6kGi

e.

Definition 4.1 (Vertex Separator). For a graph G on [n] and vertex sets I, J ⊆ [n], a set of vertices
S ⊆ [n] is said to be a minimal vertex separator if S is a set of smallest possible size such that every
path between I and J in G passes through some vertex of S.

Often, I and J will be allowed to intersect in which case any vertex separator must contain I ∩ J.

Fact 4.2 (Menger’s Theorem). For a graph G on [n] and two subsets of vertices I, J ⊆ [n], the maximum
number of vertex disjoint paths between I and J in G is equal to the size of any minimal vertex separator
between I and J in G.

4.3 Fourier Analysis

Any graph function f : G→ R can be represented as a Fourier polynomial in the variables Ge:

f (G) =
∑

W⊆([n]
2 )

f̂ (W)χW(G),

where χW(G) is the parity function on edges in W:

χW(G) = Πe∈WGe.

The parity function χW are an orthonormal basis for functions on G under the inner product defined
by 〈 f , h〉 = EG∼G(n, 12 )[ f (G)h(G)] for any graph functions f and h.

The following fact is easy to verify:

Fact 4.3. Let G be a graph on n described by the vector G ∈ {−1, 1}(
n
2). For any subset S ⊆ [n] of the vertices,

we have the identity: ∑
W⊆(S

2)
χW(G) =

2(|S|2 ) if S is a clique in G,

0 otherwise.

4.4 The Sum-of-Squares Algorithm

The sum of squares algorithm has several equivalent definitions. We follow the notation of
pseudoexpectations as in the survey of Barak and Steurer [BS14].

Definition 4.4 (Pseudoexpectation). A linear operator Ẽ : Pn
d → R is said to be a degree d-

pseudoexpectation if it satisfies:
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1. Normalization: Ẽ[1] = 1.

2. Positive Semidefiniteness: Ẽ[p2] > 0 for every polynomial p ∈ Pn
d .

A pseudoexpectation operator Ẽ on Pn
d is said to satisfy a constraint {p = 0} for any p ∈ Pn

d if for
every polynomial q ∈ Pn

d such that p · q ∈ Pn
d , Ẽ[pq] = 0.

Given a set of constraints {pi = 0} for 1 6 i 6 m and an objective polynomial p, degre sum of
squares algorithm of degree d solves the problem

arg max Ẽ[p]

over all degree d pseudoexpectations Ẽ that satisfy {pi = 0} for 1 6 i 6 m.

5 The Pseudo-expectation

We now define our pseudo-distribution operator ẼG. As discussed in Section 2.2, it is based on
requiring (2.2) to hold for every f that has degree at most τ in G and d in x.

Important Parameters. The following parameters will be fixed for the rest of the paper.

• ε ∈ (0, 1/2), which determines the size ω = n1/2−ε of the planted clique.

• d = d(n) ∈ N, the degree of the SoS relaxation against which we prove a lower bound.

• τ = τ(n) ∈ N, the degree of our pseudoexpectation Ẽ as a function of G ∼ G(n, 1/2).

We always assume that Cd/ε 6 τ 6 (ε/C) log n and ε > C log log n/ log n for a sufficiently-large
constant C. Eventually we will set d = (ε/C)2 log n, (this yields the parameters stated in Theorem
1.1, since then n1/2−ε = n1/2−Ω(d/ log n)1/2

), which implies that ε� log log n/ log n.

5.1 Definition of Ẽ

As discussed previously, Ẽ is completely specified by its multilinear moments: Ẽ[xI] for I ⊆ [n] and
|I| 6 d. Ẽ[xI] is a function of Ge for e ∈

([n]
2
)

and can be written as a polynomial in Ge with coefficients
̂̃E[xS](T) for each T ⊆

([n]
2
)

(the "Fourier coefficients"). These Fourier coefficients will be fixed by our
insistence on the pseudoexpectation being pseudocalibrated with respect to the planted distribution
G(n, 1/2, ω).

Definition 5.1 (Ẽ of degree d, clique-size ω, truncation τ). Let S ⊆ [n] be a set of vertices of size
|S| 6 d. Let T ⊆

([n]
2
)

be a set of edges. Let χT =
∏

e∈T Ge. Let

̂̃E[xS](T) =

E(G,x)∼G(n,1/2,ω)[χT(G)xS] if |V(T) ∪ S| 6 τ

0 otherwise .

As usual, Ẽ[xS] =
∑

T⊆([n]
2 )

̂̃E[xS](T) · χT(G).
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The Fourier coefficients can in fact be explicitly computed easily:

Lemma 5.2. Let T ⊆
([n]

2
)
, S ⊆ [n] andV(T) ⊆ [n] be the vertices incident to edges in T. Then

E
(H,x)∼G(n,1/2,ω)

[χT · xS] =
(
ω
n

)|V(T)∪S|
.

Proof. Throughout this proof, we suppress explicit notation for the underlying random variable
which is (H, x) ∼ G(n, 1

2 , ω). We claim that E[χT · xS] = P[xV(T)∪S = 1]. To see this, note that

E[χT · xS] = P[xV(T)∪S = 1] · E[χT · xS | xV(T)∪S = 0]

+ (1 − P[xV(T)∪S = 1]) · E[χT · xS | xV(T)∪S = 0]. (5.1)

We note that the second term above is 0. It’s easy to see if xS = 0. Otherwise, xV(T) = 0, and there is
an edge e ∈ T but not contained in the clique x. Thus,

E[χeχT\e · xS | xV(T)∪S = 0] = 0 .

If xV(T)∪S = 1 then χT = 1, so E[χT · xS | xV(T)∪S = 1] = 1. By a simple computation,

P[xV(T)∪S = 1] =
(
ω
n

)|V(T)∪S|
. �

As discussed in Section 2.3, our construction of Ẽ is pseudocalibrated. The following lemma
captures this formally. We include the (straightforward) proof in Appendix A.1.

Lemma 5.3. Let fG(x) =
∑
|S|62d cS(G) · xS be a real-valued polynomial on {0, 1}n whose coefficients have

degree at most τ when expressed in the ±1 indicators Ge for edges in G. Then, EG∼G(n, 12 )[Ẽ[ fG(x)]] =

E(H,x)∼G(n,1/2,ω)[ fH(x)].

5.2 Ẽ Satisfies Constraints

We now show that the Ẽ defined in the previous section satisfies all linear constraints among (1)
– (6) in Section 2.2 and has an objective value of ω. That is, 1) Ẽ[1] ≈ 1, 2) Ẽ[

∑
i∈[n] xi] ≈ ω, and 3)

Ẽ[xS] = 0 for every S ⊆ [n] which is not a clique in G.
We analyze Ẽ[1] and Ẽ[

∑
i∈[n] xi] in the next lemma and include a proof based on moment-method

in Appendix A.2.

Lemma 5.4. With high probability, Ẽ[1] = 1 ± n−Ω(ε) and Ẽ[
∑

i∈[n] xi] = ω · (1 ± n−Ω(ε)).

The next lemma shows that Ẽ[xS] = 0.

Lemma 5.5. With probability 1, if S ⊆ [n] of size at most d is not a clique in G, then Ẽ[xS] = 0.

Proof. Let S ⊆ [n] have size at most d. Recall that 1S is a clique in G = 2−(
|S|
2 ) ∑

T⊆(S
2) χT. Becasue the

Fourier expansion of Ẽ[xS] is truncated using the threshold |V(T) ∪ S| 6 τ, two Fourier characters
χT, χT′ have the same coefficient in Ẽ[xS] if T⊕T′ ⊆

(S
2
)
. So we can factor Ẽ[xS] = 1S is a clique in G · fS(G)

for some function fS. �
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5.3 Proof of Main Theorem

Our main technical claim is that Ẽ = ẼG is (approximately) PSD. That is:

Lemma 5.6. With high probability over G from G(n, 1/2), every p ∈ Pd satisfies,

ẼG[p(x)2] > 0

It is easy to complete the proof of Theorem 1.1 now:

Proof of Theorem 1.1. By Lemma 5.4, Lemma 5.5, and Lemma 5.6, there is a universal C so that if
Cd/ε 6 τ 6 (1/C)ε log n, (by a union bound) with high probability the following all hold:

1. Ẽ[1] = 1 ± n−Ω(ε).

2. Ẽ[xS] = 0 for every S of size at most d not a clique in G.

3. Ẽ[
∑

i xi] > (1 − n−Ω(ε))ω.

4. Ẽ[p(x)2] > 0 for every p ∈ Pd.

Thus, choose ε = (C2d/ log n)1/2 and τ = (1/C)ε log n. The operator given by Ẽ∗[p(x)] = Ẽ[p(x)]/Ẽ[1]
is a valid degree-d pseudo-distribution with Ẽ[

∑
i xi] > Ω(n1/2−Θ(d/ log n)1/2

) as desired.

5.4 Proof Plan

As is standard, we can reduce Lemma 5.6 to showing that the associated moment matrix, is positive
semidefinite.

Definition 5.7 (Moment Matrix). LetM ∈ R([n]
6d)×(

[n]
6d) be given byM(I, J) = Ẽ[xIxJ].

Thus, Lemma 5.6 is equivalent to showing:

Lemma 5.8. With high probability,M � 0.

At a high level our plan involves first getting an approximate factorization of the moment matrix
M = LQ0L

† +”error” for appropriately defined matrices L and Q0. This step is the key technical
part of the proof - given such a factorization, our task reduces to showing that Q0 and LL† has
large enough positive eigenvalues to compensate for the error. The first approximate factorization
step will occupy us in Section 6. The technical work in second step involves showing upper bounds
on the spectral norms of appropriately defined pieces of Q0 and is the content of Section 7.

�
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6 Approximate Factorization of the Moment Matrix

6.1 Ribbons and Vertex Separators

In this section we get set up for the first step in the proof of Lemma 5.8 by setting up some definitions.
Ribbons will play a crucial role in our analysis:

Definition 6.1 (Ribbon). An (I, J)-ribbon R is a graph with edge set WR ⊆
([n]

2
)

and vertex set
VR ⊇ V(WR) ∪ I ∪ J, for two specially identified subsets I, J ⊆ [n], each of size at most d, called the

left and the right ends, respectively. We sometimes writeV(R) def
= VR and call |V(R)| the size of R.

Also, we write χR for the monomial χWR where WR is the edge set of the ribbon R.

In our analysis, (I, J)-ribbons arise as the terms in the Fourier decomposition of the entryM(I, J)
in the moment matrix. It is important to emphasize that the subsets I and J in an (I, J)-ribbon are
allowed to intersect. Also V(R) can contain vertices that are not in V(WR) if there are isolated
vertices in the ribbon.

Ultimately, we will want to partition a ribbon into three subribbons in such a way that we can
express the moment matrix as the sum of positive semidefinite matrices, and some error terms.
Our partitioning will be based on minimum vertex separators.

Definition 6.2 (Vertex Separator). For an (I, J)-ribbon R with edge set WR, a subset Q ⊆ V(R) of
vertices is a vertex separator if Q separates I and J in WR. A vertex separator is minimum if there are
no other vertex separators with strictly fewer vertices. The separator size of R is the cardinality of
any minimum vertex separator of R.

The following elementary lemma establishes that a ribbon has a unique leftmost and rightmost
vertex separator of minimum size. We defer its proof to Appendix A.3.

Lemma 6.3 (Leftmost/Rightmost Vertex Separator). LetR be an (I, J)-ribbon. There is a unique minimum
vertex separator S of R such that S separates I and Q for any vertex separator Q of R. We call S the leftmost
separator in R. We define the rightmost separator analogously and we denote them by SL(R) and SR(R)
respectively.

We illustrate the notion of a leftmost and rightmost vertex separator in the example below.

a 

b 

c 

x 

y 

z 

k 

j h 

i 

R 
SL 

SR 
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Let I = {a, b, c} and let J = {c, x, y, z}. The maximum number of vertex disjoint paths from I to J is
2 — for example, we could take the path {c} and the path {b, h, i, j, z}. The leftmost and rightmost
separators are SL = {c, i} and SR = {c, j} respectively. This example illustrates an important point
that when I and J intersect, SL and SR must both contain I ∩ J.

6.2 Factorization of Monomials

Our factorization ofMwill rely on an iterative argument for grouping and factoring the Fourier
characters in the decomposition ofM(I, J).

Definition 6.4 (Canonical Factorization). Let R be an (I, J)-ribbon with edge set WR and vertex set
VR. Let V` be the vertices reachable from I without passing through SL(R), and similarly for Vr,
and let Vm = VR \ (V` ∪ Vr). Let W` ⊆WR be given by

W` = {(u, v) ∈WR : u ∈ V` and v ∈ V` ∪ SL}

and similarly for Wr. Finally, let Wm = WR \ (W` ∪Wr).
Let R` be the (I,SL(R))-ribbon with vertex set V` ∪ SL(R) and edge set W` and similarly for Rr.

Let Rm be the (SL(R),SR(R))-ribbon with vertex set Vm and edge set Wm . The triple (R`,Rm,Rr) is
the canonical factorization of R.

Some facts about the canonical factorization are worth emphasizing. First, W`,Wm and Wr are
disjoint and are a partition of WR by construction. Hence χR = χW` ·χWm ·χWr . Second, some vertices
in I may not be in V` at all. However any such vertices that are in I but not V` are necessarily in SL

and thus will be contained in R` anyways. This is why we can say that R` is an (I,SL(R))-ribbon.
The following illustrates what the canonical factorization would look like in our earlier example:

a 

b 

c 

h 

i 

R L 

c 

j i 

R M 

c 

x 

y 

z 

k 

j 

R R 

We chose this example to illustrate a subtle point. The edge (i, c) has both its endpoints in both
R` and Rm. We could in principle choose to place it in either, but we have adopted the convention
that because both of its endpoints are in SL we place it in Rm. In this way, there are no edges within
SL in R` or within SR in Rm. Finally, note that there can be isolated vertices in R` or Rr but such
vertices need to be in I or J respectively.

With the definition of the canonical factorization in hand, we will collect some important
properties about it that we will make use of later:
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Claim 6.5. Let R be an (I, J)-ribbon with canonical factorization (R`,Rm,Rr). Then

|V(R)| = |V(R`)| + |V(Rm)| + |V(Rr)| − |SL(R)| − |SR(R)|.

Proof. It is important to note that SL(R) and SR(R) are not necessarily disjoint (indeed, this happens
in the example above). Nevertheless, we know that by construction V`, Vm and Vr are disjoint and
that SL(R) ∪ SR(R) ⊆ Vm. Every vertex that appears just once in SL(R) and SR(R) appears twice in
the canonical factorization. And every vertex that is in SL(R) ∩ SR(R) appears three times. Thus

|V(R)| = |V(R`)| + |V(Rm)| + |V(Rr)| − |SL(R)/SR(R)| − |SR(R)/SL(R)| − 2|SL(R) ∩ SR(R)|

which completes the proof. �

In the discussion above, we established some properties that a canonical factorization must
satisfy. Next we show the reverse direction, that any collection of ribbons that satisfies the below
properties must be a canonical factorization. Consider a collection of ribbons R0,R1,R2, and the
following list of properties:

S`,Sr Factorization Conditions for R0,R1,R2 (Here S`,Sr ⊆ [n].).

1. R0 is an (I,S`)-ribbon with SL(R0) = SR(R0) = S`, and all vertices inV(R0) are either reachable
from I without passing through S` or are in I or S`. Finally, R0 has no edges between vertices
in S`.

2. R2 is an (Sr, J)-ribbon with SL(R2) = SR(R2) = Sr, and all vertices inV(R2) are either reachable
from J without passing through Sr or are in J or Sr. Finally, R2 has no edges between vertices
in Sr.

3. R1 is an (S`,Sr)-ribbon with SL(R1) = S` and SR(R1) = Sr. Every vertex inV(R1) \ (S` ∪ Sr) has
degree at least 1.

4. WR0 ,WR1 ,WR2 are pairwise disjoint. Also, VR0 ∩ VR1 = S`,VR1 ∩ VR2 = Sr, and VR0 ∩ VR2 =

S` ∩ Sr.

Lemma 6.6. Let R0,R1,R2 be ribbons. Then (R0,R1,R2) is the canonical factorization of the (I, J)-ribbon R
with edge set WR0 ⊕WR1 ⊕WR2 and vertex setV(R0)∪V(R1)∪V(R2) if and only if the S`,Sr factorization
conditions hold for R0,R1,R2 for some S`,Sr ⊆ [n].

Proof. If R is a ribbon with leftmost and rightmost vertex separators S` and Sr and canonical
factorization (R0,R1,R2), then many of the conditions above are automatically satisfied. By
construction, WR0 ,WR1 ,WR2 are pairwise disjoint. Because any edge with both endpoints in S` is
included in Rm we have that there are no edges between vertices in S` in R0, and similarly for R2.
Finally suppose there is a vertex u in R0. If u is not reachable from I without passing through S`
and is not in I or S` then it would not be included in R0. An identical argument holds for R2.

All that remains is to verify that SL(R0) = SR(R0) = S` and similarly for R1,R2. If S` = SL(R) is
not a minimum-size vertex separator for R0, then it is also not a minimum-size vertex separator
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for R, which is impossible. Similarly, if it is not the leftmost separator for R0 then it was not the
leftmost separator for R. Since R0 is an (I,S`)-ribbon and S` is a minimum-size separator, it must
also be the right-most minimum-size separator.

Now in the reverse direction, suppose thatR0,R1,R2 are ribbons that meet the S`,Sr factorization
conditions. We claim that S` is the leftmost separator for R. If not, then either their is a smaller
vertex separator, or there is a vertex separator S′` of the same size that separates I and S`. To rule out
the former case, note that since S` and Sr are both minimum vertex separators for R1, we must have
|S`| = |Sr|. Then it follows from the S`,Sr factorization conditions that there are |S`| vertex disjoint
paths from I to J, but this would contradict the fact that there is a vertex separator with fewer than
|S`| vertices. In the latter case, any other vertex separator S′` of the same size that separates I and S`
would contradict the condition SL(R0) = S`. An identical argument shows that Sr is the rightmost
separator for R.

Finally, by assumption all the vertices in V(R0) are either reachable from I without passing
through S` or are in I or S` and hence would be included in R0. Similarly, there are no edges in WR0

with both endpoints in S`. Thus if we were to compute the canonical factorization for R we would
get the same set of vertices in each ribbon and the same partition of the edges. �

6.3 Factorization of Matrix Entries

This leads to our first factorization of the entriesM(I, J) ofM. Unfortunately, the error terms in this
first attempt will be too large. Using canonical factorizations and Claim 6.5, for any I, J ⊆ [n] of size
at most d we can write

M(I, J) =
∑

R an (I, J)-ribbon with edge set W,
|V(W)|6τ

canonical factorization (R`,Rm,Rr)

(
ω
n

)|V(R)|
· χR` · χRm · χRr

=
∑

S`,Sr⊆[n]
|S` |=|Sr|6d

(
ω
n

)− |S` |+|Sr |
2 ∑

R`,Rm,Rr⊆([n]
2 )

satisfying S`,Sr factorization conditions
and |V(R`)∪V(Rm)∪V(Rr)|6τ

(
ω
n

)|V(R`)|+|V(Rm)|+|V(Rr)|−
|S` |+|Sr |

2
· χR` · χRm · χRr

Notice that except for the disjointness condition, the S`,Sr factorization conditions can be separated
into condition 1 for R`, condition 3 for Rm, and condition 2 for Rr. We use this to rewrite as

=
∑

S`,Sr⊆[n]
|S` |=|Sr|6d

(
ω
n

)− |S` |+|Sr |
2


∑

R` having 1
|V(R`)|6τ

(
ω
n

)|V(R`)|
χR`




∑
Rmhaving 3
|V(Rm)|6τ

(
ω
n

)|V(Rm)|−
|S` |+|Sr |

2
χRm




∑
Rrhaving 2
|V(Rr)|6τ

(
ω
n

)|V(Rr)|
χRr


(6.1)

24



−

∑
S`,Sr⊆[n]
|S` |=|Sr|6d

(
ω
n

)− |S` |−|Sr |
2 ∑

R`,Rm,Rr
satisfying S`,Sr conditions
|V(R`)|,|V(Rm)|,|V(Rr)|6τ,
|V(R`)∪V(Rm)∪V(Rr)|>τ

(
ω
n

)|V(R`)|+|V(Rm)|+|V(Rr)|−
|S` |+|Sr |

2
· χR` · χRm · χRr

︸                                                                                                            ︷︷                                                                                                            ︸
def
= ξ0(I,J), the error from ribbon size

(6.2)

−

∑
S`,Sr⊆[n]
|S` |=|Sr|6d

(
ω
n

)− |S` |−|Sr |
2 ∑

R`,Rm,Rr satisfying
1,3,2 and not 4

|V(R`)|,|V(Rm)|,|V(Rr)|6τ

(
ω
n

)|V(R`)|+|V(Rm)|+|V(Rr)|−
|S` |+|Sr |

2
· χR` · χRm · χRr

︸                                                                                                           ︷︷                                                                                                           ︸
def
= E0(I,J), the error from ribbon nondisjointness

.

(6.3)

6.4 Factorization of the MatrixM

In lines 6.2 and 6.3 we have defined two error matrices, ξ0,E0 ∈ R([n]
6d)×(

[n]
6d). Inspired by the

factorization ofM(I, J) in line 6.1, we define another pair of matrices as follows:

Q0 ∈ R([n]
d )×([n]

d ) given by Q0(S`,Sr) =
∑

Rm having 3
|V(Rm)|6τ

(
ω
n

)|V(Rm)|−
|S` |+|Sr |

2
χRm

L ∈ R([n]
d )×([n]

d ) given by L(I,S) =
(
ω
n

)− |S|2 ∑
R` having 1
|V(R`)|6τ

(
ω
n

)|V(R`)|
χR` .

The powers of (ω/n) are split between Q0 and L so that the typical of eigenvalue of Q0 will be
approximately 1 (although it will be some time before we are prepared to prove that).

The equation in lines 6.1, 6.2, and 6.3 can be written succinctly as

M = LQ0L
†
−ξ0 − E0 .

As we will see later, with high probability Q0 � 0, and thus also LQ0L
†
� 0. So long as τ is

sufficiently large, the spectral norm ‖ξ0‖ of the error term that accounts for ribbons whose size is
too large will be negligible. However, the error E0 does not turn out to be negligible. To overcome
this we will apply a similar factorization approach to E0 as we did forM; iterating this factorization
will push down the error from ribbon nondisjointness.

We record an elementary fact about Q0:

Lemma 6.7. Let Π be the projector to Span{eC : C ∈ C6d}. Then Q0 = ΠQ0 = Q0Π.

Proof. Suppose S is not a clique in G. We need to show that the row Q0(S, ·) is zero. For every entry
Q0(S,S′), notice that the Fourier coefficients ̂Q0(S,S′)(T) = ̂Q0(S,S′)(T′) if T,T′ ⊆

([n]
2
)

disagree only
on edges inside S. (That is, T⊕T′ ⊆

(S
2
)
.) This means that Q0(S,S′) = 1S is a clique in G · fS,S′(G) for some

function fS,S′ . �
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6.5 Iterative Factorization of E0

We recall now the definition of the matrix E0 ∈ R([n]
6d)×(

[n]
6d).

E0(I, J) =
∑

S`,Sr⊆[n]
|S` |=|Sr|6d

(
ω
n

)− |S` |+|Sr |
2 ∑

R`,Rm,Rr satisfying
1,3,2 and not 4

|V(R`)|,|V(Rm)|,|V(Rr)|6τ

(
ω
n

)|V(R`)|+|V(Rr)|+|V(Rm)|−
|S` |+|Sr |

2
· χR` · χRm · χRr .

In what follows, we will show how to factor a slightly more general sort of matrix; this factorization
will be applicable iteratively, starting with E0.

6.5.1 The matrix Ec and its factorization

To express the family of matrices we will factor, we introduce a relaxation of our definition of ribbon
and a corresponding relaxation 3* of condition 3 of the S`,Sr factorization conditions.

Definition 6.8 (Improper Ribbon). An improper (I, J)-ribbon R is an (I, J)-ribbon R0 together with a
setZ(R) ⊆ [n] of vertices disjoint fromV(R0). (Think of adding the verticesZ(R) to the ribbon R0

as degree-0 nodes.) We writeV(R) =V(R0) ∪Z(R). When we need to distinguish, we sometimes
call ordinary ribbons “proper”.

Every ribbon is also an improper ribbon by takingZ(·) = ∅, and every improper ribbon has a
corresponding ribbon given by deleting its degree-0 vertices.

Relaxed Factorization Condition for ribbon R1 with S`,Sr ⊆ [n].

3*. R1 is an improper (S`,Sr)-ribbon.

Let c be a R-valued function c(R) on (possibly improper) ribbons. Let Ec ∈ R([n]
6d)×(

[n]
6d) be given by

Ec(I, J) =
∑

S`,Sr⊆[n]
|S` |,|Sr|6d

(
ω
n

)− |S` |+|Sr |
2 ∑

R`,Rm,Rr satisfying
1,3*,2 and not 4

|V(R`)|,|V(Rm)|,|V(Rr)|6τ

c(Rm)
(
ω
n

)|V(R`)|+|V(Rr)|+|V(Rm)|−
|S` |+|Sr |

2
· χR` · χRm · χRr .

(6.4)

Note that 3 is a strictly more restrictive condition than 3*. Hence we can define the function c0

by c0(Rm) = 1 if Rm satisfies 3 and c0(Rm) = 0 otherwise. Then E0 = Ec0 . In this subsection, we will
show how to factor any matrix of the form Ec as

Ec = LQc′ L
†
−Ec′ − ξc

for some function c′ on ribbons and matrices Qc′ , ξc ∈ R([n]
6d)×(

[n]
6d) where ‖ξc‖ is negligible with high

probability.
Just as our initial factorization ofM began with a factorization of each ribbon appearing in the

Fourier expansion, our factorization of Ec depends on a factorization for each triple (R`,Rm,Rr)
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appearing in 6.4. Since they do not satisfy 4, there must be some vertices occurring in more than
one of V(R`),V(Rm),V(R`). Before, the canonical factorization depended on the leftmost and
rightmost vertex separators in an (I, J)-ribbon R separating I from J. But now we will be interested
in leftmost and rightmost separators that separate both I and J from each other and from these
repeated vertices.

Definition 6.9 (Separating Factorization). Let R`,Rm,Rr be ribbons satisfying S`,Sr factorization
conditions 1, 3*, 2 but not 4, with |V(R`)|, |V(Rm)|, |V(Rr)| 6 τ. Let R be the (I, J)-ribbon with edge
set WR` ⊕WRm ⊕WRr and vertex setV(R`) ∪V(Rm) ∪V(Rr). (Thus, χR` · χRm · χRr = χR.)

Let S′` be the leftmost minimum-size vertex separator in R which separates I from J and any
vertices appearing in more than one of V(R`),V(Rm),V(Rr). Similarly, let S′r be the rightmost
minimum-size vertex separator in R separating J from I and these repeated vertices. (Notice that S′`
and S′r could have different sizes.)

Let V′` be the vertices reachable from I without passing through S′` and similarly for V′r. Let
V′m = VR \ (V′` ∪ V′r). Let W′` = {(u, v) ∈ WR : u ∈ V`, v ∈ V` ∪ S′`} and similarly for W′r, and let
W′m = WR \ (W′` ∪W′r).

Let R′` be the (I,S′`)-ribbon with vertex set V′` ∪S′` and edge set W′` and let R′r be the (S′r, J)-ribbon
with vertex set V′r ∪ S′r and edge set W′r. Finally, let R′m be the improper (S′`,S

′
r)-ribbon with edge set

W′m and vertex set (V(R) \ (V′` ∪ V′r)) ∪ S′` ∪ S′r).

Note that χR` ·χRm ·χRr = χR′
`
·χR′m ·χR′r if R′`,R

′
m,R

′
r is the separating factorization for R`,Rm,Rr.

We can use this to rewrite Ec as

Ec(I, J) =∑
S`,Sr⊆[n]
|S` |,|Sr|6d

(
ω
n

)− |S` |+|Sr |
2 ∑

R`,Rm,Rr satisfying
1,3*,2 and not 4

|V(R`)|,|V(Rm)|,|V(Rr)|6τ
separating factorization

R
′

`,R
′
m,R

′
r,S′`,S

′
r

c(Rm)
(
ω
n

)|V(R`)|+|V(Rr)|+|V(Rm)|−
|S` |+|Sr |

2
· χR′

`
· χR′m · χR′r (6.5)

Our goal is to find some coefficient function c′ on (improper) ribbons and a matrix Qc′ so that this is
approximately equal to LQc′ L

†
−Ec′ . For c′ yet to be chosen, we take

Qc′(S′`,S
′

r)
def
=

∑
R
′
m having 3*
|V(R′m)|6τ

c′(R′m)
(
ω
n

)|V(R′m)|−
|S′
`
|+|S′r |
2

χR′m

and have that

LQc′ L
†(I, J) − Ec′(I, J) =∑

S′`,S
′
r⊆[n]

|S′` |,|S
′
r|6d

(
ω
n

)− |S′` |+|S′r |2 ∑
R
′

`,R
′
m,R

′
r satisfying

1,3*,2, and 4
|V(R′`)|,|V(R′m)|,|V(R′r)|6τ

c′(R′m)
(
ω
n

)|V(R′`)|+|V(R′r)|+|V(R′m)|−
|S′
`
|+|S′r |
2
· χR′

`
· χR′m · χR′r . (6.6)
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We will compare (6.5) and (6.6) by collecting like terms, but first we handle the discrepancy in the
size bounds on the ribbons with a corresponding error term ξc. The following matrix is similar to Ec,
but places a size bound on the ribbons in the separating factorization |V(R′`)|, |V(R′m)|, |V(R′r)| 6 τ.
We define

E
′

c(I, J) =∑
S`,Sr⊆[n]
|S` |,|Sr|6d

(
ω
n

)− |S` |+|Sr |
2 ∑

R`,Rm,Rr satisfying
1,3*,2 and not 4

separating factorization
R
′

`,R
′
m,R

′
r,S′`,S

′
r

|V(R′`)|,|V(R′m)|,|V(R′r)|6τ

c(Rm)
(
ω
n

)|V(R`)|+|V(Rr)|+|V(Rm)|−
|S` |+|Sr |

2
· χR′

`
· χR′m · χR′r

We take ξc = E′c − Ec and we will show below that with high probability the error ‖ξc‖ is negligible.
Before doing this, we show that E′c is exactly equal to L†Qc′ L

†
−Ec′ for the correct choice of c′.

To collect like terms, it helps to define the following quantity γR′
`
,R′m,R

′
r,I,J,S′`,S

′
r
.

γR′
`
,R′m,R

′
r,I,J,S′`,S

′
r

def
=

∑
R`,Rm,Rr satisfying

1,3*,2 and not 4 for some S`,Sr
separating factorization R′`,R

′
m,R

′
r,S′`,S

′
r

c(Rm)
(
ω
n

)|V(R`)|+|V(Rm)|+|V(Rr)|+
|S′
`
|+|S′r |
2 −|S` |−|Sr|

.

Then we can rewrite E′c(I, J) again as

E
′

c(I, J) =
∑

S′`,S
′
r⊆[n]

|S′` |,|S
′
r|6d

(
ω
n

)− |S′` |+|S′r |2 ∑
R
′

`,R
′
m,R

′
r

satisfying 1, 3*, 2, 4 for S′`,S
′
r

|V(R′`)|,|V(R′m)|,|V(Rr)|6τ

γR′
`
,R′m,R

′
r,I,J,S′`,S

′
r
· χR′

`
· χR′m · χR′r

We will obtain E′c = L†Qc′ L
†
−Ec′ if we define c′(R′m) so that

c′(R′m)
(
ω
n

)|V(R′`)|+|V(R′r)|+|V(R′m)|−
|S′
`
|+|S′r |
2

= γR′
`
,R′m,R

′
r,I,J,S′`,S

′
r

To express this in terms of the function c, we expand out γR′
`
,R′m,R

′
r,I,J,S′`,S

′
r
. It is useful to define:

Definition 6.10. Let

r = (|V(R`)| + |V(Rm)| + |V(Rr)| − |S`| − |Sr|) − (|V(R′`)| + |V(R′m)| + |V(R′r)| − |S
′

`| − |S
′

r|) .

(The ribbons R`,Rm,Rr,R′`,R
′
m,R

′
r will always be clear from context.)

Note that (V(R`)|+ |V(Rm)|+ |V(Rr)|− |S`|− |Sr|) is the total number of vertices we would have in
the (I, J)-ribbon with vertex setV(R`)∪V(Rm)∪V(R`) ifR`,Rm,Rr satisfied condition 4 (which they
do not!). Similarly, (|V(R′`)|+ |V(R′m)|+ |V(R′r)| − |S′`| − |S

′
r|) is the total number of vertices in the (I, J)-

ribbon with edge setW(R′`)∪W(R′m)∪W(R′r) and vertex setV(R′`)∪V(R′m)∪V(R′r). Thus, r is the
number of vertices occurring with multiplicity higher than they should inV(R`) ∪V(Rm) ∪V(Rr).
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We can rewrite the γ’s as

γR′
`
,R′m,R

′
r,I,J,S′`,S

′
r

=
(
ω
n

)|V(R′`)|+|V(R′m)|+|V(R′r)|−
|S′
`
|+|S′r |
2 ∑

R`,Rm,Rr satisfying
1,3*,2 and not 4 for some S`,Sr

r intersections outside S`,Sr

separating factorization R′`,R
′
m,R

′
rS′`,S

′
r

c(Rm)
(
ω
n

)r
.

Thus, we will have that E′c = LQc′ L
†
−Ec′ if and only if for every (S′`,S

′
r)-ribbon R′m and every

R
′

`,R
′
r satisfying 1, 2,

c′(R′m) =
∑

R`,Rm,Rr satisfying
1,3*,2 and not 4 for some S`,Sr

r intersections outside S`,Sr

separating factorization R′`,R
′
m,R

′
rS′`,S

′
r

c(Rm)
(
ω
n

)r
.

Note that for this to happen, the right hand side must be independent of R′` and R′r. If this is the
case, then we can define

c′(R′m) def
=

∑
R`,Rm,Rr satisfying

1,3*,2 and not 4 for some S`,Sr
r intersections outside S`,Sr

separating factorization R′`,R
′
m,R

′
rS′`,S

′
r

c(Rm)
(
ω
n

)r
for some R′`,R

′

r satisfying 1, 2 .

The next claim shows that, indeed, the choice of R′`,R
′
r does not matter. (This would not have been

true without passing from Ec to E′c.)

Claim 6.11. Let R′`,R
′
m,R

′
r satisfy 1, 3*, 2, 4 for some S′`,S

′
r ⊆ [n]. Let R

′′

` and R
′′

r also satisfy 1 and 2,
respectively, for S′`,S

′
r, respectively. Then∑

R`,Rm,Rr satisfying
1,3*,2 and not 4 for some S`,Sr

r intersections outside S`,Sr

separating factorization R′`,R
′
m,R

′
rS′`,S

′
r

c(Rm)
(
ω
n

)r
=

∑
R`,Rm,Rr satisfying

1,3*,2 and not 4 for some S`,Sr
r intersections outside S`,Sr

separating factorization R
′′

` ,R
′
m,R

′′

r S′`,S
′
r

c(Rm)
(
ω
n

)r
.

(Notice that the left-hand sum refers to R′`,R
′
r and the right-hand one to R

′′

` ,R
′′

r .)

Proof. We prove this by showing that there is an exact match between terms on the left hand side
and terms on the right hand side. Consider a term on the left hand side. Note that the part of R`
between I and S′` must be R′` while the part of R` between S′` and S` becomes part of R′m. To shift
from R′` to R′′` , we simply replace R′` by R′′` within R`. Similarly, to shift from R′r to R′′r , we simply
replace R′r by R′′r within Rr.

To show that this gives an exact match, we need to show that r is unaffected by these shifts. To
see that shifting from R′` to R′′` does not affect r, note that all vertices inV(R′`) \ S′` orV(R′`) \ S′`
must appear in the corresponding R` and cannot appear in Rm or Rr. Thus, these vertices always
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have multiplicity 1 inV(R`) ∪V(Rm) ∪V(Rr). All other vertices (including the ones in S′`) may
appear in Rm or Rr as well as R` but whether or not they do so is unaffected by the shift so their
multiplicities in V(R`) ∪ V(Rm) ∪ V(Rr) are unaffected by the shift and r remains the same. A
similar argument holds for shifting from R′r to R′′r �

Remark 6.12. For this argument, it was important to keep track of the isolated vertices in R′m. If we
did not keep track of isolated vertices and instead had them disappear, we could have a situation
where there is a vertex v which appears in R` and Rm but disappears from R′m and is not in S′`. Since
v is no longer in R′m, R′′` could contain v. If so, then we cannot shift from R′` to R′′` as this would
create a copy of v to the left of S′` but v should be to the right of S′`.

Putting everything together, E′c = LQc′ L
†
−Ec′ . Since we defined ξc = E′c − Ec, we get that

Ec = LQcL
†
−Ec′ − ξc, as needed.

The remaining step will be to show that with high probability, the error term ξc has negligible
norm, which we will accomplish in Section 7.5.

Finally, we record the following easy lemma about separating factorizations, which will be
useful in the application of the foregoing to factor E0.

Lemma 6.13. Suppose R`,Rm,Rr satisfy conditions 1, 3*, 2, but not 4. Let R′`,R
′
m,R

′
r be their separating

factorization, with separators S′`,S
′
r. Then

|S′`| + |S
′
r|

2
−
|S`| + |Sr|

2
>

1
2

Proof. We claim that |S`|+ |Sr|+ 1 6 |S′`|+ |S
′
r| By the violation of condition 4, we cannot have S` = S′`

and Sr = S′r. But since S′` separates I from S` in R` and R` is an (I,S`)-ribbon whose rightmost vertex
separator is also S`, if S` , S′` then |S`| < |S′`|, and similarly for Sr and S′r. So either |S`| < |S′`| or
|Sr| < |S′r|, and since the separator sizes are integers, so the difference must be at least 1 and we are
done. �

6.5.2 Application to E0 andM

We are ready to define our recursive factorization of E0. Recall that c0(Rm) = 1 if Rm satisfies 3 and
c0(Rm) = 0 otherwise and E0 = Ec0 . Applying the factorization above to Ec0 we obtain matrices
ξ1 = ξc0 ,Q1, and Ec1 . Then of course we can apply the factorization again to Ec1 .

Proceeding inductively, for all i ∈ [1, 2d] let ξi = ξci−1 ,Qi, and Eci be the matrices given by
applying the factorization to Eci−1 at step i.

Claim 6.14.

M = L(Q0 − Q1 + Q2 − . . . − Q2d−1 + Q2d)L† −(ξ0 − ξ1 + ξ2 − . . . − ξ2d−1 + ξ2d) .

Proof. We have thatM = L(Q0)L† −E0 − ξ0 and Ei−1 = LQiL
†
−Ei − ξci−1 = LQiL

†
−Ei − ξi. We

prove the claim by starting with the first formula and appliying the second formula for each
i ∈ [1, 2d]. At the end, we are left with an extra term E2d. We must show that E2d = 0.

To see why E2d = 0, note that every time we have a separating factorization R′`,R
′
m,R

′
r for

R`,Rm,Rr, the size of either the left separator or the right separator must increase (see Lemma 6.13).
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However, the size of these separators is always at most d, so the only way we can do this for 2d
steps is if we started with the empty set as the separators and increased the size of either the left or
right separator by 1 each time, but not both. However, this too is impossible as if we start with
the empty set as the separators, after the first step both the new left separator and the new right
separator must have size at least 1. �

7 M is PSD

In this section we combine the factorization ofM in terms of the matrices L,Qi, ξi that we obtained
in Section 6 with estimates on the eigenvalues of the Qs and ξs. The starting point is the following
PSDness claim for Q0.

Lemma 7.1. Let D ∈ R([n]
6d)×(

[n]
6d) be the diagonal matrix with D(S,S) = 2(|S|2 )/4 if S is a clique in G and 0

otherwise. With high probability, Q0 � D.

We also need to bound ‖Qi‖ for i > 0.

Lemma 7.2. Let D ∈ R([n]
6d)×(

[n]
6d) be the diagonal matrix with D(S,S) = 2(S

2)/4 if S is a clique and is otherwise
zero. With high probability, every Qi for i ∈ [1, 2d] satisfies

−D
8d
� Qi �

D
8d
.

The preceding lemmas are enough to obtain Q0 − . . . + Q2d � D/2, but in the end we need to
work with the matrix L(Q0 − . . . + Q2d)L† −(ξ0 − . . . + ξ2d). The next two lemmas allow us to make
this last step.

Lemma 7.3. With high probability, ΠLΠL†Π � Ω(ω/n)d+1
·Π, where as usual Π is the projector to

Span{eC : C ∈ C6d}.

Finally, we need a bound on the ξ matrices.

Lemma 7.4. With high probability, ‖ξ0 − . . . + ξ2d‖ 6 n−16d.

We can now prove Lemma 5.8.

Proof of Lemma 5.8. By Claim 6.14,

M = L(Q0 − Q1 + Q2 − . . . − Q2d−1 + Q2d)L† −(ξ0 − ξ1 + ξ2 − . . . − ξ2d−1 + ξ2d) .

By a union bound, with high probability the conclusions of Lemmas 7.1, 7.2, 7.3, and 7.4 all hold.
By Lemma 7.1 and Lemma 7.2,

Q0 − Q1 + Q2 − . . . − Q2d−1 + Q2d �
D
2
�

Π

2
.

where as usual Π is the projector to SpaneC : C ∈ C6d. Thus by Lemma 7.3, we obtain L(Q0 − . . . +
Q2d)L† � Ω(ω/n)d+1

·Π. Finally, by Lemma 7.4 we have

M = Π · M ·Π � Ω
(
ω
n

)d+1
·Π + n−16d

·Π � 0 . �

In the next subsections, we prove the foregoing lemmas.
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7.1 Ribbons and Spectral Norms

Our PSDness arguments require bounds on the spectral norm of certain random matrices.
Our random matrices arise out of decompositions of the moment matrix from Definition 5.7

and are functions of a graph G on vertex set [n]. Our norm bounds will hold for what we call as
graphical matrices, that are are defined to capture the matrices are invariant under permutation of
vertices in the graph G and are in fact "minimal" such matrices.

We first identify the shape of a ribbon that basically identifies the structure of a ribbon up to
renaming.

Definition 7.5 (Shape of a Ribbon). For an (I, J)-ribbon R, consider the graph U on the vertex set
[|V(R)|] whose edges are

E(U) = {(i, j) : there is an edge in R from the i-th to the j-th least element ofV(R)} .

(Here we are consideringV(R) to have the usual ordering inherited from [n].) Also, let U have
two distinguished subsets of vertices A and B, where A = {i : the i-th element ofV(R) is in I}, and
similarly for B and J. We call U the shape of R and write shape(R) = U.

We record some observations on shapes of ribbons.

• If R is a ribbon (not an improper ribbon), its shape satisfies the assumptions of Lemma 7.8
(namely, that every vertex outside A ∪ B has degree at least 1).

• If, for example, R is an (I, J) ribbon where I∩ J = {1} (which must be the least element in both I
and J), then (I′, J′)-ribbon R′ only has the same shape as R if |I′ ∩ J′| = 1 and contains only the
least element in I and J. More broadly, specifying the shape of a ribbon in particular specifies
the pattern of intersection of its endpoints.

• A matrix M ∈ R( n
6d)×( n

6d) whose entries are given by M(I, J) =
∑
R an (I, J)-ribbon with shape U χR

satisfies the assumptions of Lemma 7.8. In the following sections, our main strategy will be to
decompose the matrices Qi into matrices of this form.

We are now ready to define graphical matrices.

Definition 7.6 (Graphical Matrices). Let U be a graph on the vertex set [t] with two distinguished
sets of vertices A,B ⊆ [t]. Let T (U) be the collection of all I, J ribbons with shape U. The graphical

matrix M ∈ R([n]
|A|)×(

[n]
|B|) of shape U is defined by

M(I, J) =
∑

R:R is an (I, J)-ribbon and shape(R)=U

χR.

Example 7.7. When U is a graph on 2 vertices with distinguished sets {1} and {2} of size 1 each
and a single edge connecting vertex 1 and 2, the graphical matrix of shape U is just the standard
{−1, 1}-adjacency matrix of the graph G.
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The following lemma will be our main tool. It is in essence due to Medarametla and Potechin
[MP] and special cases of the bound have been proven and used in [HKP+16, HKP15, DM15]. We
give a proof in the appendix for completeness.

Lemma 7.8. Let U be a graph on t 6 O(log n) vertices, with two distinguished subsets of vertices A and B,
and suppose:

• U admits p vertex-disjoint paths from A \ B to B \ A.

• |A ∩ B| = r.

• Every vertex outside A ∪ B has degree at least 1.

Let M = M(G) be the graphical matrix with shape U. Then, whp, ‖M‖ 6 n
t−p−r

2 · 2O(t)
· (log n)O(t−r+p).

Remark 7.9. Lemma 7.8 can be seen as a generalization of the standard upper bound on the spectral
norm of the adjacency matrix. Example 7.7 shows how adjacency matrix is a graphical matrix with
a shape U on 2 vertices with a single edge connecting them, thus, t = 2 and r = 1. Lemma 7.8 thus
shows an upper bound of

√
n poly log (n) on the spectral norm of the adjacency matrix which is

tight up to a poly log (n) factor.

7.2 PSDness for Q0—Proof of Lemma 7.1

In this section we prove Lemma 7.1, which we restate here.

Lemma (Restatement of Lemma 7.1). Let D ∈ R([n]
6d)×(

[n]
6d) be the diagonal matrix with D(S,S) = 2(|S|2 )/4 if

S is a clique in G and 0 otherwise. With high probability, Q0 � D.

Proof of Lemma 7.1. To begin, we split Q0 into its diagonal Qdiag
0 and its off-diagonal Qoff-diag

0 parts.

Q
diag
0 (S`,Sr) =

Q0(S`,Sr) if S` = Sr

0 otherwise.
Q

off-diag
0 (S`,Sr) =

Q0(S`,Sr) if S` , Sr

0 otherwise.

Then Q0 = Q
diag
0 + Q

off-diag
0 . Expanding Qdiag

0 ,

Q
diag
0 (S,S) = 2(|S|2 ) · 1S is a clique ·


1 +

∑
R nonempty, having 3
and no edges inside S

|S|<|R|6τ

(
ω
n

)|V(R)|−|S|
· χR


= 2(|S|2 ) · 1S is a clique · (1± n−Ω(ε))

for all S ∈
([n]

d
)

with high probability by a similar argument as in Lemma 5.4 and a union bound.

Next, we bound ‖Qoff-diag
0 ‖ be decomposing it according to ribbon shape. Fix s, t 6 τ. Let

U(s,t)
1 , . . . ,U(s,t)

q be all the graphs on vertex set [t] with two distinguished sets of vertices A,B, both of
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size s, with |A ∩ B| 6 s − 1, and where there are s − |A ∩ B| vertex-disjoint paths from A \ B to B \ A.
Let M(s,t)

i be given by

M(s,t)
i (S`,Sr) =

∑
R an (S`,Sr)-ribbon with shape U(s,t)

i

χR .

Then

Q
off-diag
0 =

∑
s6d
t6τ
i6q

(
ω
n

)t−s
·M(s,t)

i .

We can apply Lemma 7.8 to conclude that with probability at least 1 −O(n−100 log n),∥∥∥∥∥(ωn )t−s
·M(s,t)

i

∥∥∥∥∥ 6
(
ω
n

)t−s
· n

t−s
2 · 2O(t)

· (log n)O(t−|A∩B|+|A\B|) 6 n−ε(t−s)
· 2O(t)

· (log n)O(t−s) ,

where to conclude the bound on the exponent in (log n)O(t−|A∩B|+|A\B|) we have used that t > 2s−|A∩B|.
Notice that for fixed s and t, there are at most 2(t

2)+O(t) unique shapes U(s,t)
1 , . . . ,U(s,t)

q . Thus, a
union bound followed by the triangle inequality, we obtain that for fixed s and t, with probability at
least 1 −O(n−99 log n), ∥∥∥∥∥∥∥∥

(
ω
n

)t−s ∑
i6q

M(s,t)
i

∥∥∥∥∥∥∥∥ 6 2(t
2)+O(t)

· n−ε(t−s)
· 2O(t)

· (log n)O(t−s) .

Under our assumptions on the parameters d, τ, and ε, this is at most 2(s
2)/(100τ). Summing over all

t 6 τ, for a fixed s we have ∥∥∥∥∥∥∥∥∥∥∥
(
ω
n

)t−s ∑
t6τ
i6q

M(s,t)
i

∥∥∥∥∥∥∥∥∥∥∥ 6
2(s

2)

100
.

Notice that the above matrix is exactly the block of Qoff-diag
0 corresponding to subsets of size s.

Together with our bound on Qdiag
0 , this proves the lemma. �

7.3 Norm Bounds for Qi—Proof of Lemma 7.2

In this section we prove Lemma 7.2, restated here.

Lemma (Restatement of Lemma 7.2). Let D ∈ R([n]
6d)×(

[n]
6d) be the diagonal matrix with D(S,S) = 2(S

2)/4 if
S is a clique and is otherwise zero. With high probability, every Qi for i ∈ [1, 2d] satisfies

−D
8d
� Qi �

D
8d
.

We will need to bound the coefficients ci(R′m) used to define the matrices Qi which we set up in
Section 6.
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Lemma 7.10. Let c1, . . . , c2d be the coefficient functions defined in Section 6. For all improper (S`,Sr)-ribbons
Rm admitting exactly p vertex-disjoint paths from S` to Sr, and all i 6 2d, writing s = |S` |+|Sr|

2 ,

ci(Rm) 6
(
ω
n

)s
· n

p−|Z(Rm)|−i/2
2 +εs .

recalling that ω = n1/2−ε. Furthermore, if Rm and R′m have the same shape, then ci(Rm) = ci(R′m).

With this lemma in hand we can prove Lemma 7.2.

Proof of Lemma 7.2. Fix some 0 < i 6 2d. We will use Lemma 7.8, which requires that we first
decompose each Qi into simpler matrices. First of all, for a proper ribbon Rm, let

c̃i(Rm) =
∑

R′m an improper ribbon whose largest proper subribbon is Rm

(
ω
n

)|Z(R′m)|
· ci(R′m) .

Note that we include Rm itself in this sum as a proper ribbon is also an improper ribbon.

Claim 7.11. c̃i(Rm) 6 2(ω/n)s
· n

p−i/2
2 +εs, where p is the number of vertex-disjoint paths from S` to Sr

in Rm.

Proof. Consider all of the improper ribbons R′m with k isolated vertices whose largest proper

subribbon is Rm. For each such ribbon R′m, by Lemma 7.10, (ω/n)kci(R′m) 6
(
ω
n

)k+s
· n

p−k−i/2
2 +εs. There

are at most nk such improper ribbons. Adding all of their contributions together gives at most(
ω
√

n

)k (
ω
n

)s
· n

p−i/2
2 +εs < 2−k(ω/n)s

· n
p−i/2

2 +εs

Summing this up over all k > 0 gives the result. �

Now fix s`, sr 6 d and t 6 τ and let U(s`,sr,t)
1 , . . . ,U(s`,sr,t)

q be all graphs on the vertex set [t] with
two distinguished subsets of vertices: A of size s` and B of size sr. Let

M(s`,sr,t)
j (S`,Sr) =

∑
R is an (S`,Sr)-ribbon with shape U(s` ,sr ,t)

j

c̃i(R) ·
(
ω
n

)t−s
· χR

= c̃i(U
(s`,sr,t)
j )

∑
R is an (S`,Sr)-ribbon with shape U(s` ,sr ,t)

j

(
ω
n

)t−s
· χR ,

where s = s`+sr
2 and we have used the fact that c̃i(R) depends only on the shape of R.

Let r = |A ∩ B| where A,B are the distinguished sets of vertices for U(s`,sr,t)
j , and let p̃ be the

number of vertex-disjoint paths from A \ B to B \ A, so that p = r + p̃. We can apply Lemma 7.8 and
our bound on c̃i to get that with probability 1 −O(n−100 log n),∥∥∥∥M(s`,sr,t)

j

∥∥∥∥ 6
(
ω
n

)t−s
· n

p̃+r−i/2
2 +εs

· n
t−p̃−r

2 · 2O(t)
· (log n)O(t−r+p̃)
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= n−ε(t−s)−i/4
· 2O(t)

· (log n)O(t−r+p̃)

= n−ε(t−s)−i/4
· 2O(t)

· (log n)O(t−s) ,

where in the last step we have used that t > 2s − r and p̃ 6 s − r.
By inspection,

Qi =
∑

s`,sr6d
t6τ
j6q

M(s`,sr,t)
j .

For a fixed t there are at most 2(t
2)+O(t) choices for U, so q 6 2(t

2)+O(t). Now we fix s`, sr and sum over
t to obtain the block of Qi corresponding to size-s` and size-sr subsets. By triangle inequality and a
union bound, with probability at least 1 −O(n−97 log n),∥∥∥∥∥∥∥∥∥∥∥

∑
t6τ
j6q

M(s`,sr,t)
j

∥∥∥∥∥∥∥∥∥∥∥ 6 2(t
2)+O(t)

· n−ε(t−s)−i/4
· 2O(t)

· (log n)O(t−s) .

From our assumptions on d, τ, and ε, this is at most 2(s`
2 )/2+(sr

2 )/2/100d3.
As usual, let Π be the projector to Span{eC : C ∈ C6d}. Note that ΠQi = QiΠ = Qi, since

Qi(I, J) = 0 whenever I or J is not a clique. So, to show that D/8d � Qi � −D/8d, it is sufficient to
show that for all vectors v with v = Πv it happens that |v†Qiv| 6 vT(D/8d)v. To see this, let vk be the
part of v indexed by cliques of size exactly k. Now,

|v†Qiv| 6
d∑

k1=0

d∑
k2=0

∥∥∥vk1

∥∥∥
∥∥∥∥∥∥∥∥∥∥∥
∑
t6τ
j6q

M(k1,k2,t)
j

∥∥∥∥∥∥∥∥∥∥∥
∥∥∥vk2

∥∥∥
6

d∑
k1=0

d∑
k2=0

1
100d3

(
2(k1

2 )/2+(k2
2 )/2 ∥∥∥vk1

∥∥∥ ∥∥∥vk2

∥∥∥)

6
d∑

k1=0

d∑
k2=0

1
200d3

(
2(k1

2 ) ∥∥∥vk1

∥∥∥2
+ 2(k2

2 )∥∥∥vk2

∥∥∥2
)

6
d∑

k=0

2(k
2)

100d2 ‖vk‖
2 6 v†(D/8d)v

�

7.3.1 Coefficient Decay in the Factorization: Proof of Lemma 7.10

We turn to the proof of Lemma 7.10, for which we want the following characterization of the effect
of the separating factorization on the underlying graph of a ribbon.

We require the following combinatorial quantities:
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Definitions for Lemma 7.12.

1. I, J,S`,Sr ⊆ [n] of size at most d.

2. Ribbons R`,Rm,Rr satisfying 1,3*,2 but not 4 for S`,Sr, I, J ⊆ [n]. (Remember that Rm may be
improper.)

3. Ribbons R′`,R
′
m,R

′
r which are the separating factorization of R`,Rm,Rr, with separators S′`,S

′
r.

(Remember that R′m may be improper.)

4. p, the number of vertex-disjoint paths from S` to Sr in Rm.

5. p′, the number of vertex-disjoint paths from S′` to S′r in R′m.

6. r = (|V(R`)| + |V(Rm)| + |V(R`)| − |S`| − |Sr|) − (|V(R′`)| + |V(R′m)| + |V(R′`)| − |S
′

`| − |S
′
r|), the

number of intersections among R`,Rm,Rr.

7. D = Z(R′m) \ Z(Rm), the newly degree-0 (we write isolated) vertices in R′m.

8. U ⊆ V(R`) ∪V(Rm) ∪V(Rr), the set of vertices appearing in more than one ofV(R`),V(Rm),
andV(Rr). Note that U ⊆ V(R′m).

Lemma 7.12.

|S′`| + |S
′

r| − (|S`| + |Sr|)︸                      ︷︷                      ︸
increase in separator size

+ p − p′︸︷︷︸
lost paths between separators

+ |D|︸︷︷︸
new isolated vertices

6 r︸︷︷︸
number of intersections

.

The following series of claims will help us in the proof of Lemma 7.12

Claim 7.13. I ∩V(R′m) ⊆ S′` and J ∩V(R′m) ⊆ S′r.

Proof of claim. If u ∈ I∩V(R′m) then since I ⊆ V(R′`), we have u ∈ V(R′`)∩V(R′m) = S′`, and similarly
for the second part. �

Next we have a simple analysis of which vertices may possibly be newly isolated.

Claim 7.14. D ⊆ U.

Proof of claim. Let u ∈ D. If u ∈ S` or u ∈ Sr we are done. Otherwise, if u ∈ I or u ∈ J, then u
appeared in more than one ofV(R`),V(Rm),V(Rr) by the definition of the canonical factorization.

If neither of these cases hold, then u was incident to an edge in at least one of R`,Rm,Rr. Since
that edge does not exist inR′m, it must have appeared at least twice among the edge sets ofR`,Rm,Rr,
and therefore u appeared at least twice among the vertex sets, thus proving the claim. �

Next we show that some vertices in U cannot become isolated.

Claim 7.15. By Menger’s theorem, there are |S′`| vertex-disjoint paths from U ∩V(R`) to I in R`. Let

u(1)
`
, . . . ,u

(|S′` |)
`

be distinct vertices so that u(i) is the last vertex in U along the i-th vertex disjoint path.

Let u(1)
r , . . . ,u

(|S′r|)
r be similarly defined. None of the vertices u may be in D.
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Proof of claim. Fix one of these vertices u, and consider its neighbor v one step farther along the
path to I (or J). By definition, the vertex v does not appear in more than one ofV(R`),V(Rm),V(Rr).
If v ∈ R′m, then the edge (u, v) must be in R′m, and so u is not isolated in R′m. If v < R′m, then u must
be in S′` ∪ S′r, in which case by definition u < D. �

We set up sets q of vertices to divide up the intersecting vertices among R`,Rm,Rr according to
which ribbons witness the intersection.

Claim 7.16. Let

q`,m,r
def
= (V(Rr) ∩V(Rm) ∩V(R`)) \ (S` ∪ Sr)

q`,r
def
= (V(R`) ∩V(Rr)) \ V(Rm)

q`,m
def
= (V(R`) ∩V(Rm)) \ (S` ∪V(Rr))

qr,m
def
= (V(Rr) ∩V(Rm)) \ (Sr ∪V(R`)) .

The sets q are pairwise disjoint, and

r = 2|q`,m,r| + |q`,r| + |q`,m| + |qr,m| + |S` ∩ (V(Rr) \ Sr)| + |Sr ∩ (V(R`) \ S`)| .

Also, U = q`,m,r ∪ q`,r ∪ q`,m ∪ qr,m ∪ S` ∪ Sr.

Proof. By inspection. �

We are prepared to prove Lemma 7.12.

Proof of Lemma 7.12. We start by bounding the number of vertices in U \D. By Claim 7.15, there are

at least |{u(1)
`
, . . . ,u

(|S′` |)
`

,u(1)
r , . . . ,u

|S′r|
r }| such vertices.

Let a be the number of pairs i, j so that u(i)
`

= u( j)
r . Then there are vertex-disjoint paths w1, . . . ,wa

from S′` to S′r. The path w corresponding to u(i)
`

= u( j)
r is given by following u(i)

`
’s path from I toU,

ending at u(i)
`

, then following u( j)
r ’s path from U to J. This gives a path from I to J, which must have

a subpath from S′` to S′r.
Now consider the p vertex-disjoint paths from S` to Sr in Rm. We claim that

p − |S` ∩ Sr| 6 |q`,m,r| + |S` ∩V(Rr) \ Sr| + |Sr ∩V(R`) \ S`|

+ |U \ ({u(1)
`
, . . . ,u

(|S′` |)
`

,u(1)
r , . . . ,u

|S′r|
r } ∪D)| + (p′ − a) (7.1)

In words, every nontrivial path from S` to Sr contributes to at least one of:

• |q`,m,r|, the number of 3-way intersections,

• intersections between S` andV(Rr) (but not Sr), intersections betweenV(R`) and Sr (but not
S`),

• vertices in U which are guaranteed not to become isolated (and which we have not yet
accounted for), or
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• vertex-disjoint paths from S′` to S′r (which we have not yet accounted for).

Fix one such path. If it intersects q`,m,r, Sl ∩ V(Rr), or Sr ∩ V(Rl) we are done, so suppose
otherwise. If it is contained entirely in q`,m∪ qr,m∪ (S` \V(Rr))∪ (Sr \V(Rl)), then there is some edge
along the path connecting a vertex inV(R`) ∩V(Rm) \ V(Rr) with one inV(Rr) ∩V(Rm) \ V(R`).
That edge can occur nowhere else among R`,Rm,Rr, and so the incident vertices must not be in D.
At the same time, if there is any vertex along the path which is outside U, then the nearest vertices
along the path to either side which do lie in U also must be outside D.

In either case, there are two vertices along the path in U \D. If either of these is not among the u
vertices, we are done. If both are, then by definition of the u vertices this creates a path from I to
J, and so from S′` to S′r. Furthermore, this path must be vertex disjoint from the paths w1, . . . ,wa

previously constructed, since the u vertices involved in those paths were V(R`) ∩ V(Rr). This
proves (7.1).

It’s time to put things together. By Claim 7.14, we can bound |D| by

|D| 6 |U| − |U \D|.

We have |U \ D| > |S′`| + |S
′
r| − a + |U \ ({u(1)

`
, . . . ,u

(|S′` |)
`

,u(1)
r , . . . ,u

|S′r|
r } ∪ D)|, and |U| = |q`,m,r| + |q`,r| +

|q`,m| + |qr,m| + |S` ∪ Sr|. This gives us

|D| 6 |q`,m,r| + |q`,r| + |q`,m| + |qr,m| + |S` ∪ Sr| − |S′`| − |S
′

r| + a − |U \ ({u(1)
`
, . . . ,u

(|S′` |)
`

,u(1)
r , . . . ,u

|S′r|
r } ∪D)| .

Adding (7.1) to both sides and rearranging, we get

p−p′+|D| 6 2|q`,m,r|+|S`∩(V(Rr)\Sr)|+|Sr∩(V(R`)\S`)|+|q`,r|+|q`,m|+|qr,m|+|S`∪Sr|−|S′`|−|S
′

r|+|S`∩Sr| ,

and substituting r = 2|q`,m,r| + |S` ∩ (V(Rr) \ Sr)| + |Sr ∩ (V(R`) \ S`)| + |q`,r| + |q`,m| + |qr,m| gives

p − p′ + |D| 6 r + |S` ∪ Sr| − |S′`| − |S
′

r| + |S` ∩ Sr| .

Notice that |S` ∪ Sr| + |S` ∩ Sr| = |S`| + |Sr|, so we can rearrange to obtain the lemma. �

Now we can prove Lemma 7.10.

Proof of Lemma 7.10. First of all, we note that ci(Rm) depends only on the shape of Rm by symmetry
of our construction. We turn to the quantitative bound.

The proof is by induction. The coefficients c0(Rm) are nonzero only for ribbons Rm which have
Z(Rm) = ∅ and admitting |S`| = |Sr| = p paths from S` to Sr. Thus in the case that i = 0, the statement
reduces to c0(Rm) 6 1, which is true by definition.

Suppose the lemma holds for ci, and consider ci+1. By definition, for an (improper) S′`,S
′
r-ribbon

R
′
m and ribbons R′`,R

′
r satisfying 1 and 2,

ci+1(R′m) =
∑

R`,Rm,Rr satisfying
1,3*,2 and not 4 for some S`,Sr

r intersections outside S`,Sr

separating factorization R′`,R
′
m,R

′
r,S′`,S

′
r

ci(Rm)
(
ω
n

)r
. (7.2)
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We introduce the shorthand s′ =
|S′` |+|S

′
r|

2 . Consider first a particular term in the sum, ci(Rm)(ω/n)r,
where Rm is an improper S`,Sr ribbon, and let |D| = |Z(R′m) \Z(Rm)|. By induction and Lemma 7.12,(
ω
n

)r
· ci(Rm) 6

(
ω
n

)r
·

(
ω
n

)s
· n

p−|Z(Rm)|−i/2
2 +εs by induction

=
(
ω
n

)s′

·

(
ω
n

)r−s′+s
· ·n

p−|Z(Rm)|−i/2
2 +εs

=
(
ω
n

)s′

· n−ε(r−s′+s)
· n−

1
2 (r−s′+s)

· n
p−|Z(Rm)|−i/2

2 +εs using ω = n1/2−ε

6
(
ω
n

)s′

· n−ε(r−s′+s)
· n−

1
2 (s′−s+p−p′+|D|)

· n
p−|Z(Rm)|−i/2

2 +εs by Lemma 7.12

=
(
ω
n

)s′

· n−ε(r−s′+s)
· n

p′−|Z(R′m)|−i/2−s′+s
2 +εs canceling terms, using |Z(R′m)| = |D| + |Z(Rm)|

= n−εr
·

(
ω
n

)s′

· n
p′−|Z(R′m)|−i/2−(s′−s)

2 +εs′

6 n−εr
·

(
ω
n

)s′

· n
p′−|Z(R′m)|−(i+1)/2

2 +εs′ using s′ − s > 1/2, by Lemma 6.13

Next we assess how many nonzero terms are in the sum (7.2) for a fixed r and a fixed R′m. For
each vertex of R′m, there are 7 possibilities for which ribbon(s) it came from in {R`,Rm,Rr} so there
are at most 7τ choices overall (recall that R′m has at most τ vertices for the terms we are looking
at). Once we have chosen which ribbon(s) each vertex of R′m came from, everything is fixed except
for possible edges of R′m which appear at least twice in R`, Rm, and Rr. There are two possibilities
for each possible edge of R′m which appears twice in R`, Rm, and Rr and four possibilities for each
possible edge of R′m which appers three times in R`, Rm, and Rr. However, note that any such edge
must be between an intersected vertex and either another intersected vertex or a vertex in S` ∪ Sr.
Thus, there are at most rτ possible edges of R′m which appear at least twice in R`, Rm, and Rr and
the total number of possibilities for these edges is at most 4rτ.

All together there are at most 2O(rτ) nonzero terms for fixed r. This means that the total
contribution from such terms is at most

2O(rτ)
· n−εr

·

(
ω
n

)s′

· n
p′−|Z(R′m)|−(i+1)/2

2 +εs′

As long as τ 6 (ε/C) log n for some universal constant C, we have 2O(rτ)
· n−εr

� 1/τ for all r > 1.
All in all, we obtain

ci+1(R′m) 6
(
ω
n

)s′

· n
p′−|Z(R′m)|−(i+1)/2

2 +εs′

which completes the induction. �

7.4 LL
† is Well-Conditioned—Proof of Lemma 7.3

In this section we prove Lemma 7.3, restated here.
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Lemma (Restatement of Lemma 7.3). With high probability, ΠLΠL†Π � Ω(ω/n)d+1
·Π, where as

usual Π is the projector to Span{eC : C ∈ C6d}.

Proof of Lemma 7.3. We recall the definition of L.

L(I,S) =
(
ω
n

)− |S|2 ∑
R having 1
|V(R`)|6τ

(
ω
n

)|V(R`)|
χR` .

Consider a diagonal entry L(S,S). Since every ribbon R appearing in its expansion must have 1, in
particular it has no edges inside S. Thus, by the same argument as in Lemma 5.4, with probability
at least 1 −O(n−10 log n),

L(S,S) =
(
ω
n

) |S|
2

(1 ± n−Ω(ε)) .

Let Loff-diag be given by

L
off-diag(I,S) =

L(I,S) if I , S

0 otherwise
.

We will consider the block of Loff-diag with rows indexed by sets of size s` and columns indexed by
sets of size sr for some s`, sr 6 d. For a fixed t 6 τ, let U(s`,sr,t)

1 , . . . ,U(s`,sr,t)
q be all the graphs on vertex

set [t] with distinguished subsets of vertices A,B of size s`, sr respectively, and where

• A , B,

• there are no edges inside B,

• every vertex in U outside A ∪ B is reachable from A without passing through B, and

• B is the unique minimum-size vertex separator in U separating A from B.

Then let M(s`,sr,t)
i be given by

M(s`,sr,t)
i (I,S) =

(
ω
n

)t− sr
2
·

∑
R an (I,S)-ribbon with shape U(s` ,sr ,t)

i

χR .

By assumption on U(s`,sr,t)
i , there are sr vertex-disjoint paths from A to B. Let r = |A ∩ B|. By

Lemma 7.8, with probability at least 1 −O(n−100 log n),∥∥∥∥M(s`,sr,t)
i

∥∥∥∥ 6
(
ω
n

) sr
2
·

(
ω
n

)t−sr

· n
t−sr

2 · 2O(t)
· (log n)O(t−r+(sr−r))

=
(
ω
n

) sr
2
· n−ε(t−sr) · 2O(t)

· (log n)O(t−sr) ,

where in the last step we have used that t > s`+sr−r and sr 6 s`, which holds by the vertex-separator
requirement on B. There are at most 2(t

2)−(sr
2 )+O(t) choices for U(s`,sr,t)

i when s`, sr, t are fixed, by the
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requirement that U have no edges inside B. Summing over all q for a fixed t, we get by triangle
inequality ∥∥∥∥∥∥∥∥

∑
i6q

M(s`,sr,t)
i

∥∥∥∥∥∥∥∥ 6
(
ω
n

) sr
2
· 2(t

2)−(sr
2 )+O(t)

· n−ε(t−sr) · (log n)O(t−sr)

with probability 1 −O(n−99 log n). By our assumptions on d, τ, and ε, this is at most (ω/n)sr/2 · 1/d4.

The following standard manipulations now prove the lemma. Let D′ ∈ R([n]
6d) be the diagonal

matrix with D′(S,S) = (ω/n)|S|/2 if S is a clique in G and 0 otherwise. Then we can decompose
L = D + E +Loff-diag, where E is a diagonal matrix with |E(S,S)| 6 n−Ω(ε)

· (ω/n)|S|/2. Then we have

ΠLΠL†Π = D2

+ Π(DΠLoff-diag +DΠE + EΠD + EΠLoff-diag +Loff-diag ΠD +Loff-diag ΠE

+ EΠE +Loff-diag ΠLoff-diag)Π

Each of the above matrices aside from D2 is a d× d block matrix, where the (s`, sr) block is
([n]

s`

)
×

([n]
sr

)
dimensional and has norm at most (ω/n)(s`+sr)/2 · d−4. By the same argument as in the proof of
Lemma 7.2, using Cauchy-Schwarz to combine the d2 blocks, we obtain the lemma. �

7.5 High-Degree Matrices Have Small Norms

In this section we prove Lemma 7.4, restated here:

Lemma (Restatement of Lemma 7.4). With high probability, ‖ξ0 − . . . + ξ2d‖ 6 n−16d.

We recall the definition of ξi. For a coefficient function on ribbons ci−1(Rm), we have a matrix E
given by

E(I, J) =∑
S`,Sr⊆[n]
|S` |,|Sr|6d

(
ω
n

)− |S` |+|Sr |
2 ∑

R`,Rm,Rr satisfying
1,3*,2 and not 4

|V(R`)|,|V(Rm)|,|V(Rr)|6τ
separating factorization

R
′

`,R
′
m,R

′
r,S′`,S

′
r

ci−1(Rm)
(
ω
n

)|V(R`)|+|V(Rr)|+|V(Rm)|−
|S` |+|Sr |

2
· χR′

`
· χR′m · χR′r ,

and another one, E′, given by

E
′(I, J) =∑

S`,Sr⊆[n]
|S` |,|Sr|6d

(
ω
n

)− |S` |+|Sr |
2 ∑

R`,Rm,Rr satisfying
1,3*,2 and not 4

separating factorization
R
′

`,R
′
m,R

′
r,S′`,S

′
r

|V(R′`)|,|V(R′m)|,|V(R′r)|6τ

ci−1(Rm)
(
ω
n

)|V(R`)|+|V(Rr)|+|V(Rm)|−
|S` |+|Sr |

2
· χR′

`
· χR′m · χR′r .

Then the matrix ξi is given by E − E′.
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We will actually prove a bound on the Frobenious norm of each matrix ξi. The following will
allow us to control the magnitude of the entries. It follows immediately from our concentration
bound Lemma A.1, which is proved via the moment method. (Under the slightly stronger
assumption τ� ε log n/ log log n, it would also follow from standard hypercontractivity.)

Lemma 7.17. Suppose cT are a collection of coefficients, one for each T ⊆
([n]

2
)
, and there is a constant C

such that

1. If |T| > Cτ then cT = 0.

2. Otherwise, |cT| 6 (ω/n)|T|/C−Cd.

Then with probability at least 1 −O(n−100 log n) it occurs that
∣∣∣∣∑T⊆([n]

2 ) cT · χT

∣∣∣∣ 6 n−20d.

We will also need several facts about the coefficients of ribbons in the expansion of each matrix
ξi.

Lemma 7.18. Every triple R`,Rm,Rr appearing with nonzero coefficient in ξc satisfies |V(R`)|+ |V(Rm)|+
|V(Rr)| = Θ(τ).

Proof. To appear with nonzero coefficient, the triple R`,Rm,Rr with separating factorization
R
′

`,R
′
m,R

′
r must either have

|V(R`)|, |V(Rm)|, |V(Rr)| 6 τ but |V(R′`)| > τ or |V(R′m)| > τ or |V(R′`)| > τ ,

or
|V(R′`)|, |V(R′m)|, |V(R′r)| 6 τ but |V(R`)| > τ or |V(Rm)| > τ or |V(R`)| > τ .

In the first case, we must have one of |V(R`)| > τ/3 or |V(Rm)| > τ/3 or |V(Rr)| > τ/3. In the
second, we must have |V(R`)|, |V(Rm)|,V(Rr)| 6 3τ. �

We are prepared to prove Lemma 7.4.

Proof of Lemma 7.4. We will apply Lemma 7.17 to ξi(I, J) for each i 6 2d and I, J ⊆ [n] with |I|, |J| 6 d.
So consider the Fourier expansion of ξi(I, J), given by

ξi(I, J) =
∑

T⊆([n]
2 )

cT · χT .

From Lemma 7.18, we obtain that if |T| > Cτ then cT = 0, for some absolute constant C. For smaller
T we need a bound on the magnitude |cT|. The coefficient cT is bounded by

|cT| 6
∑

S`,Sr⊆[n]
|S` |,|Sr|6d

(
ω
n

)− |S` |+|Sr |
2 ∑

R`,Rm,Rr
nonzero in ξi(I, J) as in 7.18

χR` ·χRm ·χRr =χT

ci−1(Rm)
(
ω
n

)|V(R`)|+|V(Rr)|+|V(Rm)|−
|S` |+|Sr |

2
(7.3)
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By Lemma 7.10, we have ci−1(Rm) 6 nd 6 (ω/n)−2d. At the same time, there are at most 2O(τ2)

nonzero terms in the sum (7.3). Thus by Lemma 7.18 and our assumptions on d, τ, and ε, the
coefficient cT is at most (ω/n)τ/C−Cd for some absolute constant C.

Applying Lemma 7.17, we obtain |ξi(I, J)| 6 n−20d with probability 1 − O(n−100 log n). Taking a
union bound over all n2d 6 n2 log n entries of ξi, and over all i 6 2d, we obtain that ‖ξ0 − . . . + ξ2d‖ 6
‖ξ0 − . . . + ξ2d‖F 6 n−16d with probability 1 −O(n−96 log n). �
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A Omitted Proofs

A.1 Calibration of Ẽ

In this subsection we prove Lemma 5.3, restated here.

Lemma (Restatement of Lemma 5.3). Let fG(x) =
∑
|S|62d cS(G) · xS be a real-valued polynomial on

{0, 1}n whose coefficients have degree at most τ when expressed in the ±1 indicators Ge for edges in G. Then,
EG∼G(n, 12 )[Ẽ[ fG(x)]] = E(H,x)∼G(n,1/2,ω)[ fH(x)].

Proof. The proof is straightforward by expanding the coefficients f in the Fourier basis. For S ⊆ [n],
let cS : G 7→ R be maps so that fG(x) =

∑
S⊆[n] cS · xS.

E
G∼G(n, 12 )

[Ẽ[ fG(x)]] = E
G∼G(n, 12 )

Ẽ
∑

S⊆[n]

cS · xS




=
∑

S⊆[n]

E
G∼G(n, 12 )

[
cSẼ[xS]

]

=
∑

S⊆[n]

E
G∼G(n, 12 )

 ∑
T,T′⊆([n]

2 )
ĉS(T) ̂̃E[xS](T′) · χTχT′


=

∑
S⊆[n]

∑
T

ĉS(T) E
(H,x)∼G(n,1/2,ω)

[χT(H) · xS]

= E
(H,x)∼G(n,1/2,ω)

∑
S⊆[n]

∑
T

ĉS(T)χT(H)
∏
i∈S

xi


= E

(H,x)∼G(n,1/2,ω)

∑
S⊆[n]

cS

∏
i∈S

xi


= E

(H,x)∼G(n,1/2,ω)
[ fH(x)] . �

A.2 Concentration Bounds for Linear Constraints

In this section we prove Lemma 5.4. We will use the following elementary concentration bound
repeatedly. (It is the scalar version of the matrix concentration bound Lemma 7.8; we state and
prove a scalar version here because it is a good warmup for Lemma 7.8.)
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Lemma A.1. Let T be a family of subsets of
([n]

2
)

so that for every T,T′ ∈ T there exists σ : [n] → [n] a
permutation of vertices so that σ(T) = T′. Let t be the number of vertices incident to edges in any T ∈ T .
For every s > 0 and every even `,

P
G∼G(n,1/2)


∣∣∣∣∣∣∣∑T∈T χT(G)

∣∣∣∣∣∣∣ 6 s

 > 1 −
nt`/2

· (t`)t`

s`
.

Proof. Let ` ∈ N be a parameter to be chosen later. We will estimate EG∼G(n,1/2)[(
∑

T∈T χT)`].

E
G∼G(n,1/2)


∑

T∈T

χT


` =

∑
T1,...,T`∈T

E
G∼G(n,1/2)

∏
j6`

χT j

= |{(T1, . . . ,T`) : E
∏
j6`

χT j = 1}| .

In order to have E
∏

j6` χT j = 1, every edge in the multiset
⋃

j6` T j must appear at least twice, so
every vertex in the multiset

⋃
j6`V(T j) also appears at least twice. Thus, this multiset contains at

most t`/2 distinct vertices. Since each T j ∈ T , each is uniquely determined by an ordered tuple of t
elements of [n]. Thus, there are at most nt`/2

· (t`)t` distinct choices for (T1, . . . ,T`), so

E
G∼G(n,1/2)


∑

T∈T

χT


` 6 nt`/2

· (t`)t`.

For even `, by Markov’s inequality,

P


∣∣∣∣∣∣∣∑T∈T χT

∣∣∣∣∣∣∣ > s

 = P


∣∣∣∣∣∣∣∑T∈T χT)

∣∣∣∣∣∣∣
`

> s`


6

nt`/2
· (t`)t`

s`
. �

Lemma (Restatement of Lemma 5.4). With high probability, Ẽ[1] = 1 ± n−Ω(ε) and Ẽ[
∑

i∈[n] xi] =

ω · (1 ± n−Ω(ε)).

Proof. We will prove the statement regarding Ẽ[1]; the bound for Ẽ[
∑

i∈[n] xi] is almost identical.
Recall the Fourier expansion

Ẽ[1] − 1 =
∑

T⊆([n]
2 )

26|V(T)|6τ

(
ω
n

)|V(T)|
· χT .

Considering each T ⊆
([n]

2
)

as a graph, we partition {T ⊆
([n]

2
)

: |V(T)| = t} into pt families {T t
i }

p
i=1 by

placing T and T′ in the same family iff there exists a permutation σ : [n]→ [n] of vertices so that
σ(T) = T′. Thus,

Ẽ[1] − 1 =

τ∑
t=2

(
ω
n

)t pt∑
i=1

∑
T∈T t

i

χT 6
τ∑

t=2

(
ω
n

)t pt∑
i=1

∣∣∣∣∣∣∣∣∣
∑
T∈T t

i

χT

∣∣∣∣∣∣∣∣∣ .
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By Lemma A.1 (taking ` = (log n)2), and since t 6 τ 6 log n, each T t
i satisfies

P


∣∣∣∣∣∣∣∣∣
∑
T∈T t

i

χT

∣∣∣∣∣∣∣∣∣ < O(nt/2
· (log n)3t)

 > 1 − (τ · 2t2
· nlog n)−1 .

By a union bound over all pt 6 2t2
families T t

i , we get that with high probability,

|Ẽ[1] − 1| 6 τ ·max
t6τ

2t2
·

(
ω
√

n

)t .
For τ 6 (ε/2) log n and ω = n1/2−ε, this is at most n−Ω(ε). �

.

A.3 Combinatorial Proofs about Ribbons

In this section we prove Lemma 6.3, restated here:

Lemma (Restatement of Lemma 6.3). Let R be an (I, J)-ribbon. There is a unique minimum vertex
separator S of R such that S separates I and Q for any vertex separator Q of R. We call S the leftmost
separator in R. We define the rightmost separator analogously and we denote them by SL(R) and SR(R)
respectively.

We start by defining a natural partial order on the set of vertex separators in a ribbon R.

Definition A.2. We write Q1 6 Q2 for two vertex separators Q1 and Q2 of an (I, J)-ribbon R if Q1

separates I and Q2.

Next, we check that the definition above indeed is a partial order.

Lemma A.3. For any set of minimum vertex separators Q1,Q2,Q3 an (I, J)-ribbon, we have:

1. Q1 6 Q1.

2. If Q1 6 Q2 and Q2 6 Q3, then, Q1 6 Q3.

3. If Q1 6 Q2 and Q2 6 Q1, then, Q1 = Q2.

Proof. The first statement is immediate from the definition. For the second, consider a path P from
I to Q3 in R. Since Q2 6 Q3, P passes through a vertex in Q2. Thus, P contains a subpath that
connects I and Q2. But since Q1 6 Q2, this subpath must pass through Q1. Thus, any such P must
pass through Q1 and thus, Q1 6 Q3.

Finally, for the third statement, let k = |Q1| = |Q2|. Then, using Menger’s theorem (Fact 4.2, there
is a set of k vertex disjoint paths P1,P2, . . . ,Pk between I and J. By virtue of Q1,Q2 being minimum
vertex separators of R, Q1 and Q2 must intersect each Pi in exactly one vertex. It is then immediate
that the only way Q1 6 Q2 and Q2 6 Q1 if every Pi intersects Q1,Q2 in the same vertex. �
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Now we can prove Lemma 6.3.

Proof of Lemma 6.3. It is enough to show that for any two minimum separators Q1,Q2 of size k in R,
there are separators QL,QR such that QL 6 Q1 6 QR and QL 6 Q2 6 QR. We now construct QL and
QR as required.

Let U = Q1 ∩Q2 and V = Q1∆Q2. Let WL ⊆ V be the set of vertices w such that there is a path
from I to w that doesn’t pass through Q1 ∪Q2. Similarly, let WR ⊆ V be the set of vertices such that
there is a path from w to some vertex in J that doesn’t pass through any vertex in Q1 ∪Q2. Then we
first observe:

Claim A.4. WL ∩WR = ∅.

Proof of Claim. Assume otherwise and let w ∈WL ∩WR. Then there is a path between I and J that
doesn’t go through any vertex in at least one of Q1 or Q2 contradicting that both are in fact vertex
separators. �

Next, we have:

Claim A.5. Let QL = U ∪WL and QR = U ∪WR. Then QL,QR are both vertex separators in R.

Proof of Claim. We only give the argument for QL, the other case is similar. Assume there is a path
P from I to J that does not pass through QL. P must intersect Q1 ∪ Q2. Then there is a vertex
v ∈ Q1∪Q2 such that there is a path I to v which intersects no other vertices in Q1∪Q2. This implies
that either v ∈ U or v ∈WL. But by our construction of WL this is a contradiction. �

Finally, we note that both QL,QR must in fact be minimum vertex separators.

Claim A.6. |QL| = |QR| = |Q1| = |Q2| = k

Proof of Claim. Let |Q1| = |Q2| = k. Then 2k = |Q1| + |Q2| = 2|U| + |V| > 2|U| + |WL| + |WR| =

|U ∪WL| + |U ∪WR| = |QL| + |QR|. Since QL and QR are vertex separators, |QL|, |QR| > k. Thus,
|QL| = |QR| = k. �

Finally, we have the ordering requirement on QL and QR.

Claim A.7. QL 6 Q1 and Q2 6 QR.

Proof of Claim. Let P be a path from I to Q1, let v be the first vertex on this path which is in Q1 ∪Q2.
Then, v ∈ U or v ∈WL. Thus, QL 6 Q1. The other case is similar. �

This concludes the proof of the lemma. �
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B Spectral Norms

The results in this section are in essence due to Medarametla and Potechin [MP]. For completeness,
we state and prove them here in the language and notation of the current paper, with minor
modifications as needed.

Lemma (Restatement of Lemma 7.8). Let U be a graph on t 6 O(log n) vertices, with two distinguished
subsets of vertices A and B, and suppose:

• U admits p vertex-disjoint paths from A \ B to B \ A.

• |A ∩ B| = r.

• Every vertex outside A ∪ B has degree at least 1.

Let M = M(G) be the graphical matrix with shape U. Then, whp, ‖M‖ 6 n
t−p−r

2 · 2O(t)
· (log n)O(t−r+p).

Proof of Lemma 7.8. We proceed by the trace power method, with a dependence-breaking step
beforehand.

Breaking Dependence. Let q1, . . . , qp be vertex-disjoint paths from A \ B to B \ A in U. Without
loss of generality we can take each to intersect A\B and B\A only at its endpoints. We will partition
the space of labelings σ into disjoint sets S1, . . . ,Sm. For each Sk there will be a partition Vk

1,V
k
2 of

[n] so that σ(
⋃

j6p q j) ⊆ Vk
1 and σ(U \ (

⋃
j6p q j)) ⊆ Vk

2 for every σ ∈ Sk. Let (V1
1 ,V

1
2), . . . , (Vm

1 ,V
m
2 ) be

a sequence of independent uniformly random partitions of [n]. Call a labeling σ good at k if the
preceeding conditions apply to σ for the partition Vk

1,V
k
2 and not for any Vk′

1 ,V
k′
2 for some k′ < k.

Let Sk = {σ : σ is good at k}.

Claim B.1. There is m = O(2t
· t · log n) so that

⋃m
k=1 Sk contains every labeling σ : U→ G.

Proof. For a fixed σ,
P{σ not good for some k 6 m} 6 (1 − 2−t)m

since every vertex u ∈ U is in Vi with probability 1/2. If m > 10t2t log n, then by a union bound
over all σ : U→ G (of which there are at most nt), we get P{ all σ good for some k 6 m } > 0. �

Henceforth, let S1, . . . ,Sm be the partition guaranteed by the preceeding claim. For k 6 m, let
Mk(I, J) =

∑
σ∈Sk : σ(A)=I,σ(B)=J val(σ). Then M =

∑m
k=1 Mk.

Moment Calculation. Let ` = `(n) be a parameter to be chosen later. By the triangle inequality,
‖M‖ 6

∑m
k=1 ‖Mk‖. Fix k. We expand EG Tr(M†kMk)` as

ETr(M†kMk)` = E
∑

σ1,...,σ2`∈Sk
σ2i(A)=σ2i−1(A)
σ2i(B)=σ2i+1(B)

2∏̀
j=1

val(σ j) .
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(Here arithmetic with indices i is modulo 2`, so for example we take 2i + 1 = 1.) For any σ,

val(σ) =
∏

(i, j)∈U

Gσ(i),σ( j) .

Notice that for all σ1, . . . , σ2`, the expectation E
∏2`

j=1 val(σ j) is either 0 or 1. We will bound the

number of σ1, . . . , σ2` for which E
∏2`

j=1 val(σ j) = 1 by bounding the number of distinct labels such a
family of labelings may assign to vertices in U.

Fix σ1, . . . , σ2` ∈ Sk. Consider the family q1, . . . , qp of vertex-disjoint paths. Every edge in every
q j receives one pair of labels from each σi. Consider these labels arranged on 2` adjoined copies of
each q j, one for each σ (giving p paths with 2`

∑
j6p |q j| edges in total, where |q j| is the number of

edges in q j). Every pair of labels {σi(v), σi(w)} appearing on an edge (v,w) in this graph must also
appear on some distinct edge (v′,w′) in order to have E

∏2`
i=1 val(σi) = 1; otherwise the disjointness

of Vk
1,V

k
2 would be violated. Merging edges which received the same pair of labels, we arrive

at a graph with at most p connected components and at most `
∑

j6p |q j| edges, and so at most
`
∑

j6p |q j| + p vertices. Thus, the vertices in q1, . . . , qp together receive at most `
∑

j6p |q j| + p distinct
labels among all σ1, . . . , σ2`.

Next we account for labels of v < (
⋃

j6p q j∪A∪B). If EG
∏2`

i=1 val(σi) = 1 then the 2`-size multiset
{σi(v)}i62` of labels for such v contains at most ` distinct labels, since by assumption v has degree at
least 1 in U.

Next we account for labels of vertices in A \ (B ∪
⋃

j6p q j) and B \ (A ∪
⋃

j6p q j). Every such
vertex receives a label from every σi, but σ2i and σ2i−1 must agree on A-labels and σ2i and σ2i+1 must
agree on B-labels. So in total there are at most `(|A| + |B| − 2p − 2r) distinct labels for such vertices.

This means that among the labels σi( j) for all j < A ∩ B, there are at most

`
∑
j6p

|q j| + p

︸        ︷︷        ︸
labels from paths

+ `(|A| + |B| − 2p − 2r)︸                   ︷︷                   ︸
additional vertices in A∪B\(A∩B)

+ `(t − (|A| + |B| − r) − (
∑

j

|q j| − p))

︸                                     ︷︷                                     ︸
vertices in U\(

⋃
j q j∪A∪B)

= `(t−p−r)+p

unique labels.
Finally, consider the labels of the r vertices j1, . . . , jr in A ∩ B. The first labelling σ1 assigns

these vertices some σ1( j1), . . . , σ1( jr) labels in G. Since σ2 agrees with σ1 on A-vertices, we must
have σ2( j1) = σ1( j1), . . . , σ1( jr) = σ2( jr). Since σ3 agrees with σ2 on B-vertices, we must have
σ3( j1) = σ2( j1), . . . , σ3( jr) = σ2( jr), and so on. So there are at most r unique labels for such vertices.

Now we can assess how many choices there are for σ1, . . . , σ2` ∈ Sk so that E
∏

i62` val(σi) = 1.
To choose such a collection σ1, . . . , σ2`, we proceed in stages.

Stage 1. Choose the labels σi( j1), . . . , σi( jr) of all the vertices in A ∩ B. Here there are at most nr

options.

Stage 2. For each pair (i, j), where j < A ∩ B, choose whether σi( j) it will be the first appearance of
the index σi( j) ∈ [n] or if there is some i′ < i and j′ so that σi′( j′) = σi( j). Here there are 22`t

options.
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Stage 3. Choose the labels σi( j) ∈ [n] for all j < A∩ B and pairs (i, j) which in Stage 2 we chose to be
the first appearance of a label. If there are x such vertices, there are at most nx options.

Stage 4. Choose the labels σi( j) ∈ [n] for all the pairs (i, j), with j < A∩B, which in Stage 2 we chose
not to be the first apperance of a label. Here there are at most x2`t−2`r−x options.

All together, there are at most nr
· 22`t

· nx
· x2`(t−r)−x 6 nr

· 22`t
· nx
· (2`t)2`(t−r)−x choices for a given

x. Since 4lt � n, summing up over all x 6 `(t − p − r) + p the total number of choices is at most
2nr
· 22`t

· n`(t−p−r)+p
· (2`t)`(t−r+p)−p. Putting it together,

ETr(M†kMk)` 6 2nr
· n`(t−p−r)+p

· (2`t)`(t−r+p)−p .

Now using Markov’s inequality and standard manipulations, for any s,

P{‖Mk‖ > s} = P{‖M†kMk‖
` > s2`

}

6
E ‖(M†kMk)`‖

s2`
by Markov’s

6
ETr(M†kMk)`

s2`
since ‖(M†kMk)`‖ 6 Tr(M†kMk)`

6
2nr
· 22`t

· n`(t−p−r)+p
· (2`t)`(t−r+p)−p

s2`

Taking ` = (log n)3 and using p 6 t 6 O(log n), there is s = 2t
· n(t−p−r)/2(log n)O(t−r+p) so that

P{‖Mk‖ > s} 6 n−100 log nm−1. By a union bound, P{‖Mk‖ 6 s for all k} > 1 − n−100 log n, so ‖M‖ 6 sm
with probability 1 − n−100 log n. Since m 6 2O(t)

· log(n)O(1), this completes the proof. �
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