THE MAGNETO-OPTIC SPECTRA
OF
BISMUTH-SUBSTITUTED IRON GARNETS

by

Gary Alfred Allen

B.S. Physics,
Worcester Polytechnic Institute, 1987.

Submitted to the Department of Physics in
Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

at the
Massachusetts Institute of Technology
September 1994

© Massachusetts Institute of Technology 1994
All rights reserved

Signature of Author
Department of Physics
August 31, 1994
Certified by
Prof. Mildred S. Dresselhaus
Thesis Advisor
Accepted by .

Prof. George F. Koster

Chairman, Department of Physics Graduate Committee

MASSACHUSETTS INSTITUTE
NF TECHNN ORY

0cT 141994
LIBRARIES
ARCHIVES






THE MAGNETO-OPTIC PECTRA OF
BISMUTH-SUBSTITUTED IRON GARNETS

by
Gary Alfred Allen

Submitted to the Department of Physics on August 3., 1994 in partial fulfillment
of the requirements for the Degree of Doctor of Philosophy

ABSTRACT

The spectra for the dielectric constant, Kerr rotation and Kerr ellipticity between 2
eV and 4 eV for bismuth-substituted yttrium iron garnets investigated. The off-diagonal
elements of the dielectric tensor are calculated. It is determined that substitution of
bismuth into iron garnets increases the strength of transitions at 2.85 eV and 3.20 eV in
both the diagonal and off-diagonal elements of the dielectric tensor. The off-diagonal
elements of yttrium iron garnet are found to be composed entirely of paramagnetic
transitions in this region. In contrast, the substitution of bismuth produces diamagnetic
transitions at the above mentioned energies. The two-level excited state splittings
associated with the diamagnetic transitions are 0.033 eV and 0.055 eV, respectively. A
mixing of the excited state of the iron garnets with the 3P excited state of Bi3* can
account for the observed excited state splittings. The mixing percentages are determined
to be 1.6% and 2.6%, respectively, for these two transitions. Dilution of the tetrahedral
and octahedral sublattices with aluminum and indium reduces the effect of bismuth
substitution upon both the diagonal and off-diagonal elements. This reduction is
equivalent for materials in which an equal percentage of either of the two sublattices are
diluted. It is concluded that the increase in the diagonal and off-diagonal elements caused
by bismuth substitution involves the joint population of the two iron sublattices. Based
on this observation, the transitions at 2.85 eV and 3.20 eV are interpreted as
intersublattice charge-transfer processes.
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Chapter 1

1. Introduction
1.1 Introduction

Bismuth-substituted iron gamets were first developed in the late 1960's for bubble
memory devices. It was discovered, however, that the substitution of bismuth into iron
garnets produced an unexpectedly large increase in the Faraday rotations. Investigations
into the origins of the large Faraday rotation ensued and were conducted as part of the
research effort into bubble memory materials in the 1970's. When research in this area
ended in the latter part of the decade, the origin of the effect was left unresolved.

A new interest in these materials emerged in the mid to late 1980's. Bismuth-
substituted iron garnets were desired for optical isolation devices and for magneto-optic
memory. The materials' high ratio of Faraday rotation to absorption made them ideal for
optical isolation devices in the near-infrared. For application to magneto-optic memory,
the materials were desired for their large Kerr rotations and chemical stability. Although
these materials are being applied successfully, the understanding of the origin of their
magneto-optical properties has not changed in the last 15 years. The goal of this thesis is
to investigate the origins of the large magneto-optic effect of iron garnets produced by
bismuth substitution. It is hoped that a knowledge of the mechanism by which bismuth
increases the magneto-optic activity of iron garnets will allow researches to tailor existing
or develop improved materials for the two present areas of application.

In this chapter, we will review the history of magneto-optic effect of bismuth-
substituted iron garnets leading up to the present. This chapter will conclude with an
outline of the thesis.

1.2 The Magneto-optic Effect

The magneio-optic effect is defined as the change in the state of polarization of
light upon interaction with a magnetic material. The first manifestation of the magneto-
optic effect was discovered in 1846 by Michael Faraday! who found that the polarization
of a beam of light was rotated upon passage through a piece of glass where a magnetic
field was applied parallel to the direction of propagation (Figure 1.1a). A similar rotation

I M. Freiscr, IEEE Tronsactions on Magnetics MAG-4, 152 (1968).
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Introduction

was observed by Voigt? in 1502 for a magnetic field applied perpendicular to the light
beam (Figure 1.1b).

— .

(a) (b)
Figure 1.1. (a) The Faraday effect. (b) The Voigt effect.

In 1876, an analogous effect was found for reflection from a magnetic material by
Kerrland is now referred to as the magneto-optical Kerr effect. There are actually three
different configurations possible for the magneto-optical Kerr effect, as is shown in
Figure 1.2. Usuaily, the polar configuration (Figure 1.2a) is observed and for this reason,
in the field of magneto-optics, the polar magneto-optical Kerr effect is simply referred to
as the Kerr effect. This causes some confusion outside of the field, where the Kerr effect
commonly refers to the electro-optical effect found by Kerr in 1875.

£ X % X 1 %

\ VRN p
\

\ / \ / N
/ \ / \ /
i} —72 "Te=pm VY=
(a) (b) (©

Figure 1.2. The magneto-optic Kerr effect. (a) The polar (b) longitudinal and (c)
equatorial configurations.

All magneto-optical effects can be explained macroscopically as arising from
differing indices of refraction for right and left circularly polarized light. For this reason,
magneto-optical effects are often called circular birefringence. Similarly, the indices of
absorption for right and left circularly polarized light will differ and produce circular
dichroism. The circular birefringence and dichroism arise primarily from the Zeeman
effect. In the Zeeman effect, two degenerate electronic states are split into two circular

2 W. Voigt, Magneto- und Elektro-optik (B. G. Teubner, Leipzig, 1908).
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components (see Figure 1.3). Transitions to and from these states have the traditional
dispersion and absorption line shapes.3 If the excited state is split, transitions will have
different energies. This creates a difference in the indices of refraction and absorption for
right and left circular polarizations, since transitions to each state can be induced only by
one or the other sense of polarization. This situation is called a diamagnetic transition,
relating to the fact that the effect is temperature-independent.4

‘ :::_:_i ;{A_
.T _1_
A

Y

Figure 1.3. The diamagnetic transition arises from the difference in transition energy to a
magnetically split excited state.

Another factor that contributes to circular birefringence and dichroism is a
Zeeman-split ground state (Figure 1.4). The levels of a magnetically split ground state
will have different populations according to the Boltzmann distribution, and thus, there is
an unequal number of states available for making right and left handed transitions. This
favoring of one sense of circular polarization over the other leads to a difference in
indices of refraction and absorption, and hence, a magneto-optical effect. This situation
is called a paramagnetic transition, since the material is in a paramagnetic state.4

3 F. A. Jenkins and H. E. White, Fundamentals of Optics 4d (McGraw-Hill, New York, 1976),
p.474.
4 C.J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962), p.211
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Figure 1.4. The paramagnetic transition arises from a magnetically-split ground state
which possesses a thermal population distribution.

1.3 Magneto-optical Effects of Garnets

Soon after the discovery of synthetically-produced rare-earth iron garnets3:6 ,
Dillon? made the first optical and magneto-optical measurements on these new matcrials.
He observed that they possessed a very large Faraday rotation that was associated with a
strong absorption edge. The discovery stimulated much interest in the optical and
magneto-optical properties of iron garnets as well as other iron oxide compounds? .
Dillon's measurements, and those of others, were transmission measurements which are
only possible in the garnets for wavelengths larger than ~500 nm due to the strong
absorption edge at this wavelength.

Optical and magneto-optical measurements were made over the entire optical
spectrum by Kahn er al.? by means of reflection techniques. In this study, Kahn et al.
used the spectra of the Kerr effect in combination with optical data, to analyze the
electronic transitions on a number of iron oxide compounds, including the iron garnets.
Their techniques showed how magneto-optic spectroscopy can be used to determine the
electronic states of magnetic compounds.

F. Bertaut and F. Forrat, Compt. Rend. 242 382 (1056),

S. Geller and M. A. Gillco, Acta Crystal. 10, 239 (1957).

J.F. Dillon, Jr., J. Phys. Radium 20, 374 (1959).

F.J. Kahn, P. S. Pershan and J. P. Remcika, Phys. Rev. 186, 891 (1969).

. N N
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1.4 Bismuth-containing Iron Garnets

The first magneto-optical measurements on bismuth-containing iron garnets were
reported by Chetkin® in the Soviet Union and Buhrer!0 in the United States. The
materials investigated were of the form Bis.pxCascFes.,V,Oj2. Bismuth was used in
these materials as an inexpensive substitute for yttrium. The pentavalent vanadium ion
was substituted for tetrahedrally coordinated Fe3+ in order to increase the Faraday
rotation!! . And lastly, the divalent calcium ion provided charge compensation for the
vanadium ion. It was expected that the Faraday rotation would increase positively with
vanadium content in the near infrared, but, in fact, the opposite was found! (Figure 1.5).

10 09 08 07 uym 065

egem

9 10 n 2 3] 14 1S cm &

—_— 0!

Figure 1.5. The Faraday rotation of Bi,Ca3.,V<Fes.,O12. After Buhrer!0,

Later, results on vanadium-free bismuth iron garnets proved that the bismuth ion
was responsible for the decrease in the Faraday rotation of bismuth iron garnets in this
region. Further Faraday rotation measurements on bismuth iron garnets of single crystal

9 M.v. Cheikin, I. G. Morozova and G. K. Tyutneva, Soviet Physics - Solid State 9, 2852 (1968).
10 C. Buhrer, J. Appl. Phys. 40, 4500 (1969).

1T H. Matthews, S. Singh and R. C. LeCraw, Appl. Phys. Lett. 7, 165 (1965).

f Chetkin actuaily misinterpreted the sign of the Faraday rotation and thus did not realize the

anomalous effect.
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samples!2 and liquid-phase epitaxy (LPE) grown thin films!3 showed that the bismuth ion
increased the magnitude of the Faraday rotation in iron garnets, often by an order of
magnitude (Figures 1.6 and 1.7).

wavelength
050 045 040 ym 01s
T T T T

4
Faraday rotation (10 °/cm)

25 30 35
Energy (eV)

Figure 1.6. The Faraday rotation of BixY3.xFe5012 thin films. After Wittekoek er al.14.

12§ Wittckock and D. E. Lacklison, Physical Revicw Lett. 28, 740 (1972).
13 For a review article, scc P. Hanscn and J. -P. Krumme, Thin Solid Films 114, 69 (1984).
14 s, Winckock, T. J. A. Pompa, J. M. Robertson and P. F. Bongers, Phys. Rev. B 12, 2777 (1975).
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°/cm)

4

Faraday Rotation (10

'03 1} Qr os

wavelength (um)

Figure 1.7. Faraday rotation of Gds.BisFe50;,. After Takeuchils.

Since transmission measurements could only be performed for wavelengths
longer than 500 nm, the Kerr effect was employed for direct observation of the region of
interest. Analysis on Faraday rotation measurements consisted of fitting the tails of
magneto-optic lineshapes to theoretical expressions for diamagnetic and paramagnetic
transitions™t . The reflection measurements!2.13.16 allowed the entire magneto-optic
spectra of the area of interest to be seen (Figure 1.7).

There are a number of explanations put forth to explain why bismuth, a
diamagnetic ion, would produce such a large magneto-optical effect in the iron garnets
when none would normally be expected at alll?. First note (Figure 1.6) that the bismuth
induced magneto-optical effect is attributed to a few magneto-optical transitions centered
around 3.0 eV. Explanations have focused on the origins of these transitions.

Lacklison er al.!3 first suggested that the Bi3+ ion undergoes a s2—sp transition

where the excited p state is magnetically split by the magnetization of the material. This

15 H. Takeuchi, Japan Journal of Applicd Physics 14, 1903 (1975).
tt These formulac are presented in chapter 3.

16 s. Winckock and T. J. A. Pompa, J. Appl. Phys. 44, 5560 (1973).
17" A review of these theories and the rescarch conducted in this field upto 1976 is given in G. B.
Scott and D. E. Lacklison, IEEE Transactions on Magnetics MAG-12, 292 (1976).

18 p_E. Lacklison, H. I. Ralph and G. B Scou, Solid State Comm. 10, 269 (1972).
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seemed unlikely since such a transition would be expected to have an energy of greater
than 32,000 cm![16.191 yet the bismuth-induced transitions occur at lower energies of
about 25,000 cm-!. Another suggestion the authors gave was that the excitations were
from charge-transfer transitions from the Fe3* to the Bi3* ion whose levels were split by
spin-orbit coupling. Again, this seems unlikely since such transitions are expected at
energies about 32,000 cm-1(16.19] " A third scenario put forth by Wittekoek, er al.14, is that
the transitions of interest occur from charge transfer from the O2- to Fe3* on the
tetrahedral site, the O?- orbitals, being admixtures with the B3+ 6s orbitals. These 6s
orbitals would contribute a large spin-orbit interaction which splits the ground state,
thereby creating a magneto-optical effect. Data from Scott er al. on Fe3+ substituted
ytrium gallium garnet?0, however, indicates that O2-—Fe3+ transitions cccur at energies
in the vicinity of 35,000 cm-!.

A final suggestion put forth by a number of authors!2.14.17.19.21 jg that the large
magneto-optic effect of bismuth iron garnets results from already present Fe3+ pair
transitions (Chapter 2) being modified by a mixing of the Fe3+ orbitals with the Bi3+
orbitals. The Bi**+ ion has a large spin-orbit coupling in its first excited state; roughly 2
eV12 Therefore, even a small admixture of Bi3+ orbitals into the already existing Fe3+
states will give a substantial spin-orbit splitting. Wittekoek et al.!4 estimated the spin-
orbit splitting to be = 0.05¢V. This would result from an admixture of only a few percent,
which is quite reasonable. More recent analysis of Wittekoek et al.1#'s data by Dionne
and Allen®® have determined even higher values of this parameter of 0.25 - 0.5 eV.

Further evidence for the mixing of bismuth and iron orbitals comes from the
observed increase in Curie temperature wiih bismuth content.22 An increase in the Curie
temperature results from an increase in the coupling between the two iron sublattices.
The increase may be caused by Bi3+ orbitals mixing with orbitals on both iron sublattices
simultaneously, but the exact mechanism is uncertain.

The above two paragraphs represent the presently accepted expianation for the
origins of the large magneto-optic effect in bismuth iron gamets.

1.5 Applications of Bismuth Iron Garnets

19 pE. Lacklison, G. B. Scott and J.L. Page, Solid Statc Comm. 14, 861 (1974).

20 G.B. Scou, D. E. Lacklison and J. L. Page, Phys. Rev. B 10, 971(1974).

21 G. B. Scott, D. E. Lacklison and J. L. Page, J. Phys. C 8, 519 (1975).

58 G.F. Dionnc and G. A. Allen, J. Appl. Phys. 73, 6127 (1993).

22 5. Geller, H. J. Williams, R. C. Sherwood and G. P. Espinosa, J. Appl. Phys. 35, 1754 (1964).
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Most of the research on the magneto-optic properties of bismuth-substituted
garnets was conducted in the 1970's for bubble memory applications. Today, research on
bismuth gamets is primarily for two types of applications: near infrared isolation devices

and magneto-optic memory.

S
w
o

A

Figure 1.8. An optical isolator. In (a), outgoing line.rly polarized light is Faraday
rotated 45°. In (b), incoming light is linearly polarized and rotated -45° which makes it
orthogonally polarized to the first polarizer.

(b)

An optical isolator, shown in Figure 1.8, uses the Faraday rotation of the material
to differentiate betweern cutgoing and incoming polarized light so as to reject the
incoming light. Devices of this kind have been built for use at wavelengths longer than 1
pum where iron garnets are transparent. For wavelengths shorter than 1 pum, these
rnaterials are too absorbing to allow for transmission through a sufficient thickness for
45° of rotation necessary for a device. Bismuth-substituted garnets, however, have a
large rotation per absorption ratio (called the figure of merit) compared to that of the
unsubstituted material (Figure 1.9). Presently, the paramagnetic material terbium gallium
garnet is used for NIR/visible isolators. Becasuse it is a paramagnetic material, the device
needs polarizing magnets for a uniform field and is temperature-sensitive both
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intrinsically and through the magnetization of the polarizing magnets. A benefit of using
bismuth-substituted iron garnets, which are ferrimagnetic materials, is the use of smaller
polarizing magnets and temperaiure stability achieved by operating the material in a
magneiically saturated state.
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Figure 1.9. The figure-of-merit of YIG and some bismu:h-substituted garnets in the near
infrared region. After Lacklison er al.23.

Bismuth-substituted iron garnets are also being exploited for use as a materials for
magneto-optical memory. Such a system uses the Kerr rotation of a material to store and
read digital information. Here, the important quantity is the Kerr rotation times the
reflectivity24 . Bismuth-substituted iron gamets are suitable materials for this application
below ~500 nm, which, at the time of this writing, is the shortest wavelengths achieved
by diode lzsers, the light source of choice for magneto-optical memory devices.

23 D.E. Lacklison, G. B. Scott, H. I. Ralph and J. L. Page, IEEE Transactions on Magnetics MAG-9,
457 (1973).
24 F.J. A. M. Greiuanus and W. B. Zeper, Mat. Res. Soc. Bull. 15, 31 (1990).
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1.6 Goal of Thesis

The goal of this thesis is to identify the origins of the magneto-optic effect of
bismuth-substituted iro:: garnets. Additionally, we will also examine the role of the two
iron sublattices in this effect. Data will be obtained by measurement of the complex
dielectric constant spectra and the spectra of the Kerr rotation and ellipticity of selected
materials. The spectra will be obtained for bismuth-substituted yttrium iron garnet and
yttrium iron garnet. A comparison of these two materials will reveal tie bismuth ion's
contribution the magneto-optic effect. The role of the two iron sublattices will be
elucidated by comparison of aluminum and indium-substituted yttrium iron gamet, both
with and without bismuth substitution. The substitution of aluminum represents a
reduction of iron in the tetrahedral sublattice, while substitution by indium will show the
effect of a reduction of octahedral iron.

All measured spectra will be fitted to theoretical lineshapes in order to extract

quantitative results.
1.7 Outline of Thesis

In this chapter, we reviewed the history of the problem addressed in this thesis;
that is, explaining the origin of the magneto-optic effect of bismuth-substituted iron
garnets. In the next chapter, we present an exposition of the properties of the magnetic
gamnets. The magnetic garnets are a family of magnetic materials of which yttrium iron
garnet and its derivative. arc members. The properties discussed are the structural,
magnetic, optical and magneto-optical properties. Chapter 3 is devoted to the quantum
theory of optical transitions. In this chapter, we derive expressions for the dielectric
tensor elements. The diagonal elements of this tensor are the familiar dielectric
constants, while the off-diagonal elements are responsible for magneto-optical effects.
Also in this chapter, we derive some useful expressions for extracting information from
the spectra of the di:lectric tensor elements.

In this study, we measured both the dielectric constant and the Kerr spectra of iron
garnet samples. To measure the spectra of the dielectric constant we constructed a
photoelastic-modulated ellipsometer. This device is described in Chapter 4, where we
discuss its theory of operation, errors of measurement and the details of the working
instrument. Kerr spectra were measured by the magneto-optic spectrometer described in
Chapter 5. We, again, present the theory of operation, errors of measurement and the
details of the system constructed for this study.
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In Chapter 6 is a description of the production and characterization of the ceramic
samples measured in this work. Finally, in Chapters 7 and 8 a' presented the
experimental results and an interpretation of these results, respectively.
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Chapter 2

2. Magnetic Garnets

There is a class of synthetic magnetic materials called magnetic garnets. These
materials are generally ferrimagnetic and electrically insulating. Their crystal structure is
the same as that of the precious gem garnet, and hence, they are referred to as magnetic
garnets.

Magnetic garnets were first developed in the mid-fifties>6. Since then a wide
variety of magnetic garnets have been developed. They have been extensively used for
magnetic devices and studies in systems and experiments involving microwaves (v = 1-
10 GHz). Much of the development of this class of materials through the 60's and 70's
was for radar applications. Within the last decade or so, attention has turned towards
using magnetic garnets in magneto-optical systems (i.e. fiber optical systems, magneto-
optical recording) where the behavior of these materials in the near infrared and optical
region is of interest.

The prototypical magnetic garnet is yttrium iron garnet, commorly referred to as
YIG. In this Chapter, we review some of the basic properties of YIG as an illustration of
the magnetic garnets. In particular, we will discuss the crystal structure, magnetic and
optical properties. Two excellent sources for review of magnetic garnets are the books
Physics of Magnetic Garnets?5 and Magnetic Garneis?5. Also, a wealth of experimental
data appears in reference Landbolt-Borntein?’.

2.1 Crystal Structure

Yttrium iron garnet, Y3Fes0,,, derives its name from having the garnet crystal
structure. The gamnet structure has the space group symmetry of Ia3d (O;’, space group
230)*, The structure is body centered cubic and the unit cell contains 8 formula units of
Y3FesOi2 (160 atoms per unit cell). The crystal structure is shown in Figure 2.1.

25 A. Paoletti, cd., Physics of Magnetic Garnets (North-Holland Publishing Company, Amsterdam, 1978).
26 Gerhard Winkler, Magnetic Garnets (Friedr. Vieweg and Sohn, Braunschweig/Weisbaden, 1981).

27 Landolt-Bémstein, "Magnctic and other properties of Oxides and Related Compounds: Garnets and
Perovskites”, Numerical Data and Functional Relationships in Science and Technology, New Series,
I1/12a. (Springer-Verlag, Berlin, 1978).

Strictly speaking, a material with a magnetization can not possess cubic symmetry. It was found by x-
ray diffraction by Popma er al.™ and later by Chenavas et al.”, that YIG as well as other gamets do not

have a cubic structure. The actual structure has a trigonal symmetry and belongs to the space group
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Q csite dodecahedral
@ a-site octahedral
O d-site tetrahedral

Figure 2.1. The unit cell of the garnet structure. After Geller.29

() (©) (d)

Figure 2.2. The cation sites. The a site; (#2.68A, ® ©2.99A). The c-site; (¢2.68,
002814, 0002874 eeee296A). The d-site; (¢3.16A, ®©2.87A). After Geller.29

The structure possesses four different crystallographic sites. There are two a-sites
or octahedral sites per formula unit. They are occupied by two of the Fe3* ions. The
remaining three Fe3+ ions reside in the d-sites or tetrahedral sites. The Y3+ ions occupy

R3. Itis a very slight departure from the Ia3d symmetry, and hence, garnets are almost always

considered to be cubic materials.
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the c-sites or dodecahedral sites. The remaining oxygen anions occupy the h-sites which
have no symmetry. As a way of keeping track of which cations reside in which sites, the
chemical formula for YIG, as well as other garnets, can be expressed as,

{Ys}[Fez](ch)O\z i (2-1)

The occupants of the c-sites are contained in braces, (}; those of the octahedral sites in
brackets, (] and the tetrahedral sites in parentheses, (). The usefulness of this convention
becomes more important when other elements are substituted into the cation sites.

In actuality, none of the sites are of regular symmetry as their names suggest. The
d-site (Figure 2.2a) is actually a tetragonally distorted tetrahedron along the crystals
<100> directions and has the point symmetry 4. The a-site (Figure 2.2b) is actually a
trigonally distorted octahedron being distorted along the <111> directions and has a point
symmetry of Cs;. Lastly, the c-site (Figure 2.2c¢) is a highly-distorted cube possessing the
point symmetry D;. Listed in Figures 2.2a-c are the oxygen ion spacings for the three
polyhedra in YIG. Even though the a and d sites are not truly octahedrons and
tetrahedrons, they are nearly so and they are commonly referred to as the octahedral and
tetrahedral sites.

An alternate way to view the sites of the crystal is to look at the surroundings of
the oxygen ions as is shown in Figure 2.3. Here we see that each oxygen ion is part of
two dodecahedral, one octahedral and one tetrahedral polyhedra. The distances between
ions in ngure 2.3 are listed in Table 2.1 along with the bond angles between the oxygen
and cations.
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oxygen

- XON )
o0

Figure 2.3. Arrangement of the cation sites in the garnet structure. After Geller.2
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lattice constant 12.376 A
Oxygen coordinates X y z
-0.0271(1) | 0.0567(1) 0.1504(1)
interatomic nearest neighbors distances
ion #nn distances (A)
02 2 Y3+ 2.357 2.436
1 [Fe3+] 2.017
1 (Fe3+) 1.865
9 0z 2x 2.692 2.789
2.837 2976
2x 3.005 2x 3.146
Y3+ 4 [Fe3+] 3.46
6 (Fe3+) 2x 3.09 4x 3.79
8 02 4x 2.357 4x 2.436
[Fe3+] 2 Y3+ 3.46
6 (Fe3+) 3.46
6 02 2.017
(Fe3+) 6 Y3+ 2x 3.09 4x 3.79
4 [Fe3+] 3.46
4 (02 1.865
interioni‘é' angles
configuration angle (°)
[Fe3+*] - 02~ (fie3+) 125.9
[Fe3*] - 0% - Y3+ 101.5
[Fe3+] - 0% - Y3+ 104.3
(Fe3*) -02- - Y3+ 123.0
(Fe3*) - 02— Y3+ 93.5
Y3+ — 02~ Y3+ 104.5
[Fe3+*] - 0% - [Fe3+ 147.2
(Fe3*) — 0% - (Fe3+) 86.6
(Fe3*) — 0% - (Fe3+) 78.8
(Fe3*) — 02— (Fe3+) 74.7
(Fe3*) — 0% - (Fe3+) 74.6

Table 2.1. Distances and angles of the YIG crystal structure. After Winkler.26
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Other elements can be put into YIG to replace the yttriun. and iron and produce
other magnetic garnets. In place of yttrium, we can substitute lanthanum or any of the
rare-earths. The c-site is for this reason often referred to as the rare-earth site. In place
of the iron can go other transition metals. Commonly used elements are aluminum and
gallium which have a strong preference for substituting into the tetrahedral sites.
Elements that prefer the octahedral site include indium and scandium.

Different elements are substituted into YIG to obtain desired magnetic properties.
The use of the notation shown in (2-1) becomes particularly useful in describing the
occupations of the three cation sites. As an example, if we substitute aluminum for one-

tenth of the iron atoms in the material gadolinium iron garnet (GdIG) we would write the
chemical formula of the material as

{Gds}[Fez](A]o.sFez.s )012 )

where we have assumed that all the aluminum ions reside in the tetrahedral sublattice.

As an example of the properties of magnetic garnets changing with different
compositions, Figure 2.4 and Figure 2.5 show how the lattice constant changes with
different rare-earth ions and varying amounts of iron substitutents.

i o Fe . .u".“
K o oll"...“
12.6 G
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g “,,....o-"'.‘ ."‘.a“" e oot
O 12.2 - . ‘“_“...A- ‘.w..‘m,..-..-
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-®
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Figure 2.4. Lattice Constant of RE3Ms0;, versus ionic radius of rare-earth ion. After
Winkler26 and references therein.
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Figure 2.5. The lattice constant of Y3Fes.xM,01, for M = Al, Ga and In. After numerical
data found in reference 27.

It is generally accepted that yttrium, lanthanum and the rare-earth elements only
reside in the rare-earth or d-site. Transition metals, however, can and do go into both the
octahedral and tetrahedral sites, although, they generally will have a preference for one of
the sites. This site selectivity as it is called, depends not only on the size of the ion, but
also the crystal field energy of the ions in the two sites. Also of importance is the
material preparation technique.

Commonly substituted ions include the trivalent diamagnetic ions A13+, Ga3+, In3+
and Sc3+. AP+ and Ga3+ have a strong preference t. occupy the d-site28. At low
concentrations, roughly 90% or more of these ions will occupy the d-site. In3+ and Sc3+
prefer to occupy the a-site29.

The substituting ions need not be trivalent, provided that other non-trivalent ions
are present for charge neutrality of the composition. Two such examples are

{Ys-zncag;: }[Fe2 ](vi+F63-x )012 ’

where the V3+ ion goes exclusively into tetrahedral sites, and,

28 E.R. Czerlinsky, Phys. Stat. Sol. 34, 483 (1969).
E. R. Czerlinsky and R. A. MacMillar Phys. Stat. Sol. 41, 333 (1970).

29 5. Geller, "Crystal and Static Magnctic Properties of Gamets”, Physics of Magnetic Garnets, ed. A.
Paoletti (North-Holland Publishing Company, Amsterdam, 1978) p.1.
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.{Y3_2‘Caf' }[Zr:*Fcz_‘ ](Fe, )012 )

where the Zr*+ goes exclusively into the octaliedral site. In both cases, Ca2*, a
diamagnetic ion, has also been substituted for charge compensation. We will restrict
work to trivalent diamagnetic ions.

2.2 Magnetic Properties

Yttrium iron garnet is an insulating ferrimagnetic material with a Curie
temperature of 559 K. The magnetization of YIG comes from the Fe3+ ions which have a
ground state electronic configuration of ®S,, arising from a half-filled 3d shell. This
gives the iron ions a magretic moment of S5ug. The Y3+ ion has a closed shell
configuration isoelectronic to Krypton, and hence, is diamagnetic, contributing nothing to
the magnetization. Fe3+ ions in the tetrahedral sites prefer to align themselves parallel to
one another. The Fe3+ ions residing in the octahedral sites also prefer to align parallel to
one another. These two ferromagnetic sublattices, however, align anti-parallel to each
other. Since there are three tetrahedral sites for every two octahedral sites, there is a net
magnetization and the material is ferrimagnetic. At zero temperature, the magnetization
of the material will be 5up per formula unit giving a magnetization of

aaM, =0 __ 2459 Gauss. 2-2)
(12.376A)

This value has been found experimentally39, lending credibility to the above model.

30 Elmer E. Anderson, "Molecular Ficld Model and the Magnetization of YIG", Physical Review 134,
A1581 (1964).
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Figure 2.6. Saturation magnetization and magnetic susceptibility of YIG versus
temperature. After Anderson.30

Figure 2.6 shows the thermomagnetization curve of YIG. The Néel Theory of
ferrimagnetism can be used to explain the magnetization of YIG ver;us temperature30,31,
The theory states that the total magnetization is the sum of the magnetizations of the
tetrahedral and octahedral sublattices, Myq and M, respectively. (We assign the octahedral
suvlattice a negative magnetization.);

M=Md-M (2-3)

.

The sublattice magnetizations are calculated by treating the ions as paramagnetic
moments under the influence of an effective magnetic field called an exchange field.
This exchange field can be described as a Heisenberg exchange energy, #,, = JS;S,,
between ions on the same and different sublattices. Thus the sublattice magnetizations
are given as follows:

31 GeraldF. Dionne, "Molecular Field Cocfficients of Substituted Yttrium Iron Gamets", Journal of
Applied Physics 41, 4874 (1970).
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M.'(T)=M.(o)B,,,(5“"H-) ,

kT (2-4)
M,(T)=M,(0)B (Ll )
where
(8)(S1s)
M, (0)=2———TBL
© (12.376A)
(8)(SHs) >
M,(0)=3——B
© (12.376A)

and Bsy,(x) is the Brillouin fuaction for spin 5/2. The exchange fields, H, and H,, arise

from the interactions (super-exchange) between the iron ions and are assumed i tzke the
form of

H, =AM, +A M, |, 2-6)

H, =AM, + XeaM,
The A's are called molecular field coefficicats and are proportional to the Heisenberg
exchange constants as will be shown later.

Eqnations (2-4), (2-5) and (2-6) are solved simultaneously with different values
for the A's. The A's are adjusted until a good fit with experimental data is achieved.

The exchan'ze constants, Jj;, can be calculated from the A's and compared with

other experimentally determined values of J in the following way. The exchange energy
of an ion is written as

H;=Y18 S=YzJSS, |, (2-7)
J

U]
j=a,d

where z;; is the number of nearest j neighbors for ion i,. We can also write the exchange
energy in terms of the exchange field,

Hexchmge,i = giuasizxiij . (2‘8)
i
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Equating (2-7) and (2-8) we find that

I = _giﬂu‘;n jxi . (2-9)
ij

where n; is the density of j-sites.

Values for the exchange constants derived from magnetization curves of some
iron garnets are given in Table 2.2. Other experimentally determined values of the
exchange constants for YIG are listed in Table 2.3. First notc that the value of J4 is
positive, indicating that the two sublattice magnetizations prefer to align anti-
ferromagnetically, while J,, and J44 are negative indicating ferromagnetism within th-
sublattices. Also, J,4 is in good agreement with other experiments, although this is less
true for the smaller exchange constazis J,, and J44. However, it appears that the above

model for the magnetization is a reasonably valid one.

Compositior Jad Jag Jad Jac Jac
YsGesOq, 25.36 -8.45 -11.86 0 0
25.31 -8.50 -11.90 0 0
(a) 24.2 -5.54 -10.6 0 0
(b) 220 -3.22 -3.22 0 0
Gd;Fes0,, 25.18 -8.43 -12.02 -0.22 3.38
25.3 -8.49 -11.90 -0.90 4.70
ErsFes0y, 25.31 -8.50 -11.90 -0.20 0.98
Sm3Fes0y; 25.31 -8.50 -11.90 0 0
EusFesOy, 25.31 -8.50 -11.90 0 0
TbsFes0y, 25.31 -8.50 -11.90 -0.48 2.66
Dy3FesO;, 25.31 -8.50 -11.90 -0.89 3.10
Ho3FesO,, 25.31 -8.50 -11.90 -0.20 1.18
Tm3Fes04, 25.31 -8.50 -11.90 -0.27 6.28
YbsFesOy; 25.31 -8.50 -11.90 -0.45 1.57
LusFesO, 25.31 -8.50 -11.90 0 0

Table 2.2. Exchange constants for iron garnets in cm-l. (a) Values derived from
susceptibility measurements. (b) Values derived from spin-wave measurements. After
numerical data found in reference 27 and references therein.
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Method Jad T Jaa
Optical absorption 19.8 0 -1.77
220 -322 -3.22
Magnetization 25.36 -8.45 -11.86
225 -0.520.5 2.010.5
31.8 -6.35 -6.35
Susceptibility 242 -5.54 -10.6
24.0 - -0.83

Table 2.3. Some values for the exchange constants (cm-!) of YIG, determined by various
experimental methods. After Winkler26 and references therein.

We can magnetically dilute the two sublattices to either increase (octahedral
substitution) or decrease (tetrahedral substitution) the magnetization of YIG. When this
occurs, the coupling constants will decrease8. For the material

{Yd3}[AxFe2—x](DvF°3-y )012, where A and D are diamagnetic ions in the octahedral and
tetrahedral sublattice, respectively, the molecular field coefficients obey the empirical
relationship8

A, =—65.01-0.42y) ,
Ay =-30.4(1-0.43x) (2-10)
Y.y = +97.0(1-0.125x - 0.127y)

Also, the magnetizations of the sublattices are observed to decrease slightly more than
can be explained by mere substitution. Empirically it is found that

3
M,(0)=(3-y)gHpS,N,(1-0.05x)

o _ 1 5.4
MI(O)-(z x)gll‘"BSANA(l ( ) ) ’ (2-11)

First note that (2-10) and (2-11) are noi simply the result of removing magu<tic
ions. If this were the case, the molecular field coefficients in (2-10) would not change

and the factors of (1 - ({-)5") and (1-0.05x) would not appear in (2-11). Also seen in (2-

10) and (2-11) is the implication that substitution of a diamagnetic species in one
sublattice affects the coefficients and magnetization of the opposite sublattice. These
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affects have been attributed to a canting of the spins of the Fe3* ions upon dilution of the
sublattices. That is, when some of the Fe3+* ions are removed, the spins on the remaining
Fe3+ ions on average become non-collinear, not aligning either parallel or anti-parallel
with the magnetization.

We can also substitute rare-earth ions in place of the yttrium ion. Rare-earth ions
in general possess a magnetic moment. Rare-earth ions in the c-sublattice align parallel
to each other and anti-parallel to the resultant magnetization of the two iron sublattices.
As can be seen in Table 2.2, the molecular field coefficients for the c-sublartice are an
order of magnitude less than those of the iron sub-latiices. The addition of this third
magnetic sublattice does significantly affect the magnetization of the material, however.
A third magnetic sublattice implies the magnetization as a function of temperature can go
to zero at the Curie temperature, Tc, and at a second temperature called the compensation
temperature, Teomp. This is illustrated in Figure 2.7.
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Figure 2.7. The thermomagnetization curves of rare-earth iron garnets. The y-axis
denotes the number of Bohr magnetons per formula unit, ng The dashed curve for
Dy3FesO;; indicates continuation of the magnetization curve; the magnetization being
aiways positive. After Winkler26 and references therein
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2.3 Optical Absorption

As can be seen in Figure 2.8, YIG is transparent through much of the near-
infrared spectrum. The optical window extends from roughly 1 to S pm in wavelength.
At long wavelengths, the absorption is due to the excitation of optical phonons. At
shorter wavelengths, the absorption comes from electronic transitions involving the Fe3+

ions. We will concern ourselves with the optical absorption in the visible region below 1
Hm in wavelength.
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Figure 2.8. The absorption spectrum of YIG. After Wood and Remeika.33
The optical absorption of YIG is shown in Figure 2.9 for the range 10,000 cm-! to

23,000 cm! (1000 nm - 400 nm)t and in Figure 2.10 for wavelengths 20,000 cnr! to
40,000 cm! (500 nm - 250 nm). The spectrum can be split into three different regions

t  The units of energy (electron volts, eV, and wavenumbers, cm-1) are used interchangeably with
wavelength when talking about optical spectra. The wavenumber is the reciprocal of the wavelength of
light. A useful equality to remember is that 1 eV = 8065 cm™! = 1240 nm.
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due to the different types of electronic processes proposed for the absorption in each
region32,

WAVELENGTH (Anm)

—S0 o0 X0 o 200

i

3 26C
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J .3
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11070
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Figure 2.9. The absorption spectrum of YIG at 77 K (solid line) and 300 K (dashed line).
After Scott et al.20

32 G. B. Scott, "The Optical Absorption and Magneto-optical Spectra <f Y3FesO12", Physics of Magnetic
Garnets, cd. A. Paoletti, (North-Holland Publishing Company, Amsterdam, 1978) p.445.
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Figure 2.10. The absorption coefficient for a thin film of YIG at 77 K (-) and
300 K (- - -). The dashed curve at the bottom of the graph is the spectrum for
the Gd3GasO;; substrate. After Scott and Page.38

The absorption spectrum from 10,000 cm-! to about 23,000 cmr! is primaril’ from
electronic transitions between the crystal field split levels of the Fe3+ ions in the
octahedral and tetrahedral sites. It has been possible to decompose the optical absorption
spectrum by fitting to a series of Gaussian peaks20-33.34.35 and matching the resultant
peaks to a crystal field splitting scenario for the Fe3+* ions based on the theory of Tanabe-
Sugano's’®. This modeling procedure is complicated by the fact that there are two crystal
fields for the iron ions; one for the octahedral site and one for the tetrahedral site. The
assignments made by Scott et al.20 are listed in Table 2.4 with the energy levels shown
schematically in Figure 2.11. The Gaussian peaks arising from the least-squares fit to the
absorption spectrum is shown in Figure 2.12 and Figure 2.13.

33
34
35
3

D. L. Wood and J. P. Remeika, J. Appl. Phys 38, 1038 (1967).

K. A. Wickersheim and R. A. Lefever, J. Chem. Phys. 36, 844 (1962).

S. H. Wemple, S. L. Blank, J. A. Seman and W. A. Biolsi, Phys. Rev. B 9, 2134 (1974).
Y. Tanabe, S. Sugano, J. Phys.Society of Japan 9, 753 (1954).

[~}
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Figure 2.11. Diagram of the crystal field split energy levels of Fe3+ in the octahedral and
tetrahedral sites. After Scott er al.20
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Energy (cm-!) Assignment - Site Oscillator strength
11,070 6A15(6S) — 4T1,(4G) oct 2x 103
14550 6A14(6S) — 4T2,(*G) oct 2x 103

16120, 16890 6A1,(6S) = 4T1(4G) tet 8 x 103
19,718 6A14(5S) = 4T2(4G) tet 1.6 x 104
20,710 6A15(6S) = 4EA,(4G) tet 32x 107
21,390 6A14(6S) = *Egr?A1,(4G) oct 2x 103
22,520 6A15(6S) — 4To4(D) oct 1 x 104
24,150 6A14(5S) — 4T,(“D) tet 6 x 10-3

Table 2.4. Assignments for crystal field transitions in YIG derived from Gaussian fitting
of absorption spectrum 77 K. See Figure 2.11 for energy level diagram. After Scott et

al32
Energy (cm-!) Half-width (cm-!) Oscillator strength
23,100 1800 70x 104
25,600 1850 4.5x 104
" 27,700 3100 40x 103
30,700 3760 7.0x 107

Table 2.5. Transitions assignments derived from Gaussian fitting of absorption spectrum
of YIG at 77 K. Oscillator strengths have been calculated assuming absorption is from
[Fe3+)-(Fe3+) pairs. After Scoit et al.32
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Figure 2.12. Gaussian curve fit to the absorption spectrum of YIG. After Scott et al.20
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Figure 2.13. Gaussian curve fit to the imaginary part of the dielectric constant of YIG.
After Scott and Page.38
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It was noted, early on, that the strengths of these crystal field transitions did not
scale linearly with the iron concentration of substituted iron garnets,33-34 but instead, went
approximately as the square of the concentration (see Figure 2.14). This suggested that
the transitions actually involved pairs or groups of iron ions rather than single ions.
Transitions of this type are referred to as pair transitions.

$ Iron concentration

°.2 = =

eal 1 v v o4 4 4oy 1o
8% oi 0z 03 1.0 2 & 10 20 50 100 20u 300 1000

absorption coefficiént

a:-

Figure 2.14. The dependence of absorption on iron concentration in Fe:Y3FexGas.xO12.
The top two curves are for crystal field transitions, while the bottom curve is at an
arbitrary wavelength close to the absorption edge. The slopes are approximately equal to
1.8. After Wood and Remeika.33

This interpretation was used to explain the large oscillator strengths of the crystal
field transitions. The ground state of the Fe3+ ions in either site contains a half-filled d-
shell. Transitions to excited states of the ion require a spin flip and are therefore spin
forbidden. Such transitions typically have oscillator strengths on the order of 10-7.11 Yet,
the observed oscillator strengths are on the order of 10-5 (see Table 2.4). If we assume
the excitations to involve pairs of tetrahedral and octahedral iron, then the total spin
change of the transition can remain zero if the spin flip of an ion is offset by a spin flip on

1 Transitions for the octahedral ion are also parity forbidden and expected oscillator strengths are on the
order of 109
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an ion on the opposite sublattice. This is equivalent to producing a magnon or spin wave
excitation. The interpretation was confirmed by van der Ziel et al.37 who identified
sidebands on the lowest energy absorption line of YIG which coincided with energies at
peaks in the magnon density of states.

The second region of the absorption spectrum is in the range of 23,000 cm-! to
30,000 cml. Scott er al.20 found that the absorption peaks implied by their Gaussian fit
to the absorption spectrum in this region are an order of magnitude stronger than those
assigned to fransitions between crystal-field split levels. The first three of these levels
can be seen in Figure 2.12, beginning at 23,000 cm-!. Others can be seen in Figure 2.13.
Further, they found that in gallium-substituted YIG, the oscillator strengths of these
transitions depended upon the concentration of iron, indicating that the transitions also
involve pairs of Fe3+ ions. It is suggested that the process responsible for these
absorption lines is charge transfer beiween the iron sublattices.3® These transitions are
described as

[Fe**]+(Fe**)+ hv - [Fe? |+ (Fe*)
[Fe**]+ (Fe**)+hv — [Fe**]+(Fe**)

The four transitions of this type that were identified by Scott and Page38 are listed in
Table 2.5.

The third region of the spectrum is for energies greater than 35,000 cm-!. Scott
and Page38 found very intense transitions in this region with oscillator strengths on the
order of 0.1. The first of these transitions can be seen in Figure 2.13 at 35,000 cm-l.
Unlike the transitions assigned to charge transfer between the iron sites, the strength of
these strong transitions did not change with the concentration of iron in gallium
substituted YIG. These transitions were assigned to the process of charge transfer from
the oxygen ions to the Fe3+ ions.

2.4 Magneto-optic Spectra

The magneto-optic spectra of YIG are less well understood than even that of the
absorption spectra. The Faraday rotation and the magnetic circular dichroism of YIG are

37 3. P. van der Ziel, J. F. Dillon and J. P. Remeika, Proc. 18th Conf. Mag. and Mag. Mat., 254 (1971).
38 G.B.Scottand J. L. Page, Phys. Stat. Solidi. b 79, 203 (1977).
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shown in Figures 2.15 - 2.17. The Faraday rotation is the resultant rotation of polarized
light as it propagates through a magnetic material. It is the result of differing indices of
refraction for right and left circularly polarized light. Magnetic circular dichroism is the
difference in the absorption coefficients for right and left circularly polarized light. The
circular dichroism manifests itself as an ellipticity in an initially linearly polarized light.
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Figure 2.15. The Faraday effect and absorption spectra of YIG at 77 K trom 9,500 cm-!
to 12,500 cm-l. After Scott et al.39
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Figure 2.16. The Faraday effect and absorption spectra of YIG at 77 K from 12,000 cm-1
to 21,000 cm-1. After Scott et al.39
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Figure 2.17. The Faraday effect and absorption spectra of YIG at 77 K from 20,000 cm-!
to 25,000 cm-l. After Scott et al.39

Also shown in Figures 2.15 - 2.17 are the absorption spectra for the same spectral
range. Scott et al 39 have been able to match some of the absorption peaks of YIG with
the magneto-optic transitions implied by the Faraday rotation anc' the magnetic circular
dichroism spectra. To do this, it was assumed that all magneto-optic transitinns are
paramagnetic transitions with the exception of that at 23,100 cm-! which appears to be a
diamagnetic transition. %

A paramagnetic transition arises from a magnetical'y-split ground state (see
Figure 1.4) where the different indices of refraction for right and left circularly poiaized

9 G.B.Scou, D. E. Lacklison and J. L. Page, Physical Review B 12, 2562 (1975).
11 These two types of transitions derive there names from their temperature dependence and do not

necessarily relate to the magnetization of the material.
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light are due to the thermal distribution of ions in the ground state manifold. A
diamagnetic transition, however, arises from a magnetically-split excited state (Figure
1.3), the difference of the indices of refraction for right and left circularly polarized light
comes from the difference in the transitions ene-gies. Based on this description, one
would expect only diamagnetic transitions in YIG since the electronic ground state of
Fe3+ is a singlet and hence can not be split. Yet, it would appear that the magneto-optic
transitions are predominately paramagnetic. This point has not yet been explained.

Lastly, in Figure 2.18, is shown the magneto-optic spectra of YIG from 2 to 5 eV
(620 - 250 nm). It is more physically correct to talk about magneto-optic phenomena in
terms of the dielectric tensor, €, which, for a cubic material, can be written as

e=|+ig, g O ,
0 0 g,

for a magnetic field applied in the z-direction. The off-diagonal elements of this matrix,
represented by the quantity €;, are responsible for magneto-optic properties. The real and
imaginary parts ot € for YIG are shown in Figure 2.18. Also shown in Figure 2.18 are
the off-diagonal c.ements for Big25Y2.75FesO12. As can be seen, € is increased in

magnitude over that of YIG. Explaining this increase is the subject of this work.
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Figure 2.18. The off-diagonal elements of the dielectric tensor for YIG (solid lines) and
Big25Y27sFesOy; (triangles). The off-diagonal elements are represented by the quantity

€;. Arrows indicate energies of transitions found in absorption spectrum. After
Wiitekoek er al.14

2.5 Summary

We have given an overview of the properties of magnetic garnets. While the
crystallographic and magnetic properties are somewhat well understood, the origins of the
optical and magneto-optical properties of the magnetic garnets are far from resolved. In
this thesis, we investigate the origins of these two properties and will focus on their
change when bismuth is substituted into iron garnets.
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Chapter 3

3. Theory of Optical Transitions

In this chapter. we derive the quantum mechanical expression for the dielectric
tensor of a cubic material. This is done by first finding the susceptibility tensor. We will
use the expressions found for the complex diagonal and off-diagonal elements of the tensor
to fit to experimental data.

The real and imaginary parts of the diagonal elements form the familiar dielectric
constant of a material. The off-diagona! elements can take on two forms depending upon
the corfiguration of the states involved in the transition. The two types of transitions that
produce a non-zero off-diagonal element of the dielectric tensor are diamagnetic transitions
and paramagnetic transitions. The diamagnetic transitions originate from magnetically-split
excited states, while paramagnetic transitions originate from magnetically split ground
states. The two types of transitions possess different lineshapes and thus, lend theraselves
as useful tools for determining the arrangement of states in a magnetic material.

The derivation of the dielectric tensor that follows uses the density matrix approach
of quantum statistical mechanics4®. This particular derivation is based on that of Shen?! .

3.1 Derivation of the Dielectric Tensor

For a system described by the wavefunction |y) in contact with a thermal reservoir,
the density matrix operator, p, is defined as,

-

p=lwXy| . (3-1)

where the bar indicates an ensemble average of the system. This is where the statistical
mechanics comes in. An ensemble average of an observable, P, is then given by

————

(P) - (W PIV) =Te(3P) . G2

The time evolution of the density matrix operator is given by Ehrenfest's relationt

40 R, K. Pathria, Statistical Mechanics (Permagon Press, Oxford, 1985).
41 Y. R. Shen, The Principles of Nonlinear Optics, John Wiley and Sons, New York, p. 13 (1984).

¥ The equation of the time evolution of a density, such as (3-3) is usually called Liouville's  equation.
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[#0.5] . (3-3)

¥|3

1
ih
We describe the Hamiltonian of the system as

H=H,+H +H . - (3-4)

Hp is the Hamiltonian of the unperturbed system. The eigenstates of the
unperturbed system, {|n)}, and the eigenstate energies {(E;} obey the relation

Hiln)=E |n) . (3-5)

The interaction Hamiltonian, %, describes the interaction between light and electrons.
We will treat this interaction semi-classically; that is, the light is described as an

electromagnetic field and the electrons are in quantum states. We will neglect the magnetic
interaction and thus have

H_ =erE . (3-6)

H;andom is a phenomenological quantity that describes the random perturbations on the
system due to contact with a thermal reservoir. These perturbations are responsible for
stimulatifig transitions from excited states back to the ground state, in other words, the
relaxation of the system.

With these three components of the Hamiltonian known, we can write (3-3) in more
detail.

B_Ligr 51 Lis 514(% 7
RGO (3 o

where
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We define (%B) because we do not actually know Hgngom. We will ,however, be able

relax
to determine its effect experimentally. We now give some descriptions for the matrix
elements of this quantity.

A

For the matrix elements of (a_p) we look at the separate cases of the diagonal
relax

elements and the off-diagonal elements. The diagonal elements correspond to a change in
the population of a state {n). We can describe this by first defining a "thermaliy-induced”
transition rate, Wi, which is the rate at which the system in the state |i) makes a transition
to the state |j). We can then write for a diagonal matrix element,

(2)_h)-

n (apm\ ) = Z[wn'—mpn'n’ - wn-m’pnn] ¢ (3-8)
/ at relax n’
At thermal equilibrium, (i.e. no applied electric field)

(a‘;(:’) =S [W,op® - W, 9] =0 39
relax

’
n

Combining (3-8) and (3-9), we then get

-

%[pnm -] Z[Wn (P =P ) = W (P —0)] (3-10)

For the off-diagonal elements, we assume that there is a characteristic exponential decay
rate, I"_.., so that

ap )
o0’ - 0. ., . 3-11
( O Jrun o N

We now have all the components of (3-7) and can solve for the elements of the
density matrix, p. It is not possible to do this in a closed form. Instead, we expand all
quantities in orders of the applied electric field. Thus,
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;;p(0)+pu)+p(z)+
-12
H=H+HO + 3P 4 G129

Note that H, is first order in the applied electric field. Applying (3-12) to (3-7),
we get,

5™ ) - 5™
gt 1h[ P )]+ [H"“’p( l)] ( St )m ' G-13)

For our purposes, we will only look at first order effects. Since the applied electric field is
assumed to be sinusoidal in time, we assume that p is also sinusoidal in time. This leads to
the relation

9 .

™ () = —iwp™ 3-14
5P (@)=-iwp™(w) . (3-14)

By applying (3-11) and (3-14) to (3-13) we get an expression for the first-order density
matrix.

W oy 1 (n[Hifn") © _ 0 3-15

Prar (@) ho-o , +il_, (o —p) G-13)
where

ho,. =E,-E_

The susceptibility tensor can now be found from (3-15) and from the ensemble
average of the polarization vector, P, as given in (3-2).

(1)( ) (P“’(m) ((l)«n) p(’)(co)r"’(m» | (3-16)

E(w) E

]

The trace appearing in (3-16) is

Tr(p®(w)r;) = EZ(nIp"’((o)ln) Iri@)n) (3-17)
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leading to a susceptibility of

xﬁj"(w)=-N° 220,() o (% -p%) (3-18)

o, +il

We can put (3-18) in a different form by splitting the summations over states into two
summations, one over the ground states of the system and the other over the excited states

of the system. Since the excited states are not populated at thermal equilibrium (e.g.
=0), we get

(1)(0)) Ne? Zz ( ) _ (ri)n,(ri)sn p?)

nloto, +il o o-o, +i[

. (3-19)

where n represents the excited states and g represents the ground states. Finally, the
dielectric tensor will be given by

eD(w)=8, +4my’(w) . (3-20)

In the discussion that follows, we will assume that the material of interest is cubic
and that magneto-optic effects arise from a magnetic field in the z-direction. This implies
thar all the diagonal elements are equal and only the €,y and €y, off-diagonal elements are
non-zero. The dielectric tensor can then be written as

g, -—ig, O
E=|+ig, g O . (3-21)
0 0 g,

We proceed now to derive expressions for the quantities € and ;.
3.2 Diagonal Elements

Consider first the diagonal elements of the dielectric tensor. These three elements
correspond to the dielectric constants of the material. As we have just mentioned, for a
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cubic, the diagonal elements are all equal, having a value of €9. From (3-20), the
expressions for the diagonal elements are (we have k-ept the subscripts of € for generality)

((o2 -0l - l‘fw) - i(2mI‘“)

£,(0)=1+aw? fi p (3-22)
(©) p;; * (@ —mgs-r:s)’+4m2r:, :

where

o, and fl =—T8

m "8

2_ 4nNe? . 2mo Kglriln)lz

The quantity (of, is called the plasma frequency and is proportional to the density of
absorbers in the material’® . The quantity f,_ is the oscillator strength of the electronic
transition |g) — |n). The superscript denotes the particular polarization of the transition.
The frequency dependence of the dielectric constants is shown in Figure 3.1. We
see that the lineshape of the real part is dispersive and the imaginary part is absorptive, as is

expected. The maximum value of the imaginary part occurs at approximately the center
frequency wg where the value is

” o’f 2
0

-

The ratio of the width to the center energy is usually much less than one for optical
transitions and we neglect it here.

Equation (3-23) allows us to determine the oscillator strength from €¢”. The
oscillator strength is

£=2%l8 /) (3-24)
(O]
P

The quantity L(Eo) is the Lorenz-Lorentz correction. It accounts for the increased electric

field seen inside a dielectric42. It is equal to

T A useful rclationship is mp2 =830.4 (N/Np) eV2 where Ny is Avogadro's number.
42 5. D. Jackson, Electrodynamics (John-Wiley, New York, 1986).
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'L(eo) - (—L)z , (3-25)

n2+2

where n is the real part of the index of refraction.

Figure 3.1. The real and imaginary part of the dielectric constant, £9. The real part of the
dielectric constant is centered around the vacuum value of one.

3.3 Off-diagonal Elements

Consider now the off-diagonal elements of the dielectric tensor. We assume a cubic
material magnetized in the z-direction. The off-diagonal elements of the dielectric tensor
can then be represented by the quantity €1, as is shown in Equation (3-21). Finding an
expression for €) is not as straight forward as for the diagonal elements. However, in the
geometry we have chosen (e.g. the magnetic field in the z-direction), which is often called
the polar configuration, it can be shown that

e fry iy (07 -0 - T3 )-i(20T,) 0 +ir
El(m) mp;; 2 (mz _ 0):' _ r:')2 + 4w2r'2|s O)ns

ng p(0) , (3-26)

where

xtiy

V2

fre =—-"2m: . Kg
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Magneto-optic effects occur when the off-diagonal elements of the dielectric tensor
are non-zero. This arises from two types of electronic transitions: paramagnetic and
diamagnetic.

Faramagnetic transitions occur from a magnetic splitting of the ground state (see
Figure 3.2). The ground state manifold is thermally populated and as such, there is a
difference in the number of right and left handed states available for absorption. If we

assume that the ground state splittings are small compared to the transition energytft, wy,
and also that all transition widths are equal, I'= I‘“a , then (3-26) becomes

(0® —w; —T'?)-i(20T) @ +il, E,:f‘p' } ; fiPy
(0* -k - I‘z)2 +40T? o, 2

g (w)=w} (3-27)

The term in brackets is the effective difference in oscillator strengths Af. We see that the
value of €, is directly proportional to Af. Notice also that €; for a paramagnetic transition
is temperature dependent through the term g, having its greatest value at zero Kelvin and
vanishing at infinite temperatures. This is the same temperature dependence as the
susceptibility of a paramagnet, and hence, the name paramagnetic transition?.

1 This is usually the case since in order to have a thermal distribution of states, the splitting of these

states must be on the order of kT; typically ~ ImeV. The transition energies, however, are on the
orderof 1 ¢V,
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o £ >f

iy

Figure 3.2. A paramagnetic transition. The ticks on the zero axis ir:dicate the full width of
2I". The graph next to the ground state represents the population of the states.

The frequency dependence of €, is shown in Figure 3.2 where we see that the real
part of €;, has a dispersive lineshape and the imaginary part an absorptive lineshape. The
value of € at wy to first order is

02Af
glo,)=—"2— . (3-28)
o) 20,

This leads to the relation

elﬂ(mo) = _A_f_ (3_29)
eo(w,) f

which will be of use in analyzing the magneto-optic spectra presented in Chapter 7.

A diamagnetic transition occurs due to a magnetic splitting of the excited state. The
simplest example of this is illustrated in Figure 3.3 where the excited state is split into two
components which diifer from the central energy, mg, by an amount A. Due to the
magnetic senses of these states, the upper state will have all of its oscillator strength in the
positive sense, f* =f /2, while for the lower state, f~ =f /2. In the absence of a splitting
(e.g. A =0), the contributions to €, from these two states will 2xactly cancel. When there
is a splitting, however, the slight difference in transition energy to these two states
produces a non-zero € as is illustrated in Figure 3.4. There is no simple expression for g,
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in the diamagnetic case. However, at the center frequency, wg, the real part of €, has a
value to first order, of

, 0 f A
€, (O.)o) = }I&LFF . (3-30)

This leads to the relation

, (3-31)

which will be useful in ohtaining information from the magneto-optic spectra presented in
Chapter 7.
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Figure 3.3. A diamagnetic transition. The ticks on the bottom axis indicate the full width
of 2T".
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Figure 3.4. The off-diagonal of a diamagnetic transition arises from the shift in energy of
two transitions with the opposite sense of rotation. Tick marks on the zero axis indicate the
two transition energies. The dashed lines iepresent the components of el from right and
left-handed absorbers. The solid line is the resuitant difference.

Also, €, is not explicitly temperature dependent as is the case with the
susceptibility of a diamagnet. Any temperature dependence of &) occurs due to a
dependence of the oscillator strength or the linewidths on temperature4. The frequency
dependence of €; is shown in Figure 3.3 where we see that the real part has an absorptive
lineshape and the imaginary part has a dispersive lineshape. This is the opposite of the
paramagnetic case and because of this, the lineshapes of € can be used to determine the
arrangement of the quantum states of a material.

3.4 Kramers-Kronig Relations

One last point in closing this Chapter is that the expressions for the elements of the
dielectric tensor are analytic functions. As such, these expressions must obey Kramers-
Kronig, relations which relate the real and imaginary parts of analytic functions to each
other. Mathematically, the Kramers-Kronig relations are

(3-32)
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where

f(x)=u(x)+iv(x) ,

is an analytic function. Equations (3-32) allows one to find one part of an analytic function

knowing the other. Equations (3-3) also imply the following:

”
o de
max dm max
“ and
”
£, de”]
dW \min

de’

dw

de’
dw

(3-33)

max

The above relations allows us to make a quick check on the sign and on the qualitative

behavior of experimentally obtained dielectric data.
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4. Photoelastic Modulated Ellipsometer

4.1 Ellipsometry

4 Introduction

Ellipsometry is the measurement of the change of pclarization produced by
reflection from a surface. The technique derives its name from the fact that the state of
polarization of light is, in general, elliptical. The technique has been utilized for more
than a century43. Its primary use has been to determine the dielectric constant of
materials. In more recent decades, ellipsometry has been applied to measuring the
thickness of thin films, often in situ, where it can be used to monitor film growth.

In this chapter, we describe a type of ellipsometer called a photoelastic modulated
ellipsometer (PME). The PME is based on a device called a photoelastic modulator
which was first described by James Kemp44 in 1968. It was applied to ellipsometry a
year later by Jasperson and Schnatterly45 who developed the first PME to study metallic
films. The PME described in this chapter is based on that of Bermudez and Ritz46.

We will first introduce a system of matrices referred to as Jones' Matrices. Jones'
matrices provide a method for calculating the change in polarization of light in an optical
system. They will be used to describs the various configurations of the PME. Next, we
will calculate the errors of the system. Finally, in closing the chapter, we describe the
details of the PME constructed for this work.

4.1.2 Photoelastic Modulator

A photoelastic modulator is a device which modulates the state of polarization of
light. It makes use of the photoelastic effect which is the birefringence exhibited by an
optical material under mechanical stress. This stress is induced cyclically by a
piezoelectric transducer and for this reason the device is sometimes called a piezo-
birefringent or piezo-optical modulator.

43 For a revicew article on the history of cllipsometry, sce A. C. Hall, Surface Science 16, 1 (1969).

44 James C. Kemp, J. Opt. Soc. Am. 59, 950 (1969).
45 5. N. Jasperson and Schnatterly, Rev Sci. Instr 40, 761 (1969).
46 V. M. Bermudez and V. H. Ritz, Applied Optics 17, 542 (1978).
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As an example of a photoelastic modulator, we describe the one used in this work
(see Figure 4.1). The modulator consists of two parts, an optical element and a
piezoelectric transducer. The transducer is a bar of fused silica which is stressed by an
oscillating applied electric field. The optical element of the modulator is also a fused
silica bar. It is attached to the transducer which causes it to vibrate along its long
direction. The transducer frequency is tuned to the natural resonant frequency of the
optical bar (on the order of 10 kHz). The stress produced, and thus the birefringence of
the material, is sinusoidal in profile with a peak at the center of the bar. The amount of
birefringence depends upon the amplitude of the transducers vibration and, typically, only

the center region of the bar is used to ensure that the birefringence is fairiy constant
across the light beam.

Optical Element Transducer

Optical Axis
s

¢omconceqy

Figure 4.1. One cycle of a photoelastic modulator with a sinusoidal electric field applied
perpendicular to the page.

The effect of a photoelastic modulator on ~olarized light is to modulate the phase
between light polarized parallel and perpendicular to the stressed axis. If we modulate
with a phase difference amplitude of 90°, we get the situation shown in Figure 4.2. Light
polarized at 45° to the stressed axis is initially unaffected at the start of the modulation
cycle. As the cycle progresses, the exiting light becomes elliptically polarized and
eventually becomes right-circularly polarized. After returning again to linear polarized
light at mid-cycle, the light becomes left-circularly poiarized and then returns again to
45° linearly polarized light at the end of the cycle.
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- |
0° -
0° rh 0° lh 0°
0 T

Figure 4.2.  Effect of the photoelastic modulator on linearly polarized light. The
amplitude of the phase difference is 90°.

4.2 Theory of Measurement

4.2.1 Jones' Matrices

We wish to descrive the theory of operation of a photoelastic modulated
ellipsometer (PME). To do this easily we introduce Jones' matrices. Jones' matrices and
algebra were first introduced in 1943 by R. C. Jones4 as a way to compute the change in
polarization of light as it passes through an optical system. The basic premise is to define
the polarization of the electric field of a light wave as a two dimensional vector. The
basis of this vector can be any set of two orthogonul polarizations such as vertical and
horizontal, left and right circular or two orthogonal elliptical polarizations. In the
description that follows, we use x- and y-polarizations as our basis, where the x-axis will
be the axis perpendicular to the plane of reflection of the sample under illumination, and
the y-axis is parallel to the plane of reflection. The z-axis is the direction of propagation.
In general, the polarization of the electric field of a light beam is written as

47 R.C.Jones, J. Opt. Sci. Am. 31, 488 (1941).
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) ] e
E= E] . 4-1)

Note, that the intensity of the light beam willbe I:=E*-E.
Optical components that affect the polarization of light are represented by
matrices that operate on the left-hand side of the electric field vector:

Etun=0-Epia - (4-2)

where O is a 2 x 2 matrix representing an optical component. Thus, w'- :an compute the
resultant polarization cf a light beam passing through an optical system by doing a series
of matrix multiplications. What we need to know are the matrix representations of the
optical components of the system.

The first component we'll look at is a polarizer. A polarizer only lets light pass
through that is polarized along its optical axis. If the optical axis of the polarizer is
oriented along the x-axis, then the Jones matrix of the polarizer is

1 0
P=[O O] . (4-3)

If we have the polarizer oriented at some angle 6 to the x-axis, then we use a rotation
matrix to rotate from the x-axis (8 = 0) to the optical axis at 0:

1 O] cos® sin®
He)=P'R(9)=[O O][—sine cose] ' @4

Next is the photoelastic modulator. The modulatci changes the phase difference
between light polarized along its optical axis and light polarized orthogonal to its optical
axis. For a modulator oriented along the x-axis,

111 O
MzTE‘[O e‘s"] ’ @3

where the oscillating phiase shift, 8;, = Asinwt. Here, o is the modulation frequency and
A is referred to as the depth of modulation. The prefactor of 1/V2 gives the matrix a
magnitude of one.
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The Soliel-Babinet compensator also produces a phase shift between light

polarized along its optical axis and light polarized perpendicular to its optical axis but the
phase shift is constant. For a phase shift of 8., the compensator's Jones matrix is

1 O
C=§/l‘§‘[o em‘] . (4-6)

For our use, however, the compensator will be used exclusively as a quarter-wave plate;
that is 8. = 90°. Thus the compensator's matrix will be given by

1 0
c=-\/l—§[0 i] . @-7)

Lastly, we look at the Jones matrix of the sample. The sample reflects light
polarized perpendicular to the plane of reflection with complex amplitude r Leis* and
light polarized in the plane of reflection with complex amplitude r,e®™. The sample
matrix is thus

re> o] 1 o0
S=|* . joe . 4-8
[ 0 r"els. J [O pclA ] ’ ( )

where

pE—rl and A=d,-5,
ry

We ignore the prefactor r e®: since it will not play a role in the analysis that follows.

One final item to mention is that an incident light beam of unpolarized light is
represented in an ad hoc manaer by the vector

1
E = H : (4-9)

We uce this only if the light beam is incident upon a polarizer first, and hence, the beam
becomes polarized and can be represented as a Jones' vector. E;is not a Jones' vector. It
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is merely a convenient way to express unpolarized light entering the system. If it were, it

would represent light polarized at 8=45° with magnitude of V2.

4.2.2 C$ configuration

We now wish to compute the effect of the different configurations of the PME on
unpolarized light. The first configuration is the CS configuration (see Figure 4.3). The
label CS refers to the quantities we obtain from this measurement. We find the resultant
electric field of the measurement in Figure 4.3a using the Jones' matrices of the last

section. The resultant electric field is

E; = A-R(+45°)-§-M-R(~45°)- P-E,
1 [1+pePes
242 0

The intensity measured by the photodetector is then

8

80
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0p = 45° By = (° 0, = 45°

Figure 4.3.  The CS configurations. a) measurement. b) 1f calibration. c) 2f
calibration.
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Note that we have sinusoidal functions of the modulator's phase shift, 8, which is itself a

sinusoidal function. We can use the following idcntities to expand the sinusoidal terms
into terms that are harmonics of the modulation fre juency w:

cin(8,,) = sin(Asinwt) = ZZJZn_l(A)cos[\?n - wt]

(4-12)
cos(3,,) = cos(Asinwt) = J,(A)+ Y 2], (A)cos[2nwt]

where J;, is the n-th order Bessel function. Keeping only terms up to the second
harmonic, the intensity or the CS measurement becomes

1 = %(1 +p? = 2psin A2],(A)coswt +2pcosA2(To(A) + Jy(A)cos2at)  ..) . (413)

By using lock-in amplifiers we can measure the individual frequency components
of the intensity signal. We can then find ratios of the frequency components of the
intensities which we define as follows:

I Ly (4-14)
I ’

T

le

and R,

where I¢-and Iof are the © and 2w frequency components of the intensity and Iy is the dc
value of the intensity. For the CS measurement, the intensity ratios are

s __ 2psinA
T 1+p?+,(A)2pcosA

2],(A)

(4-15)
2pcosA

+ 2
1+p°“+J,(A)2pcosA

2J,(A)

Note that the denominators of the intensity ratios contain the term Jo(A). We can make
this term go to zero by setting the depth of modulation, A, to 2.405 radians (137.8°)
which is the first zero of the zero order Bessel function. This gives the intensity ratios

R3 =-S2J(A)

(4-16)
RS, =+C2J,(A)
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where we have defined the quantities

2psinA
S= > ,
1+p
C= 2pcoszA
1+p

In actuality what is measured is

cs _ _Qy
Ri =

S21,(A)

de

RS = +%C2]2l(A) ,

dc

4-17)

(4-18)

where aqc, )¢ and a¢ represent an effective gain for each of these channels. The effective
gains take into account such things as the frequency response of the detector and
amplifiers or the gain settings of the lock-in amplifiers. These quantities can be measured

using the calibration configurations shown in Figure 4.3b and 4.3c.

The calibration of the 1f frequency channel can be obtained from the

configuration shown in Figure 4.3b. The resultant electric field is

E=1+ie“"-- 1
f 4\[2— pei"

which yields an intensity of

= Tlg(l +p*)[1-sind,,]

= ilg(l +p*)[1-2J,(A)coswt +

Including effective gains for the frequencies, the intensity ratios become

a .
R = B2 (a)
a4

call? __
RS =0

k]

c
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So we see that we will obtain S by dividing intensiry ratios from the measurement
and the 1f calibration:

Cs
le

cllf
le

S=-

(4-22)

W do a similar thing for the calibiation of the 2f frequency channel. The 2f calibration
configuration is i wn in Figure 4.3c. The configuradon yields an intensity of

veal2f _ 1(1 +p*)[1+cos8,, ]

oo

(4-23)

[eu—y

==(1+p*)[1+2),(A)cos20t+ ... | ,

o0

which gives the ratios

Rlc?lZf = 0 ,
@ (4-24)
Ry ==2L2],(A)
A4

By dividing R3; by the calibraticn ratio, we get C:

- Cs
— R2f

- cal2f
Rat

(4-25)

Knowing C ond S is er.ough to solve for the two ellipsomeiric parametzrs p and A,
and hence, the optical constants of the sample. It is helpful, however, to m¢asure a third
quantity, N, for reasons of accuracy and self consistency checking.

4.2.3_N configuration

In Figure 4.4 is shown tie N configuration. The 1 ieasurement co-figuration in
Figure <.4a gives us an irtensity of
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IN

= %[1 +p?+(1 —p’)cosSm]

= %[1 +p’+ (1 - pz)ZJz(A)COSZO)t +

The intensity ratios for the N configuration are

RY =0

1-p?
RN = 22 21.(A
2f adc 1+pz 2( )

=31 N2y, (A)
a

de

where we have defined the quantity
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(a)

(b)

0p = (° Oy = 45° 0, = 45°

Figure 4.4.  The N configurations. a) measurement. b) 2f calibration.

In Figure 4.4b is shown the configuration for the calibration of the 2f channel.
The intensity of this configuration is

=L coss,)
(4-29)
=%(1+2J2(A)0032(ot+ )

which yields the intensity ratios
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Rp*=0 ,
R = 22t o1 () (4-30)
2f 2
Ay

We see that, experimentally, we can find the quantity N by dividing the ratio R}
by the 2f calibration

(4-31)

4.2.4 NS configuration
One last independent configuration is the NS configuration shown in Figure 4.5.

It is not used in this work, but is explained here for completeness. The measurement
configuration is shown in Figure 4.5a. The intensity of this configuration is

™= %[l +p* ~2psinAsind,_ +(1- pz)cosﬁm]

1 4-32)
= §[l +p* = 2psinA2J, (A)coswt + (1 —p*)2J,(A)cos2mt ... ] ,
which yields the intensity ratios (ignoring the effective gains)
NS _
Ry =821,(A) , (4-33)
R} =N2J,(A)
The 1f calibration iu Figure 4.5b gives the ratios
allf _
le - 2'II(A) ’ (4_34)
R;afllf =0 ,
and the 2f calibration shown in Figure 4.5¢ gives the ratios
cal2f _
Ri =0 (4-35)

RS = 21,(A)
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Thus, we can find the quaatities N and S by division of intensity ratios:

NS
oo RE
v Rullf ?
if
NS
= R2f
cal2f
R2f

(4-36)
N
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- 8, = Q° Ou = 45° 0c= 45° 0. = 45°

© — - __/ ________ m__

ep=0° 6M= 45° eA=45°

Figure 4.5.  The NS configurations. a) measurement. b) 1f calibration. c) 2f
calibration.
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xb ing Dg

Knowing N, C and S we can find the eilip sometric parameters p and A, and hence,
the optical constants of the material. We actuaily only need two of the experimentally
measured quantities to find the two unknowns 5 and A. One reason for measuring the

three quantities N, C and S is to check the self consistency of the experiment. Note the
following identity:

N?+C*2+8%=] . (4-37)
From our three experimentally found quantities then, we can define a quantity f:

B=1-(N, +C%,+82), (4-38)
whose closeness to zero indicates the degree of self-consistency of the PME.

Another reason for measuring the thiee quantitics is that, usually for bulk
dielectrics, N, C >> §, often by orders of magnitude. In these cases, N and C will be
important in determining the real part of the dielectric constant and index of refraction.
The imaginary part of these quantities is very small, however, and highly dependent upon
a good measurement of S. So_S is measured for its accuracy in determining these small
quartities.

The goal in ellipsometry of an: ort is tc relate the ellipsometric parameters p and
A (or equivalently for the PME, N, C and S) to the opticul constants of the sample under
study. This relation depends on the sample geometry and structure. Appendix B derives
these relations for the case of an isotropic or cubic dielectric, which is the case for the
materials s:adied in this work. The relations for other situations, such as multilayered
dielectrics, car be found elsewhere48.

We list below the equations for determining the optical constants of an isotropic
dielectric material from the measured quantities N, C and S. For the dielectric constant,

48 R.M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland,
Amsterdam, 1977).
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€=¢gy+igg

. N2-8§
€y = sin? 9[1 + tan® B(T:C)z
" 2NS
€5 =sin’@tan*0 P

]

(4-39)

From the complex dielectric constant we can get the complex index of refraction:

N=n+ik

i

V4
(Je{,’ +& ) +€

(4-40)

Also, the absorption coefficient can be related to the imaginary part of the index of

refraction:

4.3 Errors of Measurement

(4-41)

We now examine the errors of the PME. There are two types of errors with which
we concern ourselves. The first are the component errors. These are errors occur
because of the non-idealness of the optical components of the PME. The other type of
error are associated with the precision errors of the components. These errors are due to

the imprecision in the alignment of the components.

Much of the analysis shown here is based on the work done in reference4¢ and
deals with expanding errors to first order. A more claborate method of error analysis can
be done using the modified Jones' matrices developed by O'Handley4%. In these matrices,
the unmodulated and modulated components of light are treated separately, which lends

49 R.C.O'Handley, J. Opt. Soc. Am. 63, 523 (1973).
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them to be used in numerical calculations. A FORTRAN program using these matrices
was developed by Bermudez30 to calculate errors in a PME setup.

4.3.1 Component Errors and Corrections

In the previcus section, we assumed all optical components to be ideal. Now, we
show what thz PME actually measures with non-ideal (realistic) components. The details
of the mathematics of error analysis are presented in Appendix C and only the results are
quoted here.

The non-idealness of the polarizer and analyzer comes from transmission of
unwanted polarization. This transraission is characterized by the quantity o, which can

be related to the extinction coefficient of the polarizers by the relation

extinction = L 202 . (4-42)
[}

1,
The extinction coefficient can be found by measuring the light intensity of two crossed
polarizers. Also, manufacturers will often provide data on the extinction coefficient with
the polarizers.

The photoelastic modulator can cause error : in three different ways. First, there is
a static birefringence, 8o. The static birefringence means that there is still some
birefringence when there is zero applied eleciric field on the quartz plate of the
modulator. The presence of a non-zero ¢y means the sinusoidal phase shift of the
modulator is centered around &g, rather than zero.

The photoelastic modulator can also have a different transmission coefficient for
its stressed and unstressed axes. The ratio of the transmission coefficients, T,
characterizes this difference. As pointed out by Bermudez and Ritz#6, 1o = 1 is an
excellent approximation and we will assurne it in our error analysis.

The third error of the modulator comes from an improper setting of the depth of
niodulation, A. Ideally, A = A = 2.405 radians, at which the zero order Bessel function
is equal to zero. Deviation from A = Ag will cause the zero order Bessel function to have

a non-zero value, leading to some of the 2f component of the intensity contributing to the
dc intensity (see equation C-3).

30 v, M. Bermudez, Comput. Phys. Commun. 13, 207 (1977
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Lastly, the Soliel-Babinet compensator may not be set for 90° retardation. In
general, the retardation will be 90° + 8., where &, is a small angle. It turns out that to first
order, d is negligible and thus, we drop it from our analysis.

In the following analysis, we look at the intensities of the two configurations of

the PME using non-ideal components. In finding the intensities, we assume that our three
error parameters o, 8y, Jo to be much less than one and v'e expand the intensities to first

order. The mathematics is done in Appendix C and the results are just quoted here.
In the CS measurement of Figure 4.3a, the actual intensity ratios measured are

Ry=il=a—— > ____y(a)

I, 1-2aN+CT,(A)

(4-43)

R;rE[A=+ ¢ ; 21,(A)

. 1-2aN+CT(A)

where

C'=C-5,S |,
§'=5+8,C

We can modify the CS measurement slightly by orientiiig the analyzer to ya = -45°. The
intensity-ratios for this modified configuration are

SI
25,(A)
1-2aN-CJ,(A) {(A)

Riy=+

(4-44)
- (of
1-2aN-CJ (A) 21,(A)

2 T

We can average out the Jo(A) # 0 errors by averaging the intensity ratios of the two

measurement configurations. We do this by defining the averages

[R}; —R; )= (1+20N)2J,(A)
[R3 - R3] =C'(1+2aN)21,(A)

b

(4-45)
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The same averaging scheme can be used for the 2f calibration of the CS
measurement. The 2f calibration configuraiion of Figure 4.3c yields the ratios

R;;;lzr = _50 le(A)
1+J,(A)

th:lfl2f =+ 2‘]2(A) .
1+1,(A) (4-46)

Orienting the analyzer to Wa=-45° produces the ratios

2J,(A)

RcalZf— =+80__ ,
1—Jo(A)

iIf

RulZf— __ 2J2(A)

T 1-T5(A) (4-47)

We average these two configurations to remove the Jo(A) dependence;

R 4R - Ri 5,200
(4-48)
Rouaf s{-[R;, - R;,] =2J,(A)

The two 2f calibrations also provide us with a way to find Jo(A). As shown in Appendix
C,

cal2f+ cal2f+

Ry~ +R5
cal2f+ cal2f+

sz - Rzr

Jo(A) ==
(4-49,

There are no errors of concern in the 1f calibration. The intensity ratios are

Ry =-21,(A) ;
(4-50)
Ry = —8,21,(A)
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The error parameter 6. does not contribute to the 1f calibration to first order, so, the PME

is not very sensitive to the compensator's retardatio 1.

In the N configuration, our only problem it with Jo(A) # 0. The N measuremeat

of Figure 4.4a has the intensity rat.os

N
RN =-§, ————2J (A ,
N a1,

Ry =+—
1+ NJ (A)

(4-51)

Unlike the S measurement, there is not an averaging method for removing Jo(A) terms

from the N measurement. The same is true for the 2f calibration where we have

1
RcalZf =_8 —2J A ,

1
RcalZf =+ 2] A
# 1+J,(A) 2(A)

(4-52)

We can now express C, N and S in terms of the measured quantities and the error

parameters. If we define the measured values of C, N and S as Cexp, Nexp and Sexp:

Ry =C’(1+2aN) ,

Cﬂp = Rl
2f

RN
2 =N(1+(1-N)J,(A)) ,

chp = R
2f

Ri _s1+2aN)

SCXP = Rcallf
1f

then we find that

N=N,[1-(1-N,)l(A)] .
C'=C, —
“F1+2aN

5'=S,, —
1+2?2aN

(4-53)

(4-54)
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where the subscript refers to the experimentally measured quantity. The primed
quantities are defined in Equation (4-43).

!32anE

While the component errors of the last section can be measured and corrected for,
the precision or orientation errors described here cannot be corrected for and thus
represent the uncertainty in the PME's measurements. The uncertainties of the
measurements arise from the uncertainties in the angle of orientation of the optical
components and the angle of incidence, 6;, of the sample. These uncertainties translate
into ihe uncertainties of the quantities we derive; the complex dielectric constant, €, and
the complex index of refraction, N. The uncertainty of a derived quantity can be
expressed in the uncertainties of its dependent variables via partial derivatives’!. For
example, the uncertainty in the real part of the dielectric constant is expressed as

de;(N,C,$,8,) = g‘;’ dM + %eé dC+ %880 ds+ g‘;’ e, . (4-55)

1
We then have to find the uncertainties in N, C and S which will depend on the precision
of the optical components' orientations and the incident angle of the sampie, 0;. This

analysis is carried out in Appendix D and the results are repeated here.
The uncertainties in the derived quantities €, = €y + i€ and N =n +ik are

, 1 N* -8, - \
deo=(1+c) [lNdN|+|SdS|+ 0 +[(1+L)’+3(N2—sz)]dei|] :
dea,_e{dN ds|, |2C dC ,6d9|] ’

N 1+C c
(4-56)
= = +e(’," [lezdeq|+ |eqdes]] + nldeol ,

51 p.R. Bevington and D. K. Robinson, Data Reduction and Error Analysis of the Physical Sciences
(McGraw-Hill, New York, 1992).
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+ |e;’de(,1] .

l S
dk = “[e ~ e v e |de;
where

AN =ON| s -

dC=2NC(a, +a +a,)+d(]

dS=2NS(a, +ay +a,)+dS

P ’
statistical

statistical

Here, aa, am and ap are the uncertainties in the orientation angle of the analyzer,
modulator and polarizer in radians (ac does aot contribute), d8; is the uncerainty in the

angle of incidence of the sample in radians and dN| dC| and dS| . are the

statistical ? statistical

statistical errors of N, C and S.

4.4 Realization of the PME

The PME used in this work is diagrammed in Figure 4.6. The components of the
PME are mounted on carriers which ride on rails. This allows for easy alignment and
positioning of the components. The two rails of the ellipsometer are mounted on a tapped

optical table at a 90° angle to each other, giving an angle of incidence on the sample of
6, =45°+0.5°.
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The polarizing optics of the PME are a polarizer, analyzer, photoelastic moduiator
and a Soleil-Babinet compensator.

The polarizer and analyzer are UV grade Glan-Thompson polarizers from the Karl
Lambrecht Corporation. They have a minimum extinction coefficient of 10-3, yielding,
@ <2.25%x107. The polarizer and analyzer are mounted on rotators that can be
positioned with a precision of 0.1°. The compensator is a calcite Soleil-Babinet
cempensator, also from the Karl Lambrecht Corporation. It is mounted in a similar
rotator that has a precision of 0.1°. The retardation is adjusted by a computer controlled
micrometer (Oriel encoder miks) which gives it a resolution of approximately 0.05
degrees of retardation at 500 nanometers.

The heart of the PME is the photoelastic modulator. The modulator used in this
work is a PEM-90 series modulator from Hinds Instruments, Inc. It is made from infrasil
grade quartz and is modulated at a frequency of 42 kHz. The spectral range of the
modulator is roughly 200 to 2000 nm. The modulator is capable of being remotely
controlled by a control voltage or by serial communication from a computer.

Other optics of the system include lenses and an iris. The iris is placed after the
analyzer position on the reflection arm of the PME. This ensures that the final aperture of
the system remains constant, regardless of whether the analyzer is located on the incident
arm of the ellipsometer (as in the calibration configurations) or on the reflection arm.
The aperture size of the iris is roughly one centimeter in diameter which corresponds to
the aperture of the polarizer and analyzer. The lenses used are all quartz lenses to allow
for operation in the ultraviolet region. The lenses are loosely mounted in circular mounts.
It is important that the focusing and recollimating lenses, located before and after the
sample, are mounted without any applied stress, particularly if three-point mounts are
used. An applied stress causes birefringence in the lenses which will corrupt the incident
and reflected polarization of the sample, particularly in the 1f channel.

Lastly, the sample under measurement is glued to a tiltable mount in order to
obtain the proper reflection angle. It is also on an x-y stage to allow for additional
positioning.

For generation of monochromatic light, a 450 watt xenon arc lamp is focused into
a 0.25 meter double monochromator. The monochromator has gratings with 1200
grooves per inch and a slit size of typically 2.5 mm. This yields a resolution of 4.5 nm.
The monochromator's wavelength is positioned by a stepping motor which is driven by a
computer controlled logic circuit.

The detector for the PME is a silicon photodiode with a quartz window to allow
for detection of light at wavelengths below 300 nm. The photodiode is part of a
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transimpedance amplifier circuit. The bandwidth of the amplifier circuit is greater than
100 kHz to allow detection of the 42 kHz and 84 kHz components of the light intensity.
Also, the light is chopped at approximately 100 Hz. This is referred to as the dc signal.
It is acceptable to consider 100 Hz as zero frequency, since the frequency is rather small
compared to the If and 2f frequencies of 42 kHz and 84 kHz. The light is chopoed and
synchronously detected, rather than measured as a dc signal because of the better signal-
to-noise ratio that is obtained and also the immunity to a fluctuating dc ground,
particularly at low signal strength.

The dc, 1f and 2f signals are measured via three lock-in amplifiers. Their
readings are read through their analog outputs by an analog-to-digital converter (A/D)
card in the computer.

Important to the operation of the PME is the alignment of the optical components.
Alignment is done using a He-Ne laser and the system is realigned whenever the sample
is changed. (The details of the alignment procedure are described in Appendix H.)

Operation of the PME is controlled by the computer via the A/D card and a serial
port. The photoelastic modulator is controlled by applying an analog voltage that
corresponds to the correct depth of modulation. Positioning of the monochromator's
wavelength is accomplished by sending digital pulses to the stepping motor of the
monochromator. The compensator is adjusted by positioning of its motorized
micrometer. The micrometer is set, via a controller box, by serial communication with
the computer. These instruments must, of course, be calibrated ahead of time.

After an initial one time calibration of the monochromator with a Hg pen lamp,
the monochromator does not need to be recalibrated.

The compensator is calibrated by placing it between two crossed polarizers. The
compensator can be set at any orientation to the polarizers, but, maximum sensitivity can
be achieved by orienting the compensator at 45° to both polarizers. By moving the
wedges of the compensator with the micrometer, (at least) two minima or extinctions can
be found at a given wavelength. The first minima should be at the same position for all
wavelengths. The second minima corresponds to one full wave of retardation. Hence,
one quarter of this distance gives us the desired quarter wave of retardation.

The amount of translation required for a quarter-wave of retardation can be found
for all wavelengths of the spectrum under study. It should be very close to a linear
relation which we have assumed in the operation of the PME used in this work.

The Jo calibration seems to be the most critical calibration. Jg(A) at a given
wavelength can be found from the 2f signals in the cal2f+ and cal2f- configurations of the
CS configuration using Equation (4-49). Initially, the proper applied voltage sent to the
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photoelastic modulator controller was found by varying the voltage at a fixed wavelength
and measuring the 2f signal of both configurations. The voltage at which the 2f signals
were equal in magnitude was the voltage corresponding to Jo(A) = 0. This procedure was
repeated for all wavelengths across the spectrum under study. The relation between the
applied voltage and the wavelength was found to be linear only over certain parts of the
spectrum.  Also, from day to day, and especially after a realignment of the ellipsometer, a
new calibration relation between voltage and wavelength had to be obtained.

The controlling computer program of the PME has been named MARKS for
historical reasons. The program obtains the intensity ratios Ri¢ and Ry¢ at various
wavelengths in the following manner. First, the monochromator, photoelastic modulator
and, if necessary, the compensator are set to the desired wavelength. After a wait of five
time constants of the lock-in amplifiers, approximately 100 readings are taken of the
lock-in amplifiers' analog outputs in one second. The intensity ratios, Ry and Ry¢ are
calculated for each reading and are averaged and the results are stored. This procedure is
repeated for all the wavelengths in the desired spectrum and multiple scans of each
spectrum are usually taken to average out noise. The final Ryf and Ry¢ values are stored
in data files.

The above procedure is done for all seven configurations of the PME that have
been described in previous sections: CS+, CS-, callf, cal2f+, cal2f-, N, Ncal2f. A
separate computer program combines the data for the configurations and makes the error
corrections explained in section 4.3.1. The outputs of the program are the spectra of the
optical constants of the sample: the real and imaginary part of the dielectric constant, €,
and the real and imaginary part of the index of refraction, N.

Also output from this program are the spectra of the two error parameters, Jo and
89, as well as the self consistency parameter, . Jy is kept below an absolute value of 0.01
so that it is negligible to first order. The static birefringence, 8y, is typically less than
0.003 radians across the spectrum considered in this work. P is usually less than 0.01 in
magnitude.
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5. Magneto-optic Spectrometer

5.1 Introduction

A magneto-optical spectrometer is any instrument that measures the spectra of
any of the manifestations of the magneto-optic effect. Since there are a few different
manifestations of the magneto-optic effect (Faraday, Voigt, the Kerr effects), there are
many different spectrometer designs. In our case, we wished to measure the magneto-
optic effect of bulk samples of iron garnets. Due to the strong absorption of these
materials in the visible region, a reflection measurement was necessary. In particular, we
designed an instrument to measure the ellipticity, €k, and the rotation, 8, of the polar
magneto-optic Kerr effect.

The magneto-optic spectrometer (MOS) that was constructed to measure the Kerr
effect of iron garnets is based on that of Krumme et al.>2 with some modifications. In
this Chapter, we first describe its theory of operation with the aid of the Jones' matrices
discussed in the previous Chapter. Next, we calculate the errors of measurement, and
lastly, we describe the dctails of the actual MOS .

5.2 Theory of Measurement

S.2.1 Jones' Matrices

We can use Jones' matrices to describe the operation of the MOS. The Jones'
matrices of the optical components of the MOS have already been given in Chapter 4.
The one difference here is the Jones' matrix of the magneto-optical sample. The sample
is orienied normal t~ the incident light of the MOS. At normal incidence, linear polarized

light of any orientation will become elliptical and rotated upon reflection from a
magnetized material with eulipticity €x and a major axis oriented at an angle 0k from its
original orientation.

The matrix that produces this transformation is the magneto-optic sample matrix:

S cosB, cose, —isinB, sing, —sinB, cose, —icosOy singy (5-1)
Mo = | . . . . . . -
sinBy cosey +icosO, sing,  cosB, cosey ~isinOy singy

52 5.p. Krumme, V. Doorman and C. -P. Klages, Applied Optics 23, 1184 (1984).
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M rem

We now wish to compute the effect of the different configurations of the MOS on
unpolarized light. There are essentially only three different configurations of the MOS: a
measurement configuration and two calibration configurations. The measurement
configuration is shown in Figure 5-1a. The intensity of this configuration is

Iyo =1+sin2e, sind_ —sin26, cos2e, cosd_ . (5-2)

We can expand the intensity according to (4-12) to obtain

Iyo =1 +sin2g, 2J (A)coswt —sin 20, cos2e, 2J,(A)cos2mwt (5-3)

where we have assumed that the depth of modulation is set to A=137.8°, such that Jo(A)
= 0. The Kerr ellipticity and rotation are much less than one; typically, they are rarely
more than a tenth of a degree. By applying the small angle approximation the intensity
ratios become

MO IMO
Ry = Ily;o =2e¢2J,(A)
dc
MO IMfo
Ry = 7o = 2042J,(A)
dc

(5-4)

As was the case for the PME in Chapter 4, what is actually measured is

R} =2e, 221 (A)
ad

c

(5-5)
RMO =20, :i?.Jz(A) :

de
where aqc, a1¢ and ayg are the effective gains of the frequency channels. We eliminate

these unknown effective gains with the calibration configurations shown in Figures 5.1b
and 5.1c.
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Figure 5.1. The MOS configurations: {a) measurement. (b) 1f calibration. (c) 2f
calibration.

The calibration of the 1f channel can be obtained from the configuration shown in
Figure 5.1b. The intensity ratios, including the effective gains, are
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a -
R =-2L5,4)

Ay (5-6)
R;’afllf = O

This is the same result as was found for the PME. Having the 1f calibration, we can now
obtain the Kerr ellipticity, ek.

Ex = -1— —RIN;O

57
2 R;:;llf ( )

The calibration for the 2f channel is found using the configuration in Figure 5.1c.
This configuration yields the intensity ratios

R::;Ilf - 0 ,
5-8
REM = 2227 (A) ©®

adc
The Kerr rotation of the material is thus

MO
0, =L R (5-9)

2 R;llef

o

5.3 Errors of Measurement

We now examine the errors of the MOS. As was the case for the PME, there are
two types of e-rors to worry about. The first are the component errors due to the non-
idealness of the optical components of the MOS. The second are the precision errors
which are due to the uncertainty in the alignment of the optical components. The analysis
of these errors is done in detail in Appendix E.

5.3.1 Component Errors and Corrections

In the previous section, we assumed all optical components to be ideal. Now, we
show what the MOS actually measures with non-ideal (realistic) components. The details
of the mathematics of error analysis are presented in Appendix E and just the results are
quoted here.
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We review the component errors described in the previous chapter. The non-
idealness of the polarizer and analyzer comes from transmission of the unwanted
polarization. This transmission is characterized by the quantity o, v hich can be related to
the extinction coefficient of the polarizers by the re lation

IL

extinction = = 202 . (5-10)
It

The quantity o can be found by measuring the light intensity of two crossed polarizers.

The photoelastic modulator can cause errors in three different ways. First, there is
a static birefringence, 8g. The static birefringence is the birefringence when there is zero
applied electric field on the quartz plate of the modulator. The presence of 8p means that
the sinusoidal phase shift of the modulator is about &g, rather than zero.

The photoelastic modulator can also have a different transmission coefficient for
its stressed and unstressed axes. The ratio of the transmission coefficients, 1,
characterizes this difference, and is assumed to be equal to one, as it was in the case of
the PME.

The third error of the modulator comes from an improper setting of the depth of
modulation, A. Ideally, A = Ag = 2.405 radians, at which the zero order Bessel function
is equal to zero. Deviation from A = Ag will cause the zero order Bessel function to have
a non-zero value, leading to some contribution of the 2f component of the intensity to the
dc intensity.

Lastly, the Soliel-Babinet compensator may not be set for 90° retardation. In
general, the retardation will be 90° + §., where &, is a small angle. To first order, J. is
negligible and thus, we drop it from our analysis.

In the following analysis, we look at the intensities of the two configurations of
the MOS using non-ideal components. In finding the intensities, we assume that our
three error parameters are small (o, &g, Jo << 1) and we expand all intensities to first
order. The mathematics is done in Appendix D and the results are quoted here.

In the measurement configuration, the actual intensity ratios that are measured are

R:':():"‘ZM-?JI(A) ,
el“ga (5-11)
RYC = 27K 0%k 55 (5
2f 1—2(1 2( )
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The 1f and 2f calibrations of the MOS give the same results as the CS
configuration of the PME. For the 1f calibration,

Ry =-2], (A) >

(5-12)
Ry =-8,21,(A)

For the 2f calibration we average the results with the analyzer in the plus and minus 45°
positions:

R} = %[er - Rl-f] =§,2J,(A)

. (5-13)
Ry™ = %[R;f - R;f] =21,(A)

If the error parameters are known, then we can determine €k and 8x. We define

the measured quantities E" and R" as

" RMO
E Rc‘:;lf ’
" (5-14)
»_ R
R 12f
Rar
Then, the Kerr ellipticity and rotation are (keeping only first order terms)
1 ” ’”
gx = —(1-2a)(E”"-8,R")
2 (5-15)

0, = %(1 —2a)(R” +8,E")

5.3.2 Orientation Errors

Unlike the PME, some of the orientation errors of the MOS can be corrected for.
The first such error is the misorientation of the analyzer in the measurement
configuration. If the analyzer is oriented at an angle 64, then the intensity ratios of the

configuration for one of the field orientations become
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Eg + 8u(ex - eA)

R =2 e

2r(A)
(5-16)

. 0 —06,)—-0,¢
R;ﬁfo ____2( K l-fla 0 K2J2(A)

If we reverse the magnetic field on the sample, the Kerr e''ipticity and rotation change
sign. The intensity ratios of the reversed field case are then

Ex +8,(6¢ +6A)
1-2a

0 +9,)-58,¢
RMO+=+2( K Ay 0 K2J A
: 2al=Dte s, ()

RYO* =)

25,(A)
(5-17)

We can now eliminate 04 by combining the intensity ratios of the forward and reversed
field cases in the following way:

1 €y +0,0

RM0 = -2-[R{'}°* - Rf}°‘] =42 — K25, (A)
1 ) _aa (5-18)
+ - - €
Ry = S [R Ry = 24— 20, (A)

The quantities ex and Bk can then be found from to (5-14) and (5-15) of the last section.
This cancellation of 84 has a practical application in the sense that it allows us to be
sloppy in orienting the analyzer in the measurement configuration.

There is a second reason for measuring the forward and reversed field cases. In
order to obtain the true Kerr ellipticity and rotation, the angle of incidence in the
measurement configuration must be zero; that is, normal incidence. At non-normal
incidence, there is an additional ellipticity and rotation due to the different reflection
coefficients of perpendicular and parallel polarized light. This is the ellipticity and
rotation that is used by ellipsometry to determine the optical constants of the reflecting
material and, though small, they will show up in the measurement of the Kerr ellipticity
and rotation.

When we reverse the magnetic field on a magneto-optical material, we change the
sign of the Kerr ellipticity and rotation, but the dielectric ellipticity and rotation remain
the same. Thus, in combining the intensity ratios of the forward and reversed field case
as we do in Equation (5-18), we also eliminate the ellipticity and rotation due to a non-
zero angle of incidence.
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There still is, however, a reduction in the magnitude of the Kerr effect at non-
normal incidence. The result is that the reduction of the Kerr ellipticity and rotation is
second order in the angle of incidence going approximately as 82/n*, where n is the
index of refraction of the material. For an angle of incidence of 10° and a worst case
index of refraction of n = 1, this reduction amounts to 1.5%. In the materials measured in
tais work, the reduction is less than 1%.

We cannot, however, eliminate the misorientation errors of the polarizer and
modulator. The uncertainties in these orientation angies translate into uncertainties in €g
and 6g. We can determine these uncertainties, as we did in the last section, by using
partial derivatives>!. The relations are:

oe o€
P M
(5-19)
0, . 98,
dGK(OP,GM) = Wdep + ée—dOM
p M

We have neglected the misorientation of the compensator, as we did for the PME,
because its effect is of second-order and does not contribute importantly to our
measurements. We also ignore the reduction of €x and 6x by non-normal incidence
because it is second-order in the angle of incidence.

The analysis of Equation (5-19) is done in Appendix F and the results are repeated
here: -~

—X =—K=19a,+ay) . (5-20)

where ap and ay; are the uncertainties in the orientation angle of the polarizer and
modulator, respectively.

5.4 Realization of the MOS
The MOS used in this work is diagrammed in Figure 5.2. The MOS is
constructed with the same components as the PME described in Chapter 4. The

components of the MOS are mounted on carriers which ride on rails. This allows for
easy alignment and positioning of the components. The two rails of the spectrometer are
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mounted on a tapped optical table at a 14.4° angie to each other, giving an angle of
incidence on the sample of 6, =7.2°.
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Figure 5.2. Schematic diagram of the magneto-optic spectrometer.
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The optics of the system are mounted on movable carriers that ride on the rails.
The polarizing optics of the MOS include a polarizer, analyzer, photoelastic modulator
and a Soleil-Babinet compensator.

The polarizer and analyzer are UV grade Glan-Thompson polarizers from the Karl
Lambrecht Corporation. They have a minimun: extinction coefficient of 10-3, yielding
®<2.25x10™. The polarizer is mounted on a rotator that can be positioned with a
precision of 0.1°. The analyzer is mounted on a motorized precision rotation stage to
obtain the higher orientation precision desired to measure the Kerr effect. The resolution
of the rotatcr is better than 0.001°.

The compensator is a calcite Soleil-Babinet compensator also from the Karl
Lambrecht Corporation. It is mounted in a rotator that has a precision of 0.1°. The
retardation is adjusted by a computer controlled micrometer (Oriel encoder mike) which
gives it a resolution of approximately 0.05 degrees of retardation at 500 nanometers.

The heart of the MOS is the photoelastic modulator. The modulator used in this
work is a PEM-90 series modulator from Hinds Instruments, Inc. It is made from infrasil
grade quartz and is modulated at a frequency of 42 kHz. The spectral range of the
modulator is roughly 200 to 2000 nm. The modulator is remotely controlled by a control
voltage from the computer.

Other optics of the system include lenses and an iris. The iris is placed after the
analyzer position on the reflection arm of the MOS. This ensures that the final aperture
of the system remains constant, regardless of whether the analyzer is located on the
incident arm of the spectrometer (as in the calibration configurations) or on the reflection
arm. The aperture size of the iris is roughly one centimeter in diameter which
corresponds to the aperture of the polarizer and analyzer. The lenses used are all quartz
lenscs to allow for operation in the ultraviolet region. The lenses are loosely mounted in
circular mounts. It is important that the focusing and recollimating lenses, located before
and after the sample, are mounted without any applied stress, particularly if three-point
mounts are used. An applied stress causes birefringence in the lenses which will corrupt
the incident and reflected polarization of the sample, and give false readings primarily in
the 1f channel.

Lastly, the sample is glued to the face of an iron electromagnet and magnetized to
greater than 2000 Gauss. A schematic of the electromagnet is shown in Figure 5.3. The
magnet is mounted on a tilt table to allow alignment of the sample. Because the sample
is directly mounted onto the magnet pole, the sample is at a temperature of 315 Kelvin.
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For generation of monochromatic light, a 450 watt xenon arc lamp is focused into
a 0.25 meter double monochromator. The monochromator has gratings with 1200
grooves per inch and a slit size of typically 2.5 mm. This yields a resolution of 4.5 nm.
The monochromator's wavelength is positioned by a stepping motor which is driven by a
computer-controlled logic circuit.

The detector for the MOS is a silicon photodiode with a quartz window to allow
for detection of light at wavelengths below 300 nm. The photodiode is part of a
transimpedance amplifier circuit. The bandwidth of the amplifier circuit is greater than
100 kHz to allow detection of the 42 kHz and 84 kHz components of the light intensity.
Also, the light is chopped at approximately 100 Hz. This signal is referred to as the dc
signal, which is acceptable since the chopping frequency is small compared to the 1f and
2f frequencies of 42 kHz and 84 kHz. The light is chopped by a chopper wheel and
synchronously detected to obtain an improved signal to noise ratio over that of the
standardly used dc measurement.

The dc, 1f and 2f signals are measured via three lock-in amplifiers. Their
readings are read through their analog outputs by an analog-to-digital converter (A/D)
card in the computer.

Alignment of the MOS is done using a He-Ne laser and the system is realigned
whenever the sample is changed. The details of the alignment procedure are analogous to
those described in Appendix H. Alignment is not as crucial for the MOS as it is for the
PME due to the lack of sensitivity in the angle of incidence.

Operation of the MOS is controlled by the computer via the A/D card and a serial
port. The photoelastic modulator is controlled by applying an analog voltage that
corresponds to the correct depth of modulation. Positioning of the monochromator's
wavelength is accomplished by sending digital pulses to the stepping motor of the
monochromator. The compensator is adjusted by positioning of its motorized
micrometer. The micrometer is set, via a controller box, by serial communication with
the computer. These instruments must, of course, be calibrated ahead of time.

After an initial one time calibration of the monochromator with a Hg pen lamp,
the monochromator does not ne=d to be recalibrated.

The compensator is calibrated by placing it between two crossed polarizers. The
compensator can be set at any orientation to the polarizers but maximum sensitivity can
be achieved by orienting the compensator at 45° to both polarizers. By moving the
wedges of the compensator with the micrometer, (at least) two minima can be found at a
given wavelengths. The first minima should be at the same position for all wavelengths.
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Tke second minima corresponds to one full wave of retardation. Hence, one quarter of
this distance gives us the desired quarter wave of retardation.

The anount of translation required for a quarter-wave of retardation can be found
for all wavelengths of the spectrum under study. It should be very close to a linear
relation which we have assumed in the operation cf the MOS used in this work.

The Jg calibration is not as critical here as it is for the PME. The calibration is
done mainly to insure that Jo is small and that second order effects in Jo do not occur.
Typically, Jo values are less than 0.01 in magnitude during operation of the MOS and
thus, second order effects are negligible.

Jo(A) at a given wavelength can be found from the 2f signals in the cal2f+ and
cal2f- configurations of the CS configuration using Equation (4-49). Initially, the proper
applied voltage sent to the photoelastic modulator controller was found by varying the
voltage at a fixed wavelength and measuring the 2f signal of the cal2f+ and cal2f-
configurations. The voltage at which the 2f signals were equal in magnitude was the
correct voltage for Jo(A) = 0. This procedure was repeated for wavelengths across the
spectrum under study. The relation between the applied voitage and the wavelength was
found to be linear only over certain parts of the spectrum. Also, from day to day, and
especially after a realignment, a new calibration relation between voltage and wavelength
had to be obtained.

The controlling computer program of the MOS has been named MARKS for
historical reasons. The program obtains the intensity ratios Ry¢ and Ry¢ at various
wavelengths in the following manner. First, the monochromator, photoelastic modulator
and, if necessary, the compensator are set to the desired wavelength. After a wait of five
time constants of the lock-in amplifiers, approximately 100 readings are taken of the
lock-in amplifiers' analog outputs in one second. The intensity ratios, Ry¢ and Ry¢, are
calculated for each reading, are then averaged and the results are stored. This procedure
is repeated for all the wavelengths in the desired spectrum, and multiple scans of the
spectrum are usually taken to average out noise. The final Rs and Ry¢ values are stored
in data files.

The above procedure is done for all five configurations of the MOS that have been
described in previous sections: callf, cal2f+, cal2f-, and the measurement configuration
with the applied field in the forward and reversed directions. A separate computer
program combines the data for the configurations. The outputs of the program are the
spectra of the Kerr ellipticity and rotation of the sample shown in Chapter 7.

Also output from this program are the spectra of the two error parameters, Jo and
0. Jo is kept below an absolute value of 0.01 so that it is negligitle to first order. The
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static birefringence, 8o, is typically less than 0.003 radians across the spectrum
considered in this work.
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6. Sample Preparation and Characterization

The samples used in this work were all polycrystalline ceramics, prepared in air
by standard techniques. Samples of greater than 90% density were obtained.
Characterization of the samples was performed using x-ray powder diffraction for the
determination of structure and lattice constants. The lattice constants, in turn, were used
to determine the bismuth content of the samples.

6.1 Production of Ceramics
6.1.1 General Method

Production of the ceramic samples begins with the weighing of the proper
amounts of the powder chemicals Y,03, Bi;03, Aly03, Iny03 and Fe;03. The chemicals
used were nominally 99.9% pure or better. Powders were combined to make 0.1 moles
of the desired compositions. The combined powders were ball mixed in ethanol with
stainless steel milling balls for a period of three hours or longer. When completed, the
mixed powder was oven-dried. The dried powder was packed into a platinum crucible
and calcined at the calcining temperature for 12 hours. The calcine of the reacted
powders was always green in color, indicative of the garnet phase.

The calcine was then ball milled in ethanol with stainless steel milling balls to
produce a fine particle size. The resultant mixture was oven-dried and recalcined for 12
hours. After further ball milling and drying, the powder was ready to be fired into
samples.

To make a sample, the calcined powder was often mixed in methanol with
polyethyl glycol. The polyethyl glycol dissolves in methanol and acts as a binder for the
powder during pressing and increases the density of the ceramics. The binder burns off at
approximately 300°C and leaves no residue. The mixture was oven-dried to remove the
methanol.

Next, the dried powder is packed into a die and uniaxially pressed. The die used
was 1/4 square inches and typically between 8 and 60 kpsi of pressure was applied. The
pressed pellets were then placed on a platinum sheet or crucible and sintered for 12 hours.
The calcining and sintering temperatures are listed in Table 6-1.

After firing, the samples were cut, ground and polished into regular geometric
shapes for volume measurement by a micrometer. The samples were weighed and
declared acceptable if the density was above 90% of the expected density.
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Material Bismuth | Calcine | Sinter Density | Lattice Constant
content °C) (°C) (g/cc) (A)

Y3FesOyp 0 - - 5.11(99%) | 12.3790 + 0.0008
Y3Alg sFeq 504, 0 1300 1535 5.08 (98%) 12.3431 + 0.0008
YlnoasFeq 5Oy, 0 1300 1480 | 4.98(95%) | 12.4149 + 0.0009
Big.47Y3 53Fes012 0.47140.012 1100 1160 5.06 (92%) | 12.4156 + 0.0010

Bin 48Y7 s7Aln.sFeq 5012 0.479+0.013 1100 1160 5.08 (93%) 12.3832 + 0.0110
Bin.a6Y2 salng 33Fes sO12 | 0.455+0.015 1075 1160 5.14 (92%) | 12.4532 +0.0013

Table 6-1. Table of samples. The material Y3FesO;; is the material G-113 from Trans-
tech, Inc.

6.1.2 Bismuth Containing Samples

A complication arises in the production of bismuth-containing materials. In the
sintering process, bismuth-oxide is released from the material. The amount of bismuth-
oxide released increases with the sintering temperature. This phenomena was discovered
by Geller et al..22 We used the lattice constants of the bismuth-containing samples to
determine the final bismuth content of the material. The formula used was devised from
lattice constants found in the literature33 . For the material BixY3.4AlyIn,Fes.y ,012, the
lattice constant in Angstroms is

a=12.376+0.084x -~ 0.067y +0.118z . (6-1)
6.2 X-ray Diffraction

2.1 ictural Analysi

X-ray powder diffraction spectra were taken to determine the structural purity of
the garnet materials. The accepted x-ray powder diffraction spectra for yttrium iron
garnet is given in reference a and is representative of our samples. We found a good
indicator of the presence of non-garnet phases to be the existence of a diffraction peak

53 Bi: S. Geller, H. J. Williams, G. P. Espinosa, R. C. Sherwood and M. A. Gillco, Appl. hys. Lett.
3,21 (1963). Al reference 22. In: G. Winkler and P. Hansen, Phil. Res. Rept. 27, 151 (1972).
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around 26 = 33.1°. This peak is shown in Figure 6.1. It originates from unreacted Fe,03.

We declared a sample to be fully reacted and of a pure garnet phase when this peak could
not be detected. No other non-garnet peaks were observed in the absence of this peak.

(400) (420) (422)

(431)

Intensity
non-gamet

2

| T | ' | T T ' I '
28 30 32 34 36
20 (degrees)

Figure 6.1. The x-ray powder diffraction spectrum for the garnet structure showing the
peak used to detect a non-garnet phase. The radiation used is the copper Kq line. Labels

refer to crystal planes. Also shown is an aluminum peak which originates from the
sample hplder.

6.2.2 Determination of Lattice Constants

The determination of the lattice constants was performed by x-ray powder
diffraction. The powder diffraction technique was used to determine the angular
positions of the diffraction peaks corresponding to the (12,0,0) , (12,2,0) and (12,2,2)
planes of the garnet structure34. From these angles, the interplanar spacings, and thus the
lattice constant of the material, can be determined. Only the position of one of the garnet
peaks was necessary, but, three peaks were used to obtain greater accuracy; generally
about + 0.001A. The calibration of the positions of th: diffraction peaks were calibrated
by adding a silicon powder standard obtained from the National Bureau of Standards to

54 Card 18-1472 in the Inorganic Powder Diffraction File, Joint Committee on Powder Diffraction
Standards, 1974
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the pow-dér sample. The angular scale was calibrated by assuming the silicon (511)/(333)
peak to be at exactly 94.953°55 ,

(12,2,2)

Si(511),(333)

Intensity

(12,0,0) (12,2,0)

T T T | T ] T 1
94 96 98 100 102
20 (degrees)

Figure 6.2. The x-ray powder diffraction peaks used to determine lattice constant. The
large and small components of the double peaks correspond to reflection of the copper

K,, and K, radiation, respectively.

To obtain the lattice constants of a sample, pieces of the samples, generally from
its center, were ground to a fine powder with a mortar and pestle. A roughly equal

amount of silicon powder was added and the two powders thoroughly mixed. An x-ray
diffraction scan of the powder was taken for a 20 value range of 94° to 102°. A scanning

speed was chosen that produced approximately 0.003° of angular resolution. The 20
values of the silicon (511)/(333) diffraction peak and the gamet diffraction peaks for the

(12,0,0) , (12,2,0) and (12,2,2) planes were obtained (Figure 6.2). The values were
corrected so that the silicon (511)/(333) peak was at 94.953°. With the calibrated 20

values for the three garnet peaks, the interplanar spacings for the respective planes were
calculated using the p diffraction law,

A

sin

d=

<D

L 6-2)

N —

55 National Bureau of Standards Certificate for Standard Reference Material 640b, 1987.
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The radiation used was the copper K,, line with an assumed wavelength of A(Cu:K, ) =
1.54050 A56 .

From the interplanar spacings, the lattice constant is found by multiplying the
spacings by the appropriate scaling factors of V144, /148 and 152 for the (12,0,0) ,
(12,2,0) and (12,2,2) planes respectively. The lattice constants for the samples used in
this work are given in Table 6-1.

36 We have uscd the older value for the wavelength of the copper K, line in order to be consistent with
the references 53 from which we find the lattice constants. The most current value is I(CuKal) =
1.5405981 A from R. D. Deslattes and A. Hennins, Phys. Rev. Letts 31,972 (1973).
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7. Optical Measurements and Analysis

7.1 Introduction

The goal of these measurements is, first, to determine the change in the magneto-
optic properties of Y3Fes0;12 (YIG) due to substitution of bismuth, and secondly, to
determine the contributions of the two iron sublattices to this effect. The first goal is
1ealized by comparing the diagonal and off-diagonal elements of the dielectric tensor of
Big.47Y2.5FesO12 (Big47YIG) to that of YaFesOj2 (YIG). To elacidate the role that the
two iron sublattices play in bismuth's enhancement of the magneto-optical effect, we
compare the dieleciric terisor elements of bismuth-substituted iron garnets in which the
iron sublattices are diluted, with those of their non-bismuth- ontaining counterparts.
Specifically, we will compare Big.43Y25AlpsFessO12 (Big.48Alo.sYIG) and
Big.46Y2.5In033Fe4 67012 (Big.46Ino33YIG) to the Y3AlgsFessO12 (AlpsYIG) and
Y3lIng33Fe4,67012 (Ing33YIG), respectively. If we assume that the aluminum and indium
ions reside purely in the tetrahedral and octahedral sublatiices, respectively, then the
above samples represent materials in which the iron populations of the sublattices have
been reduced by one-sixth in both cases. The overall reductions of iron, however, are
different; namely, one-tenth of the total iron is removed in the aluminum-substituted
materials, compared to one-fifteenth in the indium-substi‘uted materials.

The off-diagonal elements of the dielectric tensor, which are represented by the
complex’quantity, €;, are obtained by measuring the complex dielectric constant, €, and
the Kerr rotation, Jk, and ellipticity, €x. Having these quantities, €; is found via the
formulae derived in Appendix G:

€ = €¢(n® - 3nk? —n) -6, (k®-3n*k +k) ,

(7-1)
ey =g (k’ -3n’k +k)+0,(n’ - 3nk*—n) ,

where ihe complex quantity, €, is written as

’ ”

E, =€, +ig and +/e, =n+ik

Curve fitting is used to extract information on the transitions responsible ror the
measured spectra. A series of Gaussian peaks is fit to the imaginary part of the diagonal
elements of the dielectric tensor of all the materials measured. The formulae for
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paramagnetic and diamagnetic transitions derived in Chapter 3 are used to curve fit the
calculated spectra of the off-diagonal dielectric tensor elements. From the results of these
two sets of curve fits, we can extract information about the configurations of the
magneto-optically active states of the materials using Equations (3-29) and (3-31). For
paramagnetic transitions, the relation

is used to determine the difference in oscillator strengths for right and left-handed
transitions that arise from a magnetically split ground state. For diamagnetic transitions,
the relation

—_— é , (7'3)
r

is used to determine the excited state splitting responsible for the transitions, assuming a
two-level excited state.

Due to the large amounts of figures in this chapter, the figures have been arranged
as follows. Measurements of g€g(w) for the six materials studied in this work are
presented in Figures 7.1 - 7.7. The spectra of the Kerr ellipticity, €, and Kerr rotation,
Ok, for these 11ate.ials are shown in Figures 7.8 - 7.11. From these two sets of data, we
calculate the uif-diagonal elements of the dielectric tensor represented by the quantity
€1(w). The spectra of €, are shown in Figures 7.12 - 7.18 along with other data pertaining
to this quantity. The rest of the figures in this chapter are devoted to the presentation of
the curve fits to the experimental data. Figures 7.19 - 7.25 show the curve fits to the g
spectra of the materials investigated in this work. Figures 7.26 - 7.28 present the curve
fits to ti.e spectra of €, while Figures 7.29 - 7.32 present the curve fits to the change in
€1(0) produced by bismuth substitution. Lastly, Tables 7.1 - 7.6 present the numerical
results of all curve fits.

Discussion and interpretation of the results will be presented in Chapter 8.
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7.2 Bis;nuth-substituted YIG
1.2.1 Diagonal Tensor Elements

Figure 7.1, shows the effect of Bi3+ substitution in YIG on the diagonal elements
of the dielectric tensor. €g(w). We see that there is an overall increase in the imaginary
part of €g(w) at all energies. The real part of gg(w) is increased at energies lower than 3.0
eV, but is relatively unaffected above this energy. The data compares reasonably well
with that found in the literature3? This is shown in Figure 7.4.

In Figure 7.7 are shown the contributions to the dielectric constant from bismuth
substitution. The solid curves represent the differences between Big 47YIG and YIG for
the indicated quantities. Looking at the imaginary part of this contribution in Figure 7.7b,
we see that bismuth substitution produces or enhances traasitions at roughly 2.85 eV and
3.2 eV with some enhancement found in the shoulder at 2.7 eV and possibly some change
is present at 3.6 eV. The two transitions are apparently quite strong compared to YIG.
Note, in Figure 7.4, that at the peak of the bismuth contribution for Bip47YIG at 3.2 eV,
the contribution comprises roughly 50% of the imaginary part of the dielectric constant.

Fitti

In order to identify the transitions responsible for the spectra of the diagonal
elements’ of the dielectric tensor, we fit the imaginary part of this quantity to a series of
Gaussian peaks. There is no reason to assume that the transitions responsible for the
optical spectra produce Gaussian lineshapes in €y” in such a concentrated system. In
general, the actual lineshapes produced by a group of transitions is the integral of €g”(wy)
(See Equation 3-19) weighted by the joint density of states D(wp):

gf(w) = I@(mo Eo(0;0,)dw, . (7-4)
0

Unfortunately, we do not know the joint density of states. We dc know, however, that
the imaginary part of the dielectric constant consists of absorptive peaks. As such, we
assume a Gaussian as a convenient approximation to these peaks.

57 V. Doorman, J. P. Krumme and C. P. Klages, Appl. Phys. A 34, 223 (1984).
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We note in passing that a Lorentzian lineshape, as given by Equation (3-22), was
not used in the fitting of €¢”, because the long tails »f such functions made them unusable
for fitting the data at low energies.

A fit was first performed on YIG. The resu.ts are shown in Figure 7.20 and Table
7.1. In order to add validity to our curve fitting, we used, as initial guesses, the energies
shown in Figure 7.19 where tke ¢y spectrum of YIG is shown. The energies were chosen
for their correspondence to features in the spectrum. The possible transition at 3.60 eV
was found not to be necessary in the curve fitting and is not included in Table 7.1. Also,
to match the data found in the literature3? for €y”() at energies above 4 eV, we initially
assumed a strong transition centered at 4.35 eV. The Gaussian curve fit to the €y” spectra
of YIG compares reasonably well with fits achieved by previous authors.20:38 Most
notably, is the agreement that there is the onset of strong absorption peaks commencing at
approximately 2.85 eV. (See Section 2.3).

The €,”(w) spectra of Big47YIG was obtained using the parameters for the YIG
curve fit as initial guesses. The results are given in Figure 7.21 and Tables 7.4a and 7.4b
where it can be noted that some of the transition energies found for Big47YIG differ
slightly from those of YIG. To our knowledge, there are no similar curve fits to £ ()
for bismuth-substituted YIG that can be used to make a comparison.

Effi 1 n

Meéasurements of the Kerr ellipticity and rotation were performed using the
magneto-optic spectrometer of Chapter 5. The spectra of Big 47YIG and YIG are
presented in Figure 7.8. The increase in the Kerr ellipticity and rotation due to bismuth
substitution is clearly seen. Figure 7.9 is a comparison of our data with that of Wittekoek
et al.1%, The comparison is good if we assume that the rotations reported by Wittekoek et
al. are actually negative rotations. The reason for this is that for regions where £9">> €g”,
(w < 3 eV for YIG), the rotation and ellipticity obey Kramer-Kronig relations where the
rotation corresponds to the real function and the ellipticity corresponds to the imaginary
(see Chapter 3). In order to satisfy these relations, in particular Equation (3-33), we must
assume that the rotations in reported by Wittekoek et al. are negative rotations’ .

t We could have chosen the ellipticitics to be ncgative, but we have instead adopted the sign convention

for rotations and ellipticities used in reference c.
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In order to analyze the magneto-optic data presented in the last section, it is
convenient to express these data in terms of the off-diagonal elements of the dielectric
tensor of a magnetic material. The off-diagonal elements of the tensor are represented by
the quantity €, which can be related to the measured spectra by Equation (7-1). Data for
the real and imaginary part of €, for the materials Big 47 YIG and YIG are shown in Figure
7.12. The increase in both parts of €; due to bismuth substitution is clearly seen.

The effect of bismuth substitution on the magneto-optic properties of YIG can be
seen in Figure 7.15, where the difference in €;(w) between Big 47YIG and YIG are shown.
From inspection, it can be seen that the spectra of €; induced by bismuth substitution is
caused predominately by a diamagnetic transition. This comes from the dissipative line
shape of the real part of €; and the dispersive line shape of the imaginary part centered
around the same energy. It will be shown in the next section that the spectra are actually
caused by the presence of two diamagnetic transitions.

fi ff-diagonal Tensor Elem : YI

We were able to simultaneously fit the real and imaginary parts of the €, spectrum
of YIG by assuming a series of paramagnetic transitions described by Equation (3-27). A
fit to YIG is shown in Figure 7.26 and tabulated results are given in Table 7.1. Notice
that the transition energies correspond closely to the energies found from fits to those of
the dielectric constant spectra of these materials. The one exception is a transition
centered at 3.93 eV which has no match in the Gaussian curve fit to €y”(®). In order to
agree with data in the literaturef for energies above 4 eV, we initially assumed a strong
paramagnetic transition in the vicinity of 4.4 eV (see Figure 7.16).

Of note in Figure 7.13 is the feature in the €; spectrum at 2.85 eV. Previous
authors!4:39 have attributed this feature to a diamagnetic transition due to the dispersive
shape of the imaginary part. However, €,”(w) for a diamagnetic transition is centered
around a value of zero (see Figure 3.3), while the feature in the iron garnet spectra is not.
In order for this feature to be a diamagnetic line, there must be transitions at energies less
than 2.85 eV that will offset the dispersive lineshape to a value around 0.01. This does
not seem likely. We have instead assumed this part of the spectrum to be due to two
closely spaced paramagnetic transitions of opposite sign. This is shown in Figure 7.17.
The assumption gains validity from the fact that the energies chosen closely correspond
to energies found from the Gaussian curve fits of the diagonal elements; namely 2.73 eV

129



Optical Measurements and Analysis

and 2.90 eV. Further, the 2.90 eV transition is stronger than the 2.73 eV transition which
is also the case in the €¢” spectrum.

It can be seen from Table 7.1 that the linewidths of the magneto-optic peaks are
generally smaller than those of the €¢” spectra. This is due in part to the two different line
shapes used in our curve fits. We approximated the €9” spectra with Gaussian peaks
whose width, ['gayss, is the width of the peak at el of its maximum value. The
Lorentzian line shape assumed in fitting the off-diagonal elements of the dielectric tensor
have widths, I'Lgrenizs €qual to the halfwidth at half-maximum. A Gaussian lineshape
must then have a larger value for its width, I'gaues, in order to have the same width of a
Lorentzian peak at half-maximum. This accounts for about 20% of the difference in the
widths of the two different spectra. Another factor is the fact that Lorentzian peaks have
much larger tails than Gaussians. We can not quantify how the large tails affect the
linewidths of the observed lines.

Using the numerical results obtained from curve fits of €o(®) and €,(w), we can
calculate the quantity Af/f for each transition using Equation (7-2). The results are given
in Table 7.1. An interesting result of this calculation is illustrated in Figure 7.18. In this
figure are plotted the magnitudes of Af/f for the first five paramagnetic transitions.
Notice, that Af/f decreases monotonically with photon energy in a somewhat linear
fashion. The solid line is a linear fit to the data of YIG. These results will be discussed
in the next chapter.

1.2.6 Curve fit to Off-diagonal Tensor Elements: Big47YIG

Curve fits were performed on the change in €(®) between Big47YIG and YIG
shown in Figure 7.15. By focusing our attention on the change in €;(w), which we will
call Agj(w), we have assumed that all the paramagnetic transitions of YIG found in the
previous section are present in the bismuth iron garnets. The simultaneous fits to the real
and imaginary parts of Ag;(w) for Big 47YIG are shown in Figure 7.29 and 7.30 with
numerical results tabulated in Table 7.4a. In Figure 7.29 is also shown the components of

the fits. The fits are reasonably good ones with the exception of the real part above 2.5
eV in energy.

In fitting simultaneously to the real and imaginary parts of the Ag;(w) spectra of
Bio.47YIG, we have assumed the presence of two diamagnetic transitions and three
paramagnetic transitions. The rationale for these assignments is as follows. First, there
appears to be a diamagnetic transition centered around 3.2 eV. Next, while we at first
attempted to fit the region of the spectra around 2.85 eV with the two closely spaced
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paramagnetic transitions assumed in the previous section, we found that a better fit could
be obtained by assuming a single diamagnetic transition at this energy. Also, a strong
paramagnetic transition was assumed at 4.33 eV in order to agree with data of Wittekoek
et al.14 for energies above 4 eV*t . This corresponds to the paramagnetic transition that is
present in YIG at this energy. A paramagnetic transition was assumed at 2.38 eV in order
to reasonably fit the low energy region of the spectra. Lastly, a third paramagnetic

transition was added at 3.73 eV to improve the fit at higher energies. The energy of 3.73
eV corresponds to an energy found in the curve fit to €¢”(®), although there is no

corresponding transition in the €; spectrum of the non-bismuth containing samples.

With numerical results for g5(®) and €;(w) for the bismuth-containing samples,
we can calculate the quantity Af/f for the paramagnetic transitions using Equation (7-2)
and the ratio A/T" for the diamagnetic transitions using Equation (7-3). We must use the
change in the quantity €y” when applying these formula to the Ag; spectra since they arise
from the addition of bismuth. These results are given in Table 7.4.

We can calculate the upper state splittings of “he diamagnetic transitions. Since
the widths of the magneto-optic transitions differ from those of the same transitions in the
€0”(w) spectra, we will use the widths of the magneto-optic lines in calculating A for
consistency. The splitting associated with the 2.85 eV and 3.20 eV transitions are found

to be 0.138 eV and 0.057 eV, respectively. These values are listed in Table 7.4b.

It should be mentioned that the values of A were kept fixed at small values during
the curve fitting process. This is acceptable since the shape of €;(w) for a diamagnetic
transition is insensitive to A for values of A/T" less than about one-fourth. Letting the
value of A vary during curve fitting resulted in large values which were inconsistent with
the value found using Equation (7-3).

The above values can be compared to other reported estimates of A in the
literature. Wittekoek er al.14 estimated values using a cruder version of the procedure we
have followed here. They estimated values of A = 0.01 eV and A = 0.06 eV for
transitions at 2.8 eV and 3.3 eV, respectively, in the material Bip25YIG. The second of
these values agrees very well with our estimate of 0.055 eV, while the value for the 2.8
eV transition bears little resemblance to ours. It should be noted that the curve fit for the
€q” spectra of Big47YIG does not qualitatively agree with what is shown in Figure 7.7b.
This may explain the discrepancy. We will point out later in this chapter, however, that

tt Wittckock er al. assumed this line to be part of diamagnetic transitions. We believe a single
paramagnetic transition at 4.33 ¢V provides a better fit and agrees with the transition energy assumed
to be present in the spectrum of €4”.
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our value is probably too high due to the inaccuracies of our curve-fitting procedure and a
correction will produce a value for A of roughly 0.03 eV.

The only other published estimates of the excited state splittings in bismuth iron
garnets are those of Dionne and Allen38 who obtain :d values for A by fitting Wittekoek et
al's data to the lineshapes of €)(®) only. They obtained values of A for Big2sYIG of 0.11
eV and 0.27 eV for diamagnetic transitions at 2.6 eV and 3.15 eV, respectively. The
value obtained for the 2.6 eV transition is in good agreement with the value reported here
for Bip47YIG, although the transition energy is somewhat lower than what we have
observed. The value for A at 3.15 eV, however, is much larger than the splitting reported
here.

In the Chapter 8, we will discuss thz origins of the diamagnetic transitions and
their excited state splittings.

7.3 Dilution of the Iron Sublattices

1.3.1 Diagonal Tensor Elements

In Figures 7.5 and 7.6 can be seen the effect of Al3+ and In3+ substitution on the
diagonal elements of the dielectric tensor of YIG and Big47YIG. When either of these
two ions are substituted, there is an overall decrease in the imaginary part of the dielectric
constant, €5”. This is not unexpected, since optical absorption in these materials comes
from the Fe3+ ions. Substitution of these ions thus reduces the number of absorbers and
the total absorption. The real part of the diagonal elements of Big47YIG and YIG is
decreased by A3+ and In3+ substitution below 3.25 eV, while it is increased above this
energy. This suggests the reduction of a transition(s) centered around this energy is due
to the dispersive shape of €,’(w). Note, also, that substitution by Alg 5 gives roughly the
same effect as substitution by Ing33, yet, they represent different amounts of iron
substitution. If we make the assumption stated earlier, that all substituting ions reside in
their preferred sites, this would imply that the transitions affected by iron substitution
depend upon the iron population of both sublattices. This is in agreement with the
suggestions of other authors, that transitions involving pairs of iron ions in different sites
are responsible for the optical spectra in this region (see Section 2.3). We are unable,

however, to resolve any of the crystal field transitions that have been identified below 2.5
ev.e

38 G.F. Dionnc and G. A. Allen, J. Appl. Phys. 73, 6127 (1993).

132



Chapter 7

1.3.2 Gaussian Curve fit

We have performed a Gaussian curve fit to the gy” spectra of aluminum and
indium-substituted samples. The fits are shown in Figures 7.22 - 7.25 with the
parameters of the fits listed in Tables 7.2, 7.3, 7.5 and 7.6. The €,” spectra of AlysYIG
and Ing33YIG were fitted using the peaks found for YIG as initial guesses. Initially, only
the heights of the Gaussian peaks were allowed to vary, the energies and linewidths being
kept fixed. This insured that the fitting program converged properly upon the data. The
spectra were fit a second time with all three parameters of the peaks being allowed to
vary. Fits to the €y spectra of Big43Alg sYIG and Big 46Ing33YIG were performed using

the procedure described above, but with the parameters of the curve fit for Big 47YIG
used as initial guesses.

In Figures 7.10 and 7.11 are shown the Kerr ellipticity and rotation spectra for
AlgsYIG, Ing 33 YIG, Big48Alg s YIG and Big 4¢Ing 33YIG along with YIG and Big47YIG.
These spectra were used to calculate the spectra of the off-diagonal elements of the
dielectric tensor by use of Equation (7-1). The spectra of the off-diagonal elements of the
dielectric tensor of &ll six materials studied are shown in Figures 7.13 and 7.14.

In Figure 7.13, we see that the substitution of aluminum and indium into YIG
reduces the overall intensity of €;(w). We are able to fit these spectra with the
paramagnetic transitions found for YIG, except with smaller amplitudes. The curve fits

are shown in Figures 7.27 and 7.28 with values for the parameters of the transitions listed
in Tables 7.2 and 7.3. With the numerical data derived from curve fits to £o(®) and &, (w),

we can calculate the quantity Af/f for the paramagnetic transitions of AlysYIG and
Ing33YIG. Results are given in Tables 7.2 and 7.3. As was found for YIG, the
magnitudes of Af/f for the first five paramagnetic lines of AlysYIG and Ing33YIG
decrease with energy in a somewhat linear fashion. This relation is shown in Figure 7.18.
Discussion on this observation is postponed until the next chapter.

For the bismuth-substituted materials Big48Alo sYIG and Big46Ing33YIG, we
again focus on the change in €;(®) caused by bismuth substitution, Agj(w). The Ag,
spectra are shown in Figure 7.15 along with that of Big47YIG. There are several of
interesting results which can be derived by inspection of these spectra.
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i’irst, all curves have the same shape with roughly the same zero-crossings. This
would indicate that all spectra, regardless of bismuth or iron content, are scalings of a
single spectra. Secondly, we notice that the removal of iron from either sublattice
reduces the bismuth contribution to €;, and further, removal of one-sixth of the iron in
octahedral sites has the same effect as removal of one-sixth of the iron in the tetrahedral
sites. This is significant because the two dilutions represent different total iron
populations. From this we conclude that the magneto-optic effect produced by the
substitution of bismuth into iron garnets is dependent on the joint population of the two
iron sublattices.

Curve fits to the Ag; spectra of Big4gAlgsYIG and Bigg4elng 33 YIG have been
performed and are presented in Figures 7.31 and 7.32. We again assumed the two
diamagnetic transitions and three paramagnetic transitions that were used to fit Big47YIG
in section 7.2.6. Numerical results of the curve fits are listed in Tables 7.5 and 7.6. With
the results from these curve fits for £5”(w), we calculate the quantities Af/f and A/T" using
Equations (7-2) and (7-3). The results are listed in Tables 7.5b and 7.6b. Finally, we can
calculate the splitting of the excited states responsible for the diamagnetic transitions
from the ratio A/I'. Using the linewidths of the diamagnetic transitions, we find for

Big.48Alg sYIG: Ajgsev = 0.095 eV and Az 20.v = 0.055 eV; and for Big46Ing33YIG:
Az gsey = 0.084 eV and A3 50,y = 0.052 eV.

It can be noticed that the values for the splittings associated with the 3.20 eV
transitions are approximately equal, having a value of approximately A = 0.055 eV. The
values for the 2.85 eV transitions, however, have a wide range. This may be due to the
fact that the curve fits, from which we obtain our values of £;”(®), do not accurately
represent the increase in €y” in the following way. From Figure 7.7 we would expect that
the increase in €y”(w) occurs at roughly 2.85 eV and 3.20 eV. The curve fits for £¢”(w)
for the bismuth substituted materials, however, show most of this increase coming from
the 2.73 eV transition (see Tables 7.2, 7.4 and 7.6). Since it appears that most of the
intensity of the increase is represented in the 2.73 eV peak, we have tried to use the total
change in both the 2.73 eV and the 2.85 eV peaks to find approximate values for the
excited state splitting. Doing so, we obtain the following values:

Agiig =0.036 €V, Aguyic=0.033 eV , Ag e =0.028 eV

These values are more consistent than those obtained earlier and are used for the
discussion in Chapter 8. We approximate these values collectively as A gs = 0.033 eV.
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Diagonal Elements
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Figure 7.1. Off-diagonal elements of the dielectric tensor for Big 47Y253FesO;2 and
Y3FesOgs.
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Figure 7.2. Off-diagonal elements of the dielectric tensor for Big.43Y2 52Alp5Fes 5012
and Y3Alo,5FC4.5012.
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Figure 7.3. Off-diagonal elements of the dielectric tensor for Big 46Y2.54Ing33F€s.67012
and Y3Ing33Fe4.67012.
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Figure 7.4. A comparison of the diagonal elements of the dielectric tensor of
Big47Y2.53FesO12 to spectra found in the literature. the spectra for Y3FesOj2 and

Big oY 2.40FesO12 are from Doorman et al 57
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Figure 7.5. The diagonal elements of the dielectric tensor for Y3Fes012, Y3AlgsFes 5012
and Y3lng33Fed 4704,.
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Figure 7.6. The diagonal elements of the dielectric tensor for Big.47Y253FesO12,
Big.48Y2.52Al0.5Fe4 5012 and Big 46 Y2.54In0.33Fe4 67012.
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Figure 7.7. The change in the real (a) and imaginary (b) parts of € for YIG when
substituted with bismuth.
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Figure 7.8. The Kerr spectra of Y3FesO,2 and Big47Y253FesO2. (a) The Kerr ellipticity.

(b) The Kerr rotation.
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