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Abstract

In this paper, we introduce an O(nm) time algorithm to

determine the minimum length directed cycle (also called

the “minimum weight directed cycle”) in a directed network

with n nodes and m arcs and with no negative length

directed cycles. This result improves upon the previous

best time bound of O(nm + n2 log log n). Our algorithm

first determines the cycle with minimum mean length λ∗ in

O(nm) time. Subsequently, it chooses node potentials so

that all reduced costs are λ∗ or greater. It then solves the

all pairs shortest path problem, but restricts attention to

paths of length at most nλ∗. We speed up the shortest path

calculations to O(m) per source node, leading to an O(nm)

running time in total. We also carry out computational

experiments comparing the performance of the proposed

methods and other state-of-the-art methods. Experiments

confirmed that it is advantageous to solve the minimum

mean cycle problem prior to solving shortest path problems.

Analysis of our experiments suggest that the running time to

solve the minimum length directed cycle problem was much

faster than O(n2) on average.

1 Introduction.

We address the determination of the Minimum Length
Directed Cycle (MLDC) in a graph G = (V,A) with n
nodes and m arcs and with no negative length directed
cycles. (Elsewhere, researchers have referred to the
MLDC as the minimum weight directed cycle or the
minimum cost directed cycle.) Floyd [12] and Warshall
[32] showed how to solve this problem in O(n3) time. An
alternative approach is to find shortest paths between
all pairs of nodes. In case there are negative length
arcs, the first shortest path problem is solved using
the label correcting algorithm. Subsequently, one can
use reduced costs to transform the problem into an
equivalent problem with nonnegative arc lengths. The
subsequent n − 1 shortest path problems are solved
using Dijkstra’s Algorithm. Using the shortest path
algorithm of Fredman and Tarjan [14], the running time
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is O(nm+n2 log n). Hagerup [16] provides an improved
algorithm for the all pairs shortest path problem for
sparse graphs running in O(nm + n2 log log n) time.
Hagerup’s algorithm permitted O(1) time operations on
words of size w, where w is the number of bits to express
the largest integer in the problem instance. Pettie [26]
achieved the same time bound with real valued lengths,
assuming that operations on real numbers take O(1)
time.

Based on the results of Itai and Rodeh [18], Roditty
and Williams [28] introduce an Õ(Mnω) time algorithm
using fast matrix multiplication to solve MLCD in
directed graphs with integral weights in the interval
[−M,M ]. Using the results of [6] and [22], matrix
multiplication runs in nω time, where ω is slightly less
than 2.373. The theoretically fast algorithms for matrix
multiplication are not effective in practice due to a very
large constant factor term.

Roddity and Williams [28] also prove the following
very interesting result: they reduce the problem of
finding the minimum weight cycle to the problem of
finding a minimum weight triangle in a θ(n)-node
undirected graph with weights in {1, ..., O(M)}.

We present an O(nm) time algorithm for solving
the MLDC problem. Our algorithm improves upon
other combinatorial algorithms and is the best strongly
polynomial time bound. Our algorithm’s running time
matches the time bound for detecting a negative length
cycle in a graph using Bellman [4], Ford [13] and
Moore [23] algorithms. Our method first computes
the Minimum Mean Cycle (MMC) using the O(nm)
algorithm of Karp [19]. After using node potentials to
modify the lengths, it then carries out n single-source
shortest path computations as restricted to paths of
length at most nλ∗, where λ∗ is the minimum mean
length of a cycle. Each of these n additional single-
source shortest path computations requires only O(m)
time using a variant of Dial’s [10] implementation of
Dijkstra’s algorithm. Therefore, we obtain an O(nm)
time algorithm for the MLDC.

There is a heuristic argument that it would be
difficult to solve the MLDC faster thanO(nm). Suppose
for example that one wanted to establish that a cycle W



was optimal for the MLDC. As part of the proof of the
optimality of W , one would need to establish that for
each node j /∈W , the minimum length cycle containing
j has length at least c(W ) . This appears to require
Ω(n) shortest path computations in general with Ω(m)
steps per shortest path computation. The running time
would be Ω(nm) in total.

The situation for the MLDC contrasts with the
MMC. The currently best strongly polynomial time
algorithm for the MMC runs in O(nm) time; however,
there is a quick demonstration that W is optimal for the
MMC problem. Let λ∗ denote the mean length of W
and let p be the node potentials as described in Lemma
1 of the next section. Then the reduced cost of every
arc of W equals λ∗, and the reduced cost of every other
arc of G is at least λ∗. This establishes in O(m) time
that W is optimal. It also provides some hope that we
will eventually develop an algorithm for MMC that is
faster than O(nm) time.

The literature on graph algorithms contains numer-
ous studies on the practical behavior of the shortest
paths algorithms, including MMC algorithms. Studies
on the MMC algorithms have been developed by Das-
dan et al. [8], Dasdan [7] and Georgiadis et al. [15].
In this paper, we include an experimental study on the
MLDC algorithms. To the best of our knowledge, ours is
the first experimental study on MLDC algorithms. Our
experimental study showed that the average case per-
formance of our algorithms is far better than the O(nm)
worst case analysis would suggest.

Rather than rely on Karp’s O(nm) algorithm, we
relied on Howard’s [17] Algorithm for finding the MMC.
Howard’s Algorithm is far more efficient in practice. For
most of our experiments, solving the MMC first did
speed up the overall computation time. Nevertheless,
the time to solve the MMC was typically the bottleneck
operation. Its running time was greater than the
running time to solve all of the shortest path problems.

Several combinatorial optimization algorithms solve
the MLDC problem as a subroutine. An example is
the problem of determining the K best assignments.
The fastest algorithm for this problem runs in O(Knm)
time. It uses the proposed MLDC algorithm as a sub-
routine while relying also on the results in the papers
of Chegireddy and Hamacher [5] and Sedeño-Noda and
Espino-Martin [29]. Another application which employs
the MLDC as a subroutine is the enumeration of the ex-
treme points of some classical combinatorial optimiza-
tion problems (vertices of the corresponding polyhe-
dron) as ordered by the objective function (Balinski,
[3] and Provan, [27]).

The organization of the paper is as follows. Sec-
tion 2 presents the definitions and initial results needed

in the paper. In Section 3, we show how the n short-
est path tree computations can be determined in O(nm)
time. This section contains pseudo-code of the proposed
algorithm, illustrated on a small example. In Section 4,
we present the computational experiments and results
comparing the performance of the proposed algorithms
with other state-of-the-art algorithms. Section 5 con-
tains conclusions.

2 The minimum length directed cycle problem:
initial results.

Given a directed network G = (V,A), let V = {1, ..., n}
be the set of n nodes and let A be the set of m arcs.
For each node i ∈ V , we let Γ+

i = {j ∈ V |(i, j) ∈ A}
and Γ−i = {j ∈ V |(j, i) ∈ A} denote the successors
and predecessors adjacent lists of node i. For each
arc (i, j) ∈ A , let cij ∈ R be its length. We
sometimes refer to cij as the cost of arc (i, j), and
will use the terms length and cost interchangeably. A
directed path Pst from node s to node t is a sequence
〈i1, (i1, i2), i2, ..., il−1, (il−1, il), il〉 of distinct nodes and
arcs satisfying i1 = s, il = t and for all 1 ≤ w ≤
l − 1, (iw, iw+1) ∈ A. The length of a directed path
is the sum of the lengths of the arcs in the path. A
directed cycle is a directed path from node i1 to node ir
together with the arc (ir, i1) . We let c(W ) =

∑
(i,j)∈W

cij

denote the length of the directed cycle W . The MLDC
problem consists in identifying a directed cycle with
minimum length. The MLDC problem is said be feasible
if G contains at least one directed cycle and G does not
contain a negative length directed cycle.

For each cycle W , we let

λ(W ) =
c(W )

|W |
denote the mean length of the cycle W . The minimum
mean cycle (MMC) problem consists in determining a
directed cycle with minimum mean length. Henceforth,
we will let W ∗ be an optimal MMC and we will let
λ∗ = λ(W ∗).

A directed graph G is strongly connected if every
two nodes are reachable by a path from each other. A
strongly connected component of a directed graph G is
a maximal strongly connected subgraph of G.

The following lemma is well known, and stated
without proof. See for example, Ahuja et al. [1].

Lemma 2.1. Let G = (V,A). For each i ∈ V , let p(i)
denote the “node potential” of i. For each arc (i, j) ∈ A,
let cpij = cij + p(i)− p(j) denote its reduced cost. Then
for any cycle W of G, c(W ) = cp(W ).

Lemma 2.2 is well known. We provide its proof for
the sake of completeness.



Lemma 2.2. Let W ∗ be an optimum MMC for a
strongly connected graph G = (V,A), and let λ∗ =
λ(W ∗). Let G′ be the graph obtained from G by replac-
ing the cost cij of each arc (i, j) ∈ A by c′ij = cij − λ∗.
Let p(i) be the shortest path length from node 1 to node
i in G′. For any arc (i, j) ∈ A, the reduced cost of (i, j)
is cpij = cij + p(i)− p(j) = c′ij + p(i)− p(j) + λ∗. Then
for any arc (i, j) ∈ A, cpij ≥ λ∗. Moreover, for any arc
(i, j) ∈W ∗, cpij = λ∗.

Proof. Consider first the case that λ∗ = 0. Suppose
(i, j) ∈ A. Because p(i) and p(j) are the lengths of the
shortest paths from node 1 to nodes i and j, p(j) ≤
p(i) + cij , and thus cpij ≥ 0. If (i, j) is on the shortest
path from node 1 to node j, then p(j) = p(i) + cij , and
thus cpij = 0. Accordingly if λ∗ = 0, then the lemma is
true.

If λ∗ > 0, then c′(W ∗) = 0, and W ∗ is an optimum
MMC with respect to c′. The previous paragraph shows
that p(j) ≤ p(i) + c′ij for all arcs (i, j) ∈ A. Therefore,
cpij = cij + p(i)− p(j) = c′ij + p(i)− p(j) + λ∗ ≥ λ∗.

For every arc (i, j) ∈ W ∗, cpij ≥ λ∗. By Lemma
2.1, cp(W ∗) = c(W ∗) = λ∗. Therefore, for each arc
(i, j) ∈W ∗, cpij = λ∗.

One can use Karp’s [19] algorithm to determine λ∗

and p in O(nm) time. By Lemma 1, solving the MLDC
problem with original costs c is equivalent to solving the
MLDC problem with costs cp in G, where all arc lengths
are at least λ∗.

In order to find a minimum length cycle, for each
pair i, j of nodes, we will compute dp(i, j), which is
the shortest length of a path from node i to node j
using arc lengths cp. The shortest length cycle can be
determined by finding min{dp(i, j) + cpji : (j, i) ∈ A}.
Solving MLDC by solving an all pairs shortest path
problem is a well known approach. We speed up this
standard approach by preprocessing to compute p, and
then computing dp(i, j) as restricted to pairs of nodes i
and j such that dp(i, j) ≤ cp(W ∗) = c(W ∗) = λ∗|W ∗|.

3 Solving the n shortest path problems in
O(nm) time to determine the MLDC.

In order to simplify notation, we assume in this section
that c = cp and d = dp. We consider a graph in which
each arc (i, j) has length cij ≥ λ∗. We let s denote the
origin node for Dijkstra’s Algorithm, and find a shortest
path from node s to each node j as restricted to nodes
j such that distance d(s, j) < (|W ∗| − 1)λ∗. There is
no need to seek longer paths from node s. If k were
a node such that d(s, k) ≥ (|W ∗| − 1)λ∗, then every
cycle containing arc (k, s) would have length at least
d(s, k) + cks, which is at least c(W ∗) = λ∗|W ∗|.

We use Dial’s [10] version of Dijkstra’s [11] Algo-
rithm, using at most |W ∗| − 1 buckets. We rely on a
speed-up of Dial’s Algorithm developed by Denardo and
Fox [9]. Suppose that at some iteration, we are iden-
tifying shortest paths from node s. We describe this
implementation next.

Let ds(j) be the temporary distance label of node
j. Thus ds(j) is the length of some path from node s to
node j in G, and ds(j) ≥ d(s, j). Let pred(j) denote the
node that precedes j on the path from s to j of length
ds(j).

Initially, ds(s) = 0, and ds(j) = +∞ for j 6= s. The
algorithm keeps an array of |W ∗| − 1 buckets, where
Bucket(k) contains any node j such that kλ∗ ≤ ds(j) <
(k + 1)λ∗. Node s is not placed in any bucket since
ds(s) = 0. The steps for inserting node j into the
correct bucket when finding shortest paths from node s
is described in Procedure Bucket-Update(s, j) in Figure
1.

Procedure Bucket-Update(s, j)
let k = bds(j)/λ∗c;
if ((k ≤ |W ∗| − 1) and (node j is not in Bucket(k))) then

delete j from its current bucket;
add j to Bucket(k);

Figure 1. The subroutine for updating buckets.

Dial’s Algorithm iteratively selects a node i. The
first selected node is node s. Subsequently, the algo-
rithm selects any node i from the minimum non-empty
bucket, and deletes i from the bucket. It does not nec-
essarily select the node i with minimum distance label.
If all buckets are empty, the algorithm stops looking for
shortest cycles containing node s.

After selecting node i, the algorithm checks to see
if the cycle consisting of the path from s to i plus
arc (i, s) is an improvement over the current shortest
cycle. Subsequently, the algorithm scans arcs out of
node i. For each scanned arc (i, j), ds(j) is replaced by
min{ds(j), ds(i) + cij}, and pred(j) is updated when
appropriate. If ds(j) is decreased, and if ds(j) <
|W ∗|λ∗, then the algorithm checks to see if node j is
in its correct bucket; if it isn’t, then j is moved to the
correct bucket.

The procedure for updating distance labels is de-
scribed in Figure 2. Figure 3 presents the algorithm
for seeking minimum length cycles containing node s.
In this algorithm, mldc is the length of the minimum
length cycle found so far. Figure 4 presents the entire
algorithm for finding the min length cycle.



Procedure Distance-Update(s, i)

For all j ∈ Γ+
i do

If (ds(j) > ds(i) + cij) Then
ds(j) = ds(i) + cij ;
pred(j) = i;
Bucket-Update(s, j);

Figure 2. The procedure for updating distance labels.

Procedure Min-Length-Cycle(s)

for k = 1 to |W ∗| − 1 do Bucket(k) = ∅;
for i = 1 to n do ds(i) = +∞
ds(s) = 0; pred(s) = 0;
Distance-Update(s, s);
while there are any non-empty buckets do

k = min{i : Bucket(i) 6= ∅};
let j be the first node in Bucket(k);
delete j from Bucket(k);
if (mldc > ds(j) + cjs)) then

mldc = ds(j) + cjs;
store W = (s, j) to indicate that

W gives the min length cycle;
Distance-Update(s, j);

Figure 3. The procedure for seeking
a minimum length cycle containing node s.

Algorithm MLDC (Input: a graph G in which there
is a path from node 1 to each other node)

let W ∗ be the optimal MMC and c(W ∗) its length;
set λ∗ = c(W ∗)/|W ∗|;
store W ∗ as the current MLDC and set mldc = c(W ∗);
let p(k) denote the length of the shortest path from node 1 to

any node k in G with respect to the length c′, where
c′ij = cij − λ for each (i, j) ∈ A;

for each arc (i, j) ∈ A, let cpij = cij + p(i)− p(j);
for s = 1 to n do

Min-Length-Cycle(s);
Output the MLDC is W with length mldc;
Figure 4. The algorithm determining the MLDC.

In the usual implementation of Dial’s shortest path
algorithm, when selecting a node i from Bucket(k), one
selects a node with minimum distance label. In Min-
Length-Cycle(s), we select any node from Bucket(k).
This more flexible procedure is valid because of the
following observation due to Denardo and Fox [9]. We
include the proof for the sake of completeness.

Lemma 3.1. If j is any node in the minimum non-
empty bucket then ds(j) = d(s, j). Thus, at the time
that a node j is selected, ds(j) = d(s, j).

Proof. Let B denote the minimum non-empty bucket,

and suppose that bucket B contains distance labels in
the range [α, α + λ∗). Let S denote the nodes that
were permanently labeled by Dijkstra’s algorithm prior
to scanning nodes in B. We assume inductively that
ds(i) = d(s, i) for all nodes i ∈ S.

By the standard proof of Dijkstra’s algorithm and
by our inductive hypothesis, for all nodes i /∈ S, d(s, i) ≥
α. For all nodes j ∈ B, α ≤ d(s, j) < α+ λ∗.

Let j be some node in B. Let P be the shortest
path from s to j, and let node i be the predecessor of
node j in P . Thus d(s, j) = d(s, i) + cpij . We claim that
i ∈ S. Otherwise, d(s, j) = d(s, i) + cpij ≥ α+ λ∗, which
is a contradiction. Because i ∈ S, ds(j) = d(s, i)+cpij =
d(s, j), completing the proof.

Theorem 3.1. The algorithm Min-Length-Cycle(s)
correctly determines in O(m) time whether there are
any cycles containing node s of length less than |W ∗|λ∗.

Proof. By Lemma 3.1, the algorithm correctly identifies
shortest paths from node s as restricted to paths of
length at most (|W ∗|−1)λ∗. Accordingly, it determines
the shortest cycle containing node s as restricted to
cycles of length at most |W ∗|λ∗.

We next show that the running time is O(m). The
time to scan arcs and update distance labels and buckets
requires O(1) per arc and O(m) in total. The time spent
in identifying the minimum non-empty bucket is O(n)
in total because the index of the minimum non-empty
bucket is non-decreasing from iteration to iteration, and
one scans an empty bucket at most once. The time spent
extracting nodes from buckets in the select operation is
O(1) per node and O(n) in total. Thus the algorithm
runs in O(m) time when scanning from node s.

Theorem 3.2. Algorithm MLDC computes the mini-
mum length directed cycle in G in O(nm) time.

Proof. The computation of MMC requires O(nm) time
using the algorithm of Karp [19]. The distances p are
also obtained in O(nm) time. Finally, each one of
the n single shortest path computations runs in O(m)
by Theorem 3.1. Therefore, the running time of the
proposed MLDC algorithm is O(nm) time.

3.1 Approximating min cycle mean. The O(nm)
time algorithm for the min length cycle relied on Karp’s
algorithm for the min cycle mean. However, it suffices
to approximate the min cycle mean. If we were to obtain
reduced costs that were at least λ∗/2, then Min-Length-
Cycle(s) could be run in O(m) time by using 2n buckets
rather than n buckets.

In this subsection, we outline how to approximate
the min cycle mean in O(n.5m log n) time by relying on



the algorithm of Orlin and Ahuja [24] for solving the
min cycle mean.

The Orlin-Ahuja algorithm finds the cycle with the
min cycle mean in a sequence of scaling phases. Each
scaling phase runs in O(n.5m) time. In each scaling
phase, the algorithm maintains an interval [LB,UB]
that is guaranteed to contain the value λ∗/2. In ad-
dition, there are node potentials such that the reduced
cost of each arc is at least LB.

For a network with non-negative arc lengths, the
initial value of LB is 0, and the initial value of UB is
cmax. At each subsequent phase, LB or UB is modified.
Suppose, for example, that LB is replaced by LB′

and that UB is replaced by UB′. The replacements
are carried out so as to guarantee that UB′ − LB′ <
.75(UB − LB).

To use the Orlin-Ahuja Algorithm to find an ap-
proximate value of λ∗/2, we carry out the following
steps, starting from a network with non-negative arc
costs. We refer to this approach as the Truncated O-A
Algorithm.

1. Determine the minimum value K such that there
is a directed cycle W0 in G such that every arc of
W0 has length at most K.

2. Let A′ = {(i, j) ∈ A : cij ≤ K}.

3. Use the Orlin-Ahuja Algorithm starting with A′

and terminating after the first phase for which
UB − LB < K/2n.

Lemma 3.2. The Truncated O-A Algorithm runs in
O(n.5m log n) time. At termination, each arc has a
reduced cost that is at least λ∗/2.

Proof. We first note that λ∗/2 ≤ K because
c(W0)/|W0| ≤ K.

The first step of the algorithm can be carried out
by sorting the arc lengths, and then using binary search
to determine K. The time for the first step of the
Truncated O-A Algorithm is O(m log n). Step 2 takes
O(m) time. The number of scaling phases in Step 3 is
O(log n) because the algorithm starts with UB = K,
and LB = 0, it ends with UB − LB > K/4n, and
UB − LB is decreasing geometrically. Therefore, Step
3 takes O(n.5m log n) time.

We next note that λ∗/2 ≥ K/n because every cycle
of G contains an arc (i, j) with cij ≥ K. Accordingly, at
the end of the Truncated A-O Algorithm, UB ≥ K/n,
and LB ≥ UB − K/2n ≥ .5UB ≥ .5λ∗/2. This
completes the proof.

3.2 Speed-ups used in our experiments. In the
next section, we will describe our experimental results.

In order to speed up the cycle detection in our exper-
iments, we include a variety of practical improvements
to the algorithms. None of the improvements affects the
worst case running time except for use of Howard’s [17]
Algorithm to solve the MMC, which does increase the
worst case running time of the overall algorithm.

Speeding up the search for the MMC in prac-
tice. The fastest algorithm in practice for finding the
minimum mean cycle is due to Howard [17], even though
it’s time complexity is greater than the O(nm) time
bound achieved in this paper. We also carried out pre-
liminary tests on the scaling network simplex algorithm
of Ahuja and Orlin [2], which runs in O(nm log nC) time
and is similar in spirit to Howard’s Algorithm. In our
initial tests,
Howard’s Algorithm was faster than the scaling simplex
algorithm, and so we restricted our testing to Howard’s
Algorithm. Nevertheless, in each of our initial tests,
Howard’s Algorithm was faster by a factor less than 2.
Perhaps with some additional heuristic speedups, the
scaling simplex algorithm could dominate Howard’s Al-
gorithm empirically.

Using integer arithmetic. In computing the
reduced costs for MLDC, we used distance labels for the
problem instance in which cij is replaced by cij − λ∗,
where λ∗ is the length of the minimum mean cycle.
In our experiments, the original arc lengths are all
integer valued, and thus λ∗ is a rational number whose
denominator is less than n. Rather than use fractional
arc lengths, we first multiply all original arc lengths
by the denominator of λ∗. This creates an equivalent
problem in which all data is integral and all calculations
use integer arithmetic.

Stopping the search after computing the
MCC. If the minimum mean cycle W ∗ has only two
arcs or if its total length is 0, then it is also a minimum
length cycle. If W ∗ has only three arcs, then it is either
the minimum length cycle or there else the minimum
length cycle has only two arcs. In this latter case, it
suffices to check all cycles with two arcs, which can be
done in O(m) time. (It can be sped up to O(n) time
with additional data structures.) We did not rely on this
particular speed-up in our experiments, but it could be
useful in practice.

Strongly connected components. Initially, the
graph is partitioned into its strongly connected com-
ponents. This preprocessing leads to a speed-up be-
cause searches can be restricted to the strongly con-
nected components. Because computing the strongly
connected components takes O(m) time, one would not
want to recompute them after each shortest path com-
putation.

Deleting nodes with index less than s. We



seek shortest paths from nodes 1, 2, 3, ..., n. After
the algorithm caries out Min-Length-Cycle(s) for some
s ∈ [1, n], it (permanently) deletes node s as well as
its incident arcs from G. By “permanently”, we mean
that the algorithm deletes the nodes and arcs in all
subsequent shortest path computations.

Deleting source nodes and sink nodes. The
algorithm keeps track of the indegree and the outdegree
of each node. It (permanently) deletes any node whose
indegree is 0 or outdegree is 0.

Deleting arcs with large length. Let mlcd
be the length of the shortest cycle found at some
iteration. The algorithm (permanently) deletes any arc
(i, j) whose length is at least mldc − λ∗ since the arc
cannot be in a shortest cycle.

Initializations of the vector of the distance
labels. In our initial implementations, we created a dis-
tance vector d for each source node s. This initialization
took O(n2) time in total, and was the computational
bottleneck of our algorithm. We eliminated this bottle-
neck and sped up the computations by using a single
vector of distances labels d for the n shortest path com-
putations. Prior to the shortest path computations from
the first source node, each position of this vector is set
to mldc−λ∗. When finding shortest paths from a given
source node, a dynamic vector ModifiedLabels con-
tains the label of each node whose distance label is less
than mldc−λ∗. Prior to selecting the next source node,
the distance labels of the nodes in ModifiedLabels are
reset to mldc−λ∗ and ModifiedLabels becomes empty.

3.3 An example. In this section, we show the exe-
cution of the MLDC algorithm on the graph given in
Figure 5a. The MMC is 3 → 4 → 6 → 5 → 3 with
length 6. The value of λ is 3/2. Figure 5b gives the
shortest path distances p from node 1 with respect to
lengths c−λ. The arcs out of the shortest path tree ap-
pear in dotted lines. We did not multiply lengths by 2
in our example and instead used fractional arc lengths.

Figure 5c displays the reduced cost cpij = cij +
p(i) − p(j) for each arc (i, j) ∈ A. Note that the
reduced cost of any arc in the MMC is 3/2. Arcs (2, 3)
and (4, 5) appear in dotted lines indicating that they
will be deleted prior to finding shortest paths, as per
the speedup suggested above (see “Deleting arcs with
large length”). Figure 5d displays the shortest path
trees from nodes 1 and 3, as well as the directed cycles
induced by the shortest path trees. When computing
shortest paths from node j, we first delete nodes 1 to
j−1 as per the speedup suggested above (See “Deleting
nodes with index less than s”).

After finding the shortest paths from node 1, we
delete node 1. At this point, we delete node 2 because
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Figure 5d. The shortest path trees in G with reduced
costs cp.

it has no incoming arcs (See “Deleting source nodes and
sink nodes”). We next compute shortest paths from
node 3, and then delete node 3. At this point, node 4
has no incoming arc and is deleted. Subsequently node
5 is deleted because it has no outgoing arc. And finally,
node 6 is the only node that remains, and is deleted.
The minimum length cycle is 3 → 4 → 6 → 3 with



length 5, which was determined when finding shortest
paths from node 3.

4 Experimental Results.

4.1 Algorithms. All algorithms in this experiment
were written in C and compiled with gcc ver. 5.2 with
the option -O. The tests were performed on an Intel
Xeon (R) CPU ES-1620 v2 3.7 GHz x 8 processor and
64GB of RAM running Ubuntu 14.04 LTS.

All test instances use integer arc lengths. Each
of the implementations of the algorithms employs only
fixed-point arithmetic. The graphs are not necessarily
connected. In each case, we first identify the strongly
connected components (scc) using the algorithm of
Tarjan [30]. Then, each algorithm in the experiment
is executed separately in each scc. When computing
the scc’s, we relabel nodes in depth first search order as
per Tarjan’s Algorithm. Running times do not include
reading the graph, but do include the computation of
the ssc.

Floyd and Warshall’s Algorithm (FW). We have
included the Floyd [12] and Warshall [32] Algorithm
in the experiment. For the FW Algorithm, dk[i, j]
denotes the shortest path length from i to j as restricted
to nodes in {i, j} ∪ {1, 2, ..., k − 1}. At the k-th
iteration, the algorithm computes dk[i, j] for all nodes
i and j, including that case in which i = j. One
can compute dk+1[i, j] using the following recursive
relationship: (see Ahuja et al., [1], page 148) dk+1[i, j] =
min{dk[i, j], dk[i, k] + dk[k, j]}.

Suppose that one computes dk+1[i, j] for a fixed k
and i and letting j vary. One can speed up calculations
in practice by avoiding computations when dk[i, j] ≥
mldc.

Binary heap algorithm (BHEAP). We have included
a binary heap implementation of Dijkstra’s shortest
path algorithm in the experiment. In the case that the
graph contains any arc with negative length, initial op-
timal distances are calculated using Pallotino’s [25] Al-
gorithm, which is a variant of the label correcting algo-
rithm. The remaining shortest path trees are computed
using a binary heap implementation of Dijkstra’s Algo-
rithm. All heap operations take log(size(heap)) time.
Each shortest path computation from node s only tries
to reach nodes in the same ssc as s, and restricted to
nodes with an index greater than s, and restricted to
arcs whose distance label is inferior to mldc (the cur-
rent best value for the MLDC found by the algorithm).

Additionally, we have considered bidirectional vari-
ants of Dijkstra’s Algorithm. That is, two simultane-
ous executions of Dijkstra’s Algorithm. Since, we are
searching for a cycle containing node s, both executions
start from node s. The first examines the successor

nodes and the second examines the predecessor nodes
of each recent permanently labeled node. The imple-
mentation alternates one step in the forward direction
with a step in the backward direction. Once a node
different from node s is permanently labeled in both di-
rections, the algorithm ends. It would also end if the
value of the sum of the minimum keys in the two heaps
is greater than the current value of the mldc. The value
of the mldc is updated whenever a shorter cycle is de-
termined. This occurs when the sum of the distance
labels in both direction of a node is smaller than mldc.
We code this algorithm as BBHEAP.

These two implementations incorporate the practi-
cal improvements commented in Section 3.1. with the
exception of “Stopping the search after computing the
MCC”.

We developed six different variants of the algorithm
(referred to as OSN) that we described in Sections 2
and 3. All of them incorporate Howard’s [17] Algorithm
to solve the MMC problem. A detailed description of
Howard’s [17] Algorithm adapted to solve the MMC can
be found in Dasdan [7]. Howard’s [17] Algorithm is
quite simple and is as fast or faster in practice than
other proposed algorithms in the literature. (Dasdan
et al. [8], Dasdan [7] and Georgiadis et al.[15].) In
addition, Howard’s Algorithm provides the vector p
of node potentials, which is needed for our algorithm.
More precisely, Howard’s Algorithm ends with a vector
π, where π = −p.

All the arithmetic operations are made in fixed-
point (integer arithmetic) with the exception of the
operation calculating λ. If λ is fractional, we multiply
all original arc lengths by |W |, which is its denominator.
Subsequently, all calculations can be carried out using
integer arithmetic. At termination of the shortest path
algorithms, we divide all values again by |W |.

In our first implementation of Dial’s bucket-based
algorithm, referred to as OSNB, we store buckets using
doubly linked lists so that it supports the operation of
deletion in O(1) time. A deletion from Bucket(k) occurs
in one of two different situations. It can occur when
Bucket(k) is the least index non-empty bucket and we
are deleting the first element of Bucket(k). It also occurs
when a node j is moved from Bucket(k) to a lower index
bucket. Only in the latter case are doubly linked lists
needed. A singly linked list is adequate for an O(1)
deletion in the former case.

In an implementation referred to as OSNBL, we
implemented the buckets using singly linked lists. (The
L stands for “lazy.”) Singly linked lists supports the
operation of deletion of the first element in a bucket
in O(1) time. But it would be inefficient to delete j
from Bucket(k) following a decrease in ds(j). Instead,



we carried out “lazy deletions.” If j is moved from
Bucket(k) to a lower index bucket, we add j to the
lower index bucket, but do not delete it from Bucket(k).
Dijkstra’s Algorithm will permanently label node j prior
to Bucket(k) becoming the lowest index non-empty
bucket. When the algorithm finds node j in Bucket(k),
it deletes j from Bucket(k) at that time. This singly-
linked implementation with lazy deletions uses space
more efficiently, and is faster in practice, but only by
a small amount, as revealed in our experiments.

In an implementation that we refer to as OSNH, we
implement the shortest path algorithms using binary
heaps. This increases the worst case running time of
the shortest path computations, although it does not
appear to affect the performance in practice. OSNH
differs from BHEAP in that OSNH first uses Howard’s
Algorithm to solve the MCC and modify the distances.
BHEAP does not solve the MCC.

Our final three implementations are the same as
the previous three except that we implement the bidi-
rectional version of Dijkstra’s Algorithm. Accordingly,
we refer to these three implementations as BOSNB,
BOSNBL and BOSNH, respectively.

All six implementations of Dijkstra’s Algorithm
incorporate the practical improvements described in
Section 3.1. For each instance of the MLDC that we
solved, we kept track of the CPU time of Howard’s
Algorithm. For each problem instance and for each of
the six different implementations of the shortest path
algorithm, we kept track of the total CPU time in
seconds (including Howard’s CPU time).

4.2 Test instances. We considered using the in-
stances used in previous computational studies of the
MMC problem. Dasdan [7] and Georgiadis [15] used
real-world problem families representing clocking prob-
lems on circuits. Their experiments showed that these
instances are quickly solved by most algorithms. On
the other hand, synthetic families originally used in the
evaluation of algorithms for the shortest path problem
are more difficult to solve and require additional com-
putational effort. For this reason, we focused our exper-
iments on synthetic instances, as generated by network
generators.

Our first set of instances was created using the
NETGEN generator, which was developed by Klingman
et al. [20]. We generated random graphs with n ∈
{8000, 16000, ..., 256000} and m ∈ {2n, 4n, ..., 128n}.
The largest of these graphs contains approximately 32
million arcs. This is close to the maximum number
of arcs that NETGEN permits, which is 40 million.
The following parameters were fixed for all problems:
sources = 1, sinks = 1, Tsources = Tsinks = 0, mincost

= 1, maxcost =10,000 and %highcost = 5. We generated
ten replications for each combination of the parameters
n and m, resulting in 420 (6 x 7 x 10) different instances.

Our second set of instances was created using
the GRIDGEN generator developed by Lee and Orlin
[21]. We present results for random graphs with n
varying from 8,000 to 256,000 (as in the previous set
of instances) and the parameter width ∈ {2, 4, ..., 128},
where width is the width of the network. As the
width of the network increases, the “length” decreases
accordingly so that the number of nodes is not affected.
The following parameters were fixed for all problems:
sources = 1, sinks = 1, average degree = width, mincost
= 1 and maxcost = 10,000. In this case, we generated
eleven replications for each combination of the n and
width, resulting in 462 instances.

We developed our own generator in order to create
the third set of instances. This generator, which we
call HPGEN first constructs a Hamiltonian path in
which arc length are chosen uniformly at random of
the interval [1,10]. Each of the remaining m − n + 1
arcs is incident to a randomly selected pair of nodes.
The length of each of these arcs is fixed uniformly at
random in the interval [1, 10, 000]. We generate random
graphs with n and m taking the same values as in our
first collection of problem instances. As before, we
created ten replications for each combination of these
parameters, resulting in 420 instances.

All arc lengths are nonnegative in our experiments.
Accordingly, the
BHEAP and BBHEAP algorithms do not need to carry
out a label correcting algorithm in order to transform
the costs into equivalent nonnegative costs.

4.3 Results. Conclusions from computational tests
are limited in nature. They are limited by the network
generators that are selected and by bounds on the pa-
rameters of the test cases. Nevertheless, there are some
conclusions that are robust in the context of our com-
putational experiments. We will state the conclusions
and offer a partial justification for the conclusion. In
general, we present graphs that demonstrate the con-
clusions.

Conclusion 1. Floyd-Warshall was not com-
petitive with the other algorithms. In our initial
experiment, we observe that the Floyd-Warshall Algo-
rithm was not competitive with the other algorithms.
For example, FW needed 183 seconds to solve instances
with 50,000 nodes and 95,000 arcs while the other al-
gorithms used at most 0.41 seconds. Because FW is
orders of magnitude less efficient in our experiments,
and because FW’s running grows as O(n3), we carried
out limited testing, and do not present further results



on FW.
Conclusion 2. The bidirectional version of

Dijkstra’s Algorithm did not substantively im-
prove the running times. We implemented three ver-
sions of the OSN algorithm using Dijkstra’s Algorithm,
and three with bidirectional Dijkstra’s Algorithm. In
addition, BHEAP used an implementation of Dijkstra’s
Algorithm, whereas BBHEAP used the bidirectional
version. In Figure 6, we graphed the ratio of the CPU
time of the original version divided by the CPU time of
the bidirectional version. In each case, we graphed the
ratio as a function of n, the number of nodes, measured
in 1000s. Each data point reflects the average of 70
instances (seven different values of m/n, and ten repli-
cations for each parameter setting). The graphs reveal
that the bidirectional versions of OSNB and OSNBL
were faster than the original versions, but only by very
modest amounts. The bidirectional version of OSNH
was slower than the original version. For BHEAP, the
results were mixed.

It was initially surprising to us that there was not
a more substantive improvement for using bidirectional
versions Dijkstra. In usual shortest path algorithms,
bidirectional Dijkstra leads to a more substantive speed-
up because it greatly reduces the number of nodes that
are made permanent. In the case of road networks, the
speed-up is typically by a factor between 1.5 and 2.
Intuitively, if the distance from a source node s to a sink
node t is r, then Dijkstra’s Algorithm will permanently
label all nodes of distance at most r from s. And bi-
directional Dijkstra, will permanently label any node of
distance at most r/2 from either s or t. In a planar
network with randomly placed nodes, the improvement
is by nearly a factor of two in the number of nodes that
are labeled permanently. We conjecture that we did
not see a larger speedup because the speed-ups given
in Section 3.1 dramatically reduce the number of nodes
that are made permanent, and the additional speed-up
from using bidirectional Dijkstra is not so great.

Conclusion 3. BOSNB and BOSNBL
are the fastest of the six OSN implemen-
tations and also faster than both imple-
mentations of the BHEAP algorithm. We
illustrate this in Figure 7, where we graph the
following ratios: CPU(BOSNBL)/CPU(BOSNB),
CPU(OSNH)/CPU(BOSNB), and
CPU(BHEAP)/CPU(BOSNB) for the three net-
work generators. In each case, we graphed the ratios as
a function of n, measured in 1000s.

Figure 7a shows that BOSNB is comparable in run-
ning time to BOSNBL. Both of these implementations
includes the running time of Howard’s Algorithm. If we
were to subtract off this running time, BOSNB would

a. CPU(OSNB)/CPU(BOSNB) b. CPU(OSNBL)/CPU(BOSNBL)

c. CPU(OSNH)/CPU(BOSNH) d. CPU(BHEAP)/CPU(BBHEAP)
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Figure 6. The CPU time of the implementation with
Dijkstra’s Algorithm divided by the CPU time of the

implementation using the bidirectional version of
Dijkstra’s Algorithm, graphed as a function of n (in

1000s).

still be comparable to BOSNBL, but the relative differ-
ence would be greater.

Figure 7b shows that BOSNB is 10% to 30%
faster than OSNH for all values of n and all network
generators. As before, this ratio would increase if we
were to subtract off the time of Howard’s Algorithm
from BOSNB and OSNH.

Figure 7c shows that BOSNB is faster than BHEAP
for the parameter settings that we tested; however, the
ratio is decreasing as a function of n, suggesting that
BHEAP may be asymptotically faster.

In Figure 8, we graph the CPU times of BOSNB,
BHEAP, and Howard’s Algorithm as a function of n for
all three generators.

Conclusion 4. Running Howard’s Algorithm
leads to a speedup for solving the MLDC for
the instances in our experiments. Nevertheless,
Howard’s Algorithm is the bottleneck operation.
We have already seen in Figure 7 that BOSNB is faster
than BHEAP (and BBHEAP), which implies that it
was advantageous to run Howard’s Algorithm to solve
the MMC prior to solving shortest path problems. In
Figure 9, we show that Howard’s Algorithm is the
bottleneck operation. We first graph the proportion
of the time of BOSNB taken by Howard’s Algorithm.
As shown in Figure 9a, this time varies from 64% to
85%. We then subtracted the CPU time for Howard’s
Algorithm (denoted as CPU(H)) from the CPU time
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Figure 8. The CPU times for Howard’s Algorithm,
BOSNB, and BHEAP as a function of n (in 1000s) for

all three network generators.

of BOSNB. We denote the difference as CPU(BOSNB
- H). In Figure 9b, we graphed the ratio of CPU(H)
to CPU(BOSNB - H). We see that the CPU time for
running Howard’s Algorithm to solve the MMC is two
to six times greater than the time to solve all O(n)
subsequent shortest path problems to find the MLDC.

Conclusion 5. BHEAP is faster than BOSNB
for small values of d but is slower than BOSNB
for larger values of d. In the previous tables and
graphs, we averaged the CPU times over all graphs with

Figure 9a. The CPU times for Howard’s Algorithm
divided by the CPU time for BOSNB, which includes

the time for Howard’s Algorithm.

Figure 9b. The CPU times for Howard’s Algorithm
divided by the CPU time for BOSNB - H, which does
not include the running time of Howard’s Algorithm.

n nodes. Here for fixed d, we average the CPU times
over all values of n. Although this type of averaging
is not guaranteed to reveal structure in computational
tests, in our case it leads to some useful insights. Figure
10 shows the average CPU time for each value of the
density of the graph d = m/n. As in many of the
previous figures, the CPU times of the BOSNB includes
the running time for Howard’s Algorithm. Figure 10
reveals that increasing d leads to an increase in the
running time. However, doubling d does not lead to
a doubling of the CPU time for any of the algorithms.
Moreover, Howard’s Algorithm is far less sensitive to
increases in d as is BHEAP.

For example, for Howard’s Algorithm on NETGEN
instances, as d increases from 2 to 128, the average run-
ning time increases from 0.8 seconds to approximately
3 seconds, which is an increase of less than a factor of
4.

The sensitivity to d was large for the BHEAP



algorithm on NETGEN instances but not for other
generators. As d increased from 2 to 128, the CPU time
for the BHEAP algorithm increased by a factor of 13.4
for NETGEN instances, 3.67 for GRIDGEN instances,
and 5.23 for HPGEN instances. We do not have an
explanation for why BHEAP was so sensitive to the
parameter d on NETGEN instances.

The sensitivity of BHEAP to d impacts on which
algorithm is faster. For small values of d, BHEAP was
faster than BOSBN. For larger values of d, BOSBN was
the faster of the two algorithms. This was true for all
three network generators, as can be seen in Figure 10.

a. CPU as a function of d for NETGEN. b. CPU as a function of d for GRIDGEN.

c. CPU as a function of d for HPGEN.
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three generators.

Conclusion 6. Regression analysis provides a
good estimate for the running time of Howard’s
Algorithm and for BOSNB - H, and gives an ex-
cellent estimate for the running time of BHEAP.

For three algorithms and for each of the network
generators, we ran a nonlinear regression to estimate
the CPU time as a function of the number of nodes
and arcs of the network. The three algorithms that we
considered were (1) Howard’s Algorithm, (2) BOSNB -
H, and (3) BHEAP. This led to nine regressions in total.
Each regression was based on 42 points, representing
42 possible choices of n and d. The CPU times
were averaged over the 10 instances for each setting
of the parameters for NETGEN and HPGEN and over
11 instances for GRIDGEN. For each regression, we
estimated the running time in terms of the parameters
n and d = m/n. We used the form αnβdγ which is equal
to αnβ−γmγ We considered multiplying by log2(n) for
estimating BHEAP to take into account the log n time

taken for a heap operation. However, this did not have
much impact on the regression analysis. And there is a
simple reason why one would not expect it to have an
impact. As n varies from 8,000 to 256,000, log2(n) is
approximately equal to 5.54n0.095. In fact, within this
range of values of n, 5.54n0.095 differs from log2(n) by
less than 1%.

The results of the regressions are summarized in
Table 1. We graph the results of the regressions in
Figure 10.

NETGEN GRIDGEN HPGEN

BOSNB
- H

9.22×
10−8n1.25d0.25

R2 = .73

1.61×
10−8n1.36d0.36

R2 = .75

6.13×
10−8n1.28d0.28

R2 = .70

Howard’s
Algorithm

1.32×
10−7n1.33d0.33

R2 = .80

3.52×
10−9n1.56d0.56

R2 = .61

1.35×
10−8n1.43d0.43

R2 = .86

BHEAP
2.90×

10−8n1.36d0.73

R2 = .97

7.19×
10−8n1.26d0.76

R2 = .97

2.11×
10−8n1.33d0.87

R2 = .98

Table 1: Regression analysis for estimation of CPU
times.

The regression analysis offers some useful insights.
For example, if we contrast the regression estimate for
Howard’s Algorithm and the BHEAP for NETGEN, we
would conclude that the breakeven point is when d is
approximately 44, and that BHEAP would have a lower
CPU time for lower values of d. The CPU times do
differ from the estimated times, and the breakeven point
seems to be around 20 for our test cases; but the fact
that there was a breakeven point depending on d was
born out by our tests.

The regression estimates for GRIDGEN are less
informative, in part because the estimate for the CPU
time for Howard’s Algorithm (called Est(H)) is not as
good. Also, Est(BHEAP)/Est(H) ≈ 20d.2/n.3 which
does not lend itself as well to our graphical visualization.
In any case, it does suggest that BHEAP will be faster
if n is large and d is not too large. For example, if
n =10,000,000, then Est(BHEAP) < Est(H) whenever
d < 9,000.

For HPGEN, the regression estimates suggest that
Howard’s Algorithm will dominate BHEAP except for
extremely large values of n and very small values of d.
However, the running time of BOSNB will be greater
than that of BHEAP for n < 256,000 and small values of
d. For example, if n = 64,000, then the estimated time
for BHEAP is less than the estimated time for BOSNB
whenever d < 13. This is consistent with Figure 10c.

We show the graphs of the estimated CPU times
and the real CPU times of BOSNB-H, Howard’s Algo-
rithm, and BHEAP in Figure 11 to 13. In each of the
12 graphs of each figure, we fix the value of d at 2, 8,



d = 2; NETGEN d = 2; GRIDGEN d = 2; HPGEN

d = 8; NETGEN d = 8; GRIDGEN
d = 8; HPGEN

d = 32; NETGEN d = 32; GRIDGEN
d = 32; HPGEN

d = 256; NETGEN d = 256; GRIDGEN d = 256; HPGEN
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Figure 11. Regression estimates of the CPU time for
BOSNB minus the time for Howard’s Algorithm. The
x-axis is the number of nodes in 1000s. The estimated

curve is the black line.
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Figure 12. Regression estimates of the CPU time for
Howard’s Algorithm. The x-axis is the number of

nodes in 1000s.
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Figure 13. Regression estimates of the CPU time for
BHEAP. The x-axis is the number of nodes in 1000s.

32 or 128, and we fix the network generator. For any
given value of n, the CPU time given is the average over
the 10 instances with the given parameter settings. The
graphs reveal that the regression lines are an excellent
fit with the possible exception of some of the estima-
tions when d = 2. Recall that we are averaging CPU
times over 10 instances, which leads to a better fit.

Conclusion 7. BOSBN and BHEAP solve
the MLDC much faster than the worst case
analysis would suggest. Recall that the best worst
case analysis for MLDC is O(nm), and the running time
of BHEAP is
O(nm log n). If the BHEAP regression analysis were
accurate for large values of n and m, and substituting
m/n for d, then the running time of BHEAP in practice
will be as follows: O(n.63m.73) for NETGEN instances,
O(n.5m.76) for GRIDGEN instances, and O(n.46m.87).
In each case, the estimated run time is far better than
the worst case run time.

5 Summary.

Our primary theoretical result is a faster algorithm
for finding a minimum length directed cycle in di-
rected graphs. We solved the problem in O(nm) time
improving upon the previous best bound of O(nm +
n2 log logn).

In our computational experiments, we relied on us-
ing Howard’s Algorithm to solve the MMC. In gen-



eral, we observed that solving the MMC before the
MLDC does lead to a speed up in the running time
for the instances we generated from NETGEN, GRID-
GEN, and HPGEN. The speed-up is due to a reduction
in the number of nodes that need to be scanned for
each shortest path computation. However, if the results
of our experiments could be extrapolated to larger val-
ues of n, it seems likely that skipping the solution of the
MMC is preferable for small values of d = m/n and for
n > 1, 000, 000.

We also observed that the bidirectional version of
Dijkstra’s Algorithm used in our implementations to
solve the MLDC led to modest improvements in the
run time. A surprising (and significant) observation is
that the Howard’s Algorithm is typically the bottleneck
operation in solving the MLDC despite the fact that
Howard’s Algorithm runs much faster than O(nm) time
in practice. Further improvements in the run time for
the MMC will lead to corresponding improvements in
the run time for solving the MLDC.
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