
Design Rationale for Computer Supported Conflict Mitigation during

the Design-Construction Process of Large-Scale Civil Engineering

Systems

by

Feniosky Avelhermi- Pefia-Mora

Ingeniero Civil, 1987
Universidad Nacional Pedro Henriquez Ureiia

Post-Grado en Administration de la Construction, 1988
Universidad Nacional Pedro Henriquez Urefia

Master of Science in Civil Engineering, 1991
Massachusetts Institute of Technology

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Science in Civil Engineering Systems

at the

Massachusetts Institute of Technology

September 1994 LUBRAF

@ Feniosky Avelhermi Pefia-Mora, MCMXCIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper and
electronic copies of this thesis document in whole or in part, and to grant others the right to do so.

Author .

Department of Civil and Enviro ental Engineering
August 12, 1994

Certified by
-4obert D. Logcher

Professor of Civil and Environmental Engineering, Thesis Supervisor

Certified by .- -. ..
D. Sriram

Principal ResearcS cientist, Thesis Supervisor

Accepted by ,
Joseph M. Sussman

Chairman, Departmental Committee on Graduate Students

IES

Design Rationale for Computer Supported Conflict Mitigation during the

Design-Construction Process of Large-Scale Civil Engineering Systems

by

Feniosky Avelhermi Pefia-Mora

Submitted to the Department of Civil and Environmental Engineering
on August 12, 1994, in partial fulfillment of the requirements for the degree of

Doctor of Science in Civil Engineering Systems

Abstract

The development of large scale engineering systems requires the collaboration of numerous specialists.
Their decisions reflect different perspectives of a project and these different perspectives typically lead to
many conflicts. These conflicts, if not resolved early, create more expensive designs, delays in the design-
construction process, and compromises in the final product. Thus, a fundamental issue in collaborative
engineering is conflict mitigation. A set of case studies suggests that some of the conflicts during the
process stem from the lack of information that certain specialists have about other specialists' objectives and
reasons for rejecting or accepting a given alternative (i.e, design rationale). Yet, if the design rationale of all
participants is made available to others, designers can become overwhelmed with data and its complexity.
Thus, there is a pressing need for systems which help designers capture, interpret, and easily utilize this data
when conflicts are detected. This thesis presents research on the representation, use, and communication of
design rationale for conflict mitigation in a collaborative environment. This research is based on the view
that: 1) the designers' perspectives are expressed in their design rationale; 2) a system for capturing the
design rationale needs to represent and manage design intent evolution, artifact evolution, and relationships
between intents and between intent and artifact; 3) a design rationale system needs to capture its information
in a non-intrusive manner by providing part of the design rationale; and 4) a system for conflict mitigation
needs to provide active computer support for the negotiation between multiple participants. Based on these
requirements, this work develops and demonstrates DRIM (Design Recommendation and Intent Model) as an
ontology for design rationale, and further develops SHARED-DRIMS (SHARED-Design Recommendation
and Intent Management System) as a system for conflict mitigation in a collaborative environment. Testing
of both the model and the system have been limited to small-scale problems dealing with conceptual design.
The approach is potentially extensible to apply throughout the life-cycle of large scale design-construction
problems.

Thesis Supervisor: Robert D. Logcher
Title: Professor of Civil and Environmental Engineering

Thesis Supervisor: D. Sriram
Title: Principal Research Scientist

Acknowledgments

I wish to thank:

* Professor Robert D. Logcher for his support and guidance during these five years at

MIT, and more importantly, for allowing me to be his apprentice.

* Professor Duvvuru Sriram for his useful comments and insight both in the classroom

and in the DICE group, for his human touch and grace, as well as, for mentoring me

all these years. '"Como esta sefior?".

* All the other members of the doctoral committee for their valuable feedback and

support during this process: Prof. Connor, Dr. Germaine, Dr. Cherneff, Mr.

McManus, Dr. Kumar, and Dr. Sycara.

* Some members of the Civil and Environmental Department for their feedback and

encouragement: Prof. Lerman, Prof. Williams, and Dr. Shyam-Sunder.

* The Ford Foundation for its financial support and for the opportunity to meet good

and young researchers that were in my situation.

* Gorti Sreenivasa Rao for all his advice, support, and intelligent discussions.

* Jonathan Cherneff for his continual support, encouragement, and wisdom.

* Anil Chakravarthy for his invaluable explanations, advice and time.

* Jintae Lee for introducing design rationale as a research area.

* Dr. Mikio Shoji, Atsuo Nishino, Seiji Morikawa and other members of Kajima

Corporation for their encouragement and support.

* Joan McCusker, Elaine Healy, Patricia Vargas, Patricia Dixon, Cynthia Stewart,

Jessie Carty, Stephanie George, Danielle Severino, and Muriel Frederick for their

help in all the administrative and "real world" matters.

* All IESL members for their help and comments: Jesus Favela, Albert Wong, Ashok

Gupta, Cheekian Ooi, Patrick Kinicutt, Nabha Rege, Kevin Amaratunga, and Allan

Brik.

* Room 1-241's family for sharing their space and time: Andy, Leni, David, and Ann.

* All Club Latino members for their support outside of academics: Jaime, Monica,

Maria Suzana, Santiago, Miguel, Janet, Joaquin, Octavio, Antulio, Douglas, Adriana,

Isela, Alan, Victor, Pedro, Jose Carlos, Brenda, Geraldo, Ante, Marcos, and Luis

Alberto.

* All my "Hi" MIT friends for changing my view that no one cares to say "Hi, How

are you?" in this place.

* Next to last, but very important, Shimizu Corporation, the Intelligent Engineering

Systems Laboratory (IESL), and the Civil and Environmental Engineering Depart-

ment for their additional financial support.

* Most importantly, my family, my wife, and my future child for bearing with me all

my sorrows and joys.

Dedication

A los pilares de mi vida:

* Mami por sembrar en mi una vision positiva cada vez que tenia que conseguir algo

muy importante. Siempre me decias: "Lo unico que puedes es ganar. Si tratas y

no lo obtienes, te quedas igual -tu no lo tenias como quiera. Si tratas y lo obtienes,

ganas. Por tanto solo puedes ganar."

* Minin por quererme tanto y apoyarme en todo lo que hago.

* Mis Hijos por que se que ustedes seran mi orgullo y mi mejor trabajo.

To the pillars of my life:

* Mother for planting in me a positive vision of life whenever I wanted to to get

something important. You always said: "You can only win. If you try and don't get

it, you stay the same - you don't have it anyway. If you try and get it, you win. You

see, you can only win."

* Minin for loving me so much and providing me support in everything I do.

* My Children because you will be my pride and my best work.

Contents

1 Introduction 17

1.1 O verview .. . 17

1.2 Research Problem 18

1.3 Research M otivation 21

1.4 Research Goals and Scope 22

1.5 Research Approach 23

1.6 Thesis Organization 24

1.7 Conclusions 25

2 Requirements Analysis 26

2.1 Introduction 26

2.2 Case Studies 27

2.2.1 Earth Retention System Design 27

2.2.2 Valve Design 33

2.2.3 Flume Design 34

2.2.4 Building Design 36

2.2.5 Bridge Design 41

2.2.6 River Crossing Selection 46

CONTENTS

2.2.7 Requirement Synthesis from Case Studies

2.3 Design/Construction Process

2.3.1 Design as a Justificative Process

2.3.2 Design/Construction as a Conflict Mitigation Problem

2.4 Conflict Mitigation System Requirements

2.4.1 Representation and Management

2.4.2 Active Computer Support

2.5 Summary

3 Representational Background

3.1 Introduction

3.2 D ICE .

3.2.1 Problems in the US Industries

3.2.2 Computer-Based Solution

3.2.3 DICE Architecture

3.2.4 Organizational View of DICE

3.3 Information Modeling

3.3.1 Object-Oriented Methodology

3.3.2 Semantic Modeling Schema

3.3.3 SHARED Object Model

3.3.4 Knowledge-Based Expert System (KBES)

3.4 Conclusions

4 Related Research

4.1 Chapter Introduction

4.2 Related Work on Design Rationale

4.2.1 Single Participant-Passive Computer Support Models

58

..... . 58

.... 59

. 59

... 6 1

.... 62

... 63

... 65

.. 65

.. 70

.. 73

.. 78

79

CONTENTS

4.2.2 Multiple Participants-Passive Computer Support Models

4.2.3 Single Participant-Active Computer Support Models ..

4.3 Related Work on Conflict Mitigation

4.3.1 User-Driven . . .

4.3.2 Automated

4.4 Summary..........

5 DRIM Information Model

5.1 Introduction

5.2 DRIM Primitive Classes .

5.2.1 Designer

5.2.2 Proposal

5.2.3 Intent

5.2.4 Recommendation

5.2.5 Justification . . .

5.2.6 Context

5.3 DRIM Relationships . . .

5.3.1 Versions-of . . .

5.3.2 Is-Alternative-of .

5.3.3 Consists-Of . . .

5.3.4 Presents/Based-on

5.3.5 Refers-to

5.3.6 Introduces

5.3.7 Modifies

5.3.8 Is-referred-to . . .

. 129

. 86

88

88

90

91

94

97

103

108

117

119

120

121

123

124

125

126

127

128

::: ::

5.3.9 Is-related-to .

CONTENTS

5.3.10 Reacts-to

5.3.11 Negotiates-with

Design with DRIM Objects . .

Design Rationale Trace

Conclusions

6 SHARED-DRIMS Conflict Mitigation System

6.1 Introduction

6.2 SHARED-DRIMS Architecture . .

6.2.1 Base Modules

6.2.2 Design Rationale Module .

6.3 Design Rationale Capture

6.3.1 CONGEN inference network

6.3.2 Similar Recommendations .

6.3.3 User input

6.4 Conflict Mitigation

6.4.1 Rationale Dependencies . .

6.4.2 Conflict Detection

6.4.3 Conflict Causes

6.4.4 Conflict Resolution

6.4.5 Conflict Prevention

144

.. 144

. 146

. 147

. 15 1

. 15 1

. 152

. 158

. 162

. 164

. 166

. 167

. 170

. 172

. 172

6.5 Chapter Conclusions

7 Illustrative Example

7.1 Chapter Introduction

7.2 Bridge Design

7.2.1 Single Designer Design Rationale Capture

5.4

5.5

5.6

129

130

131

138

142

173

174

174

175

175

............

CONTENTS

7.2.2 Multiple participants conflict mitigation 182

7.3 Implementation 205

7.4 Chapter Conclusions 208

8 Conclusions 209

8.1 Introduction 209

8.2 Benefits of the Model 211

8.3 Contributions 215

8.4 Future Research 216

List of Figures

2-1 First Proposal of Geotechnical Engineers 37

2-2 Proposal Hierarchy of Geotechnical Engineers 38

2-3 Selection of structural form and material for Sollecks Bridge - Part I.... 43

2-4 Selection of structural form and material for Sollecks Bridge - Part II. .. 45

2-5 The Design Process 49

3-1 Over the wall engineering 60

3-2 Computer-based view of cooperative product development 61

3-3 Organizational view of DICE 64

3-4 A Semantic Network. 72

4-1 Comparison of Design Rationale research efforts. 81

5-1 DRIMS components (the graphical notation used is the OMT model

[Rumbaughetal., 1991]). 92

6-1 SHARED-DRIMS Conceptual Organization with two designers and a

negotiation workspace 148

6-2 SHARED-DRIMS Architecture. 149

6-3 Inference Network 157

6-4 Proposal Network 157

LIST OF FIGURES

6-5 SHARED-DRIMS: Design Intent Window with both structured and un-

structured representation. 163

6-6 Conflict Mitigation. 165

6-7 Hypothesis Generation. 171

6-8 Versions for resolving conflicts with design 1 - each version of the conflict

resolution is a entry key for the graph. 173

7-1 Improved process for selecting the form and material of the Sollecks Bridge 176

7-2 Initial proposals presented by the structural engineer and SHARED-DRIMS 177

7-3 C++ code representation of a generic recommendation 178

7-4 Rule for designing a bridge 179

7-5 Proposal and contradicting proposal combined 181

7-6 Proposals presentation for selecting the bridge material 183

7-7 Type of material in the bridge artifact 184

7-8 Bridge artifact as a place holder 184

7-9 Bridge artifact with a material in its structure 185

7-10 Bridge artifact with material, sub-systems and components in its structure 186

7-11 Version tree of the bridge artifact 187

7-12 Initial proposal by SHARED-DRIMS to select the bridge structural form . 188

7-13 Rule for developing a two span bridge 189

7-14 SHARED-DRIMS: Main Window with the project participants........ 190

7-15 SHARED-DRIMS: Main Window with the project intents, the product

hierarchy of the bridge, the proposal hierarchy of the designer, and a rough

sketch of the design 191

7-16 Bridge material design rationale 192

LIST OF FIGURES

7-17 Display of the two span bridge in the non-manifold geometric modeler

(GN OM ES) . 193

7-18 SHARED-DRIMS: Violation Notification Window with the contractor

rationale for rejecting prefabricated concrete as the material for the bridge. 195

7-19 Material proposals presented by the different participants 196

7-20 SHARED-DRIMS: Violation Notification Window with the rationale of

the contractor and the environmental engineer which makes the usage of a

central pier conflicting 197

7-21 Display of the single span bridge in the non-manifold geometric modeler

(GNOMES) 198

7-22 Display of the three span bridge with vertical piers in the non-manifold

geometric modeler (GNOMES). 199

7-23 White Shared-Board for inter-machine communication 199

7-24 E-mail window for sending messages to other participants 200

7-25 Video window for visual inter-participants communication 200

7-26 Complete screen with all the inter-participants communication tools . . . 201

7-27 Form proposals presented by SHARED-DRIMS and the structural engineer 202

7-28 Rule set by the contractor limiting the size of the members 203

7-29 C++ code for linking artifacts 203

7-30 C++ code for checking constraints 204

7-31 C++ code for running the inference engine 205

7-32 SHARED-DRIMS: Violation Notification Window with the rationale of the

geotechnical engineer which makes the usage of a vertical piers conflicting. 206

7-33 SHARED-DRIMS: Ask Window which informs that the system could not

find any conflict with the new design. 207

LIST OF FIGURES

7-34 Display of the three span bridge with inclined piers in the non-manifold

geometric modeler (GNOMES). 207

Notation

* Phorizontal is the soil pressure on the horizontal direction.

* Pvertical is the soil pressure on the vertical direction.

* q is the angle of internal friction of the soil. Its tangent is equal to the coefficient of

intergranular friction, which can be determined by appropriate laboratory tests.

* c is the coefficient of earth pressure at rest.

* tan2 is the tangent of an angle to the power of two

* A = { (ti, ai, vi) }* is a set of symbols. Each of these symbols are explained in the

text of the thesis as they occur.

* (Designer, oid, A, M, R, C) is an class description with a class identifier, sets of

attributes, methods, relationships, and constraints.

* V is the for all symbol.

* E is the in a set symbol.

* 3 is the exists symbol.

* C is the sub set symbol.

NOTATION

* : is the such that symbol.

* . is a reference symbol. It implies the part of an object. For example, in rm,.[elb], .

implies that e or b are part of re,.

* [] is a reference symbol which implies grouping. For example, in rem .[e b], [] implies

the set of e or b that are part of rtm.

* =j is the implies symbol.

* - is the equivalent symbol.

* de(ie, C) is a justification called dt which is linked to an it intent in a C context.

* O(i+ I Iplant+1 lat+l) is an operator called 0 which takes as argument it+l or plant+1

or at+1.

I is the or symbol.

* to is the time symbol. In this case, the symbol represents time 0.

Chapter 1

Introduction

Managing ... conflicts typically involves complex phenomena, mul-

tiple issues, and institutions having differing objectives and re-

sponsibilities. The synthesis, understanding and communication

of relevant data and the identification and evaluation of possible

solutions with the aid of analytical and computer models is often

proposed, and occasionally accomplished, to support one or more

participants in a conflict management process.

Daniel P. Loucks, [Loucks, 1989]

1.1 Overview

The development of large scale engineering systems requires the collaboration of numerous

specialists. These specialists may reach conflicting decisions as a result of their different

perspectives on a given problem. These perspectives are revealed in their design rationale.

However, each designer brings considerable knowledge and performs a great number of

tasks to come up with a design. If all of this information were available to all the designers,

1.2 Research Problem

each one would be overwhelmed with data. Thus, a computer system is needed that will

help designers to record and use information effectively from the whole group to achieve

effective conflict mitigation.

Section 1.2 introduces the problem for the Architect-Engineering-Construction (AEC)

industry. Then, in Section 1.3, the motivations for undertaking this research are presented.

The goals sought and the scope of the research are presented in Section 1.4. The approach

followed in the research is then described in Section 1.5. Finally, Section 1.6 outlines the

organization that will be followed in this dissertation presentation.

1.2 Research Problem

The development of large-scale engineering systems requires the collaboration of numerous

specialists. During such a development process, up to as many as three hundred different

specialty design firms, suppliers, and contractors may participate. This participation results

in interactions among many different types of professionals. Their decisions reflect their

different perspectives on a project, and these different perspectives typically lead to many

conflicts. These conflicts, if not resolved early, create more expensive designs, delays

in the schedule of the design-construction process, and compromises in the final product.

Avoidance of these conflicts is typically accomplished with overly conservative designs,

when applied to physical or functional objects which interact. In the next paragraphs, these

various problems will be illustrated with two case studies.

The Boston Central Artery/Tunnel is a 7.8 billion dollar example of a large-scale

engineering project [Sheridan, 1993]. It may eventually involve more than 150 main

organizations during both the design and the construction phases. These organizations may

1.2 Research Problem

work on the same or different parts of the project, and they must interact with each other.

It is these interactions that exemplify the kinds of situations that can produce conflicts.

The design of the Central Artery segment that crosses the Charles River has generated

many conflicts [Sheridan, 1993, Project, 1994]. There have been over 80 alternative layouts

suggested for that crossing over a period of two and a half years. One of the reasons for

such a large number of alternatives is that some of the participating organizations have

recommended alternatives that have already been ruled out by other organizations. For

example, the community organizations rejected the use of a bridge for the crossing, as

suggested by the designers, and recommended the use of a tunnel. However, a tunnel

had previously been rejected by the designers because it was not economical and involved

large risks during construction. Then, after several iterations, the community organizations

and the designers started exploring a combination of bridge and tunnel for the crossing. If

the community organizations had had access to the information about the reasons for the

designers' rejecting the tunnel, they could have started exploring other possibilities sooner

instead of spending the time in a design alternative that was unsatisfactory from the design

point of view both economic and ease of construction. Thus, some of the inefficiencies

of the process stem from one group's lack of information about other groups' objectives

and reasons for rejecting or accepting a given alternative, such information is termed as

"design rationale".

This lack of information about organizations' design rationale can be attributed to

deficiencies in their channels of communication. They use blueprints and specifications for

intra and inter-organizational communication. Some of the more advanced organizations

have begun to use CAD files for their internal communications. These communication

mechanisms (blueprints, specifications, and CAD files) deal only with the characteristics

1.2 Research Problem

of the artifacts. They do not transfer information about the objectives and the reasons

for accepting or rejecting a design alternative. While such iniformation is important to

subsequent decision-making, it can only be surmised from these communications.

The failures to communicate are not limited to the designers of the Boston Central

Artery/Tunnel. NYC's Bureau of Water Pollution Control has also recognized the problems

due to the lack of communication about objectives. The Bureau has issued a handbook

about conflict based on its experience during the upgrade of nine sewage treatment plants

[City of New York Bureau of Water Pollution Control, 1980]. It developed a list of 2200

potential conflicts that should be avoided during the design of any of the plants. Most of

these conflicts are based on the needs of different specialties to satisfy objectives that have

not been explicitly stated. For example, where durability is the objective, the Bureau asks:

1) "Do the specifications provide for stainless steel angles where durability is required?";

2) "Does the design provide for use of stainless steel railing to better withstand corrosion?";

and 3) "If data indicates fluctuating ground water levels, does design call for treated timber

piles?" The specificity of these questions is impressive; and the common underlying

theme is an explicit identification of issues that may help to avoid conflict. The handbook

emphasizes the importance of learning from the experience of past design projects as it

resulted on a conflict decrease on the development of sewage treatment plants. A study of

the handbook suggests the value of a system that provides for capture, storage, and use of

information from previous designs. These two cases - Boston Central Artery/Tunnel and

the NYC's Bureau of Water Pollution Control - show the importance of communicating

the design rationale (objectives and reasons) of the individual participants in the project

and the rationale for its evolving overall plan.

These examples show that in today's design process, unfortunately, communication

1.3 Research Motivation

between the different participants has often lacked reference to the decisions and the

reasoning that shaped the design, that is, reference to the design rationale. The AEC

industry can benefit on two fronts from representing the design rationale explicitly:

first, there will be savings in the life-cycle cost due to more effective communication,

coordination and negotiation; and second, the quality of the final product will increase

because the requirements or design intents are readily accessible for review.

1.3 Research Motivation

Nowadays, the computer plays an important role in almost every industry. In the AEC

industry this role may be changing from one that emphasized computer graphics and

numerical analysis to one of management of information [Gantz, 1989]. Traditionally,

designers have used a wide range of knowledge and have performed a large number of

tasks in selecting the characteristics of an artifact. If this information is made available to

all designers working on a project, individual designers could become overwhelmed with

data and its complexity. Thus, there is a pressing need for systems which help designers

capture, interpret, and easily utilize this data.

As discussed in the previous section, design rationale can serve as an important

basis for conflict mitigation. However, the information generated during the process of

recording design rationale may be overwhelming. In keeping with the trend in information

management systems, an intelligent support tool for use of this information can be perceived

as an essential part of a conflict mitigation system. Here, the computer is used as an assistant

that will monitor the design rationale as it is generated and will detect any potential conflict

with other specialists' decisions.

1.4 Research Goals and Scope

This research is presented within the broader context of a set of support tools

for representing and using design knowledge in a collaboritive environment. It is a

component of research on DICE (Distributed and Integrated environment for Computer-

aided Engineering) [Sriram and Logcher, 1993]. The DICE framework is a set of computer-

based tools for supporting design activities. These new tools are able to provide some of the

design rationale stored in their knowledge base, to store the information in a persistent form

and to allow for future modifications by other tools. The availability of such environments,

the potential for capturing design rationale, and the pressing need for conflict mitigation

have motivated this research.

1.4 Research Goals and Scope

The goals of this research are to represent, use, and communicate design rationale for

conflict mitigation in a collaborative environment. To this end, the research is aimed at

developing: an ontology for the design rationale; and a management system to capture,

interpret, and easily utilize that ontology.

The model provides the constructs for defining all the elements that are involved in

the design rationale. It not only helps to record the designed artifact itself, but also the

proposals that introduced it, the objectives it is trying to achieve, and the justifications for

selecting it.

The system for conflict mitigation addresses two critical research problems: first,

design rationale has to be captured from humans or computers involved in the design of

the project; and second, a system needs to reason about the captured rationale in order to

provide support for conflict mitigation in a collaborative environment.

1.5 Research Approach

The scope of the system reasoning will be to automatically resolve known conflicts

when solutions are available in its knowledge base, and to provide hypotheses about the

reasons for unknown conflicts. These hypotheses, once verified by the designer, permit

better coordination and negotiation during conflict resolution. This, in turn, will enhance

communication during the design process and consequently increase the productivity of

the AEC industry.

The scope of testing of both the system and the model is limited to small-scale problems

dealing with conceptual design. The approach is potentially extensible to apply throughout

the life-cycle of large scale design-construction problems.

1.5 Research Approach

In order to capture the design rationale for conflict mitigation, the design process and

its evolution must be analyzed. With this perspective in mind, three case studies in

design were performed (see Section 2.2). Based on these cases, a set of requirements

was developed for a design rationale framework for conflict mitigation system. Then, a

survey of current models or systems that capture design rationale was performed. A Design

Recommendation-Intent Model (DRIM) was proposed as an ontology for representing

the design rationale. SHARED-DRIMS was then developed as a system for conflict

mitigation through the capture and management of the design rationale. After the model

was developed, three more case studies were performed to validate it and to provide the

test-bed for SHARED-DRIMS.

1.6 Thesis Organization

1.6 Thesis Organization

* Chapter 2 presents the background information for the research described in the

remainder of the thesis. The design process is analyzed from the conception of a

need to the functioning of an artifact. It describes the six case studies performed

during the research to create the system requirements and to validate the system. The

set of requirements for a conflict mitigation system is presented.

* Chapter 3 outlines the use of computer supported collaborative engineering in terms

of the DICE framework, with a focus on the overall architecture and organizational

view. It explains the methodology for information modeling combining object-

oriented methodology and its use in the representation of semantic networks. Finally,

the SHARED model is presented, providing the basis for the representational structure

of the DRIM model.

* Chapter 4 provides a survey of related work on design rationale with focus on the

number of participants that the models support and the computer involvement on

providing part of the rationale. In addition, a survey of related work on conflict

mitigation is presented with a grouping of user-driven models and automated models.

The user-driven models or systems take a set of options presented by the designers

and points out the best one. The automated systems provide the options to the

designers, but does not necessarily interact efficiently with them.

* Chapter 5 describes a model which incorporates the different elements of design

rationale. This chapter presents the DRIM primitive classes, the DRIM relationships,

the process of design with the DRIM objects, and the development of design rationale

traces.

1.7 Conclusions

* Chapter 6 presents the functionality of the system that helps in the capture and

utilization of design rationale for conflict mitigation. Thie different sections of this

chapter cover the SHARED-DRIMS architecture including the base modules and the

design rationale modules. Other sections present the conflict mitigation process with

conflict detection, the generation of hypotheses for the causes of the conflicts and the

hypotheses communication.

* Chapter 7 illustrates the system at work through an example. The Sollecks River

bridge example is described, focusing on the selection of the structural material and

form. The conflict mitigation between the different participants in the process is

provided.

* Chapter 8 summarizes the main issues discussed in the thesis. It also discusses

future research issues.

1.7 Conclusions

The AEC industry faces a problem in terms of mitigating conflict. This problem arises

from the collaboration of many specialists with different perspectives, which conflict in

the realization of the project. One hypothesis is that these conflicts could be mitigated by

making the design rationale of the participants available to everyone participating in the

process. However, this information can be overwhelming for the designers, and therefore

the need for systems that help designers capture and use that information must be addressed.

Chapter 2

Requirements Analysis

The first step in developing anything is to state the requirements.

This applies just as much to leading-edge research as to simple

programs and to personal programs, as well as to large team efforts.

Rumbaugh, Blaha, Premerlani, Eddy and Lorensen,

[Rumbaugh et al., 1991]

2.1 Introduction

Engineering design and construction are activities that humans have performed since early

times. However, these areas have not been perceived as systematic processes which could

be subject to comprehensive analysis and improvement until the past few decades. The

understanding of the design process is important for representing and capturing design

rationale. Thus, the use of case studies about design will be relevant in presenting

participant's interactions, information, and tasks. Section 2.2 describes six case studies

performed during the research to create the system requirements and to validate the system.

Section 2.3 presents a general description of the design process, from the conception of a

2.2 Case Studies

need to the functioning of an artifact, based on the case studies and the design literature.

Section 2.4 presents a set of requirements for a conflict mitigation system. Finally, Section

2.5 provides a summary of this chapter.

2.2 Case Studies

The understanding of the design process is important for representing and capturing design

rationale. The use of case studies about design sheds light into the interactions among

participants, the type of information used in design and how they are used. Lastly, it shows

the different steps performed by the designers. The following sections present six case

studies. These examples are as follows: the selection of an earth retention system, the

design of a valve, the design of a flume, the structural design of a building, the structural

design of a bridge, and the selection of a river crossing.

2.2.1 Earth Retention System Design

A developer and an architect of a building hire a construction consulting firm to assist in

the selection of an earth retention system [Becker, 1989]. The building has two levels of

parking extending 24 feet below the existing site level which is at an elevation of 57.0

feet. The design of the earth retention system needs to take into consideration the fact that

the building is designed to be located in a site where an existing five-story brick building,

which is very close to the new building, needs to remain at its current location. In addition,

the designer of the retention system has to consider the potential effects of a river that

passes close to the project site.

Based on these facts, the construction consulting firm has been asked to provide its

recommendations for the earth retention system after completing the following process:

2.2 Case Studies

1. State the design requirements.

2. Present the alternatives that satisfy the requirements.

3. Present the reasons that explain how the alternatives satisfy the requirements.

4. Analyze the reason presented for each alternative.

5. Select the alternative that is the most appropriate.

With this process in mind the consultant starts by presenting six of the requirements

sought with the earth retention system. These requirements are to: 1) minimize the cost of

the earth retention system; 2) minimize project completion time; 3) increase reliability of

the earth retention system; 4) control groundwater flow; 5) resist soil and water pressure;

and 6) reduce the impact on the adjacent building. The developer and the architect provided

the consultant with two alternatives which may satisfy the requirements: 1) Z-sheeting

piles, and 2) structural slurry wall. This scenario shows that designers start with a set of

requirements that they need to satisfy. It also shows that for certain requirements, such

as minimize, increase, and reduce, comparisons between alternatives are needed. In this

particular design, the alternatives taken were only two. Now, the consultant searches for

justifications that establish a relation between the alternatives and the requirements. These

justifications are:

Alternative I: Z-Sheeting

1. REQUIREMENT: Minimize the cost of the earth retention system

* Z-Sheeting can be provided by many capable and established suppliers.

* Z-Sheeting requires no waterproofing.

* Z-Sheeting may require expensive underpinning of adjacent structures.

2.2 Case Studies

* Z-Sheeting needs careful installation for system to work as expected.

2. REQUIREMENT: Minimize project completion time

* Z-Sheeting can be provided by many capable and established suppliers.

* Z-Sheeting may require expensive underpinning of adjacent structures.

* Z-Sheeting needs careful installation for system to work as expected.

3. REQUIREMENT: Increase reliability of the earth retention system

* Z-Sheeting can be provided by many capable and established suppliers.

* Z-Sheeting is commonly used in this area

* Z-Sheeting may require a clear driving path

4. REQUIREMENT: Control groundwater flow

* Z-Sheeting prevents water table lowering.

* Z-Sheeting provides a water seal both temporary and permanent

5. REQUIREMENT: Resist soil and water pressure

* Z-Sheeting resists the active earth pressure given by the formula

Phorizontal = Pvertical tan2 (450 - 4/2) - 2c tan2(450 - 0/2)

6. REQUIREMENT: Reduce the impact on adjacent building

* Z-Sheeting may require expensive underpinning of adjacent structures.

* Z-Sheeting can be provided by many capable and established suppliers.

* Z-Sheeting produces settlement-causing vibrations during installation.

* Z-Sheeting prevents water table lowering.

Alternative II: Structural Slurry wall

1. REQUIREMENT: Minimize the cost of the earth retention system

2.2 Case Studies

* Structural slurry wall can be provided by many capable, established

suppliers

* Structural slurry wall requires no waterproofing.

* Structural slurry wall can be used as permanent foundation wall.

* Structural slurry wall has the highest cost of all the alternatives per linear

foot.

2. REQUIREMENT: Minimize project completion time

* Structural slurry wall takes a lot time to construct due to low production

rate

3. REQUIREMENT: Increase reliability of the earth retention system

* Obstruction on the work area does not cause major problem

* Structural slurry wall can be provided by many capable, established

suppliers

4. REQUIREMENT: Control groundwater flow

* Structural slurry wall prevents water table lowering.

* Structural slurry wall provides a water seal both temporary and permanent

5. REQUIREMENT: Resist soil and water pressure

* Structural slurry wall resists the active earth pressure given by the formula

Phorizontal = Pvertical tan2 (450 - 0/2) - 2c tan2(450 - 0/2)

6. REQUIREMENT: Reduce the impact on adjacent building

* Structural slurry wall prevents water table lowering.

This itemized account of alternatives, requirements, and justifications shows that de-

signers use justifications as the linking elements between design artifacts and requirements.

2.2 Case Studies

The justifications are used as supporting arguments to the hypothesis that an alternative

satisfies the requirements. In this design case, the designer analyzes each of the reasons re-

lated to the requirement. From this analysis, the professional determines that the Z-sheeting

has a lower probability for meeting the requirement of reducing the impact on adjacent

building while it has a greater chance of satisfying the requirement of minimizing the cost.

Similarly, the structural slurry wall satisfies the requirement of reducing the impact of

adjacent structures better, while it is not good at satisfying the reducing cost requirement.

After the designer performed the analysis s/he gives the highest priority to the goal of

reducing impact on adjacent buildings. The reason given for this ranking is that the impact

on adjacent buildings is a high legal risk that could cause the project to be stopped. In

addition, the cost of repairing adjacent buildings was difficult to estimate until the problem

occurs, since the documentation and the specification of existing buildings were not readily

available. By designers providing a higher priority to a requirement, they are saying that

not all the requirements are as important. Some of the requirements are needed while

others are good to have.

Based on the priority of the goals and the analysis of the alternatives, the designer selects

Alternative 2 (Structural Slurry Wall). One of the justifications that supports this decision

is the assumption that this earth retaining system does not produce settlement-causing

vibrations during installation. The second justification is that the structural slurry wall is

as good as the Z-sheeting alternative in preventing the water table lowering thus achieving

good groundwater control.

On the other hand, the structural slurry wall presents deficiencies in achieving the goal

of cost minimization. This goal received low ranking in the designer priority list and did

2.2 Case Studies

not have great influence in the decision. Thus, the rationale included: the requirements of

the design, the assumptions made during the design process, the two alternative designs,

the reasons of each alternative, and the selection process of choosing one design over the

other based on the reasons and the ranking of the requirements.

This design case shows the dynamic structure of the decision process. A set of

requirements that at the beginning had equal importance have now been ranked. This

ranking in turn can affect the decision of selecting one alternative or another. Thus, it is

necessary to capture the shift in importance of the elements involved in the decision. In

the above design case, if construction cost were the only driving factor in the decision, the

selection of the system would have been scheme 1 (Z Sheeting).

After a solution alternative has been selected, a record has to be maintained not only

of the selected alternative but also of the process by which this alternative was selected

together with all the other alternative solutions considered in the decision problem. In the

above design case, schemes 1 and 2 have to be stored along with all the explanations given

in the previous paragraphs. When a question about certain requirements arise, the decision

process can be searched and explanations for the problem can be found.

For example, the owner of the project was given certain preliminary cost estimates of

the project before the design of the complex started. Then, after two months, when the

earth retaining system has been selected, the owner receives new cost estimates. These

new estimates vary considerably from the previous one and s/he asks why the estimates are

so different from the initial ones. In this case, the architect needs to give reasons for the

variance. If the project team had captured all the information described previously, they

need search only for the decisions associated with project cost.

2.2 Case Studies

2.2.2 Valve Design

An entrepreneur assigned a design team to design an artifact that would redirect and stop

the flux through a network of tubes within a larger device [Kumar, 1992]. This artifact

would be used in laboratories where different liquids and gases circulate through a network

of tubes. This case study presents the different steps that are performed from the study of

market needs to manufacturing process. It also highlights some of the main issues raised

during the design process, i.e. justification of cost and lack of achieving a requirement.

This case study was performed and documented for this dissertation research. However,

it cannot be included in this dissertation because the designer was seeking a patent and the

details of the design could not been given out. Only the results form the case study will be

presented on the following paragraphs.

Summary

The scenario that was studied demonstrated the dynamic structure of the design-decision

process. The following is a summary of what transpired in this scenario:

* the requirements for the design were elaborated at different stages of the design.

Exploration and discovery comes together since some of the ideas developed as the

design proceeded. The designers never started with the idea of having different

markets to which the design could be sold such as biological industry and chemical

industry. That idea evolved as the design developed.

* designers had limited knowledge and needed the interaction and communication with

other professionals. For each of the material types, the designer called on other

sources for information such as a ceramic manufacturer, with whom he queried the

manufacturability of the design.

2.2 Case Studies

* designers used prototypes to clarify concepts. The physical artifact was able to

demonstrate how the concepts will work under real world conditions.

* various design alternatives were arrived at that could satisfy the requirements to

certain degrees.

* within the realm of the requirements the rationale of each design were explored.

* each of the requirements for the design was given a priority level. This ranking in

turn affected the decision of selecting one alternative design over the other.

* designers used concepts from other fields based on similarity of properties. In this

case, the designers tested the use of ionic coating because of its success in pumps.

2.2.3 Flume Design

This case refers to the design of a flume to be used for testing the effect of soil erosion in the

contamination of river basins [Andrews, 1993]. The design has to allow for the settlement

and suspension of the soil particles. This is necessary to determine the type of flow that

causes erosion of naturally sedimented soils. In this design, the principal professionals

involved are three geotechnical engineers, one of whom was in charge of constructing

the flume (the contractor) and another was in charge of testing the erosion theory (the

user). All the geotechnical engineers are responsible for designing the flume so that the

relationship between the effective stress-strength parameters of sediments and the critical

shear stress required to initiate erosion can be established. The constructor is responsible

for constructing the flume so that it satisfies the geotechnical engineers' specifications.

The user is responsible for performing the tests required and demonstrate the theory. As

this case shows, the constructor's work depends on the geotechnical engineers' and the

geotechnical engineers' work depends on the tests that the user wants to perform. This

2.2 Case Studies

interaction requires considerable coordination and communication, in order to achieve

the desired requirements. Below, the reasoning process of the geotechnical engineers is

recorded.

The geotechnical engineers need to establish the relationship between the effective

stress-strength parameters of sediments and the critical shear stress required to initiate

erosion. To achieve that goal, they present a proposal that contains -as a recommendation-

a plan with the following goals: 1) use of marine clay, specifically Boston Blue clay;

2) perform erosion tests on a deposited bed; and 3) perform strengths tests on the same

bed. The justifications of using such a plan are: 1) it proposes the use of a cohesive

sediment that is important for the contamination that may result if it is eroded; 2) it allows

the investigation of erosion on normal and uniform bed sediments; and 3) it allows the

measurement of the strength of the soil under different stresses. Figure 2-1 shows the

representation of this first proposal. Figures 2-2 shows the proposal hierarchy as developed

by the geotechnical engineers.

The proposals introduced the use of a linear flume at the beginning. As the design

progressed, the flume was changed to a linear flume with re-circulating pump and finally

to a rotating annular flume. All these proposals were introduced as consequence of new

intents evolving as decisions were made. One observation made by the designers was that

these new intents and proposals had some relationships with the old information. The

concept of linear flume was developed since water was needed to run constantly through

the flume. However, there were practical problems with it. The water condition at the

ends would have been different from the water condition on the flume. This problem rule

out the use of linear flume. Thus, a new concept was sought. This concept was the use

of a rotating annular flume. This new concept was then evaluated with respect to all the

2.2 Case Studies

intents that the linear flume needed to satisfy. Here, it can be seen that the design rationale

was used for defining the context of new concepts. Design rationale would be also useful

for defining why a rotating annular flume was selected. Without that information, other

participants on the project may arrive at wrong conclusions about the need of such a flume.

It was also found in this case study, that participants requested design rationale

information when they were negotiating changes. For example, one of the geotechnical

engineer proposed a re-circulating pump to make the water run through the flume. However,

one of the other engineers opposed this decision. They entered into a negotiation process

about the use of re-circulating pump. During that process, they presented reasons against

and in favor of the decision. One of the reason in favor was that re-circulating pump would

allow the modeling of the actual length of the river. This reason implies that modeling

the actual length of the river was an intent that needed to be satisfied. One of the reason

against the use of re-circulating pump was that it would destroy the aggregate particles.

This reason in turn implies that accurately modeling the particles on the river was another

important intent. In both cases, the geotechnical engineers presented intents that need to

be satisfied in order to achieve a satisfactory design. The way they resolved the conflict

was by selecting a solution that satisfied both designers. However, this resolution was only

achieved when the intents were explicitly stated for everyone to use. Thus, the explicit

presentation of intents would allow a quicker resolution of the conflicts.

2.2.4 Building Design

A structural engineer has to design a one story building with a basement and structural

capacity for supporting 2nd and 3rd floor future additions. The structural engineer interacts

with an architect, a contractor, the owner, and a mechanical engineer during the structural

2.2 Case Studies

cj

0c
0

(b1

2.2 Case Studies

LL
0>

0=

0
0d
0

Cl
0c

2.2 Case Studies

design of the building. These interactions lead to many changes which in turn lead to

conflicts among the participants. In this write up, the interactions are documented and the

reasons for such interactions are explained.

1. The present roof is kept level to provide a floor for the future additions to the building.

However, this design recommendation was not achieved until a round of negotiations

between the architect, the owner and the structural engineer. Usually the steel used

for the roof is sloped to get better drainage and the architect could have used tapered

insulation to achieve this. The use of a flat roof was a compromise between good

drainage and ease of construction for the next construction phase.

2. An existing tunnel posed a number of problems for architectural layout, structural

scheme and mechanical ductwork space. The structural framing scheme was revised

a number of times to work around the tunnel. First, the owner and architect thought

that they could keep the tunnel without the building having access to it. Based on this,

the architect changed the floor plan of the building so that there was no interference

with the tunnel below. The owner then required that the building have access to

the tunnel. The architect changed the layout to adapt to this new requirement. In

the interaction between the architect and the owner, the need to share requirements

across disciplines is shown. The architect includes the need to have tunnel access

into his/her requirements. With that new requirement, the architect could produce

a satisfactory solution to both his/her and the owner's requirements. In conclusion,

conflicts can be mitigated if requirements are explicit and sharable.

3. The study made by the structural engineer revealed problems with the structural

frame and the location of the tunnel. In addition, the contractor estimated that the

access to the tunnel would increase the cost of the building significantly. Then, the

2.2 Case Studies

owner decided to relax this requirement. This decision also allowed for a better floor

plan from the architect point of view.

4. Framing scheme was coordinated with the architectural designers to obtain somewhat

even bay spacing in some areas and a big open space in one area. The reason for

even bays was constructibility while the open space was based on aesthetics. The use

of a big open space posed some problems. Location of a column was revised several

times to fit the architectural layout. Another column was eliminated resulting in the

need for a W30 beam, which in turn caused low headroom for mechanical ductwork.

The mechanical engineers had to work around this beam and had to change their

design accordingly.

5. The architect wanted to eliminate a ledge in the basement which was standing from an

earlier construction. However, due to the cost of underpinning an existing stairwell

footing, a compromised design was achieved in which the ledge stayed and the

architect incorporated it into the architectural layout of the basement area.

6. The construction manager was surprised to know that steel weight came in at 10

lbs/sf instead of 6.5 lbs/sf that he had budgeted at the beginning of the project. He

had not anticipated that designing for the future additions would involve such a great

increase in steel members' weight. This change produced an increase on the cost of

the project.

The process followed is similar to other projects. The project begins with schematic

drawings. The structural engineer has to prepare a framing scheme (beam, column, etc.)

with approximate sizes based on experience from other jobs. This activity lasted around

two days with a lot of conversations over the phone. Contact was not possible at times and

the structural engineer had to wait for the architect to get back to him. Then after schematic

2.2 Case Studies

design had been performed, the architect would get back to the owner and the mechanical

engineer. Some of the problems that arose were solved by phone and fax machines. Once

the schematic was checked, the structural engineer went on to the detailed design. At this

time, the steel is pre-bid based on rough quantity and price/unit of quantities because scope

is defined and fast delivery is very important. This posed a serious problem because of

the stage of the design. In that case the structural engineer was conservative and ordered

steel that was not very likely to change during the early stage of the process. That same

philosophy was used for detailed design. Designers performed detail design on the parts of

the design that are not very likely to be changed. The areas that are likely to be changed

always go back and forth several times with some down time for the need to contact the

people that are involved in the decisions.

2.2.5 Bridge Design

This case refers to a bridge over the Sollecks River located in the Olympic peninsula in

northwest Washington [White et al., 1972]. In this case, the focus was on the process

of selecting the structural form and the material of the bridge with the interactions of

the structural engineer, the environmental engineer, the geotechnical engineer and the

contractor. The case has been augmented with information obtained from Dr. Ashok Gupta

[Gupta, 1993] when the information could not be found in White et al., 1972.

This case starts with the geotechnical engineer performing some preliminary soil testing

(see Figure 2-3). During his investigation he determines that the soil has good normal force

resistance and recommends the usage of piers near the base or ends. Then the structural

engineer takes that information to select the form and material of the bridge. She decides to

use prestressed concrete and a two span bridge with a vertical support and end foundations.

2.2 Case Studies

Subsequently, the structural engineer checks with all the other professionals involved in the

project, namely the environmental engineer, the geotechnical engineer and the contractor

(see first loop in Figure 2-3).

After receiving and reviewing the drawings, the environmental engineer rejects the

design due to problems with the central pier. She argues that the fish life and river flow will

be affected during construction. On one hand, the geotechnical engineer accepts the design.

On the other hand the contractor rejects the design due to problems with the construction

of the central pier and the usage of prestressed concrete. He recommends the removal of

the central pier and the usage of steel girders instead of prestressed concrete. The structural

engineer then uses the feedback obtained from the other participants to revise her design.

She then selects a prestressed concrete single span bridge. Again she checks with all

the participants (see second loop in Figure 2-3). She informs the contractor that steel is not

a viable solution since it violates objectives in her domain such as low maintenance cost

for the bridge. Had the contractor had access to this information, this interaction could

have been avoided. At this time both the environmental and geotechnical engineers accept

the design. However, the contractor still rejects the design due to the lack of construction

facilities for building such a long single span bridge using prestressed concrete. He

recommends the use of prefabricated prestressed concrete and suggests that the structural

engineer change the structural form of the bridge. This interaction could also have been

avoided if the structural engineer had access to the contractor's reasons for rejecting the

long pier the first time.

With this information, the structural engineer selects prefabricated prestressed concrete

as the material and a three span bridge with two vertical piers as the structural form (see

2.2 Case Studies

4 .

0 00~0. C1
SO w

U(U anai'

U~ Ea
a) *

0
E

r-a- t

>~ E
00

A a)~aSoB8

*6LU d 0

.0 r
U

-II "----·-a)

A

uO

> >,

00g

2 La) a' . a.

co

U (

0 t
Oa.9 u

O na)

(U
0

La . fa.0 a
2.0a~a) U

CL

~04
.0V

GnM· ~a U,(Uo

a) *m

(Ua

a~ua

C, 0 a),

an

0 (U

> a)

. r.0~

(A
an

T m

> a

a~ 0
.......I ...

0

* 0a..
0

.i r

~ .0

U c *

US

I
0

a)

'U

0.

0 ~ ..· · · · ·- ·.9

~0
a)

.0

a)

· · 111··· ...] ..4......... ...p 4...........
w.

.................

....

r

Y A

2.2 Case Studies

Figure 2-4). She checks one more time with all the participants in the project (see first loop

in Figure 2-4). At this time both the environmental engineer and the contractor accept the

design. The geotechnical engineer rejects the design due to the shearing forces that may

develop in the sloped rock. He recommends the usage of piers at the center or at the ends.

The structural engineer revises the design and informs the geotechnical engineer that piers

cannot be set on the center or ends. The geotechnical engineer then suggests that the piers

be located perpendicular to the slope.

The structural engineer receives that recommendation and selects a three span bridge

with two inclined supports. She again checks with all the professionals (see second loop

in Figure 2-4). All the professionals accept the design and the structural engineer proceeds

with the detailed design.

As this case demonstrates, there are some deficiencies with the process. First, the

process takes a long time to deliver. Second, the process may produce poor quality products.

In terms of delivery time, there are three main deficiencies. First, some information may be

lost, such as information regarding the reasons why a specific recommendation was made.

Second, the participants will have to regenerate the information lost if they are asked for

it. Third, the process has interactions that could be avoided if information about why a

design has been rejected or why a recommendation is made is available. For example, the

selection of a single span bridge would not have been presented as an alternative, had the

structural engineer known the reasons for the rejection of the long pier by the contractor.

In terms of the quality, there is one main problem. Constraints set by participants through

assumptions may be violated. Violations may go undetected during the initial stages and

may be detected at a later stage. The changes at later stages will be made under strong time

and cost constraints. Designers will tend to focus on the problem area and disregard the

2.2 Case Studies

co

*.bc1
0

-o

0

O

u

("

-s

2.2 Case Studies

overall optimization of the product.

2.2.6 River Crossing Selection

The Boston Central Artery/Tunnel is a 7.8 billion dollar example of a large scale engineering

project [Sheridan, 1993]. It involves more than 150 primary organizations during both the

design and construction phases. These organizations may work on the same or different

parts of the project, but they must interact with each other. These interactions bring about

conflicts that must be resolved.

The design of the Boston Central Artery/Tunnel segment that crosses the Charles

River has generated a lot of conflicts [Sheridan, 1993, Project, 1994]. There have been

over 80 alternative layouts for that crossing over a period of two and a half years. One

of the reasons for such a large number of alternatives is that some of the participating

organizations recommended alternatives that had been ruled out by other organizations.

For example, the community organizations rejected the use of a bridge for the crossing

as suggested by the designers and recommended the use of a tunnel. However, a tunnel

had previously been rejected by the designers because it was uneconomical and involved

large risks during construction. Then, after several iterations, the community organizations

and the designers started exploring a combination of bridge and tunnel for the crossing.

Some of that time could have been saved if the community organizations had access to

the information about the reasons for the designers rejecting the tunnel. They could have

started exploring other possibilities instead of spending the time in a design alternative that

was unsatisfactory for the designers. Thus, some of the inefficiencies of the process stem

from the lack of information that certain organizations have about other organizations'

objectives and reasons for rejecting or accepting a given alternative (i.e, design rationale).

2.2 Case Studies

This lack of information about organizations' design rationale can be attributed to

deficiencies in their communication channels. They use blueprints and specifications for

inter-organizational communication while some of the more advanced organizations use

CAD files for their internal communications. These means of communication lack the

transfer of information about the objectives and reasons for accepting or rejecting a design

alternative.

2.2.7 Requirement Synthesis from Case Studies

The case studies of design have shed light on the process: the interactions among

participants, the type of information used in design, how this information is used, and how

iterative the process is. The following is a summary of the issues that emerged from the

case studies and the characterization of the process. Note that, this study concentrated

on the interaction and information transfer between various participants. For case study

introducing individual design process see Sriram et al., 1992.

* the design intents or requirements were elaborated at different stages of the design.

The design starts with an inadequate understanding of the actual design intents. This

inadequacy is a consequence of the inherently incomplete, possibly inconsistent, and

perhaps unrealizable nature of the human needs. However, the design intents are

refined with better understanding of the needs, as the design evolves and more data

about these needs are gathered and evaluated.

* designers had specialized knowledge and other designers need interaction and

communication to understand their designs.

* designers usedprototypes to clarify concepts. The prototype was used to demonstrate

how the concepts work in the real world.

2.3 Design/Construction Process

* designers used concepts from other fields, based on similarity of properties or

features.

* several design alternatives that could satisfy the design intents to various degrees

were usually generated.

* justifications of why a given design alternative satisfied a design intent were presented

in case the design alternative is questioned by other designers. This procedure implies

that during the evaluation of a design alternative the designer has a set of justifications

that support the use of such design alternatives. However, these justifications are

not presented unless there is a doubt about the adequacy of the use of such design

alternatives.

* design intents were rated, depending on the importance that they have for the

designers.

* this ranking, in turn, affected the decision of selecting one alternative design over

the other

2.3 Design/Construction Process

The overall design process is composed of various stages according to [Woodson, 1966,

Ostrofsky, 1977, Serrano, 1987, Pahl and Beitz, 1988] and the case studies presented in

Section 2.2. There can be variations between theories, but in general the process consists

of the following steps shown in Figure 2-5 and described in the next paragraph.

The design process consists of afeasibility analysis stage in which needs are identified,

evaluated, and justified, a problem identification and formulation phase which defines the

2.3 Design/Construction Process

Figure 2-5: The Design Process.

scope and specifications of the problem, a preliminary design stage in which various design

alternatives for the solution of the problem are generated and evaluated, a optimization

phase in which design alternatives are refined through optimization of design parameters by

sophisticated analysis and evaluation, a detailed design stage which lays out for construction

the specifications about the arrangement, form, dimensions, and surface characteristics of

all the system parts, a construction phase in which resources are converted into an artifact

according to design specifications, and a consumption phase in which the artifact serves

the needs for which it was designed.

This overall process can be defined as a collaborative-iterative decision-making activity

organized to conceive the idea for, to prepare the description of, and to produce the

plans by which resources are converted into artifacts or devices to meet human needs

[Woodson, 1966], [Serrano, 1987],[Pahl and Beitz, 1988],[Sriram et al., 1989]. In the ex-

ample described in Section 2.2.2, the human need was to make a better valve. In this regard,

2.3 Design/Construction Process

the designer conceived the idea of modifying a rotor valve, and preparing the description of

the new rotor valve in terms of the material of the body and the rotor. Finally, the designer

presented the plans in which the ionic coating and steel were put together to create the new

valve.

The iterative characteristic of the design process is expressed by the inherently

incomplete, possibly inconsistent and unrealizable nature of the human needs. These

characteristics prevent designers from obtaining knowledge of the ideal solution and also

resulting in an inadequate understanding of the actual design issues. Following the valve

case, the need for producing a better valve is an incomplete description since there is no

specification on what to make better for producing the valve.

Consequently, designers start by choosing a concept that abstracts what the consumer

needs and have some way of satisfying those needs. In the case of the valve design, the

designer choose the durability issue of the valve as the problem to be addressed. Using a

top-down approach, this problem may be divided into sub-problems. These problems, in

turn, may be further divided into smaller sub-problems. Durability could be divided into

two subproblems: 1) reducing friction between the rotor and the body; and 2) increasing

the hardness of the body so that scratches do not occur on the body. However, designers

may also use a bottom-up approach in which detailed concepts are combined to make more

abstract concepts. In order to design the valve for high temperature, the designer thought of

combining ceramic and plastic to create a composite rotor so that the end thermal expansion

is similar to the valve body thermal expansion.

Designer's initial assumptions are refined and a better understanding of the design is

achieved as the design evolves and more data about the ideal solution and design issues

2.3 Design/Construction Process

are gathered and evaluated. For example, when exploring the ceramic valve, the designer

introduced a new functionality of the body that was not important before. The body needed

to be able to hold the entry tube to the ports. In stainless steel, the function of holding the

tubes in place was not really important since it could be readily achieved by the body valve.

In the ceramic valve design, the main problem is the threads, which are very difficult to

make in ceramic.

In other words, designers approach design as an opportunistic activity [Banares-Alcantara, 1991].

They generate concepts using a top-down or bottom-up approach inter-changeably accord-

ing to the information available at a given stage of the design and the applicability of either

of those two approaches to that information.

2.3.1 Design as a Justificative Process

During the design process, designers need to justify their decisions. They use support

knowledge to ensure that their selection is accurate to the best of their knowledge as well

as a designer notebook to record their computations. This knowledge refers to the use

of rules, cases, first principles, trade-offs, pareto optimal surfaces, constraint networks,

catalog entries, authority commands. These types of justifications imply that their decisions

fulfill the objective that they are searching to satisfy. These justifications happen in two

ways. First, it goes from the objective to the justifications and then to the artifact. Second,

it may go from the objective to the artifact and then the justifications are explored.

Either way, a set of justifications of how the sub-problems or concepts interact and how

they may be solved or combined is inherent in the usage of the top-down and bottom-up

approaches. Designers perform a set of steps that in turn will result in intermediate and

2.3 Design/Construction Process

terminal artifacts based on a set of justifications. These artifacts and the steps are usually

the medium by which the designers communicate their ideas. However, designers need to

express explicitly the justifications used during the design process in order to capture the

design rationale.

2.3.2 Design/Construction as a Conflict Mitigation Problem

Myers [Myers, 1992] explains that the AEC industry is in a "lose-lose" situation when it

comes to disputes resolution. This situation arises because of the lack of a mechanism for

ensuring prompt detection and mitigation of conflicts between various participants. The

erroneous decisions made in the early stages are less costly to fix if they are detected during

the early phases. However, if the erroneous decision is left undetected or unresolved, the

price for fixing it increases as time passes by.

It is only recently that researchers have tackled the integration of design and construction

[Sriram et al., 1989] and [Howard et al., 1989]. Their goal is to provide two way continuity

of information flow, without losses, between these processes and all the parties involved in

the project. These efforts in cooperation support is backed a study done by [Will, 1991],

which notes that the time spent in communication and documentation during design

is 65% of the total work time of the participants. Favela [Favela, 1993] refers to a

study conducted at HP's Fort Collins engineering workstation site [Will, 1991] in which

traditional engineering tasks such as planning design and testing account for 35% of the

time spent by engineers in a given project. The remaining time is spent in making sure

that all the participants in the project understand what they have done. They need to

communicate with other professionals 40% of their time and need to document their work

25% of their time. From our case studies, this communication and documentation refer

2.3 Design/Construction Process

to the designers' reasoning process -why they selected a given alternative or performed a

given task- that needs to be communicated to others. They need to explain their intents

(objectives, constraints, functions and goals) as well as the reasons for selecting a particular

solution (artifact, a plan or another intent).

Myers [Myers, 1992] presents some methods for helping mitigate conflicts. These

methods emphasize good preparation for the development process during the planning and

design stages. They emphasize competent specialists, adequate budgeting, risk assessment,

and value engineering. Then, during construction, they focus on quick response to the

problem, through prompt response and evaluation of claims as well as exemplary dispute

review services. However, there is no mention of using good mechanism for detecting

and responding to conflicts during planning and design. As the case studies established,

there cannot be enough preparation during the process. Parts of the projects will change,

specialists will change their mind; thus, there is need a for a way of providing effective

detection and resolution of conflicts. This is the focus of this research.

Favela [Favela, 1993] also refers to studies made by Souder [Souder, 1988] which

implies that there is a strong correlation between new products and "harmony." For Souder,

harmony implies the ease with which all the participants in the process coordinate and

communicate their work. This concept of harmony is relevant because it refers to the

"how" of the communication and coordination. This research focuses on the "what" of

the coordination and communication. This research holds the belief that this "what" is the

design rationale.

2.4 Conflict Mitigation System Requirements

2.4 Conflict Mitigation System Requirements

After the review of the issues involved in the design process, a set of requirements for the

design rationale capture in a collaborative environment was developed. These requirements

are based on how designers generate and retrieve information for supporting their design

activities.

2.4.1 Representation and Management

A design rationale system should represent and manage the following:

* Design intent evolution

Designers start the design with a set of requirements or design intents that they need

to satisfy. These design intents rarely are expressed in the final design, except for the

particular functions that each artifact performs. In other words, the design intents

that tie all the artifact functions together are lost. Information that is necessary for

effective conflict mitigation at later stages of the design is not available. In addition,

design intents are not static or known at the beginning, they evolve as decisions are

made during the process. New design intents are introduced or old intents change

priority when designers make decisions. Some intents are introduced by the artifacts

selected by the designers (e.g., arch and suspension bridges may introduce a totally

different set of intents). In the case of priority and implicit intents, discussed in

Section 2.2.4, when the structural engineer decided to use timber then the issue of

durability surfaced explicitly. However, had the designer selected precast concrete,

that issue would have low priority since it was expressed explicitly. By capturing the

process that makes design intent evolution possible, designers can capture the initial

design intents, the design intents generated through the design, and the plans which

2.4 Conflict Mitigation System Requirements

determine how these design intents are achieved.

* Artifact evolution

Designers define artifacts at different levels of abstraction. This evolution combines

two concepts: decomposition and refinement. Decomposition refers to the hierarchi-

cal disaggregation of an artifact. Refinement refers to a particular part of the artifact

obtaining increasing detail in its structure, function, and behavior. In both cases the

product starts with a structure, a set of functions, and a set of behaviors. These are

expanded or refined as the design proceeds. In the case of decomposition, each of

the lower level products performs a sub set of the functions that the overall product

should perform. In the case of refinement, the most detailed product embodies all

the functions of the earlier products.

* Relationships: Intent-Intent and Intent-Artifact.

When the designers perform a particular task in the process, they use facts, as-

sumptions, and different kinds of knowledge (e.g., heuristics and principles) to draw

relationships between design intents. This knowledge explains that by accomplishing

design intent A, design intent B is achieved to a certain extent. Such knowledge

becomes important in explaining why a particular design intent was undertaken. In

the same vein, designers use facts, assumptions, and different kinds of knowledge

to select the artifact that satisfies the design intents. In addition, the designers

often describe an artifact as satisfying a design intent because it overcomes the

shortcomings of previously evaluated design alternatives.

2.4 Conflict Mitigation System Requirements

2.4.2 Active Computer Support

The design process is not performed by one designer but between several designers who

must interact and get feedback from each other. Not only is it necessary to represent and

manage design intent evolution, artifact evolution and relationships, but it is also important

to provide active computer support for negotiation between multiple participants and for

the capture of design rationale. Active computer support is needed in two areas:

* Negotiation between multiple designers.

In a collaborative environment, designers cooperate and negotiate in defining a

product. This cooperation and negotiation implies changes in the design intents,

artifacts, and in their relationships. The original designers' rationale serve as a basis

for supporting the design; however, other designers may change that rationale by

suggesting that new concepts to be taken in consideration.

* Record and use of design rationale.

During the interviews performed for the case studies, the designers admit the value

of recording the design rationale. However, they expressed concern about the time

it will take them to record the design rationale. Thus, the computer has to obtain

the information about the reasoning process of the designers without disruptions to

them, i.e., in a non-intrusive manner. The computer needs to assume an active role in

the recording process. Through use of different kinds of knowledge (e.g, heuristics,

cases, catalog information), the computer can infer reasons for choices and suggest

alternate designs.

2.5 Summary

2.5 Summary

From the case studies and additional literature review, it is concluded that the de-

sign/construction process can be defined as an collaborative-iterative decision-making

activity organized to conceive the idea for, to prepare the description of, and to produce the

plans by which resources are converted into artifacts or devices to meet societal needs. In

addition, designers need to justify their decisions during the design/construction process

ensuring prompt detection and mitigation of conflicts. Based on these ideas, this chapter

presents the views that: 1) the designers' perspectives are expressed in their design ratio-

nale; 2) a system for capturing the design rationale needs to represent and manage design

intent evolution, artifact evolution, and relationships between intents and between intent

and artifact; 3) a design rationale system needs to capture its information in a non-intrusive

manner by providing some of the design rationale; and 4) a system for conflict mitigation

needs to provide active computer support for the negotiation between multiple participants.

Chapter 3

Representational Background

The particular situation in which knowledge is used should influence

the representation chosen.

Morris W. Firebaugh, [Firebaugh, 1989]

3.1 Introduction

The main objective of this thesis is to explore how the computer can support conflict

mitigation based using design rationale, which involves various specialists' objectives and

reasons for rejecting or accepting a given alternative. However, design encompasses a

broad range of activities that cannot be tackled by one single tool but by a collection of tools

that target specific areas or task of the process. Thus, SHARED-DRIMS is not a stand alone

tool. It is one of the computer aided tools for cooperative product development, collectively

called DICE (Distributed and Integrated environment for Computer-aided Engineering).

These tools all follow a set of guidelines that enable interaction and cooperation with the

DICE framework. DICE is based on recent computer technologies such as knowledge-

based systems, object-oriented methodology and database management systems, distributed

processing, as well as networking which facilitate communication and collaboration. The

3.2 DICE

following sections present the DICE framework and the reasons of its existence as

well as the different methodologies that are involved in its modeling of information.

Some of the sections are based on the work presented in [Wong and Sriram, 1993a]

and [Gorti et al., 1993]. Section 3.2 provides an overview of the DICE framework.

The explanation of the framework focuses on its architecture and organizational views.

Section 3.3 explains the methodology for information modeling combining object-oriented

methodology and its use in the representation of semantic networks. Finally, Section 3.4

provides a summary of all the ideas and work presented in this chapter.

3.2 DICE

3.2.1 Problems in the US Industries

The highly fragmented nature of product development in the US has caused various

productivity problems, mostly resulting from the lack of communication and coordination.

This poses several problems, as expounded by the following clip the April 30, 1990 issue

of Business Week, p. 111 (see Figure 3-1 for a typical scenario in the AEC industry).

"The present method of product development is like a relay race. The research

or marketing department comes up with a product idea and hands it off to

design. Design engineers craft a blueprint and a hand-built prototype. Then,

they throw the design "over the wall" to manufacturing, where production

engineers struggle to bring the blueprint to life. Often this proves so daunting

that the blueprint has to be kicked back for revision, and the relay must be

run again - and this can happen over and over. Once everything seems set,

the purchasing department calls for bids on the necessary materials, parts, and

factory equipment - stuff that can take months or even years to get. Worst of

3.2 DICE

all, a design glitch may turn up after all these wheels are in motion. Then,

everything grinds to a halt until yet another so-called engineering change order

is made."

Figure 3-1: Over the wall engineering

Such problems routinely arise in the construction industry and cause several undesirable

effects: 1) The construction process is slowed down, work stops when a conflict is found;

2) Prefabrication opportunities are limited, because details must remain flexible; 3)

Opportunities for automation are limited, because expensive high speed equipment is

incompatible with work interruptions from conflicts recognized in the field; 4) Rework

is rampant, because field conflicts often require design changes; and 5) Conservatism

pervades design, because designers provide excessive slack in component interfaces to

avoid conflict. All of these problems decrease productivity.

Manager

Architect
Designer

3.2 DICE

3.2.2 Computer-Based Solution

With the current cost trends in computer hardware, it is likely that every engineer will have

access to a high performance engineering workstation in the near future. Collaboration can

then be facilitated by a network of computers/users providing a virtual shared workspace,

as shown in Figure 3-2; the term agent is used to denote the combination of a human user

and a computer.

Figure 3-2: Computer-based view of cooperative product development

This is the philosophy taken in the DICE (Distributed and Integrated environment for

Computer-aided Engineering) approach [Sriram and Logcher, 1993], where computer aided

'-Structural analysis
- Structural design
- Mechanical service design
- Electrical service design

3.2 DICE

tools for cooperative product development are being developed to address the following

objectives: 1) facilitate effective coordination and communication in various disciplines

involved in engineering; 2) capture the process and rationale followed by which individual

designers make decisions, that is, what information was used, how it was used and what

it created; 3) forecast the impact of design decisions on manufacturing or construction; 4)

provide designers with detailed manufacturing process or construction planning; and 5)

develop a few design agents to illustrate the approach.

3.2.3 DICE Architecture

The DICE system architecture was developed based on current trends in advanced comput-

ing technology such as programming methodologies, object-oriented databases, organiza-

tional theory, graphical user interfaces, and knowledge based systems [Sriram et al., 1989].

DICE can be envisioned as a network of computers and users, where the communication and

coordination is achieved through a global database and a distributed control mechanism.

The components of DICE are described below.

Blackboard

The Blackboard is the medium through which communication takes place. The Blackboard

(BB) in DICE is divided into three partitions: Solution (SBB), Negotiation (NBB),

and Coordination (CBB). The Solution partition contains the design and construction

information generated by various Knowledge Modules. The Negotiation partition contains

negotiation traces between various engineers taking part in the design and manufacturing

(construction) process. The Coordination partition contains the information needed for the

coordination of various Knowledge Modules. In our current framework, the Blackboard is

implemented over an object-oriented database management system (OODBMS).

3.2 DICE

Knowledge Module/Agent

Each Knowledge Module (KM) or an agent can- be viewed either as a knowledge based

expert system (KBES) which carries out design and construction related tasks, a CAD tool,

such as a database or an analysis program, etc., a user, or a combination of the above.

Control Mechanism

The Control Mechanism performs two tasks: 1) evaluate and propagate implications of

actions taken by a particular KM; and 2) assist in the negotiation process. These are

achieved through the object-oriented nature of the Blackboard and a Strategic KM. One

major and unique difference between DICE and other Blackboard systems is that DICE's

Blackboard is more than a static repository of data. It is an intelligent active database,

with objects responding to different types of messages. A substantial part of the Control

Mechanism's functionality is distributed to and localized in these active objects. In

DICE's framework, any of the KMs can make changes to or request information from

the Blackboard; requests are logged with the objects, and changes to the Blackboard may

initiate either of two actions: finding the implications and notifying various KMs, or

entering into a negotiation process, if two or more KMs suggest conflicting changes.

3.2.4 Organizational View of DICE

An organizational view of the DICE architecture is shown in Figure 3-3. This view is based

on the work of Moses [Moses, 1987]. Two modes of communication are envisioned in

carrying out a collaborative engineering process: formal communication through DICE's

Blackboard and informal communication between Knowledge Modules (agents). The

formal communication mode includes: 1) the creation, modification, and retrieval of

objects in the Blackboard by the Knowledge Modules; and 2) message passing between the

3.2 DICE

objects for system dictated coordination (e.g., consistency maintenance) and negotiation.

The informal communication is direct communication between the Knowledge Modules

(e.g., a request by an agent to clarify some details).

Figure 3-3: Organizational view of DICE

This report focuses mainly on the representation in DICE's Blackboard, specifically

the solution partition. We also describe a partial framework for the control mechanism and

communication facilities that supports the two modes of communication described above.

KM'

3.3 Information Modeling

3.3 Information Modeling

The SHARED object model is now presented and-used for the modeling of the information

relevant to design rationale. This model combines some of the basic properties of object-

oriented methodology and semantic networks, as explained in Section 3.3.3. In order to

understand such a model and understand the different tools used for its implementation

within this research, the following sections describe the object-oriented methodology,

semantic networks, and the SHARED object model. The model is implemented with

object-oriented programming; thus, one needs to know its characteristics and power. The

semantic networks are used for describing the inter-object relationships in object-oriented

programming. This network forms the basis for the model.

3.3.1 Object-Oriented Methodology

Object-oriented methodology is a new way of thinking about problems using models

that describe real-worlds concepts. The fundamental construct is the object, which is an

entity that combines both data structure and behavior. Object-oriented models are helpful

for describing problems, communicating with experts, modeling enterprises, preparing

documentation, and designing programs and databases.

In terms of programming this methodology, traditional programming, sometimes

referred to as action-centered programming, (i.e., structured programming) maintains clear

distinction between algorithms designed to operate on data and the data itself. However,

this distinction set aside the possibility that different states may exist for data that affect how

the data will be used. In other words, information about a problem domain is not always

distinct from the rules for its interpretation and processing. Object-oriented programming

is a paradigm with a different view of algorithms and data. Concepts, rules, and information

3.3 Information Modeling

about the use of data are incorporated within data itself using object-oriented programming.

Another disadvantage of traditional programming is the extensive modifications required

in the code whenever an addition is made in the data structure [Winston and Horn, 1984].

In object-oriented programming, objects may be modified without requiring users of the

objects to change their code if the modifications are properly done.

The basic components of object-oriented methodology, are [Stefik and Bobrow, 1986]:

Objects are the organizational units of processing. They can be defined as individual,

identifiable items, representing real or abstract entities, with crisp boundaries and

meaning for the problem at hand. Objects combine state information and clearly

defined protocol for describing the behavior of the represented entities.

Classes represent sets of objects with similar properties (state information) and common

behavior. Each object is said to be an instance of its class. Each instance of the class

has its own value for each attribute, but shares the attribute names and operations

with other instances of the class.

Messages are the specification of actions to be performed by an object. Messages request

objects to perform certain actions without specifying how the objects should perform

it. The objects are free to execute the actions according to the objects' state.

Methods define the behavior of an object by telling it how it should respond to a message.

The methods are the functions responsible for carrying the action requested in the

message without allowing the message to have direct access to the object's internal

structure.

Object-oriented methodology has some essential properties that allow complex systems

to be formulated as modular programs. These properties include:

3.3 Information Modeling

Data abstraction, which is the property of denoting the essential characteristics according

to a purpose. Abstraction enables the definition of crisply, conceptual boundaries of

objects. By means of abstraction, objects can assume certain behavior according

to the purpose that they are serving. Message passing and methods support the

abstraction property. Messages request an action from an object for certain purpose

while the methods use the relevant characteristics for that purpose in executing

the action. Thus, an object may serve different purposes since many different

abstractions of the same objects are possible.

Data encapsulation, which is the process of hiding all the characteristics of an object that

are not essentials for the object purpose. This definition implies that encapsulation

and abstraction are complementary concepts. Abstraction focuses on the outside

view of the object while encapsulation prevents access to characteristics irrelevant

for that view. Encapsulation is achieved by defining methods and messages as

the interface of the object with its environment. State data is kept secret in the

object and only the methods according to the behavior expected use the state data.

Encapsulation separates implementation from abstraction. Thus, other objects do not

need to know the implementation details of the characteristic of an object. They only

need to know the behavior expected from the object. In this manner, encapsulation

offers barriers among different abstraction of the same object.

Inheritance is the process by which an object obtains its structure and behavior from other

objects. In the object-oriented paradigm this is done by the use of a hierarchical

inheritance. Classes, as were defined, may represent objects of common structure and

behavior; thus, the common structure and behavior of those objects can be defined

by the class that represents them. And by inheritance, other objects can obtain these

characteristics from the class.

3.3 Information Modeling

Inheritance can be single and multiple. In single inheritance, objects only obtain

their characteristics from one class while in multiple inheritance, the characteristics

can be obtained from more than one class. In both cases, the hierarchical inheritance

structure is composed of classes, subclasses, and instances. Classes can define a

general structure or behavior of a group of objects. Subclasses can define a more

specialized behavior of an object group. Instances are the lowest level of the

hierarchical inheritance structure. An instance defines the structure, behavior, and

characteristics (i.e., the state) of a given entity. Thus, instances cannot pass their

characteristics to other instances through inheritance.

Polymorphism is the capability of different classes of objects to respond to the same set

of messages in different ways. Polymorphism allows programs to treat uniformly

objects that arise from different classes and respond to the same protocols.

Among the benefits that can be obtained by the use of object-oriented programming

are:

* Reusability: Object-oriented programming style enhances and facilitates the reuse of

code within a project and on new projects. Since objects encapsulate their structure

and only provide an interface for communicating with other objects, the objects can

be reused by different applications and only need to build interfaces for the new

applications -if these interfaces do not exist. The reuse of software reduces the cost

of design, coding, and testing by amortizing effort over several projects. In addition,

code reuse within a project produces smaller programs and faster debugging.

* Extensibility is also achieved by the encapsulation principle of object-oriented

programming. Software can be latter expanded by including new classes and

interaction methods without the need to recreate or modify the existing code.

3.3 Information Modeling

* Robustness: The use of abstraction and encapsulation may provide the programmer

with good tools for detecting errors at run time; An object may support a well defined

abstraction. Thus, the programmer determines the different functions that can be

executed by the object within that abstraction, limiting the sources of errors.

Object-Oriented Database Management Systems (OODBMS)

An object-oriented database management system basically provides database facilities

together with an object-oriented data model for the definition and manipulation of data

stored in its database. The database facilities include [Ahmed et al., 1992]:

* Persistence: the data resides in persistence storage, rather than in volatile memory,

and can be used across sessions;

* Concurrency: multiple users access and use the same database simultaneously;

* Transaction management: a process which monitors database interactions to ensure

consistency or correctness and stability of the data ;

* Recovery: the ability to recover from a crash to some defined stable state;

* Query language: a high-level, easy-to-use language for accessing information

systematically;

* Performance: efficient access structures and algorithms for retrieving large amounts

of persistent data from secondary storage; and

* Security: protection of information from unauthorized access.

* Behavior: the ability to combine the intended use of the data together with the data.

This property allows for the objects to have behavior according to the context in

which they are used.

3.3 Information Modeling

Other data management facilities could also be provided by OODBMS. These facilities

include:

* Version management [Kim and Chou, 1988];

* Composite objects [Kim et al., 1989]; and

* Schema (class) evolution [Banerjee et al., 1987].

A number of commercial OODBMS are currently available including Itasca tm ,

Versanttm, Ontostm, Objectstoretm, 0 2tm
, and Gemstonet". A survey of commercial

OODBMS is provided in [Ahmed et al., 1992]. University based systems include En-

core [Elmore et al., 1989], OSBT [Casais et al., 1992], and Exodus [Carey et al., 1989].

OODBMS, by integrating the object-oriented methodology with database facilities, provide

a powerful medium for representation, storage, and management of complex information.

Compared to relational database systems, OODBMS represent a superior medium for stor-

ing and managing engineering information. The reader is referred to [Ahmed et al., 1992]

for descriptions of advantages of OODBMS over tradition relational databases management

systems for capturing engineering information.

3.3.2 Semantic Modeling Schema

Semantic networks provide a means of relating objects into inter-object structures. Semantic

networks were developed as a way of representing a psychological model of human

associative memory [Quillian, 1968, Raphael, 1968]. They are useful for describing

the relationship between objects and for drawing conclusions about their role and state

[Firebaugh, 1989, Winston, 1984]. In a conventional object-oriented system, the semantic

network is implemented by storing in named fields in the objects pointers to other objects.

These named links are manipulated by procedures or methods in the object in order to give

3.3 Information Modeling

some operational meaning to the inter-object structure. These links and methods allow an

object to participate in several inter-object structures at once without losing its identity.

However, relationships need to be explicit so that they can be operated on and manipulated.

Semantic networks have developed to allow for such representation. On of the most known

models is the E-R model [Chen, 1976].

Some useful examples of inter-object structures used in decision rationale representation

with their behavior are:

* Specialization/Generalization Hierarchies - representing classification systems. This

relationship allows for the inheritance of structure and behavior from parent classes.

* Part-Of hierarchies, representing the decomposition of an entity into sub-entities.

This relationship allows for selective inheritance. An object can inherit a behavior

from a class, such as the color of walls of a house, while avoiding the inheritance of

behavior that is restricted of the house, such as the shape of the house.

* Justification links, representing the justifications to recommendations presented by

designers. This relationship builds the context in which the design is performed and

verified.

To illustrate an entity participation in several inter-object structure, consider an intent

object that might be the basis for a proposal, see Figure 3-4. The intent object might be:

* introduced by a recommendation,

* composed-of other intents,

* refers-to a goal.

3.3 Information Modeling

Figure 3-4: A Semantic Network.

3.3 Information Modeling

The intent would participate in specialization, contains, and justification links by virtue

of specializes, composed-of, and basis-of links respectively. The use of semantic networks

in the representation of decision rationale is found in Chapter 5.

3.3.3 SHARED Object Model

In this section, we present the object model which forms the basis for the design knowledge

representation. Our model is based on the SHARED object model, defined in [Wong, 1993],

[Wong and Sriram, 1993a]. The SHARED model essentially extends the object-oriented

methodology in the following manner [Wong, 1993], [Wong and Sriram, 1993a] :

1. It provides explicit relationship entities with associated semantics and constraints,

instead of just using attribute references to objects. These relationships are associated

with relationship classes and can be arranged in inheritance hierarchies as with object

classes;

2. It associates constraints with objects and relationships. Constraints are used to

maintain the consistency and integrity of a product model; and

3. It provides a mechanism for handling the concept of "similar objects".

We provide a brief overview of the SHARED object model to serve as the basis for further

discussion.

Definition of Objects

A SHARED object, o, is defined as a unique, identifiable entity in the following form:

Definition:

o = (uid, oid, A, M, R, C) (3.1)

3.3 Information Modeling

* uid is the unique identifier of an object. The set of all unique object

identifiers is UID;

* oid is a non-unique similar object identifier related to the version of the

object. It is used to refer to one of a set of similar objects which can be

used to replace each other in relationships. Typically, we use this concept

to model alternatives or versions of objects. Note that all versions of

an object must be instantiations of the same class, whereas alternatives

could represent any class. The set of all oids is OID.

* A = { (ti, ai, vi) }*. Each ai is called an attribute of o and is represented

by a symbol which is unique in A. Associated with each attribute is its

type, ti. Each ti has an associated domain, domain(ti) = {vi}. Then,

for (ti,ai,vi), vi is called the value of ai and vi E (domain(ti) U nil).

If vi = nil, (ti,ai,vi) can be written as (ti,ai). A can also have meta-

attributes, which have a similar connotation to the attributes. i.e., each

ai = { (t, ma;, vi) }, where mai is a meta-attribute.

SM= {(mi, tci,tc2 ,...tcn, tc)}*

Each element of M is a method signature which uniquely identifies a

method. mi is the method name represented by a symbol and tci is a

type. The returned type of the method which can be a single valued or

object type is specified by the last element in the tuple and the other

elements define the types of the arguments of the method. Methods define

operations on objects and have associated code. A method is defined as

(method signature, code).

* R = {rid }, where rid is an identifier for a relationship. Relationships

are discussed in Section3.3.3.

3.3 Information Modeling

* C = {cname}. Each cname is a unique identifier for a constraint, c

defined as (cname, code). A constraint can be vievwed as cname()- >

TRUE FALSE, that is a function which returns either TRUE or FALSE.

Constraints may be used to restrict ranges of attributes, to define complex

expressions on object attributes through rules,. etc.

For example, an object is defined as follows: 1

(uid 1, oid2, { (int, a, 10), (String, b, "abc") }, {(get _a, int, int) }, { r , r2},

{(cl, a < 20)})

where uidl is the unique identifier, oid2 is a non-unique object identifier related to the

version of the object, int and String are primitive data types, rl and r2 are relationship

identifiers. cl is a constraint on the value of the attribute a.

Relationships

The SHARED model represents relationships between objects as objects themselves,

thus making their semantics explicit. In particular, the relationships defined include

composition, functional and spatial relationships, version-of, alternative, sub-function,

satisfied-by and requires [Wong, 1993]. We now define a generic SHARED relationship

as follows:

Definition:

r = (rid, RO, A, M, C) (3.2)

where

'Object, relationships, method names, types are denoted by boldface fonts.

3.3 Information Modeling

* rid is a unique identifier of the relationship r. The set of all unique

relationship identifiers is RID.

* RO = {(t,ro, v)}.

Each ro E RO is called a role of a relationship. ro is the role name of

a role and v is the value of a role: a wellformedness condition is that

v e {OID U UID} or v C {OID U UID}, and v E domain(t) where

OID is the set of all object identifiers and UID, the set of all unique

object identifiers, and t is a type. Furthermore, there must be at least

two objects partaking in the roles of a relationship. For a relationship

among a particular set of objects to be valid, each of the objects must be

identified by some role in the relationship and each of the objects must

include the particular relationship in the relationship set R of the object's

definition.

* A is a set of attributes of a relationship, defined in a manner similar to A

of an object;

* M is a set of methods, defined in a manner similar to M of an object. The

methods define operations on the roles and attributes of the relationships;

and

* C is a set of constraints on objects associated with the roles of the rela-

tionship and its attributes (interaction constraints). It includes constraints

on cardinality of roles. It is defined in the same way as C of an object.

For example, a relationship could be defined as follows.

(rl, {(System, composite, sl), (Set-System, subsystems, {sll, s12, s13}),

(String, description, "a part of rel")},{(get subsystems, SetSystem)},

{cl})

3.3 Information Modeling

where System is a class, Set-System denotes a set of Systems, sil, s12, and s13

are identifiers of objects which constitute this set and cl is a constraint. The method

get-subsystems is the access function to return the subsystems, and does not take any

arguments. However, other functions could take any number of arguments and perform

complex and lengthy tasks.

Classes are defined on the objects and relationships defined above, as abstraction

mechanisms to make the common properties and semantics explicit. For formal definitions

of these mechanisms, we refer the reader to [Wong, 1993].

Now presenting the object and relationship classifications: A SHARED object, o, is

classified as an instance of a class, c, if

* V ac E c.A, 3 a in o.A such that a = ac or a is the same as ac except a is bounded to

a value in o while value of ac is nil;

* V r E o.R, 3 cr E c.R such that r E domain(cr);

* V m in c.M, 3 mc E o.M such that m = mc; and

* V con in c.CON, 3 ccon E o.CON such that con = ccon.

Furthermore, since an object, o must be in one of the roles of all its relationships, the type

(class) of the role in which o is in must be one of the class in which o is an instance of.

Generalization and specialization are also defined in terms of the class abstractions.

These are relationships between classes which define a partial order on the set of all

classes (i.e., they are reflexive, antisymmetric, and transitive). Generalization is used as an

implementation mechanism for sharing code among more specialized classes. That is, a

3.3 Information Modeling

specialized class can inherit properties of a number of more general classes, in a process

known as multiple inheritance.

3.3.4 Knowledge-Based Expert System (KBES)

Certain intelligence can be coded into the methods of objects in a procedural way. Examples

of this are constraints which can be coded procedurally in the methods. KBES technology

provides a more convenient and flexible mechanism for representing knowledge in the

form of rules (e.g., constraints such as those in building codes).

A KBES provides a higher level programming tool compared to conventional program-

ming environments [Sriram, 1988]. A KBES can be defined as a Computer program which

incorporates knowledge and reasoning in solving difficult tasks usually performed by an

expert.

A KBES can be considered as consisting of three basic components:

* Knowledge Base which is a collection of general facts and rules about the problem

domain.

* Inference Mechanism which combines the facts and rules to deduce new facts.

Different types of inference mechanism are available. Typical types are forward

chaining, backward chaining, hierarchical refinement, etc. [Sriram, 1988].

* Context is the workspace for the solution constructed by the inference mechanism

from the information provided by the user and knowledge base.

In an object-oriented framework, both the facts and the rules, and the context can be

represented as objects. Similarly, the inference mechanism can be implemented as an

3.4 Conclusions

object that has methods which are capable of performing the inferencing, given a set of

fact objects and rule objects. This report incorporates such a framework for constraint

declaration and checking.

3.4 Conclusions

The availability of environments such as DICE provides the foundation for work in the

capture and use of design rationale. DICE covers most of the activities related to the

design process such as source of knowledge, establishment of process for combining parts

into wholes, as well as handling of qualitative and quantitative constraints. The interesting

part of the DICE environments is that its components modules can produce the process by

which they arrive to a solution. This allows the incorporation of that information to the

design rationale.

Another topic discussed in this chapter is the use of object-oriented methodology to

represent items in the real world. This methodology allows the modeling of entities that

take different roles during their lifetime, as usually happens with real world entities. In

addition, the chapter presents how semantic networks can be combined to object-oriented

methodology to produce a more explicit model of the entities and relationships of objects

in a given world. This combination led to the development of the SHARED object model

which is being used to represent the constructs and primitives of the design rationale model.

Chapter 4

Related Research

Progress, far from consisting in change, depends on retentiveness

... Those who cannot remember the past are condemned to fulfil it.

George Santayana, Life of Reason, vol. I, ch. xii, 1905-6

4.1 Chapter Introduction

Capturing rationale has been a research topic for several decades. There have been a number

of models and systems developed by researchers in different application areas ranging from

discourse, [Toulmin, 1958], to engineering design, [Garcia and Howard, 1992]. Figure 4-1

shows a classification of these research efforts according to the requirements presented in

Section 2.4.

In Figure 4-1, the Y coordinate represents the number of designers that are able to

record their interacting rationale and are able to participate in the mitigation of the conflicts.

The scale is divided into single and multiple participants. In other words, this parameter

represents how the different models or systems handle different designers inter-working

4.1 Chapter Introduction

N

I1

Cfi

t

0

.X ~ 4-

0C
$ -

r 0
.Qc

9~

~ii " -

*e

4.1 Chapter Introduction

and relating to each other on generating a product. The X coordinate represents the

computer support for recording and using of the rationale for conflict mitigation. The

scale is divided into passive and active computer support. Passive computer support

indicates that the computer helps the designer to store the rationale. The designer inputs

the rationale in the computer and the system creates some links between the different

components of the rationale. Active computer support indicates that the computer helps

in recording the rationale by providing part of it. The Z coordinate represents the support

provided by the computer during conflict mitigation. The scale is divided into user-driven,

computer supported, and automated. User-driven indicates that the user inputs most of the

intents (preferences) and recommendations (options) into the system and the computer uses

some general strategy like game and bargaining theories to evaluate recommendations with

respect to the intents. Computer supported indicates that the computer provides some of the

intents and recommendations to be analyzed, as well as it provides some domain dependent

knowledge (i.e., heuristics, cases, first principles, etc.) for mitigating the conflicts. Of

course, this does not preclude user interaction and application of general strategies, as

available in user-driven systems. Automated indicates that the computer provides solutions

to the conflict with very little interaction with the user, where intents and recommendations

are implicit in the conflicts and the solutions presented.

The X scale in Figure 4-1 is a continuous measurement with more computer support as

the boxes get farther away from the origin. The Y scale is discrete and there is no relation

between the distances of the boxes to the origin. The Z scale is a continuous measurement

ranging from mostly user-driven mitigation to mostly computer automated mitigation with

a middle balance where an interactive user-computer mitigation is achieved.

The selection of these three parameters is due to the nature of design and the requirements

4.2 Related Work on Design Rationale

of the designers. The systems have to support the negotiation between multiple designers;

thus, they need to support conflict mitigation. In addition, designers want support in the

recording and using design rationale. Most of the previous research efforts focused on

the model of the rationale but there was little emphasis on the utilization of the rationale

as discussed in the following sections. The representation requirements established in

Section 2.4 deal more with the modeling of rationale and are useful for the development of

the ontology. The requirements for active computer support deal more with the usability

of the rationale and this is the focus of this research.

There is thus a gap in the multiple participants-computer supported conflict mitigation-

active computer support design rationale quadrant. Little or no documentation of research

in this area exists. However, this quadrant is presented by Section 2.4 as the quadrant

where a system or model is necessary. Thus, a model and system for capturing the rationale

of negotiating participants in which the computer provides support for providing rationale

and mitigating the conflicts is necessary.

Section 4.2 offers a summary of related research in the area of design rationale

representation. Section 4.3 provides an overview of related research in the area of conflict

mitigation. In these sections, the relationship of this dissertation research with the previous

work is also denoted to present where the research fits in the area of capturing design

rationale and conflict mitigation. Finally, Section 4.4 provides a summary of this chapter.

4.2 Related Work on Design Rationale

Most of the research in design rationale has focused on capturing design rationale without

concern for its later use. The use has been limited to maintaining the design history. In that

4.2 Related Work on Design Rationale

case, the design rationale models or systems fall into the plane participants-design rationale

without going into the conflict mitigation direction. Section 4.2.1 presents the research

efforts on the single participant-passive computer support models. Multiple participant-

passive computer support models are presented on Section 4.2.2. Finally, Section 4.2.3

provides a summary of the single participant-active computer support models.

4.2.1 Single Participant-Passive Computer Support Models

In Figure 4-1, the single participant-passive computer support quadrant has the designer's

notebook which represents the notes taken by the designer during the design process.

This document is usually private and manually developed. It also has Rossignac et al.'s

MAMOUR [Rossignac et al., 1988] and Cassotto et al.'s VOV [Casotto et al., 1990] which

keep a trace of the design as it evolves, but leaves the design intent implicit in the trace. The

idea behind these systems is that a sequence of transformations represents the design and

captures some of the designer's intent. Here, the transformations are operations performed

on a model, and the sequence of these operations give the final product. Thus, it is believed

that by recording that sequence, the product could be reproduced, if needed. One important

point is that design rationale is defined as the operations that can re-create the product while

intent is believed to be the operations performed. As explained in Section 2.4, intents are

more than operations. They also refer to objectives to be achieved which are not related to

a specific task but to the comparison between design alternatives.

4.2.2 Multiple Participants-Passive Computer Support Models

The multiple participants-passive computer support quadrant has a series of research

efforts from academia and industry: Toulmin's Model [Toulmin, 1958]; Kunz and Rittel's

Issue Based Information System (IBIS) [Kunz and Rittel, 1970]; Conklin and Begeman's

4.2 Related Work on Design Rationale

Graphical Issue Based Information System (gIBIS) [Conklin and Begeman, 1988]; Potts

and Bruns' Model [Potts and Bruns, 1988]; Lee's Design Representation Language (DRL)

[Lee, 1990]; and Grubber et al.'s SHADE [Grubber et al., 1992]; and Favela et al.'s CADS

[Favela et al., 1993]. An important note in this quadrant is the ontology used by these

systems. Their ontology lacks a representation and a structure for the process and the

product as they evolve. Missing is the notion of artifact evolution. Most of them

concentrate on the decisions made but without any underlying model of the artifact. Also

missing is the notion of classification of the intents (i.e., objectives, constraints, function,

and goals), as well as the classification of the justifications for a proposal (i.e., rules, catalog

entry, first principles, etc) since they have different characteristics and are used different by

the designers. Section 5.2 explains in more detail these classifications. In addition, these

systems do not really attempt to perform any conflict mitigation. This is due to the lack of

structure of the models. It will be difficult to assert that an intent can only be satisfied after

comparison between different alternatives when there is no control mechanism to enforce

that.

4.2.3 Single Participant-Active Computer Support Models

The single participant-active computer support quadrant has Thompson and Lu's AIDEMS

[Thompson and Lu, 1990]; Ganeshan et al. system [Ganeshan et al., 1991]; Fisher et al.'s

JANUS [Fischer et al., 1989]; Garcia and Howard's ADD [Garcia and Howard, 1992]; and

Bradley and Agogino's DESIGN SCRIBE [Bradley and Agogino, 1991]. These systems

capture design rationale from the perspective of a single designer. They lack support

for multiple designers changing each other's design rationale due to intents outside of

a particular design domain. Their models also lack the classification of intents and

4.3 Related Work on Conflict Mitigation

justifications as in the passive computer support models. These systems did overcome the

lack of structure and representation of the product and process inherited in systems of the

passive computer support quadrant. This enabled them to use information for inferencing

and presenting part of the design rationale.

4.3 Related Work on Conflict Mitigation

Models or systems in the area of conflict mitigation have focused primarily on the resolution

of conflicts. To that end, they have provided support in terms of evaluating participants'

options (user-driven systems) or in terms of providing solution to the conflict based on some

domain-dependent knowledge (Automated systems). However, they have lacked support in

the area of rationale capture, conflict causes, and conflict prevention. In addition, a balance

is needed in terms of user-driven and automated support. Some solutions will be available

on domain-dependent knowledge (i.e., heuristics, rules, first principles, etc.). However,

some novel solutions will come from the users/designers experience in dealing with similar

problems. Thus, support needs to be provided such that both user resolution and computer

solution can co-exist. Section 4.3.1 presents research in the area of user-driven support.

Section 4.3.2 outlines research efforts in the area of automated support.

4.3.1 User-Driven

The multiple participant-user driven- passive computer support quadrant has a series of

research efforts: Fraser and Hipel's Conflict Analysis [Fraser and Hipel, 1988]; Anandalin-

gan and Apprey's use of bi-level linear programming [Anandalingam and Apprey, 1992];

and Anson and Jelassi's use of integrative bargaining [Anson and Jelassi, 1990]. These

systems take designers' options and evaluate them helping the designers select the best

4.4 Summary

option. However, the computer does not provide any support in generating some of these

options and their accompanying preferences.

4.3.2 Automated

The multiple participant-automated- passive computer support quadrant has a series of

research efforts: Brown's CYL [Brown, 1985]; Sycara's PERSUADER [Sycara, 1989];

Lander and Lesser's CEF [Lander and Lesser, 1989]; and Klein's DRCS [Klein, 1992] and

Conflict Hierarchy [Klein et al., 1990]. The shortcomings of these systems are presented

by their position on the graph. Sycara's and Klein's approaches get closer to the computer

supported spectrum of conflict mitigation but still lack the active computer support for

capturing the design rationale. These systems provide some of the designers options but

the designers' preferences are implicit in the computer recommendations.

4.4 Summary

Research related to design rationale and conflict mitigation support was described in this

chapter. The need for describing a more powerful design rationale model surge of the

limitations of the existing models to describe the design problem relationship explicitly.

In addition, these models do not represent all the elements that are relevant for the design

rationale capture. Some models have limitations in their representation of intents while

others have limitations in representing the design elements interactions. In the area of

conflict mitigation, the need for a system that makes explicit the designers' options and

preferences was shown.

Chapter 5

DRIM Information Model

An engineering drawing contains the results of the decision-making

process in a design, but does not record how and why the decisions

were made.

Ganeshan, Finger and Garrett, [Ganeshan et al., 1991]

5.1 Introduction

As stated in Section 2.3, design can be defined as an iterative decision-making activity

to conceive an idea for, prepare the description of, and produce the plans for the process

by which resources are converted into artifacts or devices to meet human needs. Design

as a decision-making activity requires a problem-solving strategy. Section 2.3 presented

the concept of opportunistic design [Banares-Alcantara, 1991] in which designers use

top-down or bottom-up approaches inter-changeably. These approaches permit designers

to tackle problems at the desired level of detail. However, some problems may arise in

terms of consistency if the interactions among the sub-problems are not well organized and

specified.

5.1 Introduction

These problem-solving strategies also support the segmentary and collaborative nature

of design'. Sub-problems can be mapped to the different disciplines involved in the design

when a functional division is used. On the other hand, if a spatial division is used, sub-

problems can incorporate all the disciplines. In either case, the difficulties in keeping track

of the interactions among sub-problems are exacerbated. One needs to not only keep track

of the sub-problems, but also to keep track of the interactions. For example, a discipline

A in the design team may decompose and solve a design problem, and another discipline

B might not know the assumptions and compromises made to achieve the decomposition

or the solution. However, these assumptions or compromises made by discipline A might

affect or become invalid on discipline B. If B can access the assumptions made by A,

then B can prevent A from pursuing a decomposition unlikely to fix the problem from B's

perspective. On the other hand, if B does not know the assumptions, then, in addition

to discovering the interference later in the project (when it is more expensive to fix), B

might not know the causes of the problems. Even when the design is produced by one

discipline, the iterative nature of the design introduces a dynamic element to sub-problem

interaction. These interactions may change during the design process. All these actions

and information form part of the design rationale of the artifact.

For these reasons, the top-down or bottom-up approaches need to capture the design

rationale behind their solution. Since these approaches fail when conflicts are detected,

designers cannot follow a path up or down but they have to iterate. As discussed in

Section 4.2, there is a gap in the multiple participants-active computer support quadrant.

There is a need for a model that allows rationale information to be captured from multiple

participants with active computer support. This thesis presents a model called DRIM which

'1 Segmentary nature means that multiple professionals from multiple disciplines participate in the design
of an artifact.

5.2 DRIM Primitive Classes

stands for Design Recommendation-Intent Model. DRIM can represent the current method

by which designers tackle problems and sub-problems when setting the characteristics

of an artifact. During the design process, designers make recommendations about these

characteristics. For example, a structural engineer recommends prestressed concrete as the

material for a bridge. However, this recommendation only indicates what is to be done. It

lacks information about who made that recommendation, what the designer was trying to

accomplish, and why the designer believes that the recommendation will serve its purpose.

DRIM facilitates the capture of the above information.

A detailed description of the components of the model is given in Section 5.2. Section

5.3 presents the definitions of the relationships between the different components in DRIM.

Design as a process with the DRIM objects is explained in Section 5.4. Section 5.5 shows

design rationale trace using DRIM components and relationships. Finally, Section 5.6

provides a summary of this chapter.

5.2 DRIM Primitive Classes

The DRIM model overcomes the deficiencies of the models presented in Section 4.2

by providing a method by which design rationale information from multiple participants

can be partially generated, stored and later retrieved by a computer system. DRIM

supports the natural way in which designers select the characteristics of an artifact. During

the design process, designers make recommendations about these characteristics. For

example, a structural engineer recommends prestressed concrete as the material for a

bridge. However, this recommendation only presents what is to be done. They lack

information about who made that recommendation, (i.e., a computer or a human), what the

designer was trying to accomplish, and why the designer believes that the recommendation

5.2 DRIM Primitive Classes

is correct.

The DRIM model overcomes the above deficiencies by providing mechanism by which

that information can be stored and later retrieved. DRIM consists of a proposal which

is related to the designer who presents it, and the intent that is sought. The proposal, in

turn, is composed of the recommendation that satisfies the intent and the justifications for

presenting such a recommendation. The various components of DRIM, shown in Figure 5-

1, are discussed below; the graphical notation used is the Object Modeling Technique

(OMT) [Rumbaugh et al., 1991] and the representational model is the SHARED model

(explained briefly in Section 3.3.3 and found in more detail in [Wong and Sriram, 1993a]).

5.2.1 Designer

A designer represents the entity (human, e.g., a structural engineer, and computer, e.g.,

a synthesis program) that presents a proposal, based on a design intent that needs to

be satisfied. Through the presentation of conflicting or supportive proposals, different

designers enter into a negotiation process. Supportive proposals from other designers can

be used as support arguments for a designer's proposal. In that case, the designers are not

really negotiating but are collaborating.

A designer and its sub-classes are defined using the SHARED object model as a tuple

of the form:

(Designer, oid, A, M, R, C)

where

A is a set composed of {(String, speciality), (Address, office)} where

speciality is a character string representing the designer's profession. office

5.2 DRIM Primitive Classes

E

E
E07

0

E

0i)
°,.

bE
©)

°,.

5.2 DRIM Primitive Classes

is an object attribute of the Address class. This class has attributes for street,

number, apartment, city, state and zip-code.

M is a set of methods related to the designer's information, presentation of

proposals, as well as identification of negotiating designers and conflicting

proposals.

R is a set composed of {Negotiates-with, Presents}. Negotiates-with links

two designers that have conflicting or supporting proposals. Presents links the

designer with presented proposal and the intent that needs to be satisfied.

C is a set of constraints which involve the expertise of the designer and the

recommendations being made.

A human is defined as a tuple of the form:

(Human, oid, A, M, R, Designer.C)

where

A is a set composed of {Designer.A, A'}. Designer.A is the set of all the

attributes from the Designer class. A' is a set composed of { (String, e-mail)}.

e-mail is a character string representation of the designer's e-mail address.

M is a set composed of {Designer.M, M'}. Designer.M is the set of all

the methods from the Designer class. M' is a set of methods related to the

human's information.

R is a set composed of {Designer.R, R'}. Designer.R is the set of all the

relationships from the Designer class. R' is a set composed of {Supervisor}.

Supervisor links a designer with the supervising designer if there is one.

5.2 DRIM Primitive Classes

Designer.C is the set of all the constraints from the Designer class.

A computer is a software program that resides on a given platform. A computer has

similar characteristics to a human and is defined as a tuple of the form:

(Computer, oid, A, M, R, Designer.C)

where

A is a set composed of {Designer.A, A'}. Designer.A is the set of all

the attributes from the Designer class. A' is a set composed of {(String,

internet)}. internet is a character string representation of the computer's

internet address or its host name.

M is a set composed of {Designer.M, M'}. Designer.M is the set of all

the methods from the Designer class. M' is a set of methods related to the

computer's information.

R is a set composed of {Designer.R, R'}. Designer.R is the set of all the

relationships from the Designer class. R' is a set composed of { Co-designer}.

Co-designer links a computer with the cooperating human designer if there is

one.

Designer.C is the set of all the constraints from the Designer class.

5.2.2 Proposal

A proposal represents the statement given by a designer. A proposal includes the

recommendation believed to satisfy a design intent and the justifications of why the

recommendation fulfills that design intent.

5.2 DRIM Primitive Classes

As designers present different proposals based on the same design intent, they create

is-alternative-of relationships between the proposals. The is-alternative-of relationship

is used to associate a proposal with another "similar" proposal which it can replace.

Alternative proposals contain recommendations that are usually instances of different

recommendation classes which satisfy the same intent and perhaps additional intents. For

example, a structural engineer recommends the use of prestressed concrete for a bridge

as an alternative to timber. This relationship type allows justifications to be retrieved

from previously evaluated recommendations where the design alternatives have similar

parts. When designers want to further increase the detail of a recommendation they create

versions-of the original proposal, e.g., the proposal of using steel girders of 20 foot length

for the bridge is a version of the proposal to use steel girders of 15 foot length for the same

bridge. Versions-of links are the result of the designer's aim to satisfy new intents that were

not taken in consideration before. The difference between is-alternative-of and versions-of

links is the amount of change to the recommendation in order to satisfy the new intents.

The versions-of link only presents incremental change on the recommendation, usually

adding detail to the same concept in order to satisfy the new intents. On the other hand,

the is-alternative-of link presents a new concept to satisfy the same intent - the change is

more radical.

A proposal may consist-of sub-proposals. For example, the proposal for designing a

bridge can consist of the sub-proposals related to the sub-goals of selecting the material

and the structural form of the bridge. This relationship allows designers to decompose

a proposal by presenting other proposals. These sub-proposals define either a process

or a part hierarchy. During negotiation designers may present a proposal that reacts-to

an already presented proposal. For example, the proposal to remove the central pier of

the bridge reacts to the proposal of using a two span bridge with central support. This

5.2 DRIM Primitive Classes

relationship allows designers to present different views, facilitating the negotiation process

by making these views explicit.

A proposal is defined using the SHARED object model as a tuple of the form:

(Proposal, oid, A, M, R, C)

where

A is a set composed of {(String, status), (Recommendation, proposed-

recommendation), (Intent, sought-intent)}. status is a character string

representation of the proposal's status (either in-process or finished). proposed-

recommendation is an object attribute of the Recommendation class which

refers to the recommendation proposed by the designer. sought-intent is an

object attribute of the Intent class which refers to the intent asserted by the

designer.

M is a set of methods which define the behavior of proposals. These methods

provide proposal's information retrieval and comparison, as well as mechanism

for building the relationships between proposals (i.e, versions-of, consist-of,

is-alternative-of, and reacts-to).

R is a set composed of {Presents, Versions-of, Is-alternative-of, Reacts-

to, Consists-of}. Presents links a proposal with the designer who presents

it. Versions-of links two proposals that introduce recommendations with

incremental changes. Is-alternative-of links two proposals that introduce

recommendations that are different but satisfy the same intent. Reacts-to links

two proposals that introduce recommendations that contradict, or support each

5.2 DRIM Primitive Classes

other. Consists-of links two proposals in which one is the parent proposal and

the other is a sub-proposal.

C is a set of constraints which requires a recommendation and at least one

justification to be present in order for a proposal to exist.

5.2.3 Intent

A design intent refers to what the designer wants to achieve or satisfy. A design intent has

a ranking that specifies its importance and a satisfaction measure that specifies the extent

to which the design intent has been satisfied by a recommendation. A design intent refers

to the following attributes of a design: (1) objectives, (2) constraints, (3) functions, or

(4) goals. The collection and hierarchy of the design intents together represent the design

process. Definitions of objective, constraint, function, and goal are provided below. The

relevance of this classification is that each one of these intents has different characteristics

and the designers respond differently to these intents.

An intent is defined using the SHARED object model as a tuple of the form:

(Intent, oid, A, M, R, C)

where

A is a set composed of {(Int, ranking), (Int, satisfaction)}. ranking is an

integer representation (from 0 to 100) of the intent's ranking. This attribute

represents the priority of achieving the intent - the higher the number, the

higher the priority. satisfaction is an integer representation of the intent's

satisfaction. This attribute represents the degree (from 0 to 100) to which the

designer believes that the intent has been satisfied.

5.2 DRIM Primitive Classes

M is a set of methods which define the behavior of intents. These methods

provide intent's information retrieval and comparison, as well as mechanism

for building the relationships between proposals and intents (i.e, based-on and

percentage of satisfaction).

R is a set composed of {Based-on, Introduces, Consists-of, Modifies, Refers-

to}. Based-on links an intent that needs to be satisfied, a designer that presents

the proposal that satisfy the intent, and the proposal itself. Introduces links

an intent with the recommendation that introduces it. Consists-of links an

intent with its sub-intents. Modifies links an intent with the recommendation

that modifies it. Refers-to links an intent and a need (objective, constraint,

function, goal).

C is a set of constraints which requires a proposal to be presented in order for

an intent to be satisfied.

Definitions of objective, constraint, function, and goal are provided below.

1. Objective is a characteristic to be optimized by an artifact. It presents a measure

against which the design is checked (e.g., minimize ecological impact by the bridge).

Designers tend to use this class of intents as an evaluation which requires comparison

among several competing designs.

An objective is defined using the SHARED object model as a tuple of the form:

(Objective, oid, A, M, R, C)

where

5.2 DRIM Primitive Classes

A is a set composed of {(Recommendation, agent), (Optimizer, action),

(Recommendation, end)}. agent is a recommendation which should

achieve an end recommendation thorough an optimizing action. agent

is an object attribute of the Recommendation class which refers to the

recommendation achieving the condition sought by the designer. In the

example, the agent is the bridge, action is an object attribute of the

Optimizer class which refers to the kind of optimization sought by the

designer. In the example, the action is minimize. end is an object

attribute of the Recommendation class which refers to the optimized

recommendation sought by the designer. In the example, the end is the

impact on the ecosystem.

M is a set of methods which define the behavior of objectives. These

methods provide objective's information retrieval and comparison, as well

as mechanism for building the relationships between recommendations

and objectives. Objectives require the comparison between several

recommendations before they are considered satisfied and these methods

allow for such implementation.

R is a set composed of {Refers-to}. Refers-to links a constraint with the

intent that refers to it.

C is a set of constraints which require that at least two proposals be

presented for the same objective in order to performed a comparison

between them.

2. Constraint is a confinement or restriction on an artifact. It represents a boundary

which the artifact or associated features should not surpass. For example, Article

5.2 DRIM Primitive Classes

8.9.3.1 of AASHTO-89 specifies a maximum deflection on a bridge to be 1/800th of

the span. In this class of intents, designers only need to test if the criteria is met by the

design recommendation without the need to compare it to other design alternatives.

A constraint is defined using the SHARED object model as a tuple of the form:

(Constraint, oid, A, M, R, C)

where

A is a set composed of {(Recommendation, agent), (Operator, com-

parison), (Recommendation, end)}. agent is an object attribute of the

Recommendation class which refers to the recommendation that should

achieve the condition sought by the designer. In the example, the agent is

the bridge deflection. comparison is an object attribute of the Operator

class which refers to the kind of comparison between the agent and the

end. In the example, the comparison is maximum. end is an object

attribute of the Recommendation class which refers to the condition to be

achieved. In the example, the end is the 1/800th of the span. The Article

8.9.3.1 of AASHTO-89 specification is recoded as a justification for the

existence of the constraint.

M is a set of methods which define the behavior of constraints. These

methods provide constraint's information retrieval and comparison, as well

as mechanism for building the relationships between recommendations

and constraints. Constraints require a limit to be met and these methods

allow for such implementation.

100

5.2 DRIM Primitive Classes

R is a set composed of {Refers-to}. Refers-to links a constraint with the

intent that refers to it.

C is a set of constraints which tests the limits being defined. Note that this

constraint component is part of the constraint intent.

3. Function is an action or activity performed by an artifact, e.g., to safely withstand

the loads of the bridge during its lifetime. This class establishes the performance

criteria that latter translates to the behavior of the system and specific constraints.

A function is defined using the SHARED object model as a tuple of the form:

(Function, oid, A, M, R, C)

where

A is a set composed of {(Recommendation, agent), (Activity, action),

(Set-Conditional, conditions)}. agent is an object attribute of the

Recommendation class which refers to the recommendation that should

perform the action or activity. In the example, the agent is the bridge.

action is an object attribute of the Activity class which refers to the

activity to be performed by the agent. In the example, the action is

to withstand the load. conditions is a set of object attributes of the

Conditional class which refers to under which condition the agent should

perform the action. In this example, the condition is safe during the

bridge lifetime.

M is a set of methods which define the behavior of functions. These

methods provide function's information retrieval and comparison, as well

101

5.2 DRIM Primitive Classes

as mechanism for building the relationships between recommendations

and functions. Functions require translation from action or activity to

artifact behavior and these methods allow for such implementation.

R is a set composed of {Refers-to}. Refers-to links a constraint with the

intent that refers to it.

C is a set of constraints requiring that sub-functions exist if a system is

recommended. Since systems are functional abstraction of components,

functions associated with systems should have component's functions

associated with them.

4. Goal is a task to be achieved during the design. A goal has a plan of actions that

leads to its achievement, and thus it can consist-of other goals (i.e., sub-goals). For

example, a goal put forward by the structural engineer might be to select the material

of a bridge. This class of intents establishes the process followed by designers.

A goal as modeled by DRIM augments the definition of CONGEN goal [Gorti et al., 1993],

and it is defined as a tuple of the form:

(Goal, oid, A, M, R, C)

where

A is a set composed of {CONGEN-Goal.A, A'}. CONGEN-Goal.A

refers to the name of the goal. A' is a set composed of {(Designer, agent),

(Activity, action)}. agent is an object attribute of the Designer class

which refers to the designer that is expected to perform the task. action

102

5.2 DRIM Primitive Classes

is an object attribute of the Activity class which defines the task to be

performed.

M is a set composed of {CONGEN-Goal.M, M'}. CONGEN-Goal.M

includes methods on how the goal can be achieved. M' is a set of

methods which define the behavior of goals. These methods provide

goal's information retrieval and comparison, as well as mechanism for

building the relationships between recommendations and goals. Goals

require a task to be achieved and these methods allow for the check of the

task performance.

R is a set composed of {CONGEN-Goal.R, R'}. CONGEN-Goal.R

involves relationship to the parent plan. R' is a set composed of {Refers-

to, Part-of, Consists-of}. Refers-to links a constraint with the intent that

refers to it. Part-of links a goal with its parent plan. Consists-of links

two goals in which one is the parent goal and the other is a sub-goal.

C is a set of constraints which involve the relationship with other goals

and the parent plan.

5.2.4 Recommendation

Recommendation refers to the entity that satisfies the design intents. This construct can

introduce or modify a design intent, a plan, or an artifact. When a recommendation

introduces a design intent, it defines other things that need to be satisfied in order

to achieve the design intent. When a plan is recommended, the set of goals to be

achieved are introduced. When an artifact is recommended, SHARED constructs are

used [Wong and Sriram, 1993b]. In the SHARED model, there are systems (e.g., bridge

103

5.2 DRIM Primitive Classes

system) which are composed of components (e.g., the slab of the bridge). Components

are functional abstractions of physical objects. Physical objects in turn represent the set of

points that form the geometrical representation of an artifact (e.g, the set of coordinates that

represent the volume of the slab). When a recommendation modifies an existing design

intent, plan or artifact, their attributes or their values are changed.

A recommendation is defined using the SHARED object model as a tuple of the form:

(Recommendation, oid, A, M, R, C)

where

A is a set composed of { (Proposal, proposal) }. proposal is an object attribute

of the Proposal class. proposal refers to the proposal which is responsible for

the recommendation.

M is a set of methods which define the behavior of recommendations. These

methods provide recommendation's information retrieval and comparison.

R is a set composed of {Is-referred-by, Introduces, Modifies }. Is-referred-

by links a recommendation with the context in which it is defined. Introduces

links a recommendation with the intent, the plan, or the artifact that it is

introducing. Modifies links a recommendation with the intent, the plan, or the

artifact that it is modifying.

C is a set of constraints which restricts recommendations to plans, artifacts, or

intents.

A plan as modeled by DRIM augments the definition of CONGEN plan [Gorti et al., 1993],

and is defined as a tuple of the form:

104

5.2 DRIM Primitive Classes

(Plan, oid, A, M, R, C)

where

A is a set composed of {CONGEN-Plan.A}. CONGEN-Plan.A is the set

composed of {(String, name)} which is a character string representation of

the plan's name.

M is a set composed of {CONGEN-Plan.M, M' }. CONGEN-Plan.M

includes methods for scheduling and ordering goals to be achieved. CONGEN

allows rules to achieve the planning based on the current design context

conditions. M' is a set of methods which define the behavior of plans. These

methods provide plan's information retrieval and comparison.

R is a set composed of {Consists-of, Introduces, Modifies }. Consists-of

links a plan with the goals that are part of the plan. Introduces links a plan

with the recommendation that introduces it. Modifies links a plan with the

recommendation that modifies it.

C is a set composed of {CONGEN-Plan.C}. CONGEN-Plan.C is a set of

constraints which enforce the order of goals.

An artifact as modeled by DRIM uses some elements of the definition of CONGEN

artifact [Gorti et al., 1993] and is defined as a tuple of the form:

(Artifact, oid, A, M, R, C)

where

105

5.2 DRIM Primitive Classes

A is a set composed of { CONGEN-Artifact.P}. CONGEN-Artifact.P is the

set of attributes that refer to the knowledge domain plans for designing the

artifact.

M is a set of methods which define the behavior of artifacts. These methods

provide artifact's information retrieval and comparison.

R is a set composed of {Introduces, Modifies, Part-Of }. Introduces links an

artifact with the recommendation that introduces it. Modifies links an artifact

with the recommendation that modifies it. Part-Of links an artifact with its

sub-systems and components.

C is a set of constraints which limits an artifact to be introduced through a

recommendation only.

A system as modeled by DRIM is a sub-class of the SHARED system [Wong and Sriram, 1993a]

and the DRIM artifact. This multiple inheritance augments SHARED system abstraction

with design rationale relationships. DRIM system is defined as a tuple of the form:

(System, oid, A, M, R, C)

where

A is a set composed of {SHARED-System.A, Artifact.A}. SHARED-

System.A is the set of attributes related to the structure of the system.

Artifact.A is the set of all the attributes from the Artifact class.

M is a set composed of {SHARED-System.M, Artifact.M, M'}. SHARED-

System.M includes methods for defining spatial queries and transformations.

106

5.2 DRIM Primitive Classes

Artifact.M is the set of all the methods from the Artifact class. M' is a set of

methods related to the systems' information retrieval and comparison.

R is a set composed of {SHARED-System.R, Artifact.R, R'}. SHARED-

System.R is a set of spatial and composition relationships. Artifact.R is the

set of all the relationships from the Artifact class. R' is a set composed of

{ Consists-of }. Consists-of links a system with other artifacts that could be

either another system or a component.

C is a set composed of {SHARED-System.C, Artifact.C}. SHARED-

System.C involves consistency checking. Artifact.C is the set of all the

constraints from the Artifact class.

A component as modeled by DRIM is a sub-class of SHARED component [Wong and Sriram, 1993a]

and the DRIM artifact. This multiple inheritance augments the SHARED component ab-

straction with design rationale relationships. DRIM component is defined as a tuple of the

form:

(Component, oid, A, M, R, C)

where

A is a set composed of {SHARED-Component.A, Artifact.A}. SHARED-

Component.A is the set of attributes related to the structure of the component.

Artifact.A is the set of all the attributes from the Artifact class.

M is a set composed of {SHARED-Component.M, Artifact.M, M'}.

SHARED-Component.M includes methods for defining spatial queries and

transformations. Artifact.M is the set of all the methods from the Artifact

107

5.2 DRIM Primitive Classes

class. M' is a set of methods related to the components' information retrieval

and comparison.

R is a set composed of {SHARED-Component.R, Artifact.R}. SHARED-

Component.R is a set of spatial and composition relationships. Artifact.R is

the set of all the relationships from the Artifact class.

C is a set composed of {SHARED-Component.C, Artifact.C}. SHARED-

Component.C involves consistency checking. Artifact.C is the set of all the

constraints from the Artifact class.

A physical-object as modeled by DRIM maps directly to the definition of SHARED

physical-object; the reader is referred to [Wong and Sriram, 1993a] for a detailed description

of various SHARED primitives.

5.2.5 Justification

Justification refers to a reason that partially explains why a recommendation will satisfy a

design intent. A justification could be a rule (e.g., if a span is between 200 and 250 feet

a two span bridge is feasible), a case (e.g., this bridge is similar to the Inn River Bridge

in Switzerland), a catalog (e.g., this bridge was taken from an entry of "Standard Plans

for Highway Bridges"), a principle (e.g., this relationship between measuring shear stress

and fluid velocity is supported by the Law of the Wall), an authority (e.g., this shape has

been suggested by someone who is an authority in the field), a trade-off (e.g., this is the

best design based on the trade off between minimizing the cost and minimizing deflection),

a prototype (e.g., the prototype of the ceramic valve produced these measurements), a

constraint network (e.g., this condition satisfies all the constraints imposed on the system),

or a pareto optimal surface (e.g., this design falls on the surface of best possible design

108

5.2 DRIM Primitive Classes

when optimizing cost, schedule, and ecological impact). A justification may support

other justifications by presenting supporting evidence or assumptions. This classification

is derived from the case studies performed during this research. Interviewed designers

prompted instances of those classes as reasons for presenting a recommendation. The

designers also implied that there are relevant differences in their structure and use.

A justification and its sub-classes are defined using the SHARED object model as a

tuple of the form:

(Justification, oid, A, M, R, C)

where

A is a set composed of {(Proposal, proposal)}. proposal is an object attribute

of the Justification class. proposal refers to the proposal that introduces this

justification.

M is a set of methods which define the behavior of justifications. These

methods provide justifications' information retrieval and comparison.

R is a set composed of {Is-related-to, Is-part-of}. Is-related-to links

a justification to the context in which it is referred. Is-part-of links a

justification with the proposal that it is supporting.

C is a set of constraints which restricts the justification to be part of a proposal.

A rule is defined using the SHARED object model as a tuple of the form:

(Rule, oid, A, M, Justification.R, Justification.C)

109

5.2 DRIM Primitive Classes

where

A is a set composed of {Justification.A, A'}. Justification.A is the set of all

the attributes from the Justification class. A' is a set composed of {(Set-if,

if),(Set-then, then) }. if is a set of object, attribute as well as and/or operators

that are pre-conditions to the rule. then is a set of object, attribute and operators

that are post-conditions to the rule.

M is a set composed of {Justification.M, M'}. Justification.M is the set of all

the methods from the Justification class. M' is a set of methods which define

the behavior of rules. These methods provide rules' information retrieval and

comparison.

Justification.R is the set of all the relationships from the Justification class.

Justification.C is the set of all the constraints from the Justification class.

A case is defined using the SHARED object model as a tuple of the form:

(Case, oid, A, M, Justification.R, Justification.C)

where

A is a set composed of {Justification.A, A'}. Justification.A is the set of all

the attributes from the Justification class. A' is a set composed of {(Designer,

author), (String, period), (String, place), (Set-Recommendation, proposed-

recommendations), (Set-Conditional, conditions)}. author is an object

attribute of the Designer class who performed the design. period is a character

string representation of the time when the design took place. place is a

110

5.2 DRIM Primitive Classes

character string representation of where the design took place. proposed-

recommendations is a set of object attribute of the Recommendation class

which represent the recommendation given in that design. conditions is a set

of object attributes of the Conditional class which refers to the conditions

under which the agent should perform the action. The attributes of the class

Case are selected such that the rationale for the proposed-recommendations

is captured. In the event that the case was provided through an user interface,

then attributes such as author, period, place, and conditions give a context

in which the recommendations was presented. However, in the event that the

case is from previous design within the DRIM model, then those attributes are

empty but the rationale for the recommendations is provided by the rationale

links of the DRIM model itself.

M is a set composed of {Justification.M, M' }. Justification.M is the set of all

the methods from the Justification class. M' is a set of methods which define

the behavior of cases. These methods provide cases' information retrieval and

comparison.

Justification.R is the set of all the relationships from the Justification class.

Justification.C is the set of all the constraints from the Justification class.

A catalog is defined using the SHARED object model as a tuple of the form:

(Catalog, oid, A, M, Justification.R, Justification.C)

where

111

5.2 DRIM Primitive Classes

A is a set composed of {Justification.A, A' }. Justification.A is the set of all the

attributes from the Justification class. A' is a set composed of {(String, docu-

ment), (String, period), (String, place), (Set-Recommendation, proposed-

recommendations) }. document is a character string representation of where

the design is documented. period is a character string representation of the

time when the design took place. place is a character string representation of

where the design took place. proposed-recommendations is a set of object

attributes of the Recommendation class which represents the recommendation

given in that design.

M is a set composed of {Justification.M, M'}. Justification.M is the set of

all the methods from the Justification class. M is a set of methods which

define the behavior of catalogs. These methods provide catalogs' information

retrieval and comparison.

Justification.R is the set of all the relationships from the Justification class.

Justification.C is the set of all the constraints from the Justification class.

A principle is defined using the SHARED object model as a tuple of the form:

(Principle, oid, A, M, Justification.R, Justification.C)

where

A is a set composed of {Justification.A, A'}. Justification.A is the set

of all the attributes from the Justification class. A' is a set composed

of {(String, document), (String, period), (String, place), (Set-formulae,

formulae), (Set-Conditional, conditions)}. document is a character string

112

5.2 DRIM Primitive Classes

representation of where the design is documented. period is a character string

representation of the time when the design took place. 'place is a character

string representation of where the design took place. formulae is a set of object

attribute of the Formulae class which represents the principles that justify the

design. conditions is a set of object attributes of the Conditional class which

refers to under which condition the agent should perform the action.

M is a set composed of {Justification.M, M' }. Justification.M is the set of all

the methods from the Justification class. M is a set of methods which define

the behavior of principles. These methods provide principles' information

retrieval and comparison.

Justification.R is the set of all the relationships from the Justification class.

Justification.C is the set of all the constraints from the Justification class.

An authority is defined using the SHARED object model as a tuple of the form:

(Authority, oid, A, M, Justification.R, Justification.C)

where

A is a set composed of {Justification.A, A' }. Justification.A is the set of all

the attributes from the Justification class. A' is a set composed of { (Designer,

author), (String, period), (String, place), (String, title)}. author is an object

attribute of the Designer class who presents the recommendation. period is a

character string representation of the time when the design took place. place

is a character string representation of where the design took place. title is a

character string representation of the title or status position of the author.

113

5.2 DRIM Primitive Classes

M is a set composed of {Justification.M, M'}. Justification.M is the set of all

the methods from the Justification class. M' is a set of methods which define

the behavior of authorities. These methods provide authorities' information

retrieval and comparison.

Justification.R is the set of all the relationships from the Justification class.

Justification.C is the set of all the constraints from the Justification class.

A prototype is defined using the SHARED object model as a tuple of the form:

(Prototype, oid, A, M, Justification.R, Justification.C)

where

A is a set composed of {Justification.A, A'}. Justification.A is the set

of all the attributes from the Justification class. A' is a set composed of

{(Designer, author), (String, period), (String, place), (String, scale), (Set-

Recommendation, proposed-recommendations), (Set-Conditional, conditions)}.

author is an object attribute of the Designer class who performed the design.

period is a character string representation of the time when the design took

place. place is a character string representation of where the design took

place. scale is a character string representation of the scale used in the

prototype. proposed-recommendations is a set of object attributes of the

Recommendation class which represent the recommendations given in that

design. conditions is a set of object attributes of the Conditional class which

refers to the conditions under which the agent should perform the action. The

attributes of the class Prototype are selected such that the rationale for the

114

5.2 DRIM Primitive Classes

proposed-recommendations is captured. In the event that the prototype has

been developed by other designers that did not use DRIM for the prototype

development, then attributes such as author, period, place, scale, and con-

ditions give a context in which the prototype was developed. However, in

the event that the prototype is designed using DRIM constructs, then those

attributes are empty but the rationale for the prototype is provided by the

rationale links of the DRIM model itself.

M is a set composed of {Justification.M, M'}. Justification.M is the set of all

the methods from the Justification class. M' is a set of methods which define

the behavior of prototypes. These methods provide prototypes' information

retrieval and comparison.

Justification.R is the set of all the relationships from the Justification class.

Justification.C is the set of all the constraints from the Justification class.

A constraint-network is defined using the SHARED object model as a tuple of the form:

(Constraint-Network, oid, A, M, Justification.R, Justification.C)

where

A is a set composed of {Justification.A, (List-Constraint, constraints)}.

Justification.A is the set of all the attributes from the Justification class.

constraints is a list of object attribute of the Constraint class in the order in

which they must be satisfied.

M is a set composed of {Justification.M, M' }. Justification.M is the set of all

the methods from the Justification class. M' includes methods for scheduling

115

5.2 DRIM Primitive Classes

and ordering constraints to be achieved as well as the constraint-networks'

information retrieval and comparison. This set of methods defines the behavior

of constraint-networks.

Justification.R is the set of all the relationships from the Justification class.

Justification.C is the set of all the constraints from the Justification class.

A pareto-optimal-surface is defined using the SHARED object model as a tuple of the

form:

(Pareto-Optimal-Surface, oid, A, M, Justification.R, Justification.C)

where

A is a set composed of {Justification.A, A'}. Justification.A is the set

of all the attributes from the Justification class. A' is a set composed of

{(Set-Recommendation, conditions), (UtilityMatrix, utilities)}. conditions

is a set of object attribute of the Recommendation class which refers to the

recommendation proposed for the different conditions. utilities is an object

attribute of the UtilityMatrix class which represent the interdependencies of

the conditions.

M is a set composed of {Justification.M, M'}. Justification.M is the set

of all the methods from the Justification class. M' is a set of methods

which define the behavior of Pareto-optimal-surfaces. These methods provide

Pareto-optimal-surfaces' information retrieval and comparison.

Justification.R is the set of all the relationships from the Justification class.

Justification.C is the set of all the constraints from the Justification class.

116

5.2 DRIM Primitive Classes

5.2.6 Context

A context represents the information generated during the design process. It represents all

the recommendations made during the design. These recommendation can refer to an intent

or an artifact or any of their attributes. The context is classified into two types: evidence

and assumption. The evidence type refers to recommendations that are believed to be facts.

For example, the geotechnical engineer may support his recommendation based on soil

explorations which shows that there is clay at 100 feet depth. The assumption type refers to

the elements or conditions that are assumed by the designer. For example, the construction

manager may have assumed steel weight to be 6.5 psf for calculating transportation costs.

When the structural engineer selects steel that weighs 10 psf, the contractor's assumption is

violated and the transportation costs may change. Assumptions are data that have a certain

degree of uncertainty attached to them. This uncertainty can be related to several sources:

(1) the design agents; (2) the data quality; and (3) the design phase in which the data are

created.

A context is defined using the SHARED object model as a tuple of the form:

(Context, oid, A, M, R, C)

where

A is a set composed of {(String, uncertainty)}. uncertainty is a character

string representation of the reliability of the assertion.

M is a set of methods which define the behavior of contexts. These methods

provide contexts' information retrieval and comparison.

R is a set composed of {Is-related-to, Is-referred-by}. Is-related-to links a

117

5.2 DRIM Primitive Classes

context to the justification to which relates. Is-referred-by links a context

with the Recommendation to which refers.

C is a set of constraints which involve access to the latest version of an object.

An evidence is defined using the SHARED object model as a tuple of the form:

(Evidence, oid, A, M, Context.R, Context.C)

where

A is a set composed of {(String, uncertainty, "none")}. Evidence sets the

value of the attribute uncertainty of the class Context to "none" since the

assertion is based on factual information.

M is a set composed of {Context.M, M'}. Context.M is the set of all

the methods from the Context class. M' is a set of methods which define

the behavior of evidences. These methods provide evidences' information

retrieval and comparison.

Context.R is the set of all the relationships from the Context class.

Context.C is the set of all the constraints from the Context class.

An assumption is defined using the SHARED object model as a tuple of the form:

(Assumption, oid, A, M, Context.R, Context.C)

A is a set composed of {(String, uncertainty)}. Assumption does not set the

value of the attribute uncertainty of the class Context. This value is obtained

118

5.3 DRIM Relationships

from the degree of reliability of the information (from 0 to 100) as set by the

designer.

M is a set composed of {Context.M, M'}. Context.M is the set of all the

methods from the Context class. M' is a set of methods which define the

behavior of assumptions. These methods provide assumptions' information

retrieval, comparison, and validity check. The methods related to the validity

check of the assumptions maintain a record of when the assumptions were gen-

erated and of when they were used. This record allows the methods to compare

assumption information with the factual data when that become available. In

this way, the system can flag discrepancies between the assumptions and the

real data.

Context.R is the set of all the relationships from the Context class.

Context.C is the set of all the constraints from the Context class.

5.3 DRIM Relationships

The primitives presented in the last section are not independent units. These primitives have

a set of relationships defined between them. A detailed description of the relationships

of the model is given as follows. Section 5.3.1 presents the versions-of relationship.

Section 5.3.2 outlines the is-alternative-of relationship. The consists-of relationship is

presented in Section 5.3.3. The presents/based-on relationship is explained in Section

5.3.4. Section 5.3.5 outlines the refers-to relationship. Sections 5.3.6 and 5.3.7 presents

the introduces and the modifies relationships respectively. The is-referred-to and the

is-related-to relationships are explained in Sections 5.3.8 and 5.3.9. Section 5.3.10

119

5.3 DRIM Relationships

outlines the reacts-to relationship. Finally, the negotiates-with relationship is presented in

Section 5.3.11.

5.3.1 Versions-of

The version-of relationship relates a proposal to another proposal which has a more detailed

or developed recommendation than the first proposal. The new recommendation modifies

an existing recommendation changing some of its attributes. versions-of relationships

serve to keep track of the evolution of recommendations by recording the changes that are

made to them. Thus, the versions-of relationship is important for design, since design is an

experimental and incremental process. Recommendation changes performed at one step in

the design are due to the results obtained from the previous recommendation.

Versions occur as a result of the introduction of new intents that need to be satisfied.

These intents may introduce a different stage of the design process which does not

necessarily imply change but increases detail on the recommendation. DRIM only allows

modifications to be done through introduction of proposals. This important condition

allows DRIM to keep track of the design rationale evolution. Versions-of relationships at

the proposal level maintain the rationale trace behind a change, so that it can be retrieved

later. DRIM uses the SHARED version relationship [Wong and Sriram, 1993a] for artifact

evolution and underlying OODBM's version management facility for other types of objects.

An important characteristic of the versions-of link is that it allows the re-use of

information. The versions-of relationship maps to the new version all the old proposal's

unchanged attributes and their values. In addition, the changed attributes and values are

incorporated into the new proposal together with a link to the old proposal. This behavior

keeps a proposal complete at the current stage of the design while maintaining a trace to

120

5.3 DRIM Relationships

the old structure of the proposal.

A versions-of relationship is defined using the SHARED object model as a tuple of the

form:

(Versions-of, Ro, A, M, C)

where

Ro is a set composed of {(Proposal, existing), (Proposal, version)}. existing

is an object of the Proposal class which refers to the old proposal being

modified. version is an object of the Proposal class which refers to the new

proposal replacing the old one.

A is composed of {(Boolean, dependent)}. dependent is used to control

propagation of deletion of a versioned object. (i.e., whether the versioned

object is deleted if version is deleted).

M is a set of methods which define the behavior of relationships. These

methods provide relationships' information retrieval and comparison.

C is a set of constraints which check that the recommendations presented by

the proposals satisfy the intent.

5.3.2 Is-Alternative-of

The is-alternative-of relationship is used to associate a proposal with another "similar"

proposal which it can replace. Alternative proposals contain recommendations that are

usually instances of different recommendation classes which satisfy the same intent. These

121

5.3 DRIM Relationships

recommendations represent different technologies or processes which can be used to

satisfy some functional requirements of a design. Here, a technology is defined as a

specific type of system together with its components, or a specific type of component. For

example, a truss frame and a rigid frame are alternative types of frame that provide support

for lateral loads. A process is defined as a specific plan together with its component goals

or a specific intent that must be satisfied.

An important characteristic of the is-alternative-of link is that avoids the re-input of

known information. The is-altemative-of relationship maps to the new proposal the links

of the proposal that is being replaced. For example, a new alternative proposal satisfies the

same intents as the old proposal and perhaps new intents. The is-alternative-of relationship

maintains the established links and adds the new intents to the list of intents that the new

proposal needs to satisfy. This behavior keeps a proposal complete at the current stage of

the design while avoiding the repetition of work.

An is-alternative-of relationship is defined using the SHARED object model as a tuple

of the form:

(Is-alternative_of, Ro, A, M, C)

where

Ro is a set composed of{({Proposal}, alternative), (Intent, inte)}. alterna-

tive is an object of the Proposal class which refers to the alternative proposal

being presented. inte is an object of the Intent class which refers to the intent

that is sought.

A is composed of {(Boolean, dependent), (Recommendation, default.alter)}.

dependent is used to control propagation of deletion of a versioned object.

122

5.3 DRIM Relationships

(i.e., whether the versioned object is deleted if obj is deleted). defaultalter

represents the default alternative recommendation object.

M is a set of methods which define the behavior of is-alternative-of rela-

tionships. These methods provide is-alternative-of relationships' information

retrieval and comparison.

C is a set of constraints which checks whether the recommendations presented

by the proposals satisfy the intent.

5.3.3 Consists-Of

The consists-of relationship defines a special relationship between a proposal and its

sub-proposals. The sub-proposals when put together satisfy the intent sought by the parent

proposal. That is, the consists-of relationship implements the notion of sub-dividing the

problem. This concept of sub-dividing the problem is enforced by the relationship behavior

to inform the designer when a sub-proposal has not been satisfied or it has been deleted.

A consists-of relationship is defined using the SHARED object model as a tuple of the

form:

(Consistsof, Ro, A, M, C)

where

Ro is a set composed of {(Proposal, parent), (Proposal, sub)}. parent is

an object of the Proposal class which refers to the parent proposal. sub is an

object of the Proposal class which refers to the new proposal that achieves in

part the intent sought by the parent proposal.

123

5.3 DRIM Relationships

A is composed of {(Boolean, dependent)}. dependent is used to control

deletion of sub-proposals.

M is a set of methods which define the behavior of consists-of relationships.

These methods provide consists-of relationships' information retrieval and

comparison.

C is a set composed of constraints which involve the deletion of sub-proposals.

5.3.4 Presents/Based-on

The presents/based-on relationship relates a designer, an intent, and a proposal being

presented. This relationship is only maintained when all the objects in the relationship exist

in the current context. When any of them is deleted, the relationship immediately informs

the designer of the inconsistency. A presents/based-on relationship is defined using the

SHARED object model as a tuple of the form:

(Presents/Based-on, Ro, A, M, C)

where

Ro is a set composed of {(Designer, presenter), (Intent, based-on), (Pro-

posal, proposal)}. presenter is an object of the Designer class which refers

to the designer that is presenting the new proposal. based-on is an object of

the Intent class which refers to the intent being sought. proposal is an object

of the Proposal class which refers to the proposal presented.

A is composed of {(Boolean, dependent)}. dependent is used to control if a

proposal may exist even when an intent is deleted.

124

5.3 DRIM Relationships

M is a set of methods which define the behavior of presents/based-on relation-

ships. These methods provide presents/based-on relationships' information

retrieval and comparison.

C is a set composed of constraints which warns that a proposal should be

revised if an intent changes. These constraints also deletes a proposal if the

intent is deleted.

5.3.5 Refers-to

The refers-to relationship relates an intent with the type of need sought. This relationship

is only maintained when all the objects in the relationship exist in the current context.

When any of them is deleted, the relationship immediately informs the designer of the

inconsistency. A refers-to relationship is defined using the SHARED object model as a

tuple of the form:

(Refers-to, Ro, A, M, C)

where

Ro is a set composed of {(Intent, intent), (Need, need)}. intent is an object

of the Intent class which refers to the intent being sought. need is an object

of the Need class which is a super-class of the objective, constraint, function,

and goal classes.

A is composed of {(Boolean, dependent)}. dependent is used to delete the

intent when the need is removed.

M is a set of methods which define the behavior of refers-to relationships. These

methods provide refers-to relationships' information retrieval and comparison.

125

5.3 DRIM Relationships

C is a set composed of constraints which involve deletion of need when intent

is removed.

5.3.6 Introduces

The introduces relationship relates a recommendation with item presented type. This

relationship is only maintained when all the objects in the relationship exist in the current

context. When any of them is deleted, the relationship immediately informs the designer of

the inconsistency. An introduces relationship is defined using the SHARED object model

as a tuple of the form:

(Introduces, Ro, A, M, C)

where

Ro is a set composed of {(Recommendation, recommendation), (Recom,

item)}. recommendation is an object of the Recommendation class which

refers to the recommendation given as a solution. item is an object of the

Recom class which is a super-class of intent, plan, and artifact.

A is composed of {(Boolean, dependent)}. dependent is used to control the

deletion of recommendation when item is removed.

M is a set of methods which define the behavior of introduces relationships.

These methods provide introduces relationships' information retrieval and

comparison.

C is a set composed of constraints which deletes the item when the recom-

mendation is removed.

126

5.3 DRIM Relationships

5.3.7 Modifies

The modifies relationship relates a recommendation with the item modified type. This

relationship is only maintained when all the objects in the relationship exist in the current

context. When any of them is deleted, the relationship immediately informs the designer

of the inconsistency. A modifies relationship is defined using the SHARED object model

as a tuple of the form:

(Modifies, Ro, A, M, C)

where

Ro is a set composed of {(Recommendation, recommendation), (Recom,

item)}. recommendation is an object of the Recommendation class which

refers to the recommendation given as a solution. item is an object of the

Recom class which refers to either an intent, a plan, or an artifact that is

modified.

A is composed of {(Boolean, dependent)}. dependent is used to delete the

recommendation when the item is removed.

M is a set of methods which define the behavior of modifies relationships. These

methods provide modifies relationships' information retrieval and comparison.

C is a set composed of constraints which involve deletion of item when

recommendation is removed.

127

5.3 DRIM Relationships

5.3.8 Is-referred-to

The is-referred-to relationship relates a recommendation with the context in which it is

given. This relationship is only maintained when all the objects in the relationship exist in

the current context. When any of them is deleted, the relationship immediately informs the

designer of the inconsistency. An is-referred-to relationship is defined using the SHARED

object model as a tuple of the form:

(Is-referred-to, Ro, A, M, C)

where

Ro is a set composed of {(Recommendation, recommendation), (Context,

context) }. recommendation is an object of the Recommendation class which

refers to the recommendation given as a solution. context is an object of the

Context class, context refers to the context in which the recommendation is

given.

A is composed of {(Boolean, dependent)}. dependent is used to delete the

recommendation when the context is removed.

M is a set of methods which define the behavior of is-referred-to relationships.

These methods provide is-referred-to relationships' information retrieval and

comparison.

C is a set composed of constraints which deletes the context when the

recommendation is removed.

128

5.3 DRIM Relationships

5.3.9 Is-related-to

The is-related-to relationship relates a justification with the context in which it is given.

This relationship is only maintained when all the objects in the relationship exist in the

current context. When any of them is deleted, the relationship immediately informs the

designer of the inconsistency. An is-related-to relationship is defined using the SHARED

object model as a

(Is-related-to, Ro, A, M, C)

where

Ro is a set composed of {(Justification, justification), (Context, context)}.

justification is an object of the Justification class which refers to the recom-

mendation given as a solution. context is an object of the Context class which

refers to the context in which the justification is given.

A is composed of {(Boolean, dependent)}. dependent is used to control the

deletion of justification when item is removed.

M is a set of methods which define the behavior of is-related-to relationships.

These methods provide is-related-to relationships' information retrieval and

comparison.

C is a set composed of constraints which involve the deletion of context when

justification is removed.

5.3.10 Reacts-to

The reacts-to relationship relates two proposals. This relationship is only maintained

when all the objects in the relationship exist in the current context. When any of them is

129

5.3 DRIM Relationships

deleted, the relationship immediately informs the designer of the inconsistency. A reacts-to

relationship is defined using the SHARED object model as a tuple of the form:

(Reacts-to, Ro, A, M, C)

where

Ro is a set composed of { (Proposal, existing), (Proposal, opposite) }. existing

is an object of the Proposal class which refers to the old proposal. opposite is

an object of the Proposal class which refers to a new proposal that reacts to

the old one.

A is composed of { (String, position)). position refers to the type of reaction

between the proposals. position can be either support, contradict or change.

M is a set of methods which define the behavior of reacts-to relationships. These

methods provide reacts-to relationships' information retrieval and comparison.

C is a set composed of constraints which involve creating a negotiates-with

link with designers presenting the conflicting proposal. The negotiates-with

link is removed by the computer when conflict is resolved.

5.3.11 Negotiates-with

The negotiates-with relationship relates designers who present conflicting proposals. This

relationship is derived from the reacts-to relationship between proposals when the position

is contradicting. When the position is of support, the negotiates-with relationship is not

created. This relationship is only maintained when all the objects in the relationship exist

130

5.4 Design with DRIM Objects

in the current context. When any of them is deleted, the relationship immediately informs

the remaining designer of the inconsistency.

A negotiates-with relationship is defined using the SHARED object model as a tuple of

the form:

(Negotiates-with, Ro, A, M, C)

where

Ro is a set composed of {(Designer, presenter), (Designer, opposed)}.

presenter is an object of the Designer class which refers to the designer that

is presenting the new proposal. opposed is an object of the Designer class

which refers to the designer who has the opposing view.

A is composed of {(Integer, interactions), (Integer, agree)}. interactions is

the number of times that the two designers have interacted in the past. agree

is the number of times the two designers have agreed.

M is a set of methods which define the behavior of negotiates-with relationships.

These methods provide negotiates-with relationships' information retrieval and

comparison.

C is a set composed of constraints which checks that presenter and opposed

are different designers. If they are same, the relationship is not created.

5.4 Design with DRIM Objects

Previous sections described various DRIM primitive classes and relationships between

these classes. This section presents how these classes and relationships are used to describe

131

5.4 Design with DRIM Objects

the design process. Thus, design can be defined as a set of operators that instantiate or

modify objects of the different classes and relationships defined in DRIM according to the

conditions in the process.

Based on these premises, design can be expressed at the most general level as the

function2:

D(I, C) = P (5.1)

where

* D is the set of design operators or knowledge chunks that could be used during any

particular design. In other words, D represents the knowledge existing in a given

domain that could be used to come up with a satisfactory design.

* I is the set of intents that need to be satisfied by the designer or the product during

the design. In other words, I represents all the objectives, constraints, goals and

functions that are to be achieved.

* C is the context in which the design is performed. C can be visualized as the

environment in which the design is performed. Previous decisions bring solutions to

the problem but may also bring new issues to be resolved. Thus, C represents all the

decisions that have been made during the design up to a particular point.

* P is the set of proposals that are obtained using design operators or knowledge D

over the intents I needed to be satisfied taking in consideration the context C of the

design.

2Symbols used in the following formulae are explained in the table of symbols at the beginning of the
thesis.

132

5.4 Design with DRIM Objects

Equation 5.1 is a general view of design. However, design is performed at different

levels of detail using an opportunistic approach. This is reflected in the following equation:

Vil E II, 3d C D : Vd E d, d,(i, C) = [pe mladd-justification(pem)] (5.2)

where

Ptm C Pt, (5.3)

Pm = {rem,dtim}, (5.4)

dim {Ud, : dl(ir, C) = [ptm ladd-justi fication(pem)]}, (5.5)

rim = O(ie+i|plane+Ilae+i) (5.6)

* it is an intent at level e of the hierarchy.

* It is the set of all the intents at level e of the hierarchy.

* d is a subset of operators from the D set of operators available to the designer.

* d, is an operator in d that can satisfy it within the context C and leads to a proposal.

* ptm is a proposal that is in the set of all the proposals at level e.

* add_justification(pei, de) is a function that adds de as a justification to a proposal

that already has been created.

* P, is the set of all the proposals presented at level f of the hierarchy.

* rem represents the recommendation presented by the proposal.

* dim is a set of all d, that are justifications to a proposal pm,.

133

5.4 Design with DRIM Objects

e it+l, planf+I, and ae1+ are intent, plan, and artifact at level £ + 1. This level may

be higher or lower in the hierarchy depending on whether a top-down or bottom-up

design approach is followed respectively.

Section 2.3 presents the different design stages. Each one of these stages differ in the

recommendation presented by the proposal. The recommendation that a proposal presents

is limited according to the stage in which the designer is operating. Section 2.3 also

mentions that the process is iterative and that the stages do not follow a time line -on the

contrary, they can be chaotic and intermixed. DRIM supports that iteration and permits

identification of each stage at any given point by the type of recommendation presented

through a proposal.

For example, the feasibility analysis stage is concerned with the development of the

intents that need to be satisfied. Thus, rem is defined as follows:

re,, = introduces(ie+i). (5.7)

The problem identification and formulation phase is concerned with the scope of and

specifications of the intents. Thus, rim is expressed as:

rim = modifies(it+l). (5.8)

The preliminary design phase focuses primarily on the generation of concepts to satisfy

various requirements. Thus, rim is presented as:

rem = introduces(ate+). (5.9)

134

5.4 Design with DRIM Objects

The optimization phase focuses primarily on refining the concepts presented on the

preliminary design phase. Thus, rtm is presented as:

rem = modifies(at+i). (5.10)

The detailed design phase is concerned with the laying out the plan for the construction of

the product. Thus, rim is presented as:

rem = introduces(plane+i). (5.11)

The construction phase is concerned with the implementation of the plan and its refining.

Thus, rim is presented as:

rim = modifies(plant+1). (5.12)

In any of these processes there are four activities that are performed. These activities are

identification, analysis, evaluation, and selection. DRIM also allows for these activities to

be represented through the use of goals and plans. They follow the patterns outlined below:

Identification is the task of finding the recommendation that satisfies a set of intents.

This step is presented in [Gorti et al., 1993]. Gorti et al. hypothesize that the process by

which designers identify possible satisfying solutions to their intents is to present the set of

behaviors expected for an artifact that would meet such an intent. Then, after the expected

behaviors have been defined, the designers search for artifacts that have such behaviors.

This two step approach leads to the artifacts recommended. Gorti et al. approach's is

limited to the artifact. DRIM supports not only the recommendation of an artifact but also

the recommendation of intents. For this case, DRIM has to have a representation of the

intent's effect. The intent's effect is analogous to the behavior on the artifact. Thus, the

135

5.4 Design with DRIM Objects

task of identification is represented as :

Vi, c It, 3(it, C) =ý [rte.[e b] & R (rem.(eb), C)] + rem..s (5.13)

where

* B is an operator that identifies the behavior or effect associated with an intent.

* re, .[eb] is the behavior or effect of the recommendation at level e produced by the

intent. e or b depends on whether the recommendation is an intent or an artifact

respectively.

* R is the operator that identifies the structure associated with the recommendation

according to the expected behavior or effect.

* r,. [e I b] is the structure of the recommendation at level f produced by the intent.

Analysis is the task of determining the behavior or effect of a recommendation. Once

the structure of the recommendation has been selected the behavior or effect of the

recommendation is found by applying a set of operators. Thus, the task of analysis is

represented as:

Vrem C R,, {A(rm.s, C) = rim.[eb]j} (5.14)

where

* A is an operator that produces the behavior or effect of a recommendation. This

operator can be a mathematical equation or a computer program such as ABAQUS

[Company, 1990].

136

5.4 Design with DRIM Objects

Evaluation is the task of determining how well the behavior or effect of a recommenda-

tion matches the expected behavior or effects of an intent. Once the behavior or effect of the

recommendation has been selected an operator is used to assess the degree of satisfaction

according to the expected behavior or effect. Thus, the task of evaluation is represented as:

(5.15)

where

* S is an operator that determines the degree by which the behavior or effect of a

recommendation satisfy an intent.

* it.ds is the degree by which the intent related to the recommendation being evaluated

is satisfied.

Selection is the task of selecting recommendations that satisfy an intent. Thus, the task

of selection is represented as:

Vrm E R,. 3i I : S({rI,1}, {it.ds, i.r }, C) = {1r,} (5.16)

where

* S is an operator that determines which of the recommendations is the best for

satisfying a set of intents.

* if.r is the rank of the intent.

137

Vrj, E RI, Iit E It : S(rlm.[eIb], if, C) .it.ds

5.5 Design Rationale Trace

5.5 Design Rationale Trace

The design rationale trace is the linkage graph of the different proposals presented during

a recommendation generation. In the trace, each recommendation is only introduced by

a proposal that supports its entry into the design domain. This proposal tends to be

one of selection. However, selection is substantiated by proposals from the evaluation,

analysis, and identification kind. These kinds of proposals can take different roles during

the process. For example, evaluation proposals may contradict or support other proposals

already presented. An important feature in the DRIM model is that proposals can only

contradict other proposals based on support for the removal of the solution or support for

an alternate solution.

Design rationale is defined as:

Vre~ E Rt, 3pt C Pt : Rationale(rem) = Trace(py)j (5.17)

where

* Trace is the connection of all the proposals that support the presentation of rei.

* Rationale is the link to all the supporting proposals.

The following examples illustrate how the Trace connection works.

to => dab(i 0, C) =4 Po

where Po = {il,dab}

(5.18)

138

5.5 Design Rationale Trace

tl dac(io, C) : PI (5.19)

where Pi = {i2,dac}

* Equations 5.18 and 5.19 introduce intents i1 and i2 as sub-intents of intent io. These

means that the solution to the design problem has to satisfy those two intents in

order to achieve intent io. t represents the time at which an assertion was made. d

represents the particular design knowledge that was used for presenting the proposal

(i.e., the rule or the case that supports the proposal). P represents the proposal

presented. C represents the context in which the proposal is made.

t2 • dba(i l C) • P2 (5.20)

where P2 = {rl, dba}

* Equation 5.20 introduces a recommendation that satisfies i1 based on the justification

given by dba.

t3 =* dcd(i2, C) : (P3 & C'(P3, P2)) (5.21)

where P3 = {-'ri,dda}

* Equation 5.21 contradicts the proposal presented in Equation 5.20 by presenting

a recommendation to remove rl. This recommendation is based on the need to

satisfy i2 and the justification d~d is given as a reason of why rl does not satisfy

i 2. & represents the and operator. C' represents the reacts-to relationship with a

contradicting position. - represents the negation of the recommendation.

t4 = ddc(i2, C) => (P4 & S(P4, P2)) & CI(P4, P3) (5.22)

139

5.5 Design Rationale Trace

where P4 = {ri,ded}

* Equation 5.22 supports the use of recommendation rl to satisfy i:2 based on the

justification ddc. Thus, it contradicts the proposal presented in Equation 5.21. S

represents the reacts-to relationship with a supporting position.

t5 = def(i 2, C) =4 (AddJustification(P & (P, P4)))

where P3 = fr,{dcd, def} }

* Equation 5.23 adds a new justification de, to the proposal presented in Equation 5.21.

Thus creating a new object version of the proposal with the new information. It also

contradicts the proposal presented in Equation 5.22. P' represents a proposal object

that has been versioned.

t 6 =: dfe(i 2, C) (P5 & S(Ps, Pý) & V(P5, Pý))
where Ps = {r"',dfe

* Equation 5.24 presents a version of the recommendation as introduced by a proposal.3

This proposal supports the proposal presented in Equation 5.23 and build a versions-

of link to the proposal presented in equation Equation 5.22. V represents the

versions-of relationship between two proposals.

(5.25)(P6 & S(Ps,P;d))
where Ps = {r"',ddg}

3This version is the version of the recommendation meaning incremental change. The version referred to
in the previous paragraph is the version of the object.

140

(5.23)

(5.24)

t7 = ddg(il C)

5.5 Design Rationale Trace

* Equation 5.25 presents a proposal with the same recommendation as the one presented

in Equation 5.24 but trying to satisfy intent ii.

4= (P 7 & C(P7, PI))

where P7 = {'i2, dvf}

(5.26)

* Equation 5.26 presents a proposal that recommends the removal of i2 . Thus, it

contradicts the proposal presented in Equation 5.19.

= (P; & S(P, P7))
where P = Irl,dbM

(5.27)

* Equation 5.27 presents a version of the proposal object presented in Equation 5.20

supporting the proposal presented in Equation 5.26.

tx =4 dhj(i3 4, C) (5.28)=. P28

where P28 = {r3, dhj}

* Equation 5.28 presents a proposal recommending a value that has not been set yet

but it is assumed. ras represents a recommendation that has been assumed.

These sets of equations show how the DRIM model captures the rationale of a

recommendation when there are versions, conflicts, and assumptions involved. The

rationale depends on the stage of the design as denoted by the time variable t. For example,

at time t2 the rationale for having rl is because of the proposal in Equation 5.20. Then, the

141

t8 4 d,f(io, C)

t9 = dba(i, C)

5.6 Conclusions

reason for having to satisfy intent ii may be asked. This question can be answered by the

proposal presented in Equation 5.19.

At time t6, a question may be arise concerning why ri has not been selected. The

answer is that the proposal in Equation 5.22 that introduces it is in contradiction with the

proposal in Equation 5.23, resulting in the improved version presented in Equation 5.24.

Finally, at time t9, a designer may ask why in that case rl is now being used. The

answer is that the proposal in Equation 5.20 that introduces it supports the proposal of

removing i2 which was an intent that rl does not fully satisfy.

5.6 Conclusions

This chapter presents a design rationale model that allows us to record explicitly the design

process. The model captures all the steps which designers go through during the design of

an artifact. These steps were described in terms of mathematical terms that exemplify the

operators and relationships that are used during the design.

One advantage of the design rationale model discussed was that no part of the design

process was left implicit. This representation allows us to judge the relevance and

validity of each step in conjunction with the whole. Each proposal made by the designers

must be supported with justifications (i.e. the assumptions and the conditions in which

these proposals are valid). When context changes and re-evaluation of the proposals are

necessary, previous proposals have to be re-linked under the condition that the past links are

maintained with old versions of the objects. Thus, reuse of design knowledge is possible

since only the parts that change are reviewed. However, this model also gives us the sense

142

5.6 Conclusions

of security that any proposal that needs review will be reviewed. Since the relationships

between proposals are explicitly stated, propagation of change is possible.

Another advantage of the model is that the causes of variance from what is expected

from the design artifact can be presented. By navigating through the model objects, a

computer system based on this model can find the areas or points where there is any

contradiction. The cause of a problem is derived from the inconsistency of the proposals

related to the problem. Next chapter explains in detail how SHARED-DRIM can use the

model for capturing and supporting conflict mitigation.

143

Chapter 6

SHARED-DRIMS Conflict Mitigation

System

Conflicts ... arise because of differing objectives ... among different

interest groups or institutions. Frequently each party in conflict fails

to comprehend fully the interdependence of the complex issues and

institutional objectives and constraints in conflict. So it becomes a

learning process ...

Daniel P. Loucks , [Loucks, 1989]

6.1 Introduction

To demonstrate the feasibility and utility of the model for representing the design rationale,

a system is needed which can capture and use such information. Project information

management systems' typically have been passive. They provide support for storing and

'Project information management systems are called management systems throughout the chapter.

144

6.1 Introduction

modifying large amounts of project data, but they lack support for generating, analyzing

and understanding this data. The responsibility of understanding, generating and analyzing

the data is left to the human user.

The amount of data to be analyzed by the user is copious. The user may spend an

enormous amount of time analyzing data that may not be important. The user may know

that a conflict exists, but have no easy way to determine its causes. Without knowing

the cause, the user cannot suggest an appropriate course of action. Hence, management

systems must take a more active role in supporting the human decision-making activity.

Management systems need to understand the data stored and provide support for presenting

design alternatives, as well as to present the rationale for the decisions made by the designer.

Management systems also need to be able to detect inconsistencies in the data, as well

as report the cause of this inconsistency. A project management system must be able to

answer questions about the stored data such as:

* Why is the material steel?

* Why is the project one month late?

* Why is the foundation cost greater than the estimated cost?

* Who is responsible for cost overruns?

This chapter proposes SHARED-DRIMS, a proactive project management system that

not only will be able to answer questions about the stored data, but will also be able

to react to data inconsistency and then help designers to mitigate conflicts presented

by the inconsistencies. In order to meet the needs of such a proactive system, the

current representation of the knowledge used in management systems must be modified.

145

6.2 SHARED-DRIMS Architecture

Knowledge about the design rationale should be explicitly represented to permit the test of

inconsistencies in a different context. The design rationale model presented in Chapter 5

provides the representational tools for such a proactive project management system.

The following sections describe the functionalities of SHARED-DRIMS. Section 6.2

outlines the architecture of SHARED-DRIMS. This section also presents the system's base

and design rationale modules. Section 6.3 describes the strategies used by the system in

capturing design rationale. These strategies include retrieval from design support systems,

from previous designs, or from user's inputs. Section 6.4 outlines the functions used by the

system for conflict mitigation. These functions cover conflict detection, causes, resolution

and prevention. Finally, Section 6.5 summarizes the salient points discussed in this chapter.

6.2 SHARED-DRIMS Architecture

Figure 6-1 presents the general organization of SHARED-DRIMS. This system consists

of satellite modules attached to each design agent [Sriram et al., 1989], and a central core

connected to all the design agents involved. Each design agent participating in the process

has: 1) a knowledge base, 2) a product model, and 3) a design intent-recommendation

model (DRIM). The knowledge base consists of all the relevant information (e.g., rules,

cases, etc.) that influence any recommendation generated in the professional domain. The

product model contains a representation of the artifact at different levels of abstraction

in that domain. DRIM consists of three primary components: 1) the desired intents; 2)

the recommendations believed to satisfy the intents; and 3) the justifications used by the

designer in order to consider those recommendations. In the central core of the model,

we have: 1) a physical representation of the product; 2) a knowledge base; and 3) a

negotiated DRIM. The physical product representation presents the geometric description

146

6.2 SHARED-DRIMS Architecture

of the artifact and its parts. The knowledge base consists of the relevant information related

to the interactions between different design agents in the design process. The negotiated

DRIM records all intents and reasons generated during a negotiation process.

SHARED-DRIMS helps in negotiation and conflict mitigation by providing access

to individual designers' design rationale and information about past negotiations. The

following section describes various SHARED-DRIMS modules.

6.2.1 Base Modules

SHARED-DRIMS is part of a framework which provides the components of a total design

environment. The different modules used in conjunction with SHARED-DRIMS are

independent systems developed as part of the DICE project [Sriram et al., 1989]. These

modules are developed using object-oriented methodology and supported by an object-

oriented database management system (OODBMS). The OODBMS allows the objects

to be functionally augmented. SHARED-DRIMS creates wrappers around the objects

from the basic modules. It also creates new objects and relationships to represent, use

and communicate design rationale for conflict mitigation in a collaborative environment.

SHARED-DRIMS then keeps track of the intent and artifact evolution through the objects

provided by some of the DICE modules and by the information provided by the designers.

This combination allows the design rationale capture, even when pre-defined processes

and products are changed by the designers. Figure 6-2 shows these modules and their

interfaces. The modules are presented below with an emphasis on their functionality as

used by SHARED-DRIMS:

147

6.2 SHARED-DRIMS Architecture

Figure 6-1: SHARED-DRIMS Conceptual Organization with two designers and a negoti-
ation workspace.

148

6.2 SHARED-DRIMS Architecture

Figure 6-2: SHARED-DRIMS Architecture.

149

SHARED SHARED-DRIMS CONGEN

Functional Abstractions Intent & Artifact Evolution Product and Process Model

Geometric Abstractions Intent-Artifact Relationship Context Management

Integrity Checking Conflict Management Symbol-form mapping

GNOMES
COSMOS Geometric Engine Case-based Reasoning

Forward chaining

Backward chaining

Object Interfaces COPLAN DOTSTREAM

Constraint Management Communication Package

ObjectStore

Query Management Persistency Data Model Version Management

Collaborative Transaction Management

6.2 SHARED-DRIMS Architecture

* ObjectStore r" [Object Design, Inc., 1991] provides persistent storage, query man-

agement, version management and collaborative transaction management. These

functionalities are necessary for having access to a large number of objects repre-

senting the design rationale.

* COSMOS [Sriram et al., 1994] provides the inference mechanism for processing

rules used to recommend the characteristics of an artifact or to recommend a

design plan. COSMOS further provides the inference chain that led to a particular

recommendation, that is, the rationale for providing such a recommendation.

* COPLAN [Fromont and Sriram, 1992] provides the constraint handling mechanism

needed for keeping consistency of constraints introduced by intents, justifications,

and recommendations.

* DOTSTREAM [Culbert, 1992] provides the communication mechanism for informa-

tion transfer between different designers working in different places and at different

times. This allows SHARED-DRIMS to support the communication between several

designers working on a project.

* GNOMES [Sriram et al., 1991] provides geometric information of the evolving

design. This facility is needed for keeping track of the geometry of the design related

to a designer's rationale.

* CBR, when developed, will provide the mechanism for generating design alternatives

from a set of design cases. This is necessary because designers sometimes select

certain artifacts due to their similarities to previous cases that they have seen.

* SHARED [Wong and Sriram, 1993b] provides the representation of the functional

and geometric abstractions of the artifact and maintains integrity in a collaborative

150

6.3 Design Rationale Capture

environment. Designers work at different abstractions when trying to find an artifact

that satisfies their intents. These abstractions need to be'represented and expressed

in a consistent language that could be shared across different disciplines.

* CONGEN [Gorti and Sriram, 1993] provide support for generating alternative de-

signs from the combination of pre-defined "building blocks." This functionality

captures the process by which different blocks are put together in order to create the

artifact that meets the designers need.

6.2.2 Design Rationale Module

The design rationale module provides the link structure and templates for the information

provided by design agents as their design rationale. These link structures provide the design

rationale connection to the product as represented by SHARED system and component

abstractions. These connections link the SHARED abstraction with the intent that they

satisfy and the justifications that support the SHARED abstraction use. The design rationale

also provides a mechanism for capturing the rationale from different sources such as design

support systems, past designs and user's inputs. Moreover, the design rationale module is

also responsible for using the captured information from this module and the base modules

in conflict mitigation. In order to explain the functionalities of SHARED-DRIMS, an

example is used throughout this chapter. This example provides the context in which the

abstract concepts can be easily understood.

6.3 Design Rationale Capture

SHARED-DRIMS is designed to provide active support for generating design rationale.

The system has to provide some of the design rationale without asking the designer for it.

151

6.3 Design Rationale Capture

This support may be provided in three forms: it uses the inference network provided by

a design support system (CONGEN), it searches for similar recommendations produced

in the past when designers overwrite design support system's recommendations, it accepts

recommendations or justifications given by the designer.

6.3.1 CONGEN inference network

CONGEN provides the inference network for justifying a recommendation. CONGEN

uses a backward and forward inference process. In this process rules encapsulates the

actions to be taken related to an intent or to a particular characteristic of the artifact. In

the case of a particular characteristic of the artifact, the rules are augmented so that the

intent being sought by the rule is explicit. In the bridge example, the rule that says that if

a span is less than 200 feet then a two span bridge is feasible, is seeking to minimize cost

in addition to providing a solution for a support structure. The intent of minimizing cost

is implicit in the rule. Thus, the rationale of selecting a two span bridge is to satisfy two

intents. The first is the intent for a good transfer of loads and the second is the intent to

minimize the cost of the bridge. Thus, these intents sought by that recommendation have

to be made explicit.

CONGEN rules can be mapped to DRIM constructs. They have the designer (i.e., the

particular knowledge base being used for making the decision), the recommendation (i.e.

the then part of the rule), the intent (i.e. the other intents that the rule are seeking are put

in the comment part of the rule), the justifications (i.e. the rule itself with the if part as

the conditions that needs to hold true for the recommendation to be valid and satisfy the

intent). Each clause of the precedent part of the rule is taken as a proposal that exists before

asserting the effects in the then part of the rule. Each one of these proposals supports the

152

6.3 Design Rationale Capture

presentation of the proposal made by the rule.

For example, a rule for selecting the material of the deck of the bridge can be mapped

to DRIM constructs as follows.

Name: timberdeck

If traffic_load = light and load # abrasive

Then Deck.material = timber

Comments: Maximize life of the bridge

tl =4 timber_deck(select _material, C) : (P1 & P2 & S(PI, Pv1) & S(PI, Pv2)

S(P2, Pl 1) & S(P2, Pv2)) (6.1)

P = {{r : Deck.material = timber},

{j : (If traffic-load = light

and load : abrasive

Then Deck.material = timber),

(trafficload = light),

(load = light - weight)}}

{{r : introduces(Maximizelife)},

{j : (If trafficload = light

and load : abrasive

Then Deck.material = timber),

(trafficload = light),

(load = light - weight)}}

and P2 =

153

6.3 Design Rationale Capture

This rule introduces two proposals with a recommendation (r:) and a list of justifications

(j:) at time t within a context (C). It first introduces the use of timber for the deck. Then,

it introduces the notion of maximizing the life of the bridge. This proposal sets a notion

that any new material that should be considered should have a life span equal to or better

than that of timber.2 This proposal shows the increase in process detail. Intents that

were not recognized at the beginning now emerge from the rules taken into consideration.

In addition the rules present the support structure between the proposals that introduced

traffic_load = light (that is Pv, where v1 is traffic-load) and load # abrasive (that is P,V

where v2 is load) to the new proposals (P, and P2).

The previous paragraph presented the use of a rule as a rationale for a recommendation.

However, a design support system like CONGEN may not provide a single rule rationale

for a recommendation. It may provide an inference network as the design rationale. The

inference network is produced from an inference performed on intent or artifact objects

introduced earlier. These intent or artifact objects may be the results of a previous stage in

the design. In this case, the rationale for its existence is assumed to exist.

Figure 6-3 shows the inference network for selecting the structural material of the

bridge according to the following rules:

Name: R4

If vehicles-per-day < 30

Then traffic_load = light

Comments: Determine traffic load

2Timber and any other material referred here are objects with attributes and methods. In this case, the
life span is an attribute of the material object that would be analyzed by the system when testing different
materials.

154

6.3 Design Rationale Capture

Name: R5

If location = tourist-area

Then load = II

Comments: Determine type of load

Name: R2

If traffic-load = light and width < 20feet

Then Bridge.type = I

Comments: Determine type of bridge

Name: R3

If load = IIXor load = I

Then impact = low

Comments:

Name: R1

If Bridge.type = I or climate = mild or impact = low

Then Deck.material = timber

Comments: Maximize life of the bridge

In this case, the inference uses other rules to derive values that are required to make the

decision. These other rules introduce new proposals and make appropriate links to existing

proposals. The rules and values that are connected through and, or, or Xor create support

proposals between each of the predicates and the then part of the rule. In addition, the rules

that are connected with an Xor create a contradict connection between the predicates of the

rule. This is due to the characteristic of Xor that allows a rule to be valid only if one and

only one of the predicates holds. This implies that the predicates are in competition and

they cannot coexist in the same environment. Figure 6-4 presents the proposal structure

155

6.3 Design Rationale Capture

built by the inference network. The translation of the network to the proposal structure is

as follows:

R4 (i4, C) : (PR4 & PIR4 & S(PR4, PIR4) & S(PR4, Pv 4)) (6.2)

* Equation 6.2 explains that rule R4 presents two proposals PR4 and PIR4. PR4

introduces the recommendation while PIR4 introduces the intent sought by the rule.

In addition, the rule makes supporting connections between these two proposals and

then a supporting connection between PR4 and PV4 (proposal that introduced value

4). This last connection is due to the condition presented by PV4 that fires R4.

R 3(i 3, C) =• (PR3 & S(PR3, Pv 2) &S(PR3, PR5) & C'(PRS, Pv 2)) (6.3)

* Equation 6.3 explains that rule R3 presents a proposal PR3. PR3 introduces the

recommendation. In addition, the rule makes supporting connections between PR3

and PV2 . This last connection is due to the use of a conditional presented by Pv2

that fires R3. However, R5 is also fired, providing PR5 which according to the

Xor condition cannot also be true. In this case, there is a contradicting relationship

between PR5 and PV2-

The equations follow the same outline as the previous two, ending up with the

recommendation provided by R1 which supports proposals from rule R2, R3 and V 1. This

set of equations shows that the system is able to take an inference network and parse it into

a proposal network in which the recommendations, justifications, and intents are explicitly

stated.

156

6.3 Design Rationale Capture

Figure 6-3: Inference Network.

Figure 6-4: Proposal Network.

157

6.3 Design Rationale Capture

During design, the designer may receive several options given by the design support

system. In such cases, the designer selects the recommendation. The next section

presents the approach taken by SHARED-DRIMS when the designer selects one of the

recommendations given by the design support system.

6.3.2 Similar Recommendations

Sometimes, the designer may receive several recommendations from the design support

system. In such a case, the designer chooses one of the recommendations. However, that

decision should also be recorded with its rationale. For this, SHARED-DRIMS searches

the database for recommendations similar to the one made by the designer.

In order to retrieve the relevant recommendation from past design cases, the designer

needs to make use of the context of the current design and previous designs. The problem

is that the recommendations made in the past and the present recommendation may not

be because of the same reason. In this case the system tries to isolate the similitude and

extract the reasons for selecting such a recommendation. To do that, the system can take

two approaches. First, it can find the extra intents that the chosen recommendation satisfies

that were not taken into consideration by the design support system. Second, it investigates

whether the rejected recommendations violate any implicit intents, which are not stated to

the design support system. In the first case, the system assumes the following premise:

3pr C Pr, Vpri E pr, 3rt C Rpr, : Vrtm E rT =- rt. = r (6.4)

where

e pr is a sub-set of projects.

158

6.3 Design Rationale Capture

* Pr is the set of all the projects in the database.

* pri is a particular project from the pr sub-set.

* re is a sub-set of recommendations.

* Rp,r is the set of all recommendations for project pri.

* rem is a particular recommendation from the re sub-set that is equal to the rec-

ommendation r that was made by the designer and the system is looking for a

rationale.

* Note that pr can be a null set. In this case there will not be any recommendation to

search in the database.

Once the system has found the first project that satisfies the condition in Equation 6.4,

the system creates a list of the intents related to that recommendation. Then, the rationale

of that recommendation is sought according to the following criteria:

3in C I,n, : Vin E in -: inq f Ir (6.5)

where

* in is a sub-set of intents.

* Ir,• is the set of all the intents related to the recommendation rem in the project pri.

* Ir is a the set of all the intents related to the recommendation r to which the rationale

is being sought.

* in, is a particular intent from the in sub-set that is not in the set I,.

159

6.3 Design Rationale Capture

Equation 6.5 finds all the intents that were not taken in consideration by the design

support system. This is due to the introduction of new intents during the process that

were not planned in the design support systems. This inclusion of new intents allows

SHARED-DRIMS the flexibility to cope with the increase in detail in the projects and the

changing conditions from project to project. Once those intents are found, the system tries

to validate them in the new context according to the following criteria:

3inte C in : Vinteq E inte, 3initeq : ininteq = Intent(inteq) & ninteq, E 1p,, (6.6)

where

* inte is a sub-set of intents.

* inte is a particular intent from the inte sub-set.

* Ip, is the set of all the intents in the project of the recommendation to which the

rationale is being sought.

* inteq) is the intent that introduced inte, and is in Ip,,.

Equation 6.6 selects all the intents related to the intent that introduced the recommendation

in the old project that is similar to the one that the system is searching for the rationale (new

project). That parent intent should be in the context of the new project. If it is, then the

system tries to build the relationship between the intent and the recommendations without

rationale (new project). This is performed by checking the justification and finding out if

they are valid in the new context according to the following criteria:

3inten C in(inteq) : 3dt E DPin,,,ten,, dt(inten, C) =ý pr (6.7)

160

6.3 Design Rationale Capture

where

* inten is a sub-set of in(inteq) in Equation 6.6,

* pinten,rtm is the proposal that associates the inten and the recommendation rem from

the previous project and presented in Equation 6.4 -

* dt is a particular design operator or justification used in the proposal that introduced

recommendation rem. dt can be applied using a design support system and testing

the design operator. In the case of CONGEN, the system will fire the rule and test

that it does test true.

* DPintenrtm is the set of all the design operators or justifications used in the proposal

Pinten,remn

* pr is a new proposal that supports the recommendation to which the rationale is

sought.

The results from Equation 6.7 are presented to the designer as a reason for selecting

the recommendation. The system has two modes by which it searches the rationale of

alternative selected by the designer. These two options are lazy and greedy searches. The

lazy search interacts with the designer looking for rationale until the designer is satisfied.

In the greedy search the system does an exhaustive search; i.e, the system will continue

searching all the intents, and projects until there is no more rationale or justification for

selecting a given alternative. There is a trade-off between the two. The lazy one may find

some of the reasons for a given alternative but not all, while the greedy search is time

consuming. Thus, the designers are left to decide which strategy is best for them according

to the project needs.

161

6.3 Design Rationale Capture

6.3.3 User input

The previous section shows the process by which the rationale is captured when the

designer has to make a decision about different alternatives presented by the design support

system. Other times, the user needs to introduce a recommendation that was not taken into

consideration by the system. In such cases the system allows the user to use the constructs

provided by SHARED-DRIMS to provide the information asked. Each item asked can be

given in two ways. One is through a structured template, in which the user identifies the

structure of the answer and enters data in the appropriate slot. The other is to enter free

text information (see Figure 6-5).

This dual representation allows for encapsulation of both human and computer rationale.

The advantage of one over the other is that structured information can be reasoned about

but unstructured or free text cannot. The trade-off is support for detecting conflicts or

support for recording the rationale. In both cases, the rationale is going to be recorded.

In the first case, the information is going to be used by the humans and will have to be

stored for browsing. In the other case, the computer can make use of the information

since the information is in a form that can be used for inferencing. The computer can then

use the information for building assumption relationships between different designers, and

to detect conflicts at the physical level when the conditions used are different from the

conditions already existing in the physical model of the artifact.

If the designer uses structured information to record the recommendation, then the

system can help the designer in recording the rationale following two processes. First,

it finds if the recommendation has been made in the current project but was rejected due

to some rationale. That rationale is presented to the designer so that he/she can modify

it or change his/her mind. The second process is similar to the process presented in

162

6.3 Design Rationale Capture

163

cd

O0

Y0
I-

Un

C,

0

.0

.0

0-e

0

0

0

C,

I-

6.4 Conflict Mitigation

Section 6.3.2. The system would search other projects for similar recommendation and

present the rationale of the recommendation that is valid in this project.

If the designer chooses to record an unstructured rationale or recommendation, the

system files the proposal with the information but cannot use it for retrieving other rationale

or using it for conflict detection. The system can only use what it can understand. However,

the value of that information may deem it to be important for the designer when looking at

the history of the project.

6.4 Conflict Mitigation

Once the information about design rationale is recorded and represented through DRIM,

the system uses that information for conflict mitigation. Conflict mitigation is divided

into rationale dependencies, conflict detection, conflict causes, conflict resolution, conflict

negotiation, solution impact and conflict prevention. This is based on the hypothesis that

conflicts can be mitigated by the following four steps: 1) making the dependencies between

the rationale of the different designers explicit, 2) detecting any inconsistencies between

past information and any new information; 3) presenting the reasons for the inconsistent

values to the designers; 4) using any knowledge in the computer to find a solution to the

conflict; 5) allowing the designers to use the reasons for resolving the conflict; 6) using

any knowledge (in the computers or designers) to determine the impact of the solutions as

well as prevent more conflicts (see Figure 6-6). The following section explains each one

of them in more detail.

164

6.4 Conflict Mitigation

Start .

Set Design Intents

Present Proposal

No
Conflict Detected?

Yes
Generate Hypotheses

Evaluate Hypotheses

No
Design Finished?

Yes

End

Figure 6-6: Conflict Mitigation.

165

LLZT
L•
IY

6.4 Conflict Mitigation

6.4.1 Rationale Dependencies

Designers may use information which interacts with other pieces of information, either

from the same design domain or from another design domain. There are cases in which

a design variable is defined by different designers. This variable may be modified by all

the designers. Such a variable is called shared responsibility. There are other cases in

which a design variable is defined by only one designer. This variable may be used by

all the designers but they cannot modify it. Such a variable is called producer-consumer

responsibility. Both of these variables are sources of conflicts but they differ in how

responsibility for the resolution of the conflict is assigned. In the shared responsibility all

designers are responsible for changing the variable until an agreement has been reached. In

the producer-consumer responsibility, the producer is responsible for changing the variable

taking into consideration the consumer issues.

There are two type of variables that may cause conflicts: shared responsibility and

producer-consumer responsibility. These variables have different dependencies among

them. The dependencies of shared responsibility variables can be of three types: 1)

the design parameter serves multiple purposes and is set from different perspectives; 2)

two different objects intersect partially or completely, violating physical constraints; and

3) there are different parameters but they use the same resources. The dependencies of

producer-consumer responsibility variables can be of two types: 1) a consumer makes an

assumption about a variable that is going to be made by the producer, and 2) the consumer

uses a variable made by the producer.

In each case SHARED-DRIMS sets the dependencies between the different elements of

the design. It builds the dependencies between proposals in conflict. These conflicts occur

by the proposals introduction of recommendations that may cause shared or producer-

166

6.4 Conflict Mitigation

consumer responsibility type of conflict. These dependencies are through the reacts-to

links between proposals. SHARED-DRIMS achieves these 'tasks while capturing the

design rationale through the use of DRIM (see Figure 5-1).

6.4.2 Conflict Detection

This research makes the assumption that design intents do not conflict and that only their

implementation does. Thus, SHARED-DRIMS detects conflicts through the recommen-

dations made in the proposal. The conflict detection depends on the type3 of conflicting

variables. In the case of shared responsibility parameters with dual purpose, the system

maintains a global repository of recommendations which checks if a recommendation is

already in the repository. Thus, the system is able to test if a recommendation already

exists, what is the value of this recommendation, what is the range in which the value

can change without causing conflicts and who are the designers involved in setting the

value of this design parameter. This type of conflict is the only one that SHARED-DRIMS

can detect by itself. The other types of conflicts are detected by other DICE systems,

which interact with SHARED-DRIMS. As far as the implementation, it is assumed that

the DICE sub-systems can detect the conflict and provide the violating recommendations

to SHARED-DRIMS. In the current implementation of SHARED-DRIMS, these systems

are not fully integrated and their input/output is simulated.

In the case of shared responsibility for intersecting objects, SHARED-DRIMS relies

on SHARED [Wong and Sriram, 1993b] for detecting physical interactions and signaling

the objects that are in conflict. SHARED-DRIMS takes the proposals that introduce

the recommendation and presents them to the designers in conflict. SHARED uses a

3 shared or producer-consumer responsibility type of variables

167

6.4 Conflict Mitigation

distributed rule base mechanism. For example, an environmental engineer may reject the

use of a central pier of a bridge as recommended by a structural engineer, the environmental

engineer may introduce a constraint in the form of a rule that stipulates that there be no pier

inside the river.

SHARED-DRIMS deals with conflicts due to resource allocation by maintaining

knowledge of the usage and the availability of resources during the design plan. This

kind of conflict is detected by the SCHEREC system [Pena Mora et al., 1994] for activity

planning.

In the case of producer-consumer responsibility assumption variables, SHARED-

DRIMS searches the repository in order to determine whether a decision has been

suggested or assumed for a given recommendation. However, for the case of using

information from the producer and spreading it through the design, SHARED-DRIMS uses

several techniques depending on how the relationship originates. In the case of quantitative

relationships -through numerical equations and inequalities- SHARED-DRIMS relies on

COPLAN for resolving the constraints and propagating them. In the case of qualitative

dependencies, SHARED-DRIMS relies on CONGEN to perform qualitative reasoning in

order to determine the dependencies and the impact of change. For example, a geotechnical

engineer recommends the use of piers perpendicular to the terrain because his/her studies

show that the terrain can only support load perpendicular to it. Thus, the geotechnical

engineer inputs into COPLAN the terrain as a set of equations that represent its slopes.

Then, he/she inputs the constraint that a pier must have a slope that is normal to the slope

of the terrain.

Constraint(slope-bankl, (if ($x >0 & $x <100), sb = -0.5773))

Constraint(slope-bank2, (if ($x >150 & $x <250), sb = 0.5773))

168

6.4 Conflict Mitigation

Constraint(slope-bed, (if ($x >150 & $x <250), sb = 0))

Constraint(slope-pier, (ss = ($yl -$y)/(5xl -$x)))

Constraint(intersec, ((sb * ss) = -1))

In the case that the relationship was made by using heuristics, SHARED-DRIMS relies

on COSMOS for maintaining the inference network. In the case that the relationship is

made by drawing from cases, the system relies on the case-based reasoner that is under

development. If the designer enters non-electronic catalog information as a justification

for a recommendation, the relationship is maintained and propagated with the help of

the designer. However, if the catalog is electronic, the relationship is maintained and

propagated with the help of SHARED-DRIMS searching mechanisms through a catalog

repository. In the case of authority and prototypes, SHARED-DRIMS interacts with the

designer to propagate the effect of changes since the system does not have information on

how to relate such elements.

Thus, conflicts are detected by the mechanism used for the generation of proposal

relationships. SHARED-DRIMS uses recommendation repository for detecting recom-

mendation changes as well as other DICE systems for other kinds of conflicts. However,

when a conflict is resolved by changing the value of one of the variables, the new value

needs to be propagated. In SHARED-DRIMS, a recommendation can be made using

different types of reasoning. Thus, there is the possibility that a new value may be useful

in various types of reasoning different from the reasoning that used the old value. For

example, if a value allowed a heuristic to be applied and later it is changed, then the new

value may cause a new heuristic or a case to be applied as a justification for a proposal. In

these cases, careful attention has to be given to a conflict propagation mechanism. These

issues will be considered in a future project.

169

6.4 Conflict Mitigation

6.4.3 Conflict Causes

In a collaborative environment, the designers are drawn from different domains and they

work together. However, this collaboration does not mean that they understand each other

completely. They have some common knowledge. That common knowledge is the one

that will help to resolve the conflict.

This paper is based on the belief that the collaborating agent will try to incorporate

conflicting concerns missing from different proposals into account during his/her design.

The system makes those conflicting concerns explicit and presents them clearly to the

involved professionals. However, for the designer to take those conflicting concerns into

consideration, he/she must understand them. For this reason, the system tries to find a

common language between the professionals (see Figure 6-7). It searches for notions about

the professional intents and justifications in the other conflicting domains. This process

checks each one of the justifications that support the recommendation in conflict, as well as

for all the proposals that support the conflict proposal; the conflict proposal is the one which

proposes the recommendation in conflict. SHARED-DRIMS searches if the justification

exists in the other professional domains. If it does, then it incorporates that as an intent to

be sought. If not, the system looks at the intent. If the intent is not understood (not found

in the domain), the system searches the proposals that introduced the intent. In this case,

the intent becomes the recommendation sought to be understood.4 Thus, the justifications

and intents of the intent are looked up until an intent is understood or when the search has

been exhausted.

In the case that the search has been exhausted, the system asks the designer for the

4 Intents are also recommendations made at higher level of abstractions.

170

6.4 Conflict Mitigation

Start

Get Recommendation I

I -I _iec a upprt ropa

Search Justifications

Select Inte

Understandable?

No

N Last Justification?

Yes

Search Intent for Proposal

Yes

nt's Proposal No

No Top Level?
Yes

Yes

Accept Intent

-I.
Present Hypothesis

LNo
Last Proposal?

Yes

Unacceptable Intent

End

Figure 6-7: Hypothesis Generation.

171

IGSelect a Support Proposal

Select Intial Proposal

Ask Other Party

No ~Agreeable.?Ye

I ||

I

I ^

Jill %;1 a LIM&PAV i Dq

I

6.4 Conflict Mitigation

intents from the lowest level. That is, it starts from the intent that introduces the conflicting

recommendation and goes up until the user understands one of them. If there is no intent

that is understood, then the conflicting professionals are made aware that they need to meet

to resolve the differences.

6.4.4 Conflict Resolution

SHARED-DRIMS may use three strategies to resolve conflicts. First, the system may use

knowledge in the form of heuristics for common conflicts. Second, SHARED-DRIMS

may look at past designs for conflict resolution. Third, the system provides information for

the human designers to efficiently resolve the conflict. In the first case, SHARED-DRIMS

uses the COSMOS inference engine for resolving the conflict. In the second case, it tries

to match the conditions from the past with the current conditions. In this case the notion

of versions are really important. Versions capture the state of the design at any given

point. Thus, by capturing the different versions of a conflict resolution, each stage of the

resolution can be used as key entries for new conflicts (see Figure 6-8). Thus, in the case

that a conflict arises, it may be one of the many stages of an old process. However, when

the conflict cannot be found from previous design and the solution is not available, the third

case is applicable. The system provides the designer with the information about the causes

of the conflict so that they can negotiate accordingly. Then, the negotiation is performed

using the constructs provided by the system.

6.4.5 Conflict Prevention

This task is achieved in conjunction with dependency maintenance. The system forecasts

impact of a change so that the designers are aware of other conflicts which may be

caused. Also it is used for presenting the impact of their decisions. In this case, during

172

6.5 Chapter Conclusions

Figure 6-8: Versions for resolving conflicts with designl - each version of the conflict
resolution is a entry key for the graph.

conflict resolution and negotiation the system both presents the rationale of the conflicting

recommendation, why it is there, and also its impact, what is going to happen if the value

changes. This case is again very important and difficult because of the multiple types

of dependencies that have to be maintained. These dependencies are sometimes discrete

(without known pattern) where extrapolation is not possible unless knowledge about the

new information is available.

6.5 Chapter Conclusions

In this chapter, the functionalities of a proactive project information management system

(SHARED-DRIMS) have been presented. Among these functionalities are: 1) capturing

rationale information from design support systems, past projects, and the user; 2) mitigating

conflict by creating variable dependencies, inconsistency detection, variable rationale,

conflict resolution, and conflict prevention. SHARED-DRIMS provides some of these

functionalities, while the others DICE sub-systems provide the rest of the functionalities.

173

Sdesignesgi11 eg design.1.1.1.1.

alternative versions

designl.l.2 ' designl.l.2.1

Chapter 7

Illustrative Example

Example is the school of mankind, and they will learn at no other

Edmund Burke, Letters on a Regicide Peace, letter 1, 1976

7.1 Chapter Introduction

Section 2.2.5 presents the importance of having access to the reasons and the basis for

a decision. It argues that a system that represents and manages both the reasons and

basis for a decision would be able to improve the design-construction process. This

improvement would come in terms of shorter process time and better quality. To prove

this point, Section 7.2 presents an example of designing a bridge with SHARED-DRIMS.

Section 7.2.1 shows the use of the system from a single participant point of view.

Section 7.2.2 presents the system as used by multiple participants in the design of the

bridge. Section 7.3 provides details about the software and hardware used for developing

the system. Finally, Section 7.4 presents a summary of the chapter.

174

7.2 Bridge Design

7.2 Bridge Design

Using SHARED-DRIMS, problems stated in Section 2.2.5 with the original design process

may be obviated. SHARED-DRIMS is used by a structural engineer and three other

professionals to reduce the number of interactions from five that this process took to two

(see Figure 7-1) - this early identification and resolution of conflicts is conflict mitigation.

This shorter process is described below: the geotechnical engineer records his rationale

for recommending that the base of any pier be normal to the slope, which is based on the

maximum resistance of the soil is to normal forces. The structural engineer records her

rationale when deciding prestressed concrete and a two span bridge.

7.2.1 Single Designer Design Rationale Capture

In order to record her rationale, the structural engineer uses her top level intent (to design

a bridge) to generate a proposal. That proposal has as recommendation the intent of safely

withstanding the loads acting on the structure during its lifetime. The justification given

by the structural engineer is the precepts of the profession (which is an authority type

of justification in this case). Since the structural engineer works with SHARED-DRIMS

in designing the bridge, SHARED-DRIMS in turn presents a proposal for designing the

bridge. This proposal has as a recommendation a plan of action that consists of four

goals: select the material, select the form, size the elements, and determine the loads (see

Figure 7-3 for a C++ representation of a generic recommendation). The justification given

by SHARED-DRIMS for such recommendation is a rule stored in its knowledge base (see

Figure 7-2 and Figure 7-4).

After the plan has been established, the structural engineer allows SHARED-DRIMS

175

7.2 Bridge Design

176

-,

O

O

°•

cJ
E

0EV.

._

0

E
PI-

7.2 Bridge Design

177

-o

03
'-

U,
0)

.0
0l
0:
U)

U,
u
'-

04
U,

u,
0
04
0
'-4

04

N,
U,
'-

7.2 Bridge Design

class DRIMIntroRecomm: public DRIMObj, public COS_root {

private:

protected:
GNlist<DRIMProposal*> modifying.proposals; /** The list ofproposals that modified the recommendation **/
GNlist<DRIMConstraint*> constraints; / ** The constraint list **/
DRIMProposal* proposal; /** The parent proposal **/

public: to

DRIMIntroRecomm (char *, DRIMProposal *);
DRIMIntroRecomm (char *);
-DRIMIntroRecomm();
virtual DRBoolean same(DRIMIntroRecomm*){ };
virtual void set_recommendation(DRIMRecommendation *reco){ recommendation = reco;}
DRIMProposal *getproposal();
void set_proposal(DRIMProposal *prop);
void insert_mod_prop(DRIMProposal *);
osList<DRIMProposal*> get_mod_prop(); 20
void check_constraint();
void insertconstraint(DRIMConstraint *);
osList<DRIMConstraint*> getconstraints();
void run ie(char* rule_file, os_Set<COS_root*>* objects=NULL);
/ ** access functions for cosmos inference engine **/
virtual const char* get_classname(){ return (Dis_ao- >get_class_nameo);}
virtual DBoolean superclass(char* c){return (Dis_a0->superclass(c));}
/ ** the next 3 must be redefined in classes with new attributes and methods
should call parent class methods **/

virtual int put_value(char*,char*); 30

virtual char* get_value(char*,char*);
virtual DBoolean invoke_method(char*);
DDECLAREEXTENT(DRIMIntroRecomm);
DDECLARECLASS(DRIMIntroRecomm);
};

178

Figure 7-3: C++ code representation of a generic recommendation

7.2 Bridge Design

(RULE: design_bridge 20
IF
(CLASS: DRIMIntent OBJ: $a

((refer_to == "Goal") AND (referto = $re))
AND (action == "Design")) AND (action = $ac))
AND (object == "Bridge")) AND (object = $ob))
AND (modifier == "Structural")) AND (modifier == $mo)))
THEN (
(EXECUTE OBJ: $a notify[IntentObjects_Created]) to
(MAKE (CLASS:DRIMIntent OBJ:CreateBridge (na "Bridge")

(agent "StructuralEngineer") (refer_to "Goal") (action "Create")
(object "Bridge") (modifier "Structural")
(rule "design_bridge")
(des "If_the_goal")
(in $a)
(ca $a)))

(MAKE (CLASS:DRIMIntent OBJ:Select Material (na "Bridge")
(agent "Structural Engineer") (referto "Goal") (action "Select")
(object "Material") (modifier "Bridge") 20
(rule "design_bridge")
(des "Ifthegoal")
(in $a)
(ca $a)))

(MAKE (CLASS:DRIMIntent OBJ:Select_Form (na "Bridge")
(agent "StructuralEngineer") (refer_to "Goal") (action "Select")
(object "Form") (modifier "Bridge")
(rule "designbridge")
(des "If_thegoal")
(in $a) 30
(ca $a))

(PRINT "Creating Intents" I $a I "associations\n")
)COMMENT: " ")

Figure 7-4: Rule for designing a bridge

179

7.2 Bridge Design

to proceed with the design under her supervision. In this case, SHARED-DRIMS suggests

the creation of a place holder for the bridge. This place holder is just a generic artifact

without any particular structure. The structure will be defined as the design proceeds

and more decisions of the bridge structure has been made. Actually, the definition of the

bridge structure is the next step to be followed by SHARED-DRIMS. SHARED-DRIMS

presents proposals for the selection of the material of the bridge. The recommendation of

the proposal is to use timber deck and girders. The justification of the proposal is a rule

that says if the span of the bridge is less than 250 feet, then the use of timber is a feasible

solution (see Figure 7-5). However, the structural engineer knows that timber in this

locality can be a problem. So, she presents another proposal in which the recommendation

is to avoid the use of timber. The proposal is based on the intent to maximize the life of

the bridge. This intent was implicit until the point in which it takes prominence. The

justification of the proposal is that timber would wear off under abrasive action of gravel

and heavy loads. This interaction between a presentation of a proposal and its contradiction

can be combined in one schema as shown in Figure 7-5. The two intents are combined and

a contradiction link is built around the proposal. Finally, the justification has an adjective

before it that says that the justification is of the contradicting type.

Once the proposal to use timber for the deck and girders is rejected. The structural

engineer presents another proposal. This one has as a recommendation the use of concrete

deck and timber girders. In reality, this proposal should be divided into two proposals that

satisfy the same intent of selecting the material. Here the two proposals are combined

because they satisfy the same intent and have the same contradicting justification (see

Figure 7-6). The proposal is rejected due to difficulty of fastening the two materials. This

contradiction is related to the intent of safely withstanding the loads acting on the structure.

Thus, a new version of the old proposal is created. This time the proposal recommends

180

7.2 Bridge Design

181

U

E
0
O

O

O0OO

oo
o

oo

rno0

U
i-

7.2 Bridge Design

the use of concrete deck and steel girders. This proposal is again rejected because it does

not satisfy the intent of minimizing maintenance. This intent 'was implicit in the process

until the decision was made to use steel. This shows that intents are not always set forth

at the beginning but may be brought to the surface due to a set of decisions already made.

Finally, a new proposal is introduced. This proposal has. as a recommendation the use of

prestressed concrete for both the deck and the girders. The justification is that this proposal

satisfy all the other intents including the intent of minimizing maintenance.

Once the proposal of using prestressed concrete as material is accepted, the bridge

artifact contains that new structure (see Figure 7-7). At this point, the bridge artifact has

gone through an evolution from being just a place holder at first (see Figure 7-8), then to

have only a material characteristic (see Figure 7-9), to have a structure of different parts

(see Figure 7-10). This evolution creates a version tree of the bridge artifact (see Figure 7-

11). Now, the structural engineer assistant, SHARED-DRIMS in this case, proceeds to

satisfy the intent of selecting the bridge structural form. Figure 7-12 presents the proposal

presented by SHARED-DRIMS about the form of the bridge. The recommendation is the

use of a two-span continuous slab bridge over three supports. The justifications were a

rule in SHARED-DRIMS knowledge base (see Figure 7-13) and a report presented by the

geotechnical engineer which recommended the use of piers perpendicular to the terrain.

7.2.2 Multiple participants conflict mitigation

After the structural engineer and SHARED-DRIMS finish performing their designs,

SHARED-DRIMS presents to all participants in the project (see Figure 7-14) the structural

engineer design process. The system shows the structural engineer's view of the artifact

hierarchy and a rough sketch of this design (see Figure 7-15). The bridge consists of

182

7.2 Bridge Design

183

-o

0

0

a5

'-p•

°•9t

7.2 Bridge Design

Figure 7-7: Type of material in the bridge artifact

Figure 7-8: Bridge artifact as a place holder

184

7.2 Bridge Design

Figure 7-9: Bridge artifact with a material in its structure

end-foundations, a slab, and a central pier at this stage. In addition, the system keeps

the design intent hierarchy which led to this design. To design the bridge, the structural

engineer selects the material and the form to withstand the load at minimum cost. These

design intents relate to a series of proposals (see Figure 7-16).

SHARED-DRIMS oversees the various proposals made by the different designers and

how they may conflict with each other. In this case, the structural engineer has proposed

a prestressed concrete bridge with two spans, a central pier, and end foundations. The

physical shape information is maintained by a geometric modeler as shown in Figure 7-17.

This information is now presented to the other designers. The other designers revise

the design and provide feedback. The contractor has a problem with the prestressed

concrete proposal (see Figure 7-18). The contractor recommends the use of prefabricated

prestressed concrete since he lacks construction facilities and local labor. The structural

engineer accepts the prefabricated prestressed concrete recommendation (see Figure 7-19).

185

7.2 Bridge Design

Figure 7-10: Bridge artifact with material, sub-systems and components in its structure

186

7.2 Bridge Design

Figure 7-11: Version tree of the bridge artifact

187

7.2 Bridge Design

188

E

0r27;j

to3

.v..q

0.€3o

°'-4

7.2 Bridge Design

(RULE: Two_Span 20
IF
((CLASS: DRIM_SBridge OBJ: $x
(((length > 200.0)
AND (length == $dd))
AND (largest_depth = $ddl))
) AND
(CLASS: DRIMIntent OBJ: $a

((referto = "Goal") AND (referto =- $re)) to
AND (action == "Select")) AND (action = $ac))
AND (object == "Form ")) AND (object = $ob))
AND (modifier == "Bridge")) AND (modifier == $mo))))
THEN (
(EXECUTE OBJ: $a notify[Two_SpanBridgeSelected])
(MAKE (CLASS:DRIMArtifact OBJ:EndFoundation 1

(rule "Two_Span")
(parent $x)
(in $a)
(ca $a))) 20

(MAKE (CLASS:DRIMArtifact OBJ:Slab_l
(rule "Two_Span")
(parent $x)
(in $a)
(ca $a)))

(MAKE (CLASS:DRIMArtifact OBJ:CentralPier
(rule "Two_Span")
(parent $x)
(in $a)
(ca $a))) 30

(MAKE (CLASS:DRIMArtifact OBJ:Slab_2
(rule "Two Span")
(parent $x)
(in $a)
(ca $a)))

(MAKE (CLASS:DRIMArtifact OBJ:EndFoundation_2
(rule "Two_Span")
(parent $x)
(in $a)
(ca $a))) 40

(PRINT "Creating the Two Span Bridge\n")
)COMMENT: "")

Figure 7-13: Rule for developing a two span bridge

189

7.2 Bridge Design

Figure 7-14: SHARED-DRIMS: Main Window with the project participants.

190

7.2 Bridge Design

191

a.)

a.)

a.).

a.)c

0.4 C~~

o

a.

7.2 Bridge Design

192

7.2 Bridge Design

Figure 7-17:
(GNOMES).

Display of the two span bridge in the non-manifold geometric modeler

193

7.2 Bridge Design

SHARED-DRIMS seeks confirmation that the change is due to conflicting proposal.

Similarly the proposal to use a central pier is rejected. SHARED-DRIMS informs

that both the contractor and the environment engineer recommend the removal of the

central pier (see Figure 7-20). The contractor cites lack of construction facilities as his

justification and the environmental engineer is concerned that fish life may be affected by

the construction. The structural engineer accepts the recommendation for the central pier

removal. Now the changes are made to the design. These changes are reflected by the

geometric modeler which shows the single span design (see Figure 7-21).

However, SHARED-DRIMS detects a new conflict due to this change. The single span

design conflicts with the contractor's recommendation of using prefabricated prestressed

concrete (see Figure 7-27). The justification presented is that only members of less than

78 foot length can be transported easily (see Figure 7-28, Figure 7-29, Figure 7-30, and

Figure 7-31). Based on this proposal the structural engineer now revises the design to a

three span bridge (see Figure 7-22). If the structural engineer did not understand the issues

raised by the other participants, then, she can use a white shared-board, e-mail and video

connections to communicate with the other participants (see Figure 7-23, Figure 7-24,

Figure 7-25, and Figure 7-26).

SHARED-DRIMS detects another conflict with the geotechnical engineer's recommen-

dation to place the supports near the base or the ends since soil exploration showed that

the soil only has good support conditions to forces normal to the surface (see Figure 7-32).

With this information, the structural engineer decides that she cannot change to two vertical

piers. Based on design knowledge, SHARED-DRIMS and the structural engineer change

the inclination of the piers to 60 degrees, that is, normal to the slope at the base of the piers.

194

7.2 Bridge Design

195

0

o -o

-4

0 •0

rz

-,. 0.)co

-M.- a> 'C

0.
'-4d

7.2 Bridge Design

196

*1

a")

a)

a"
5-

7.2 Bridge Design

197

coC

o

a~.

0C~
oC'o

cil

°,6,

7.2 Bridge Design

Figure 7-21: Display of the single span bridge in the non-manifold geometric modeler
(GNOMES).

198

7.2 Bridge Design

Figure 7-22: Display of the three span bridge with vertical piers in the non-manifold
geometric modeler (GNOMES).

Figure 7-23: White Shared-Board for inter-machine communication

199

7.2 Bridge Design

Figure 7-24: E-mail window for sending messages to other participants

Figure 7-25: Video window for visual inter-participants communication

200

To:gortiamit.educc:
Subject: Request for Communication

What is the problem with the piers?

Fenioskyl

nrg~p~arr~klL3 ~a~r·w~r--- ~- ------------- -----

7.2 Bridge Design

201

0

E

E
0

o0

o

c.)

°o
0

7.2 Bridge Design

202

0
*M

-c

-o

U

O

Oc00ClNd
U1

7.2 Bridge Design

(RULE: MaximumLength 20
IF
(CLASS: DRIMSpec OBJ: $x
((attribute == "Length")
AND (value >= "78.0"))

1THEN (
(PRINT "Maximum Length exceded.\n")
(EXECUTE OBJ: $x notify[MaximumLength])

COMMENT:"")

Figure 7-28: Rule set by the contractor limiting the size of the members

DBoolean DRIMArtifact::put value(char* slot,char* slot value)

i
if (strcmp(slot, "parent")==O)

COS_root *tempcr = (COS_root *)slot_value;
temper = (COSroot *)os_workspace::current()- >resolve(tempcr);
insertsubs(tempcr); / * Building the parent child connection */
tempcr- > set_parentartifact(this);
run_new_ie((COSroot*) temper);

return 1;
I

/ * Other parts of this procedure has been deleted */

I

Figure 7-29: C++ code for linking artifacts

203

7.2 Bridge Design

void run_newie(COS_root *obj_che)
{
/ * Setting the Globals for versioning */

currentdesignerconfiguration =
(GNconfiguration *)Dmanagerbase::db- >find_root("Sollecks_configuration ")- >get value();

if(current_designerconfiguration- >frozen())
{

current_designerconfiguration- >new_version(); to
current designerconfiguration =

(GNconfiguration *)os_workspace: :current()->
resolve(current_designer_configuration);

int temp = mode ; /* Since mode is a global variable, we must keep track
of what we were doing before we came in here. */

Ie* temp_ie = theInferenceEngine;
20

/ * Here, we define the constraint and evaluate them */

DRIMConstraint *constrain =
new (Dmanagerbase::db) DRIMConstraint(obj_che);

constrain- >check_constraint();

mode = temp ; / * and restore the status */

/ * Now loop throught the working memory of the things in the ie. 30
Whatever working memory elements have been touched, will have to be
recorded in the old engine. As a temporary measure, however the old
ie is simply being reset, so that all changes are processed again. We
remove the copying from new to old due that the constraint are not
touching any element. */

thelnferenceEngine = temp_ie;

Figure 7-30: C++ code for checking constraints

204

7.3 Implementation

void DRIMConstraint::checkconstraint()
{

le ie; / * An inference engine object */

/ * creation of a first instance of Forward-Chainer
creates the associated RETE network representing a Rule file: */

ie.reset() ; /* Resetting the inference engine */
ie.parse(rule_file); /* Parsing the rule file */
ie.load 1 wme((COS_root*)recomm); /* Loading the object */ 10
if(SD trace)

cout << "LOADED" << endl;
ie.runo; / * Running the inference engine */
if(SDtrace)

cout << "RUN DONE" << endl;
}

Figure 7-31: C++ code for running the inference engine

SHARED-DRIMS finds this design to be consistent and satisfactory to all participants (see

Figure 7-33). Figure 7-34 shows the final design as presented by the geometric modeler.

7.3 Implementation

SHARED-DRIMS is implemented using ObjectStoreTM , C++ and X-Windows/Motif on

a SUN-SPARC workstation. A hybrid representation for the leaf nodes of the model (e.g.,

Objective, Constraint, and Rule) is used, that combines structured data and free text. This

dual representation allows for encapsulation of both human and computer rationale. In

addition, the system is separated into two layers: the general layer and the specific domain

layer. The general layer is domain independent and provides the constructs for representing

design rationale. The specific domain layer has the knowledge of how to design and resolve

205

7.3 Implementation

4=w0

0O

0 •O

0
.a•

Iii
°•=

°•=

C rr

206

7.3 Implementation

Figure 7-33: SHARED-DRIMS: Ask Window which informs that the system could not
find any conflict with the new design.

Figure 7-34: Display of the three span bridge with inclined piers in the non-manifold
geometric modeler (GNOMES).

207

7.4 Chapter Conclusions

conflicts about a particular domain.

7.4 Chapter Conclusions

This example shows how SHARED-DRIMS supports. conflict mitigation during the

development of large scale engineering systems. SHARED-DRIMS is used by a structural

engineer and three other professionals to reduce the number of their interactions to two from

the five that the early process took. This early identification and resolution of the conflicts

helps mitigate conflicts. As this example demonstrates, there were some deficiencies with

the original process. First, the original process took a long time to deliver. Second, the

original process might have produced poor quality products. In terms of delivery time,

there were three main deficiencies. First, some information might have been lost, such as

information regarding the reasons why a specific recommendation was made. Second, the

participants would have to regenerate the information lost if they are asked for it. Third, the

original process had interactions that could be avoided if information was available about

why a design had been rejected or why a recommendation was made. For example, the

selection of a single span bridge is not presented to the participants as an alternative, since

the structural engineer know the reasons for the rejection of the long pier by the contractor.

In terms of the quality, there was one main problem. Constraints set by participants through

assumptions might have been violated. Violations might have gone undetected during the

initial stages and might have been detected at a later stage. The changes at later stages

would be made under heavy time and cost constraints. Designers would tend to focus

on the problem area and disregarded the overall optimization of the product. All these

problems are avoided with SHARED-DRIMS. The system only allows for two interactions

between the different designers helping to mitigate conflict before they are spread over the

whole design.

208

Chapter 8

Conclusions

Government and co-operation are in all things the laws of life;

anarchy and competition the laws of death.

John Ruskin, Unto this Last, Essay iii, 54, 1862

8.1 Introduction

The use of computer-aided design, as well as the development of a computer-supported

cooperative work environment, for the design process can produce fundamental changes

not only in the accuracy and speed of the design, but also in the design process itself.

However, there are still problems with the vast amount of data produced by the design

process. Certain kinds of vital information - usually implicit on the process, often having

to do with why certain actions are taken - are usually lost in large projects. One reason

may be that these types of information, while important, are never expressed explicitly to

be readily captured and retrieved. Usually the information that is related to the relationship

between the parts of an artifact and the context in which they are designed to work is lost.

Thus, data inconsistencies are difficult to detect and if they are detected, it is difficult to

209

8.1 Introduction

access the causes of such inconsistencies. To mitigate conflicts a system that can deal with

the previous problems is needed. Thus, the key technical problems that such a system faces

are: 1) determining where a problem lays, and 2) determining why a problem occurs.

To solve these data capturing and manipulation problems, this dissertation has developed

a model -DRIM- that represents the design rationale of an artifact. Once the design rationale

has been captured, a conflict mitigation system -SHARED-DRIMS- detects inconsistencies

in the data and pinpoints the basic reasons for the occurrence of those inconsistencies.

The DRIM model captures the design rationale through the use of the following five

constructs: designer, proposal, recommendation, intent and justification. Each one of these

constructs can be instantiated on objects that may be related through composition, version

and/or abstraction trees. This model also provides relationships that ensure a structure is

followed during the process. However, this structure does not prevent the iterative and

collaborative nature of the process to be present; on the contrary, it supports it.

The DRIM model and the SHARED-DRIMS system presented in this work are

implemented in an object-oriented style: the designer, proposal, recommendation, intent,

and justifications constructs are independent objects which contain methods that specify

their role and behavior in any context.

The SHARED-DRIMS system performs five functions: rationale capture, conflict

detection, conflict causes, conflict resolutions and conflict prevention. The rationale

capture function uses domain knowledge, past designs and interaction with the designers

to capture design rationale. The conflict detection function uses physical constraints to

detect inconsistencies. The conflict causes function retrieves rationale information and

210

8.2 Benefits of the Model

maps it into the relevant context. The conflict resolution function uses domain knowledge,

past designs and interaction with the designers to provide recommendations that solve the

conflict. Finally, the conflict prevention function uses domain knowledge, past designs

and interaction with the designers to access the effect of decisions made during the conflict

resolution.

The use of the model and the system presented in this dissertation improves the design

process, both in terms of time and quality. Design decisions do not need to be rehashed

several times during the process simply because no one can recall how the decisions were

reached previously, which means saving time. In addition, the ability of the system to tell

the designers very early in the process various problems with their assumptions or data

allows them to correct the problems early and avoid repeating the same errors on other

designs.

8.2 Benefits of the Model

In order for a model like the one proposed in this work to be successful, some considerations

for the user should be given. The users need to know the palpable benefits that such a

model could provide. Among these benefits is the characteristic that this model is an

improvement over the existing design process. Designers have to provide the assumptions

they make during the design, as well as the specifications of the design artifact. However,

the artifact documentation is created after the design is made. Therefore, assumptions and

decisions made early in the design process may be lost and cannot be provided. This

model facilitates the design documentation to be created as the design proceeds. Thus,

assumptions and decisions are recorded at the time they are made and therefore will not be

lost. In addition, the model uses a mixture of structured and semi-structured representations

211

8.2 Benefits of the Model

for capturing the design rationale. Hence, the users will not be exposed to radical changes

in their work technologies. This model is structured in that thie objects could be defined

using object-attribute-value representation so to allow computer inferencing. This model is

semi-structured in the sense that there is a structured relationship between the elements that

compose the design rationale, but the user comments and justifications can be expressed in

natural language, digital photographs, digital video or a combination of these.

The users of the model may have the benefit of knowing not only what was decided

but also what was discussed in physical or electronic meetings in which they were not

involved. The organization in which the model is used can benefit by creating personnel

independence. For example, if a designer who played an important role during the

preliminary design leaves the company before the detailed design phase is completed, the

detailed design need not suffer from information loss. Because the early design rationale

was captured using the model, and made available to all the agents involved in the project

shortly after it was recorded, much of the logic behind the design will have been retained.

This is in contrast with current practice where the designers working in the detailed design

phase would not have been able to answer questions related to why some decisions were

made if a key designer were not available.

Another benefit of using the model for capturing design rationale is that it includes

all the justifications for the decisions made in the design process. In addition the model

includes the context in which the justifications were made (i.e. relationships between design

problems). It is easier to determine why a decision was made without the need for actually

replaying the discussion generated for decision-making. For example, a construction

consultant may recommend a structural slurry wall for an earth retention wall system.

After a certain amount of time, some questions may be asked about appropriateness of the

212

8.2 Benefits of the Model

decision for using a structural slurry wall. If the design rationale were not recorded, the

designers would need to ask the individuals involved in that decision. If the individuals

were not available, the designers would need to re-generate the decision process. However,

if the model is used to record the design rationale, the designers need only ask the system

to present all the elements involved in the decision of the structural slurry wall. The system

will re-play that the structural slurry wall was selected for lowering the risk for disturbing

adjacent buildings and that this goal was very important. With this information and more,

the designers may re-evaluate the decision using all the arguments made during the initial

design, as well as the arguments that the questions generated. The access to the early

decision-making process improves the designer's confidence that all dependencies from

early choices are taken into consideration.

This model may help detect errors during feasibility analysis, problem identification and

formulation, design, construction, and use of an artifact. It can also influence effectiveness

of project team meetings, inter-organizational communication, and project management in

general.

* Feasibility Analysis and Problem Identification and Formulation

During these phases, the model helps the individuals working on the project to quickly

understand the problem that they are trying to solve. Explicitly stating the issues or

problems to be addressed provides a framework not only for the discussion about the

problem, but also for the entire development of the project. By presenting the need

identification, evaluation and justification in terms of proposals, recommendations,

intents, and justifications, weak supporting arguments are apparent and assumptions

are made common knowledge.

213

8.2 Benefits of the Model

* Design, Construction and Consumption

A model such as the one proposed helps the project team detect design parts that

may be omitted in both high and low level design reviews. In addition, the conflict

mitigation system can detect early data inconsistencies and find the reasons for these

changes. In other words, design errors are detected early in the process when they

are less costly to repair.

* Project Team Meetings

Sometimes in meetings, discussions tend to digress from the intended topic. By

recording the discussions, open issues raised during tangential discussion could be

saved to be addressed later. Returning to the original topic could be done quickly

by reviewing what had been recorded prior to the tangential discussion. Another

benefit is the use of SHARED-DRIMS for setting meeting agendas: attendees are

provided with a set of design/decision problems and, whether the topic had been

discussed before. They are also presented with any innovative alternatives and

arguments. The agenda preparation by a system based on this model is useful when

the design/decision problems being discussed are interrelated in ways that are not

obvious.

* Inter-organizational Communication

Conversations among different organizations carry the risk of the different priorities

between organizations. The difference in priorities can cause some conversations to

be forgotten or misunderstood. Thus, a lot of time is spent in reconstructing previous

conversations. Another problem is when new personnel is assigned to a project, a

record of past discussions and the process by which decisions were handled is needed

to bring new people up to the required level of understanding quickly and easily.

214

8.3 Contributions

* Project Management

During a project, some design/decision problems are promptly resolved, but other

remains open indefinitely. The model helps tracking these open design/decision

problems. With the use of the model, the individuals involved can have all the

previously information for these open problems and can make decisions without

additional delay. In addition, the use of SHARED-DRIMS reduces the analysis

burden on project managers by highlighting problem areas and the causes of these

problems.

8.3 Contributions

In summarizing this work, the contributions can be divided in two parts. First, a

model for representing design rationale was developed. This model provides primitives

for representing design knowledge in terms of the reasoning process used by designers

in generating an artifact satisfying their design intents. This model also takes into

consideration the different collaborating participants and is used to provide active computer

support for capturing designers' reasoning process. The model allows human designers

interacting with computers to record their design rationale.

The second contribution is the computer support for conflict mitigation. SHARED-

DRIMS can automatically resolve known conflicts when solutions are available in its

knowledge base. In addition, the system provides hypotheses about the reasons for

conflicts during the conflict resolution process. These hypotheses, once verified by the

designer, can be used for better coordination and negotiation. This, in turn, will enhance

the communication during the design process and consequently increase the productivity

of the AEC and other related industries.

215

8.4 Future Research

8.4 Future Research

SHARED-DRIMS successfully addressed the issues raised in the example of Section 2.2.5.

However, many other issues need to be resolved for the effective implementation of

SHARED-DRIMS in a real world working environment. These issues can be summarized

in eight parts:

1. Testing of both the model and the system have been limited to small-scale problems

dealing with conceptual design. Further testing is necessary to validate the exten-

sibility of the model and its applicability throughout the life-cycle of large scale

design-construction problems. The system has to be tested in a normal working envi-

ronment where there are time pressures and organizational constraints. Exploration

of how the designers use the system and cope with its limitations is needed.

2. There is a need to determine what other means could be used to capture reasoning

information without disruption of designers' normal work style. Designers have

expressed interest in using the system, but are concerned about spending time

inputting the rationale. In the current system, there is knowledge incorporated in

SHARED-DRIMS which helps the designer to record the rationale. However, the

knowledge needs to be recorded by a knowledge engineer. Thus, techniques that

allow easy input of design rationale need to be explored.

3. There is the question of the ratio between the cost to the designers and the

organizations to record this information versus the benefit they will receive. Questions

to be answered are: How much investment is the organization or the individual willing

to commit to record this additional rationale? What is this individual or organization

obtaining in return?

216

8.4 Future Research

4. The organization and the system will change. The system will change how the

organizations do business and the system will adapt to the organization. Information

about this synergy is needed to maximize the usage of the system.

5. There is the question of how this information could be used by project control

systems for reducing the impact of change orders on the cost and the schedule of the

project.

6. There is a need to incorporate a set of robust general conflict mitigation strategies,

as well as domain dependent conflict mitigation. As the system stands now, rules

and primitive cases are used to store domain dependent conflict mitigation strategies.

In terms of a general conflict mitigation strategy, the system provides the designers

with conflict information and design rationale. However, it does not provide robust

support. Work needs to be done to strengthen these two areas of computer supported

conflict mitigation.

7. Social scientists have conducted various research experiments on the effect of human

biases to negotiation. These research efforts try to explore the relationship of

human background, knowledge and attitudes with the outcome of the negotiation.

However, there has been little documentation of the effect of computer programs and

methodology on the negotiation. Computer programs and methodologies have biases

that are incorporated implicitly into these programs and models by the developers.

One area of future research will be to explore the effect of computer programs and

methodologies on the negotiation.

8. The classification of intent and justifications were found to be relevant in the case

studies performed in this research. Some preliminary structures and semantic

meaning were attached to these classifications. However, these meanings and

217

8.4 Future Research

structures have not been completely tested and validated. Research is needed in

studying the effect of the classifications on efficiently mitigating conflict.

218

Bibliography

[Ahmed et al., 1992] Ahmed, S., Wong, A., Sriram, D., and Logcher, R. (1992). Object-

Oriented Database Management Systems for Engineering: A Comparison. Journal of

Object-Oriented Programming.

[Anandalingam and Apprey, 1992] Anandalingam, G. and Apprey, V. (1992). Multi-Level

Programming and Conflict Resolution in International River Management. Mimeo,

Center for Research in Conflict and Negotiation, Penn State University.

[Andrews, 1993] Andrews, J. D. (1993). The Design of a Rotating Annular Flume to

Study the Erosion of Cohesive Sediments. Master's thesis, Massachusetts Institute of

Technology.

[Anson and Jelassi, 1990] Anson, R. and Jelassi, M. (1990). A Development Frame-

work for Computer-Supported Conflict Resolution. European Journal of Operational

Research, 46(4): 181-199.

[Banares-Alcantara, 1991] Banares-Alcantara, R. (1991). Representing the Engineering

Design Process: two hypothesis. In Gero, J., editor, Artificial Intelligence in Design

'91, pages 3-22. Butterworth-Heinemann, Oxford, England.

219

BIBLIOGRAPHY

[B3anerjee et al., 1987] Banerjee, J., W., K., and Korth, H. (1987). Semantics and Imple-

mentation of Schema Evolution in Object-Oriented Databases. In Proceedings of the

ACM SIGMOD Conference on Management of Data, San Fransisco.

[Becker, 1989] Becker, J. (1989). Construction Technology and the Building Process.

Foundation Decison Making Monarch Place - A Case Study (Class Assignment).

[Bradley and Agogino, 1991] Bradley, S. and Agogino, A. (1991). Design Capture and

Information Management for Concurrent Design. International Journal of Systems

Automation: Research and Application, 1(2): 117-141.

[Brown, 1985] Brown (1985). Failure Handling in a Design Expert System. Computer-

Aided Design, 17(9).

[Carey et al., 1989] Carey, M., DeWitt, D., Richardson, J., and Shekita, E. (1989). Storage

Management for Objects in Exodus. In Object-Oriented Concepts, Databases, and

Applications, Kim, E. and Lochovsky, E H. (Editors). ACM Press and Addison-Welsey.

[Casais et al., 199:2] Casais, E., Ranft, M., Schiefer, B., Theobald, D., and Zimmer, W.

(1992). OBST - An Overview. Technical report, Forschungszentrum Infromatik (FZI).

[Casotto et al., 1990] Casotto, A., Newton, A., and Sangiovanni-Vincentelli, A. (1990).

Design Management based on Design Traces. In 27th ACM/IEEE Design Automation

Conference, pages 136- 141, Orlando, FA. IEEE.

[C(hen, 1976] Chen, P. (1976). The Entity Relationship Model - Towards a Unified View

of Data. ACM Transactions on Database Systems, 1(1).

[City of New York Bureau of Water Pollution Control, 1980] City of New York Bureau of

Water Pollution Control (1980). Sewage Treatment Plant Design Review Handbook.

City of New York Department of Environmental Protection.

220

BIBLIOGRAPHY

[Company, 1990] Company, A. (1990). ABA QUS Manual.

[Conklin and Begeman, 1988] Conklin, J. and Begeman, M. (1988). gIBIS: A Hypertext

Tool for Exploratory Policy Discussion. ACM Transactions on Office Information

Systems, 6(4):303-331.

[Culbert, 1992] Culbert, J. (1992). Distributed Object Transport Streams

(DOTStreamstm): A Tool for Building Distributed Object Oriented Systems. IESL

Technical Report IESL-92, MIT.

[Elmore et al., 1989] Elmore, P., Shaw, G., and Zdonik, S. (1989). The ENCORE Object-

Oriented Data Model. Technical report, Brown University.

[Favela, 1993] Favela, J. (1993). Organizational Memory Management for Large-Scale

System Development. PhD thesis, Massachusetts Institute of Technology.

[Favela et al., 1993] Favela, J., Wong, A., and Chakravarthy, A. (1993). Supporting

Collaborative Engineering Design. Engineering with Computers. To appear.

[Firebaugh, 1989] Firebaugh, M. (1989). Artificial Intelligence: A Knowledge-Based

Approach. PWS-Kent Publishing Co., Boston, MA.

[Fischer et al., 1989] Fischer, G., McCall, R., and Morch, A. (1989). Design Environments

for Constructive and Argumentative Design. In Proceedings of CHI'89, pages 269-276,

Austin, TX.

[Fraser and Hipel, 1988] Fraser, N. and Hipel, K. (1988). Using the Decision Maker

Computer Program for Analyzing Environmental Conflicts. Journal of Environmental

Management, 27:213-228.

221

BIBLIOGRAPHY

[Fromont and Sriram, 1992] Fromont, B. and Sriram, D. (1992). Constraint Satisfaction

as a Planning Process. In Gero, J., editor, Artificial Intelligence in Design '92. Kluwer

Academic Publishers, London, England.

[Ganeshan et al., 1991] Ganeshan, R., Finger, S., and Garrett, J. (1991). Representing and

Reasoning with Design Intent. In Gero, J., editor, Artificial Intelligence in Design '91,

pages 723-736. Butterworth-Heinemann, Oxford, England.

[Gantz, 1989] Gantz, J. (1989). Sizing Up the AEC Market. Computer Graphics World,

pages 43-45.

[Garcia and Howard, 1992] Garcia, A. and Howard, H. (1992). Acquiring Design Knowl-

edge Through Design Decision Justification. AI EDAM, 6(1):59-71.

[Gorti and Sriram, 1993] Gorti, S, R. and Sriram, D. (1993). CONGEN: An Integrated

Approach to Conceptual Design. International Journal of CAD/CAM and Computer

Graphics, 8(2):135-150. Special AI issue.

[Gorti et al., 1993] Gorti, S., Gupta, A., Wong, A., and Sriram, D. (1993). A Model of

Integrated Product-Process Representation in Design Synthesis. IESL Technical Report.

In preparation.

[Grubber et al., 1992] Grubber, T., Tenenbaum, J., and Webber, J. (1992). Toward a

knowledge medium for collaborative product development. In Gero, J., editor, Artificial

Intelligence in Design '92, pages 413-432. Kluwer Academic Publishers, London,

England.

[Gupta, 1993] Gupta, A. (1993). Personal Conversation.

222

BIBLIOGRAPHY

[Howard et al., 1989] Howard, H., Levitt, R., Paulson, B., Pohl, J., and Tatum, C. (1989).

Integration: Reducing Fragmentation in AEC Industry. Journal of Computing in Civil

Engineering, 3.

[Kim et al., 1989] Kim, W., Bertino, E., and Garza, J. (1989). Composite Objects Revisited.

In Proceedings of the ACM SIGMOD International Conference on Management of Data,

Portland, Oregon.

[Kim and Chou, 1988] Kim, W and Chou, H. (1988). Versions of Schema for Object-

Oriented Databases. In Proceedings of the 14th Very Large Data Bases Conference, Los

Angeles.

[Klein, 1992] Klein, M. (1992). DRCS: an Integrated System for Capture of Designs and

their Rationale. In Gero, J., editor, Artificial Intelligence in Design '92, pages 393-412.

Kluwer Academic Publishers, London, England.

[Klein et al., 1990] Klein, M., Lu, S., and Baskin, A. (1990). Towards a Theory of

Conflict Resolution in Cooperative Design. In Proceedings of the Twenty-Third Annual

International Conference on System Sciences, pages 41-50,. IEEE.

[Kumar, 1992] Kumar, L. (1992). Personal Conversation.

[Kunz and Rittel, 1970] Kunz, W. and Rittel, H. (1970). Issues as Elements of Information

Systems. Institute of Urban and Regional Development Working Paper 131, University

of California, Berkeley, Berkeley, CA.

[Lander and Lesser, 1989] Lander, S. and Lesser, V. (1989). A Framework for the

Integration of Cooperative Knowledge-Based Systems. In Sanderson, A., Desrochers,

A., and Valavanis, K., editors, Proceedings of IEEE International Symposium on

Intelligent Control, pages 472-477, Albany, NY. IEEE.

223

BIBLIOGRAPHY

[Lee, 1990] Lee, J. (1990). SIBYL: A Qualitative Decision Management System. In P.

Winston and S. Shellard, editor, Artificial Intelligence at MIT: Expanding Frontiers,

chapter 5, pages 104-133. MIT Press, Cambridge, MA.

[Loucks, 1989] Loucks, D. (1989). Analytical Aids to Conflict Management. In Viessman

Jr., W. and Smerdon, E., editors, Managing Water-Related Conflicts: The Engineer's

Role, pages 23-37. ASCE.

[Moses, 1987] Moses, J. (1987). Organizing for Change. In Xerox-MIT workshop on

Visions of Design Practices for the Future.

[Myers, 1992] Myers, J. (1992). Constructive Resolution of Construction Industry Dis-

putes. In Fred Moavenzadeh , editor, Proceedings of the Conference on the Construction

Industry in the Northeast: Opportunities for the 21st Century, pages 103-104, Boston,

MA. Center for Construction Research and Education.

[Object Design, Inc., 1991] Object Design, Inc. (1991). OBJECTSTORE User Guide.

Object Design, Inc., Burlington, MA. Release 1.1 for Unix-Based System.

[Ostrofsky, 1977] Ostrofsky, B. (1977). Design, Planning, and Development Methodology.

Prentice-Hall, Inc., Englewood Cliffs, NJ.

[Pahl and Beitz, 1988] Pahl, G. and Beitz, W. (1988). Engineering Design - A Systematic

Approach. The Design Council, London, UK.

[Pena Mora et al., 1994] Peea Mora, F., Logcher, R., and McManus, T. (1994). SCHEREC:

SCHedule RECovery system. In Proceedings of the 1st ASCE Congress on Computing

in Civil Engineering. ASCE.

224

BIBLIOGRAPHY

[Potts and Bruns, 1988] Potts, C. and Bruns, G. (1988). Recording the Reasons for

Design Decisions. In Proceedings of the 10th International Conference on Software

Engineering, pages 418-427. IEEE.

[Project, 1994] Project, C. (1994). Secretary Kerasiotes Selects River Crossing Design.

Artery Express, Winter: I and 6.

[Quillian, 1968] Quillian, M. (1968). Semantic Memory. In Minsky, M., editor, Semantic

Information Processing. MIT Press. Cambridge, MA.

[Raphael, 1968] Raphael, B. (1968). SIR: A Computer Program for Semantic Informa-

tion Retrieval. In Minsky, M., editor, Semantic Information Processing. MIT Press,

Cambridge, MA.

[Rossignac et al., 1988] Rossignac, J., Borrel, P., and Nackman, L. (1988). Interactive

Design with Sequences of Parameterized Transformations. In Intelligent CAD Systems

2: Implementational Issues. Springer-Verlag, New York, NY.

[Rumbaugh et al., 1991] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, E, and Lorensen,

W. (1991). Object-Oriented Modeling and Design. Prentice-Hall, Inc., Englewood Cliffs,

NJ.

[Serrano, 1987] Serrano, D. (1987). Constraint Management in Conceptual Design. PhD

thesis, Massachusetts Institute of Technology.

[Sheridan, 1993] Sheridan, J. (1993). Personal Conversation.

[Souder, 1988] Souder, W. (1988). Managing Relations between R&D and Marketing in

New Product Development Projects. ComputeJournal of Product Innovation Manage-

ment, 5:6-19.

225

BIBLIOGRAPHY

[Sriram, 1988] Sriram, D. (1988). Intelligent Systems for Engineering: Knowledge-based

and Neural Networks. Technical report, IESL, MIT.

[Sriram et al., 1994] Sriram, D., Gupta, A., Wong, A., Vemulapati, M., Gorti, S., Fromont,

B., Su, V., and Vaidya, V. (1994). An Object-Oriented Knowledge Based Building Tool

for Engineering Applications. IESL Technical Report IESL-91, MIT.

[Sriram and Logcher, 1993] Sriram, D. and Logcher, R. (1993). The MIT Dice Project.

Computer, 26(1):64-65.

[Sriram et al., 1989] Sriram, D., Logcher, R., Groleau, N., and Cherneff, J. (1989). DICE:

An object-Oriented Programming Environment for Cooperative Engineering Design.

IESL Technical Report IESL-89-03, MIT.

[Sriram et al., 1991] Sriram, D., Wong, A., , and He, L. (1991). GNOMES: An Object-

Oriented Non-manifold Geometric Engine. IESL Technical Report IESL-91, MIT.

[Stefik and Bobrow, 1986] Stefik, M. and Bobrow, D. (1986). Object-Oriented Program-

ming: Themes and Variation. AI Magazine, 6(4).

[Sycara, 1989] Sycara, K. (1989). Cooperative Negotiation in Concurrent Engineering

Design. In D.Sriram, Logcher, R., and Fukuda, S., editors, Proceedings of MIT-JSME

Workshop in Computer-Aided Cooperative Product Development, pages 269-297,

Cambridge, MA USA.

[Thompson and Lu, 1990] Thompson, J. and Lu, S. (1990). Design Evolution Manage-

ment: A Methodology for Representing and Using Design Rationale. In Proceedings

of the Second International ASME Conference on Design Theory and Methodology.

ASME, ASME.

226

BIBLIOGRAPHY

[Toulmin, 1958] Toulmin, S. (1958). The Uses ofArgument. Cambridge University Press,

Cambridge, England.

[White et al., 1972] White, R., Gergely, P., and Sexsmith, R. (1972). Structural Engineer-

ing. John Wiley & Sons, Inc., NY, USA.

[Will, 1991] Will, P. (1991). Design Information Handling. In Proceedings of the NSF

Workshop on Information Capture and Access in Engineering Design Environments,

pages 25-34, Ithaca, NY.

[Winston, 1984] Winston, P. (1984). Artificial Intelligence. Addison-Wesley Publishing

Co., Inc., Reading, MA, second edition.

[Winston and Horn, 1984] Winston, P. and Horn, B. (1984). LISP. Addison-Wesley

Publishing Co., Inc., Reading, MA, second edition.

[Wong, 1993] Wong, A. (1993). SHARED Workspaces for Computer-Aided Collaborative

Engineering. PhD thesis, Massachusetts Institute of Technology.

[Wong and Sriram, 1993a] Wong, A. and Sriram, D. (1993a). An Extended Object Model

for Design Representation. IESL Technical Report. In preparation.

[Wong and Sriram, 1993b] Wong, A. and Sriram, D. (1993b). SHARED: An Information

Model for Cooperative Product Development. Research in Engineering Design. Fall

1993.

[Woodson, 1966] Woodson, T. (1966). Introduction to Engineering Design. McGraw-Hill,

Inc., New York, NY.

227

