
MIT Open Access Articles

Decentralized control of Partially Observable Markov
Decision Processes using belief space macro-actions

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Omidshafiei, Shayegan, Ali-akbar Agha-mohammadi, Christopher Amato, and Jonathan
P. How. “Decentralized Control of Partially Observable Markov Decision Processes Using Belief
Space Macro-Actions.” 2015 IEEE International Conference on Robotics and Automation (ICRA)
(May 2015).

As Published: http://dx.doi.org/10.1109/ICRA.2015.7140035

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/116391

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/116391
http://creativecommons.org/licenses/by-nc-sa/4.0/

Decentralized Control of Partially Observable Markov Decision
Processes using Belief Space Macro-actions

Shayegan Omidshafiei, Ali-akbar Agha-mohammadi, Christopher Amato, Jonathan P. How

Abstract— The focus of this paper is on solving multi-
robot planning problems in continuous spaces with partial
observability. Decentralized Partially Observable Markov De-
cision Processes (Dec-POMDPs) are general models for multi-
robot coordination problems, but representing and solving Dec-
POMDPs is often intractable for large problems. To allow
for a high-level representation that is natural for multi-
robot problems and scalable to large discrete and continu-
ous problems, this paper extends the Dec-POMDP model to
the Decentralized Partially Observable Semi-Markov Decision
Process (Dec-POSMDP). The Dec-POSMDP formulation allows
asynchronous decision-making by the robots, which is crucial in
multi-robot domains. We also present an algorithm for solving
this Dec-POSMDP which is much more scalable than previous
methods since it can incorporate closed-loop belief space macro-
actions in planning. These macro-actions are automatically
constructed to produce robust solutions. The proposed method’s
performance is evaluated on a complex multi-robot package
delivery problem under uncertainty, showing that our approach
can naturally represent multi-robot problems and provide high-
quality solutions for large-scale problems.

I. INTRODUCTION

Many real-world multi-robot coordination problems oper-
ate in continuous spaces where robots possess partial and
noisy sensors. In addition, asynchronous decision-making
is often needed due to stochastic action effects and the
lack of perfect communication. The combination of these
factors makes control very difficult. Ideally, high-quality
controllers for each robot would be automatically generated
based on a high-level domain specification. In this paper, we
present such a method for both formally representing multi-
robot coordination problems and automatically generating
local planners based on the specification. While these local
planners can be a set of hand-coded controllers, we also
present an algorithm for automatically generating controllers
that can then be sequenced to solve the problem. The result is
a principled method for coordination in probabilistic multi-
robot domains.

The most general representation of the multi-robot co-
ordination problem is the Decentralized Partially Observ-
able Markov Decision Process (Dec-POMDP) [8]. Dec-
POMDPs have a broad set of applications including network-
ing problems, multi-robot exploration, and surveillance [9],
[10], [19], [20]. Unfortunately, current Dec-POMDP solution
methods are limited to small discrete domains and require
synchronized decision-making. This paper extends promis-
ing recent work on incorporating macro-actions, temporally

S. Omidshafiei, A. Agha, and J.P. How are with the Laboratory for
Information and Decision Systems (LIDS), MIT, Cambridge, MA. C. Amato
is with the Dept. of Computer Science at the University of New Hampshire,
Durham, NH. Work for this paper was completed while all authors were at
MIT. {shayegan,aliagha,camato,jhow}@mit.edu

Fig. 1. Package delivery domain with key elements labeled.

extended actions, [4], [5] to solve continuous and large-scale
problems which were infeasible for previous methods.

Macro-actions (MAs) have provided increased scalability
in single-agent MDPs [18] and POMDPs [1], [11], [14], but
are nontrivial to extend to multi-agent settings. Some of the
challenges in extending MAs to decentralized settings are:
• In the decentralized setting, synchronized decision-making
is problematic (or even impossible) as some robots must
remain idle while others finish their actions. The resulting so-
lution quality would be poor (or not implementable), result-
ing in the need for MAs that can be chosen asynchronously
by the robots (an issue that has not been considered in the
single-agent literature).
• Incorporating principled asynchronous MA selection is a
challenge, because it is not clear how to choose optimal MAs
for one robot while other robots are still executing. Hence, a
novel formal framework is needed to represent Dec-POMDPs
with asynchronous decision-making and MAs that may last
varying amounts of time.
• Designing these variable-time MAs also requires charac-
terizing the stopping time and probability of terminating at
every goal state of the MAs. Novel methods are needed that
can provide this characterization.

MA-based Dec-POMDPs alleviate the above problems by
no longer attempting to solve for a policy at the primitive
action level, but instead considering temporally-extended
actions, or MAs. This also addresses scalability issues, as
the size of the action space is considerably reduced.

In this paper, we extend the Dec-POMDP to the Decen-
tralized Partially Observable Semi-Markov Decision Process
(Dec-POSMDP) model, which formalizes the use of closed-
loop MAs. The Dec-POSMDP represents the theoretical
basis for asynchronous decision-making in Dec-POMDPs.
We also automatically design MAs using graph-based plan-
ning techniques. The resulting MAs are closed-loop and the
completion time and success probability can be characterized

analytically, allowing them to be directly integrated into
the Dec-POSMDP framework. As a result, our framework
can generate efficient decentralized plans which take advan-
tage of estimated completion times to permit asynchronous
decision-making. The proposed Dec-POSMDP framework
enables solutions for large domains (in terms of state/action/
observation space) with long horizons, which are otherwise
computationally intractable to solve. We leverage the Dec-
POSMDP framework and design an efficient discrete search
algorithm for solving it, and demonstrate the performance of
the method for the complex problem of multi-robot package
delivery under uncertainty (Fig. 1).

II. PROBLEM STATEMENT

A Dec-POMDP [8] is a sequential decision-making prob-
lem where multiple agents (e.g., robots) operate under un-
certainty based on different streams of observations. At
each step, every agent chooses an action (in parallel) based
purely on its local observations, resulting in an immediate
reward and an observation for each individual agent based
on stochastic (Markovian) models over continuous states,
actions, and observation spaces.

We define a notation aimed at reducing ambiguities when
discussing single agents and multi-agent teams. A generic
parameter p related to the i-th agent is noted as p(i),
whereas a joint parameter for a team of n agents is noted as
p̄ = (p(1), p(2), · · · , p(n)). Environment parameters or those
referring to graphs are indicated without parentheses, for
instance pi refers to a parameter of a graph node, and pij to
a parameter of a graph edge.

Formally, the Dec-POMDP problem we consider in this
paper is described by the following elements:
• I = {1, 2, · · · , n} is a finite set of agents’ indices.
• S̄ is a continuous set of joint states. Joint state space

can be factored as S̄ = X̄ × Xe where Xe denotes the
environmental state and X̄ = ×iX(i) is the joint state
space of robots, with X(i) being the state space of the
i-th agent. X(i) is a continuous space. We assume Xe
is a finite set.

• Ū is a continuous set of joint actions, which can be
factored as U = ×iU(i), where U(i) is the set of actions
for the i-th agent.

• State transition probability density function is denoted
as p(s̄′|s̄, ū), that specifies the probability density of
transitioning from state s̄ ∈ S̄ to s̄′ ∈ S̄ when the actions
ū ∈ Ū are taken by the agents.

• R̄ is a reward function: R̄ : S̄× Ū→ R, the immediate
reward for being in joint state x̄ ∈ X̄ and taking the
joint action ū ∈ Ū.

• Ω̄ is a continuous set of observations obtained by all
agents. It is factored as Ω̄ = Z̄× Z̄e, where Z̄ = ×iZ(i)

and Z̄e = ×iZe(i). The set Z(i) × Ze(i) is the set
of observations obtained by the i-th agent. Ze(i) is
the observation that is a function of the environmental
state xe ∈ Xe. We assume the set of environmental
observations Ze(i) is a finite set for any agent i.

• Observation probability density function h(ō|s̄, ū) en-
codes the probability density of seeing observations

Dec-POSMDP

Task Macro-actions (TMA)

Local Macro-actions (LMA)

in belief space

Agent 1 Agent 2 Agent 3 Agent 4

Fig. 2. Hierarchy of the proposed planner. In the highest level, a
decentralized planner assigns a TMA to each robot. Each TMA encompasses
a specific task (e.g. picking up a package). Each TMA in turn is constructed
as a set of local macro-actions (LMAs). Each LMA (the lower layer) is a
feedback controller that acts as a funnel. LMAs funnel a large set of beliefs
to a small set of beliefs (termination belief of the LMA).

ō ∈ Ω̄ given joint action ū ∈ Ū is taken which resulted
in joint state s̄ ∈ S̄.

Note that a general Dec-POMDP need not have a factored
state space such as the one given here.

The solution of a Dec-POMDP is a collection of de-
centralized policies η̄ = (η(1), η(2), · · · , η(n)). Because (in
general) each agent does not have access to the observations
of other agents, each policy η(i) maps the individual data
history (obtained observations and taken actions) of the i-
th agent into its next action: uit = η(i)(H

(i)
t), where H(i)

t =

{o(i)
1 , u

(i)
1 , o

(i)
2 , u

(i)
2 , · · · , o(i)

t−1, u
(i)
t−1, o

(i)
t }, where o(i) ∈ Z(i).

Note that the final observation o
(i)
t after action u

(i)
t−1 is

included in the history.
According to above definition, we can define the value

associated with a given policy η̄ starting from an initial joint
state distribution b̄:

V η̄(b̄) = E

[∞∑
t=0

γtR̄(s̄t, ūt)|η̄, p(s̄0) = b̄

]
(1)

Then, a solution to a Dec-POMDP formally can be defined
as the optimal policy:

η̄∗ = arg max
η̄

V η̄ (2)

The Dec-POMDP problem stated in (2) is undecidable
over continuous spaces without additional assumptions. In
discrete settings, recent work has extended the Dec-POMDP
model to incorporate macro-actions which can be executed
in an asynchronous manner [5]. In planning with MAs,
decision making occurs in a two layer manner (see Fig.
2). A higher-level policy will return a MA for each agent
and the selected MA will return a primitive action to be
executed. This approach is an extension of the options
framework [18] to multi-agent domains while dealing with
the lack of synchronization between agents. The options
framework is a formal model of MAs [18] that has been very
successful in aiding representation and solutions in single
robot domains [12], [14]. Unfortunately, this method requires
a full, discrete model of the system (including macro-action
policies of all agents, sensors and dynamics).

As an alternative, we propose a Dec-POSMDP model
which only requires a high-level model of the problem.
The Dec-POSMDP provides a high-level discrete planning
formalism which can be defined on top of continuous spaces.
As such, we can approximate the continuous multi-robot
coordination problems with a tractable Dec-POSMDP for-
mulation. Before defining our more general Dec-POSMDP
model, we first discuss the form of MAs that allow for
efficient planning within our framework.

III. HIERARCHICAL GRAPH-BASED MACRO-ACTIONS

This section introduces a mechanism to generate complex
MAs based on a graph of lower-level simpler MAs, which
is a key point in solving Dec-POSMDPs without explicitly
computing success probabilities, times, and rewards of MAs
in the decentralized planning level. We refer to the generated
complex MAs as Task MAs (TMAs).

As we discuss in the next section, for a seamless incor-
poration of MAs into Dec-POSMDP planning, we need to
design closed-loop MAs, which is a challenge in partially-
observable settings. In this paper, we utilize information
roadmaps [1] as a substrate to efficiently and robustly gen-
erate such TMAs. We start by discussing the structure of
feedback controllers in partially observable domains.

A macro-action π(i) for the i-th agent maps the histories
Hπ(i)

of actions and observations that have occurred to the
next action the agent should take, u = π(i)(Hπ(i)

). Note
that the environmental observations are only obtained when
the MA terminates. We compress this history into a belief
b(i) = p(x(i)|Hπ(i)

), with joint belief for the team denoted
by b̄ = (b(1), b(2), · · · , b(n)). It is well known [13] that
making decisions based on belief b(i) is equivalent to making
decisions based on the history Hπ(i)

in a POMDP.
Each TMA is a graph of simpler Local Macro-Actions

(LMAs). Each LMA is a local feedback controller that maps
current belief b(i) of the i-th agent to an action. A simple
example is a linear LMA µ(b) = −L(x̂+ − v), where L is
the LMA gain, x̂+ is the first moment (mean) of belief b
and v is the desired mean value. It can be shown that using
appropriate filters to propagate the belief and appropriate
LMA gains, the LMA can drive the system’s belief to a
particular region (attractor of LMA) in the belief space
denoted by B = {b : ‖b − b̌‖ ≤ ε}, where b̌ is known
for a given v and gain L [1]. We refer to B as a milestone,
which is comprised of a set of beliefs.

Each TMA is constructed incrementally using sampling-
based methods. Alg. 1 recaps the construction of a TMA.
We sample a set of LMA parameters {θj = (Lj ,vj)} (Line
4) and generate corresponding LMAs {µj}. Associated with
the j-th LMA, we compute the j-th milestone center b̌j and
its ε-neighborhood milestone Bj = {b : ‖b − b̌j‖ ≤ ε}
(Line 5). We connect Bj to its k-nearest neighbors via their
corresponding LMAs. In other words, for neighboring nodes
Bi and Bj , we use LMA Lij = µj to take the belief from Bi

to Bj (Line 7). One can view a TMA as a graph whose nodes
are V = {Bj} and whose edges are LMAs L = {Lij} (Fig.
2). We denote the set of available LMAs at Bi by L(i). To
incorporate the lower-level state constraints (e.g., obstacles)

Algorithm 1: TMA Construction (Offline)

1 Procedure : ConstructTMA(b,vgoal,M)
2 input : Initial belief b, mean of goal belief vgoal, task

POMDP M;
3 output : TMA policy π∗, success probability of TMA
P (Bgoal|b0, π∗), value of taking TMA V (b0, π

∗);
4 Sample a set of LMA parameters {θj}n−2

j=1 from the
state space of M, where θn−2 includes vgoal;

5 Corresponding to each θj , construct a milestone Bj in
belief space;

6 Add to them the (n− 1)-th node as the singleton
milestone Bn = {b}, and the n-th node as the
constraint milestone B0;

7 Connect milestones using LMAs Lij ;
8 and compute the LMA rewards, execution time, and

transition probabilities by simulating LMAs offline;
9 Solve the LMA graph DP in (3) to construct TMA π∗;

10 Compute the associated success probability
P (Bgoal|b, π∗), completion time T (Bj |b, π∗) ∀j, and
value V (b, π∗);

11 return TMA policy π∗, success probability
P (Bgoal|b, π∗), completion time T (Bj |b, π∗), ∀j, and
value V (b, π∗)

and control constraints, we augment the set of nodes V with
a hypothetical node B0 that represents the constraints (Line
6). Therefore, while taking any Lij , there is a chance that
system ends up in B0 (i.e., violates the constraints). For more
details on this procedure see [17], [1].

We can simulate the behavior of LMA Lij at Bi offline
(Line 8) and compute the probability of landing in any given
node Br, which is denoted by P (Br|Bi,Lij). Similarly, we
can compute the reward of taking LMA Lij at Bi offline,
which is denoted by R(Bi,Lij) and defined as the sum
of one-step rewards under this LMA. Finally, by T ij =
T (Bi,Lij) we denote the time it takes for LMA Lij to
complete its execution starting from Bi.

A. Utilizing TMAs in the Decentralized Setting

In a decentralized setting, the following properties of
the macro-action need to be available to the high-level
decentralized planner: (i) TMA value from any given initial
belief, (ii) TMA completion time from any given belief,
and (iii) TMA success probability from any given belief.
What makes computing these properties challenging is the
requirement that they need to be calculated for every possible
initial belief. Every belief is needed because when one
agent’s TMA terminates, the other agents might be in any
belief while still continuing to execute their own TMA. This
information about the progress of agents’ TMAs is needed
for nontrivial asynchronous TMA selection.

In the following, we discuss how the graph-based structure
of our proposed TMAs allows us to compute a closed-form
equation for the success probability, value, and time. As a
result, when evaluating the high-level decentralized policy,
these values can be efficiently retrieved for any given start
and goal states. This is particularly important in decentralized

multi-agent planning since the state/belief of the j-th agent
is not known a priori when the MA of i-th agent terminates.

A TMA policy is defined as a policy that is found by
performing dynamic programming on the graph of LMAs.
Consider a graph of LMAs that is constructed to perform a
simple task such as open-the-door, pick-up-a-package, move-
a-package, etc. Depending on the goal belief of the task, we
can solve the dynamic programming problem on the LMA
graph that leads to a policy which achieves the goal while
trying to maximize the accumulated reward and taking into
account the probability of hitting failure set B0. Formally,
we need to solve the following DP:

V ∗(Bi, π∗)=max
L∈L(i)

{
R(Bi,L)+

∑
j

P (Bj |Bi,L)V ∗(Bj)
}
,∀i

(3)

π∗(Bi)=arg max
L∈L(i)

{
R(Bi,L)+

∑
j

P (Bj |Bi,L)V ∗(Bj)
}
,∀i

where V ∗(·) is the optimal value defined over the graph
nodes with V (Bgoal) set to zero and V (B0) set to a suitable
negative reward for violating constraints. Here, π∗(·) is
the resulting TMA (Line 9). The primitive actions can be
retrieved from the TMA via a two-stage computation: the
TMA picks the best LMA at each milestone and the LMA
generates the next action based on the current belief until the
system reaches the next milestone; i.e., uk+1 = π∗(B)(bk) =
L(bk) where B is the last visited milestone and L = π∗(B)
is the best LMA chosen by TMA at milestone B. The space
of TMAs is denoted as T = {π}.

For a given optimal TMA π∗, the associated optimal value
V ∗(Bi, π∗) from any node Bi is computed via solving
(3). Also, using Markov chain theory we can analytically
compute the probability P (Bgoal|Bi, π∗) of reaching the
goal node Bgoal under the optimal TMA π∗ starting from
any node Bi in the offline phase [1].

Similarly, we can compute the time it takes for the TMA
to go from Bi to Bgoal under any TMA π as follows:

T g(Bi;π) = T (Bi, π(Bi))

+
∑
j

P (Bj |Bi, π(Bi))T g(Bj ;π), ∀i (4)

where T g(B;π) denotes the time it takes for TMA π to
take the system from B to TMA’s goal. Defining T i =
T (Bi, π(Bi)) and T̄ = (T 1, T 2, · · · , T n)T we can write
(4) in its matrix form as:

T̄ g = T̄ + P̄ T̄ g ⇒ T̄ g = (I − P̄)−1T̄ (5)

where T̄ g is a column vector with i-th element equal to
T g(Bi;π) and P̄ is a matrix with (i, j)-th entry equal to
P (Bj |Bi, π(Bi)).

Therefore, a TMA can be used in a higher-level planning
algorithm as a MA whose success probability, execution
time, and reward can be computed offline.

B. Environmental State and Updated Model

We also extend TMAs to the multi-agent setting where
there is an environmental state that is locally observable by
agents and can be affected by other agents.

We denote the environment state (e-state) at the k-th
time step as xek ∈ Xe. It encodes the information in
the environment that can be manipulated and observed by
different agents. We assume xek is only locally (partially)
observable. An example for xek in the package delivery
application (presented in Section V) is “there is a package
in the base”. An agent can only get this measurement if the
agent is in the base (hence it is partial).

Any given TMA π is only available at a subset of e-
states, denoted by Xe(π). In many applications Xe(π) is a
small finite set. Thus, we can extend the cost and transition
probabilities of TMA π for all xe ∈ Xe by performing the
TMA evaluation described in Section III-A for all xe ∈ Xe.

We extend transition probabilities P (Bgoal|b, π) to take
the e-state into account, i.e., P (Bgoal, xe

′ |b, xe, π), which
denotes the probability of getting to the goal region Bgoal

and e-state xe
′

starting from belief b and e-state xe under the
TMA policy π. Similarly, the TMA’s value function V (b, π)
is extended to V (b, xe, π), for all xe ∈ Xe(π).

The joint reward R̄(x̄, xe, ū) encodes the reward obtained
by the entire team, where x̄ = (x(1), · · · , x(n)) is the set of
states for different agents and ū = (u(1), · · · , u(n)) is the set
of actions taken by all agents.

We assume the joint reward is a multi-linear function of
a set of reward functions {R(1), · · · , R(n)} and RE , where
R(i) only depends on the i-th agent’s state and RE depends
on all the agents. In other words, we have:

R̄(x̄, xe, ū) = g
(
R(1)(x(1), xe, u(1)), R(2)(x(2), xe, u(2)),

· · · , R(n)(x(n), xe, u(n)), RE(x̄, xe, ū)
)

(6)

In multi-agent planning domains, often computing RE is
computationally less expensive than computing R̄, which
is the property we exploit in designing the higher-level
decentralized algorithm.

The joint reward R̄(b̄, xe, ū) encodes the reward obtained
by the entire team, where b̄ = (b(1), · · · , b(n)) is the joint
belief and ū is the joint action defined previously.

Similarly, the joint policy φ̄ = {φ(1), · · · , φ(n)} is the set
of all decentralized policies, where φ(i) is the decentralized
policy associated with the i-th agent. In the next section, we
discuss how these decentralized policies can be computed
based on the Dec-POSMDP formulation.

Joint value V̄ (b̄, xe0, φ̄) encodes the value of executing the
collection φ̄ of decentralized policies starting from e-state xe0
and initial joint belief b̄.

IV. THE DEC-POSMDP FRAMEWORK

In this section, we formally introduce the Dec-POSMDP
framework. We discuss how to transform a continuous Dec-
POMDP to a Dec-POSMDP using a finite number of TMAs,
allowing discrete domain algorithms to generate a decentral-
ized solution for general continuous problems.

We denote the high-level decentralized policy for the i-
th agent by φ(i) : Ξ(i) → T(i), where Ξ(i) is the macro-
action history for the i-th agent (as opposed to the action-
observation history), which is formally defined as:

Ξ
(i)
k =(o

e(i)
1 , π

(i)
1 , H

(i)
1 , o

e(i)
2 , π

(i)
2 , H

(i)
2 , . . . , π

(i)
k−1, H

(i)
k−1, o

e(i)
k)

which includes the chosen macro-actions π(i)
1:k−1, the action-

observation histories under chosen macro-actions H
(i)
1:k−1,

and the environmental observations o
e(i)
1:k received at the

termination of macro-actions.
Accordingly, we can define a joint policy φ̄ =

(φ(1), φ(2), . . . , φ(n)) for all agents and a joint macro-action
policy as π̄ = (π(1), π(2), . . . , π(n)).

Each time an agent completes a TMA, it receives
an observation of the e-state xe, denoted by oe. Also,
due to the special structure of the proposed TMAs, we
can record the agent’s final belief bf at TMA’s termina-
tion (which compresses the entire history H under that
TMA). We denote this pair as ŏ = (bf , oe). As a re-
sult, we can compress the macro-action history as Ξ

(i)
k =

{ŏ(i)
1 , π

(i)
1 , ŏ

(i)
2 , π

(i)
2 , · · · , ŏ(i)

k−1, π
(i)
k−1, ŏ

(i)
k }.

The value of joint policy φ̄ is

V̄ φ̄(b̄) = E

[∞∑
t=0

γtR̄(s̄t, ūt)|φ̄, {π̄}, p(s̄0) = b̄

]
, (7)

but it is unclear how to evaluate this equation without
a full (discrete) low-level model of the domain. Even in
that case, it would often be intractable to calculate the
value directly. Therefore, we will formally define the Dec-
POSMDP problem, which has the same goal as the Dec-
POMDP problem (finding the optimal policy), but in this
case we seek the optimal policy for choosing macro-actions
in our semi-Markov setting:

φ̄∗ = arg max
φ̄

V̄ φ̄(b̄) (8)

Definition 1: (Dec-POSMDP) The Dec-POSMDP frame-
work is described by the following elements
• I = {1, 2, · · · , n} is a finite set of agents’ indices.
• B(1) × B(2) × . . . × B(n) × Xe is the underlying state

space for the proposed Dec-POSMDP, where B(i) is the
set of belief milestones of i-th agent’s TMAs (i.e., T(i)).

• T = T(1) × T(2) . . . × T(n) is the space of high-level
actions in Dec-POSMDP, where T(i) is the set of TMAs
for the i-th agent.

• P (b̄′, xe
′
, k|b̄, xe, π̄) denotes the transition probability

under joint TMA policy π̄ from a given b̄, xe to b̄′, xe
′

as described below.
• R̄τ(b̄, xe, π̄) denotes the reward/value of taking TMA π̄

at b̄, xe as described below.
• Ŏ is the set of environmental observations.
• P (¯̆o|b̄, xe) denotes the observation likelihood model.

Again, a general Dec-POSDMP need not have a factored
state space. Also, while the state space is very large, macro-
actions allow much of it to be ignored once these high-level
transition, reward and observation functions are calculated.

Below, we describe the above elements in more detail.
For further explanation and derivations, please see [17]. The
planner φ̄ = {φ(1), φ(2), · · · , φ(n)} that we construct in this
section is fully decentralized in the sense that each agent
i has its own policy φ(i) : Ξ(i) → T(i) that generates the
next TMA based on the history of TMAs taken and the
observation perceived solely by the i-th agent.

Each policy φ(i) is a discrete controller, represented by a
(policy) graph [3], [15]. Each node of the discrete controller
corresponds to a TMA. Note that different nodes in the
controller could use the same TMA. Each edge in this graph
is an ŏ. An example discrete controller for a package delivery
domain is illustrated in Fig. 3.

Consider a joint TMA π̄ = (π(1), π(2), · · · , π(n)) for the
entire team. Incorporating terminal conditions for different
agents, we can evaluate the set of decentralized TMAs until
at least one of them stops as:

R̄τ(b̄, xe, π̄)=E

[
τ̄min∑
t=0

γtR̄(x̄k, x
e
k, ūk)|π̄, p(x̄0)= b̄, xe0 =xe

]
where τ̄min = min

i
min
t
{t : b

(i)
t ∈ B(i),goal} (9)

It can be shown that the probability of transitioning
between two configurations (from b̄, xe to b̄′, xe

′
) after k

steps under the joint TMA π̄ is given by:

P (b̄′, xe
′
, k|b̄, xe, π̄) = P (xe

′

k , b̄
′
k|xe0, b̄0, π̄)

=
∑

xe
k−1,b̄k−1

[
P (xe

′

k |xek−1, π̄(b̄k−1))×

P (b̄′k|xek−1, b̄k−1, π̄(b̄k−1))P (xek−1, b̄k−1|xe0, b̄0, π̄)
]

(10)

Joint value V̄ φ̄(b̄, xe) then encodes the value of executing
the collection φ̄ of decentralized policies starting from e-
state xe0 and initial joint belief b̄0. The below equation
describes the value transformation from the primitive actions
to TMAs, which is vital for allowing us to efficiently perform
evaluation. Details of this derivation can be found in [17].

V̄ φ̄(b̄0, x
e
0) = E

[∞∑
t=0

γtR̄(x̄t, x
e
t , ūt)|φ̄, b̄0, xe0

]

= E

[∞∑
k=0

γtkR̄τ (b̄tk , x
e
tk
, π̄tk)|φ̄, b̄0, xe0

]
(11)

where tk = mini mint{t > tk−1 : b
(i)
t ∈ B(i),goal} and

π̄ = φ̄(b̄, xe).
The dynamic programming formulation corresponding to

the defined joint value function over MAs is:

V̄ φ̄(b̄,xe) = R̄τ (b̄, xe, π̄)+
∞∑
k=0

γtk
∑
b̄′,xe′

P (b̄′, xe
′
, k|b̄, xe, π̄)V̄ φ̄(b̄′, xe

′
) (12)

The critical reduction from the continuous Dec-POMDP
to the Dec-POSMDP over a finite number of macro-actions
is a key factor in solving large Dec-POMDP problems. In
the following section we discuss how we compute a decen-
tralized policy based on the Dec-POSMDP formulation.

A. Masked Monte Carlo Search (MMCS)

In this section, we propose an efficient and easy-to-
implement method for solving the Dec-POSMDP, referred to
as Masked Monte Carlo Search (MMCS). As demonstrated
in Section V, MMCS allows extremely large multi-agent
problems to be solved. It uses an informed Monte Carlo

Algorithm 2: MMCS

1 Procedure : MMCS(T, Ŏ, I,K)
2 input : TMA space T, environmental observation space
Ŏ, agents I, number of best policies to check K

3 output : joint policy φ̄MMCS

4 foreach agent i ∈ I do
5 masked(i) ← setToFalse();
6 φ

(i)
MMCS ← null;

7 for iterMMCS = 1 to itermax,MMCS do
8 for iterMC = 1 to itermax,MC do
9 φ̄new ← φ̄MMCS ;

10 foreach agent i ∈ I do
11 foreach (π(i), ŏ(i)) ∈ T× Ŏ do
12 if not masked(i)(π(i), ŏ(i)) then
13 φ

(i)
new(π(i), ŏ(i))←sample(T(π(i), ŏ(i)));

14 φ̄list.append(φ̄new);
15 V̄ φ̄list(b̄, x

e).append(evalPolicy(φ̄new));

16 φ̄list ←getBestKPolicies(φ̄list, V̄
φ̄
list(b̄, x

e),K);
17 (masked, φ̄MMCS)←createMask(φ̄list, V̄

φ̄
list(b̄, x

e));

18 return φ̄MMCS ;

policy sampling scheme to achieve this, exploiting results
from previous policy evaluations to narrow the search space.

Because the infinite-horizon problem is undecidable [16],
infinite-horizon methods typically focus on producing ap-
proximate solutions given a computational budget [15], [3].
A Monte Carlo approach can be implemented by repeatedly
randomly sampling from the policy space and retaining the
policy with the highest expected value as an approximate
solution. The search can be stopped at any point and the
latest iteration of the approximate solution can be utilized.

The MMCS algorithm is detailed in Alg. 2. MMCS uses a
discrete controller to represent the policy, φ(i), of each agent.
The nodes of the discrete controller are TMAs, π ∈ T, and
edges are observations, ŏ ∈ Ŏ. Each agent i transitions in
the discrete controller by completing a TMA πk, seeing an
observation ŏk, and following the appropriate edge to the
next TMA, πk+1. Fig. 3 shows part of a single agent’s policy.

MMCS initially generates a set of valid policies by ran-
domly sampling the policy space (Line 13), while adhering to
the constraint that the termination milestone of a TMA node
in the discrete controller must intersect the set of initiation
milestones of its child TMA node. The joint value, V̄ φ̄(b̄, xe),
of each policy given an initial joint belief b̄ and e-state xe

is calculated using Monte Carlo simulations (Line 15).
MMCS identifies the TMA transitions that occur most

often in the set of K-best policies, in a process called
‘masking’ (Line 17). It includes these transitions in future
iterations of the policy search by explicitly checking for
the existence of a mask for that transition, preventing the
transition from being re-sampled (Line 12). Note that the
mask is not permanent, as re-evaluation of the mask using
the K-best policies occurs in each iteration (Line 17).

The above process is repeated until a computational budget

is reached, after which the best policy, φ̄MMCS , is selected
(Line 17). MMCS offers the advantage of balancing explo-
ration and exploitation of the policy search space. Though
‘masking’ places focus on promising policies, it is done
in conjunction with random sampling, allowing previously
unexplored regions of the policy space to be sampled.

MMCS is designed for efficient search of the policy space
for a high-quality policy. The algorithm can be extended to
allow probabilistic guarantees on policy quality by allowing
probabilistic resampling (in Line 13) based on the history of
policy values, rather than using a binary mask. Error bounds
on joint policy φ̄ could then be adopted from [6] as follows:

P [V̄ φ̄
∗
(b̄)− V̄ φ̄(b̄) ≥ ε] ≤ δ (13)

That is, MMCS can be extended straightforwardly to
ensure that with probability of at least 1−δ we can construct
controllers with value within ε of optimal (for a fixed size).

V. EXPERIMENTS

In this section, we consider a package delivery under
uncertainty scenario involving a team of heterogeneous
robots, an application which has recently received particular
attention [2], [7]. The overall objective in this problem is to
retrieve and deliver packages from base locations to delivery
locations using a group of robots.

Though our method is general and can be used for many
decentralized planning problems, this domain was chosen
due to its extreme complexity. For instance, the experiments
conducted use a policy controller with 13 nodes, resulting in
a policy space with cardinality 5.622e+17 in the package de-
livery domain, making it computationally intractable to solve.
Additional challenges stem from the presence of different
sources of uncertainty (wind, actuator, sensor), obstacles and
constraints in the environment, and different types of tasks
(pick-up, drop-off, etc.). Also, the presence of joint tasks
such as joint pickup of large packages introduces a signif-
icant multi-robot coordination component. This problem is
formulated as a Dec-POMDP in continuous space, and hence
current Dec-POMDP methods are not applicable. Even if we
could modify the domain to allow their use, discretizing the
state/action/observation space in this problem would lead to
poor solution quality or computational intractability.

Fig. 1 illustrates the package delivery domain. Robots
are classified into two categories: air vehicles (quadcopters)
and ground vehicles (trucks). Air vehicles handle pickup
of packages from bases, and can also deliver packages to
two delivery locations, Dest1 and Dest2. An additional
delivery location Destr exists in a regulated airspace, where
air vehicles cannot fly. Packages destined for Destr must
be handed off to a ground vehicle at a rendezvous location.
The ground vehicle is solely responsible for deliveries in this
regulated region. Rewards are given to the team only when
a package is dropped off at its correct delivery destination.

Packages are available for pickup at two bases in the
domain. Each base contains a maximum of one package,
and a stochastic generative model is used for allocating
packages to bases. Each package has a designated delivery
location, δ ∈ ∆ = {d1, d2, dr}. Additionally, each base has

a size descriptor for its package, ψ ∈ Ψ = {∅, 1, 2}, where
ψ = ∅ indicates no package at the base, ψ = 1 indicates
a small package, and ψ = 2 indicates a large package.
Small packages can be picked up by a single air vehicle,
whereas large packages require cooperative pickup by two air
vehicles. The descriptors of package destinations and sizes
will implicitly impact the policy of the decentralized planner.

To allow coordination of cooperative TMAs, an e-state
stating the availability of nearby vehicles, φ ∈ Φ = {0, 1},
is observable at any base or at the rendezvous location, where
φ = 1 signifies that another robot is at the same milestone
(or location) as the current robot and φ = 0 signifies that all
other robots are outside the current robot’s milestone.

A robot at any base location can, therefore, observe the
e-state xe = (ψ, δ, φ) ∈ Ψ × ∆ × Φ, which contains
details about the availability and the size of the package
at the base (if it exists), the delivery destination of the
package, and availability of nearby robots (for performing
cooperative tasks). A robot at the rendezvous location can
observe xe = φ ∈ Φ for guidance of rendezvous TMAs.

We assume one ground robot and two air robots are used,
with two base locations Base1 and Base2. Air robots are
initially located at Base1 and the ground robot is at Destr.
If b(i) ∈ Basej , we say the i-th robot is at the j-th base.

The available TMAs in this domain are:
• Go to base Basej for j ∈ {1, 2}
• Go to delivery destination Destj for j ∈ {1, 2, r}
• Joint go to delivery destination Destj for j ∈ {1, 2}
• Individually/Joint pick up package
• Individually/Joint put down package
• Go to rendezvous location
• Place package on truck
• Wait at current location
Each TMA is defined with an associated initiation and ter-

mination set. For instance, “Go to Basej” TMA is defined:
• Robots involved: 1 air robot.
• Initiation set: An air robot i is available, as indicated

by e-state φ at the current belief milestone.
• Termination set: robot i available and b(i) ∈ Basej .

The robot’s belief and the e-state affect the TMA’s behavior.
For instance, the behavior of the “Go to Basej” TMA will
be affected by the presence of obstacles for different robots.
For details on the definition of other TMAs, see [17].

To generate a closed-loop policy corresponding to each
TMA, we follow the procedure explained in Section III. For
example, for the “Go to Basej” TMA, the state of system
consists of the air robot’s pose (position and orientation).
Thus, the belief space for this TMA is the space of all
possible probability distributions over the system’s pose. To
follow the procedure in Section III, we incrementally sample
beliefs in the belief space, design corresponding LMAs,
generate a graph of LMAs, and use dynamic programming
on this graph to generate the TMA policy. Fig. 4 shows
performance of an example TMA (“Go to Dest1”). The
results show that the TMA is optimized to achieve the
goal in the manner that produces the highest value, but its
performance is robust to noise and tends to minimize the
constraint violation probability. A key observation is that the

Go To Base 1

Pick Up Package

Go To Delivery

Destination 1

Put Down

Package
Go To Base 2

(ψ = 1, δ = 1, ϕ = 0)

(ψ = 1, δ = 1, ϕ = 0)

(ψ = 2, δ = 3, ϕ = 0)

Fig. 3. Partial view of a single robot’s policy obtained using MMCS for the
package delivery domain. In this discrete policy controller, nodes represent
TMAs and edges represent e-states. Greyed out edges represent connections
to additional nodes which have been excluded to simplify the figure.

value function is available over the entire space. The same is
true for the success probability and completion time of the
TMA. This information can then be directly used by MMCS
to perform evaluation of policies that use this macro-action.

A portion of a policy for a single air robot in the package
delivery domain is illustrated in Fig. 3. The policy involves
going to Base1 and observing xe. Subsequently, the robot
chooses to either pick up the package (alone or with another
robot) or go to Base2. The full policy controller includes
more nodes than shown in Fig. 3 (for all possible TMAs) as
well as edges (for all possible environment observations).

Fig. 5 compares a uniform random Monte Carlo search
to MMCS in the package delivery domain. Results for the
Monte Carlo search were generated by repeatedly sampling
random, valid policies and retaining the policy with the high-
est expected value. Both approaches used a policy controller
with a fixed number of nodes (nnodes = 13). Results indicate
that given a fixed computational budget (quantified by the
number of search iterations), MMCS outperforms standard
Monte Carlo search in terms of expected value. Specifically,
as seen in Table I, after 1000 search iterations in the package
delivery problem, the expected value of the policy from
MMCS is 118% higher than the one obtained by Monte
Carlo search. Additionally, due to this problem’s extremely
large policy space, determination of an optimal joint value
through exhaustive search is not possible. Fig. 5 illustrates
MMCS’s ability to exploit previous policy samples to bias
towards well-performing regions of the policy space, while
using random sampling for further exploration of the space.

To more intuitively quantify performance of MMCS and
Monte Carlo policies in the package delivery domain, Fig. 6
compares success probability of delivering a given minimum

Delivery location

Base location

Obstacles

Fig. 4. This figure shows the value of “Go to Dest1” TMA over its belief
space (only the 2D mean part is shown).

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration

P
ol

ic
y

V
al

ue

MC Search Best Policy

MC Search Samples

MC Search Moving Average (n = 100)

MMCS Best Policy

MMCS Samples

MMCS Moving Average (n = 100)

Fig. 5. Comparison of policy differences between MC and MMCS. Moving
average of policy values (over 100 samples) are also indicated.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Packages

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Monte Carlo Search
MMCS

Fig. 6. Success probability (of delivering the specified number of packages
or more) within a fixed time horizon.

number of packages for both methods, within a fixed mission
time horizon. Results were generated over 250 simulated runs
with randomly-generated packages and initial conditions.
Using the Monte Carlo policy, probability of successfully
delivering more than 4 packages given a fixed time horizon
is near zero, whereas the MMCS policy successfully delivers
a larger number of packages (in some cases up to 9).

The experiments indicate the Dec-POSMDP framework
and MMCS algorithm allow solutions for complex problems,
such as multi-robot package delivery, that would not be
possible using traditional Dec-POMDP approaches.

VI. CONCLUSION

This paper proposed a layered framework to exploit the
macro-action abstraction in decentralized planning for a
group of robots acting under uncertainty. It formally re-
duces the Dec-POMDP problem to a Dec-POSMDP that
can be solved using discrete space search techniques. We
also formulated an algorithm, MMCS, for solving Dec-
POSMDPs and showed that it performs well on a multi-
robot package delivery problem under uncertainty. The Dec-
POSMDP represents a general formalism for probabilistic
multi-robot coordination problems and our results show that
high-quality solutions can be automatically generated from
this high-level domain specification.

REFERENCES

[1] Ali-akbar Agha-mohammadi, Suman Chakravorty, and Nancy Amato.
FIRM: Sampling-based feedback motion planning under motion uncer-

TABLE I
COMPARISON OF SEARCH ALGORITHMS.

Algorithm Policy Value Policy Iterations
Monte Carlo Search 2.068 1000

MMCS 4.528 1000
Exhaustive Search — 5.622e+17

tainty and imperfect measurements. International Journal of Robotics
Research (IJRR), 33(2):268–304, 2014.

[2] Ali-akbar Agha-mohammadi, N. Kemal Ure, Jonathan P. How, and
John Vian. Health aware stochastic planning for persistent package
delivery missions using quadrotors. In International Conference on
Intelligent Robots and Systems (IROS), Chicago, September 2014.

[3] Christopher Amato, Daniel S. Bernstein, and Shlomo Zilberstein. Opti-
mizing fixed-size stochastic controllers for POMDPs and decentralized
POMDPs. Journal of Autonomous Agents and Multi-Agent Systems,
21(3):293–320, 2010.

[4] Christopher Amato, George D. Konidaris, Gabriel Cruz, Christo-
pher A. Maynor, Jonathan P. How, and Leslie P. Kaelbling. Planning
for decentralized control of multiple robots under uncertainty. In IEEE
International Conference on Robotics and Automation (ICRA), 2015.

[5] Christopher Amato, George D. Konidaris, and Leslie P. Kaelbling.
Planning with macro-actions in decentralized POMDPs. In Interna-
tional Conference on Autonomous Agents and Multiagent Systems,
2014.

[6] Christopher Amato and Shlomo Zilberstein. Achieving goals in
decentralized POMDPs. In International Conference on Autonomous
Agents and Multiagent Systems, pages 593–600, 2009.

[7] Steve Banker. Amazon and drones – here is why it will work,
December 2013.

[8] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo
Zilberstein. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research, 27(4):819–
840, 2002.

[9] Daniel S. Bernstein, Shlomo Zilberstein, Richard Washington, and
John L. Bresina. Planetary rover control as a Markov decision
process. In Proceedings of the International Symposium on Artificial
Intelligence, Robotics and Automation in Space, 2001.

[10] Rosemary Emery-Montemerlo, Geoff Gordon, Jeff Schneider, and
Sebastian Thrun. Game theoretic control for robot teams. In IEEE
International Conference on Robotics and Automation (ICRA), pages
1163–1169, 2005.

[11] Ruijie He, Emma Brunskill, and Nicholas Roy. Efficient planning
under uncertainty with macro-actions. Journal of Artificial Intelligence
Research, 40:523–570, February 2011.

[12] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning
in robotics: A survey. The International Journal of Robotics Research,
32(11):1238 – 1274, September 2013.

[13] P. R. Kumar and P. P. Varaiya. Stochastic Systems: Estimation,
Identification, and Adaptive Control. Prentice-Hall, Englewood Cliffs,
NJ, 1986.

[14] Zhan Lim, Lee Sun, and Daniel J. Hsu. Monte carlo value iteration
with macro-actions. In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett,
F. Pereira, and K.Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 24, pages 1287–1295. Curran Associates,
Inc., 2011.

[15] Liam C MacDermed and Charles Isbell. Point based value iteration
with optimal belief compression for Dec-POMDPs. In Advances in
Neural Information Processing Systems, pages 100–108, 2013.

[16] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability
of probabilistic planning and infinite-horizon partially observable
Markov decision problems. In Proceedings of the Sixteen Conference
on Artificial Intelligence (AAAI), pages 541–548, 1999.

[17] Shayegan Omidshafiei, Ali akbar Agha-mohammadi, Christopher Am-
ato, and Jonathan P. How. Technical report: Decentralized control
of partially observable markov decision processes using belief space
macro-actions. Technical report, Department of Aeronautics and
Astronautics, Massachusetts Institute of Technology, September 2014.

[18] Richard S Sutton, Doina Precup, and Satinder Singh. Between
MDPs and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112(1):181–211, 1999.

[19] Nazim Kemal Ure, Girish Chowdhary, Jonathan P How, and John
Vian. Planning Under Uncertainty, chapter Multi-Agent Planning for
Persistent Surveillance. MIT Press, 2013.

[20] Keith Winstein and Hari Balakrishnan. TCP ex Machina: Computer-
Generated Congestion Control. In SIGCOMM, 2013.

	Introduction
	Problem Statement
	Hierarchical Graph-based Macro-actions
	Utilizing TMAs in the Decentralized Setting
	Environmental State and Updated Model

	The Dec-POSMDP Framework
	Masked Monte Carlo Search (MMCS)

	Experiments
	Conclusion
	References

