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Abstract

Opening and closing of two ring-shaped Mcm2–7 DNA helicases is necessary to license 

eukaryotic origins of replication although the mechanisms controlling these events are unclear. 

The origin-recognition complex (ORC), Cdc6 and Cdt1 facilitate this process, establishing a 

topological link between each Mcm2–7 and origin DNA. Using colocalization single-molecule 

spectroscopy and single-molecule FRET (Förster resonance energy transfer), we monitored S. 
cerevisiae Mcm2–7 ring opening and closing during origin licensing. The two Mcm2–7 rings are 

open during initial DNA association and close sequentially, concomitant with release of their 

associated Cdt1. ATP hydrolysis by Mcm2–7 is coupled to ring closure and Cdt1 release, and 

failure to load the first Mcm2–7 prevents recruitment of the second Mcm2–7. Our findings identify 

key mechanisms controlling the Mcm2–7 DNA-entry gate during origin licensing and reveal that 

the two Mcm2–7 complexes are loaded by a coordinated series of events with implications for 

bidirectional replication initiation and quality control.
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Introduction

During eukaryotic DNA replication, origins of replication are licensed when two copies of 

the ring-shaped, heterohexameric Mcm2–7 helicase topologically encircle origin DNA1. 

This linkage is established when the interface between Mcm2 and Mcm5 (Mcm2-Mcm5 

gate) is opened to allow DNA to enter the central channel of the helicase and then closed to 

prevent DNA release2,3. The two Mcm2–7 complexes are loaded sequentially. One Mcm2–

7, in complex with Cdt1, is initially recruited to origin DNA bound by the origin-recognition 

complex (ORC) and Cdc64–6. This intermediate rapidly releases Cdc6 and then Cdt16–8. A 

second Cdc6 and Cdt1-Mcm2–7 subsequently associate with ORC and the first Mcm2–78,9, 

followed by release of Cdc6, Cdt1 and ORC8. The net result is a head-to-head Mcm2–7 

double hexamer that encircles the origin DNA and is poised for bidirectional initiation4,10.

ATP binding and hydrolysis is critical for helicase loading. ATP binding is required for the 

initial DNA association of the three helicase-loading proteins and Mcm2–711,12. ATP 

hydrolysis is required to move beyond this initial association and complete Mcm2–7 

loading6,13,14. ORC, Cdc6 and Mcm2–7 all bind and hydrolyze ATP. Although not required 

for helicase loading, ORC ATP hydrolysis is required for the repetition of this event15. Cdc6 

ATP hydrolysis is also not required for helicase loading13,14,16, however, it is required for a 

quality control mechanism that releases incompletely loaded Mcm2–7 from DNA13,14,17. 

Mcm2–7 ATP hydrolysis by at least a subset of the six Mcm2–7 ATPase motifs is required 

for helicase loading13,14, however, it remains unclear which event(s) depends on the action 

of these ATPases.

Although previous studies have revealed both the order of protein associations during 

helicase loading and their regulation18, the timing and mechanism of the key event of 

Mcm2–7 ring opening and closing remains unclear. ATP binding at the Mcm2-Mcm5 

interface is proposed to close the Mcm2–7 ring3 and this is supported by EM studies of 

ATPγS-bound Mcm2–79. In contrast, in the presence of ATP structural studies show Mcm2–

7 in an open state19,20. The status of the Mcm2-Mcm5 gate in the initially recruited Cdt1-

Mcm2–7 complex is unknown. The sequence and structural similarity of ORC–Cdc6 to 

sliding clamp loaders has led to a hypothesis that binding to ORC and Cdc6 opens the 

Mcm2–7 ring7 but this remains to be tested.

Using a single-molecule FRET-based approach, we have examined the timing and 

mechanism of Mcm2–7 ring opening and closing and its relationship to other events of 

origin licensing. We find that Mcm2–7 is in an open state upon initial binding and that this 

state is independent of Cdt1 binding. Mcm2–7 ring closure occurs independently for each 

Mcm2–7 at a time that is concomitant with Cdt1 release. Interestingly, we find that ATP 

hydrolysis by Mcm5-Mcm3 is required for ring closure and Cdt1 release. Preventing these 

events inhibits recruitment of the second Mcm2–7 ring. Our findings provide important 

insights into the mechanism of helicase loading and reveal attributes of this event that favor 

double-hexamer formation and quality control.
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An assay for Mcm2-Mcm5 gate status

Based on the closed Mcm2–7 ring structure21, we attached donor (D) and acceptor (A) 

fluorophores to Mcm2 and Mcm5 at positions where FRET should increase in the closed 

state (Figs. 1A and S1A). This fluorescent variant (Mcm2–725FRET) functioned at near wild-

type levels in bulk helicase-loading assays performed with purified proteins (Supplementary 

Fig. 1B–D). To measure Mcm2–7 DNA association and changes in apparent FRET 

efficiency (EFRET) during helicase loading, we incubated surface-attached fluorescent origin 

DNA with purified Mcm2–725FRET, ORC, Cdc6, and Cdt18. Co-localization of the protein- 

and DNA-associated fluorophores was indicative of DNA binding. Alternating excitation of 

acceptor (Fig. 1B, Supplementary Figs. 2 and 3A, panel i) and donor (Figs. 1B and 

Supplementary Figs. 2 and 3A, panels ii-iv) allowed us to monitor Mcm2–7 binding to 

individual DNAs and calculate EFRET for bound Mcm2–725FRET. Long-lived sequential 

increases in Mcm2–7-associated fluorescence revealed the first and second Mcm2–7 binding 

events (Fig. 1B and Supplementary Fig. 3A8). We focused on events in which simultaneous 

increases in both acceptor-excited and total donor-excited fluorescence (e.g., Fig. 1B i and 

iii, black arrows) indicated that an Mcm2–725FRET with both D and A fluorophores was 

binding. After initial binding, Mcm2–725FRET showed relatively high D emission and weak 

A emission (e.g. Fig. 1Bii, ~850 s), producing a low EFRET value. Long-lived Mcm2–

725FRET molecules subsequently displayed decreased D emission and increased A emission, 

indicative of increased EFRET (e.g., Fig. 1B ii, ~880 s).

Analysis of a large number of Mcm2–725FRET helicase-loading trajectories revealed 

evidence for two major types of DNA-Mcm2–7 complexes with distinct EFRET values (Fig. 

1C). Early after DNA binding (<15 s), Mcm2–725FRET was predominantly in an EFRET state 

of ~0.18, (Fig. 1C, Supplementary Fig. 3B and Supplementary Table 1). At intermediate 

times (15–75 s), we observed a mixture of EFRET ~0.18 and EFRET ~0.36 states. At longer 

times (>75 s), we saw almost entirely EFRET ~0.36. A similar set of distributions was 

observed for binding of a second Mcm2–725FRET, except that an intermediate EFRET ~0.28 

value was seen at early time points (Supplementary Fig. 3C and Supplementary Table 2). 

This intermediate value suggests that the first Mcm2–7 remains in the EFRET ~0.36 state 

while the second Mcm2–7 is initially in the EFRET ~0.18 state. These distributions are 

consistent with a transition by both the first and second Mcm2–7 complexes from an open 

Mcm2-Mcm5 gate (EFRET ~0.18) to a closed Mcm2-Mcm5 gate (EFRET ~0.36). A similar 

transition between discrete low and high EFRET states during helicase loading was observed 

for an alternative Mcm2–7 construct in which Mcm2 was fluorescently labeled at a different 

location (Supplementary Fig. 3D), consistent with the idea that EFRET increase is caused by 

a conformational change that reduces the distance between Mcm2 and Mcm5.

In support of the higher EFRET state representing a closed Mcm2-Mcm5 gate, Mcm2–

725FRET DNA complexes with time-averaged EFRET values greater than 0.25 correlated with 

long-lived (>100 s) DNA associations (Fig. 1D). Consistent with higher EFRET being caused 

by changes within an individual Mcm2–7, elevated EFRET was seen only when D and A 

were on the same Mcm2–7 hexamer (Supplementary Fig. 2A). Furthermore, once molecules 

reached the EFRET ~0.36 state, no persistent excursions at or below EFRET = 0.18 were 

observed (>5 s; N=0/57), consistent with a stably closed Mcm2–7 ring4. These findings 
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combined with subsequent observations lead us to conclude that the EFRET ~0.18 and ~0.36 

states of individual Mcm2–725FRET complexes represent the open and closed conformation 

of the Mcm2-Mcm5 gate, respectively.

Cdt1 release is concomitant with Mcm2–7 ring closure

Because Cdc6 and Cdt1 sequentially dissociate from the DNA after facilitating initial 

Mcm2–7 binding8, we asked if either of these events correlated with Mcm2-Mcm5 gate 

closure. For the first Mcm2–7 association, we compared the times of gate closure, as 

assessed by attainment of the EFRET ~0.36 state, with previously determined distributions of 

first Cdc6 and Cdt1 release times (Fig. 2A and reference8). In each case, these times were 

measured relative to initial Mcm2–7 DNA association. The average time for Cdc6 release 

was much shorter than the average gate-closure time. In contrast, the distributions of times 

for Cdt1 release and gate-closure were similar, supporting a connection between these 

events. Because Cdt1 release is slower for the second Mcm2–7 than the first8, we asked if 

Mcm2-Mcm5 gate closure for the second Mcm2–7 was similarly delayed. Indeed, the times 

of gate closure after arrival of the second Mcm2–7 showed a similar distribution to the times 

of the second Cdt1 release (Fig. 2B). Thus, for both the first and second Mcm2–7, ring 

closure was concomitant with Cdt1 release.

For the comparisons between the previously determined Cdt1 release times and Mcm2–

725FRET ring closure times to be valid, the kinetics of the Mcm2–725FRET loading reaction 

should be similar to that of the singly-modified Mcm2–7 (Mcm2–74SNAP, Mcm2–7 with 

SNAP at the N-terminus of Mcm4) used in the previous determination of Cdt1 release 

times8. To test for this, we made Mcm2–725FRET*, a preparation in which only Mcm5-

SNAP is attached to a fluorophore but Mcm2-CLIP is still present in the complex. Whit only 

a single fluorophore on Mcm2–725FRET*, we could simultaneously measure the DNA 

association and dissociation of Mcm2–725FRET* and a second protein labeled with a second 

fluorophore. Although helicase loading was inhibited when Mcm2–725FRET* was combined 

with labeled Cdt1, labeled ORC and Cdc6 were compatible with Mcm2–725FRET*. 

Importantly, we observed similar release times of Cdc6 and ORC whether we used Mcm2–

725FRET* or Mcm2–74SNAP (Supplementary Fig. 4A–C). Although we could not measure 

the kinetics of Cdt1 in the presence of Mcm2–725FRET, we note that the times of Cdc6 and 

ORC release encompass the times of Cdt1 release. Thus, the kinetics of the helicase loading 

reaction is not dramatically changed by the SNAP and CLIP proteins inserted into Mcm5 

and Mcm2 present in Mcm2–725FRET.

The similar kinetics of Cdt1 release and Mcm2–7 ring closure suggested that Cdt1 binding 

to Mcm2–7 holds the Mcm2-Mcm5 gate open. To address this possibility, we monitored 

EFRET for Mcm2–725FRET in the absence of DNA, ORC and Cdc6. Whether Mcm2–725FRET 

was directly tethered to the slide in the absence of Cdt1 or tethered to the slide indirectly via 

Cdt1, the Mcm2-Mcm5 gate was predominantly in an open (EFRET ~0.16) state with smaller 

populations in higher EFRET states (Fig. 2C and Supplementary Table 3). Interestingly, the 

higher EFRET populations were reduced for Cdt1-bound Mcm2–7 (Supplementary Table 3), 

suggesting Cdt1 increases the already high bias of Mcm2–7 toward an open (EFRET ~0.16) 

state. Consistent with Cdt1-Mcm2–7 being in an largely open state in contrast to the closed 
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state of loaded Mcm2–7, we measured solution EFRET values for free Cdt1–Mcm2–725FRET 

and loaded Mcm2–725FRET. Although the absolute values are different from those seen in 

the single-molecule experiments due to incomplete protein labeling (only doubly-labeled 

proteins were assessed in the single-molecule setting), we observed higher solution EFRET 

values for loaded Mcm2–725FRET (0.129 ± 0.004) than for free Cdt1–Mcm2–725FRET (0.076 

± 0.002). These findings are consistent with previous low-resolution structural studies 

showing that free Mcm2–7 has an open Mcm2-Mcm5 gate19,20. We conclude that Cdt1 is 

not required to prevent Mcm2–7 ring closure, but Cdt1-bound Mcm2–7 may more strongly 

favor the open state.

ORC release occurs after closure of both Mcm2–7 rings

To simultaneously monitor in three-color experiments the status of the Mcm2-Mcm5 gate 

and release of fluorescently-labeled proteins in three-color experiments from individual 

DNAs, we labeled Mcm2 and Mcm5 with a fluorophore and a quencher, respectively 

(Mcm2–725quench, Fig. 3A). Bulk assays showed that Mcm2–725quench retains ~50% of wild-

type helicase-loading activity (Supplementary Fig. 1C and 1D). Consistent with our Mcm2–

725FRET studies, this complex showed high fluorescence upon initial DNA binding (gate 

open) and reduced fluorescence thereafter (gate closed, Fig. 3B and Supplementary Fig. 

4D). Experiments combining Mcm2–725quench with differentially labeled Mcm2–7 (Mcm2–

7JF646), showed that the Mcm2-Mcm5 gate of the first Mcm2–7 did not reopen once closed, 

including during loading of the second Mcm2–7 (Fig. 3C).

As with Mcm2–725FRET, labeled Cdc6 and ORC were compatible with Mcm2–725quench but 

fluorescently-labeled Cdt1 inhibited helicase loading when combined with this form of 

Mcm2–7. Consistent with Cdc6 being released before Cdt18, labeled Cdc6 was always 

released prior to Mcm2–725quench gate closure (Fig. 3D, 62/62 events). Combining labeled 

ORC with Mcm2–725quench revealed a connection between ORC release and closing of the 

second Mcm2–7 ring. In the majority of events (47/54), the single ORC involved in helicase 

loading8 was released at a time within experimental error of gate closure of the second 

Mcm2–7 (Fig. 3E). In the remaining events, ORC was retained on the DNA after second 

ring closure. Interestingly, relative to association of the second Mcm2–7, the average time 

until second Mcm2–7 ring closure was much longer than the previously determined average 

time until establishment of Mcm2–7-Mcm2–7 double-hexamer interactions (as measured by 

FRET between the N-termini of the first and second Mcm2–78, Supplementary Fig. 4E). 

Thus, an open second Mcm2–7 ring forms initial double-hexamer interactions with a closed 

first Mcm2–7 (Fig 3C), raising the possibility that the closed first Mcm2–7 ring could act as 

a template to facilitate closing of the second Mcm2–7. In combination, our data strongly 

suggest that ORC release only occurs after Mcm2–7 double-hexamer formation and closure 

of both Mcm2–7 rings, a mechanism that would ensure that ORC is retained until the 

completion of origin licensing.

Mcm2–7 ATP hydrolysis is required for Cdt1 release and ring closure

To further investigate the mechanism of Mcm2-Mcm5 gate closing, we asked if the ATPase 

activities of Mcm2–7, Cdc6, or ORC control this event. Based on the temporal connection 
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between gate closure and Cdt1 release, we focused on a mutation in the Mcm5-Mcm3 

ATPase active site (mcm5-R549A, Supplementary Fig. 5A) that is defective for Cdt1 release 

and Mcm2–7 loading13,14. We incorporated this mutant into Mcm2–725FRET and monitored 

Mcm2-Mcm5 gate status. Strikingly, Mcm2–725FRET-5RA remains in an open-gate (EFRET 

~0.18) state indefinitely after DNA association (Fig. 4A and Supplementary Fig. 5B). In 

contrast, using Cdc622 or ORC15 ATPase mutants did not prevent Mcm2-Mcm5 gate closure 

(Fig. 4B). The kinetics of Cdc6 release were unchanged by Mcm2–75RA (Fig. 4C). In 

contrast, the dwell time of Cdt1 associated with Mcm2–75RA was dramatically extended 

relative to wild-type Mcm2–7 (Fig. 4D). In most cases (87/109), Cdt1-DNA association was 

as long as Mcm2–75RA association, including many long-lived associations that ended with 

the simultaneous release of Mcm2–7 and Cdt1 (e.g., Supplementary Fig. 5C), as expected if 

the lack of Cdt1 release prevented ring closure. Interestingly, we did not observe any second 

Mcm2–7 associations (0/109) for the Mcm2–75RA mutant, suggesting release of Cdt1 and/or 

ring closure must be completed prior to second Mcm2–7 recruitment.

Discussion

Our results support the initial conclusion that the EFRET ~0.18 and ~0.36 states of Mcm2–

725FRET represent the open and closed Mcm2-Mcm5 gate. The Mcm2–7 ring was in the 

EFRET ~0.18 state before and immediately after DNA binding, consistent with an open 

Mcm2–7 ring allowing DNA access to the central channel. Similarly, all Mcm2–725FRET-5RA 

DNA associations remained in the open (EFRET ~0.18) state and were released by a high-salt 

wash that removes incompletely loaded Mcm2–7 (32/32 events12,23). Consistent with this 

conclusion, recent high-resolution cryo-EM structural studies of Mcm2–7 and Cdt1-Mcm2–

7 found that both complexes are in an open-ring conformation24. The Mcm2–7 but not the 

ORC or Cdc6 ATPases are required for helicase loading13,14. Consistent with the higher 

EFRET state reflecting a loaded, closed-ring Mcm2–7, the Mcm5-Mcm3 ATPase mutant, but 

not mutations in ORC or Cdc6 ATPases, prevented formation of this state. Future studies 

will be required to determine if other Mcm2–7 ATPase mutants have the same effect. 

Finally, attainment of the EFRET ~0.36 state occurred independently for each Mcm2–7 

complex, consistent with evidence that they are loaded one at a time 6–9. Although structural 

studies of the loaded double-hexamer suggest show a completely closed Mcm2–7 ring21, our 

findings do not exclude the possibility that the closed state we observe by FRET is 

sufficiently open to allow ssDNA to escape the loaded double-hexamer.

In addition to revealing the times of Mcm2–7 ring closure during helicase loading, the 

concomitant release of Cdt1 and closure of the Mcm2-Mcm5 gate and the inhibition of both 

events by the Mcm5-Mcm3 ATPase mutant support a model in which these events are 

causally linked (Fig. 5). We propose that the positively charged Mcm2–7 central channel and 

Cdt1 binding (Fig. 2C, Supplementary Table 3) favor an open conformation of the Mcm2–7 

ring off the DNA. ORC–Cdc6 recruit an open Cdt1-Mcm2–7 ring such that it encircles 

DNA7, similar to recent studies of archaeal Mcm loading25. Although Cdt1 binding was not 

required to maintain an open Mcm2–7 off DNA, we propose that Cdt1 holds the Mcm2–7 

ring open after negatively-charged DNA binds to the positively-charged Mcm2–7 central 

channel. Finally, after Cdc6 is released, we propose that Mcm5-Mcm3 ATP hydrolysis (and 

perhaps other Mcm2–7 ATPases) stimulates Cdt1 release triggering Mcm2-Mcm5 gate 
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closure. It is also possible that Mcm5-Mcm3 ATP hydrolysis directly stimulates ring closure 

which causes Cdt1 release. Although ORC–Cdc6 has been proposed to function like a 

sliding-clamp loader during helicase loading7, of the known sliding clamp functions26, it 

appears this complex only retains the function of recruiting a protein-ring to the DNA. ORC 

and Cdc6 are not required to open the Mcm2–7 ring (Fig. 1 and 3) and ATP hydrolysis by 

ORC or Cdc6 is not required for ring closure (Fig. 4B). This does not eliminate other 

possible roles for ORC–Cdc6 including stimulating Mcm2–7 ATP hydrolysis6 or altering 

Mcm2–7 conformation to facilitate ring closure7.

The ordered release of Cdc6 and Cdt1 and the connection of the latter event to ring closure 

creates a window of time for Mcm2–7 loading quality control13,14,17. Cdc6 ATP hydrolysis 

is connected to the release non-productive Mcm2–7 complexes13,14. Because the Mcm2–7 

ring is open throughout Cdc6 DNA association (Fig. 3D), this quality control mechanism 

would not require reopening of the Mcm2–7 ring. In addition, the ordered closure of rings 

would allow the first and second Mcm2–7 complexes to be assessed separately. Although the 

mechanism of this release is unclear, one simple hypothesis is that an ATP-dependent release 

of Cdc6 prior to Mcm2–7 ring closure leads to the simultaneous release of open non-

productive Mcm2–7 complexes.

Our findings indicate that loading of the two Mcm2–7 complexes associated with origin 

licensing is the result of a single coordinated event rather than two independent Mcm2–7 

loading events. Both the lack of second Mcm2–7 association for the Mcm2–75RA mutant 

and the finding that gate closure by the first Mcm2–7 always preceded DNA association of a 

second Mcm2–7 (Fig. 1B and S2A, 47/47 events), strongly suggest that recruitment of the 

second Mcm2–7 requires completion of the first loading event. This is inconsistent with 

models suggesting that two ORC molecules independently recruit and load one Mcm2–7. 

The connection between ORC release and closure of the second but not the first Mcm2–7 

ring (Fig. 3E) also supports a coordinated mechanism. Importantly, these properties would 

ensure single Mcm2–7 loading events only occur as the first step in forming a Mcm2–7 

double-hexamer.

The combination of fully reconstituted biochemical assays27 and detailed structural models 

of key replication intermediates7,9,21 has provided important insights into the events of 

eukaryotic replication initiation. Single-molecule studies complement these approaches by 

revealing reaction kinetics that are difficult to assay in asynchronous bulk reactions, 

identifying intermediates that are too short-lived or dynamic to analyze structurally and by 

monitoring changes in protein conformation in real time. Our findings show how the 

combination of single-molecule colocalization and single-molecule FRET can elucidate the 

complex and coordinated protein dynamics of helicase-loading events. More importantly, 

our findings reveal features of origin licensing that can reduce incomplete or incorrect events 

and, therefore, improve genome stability.
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Methods

Protein expression and purification strains

Cdc6SORT549 (pET-GSS-Cdc6), Cdt1SORT549–Mcm2–74SNAP (yST166) and ORC1SORT549 

(yST163) were purified as described previously8. To monitor the Mcm2-Mcm5 gate, Cdt1–

Mcm2–725FRET expressing strains were constructed by introducing an Asc I site after amino 

acid 721 of Mcm2 and amino acid 591 of Mcm52. A SNAP- (Mcm5, NEB) or CLIP-tag 

(Mcm2, NEB) was inserted with 10 amino acid linkers (GGSGGSGGSG) at each junction. 

To purify Mcm2–725FRET, Mcm2–721CLIP and Mcm5–591SNAP were expressed in 

conjunction with the remaining wild-type Mcm2–7 subunits and Cdt1 (yST229) or in the 

absence of Cdt1 (yST266, to make Mcm2–725FRET-biotin) and labeled with CLIP-Surface™ 

647(NEB) and SNAP-Surface™ 549 (NEB) as described below. To monitor gate closure by 

quenching (Mcm2–725quench) or to create an alternate Mcm2-Mcm5 gate FRET pair 

(Mcm2–72C5FRET), Mcm2SORT (Mcm2 with LPETGG at its C-terminus) and Mcm5–

591SNAP were co-expressed with the remaining wild type Mcm2–7 subunits and Cdt1 

(yST220). Sortase was used to attach Mcm2SORT to the peptide NH2-GGGHH HHHHH 

HHHC-COOH coupled to maleimide-Dy549 and Mcm5–591SNAP was coupled to SNAP-

BHQ-2 to form Mcm2–725quench (see below) or SNAP- Surface™ 649 to form Mcm2–

72C5FRET. Mcm2-Mcm5 gate FRET was monitored in the context of the Mcm5-R549A 

mutant protein by incorporating the mutation into Mcm5 subunit of the Cdt1–Mcm2–

725FRET expressing strain (yST299). The resulting mutant Cdt1-Mcm2–7 was labeled as 

described for Mcm2–725FRET to form Mcm2–725FRET-mcm5RA. The effect of Mcm5-R549A 

on Cdt1 release was monitored by purifying Cdt1-Mcm2–7 from a strain expressing Mcm5-

R549A, Mcm4SNAP, Cdt1SORT and the remaining wild-type Mcm subunits (yST291). 

Mcm4SNAP was labeled with SNAP-JF646 (gift of Luke Lavis, Janelia Research Campus) 

and Cdt1SORT was coupled to the peptide NH2-GGGHH HHHHH HHHC-COOH coupled to 

maleimide-Dy549 to make Cdt1SORT549–Mcm2–74SNAP-mcm5RA. The effect of Mcm5-

R549A on Cdc6 release was monitored by purifying Cdt1–Mcm2–7 from a strain expressing 

Mcm5-R549A, Mcm4SNAP, Cdt1 and the remaining wild-type Mcm subunits (yST289) to 

make Cdt1–Mcm2–74SNAP-mcm5RA.

Purification and Fluorescent Labeling of Cdt1–Mcm2–7

S. cerevisiae (W303 background) strains yST229, yST220, yST299 or yST291 were grown 

to OD600 = 1.2 in 8 liters of YEP supplemented with 2% glycerol (v/v) at 30°C. Addition of 

2% galactose (w/v) and α-factor (100 ng/mL) induced Cdt1-Mcm2–7 expression and 

arrested cells at G1. After 6 hours cells were harvested and sequentially washed with 50 ml 

of ice-cold MilliQ water with 0.2 mM PMSF followed by 150 ml buffer A (50 mM HEPES-

KOH pH [7.6], 5 mM MgOAc, 1 mM ZnOAc, 2 mM ATP, 1 mM DTT, 10% glycerol, 0.02% 

NP-40) supplemented with 0.1 mM EDTA, 0.1 mM EGTA, 0.75 M potassium glutamate 

(KGlu) and 0.8 M Sorbitol. The washed pellet was resuspended in approximately 1/3 of 

packed cell volume of buffer A containing 0.1 mM EDTA, 0.1 mM EGTA, 0.75 M KGlu, 

0.8 M Sorbitol, Complete Protease Inhibitor Cocktail Tablet (1 tablet per 15 mL total 

volume; Roche) and frozen dropwise in liquid nitrogen. Frozen cells were lysed in a 

SamplePrep freezermill (SPEX) and the lysate was clarified by ultracentrifugation in Type 

70 Ti rotor at 45 krpm for 90 min at 4°C. The supernatant was applied to 2 ml anti-M2 
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FLAG resin (Sigma) pre-equilibrated in buffer A containing 0.1 mM EDTA, 0.1 mM EGTA 

and 0.75 M KGlu and incubated with rotation for 3 hours at 4°C. The resin was collected on 

a column and the flow-through was discarded. The resin was washed with 20 ml of buffer A 

with 0.3 M KGlu. Cdt1-Mcm2–7 was eluted with buffer A containing 0.3 M KGlu and 0.15 

mg/mL 3xFLAG peptide. Peak fractions containing Cdt1-Mcm2–7 were pooled, and the 

protein was concentrated to ~ 1 mg/mL using a Vivaspin 6 centrifugal concentrator 

(molecular weight cutoff = 100 kDa, Sartorius) and aliquoted into 0.8 mL fractions. Starting 

with 8 L of cells, the yield is typically 2 mg of 95% pure Sort-Cdt1–Mcm2–7, according to 

SDS-PAGE.

SNAP or CLIP-tagged Cdt1-Mcm2–7 (Cdt1SORT–Mcm2–74SNAP, Cdt1–Mcm2–72C5FRET or 

Cdt1–Mcm2–725FRET) was labeled with SNAP-Surface™ 549 (NEB; Dy549), SNAP-

BHQ-2, SNAP-JF646 (gift of Luke Lavis, Janelia Research Campus) or CLIP-Surface™ 

647 by incubating with 1 nmol of dye at room temperature for 1hr. To make Mcm2–

725FRET-biotin, SNAP-549-biotin was substituted for SNAP-Surface™ 549. For SORT-tagged 

Cdt1-Mcm2–7 (Cdt1Sort –Mcm2–74SNAP, Cdt1–Mcm2–72C5FRET or Cdt1–Mcm2–

725quench), 1 mg of Cdt1-Mcm2–7 was incubated with equimolar amount of Srt5° evolved 

sortase28, purification described below) and CaCl2 was added to a final concentration of 5 

mM in buffer A with 0.3 M KGlu. This was mixed with 100 nmol of peptide carrying a Sort-

tag and labeled with Dy549 (Dyomics), dissolved in 200 µL of buffer A with 0.3 M KGlu 

(sequence and fluorescent labeling of the peptide are described below). The reaction was 

incubated at room temperature for 15 min, and then quenched with 20 mM EDTA. The net 

result of the sortase reaction is coupling of the fluorescently-labeled (or biotinylated) peptide 

to the N-terminus of Cdt1 with the sequence NH2-CHHHHHHHHHHLPETGGG followed 

by the remainder of the protein or to the C-terminus of Mcm2 with the sequence 

LPETGGGHHHHHHHHHHC-COOH.

For SNAP or CLIP-tagged Cdt1-Mcm2–7, after coupling the proteins to fluorophore(s), the 

reaction was applied to a Superdex 200 10/300 gel filtration column equilibrated in buffer A 

with 0.1 mM EDTA, 0.1 mM EGTA, and 0.3 M KGlu. Peak fractions containing Cdt1-

Mcm2–7 were pooled, aliquoted and stored at −80°C.

For SORT-tagged Cdt1-Mcm2–7, after dye-coupling, the reaction was applied to a Superdex 

200 10/300 gel filtration column equilibrated in buffer A with 0.1 mM EDTA, 0.1 mM 

EGTA, 0.3 M KGlu, and 10 mM imidazole. Peak fractions containing peptide-coupled Cdt1-

Mcm2–7 were pooled and incubated with 0.5 mL of cOmplete His-Tag Purification Resin 

(Roche) pre-equilibrated in buffer A with 0.1 mM EDTA, 0.1 mM EGTA, 0.3 M KGlu, 10 

mM imidazole, for 1 hour with rotation at 4°C. The flow-through was discarded and the 

resin was washed with 5 ml buffer A with 0.1 mM EDTA, 0.1 mM EGTA, 0.3 M KGlu and 

10 mM imidazole. Peptide-coupled Cdt1-Mcm2–7 was eluted using buffer A with 0.1 mM 

EDTA, 0.1 mM EGTA, 0.3 M KGlu and 0.3 M imidazole. Peak fractions were pooled, 

aliquoted, and stored at −80°C.

Special note on handling of fluorescent dyes: light sources on all chromatography 

apparatuses (AKTA FPLC, HPLC) were turned off during preparative runs. Fractions 
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containing fluorescently-labeled peptides and proteins were determined during previous 

analytical runs.

Fluorescently-labeling of peptides for Sortase coupling, as well as purification of the Sortase 

A pentamutant enzyme and Ulp1 were performed as reported previously8.

Percent labeling of Mcm2–725FRET

To determine the labeling efficiency of the SNAP and CLIP tag labeling approaches in the 

MCM2–725FRET context, we purified and labeled Mcm2–725FRET with SNAP-Surface™ 

549 and CLIP-Surface™ 647 on the Mcm5 and Mcm2 subunits, respectively. We imaged a 

standard reaction containing 0.25nM ORC, 1nM Cdc6 and 2.5nM Cdt1–Mcm2–725FRET 

using the described protocol and monitored colocalization of Mcm2–725FRET fluorescence 

with DNA fluorescence (to ensure that we were monitoring fully assembled complexes). 

Each colocalization was scored as exhibiting both D and A fluorescence, only D, or only A. 

By assuming that the labeling reactions of the SNAP and CLIP tags in Mcm2–725FRET were 

independent, we calculated from the observed D and A colocalization frequencies that 

SNAP labeling efficiency was ~74%, and CLIP labeling efficiency was ~81%, yielding 

~60% of Mcm2–725FRET complexes with both D and A fluorophores.

Synthesis of SNAP-549-Biotin and SNAP-BHQ2

Commercially available compounds were used without further purification. Reaction yields 

were not optimized. Reversed-phase high-performance liquid chromatography (HPLC) was 

performed on Agilent LC-MS Single Quad System 1200 Series (analytical) and Agilent 

1100 Preparative-scale Purification System (semi-preparative). Analytical HPLC was 

performed on Waters Atlantis T3 C18 column (2.1 × 150 mm, 5 µm particle size) at a flow 

rate of 0.5 mL/min with a binary gradient from Phase A (0.1 M triethyl ammonium 

bicarbonate (TEAB) or 0.1% trifluoroacetic acid (TFA) in water) to Phase B (acetonitrile) 

and monitored by absorbance at 280 nm. Semi-preparative HPLC was performed on 

VYDAC 218TP series C18 polymeric reversed-phase column (22 × 250 mm, 10 µm particle 

size) at a flow rate of 20 mL/min. Mass spectra were recorded by electrospray ionization 

(ESI) on an Agilent 6120 Quadrupole LC-MS or on an Agilent 6210 Time-of-Flight (TOF) 

or on a Thermo Scientific QExactive system.

SNAP-BHQ2 (BG-BHQ2, Supplementary Fig. 6A) was prepared by reacting the building 

block BG-NH2 (NEB) with commercially available BHQ-2 Succinimidyl ester (LGC 

Biosearch) as described (23). BHQ-2 Succinimidyl ester (2.5 mg, 4.1 µmol) was dissolved in 

anhydrous DMF (1.0 mL). BG-NH2 (1.1 mg, 4.1 µmol) and triethylamine (0.56 µL, 4.1 

µmol) were added and the reaction mixture stirred overnight at room temperature. The 

solvent was removed under vacuum and the product purified by reversed-phase HPLC using 

0.1 M TEAB/acetonitrile gradient (yield = 21%). BG-BHQ2: ESI-MS m/z 759.3104 [M

+H]+ (calc. for C38H38N12O6, m/z 759.3110).

The bifunctional SNAP-549-Biotin (BG-549-biotin, Supplementary Fig. 6B) substrate was 

prepared by successive couplings of commercially available α-N-Fmoc-ε-N-Dde-lysine 

(Merck KGaA) with BG-NH2 (NEB), N-(+)-biotin-6-aminocaproic acid N-succinimidyl 

ester (Sigma-Aldrich) and DY-549 acid (Dyomics) according to synthetic route described by 
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Kindermann et al29 and Smith et al30. SNAP-549-Biotin was synthesized as follows: BG-

NH2 (250.0 mg, 0.92 mmol) was dissolved in anhydrous DMF (8 mL). HBTU (N,N,N′,N′-
Tetramethyl-O-(1H–benzotriazol-1-yl)uronium hexafluorophosphate) (368.0 mg, 0.97 

mmol), triethylamine (135 µL, 0.97 mmol), and Fmoc-Lys(Dde)-OH (515.5 mg, 0.97 mmol) 

were added and the reaction mixture stirred overnight at room temperature. The reaction 

mixture was poured onto water (80 mL). The white solid was collected by filtration, washed 

twice with water, and dried in desiccator under vacuum overnight (yield = 91%). BG-

Lys(Dde)-Fmoc (8.0 mg, 10.2 µmol) was dissolved in anhydrous in DMF (1 mL). Et2NH 

(3.2 µL, 30.9 µmol) was added and the reaction mixture stirred overnight at room 

temperature. The solvent was removed under vacuum. Crude BG-Lys(Dde)-NH2 was 

dissolved in anhydrous DMF (1 mL). N-(+)-biotin-6-aminocaproic acid NHS (2.9 mg, 6.4 

µmol) and triethylamine (1.0 µL, 7.0 mmol) were added and the reaction mixture stirred 1 h 

at room temperature. Reaction completion was monitored by LC-MS. A 2% solution of 

hydrazine in DMF (0.5 mL) was added and the reaction mixture stirred for 1 h at room 

temperature. The solvent was removed under vacuum and the product purified by reversed-

phase HPLC using 0.1% TFA in water/acetonitrile gradient (yield = 76%). BG-Lys(NH2)-

Biotin: ESI-TOFMS m/z 738.3 [M+H]+ (calcd. for C35H51N11O5S, m/z 738.4). BG-

Lys(NH2)-Biotin·TFA salt (2.3 mg, 2.7 µmol) was dissolved in anhydrous DMF (1 mL). 

DY-549 acid (2.7 mg, 3.0 µmol), HBTU (1.2 mg, 3.0 µmol) and triethylamine (0.6 µL, 4.5 

µmol) were added and the reaction mixture stirred 1 h at room temperature. The solvent was 

removed under vacuum and the product purified by reversed-phase HPLC using 0.1 M 

TEAB/acetonitrile gradient (yield = 78%). BG-549-PEG-Biotin: ESI-TOFMS m/z 767.7552 

[M-2H]2− (calc. for C68H91N13O18S5, m/z 767.7532).

Single-Molecule Microscopy

The micro-mirror total internal reflection (TIR) microscope used for multiwavelength 

single-molecule using excitation wavelengths 488, 532, and 633 nm has been previously 

described31,32. Biotinylated AlexFluor488-labeled 1.3kb-long DNA molecules containing an 

origin were coupled to the surface of a reaction chamber through streptavidin. Briefly, the 

chamber surface was cleaned and derivatized using a 200:1 ratio of silane-NHS-PEG and 

silane-NHS-PEG-biotin8. We identified DNA molecule locations by acquiring 4–7 images 

with 488 nm excitation at the beginning of the experiment. Unless otherwise noted, helicase 

loading reactions contained 0.5nM ORC, 2nM Cdc6 and 5nM Cdt1–Mcm2–7. Reaction 

buffer was as previously described13 except without any glycerol and with the addition of 2 

mM dithiothreitol, 2 mg/ml bovine serum albumin (EMD Chemicals; La Jolla, CA), and an 

oxygen scavenging system (glucose oxidase and catalase) to minimize photobleaching32. 

After addition of protein to the DNA-coupled chamber, frames of one second duration were 

acquired. DNA was imaged before and immediately after adding the reaction to the slide but 

not throughout the experiment. The imaging protocol alternated between 1 s frames with the 

532 laser on and 1 s frames with the 633 laser on over 20–30 minutes. Apparent EFRET was 

calculated as described33.

Because the events observed on each DNA molecule represent a independent measurement 

of the events being studied, all of the analyses evaluate many biological replicates.
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Tethering of Mcm2–7 complexes

Tethering experiments were done using Mcm2–725FRET-biotin in the absence of Cdt1 or 

Cdt1-biotin with Mcm2–725FRET purified in the absence of Cdt1. Complexes were added to 

the slide at a concentration of 0.04nM and coupling was briefly visualized. Free complexes 

were washed out using H-300mM KGlut, and imaged for 2 minutes by alternating between 

1s frames with the 532 laser on, and 1s frames with the 633 laser on. Only complexes 

containing both 549 and 647 dyes were used for background subtraction and EFRET 

calculations.

Single-molecule data analysis

Analysis of the CoSMoS data sets was similar to34. Specifically, we typically followed these 

four steps35: (1) defining the spatial relationship between the two images created at different 

excitation and emission wavelengths from the single field of view by the dual-view optical 

system (“mapping”), (2) correcting the data set for stage drift that occurred during the 

experiment (“drift correction”), (3) imaging the label on origin-DNA to identify the 

locations of single DNA molecules on the surface, and (4) integration of fluorescence 

emission from small regions centered at the pre-defined locations of coupled DNA locations 

in each acquired image to obtain plots of fluorescence intensity vs. time. These steps were 

carried out using custom image-processing software (https://github.com/gelles-brandeis/

CoSMoS_Analysis) implemented in MATLAB (The Mathworks, Natick, MA). Confidence 

intervals for kinetic data were determined by bootstrapping.

Both the dual imaging optics and chromatic aberrations result in spatial displacement 

between fluorescent spot images of co-localized species that are labeled with different color 

dyes. Accurate co-localization of the differentially-labeled species therefore requires use of a 

mapping procedure. For each pair of colors a list of several hundred reference spot pairs 

were collected using a sample containing a surface-tethered oligonucleotide that was labeled 

with Alexa488, Cy3 and Cy5. Mapping the coordinates of a fluorescent spot to the 

equivalent location at a different color was performed using a transformation with fit 

parameters based on just the 15 nearest reference spots35.Drift correction and spot-detection 

were carried out as described in35. Fluorescence emission from labeled complexes was 

integrated over a 0.37 µm2 area centered at each drift corrected origin-DNA location, 

yielding for each DNA molecule a separate intensity time course for each color of 

fluorescent label being observed.

FRET and quenching data analysis

Images containing spots that were analyzed to produce a FRET time course were first 

mapped and drift-corrected (see above). By alternating between their laser excitation 

wavelengths we monitored the co-localization of donor and acceptor-labeled Mcm2–7 

hexamers with the origin-DNA molecule. To determine the time until formation of the 

EFRET ~0.36 state, we noted the earliest time point at which the EFRET values increased by 

either 0.15 for the 1st Mcm2–7 or 0.1 for the 2nd Mcm2–7. Only Mcm2–7 molecules that 

were labeled with both fluorophores were used for analysis of the first Mcm2–7. For 

analysis of the second Mcm2–7, both the first and the second Mcm2–7 molecules had to be 

labeled with both fluorophores.
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To calculate apparent FRET efficiencies, the baseline for each fluorescence intensity trace 

was first subjected to a low pass filter. That smoothed baseline was then subtracted from the 

starting trace, resulting in a fluorescence time record with a zero mean baseline31 (e.g. 

Figure 1B, panels i and ii). Apparent FRET efficiency was calculated using 

 where IAcceptor and IDonor are the acceptor and donor emission 

intensities observed during donor excitation, respectively. No gamma correction was applied 

because no systematic change in (IAcceptor + IDonor) was observed upon changes in EFRET 

(e.g., Fig. 1B, S2A) or upon acceptor photobleaching.

Equench was calculated on baseline-corrected data (of single Mcm2–7 molecules) as 

described in Supplementary Fig. 4D.

Measuring FRET values for soluble Mcm2–725FRET

To generate sufficient loaded Mcm2–725FRET, a large-scale helicase-loading reaction was 

performed with 20 pmoles of bead-attached, origin DNA 80 pmoles of Mcm2–725FRET, 20 

pmoles of ORC and 40 pmoles of Cdc613. After a 20 minute incubation, the DNA beads 

were washed with a high-salt buffer (to remove incompletely loaded protein) and loaded 

Mcm2–725FRET was released from beads by DNAse I treatment as previously described13. 

The released, loaded Mcm2–725FRET or a similar concentration of unloaded solution Cdt1–

Mcm2–725FRET were placed in a cuvette and excited at 549 nm. Flourescence emission was 

detected from 560 nm to 690 nm and the peak values of donor (574 nm) and acceptor (670 

nm) emission were used to determine EFRET values. Reported uncertainties are the standard 

deviations of four separate experiments.

Statistical analysis

Confidence intervals (C.I.) were determined using bootstrapping with either 1000 samples 

(Figs. 2, 4 and Supplementary Figs. 4 and 5) or 250 samples (Supplementary Tables).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mcm2–7 hexamers associate with DNA in an open-gate conformation and subsequently 
close
(A) Schematic of DNA-bound Mcm2–725FRET in the gate-open and gate-closed states. 

Mcm2 and Mcm5 are labeled with acceptor (A, red circle) and donor (D, green circle) 

fluorophores, respectively. Mcm2-Mcm5 gate closure increases proximity of the 

fluorophores and FRET efficiency (EFRET). Fluorescence excitation (ex) and emission (em) 

wavelengths are indicated.

(B) Example recording of Mcm2–725FRET associating with origin DNA. Acceptor-excited (i, 

A ex, A em) and donor-excited (ii, D ex, D em and D ex, A em) emission records are shown 
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together with calculated donor-excited total emission (iii) and EFRET (iv). Black arrows 

show initial association of long-lived Mcm2–725FRET. Black bars highlight low EFRET 

intervals observed at the beginning of these associations.

(C) Histograms of EFRET values recorded during the indicated time intervals after 

association of the first Mcm2–725FRET with origin DNA. Fits to the sum (dashed cyan) of 

two Gaussians (red) yielded fit parameters reported in Supplementary Table 1. For accurate 

EFRET determination, only the 51 first Mcm2–7 associations that retained D and A 

fluorophores for >150s and that lacked a second Mcm2–7 association within 150s of DNA 

association were analyzed. The same molecules are used for each histogram with data from 

255 (0–15s), 1020 (15–75s) and 1320 (75–150s) total time points plotted.

(D) Histogram of single Mcm2–7 dwell times plotted as a probability density. Mcm2–7 

associations with a time-averaged EFRET <0.25 (N=91 molecules) are plotted in red and 

those with a time-averaged EFRET >0.25 (N=59 molecules) in blue. Time-averaged EFRET 

was calculated over the duration of the association or until a second Mcm2–7 associated. For 

29 molecules with average EFRET >0.25 the measured dwell times were truncated by the end 

of the recording.
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Figure 2. Mcm2–7 gate closing correlates with Cdt1 release on DNA but not free in solution
(A) Fraction of dye-labeled Cdc6 (blue, N=96 molecules) or Cdt1 (black, N=72 molecules) 

association retained at various times after first Mcm2–7 association (from ref. 8, left scale) 

are plotted compared to times of first Mcm2–725FRET gate closure (blue, right scale, N=96 

molecules). The 95% confidence interval (C.I.) around the time of Cdt1 release is shown in 

grey. Inset shows mean release times or gate closure times (± 95% C.I.s). Gate closure times 

were based on the first time point at which the EFRET value increased by 0.15 over the 

average of five previous time points and was sustained at least five time points.
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(B) The same plots as in (A) are shown for events after association of the second Mcm2–

725FRET. Gate closure is shown in blue (N=47 molecules) on the right scale. Release of 

Cdc6 (red; N=70 molecules) and Cdt1 (from ref. 8, black; N=74 molecules; 95% C.I. in 

gray) on the left scale. Gate closure times were determined as in (A) except the EFRET 

increase threshold was 0.1.

(C) Histograms of EFRET values of tethered Mcm2–725FRET either in the absence (N=32 

molecules, 2014 total time points) or presence (N=60 molecules, 3712 total time points) of 

Cdt1 were fit with the sum (cyan) of two (with Cdt1) or three (no Cdt1) Gaussians (red) 

yielding the fit parameters reported in Supplementary Table 3. The presence of Cdt1 

moderately increased the percentage of the data in the open (EFRET ~0.16) state (88% v. 

80%). In both cases, the majority of the remaining data fit to a second EFRET ~0.28 state, 

likely representing a partially closed Mcm2-Mcm5 gate. Insets show schemes of attachment. 

Mcm2–725FRET was tethered to the slide surface either directly through the Mcm5 subunit 

(no Cdt1, Mcm2–725FRET-biotin) or indirectly through biotinylated Cdt1 tethered to the 

surface (with Cdt1).
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Figure 3. Closure of the second Mcm2–7 ring correlates with ORC release
(A) Schematic of Mcm2–725quench labeling in the gate-open and gate-closed states. Mcm2 

and Mcm5 were labeled with donor fluorophore (D, green circle) and quencher (BHQ-2, 

black circle), respectively. Mcm2-Mcm5 gate closure increases proximity of the fluorophore 

and quencher, decreasing D em.

(B) Two example recordings of sequential association of two Mcm2–725quench molecules 

associating with individual origin DNA molecules. Black arrows show initial association of 

long-lived Mcm2–725quench. Black bars highlight intervals of no or low quenching following 

the first and second Mcm2–725quench associations.

(C) DNA molecule co-localized fluorescence records for experiments with a mixture of 

labeled Mcm2–7 (Mcm2–7JF646) and Mcm2–725quench. To investigate whether there were 

changes in the status of the first Mcm2-Mcm5 gate during loading of the second Mcm2–7 

we examined examples where the first bound hexamer was Mcm2–725quench and the second 

bound hexamer was Mcm2–7JF646. In both examples shown, Mcm2–725quench closes before 

arrival of Mcm2–7JF646 (green arrows) and its quenching state did not change when a 

Mcm2–7JF646 binds as the second Mcm2–7 hexamer (red arrows).

(D) Representative DNA molecule co-localized fluorescence records for experiments using 

labeled Cdc6SORT549 and Mcm2–725quench. In each record, Cdc6 release (red arrows) 

occurred prior to Mcm2–7 quenching increase (green arrows). The calculated mean dwell 

time of Cdc6 (12.0 ± 2.2 s [s.e.m.]) is >5-fold shorter than the mean photobleaching lifetime 

of the Cdc6-bound fluorophore under these conditions (77 ± 18 s [s.e.m.]8), indicating that 

most disappearances were due to Cdc6 DNA release, not photobleaching.

(E) Representative DNA molecule co-localized fluorescence records for experiments using 

labeled ORC1SORT549 and Mcm2–725quench. In each record, ORC release (red arrows) 

occurred simultaneously with the second Mcm2–7 quenching increase (green arrows). Note: 

ORC records are vertically offset to facilitate comparison.
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Figure 4. Mcm2–7 ATP hydrolysis is required for gate closing and Cdt1 release
(A) Comparison of population average EFRET values at indicated times after DNA 

association of first Mcm2–725FRET (red, N=57 molecules, same data as Supplementary Fig. 

2B) or Mcm2–725FRET-mcm5RA (blue, N=33 molecules).

(B) Times of gate closing after first Mcm2–725FRET DNA association for reactions with 

wild-type ORC–Cdc6 (red, N=96 molecules, 95% C.I. in gray), ORC–Cdc6N263A (blue, 

N=56 molecules) or ORC4R–Cdc6 (green, N=75 molecules). Inset shows mean gate closure 

times (± 95% C.I.).

(C) Times of Cdc6SORT549 release after association of the first Mcm2–7WT (data from ref 8, 

red, N=56 molecules, 95% C.I. in gray) or Mcm2–7mcm5RA (blue, N=42 molecules) 

hexamers. Inset shows mean release times (± 95% C.I.).

(D) Release times (data from ref. 8, gray) of Cdt1SORT549 after arrival of the first (N=72) 

and second (N=74 molecules) Mcm2–7WT compared to release times of Cdt1SORT549 after 

the first Mcm2–7mcm5RA in red (N=63 molecules). Inset shows mean release times ± 95% 

C.I.s. Mcm2–7mcm5RA-associated Cdt1 release times were underestimated due to remaining 

associations when imaging was ended (32 of 63 molecules) and Cdt1SORT549 

photobleaching effects.
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Figure 5. A model for the control of Mcm2–7 gate opening and closing
Prior to DNA binding the Mcm2–7 ring exists predominantly in an open conformation, 

likely mediated by its positively-charged central channel and bound Cdt1 (i). Association of 

Mcm2–7 with DNA eliminates charge repulsion, and Cdt1 (together with ORC–Cdc6?) 

prevents ring closure (ii). The subsequent release of Cdc6 occurs prior to gate closure (iii). 

Closure of the first Mcm2–7 ring requires ATP hydrolysis by the Mcm5-Mcm3 ATPase (and 

perhaps other Mcm2–7 ATPases) (iv) and this closure event is associated with Cdt1 release 

(v). After recruitment of a second Cdc6, a second open Cdt1-Mcm2–7 ring is recruited via 

Ticau et al. Page 22

Nat Struct Mol Biol. Author manuscript; available in PMC 2017 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interactions with the first Mcm2–78 in a closed state (vi). The subsequent release of the 

second Cdc6 is followed by the closure of the second Mcm2–7 ring which is simultaneous 

with the release of Cdt1 and ORC (vii).
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