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Abstract—The performance of wireless scheduling algo-
rithms directly depends on the availability and accuracy of
channel state information (CSI) at the scheduler. As CSI
updates must propagate across the network, they are delayed
as they arrive at the controller. In this paper, we analyze the
effect that delayed CSI has on the throughput performance
of scheduling in wireless networks. By accounting for the
delays in CSI as they relate to the network topology, we
revisit the comparison between centralized and distributed
scheduling, which is analyzed as a trade-off between using
delayed CSI and making imperfect scheduling decisions.
In particular, we prove that there exist conditions under
which distributed scheduling outperforms the optimal cen-
tralized scheduling policy. We characterize the point at which
distributed scheduling outperforms centralized scheduling
for tree networks, illustrating the impact of topology on
throughput.

I. INTRODUCTION

To achieve maximum throughput in a wireless network,
a centralized controller must opportunistically schedule
transmissions based on the current state of time-varying
channels [1]. The channel state of a link can be measured
by its adjacent nodes, who forward this channel state
information (CSI) across the network to the scheduler. For
example, CSI updates can be piggy-backed on top of data
transmissions. Due to the transmission and propagation
delays over wireless links, it may take several time-slots
for the scheduler to collect CSI throughout the network,
and in that time the network state may change.

There has been extensive work on wireless schedul-
ing [1], [2], [3], although a great deal of the literature
solves the optimal scheduling problem with a centralized
algorithm requiring global CSI. Centralized scheduling
yields high theoretical performance, since the central entity
uses current network-wide CSI to compute a globally
optimal schedule. However, maintaining current CSI is
impractical, due to the latency in acquiring CSI throughout
the network.

An alternative is a distributed approach, in which each
node makes an independent transmission decision based
on the CSI locally available at that node. Typically,
distributed algorithms achieve only a fraction of the
throughput of their ideal centralized counterparts, because
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they make locally optimal decisions [4]. An example
distributed scheme is Greedy Maximal Scheduling [5],
[6], which is known to achieve only a fraction of the
centralized throughput depending on the topology. Dis-
tributed scheduling schemes that approach the centralized
throughput region are proposed in [7], [8], but require
higher complexity to implement. Additionally, several au-
thors have applied random-access scheduling approaches
to maximize throughput in a fully distributed manner [9],
[10].

In practice, the available CSI for centralized scheduling
is a delayed view of the network state. Furthermore, the
delay in CSI is proportional to the distance of each link to
the controller, since CSI updates often must traverse the
network. These delays reduce the attainable throughput of
centralized scheduling [11]. In [12], Ying and Shakkottai
study throughput optimal scheduling and routing with
delayed CSI. In their work, the authors assume arbitrary
delays and do not consider the dependence of delay on
the network topology. In contrast, by accounting for the
relationship between CSI delay and network topology, we
are able to effectively compare centralized and distributed
scheduling.

In this paper, we propose a new model for delayed
CSI, under which nodes have more accurate CSI pertain-
ing to neighboring links, and progressively less accurate
CSI for distant links. We show that as a result of the
delays in CSI, in some scenarios there exist distributed
scheduling algorithms that outperform the optimal central-
ized scheduling scheme. We develop sufficient conditions
under which there exists a distributed scheduling policy
that outperforms the optimal centralized policy in tree
networks, illustrating the impact of topology on achievable
throughput. We provide simulation results to demonstrate
the performance on different topologies.

II. MODEL AND PROBLEM FORMULATION

Consider a network consisting of a set of nodes N , and
a set of links L. Time is slotted, and in each slot, a set
of links is chosen to transmit. This set of activated links
must satisfy an interference constraint. In this work, we
use a primary interference model, in which each node is
constrained to only activate one neighboring link. In other
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Fig. 1: Markov Chain describing the channel state evolution of
each independent channel.

words, the set of activated links forms a matching1.
Each link l ∈ L has a time-varying channel state

Sl(t) ∈ {0, 1}, and is governed by the Markov Chain in
Figure 1. The state of the channel at link l represents the
rate at which data can be transmitted over that link. An
ON channel can support a unit throughput (single packet
transmission), while transmissions over an OFF channel
fail.

A. Delayed Channel State Information
We assume that every node has CSI pertaining to each

link, delayed by an amount of time proportional to the dis-
tance between the node and the link. Specifically, a node n
has k-step delayed information of links in Nk+1(n), where
Nk(n) is the set of links that are k hops away from n. In
other words, each node has current CSI pertaining to its
adjacent links, 1-hop delayed CSI of its 2-hop neighboring
links, and so on. This models the effect of propagation and
transmission delays on the process of collecting CSI.

B. Centralized Scheduling
A centralized scheduling algorithm consists of a single

entity making a global scheduling decision for the entire
network. In this work, one node is appointed to be the
centralized decision-maker, referred to as the controller.
The controller has delayed CSI of each link, where the
delay is relative to that link’s distance from the controller,
and makes a scheduling decision based on the delayed
CSI. This decision is then broadcasted across the net-
work. Throughout this paper we assume the controller
broadcasts the schedule to the other nodes instantaneously.
In practice, the decision takes a similar amount of time
to propagate from the controller as the time required
to gather CSI, which effectively doubles the impact of
delay in the CSI. Therefore, the theoretical performance of
the centralized scheduling algorithm derived in this work
provides an upper bound on the performance achievable
in practice.

Let dr(l) be the distance (in hops) of link l from the
controller r. The controller has an estimate of Sl(t) based
on the delayed CSI. Define the belief of a channel to be
the probability that a channel is ON given the available
CSI at the controller. For link l, the belief xl(t) is given
by

xl(t) = P
(
Sl(t) = 1

∣∣Sl(t− dr(l))). (1)

The belief is derived from the k-step transition probabili-
ties of the Markov chain in Figure 1. Namely,

P
(
S(t) = j

∣∣S(t− k) = i
)

= pkij . (2)

1A matching is a set of links such that no two links share an endpoint.

As the CSI of a channel grows stale, the probability that
the channel is ON is given by the stationary distribution
of the chain in Figure 1, and denoted as π.

lim
k→∞

pk01 = lim
k→∞

pk11 = π =
p

p+ q
. (3)

Since the objective is to maximize the expected sum-
rate throughput, the optimal scheduling decision at each
time slot is given by the maximum likelihood (ML) rule,
which is to activate the links that are most likely to be ON,
i.e. the links with the highest belief. Under the primary
interference constraint, a set of links can only be scheduled
simultaneously if that set forms a matching. Let M be
the set of all matchings in the network. The maximum
expected sum-rate is formulated as

max
m∈M

E
[∑
l∈m

Sl(t)
∣∣∣∣{Sl(t− dr(l))}l∈L] (4)

= max
m∈M

∑
l∈m

E
[
Sl(t)

∣∣Sl(t− dr(l))] = max
m∈M

∑
l∈m

xl(t).

(5)

Thus, the optimal schedule is a maximum weighted
matching, where the weight of each link is equal to the
controller’s belief of that link.

C. Distributed Scheduling

A distributed scheduling algorithm consists of multiple
entities making independent decisions without coordina-
tion. Each node makes a transmission decision for its
neighboring links using only the CSI of adjacent links;
hence, the performance of distributed scheduling is unaf-
fected by the delay in CSI. The drawback of such policies
is that local scheduling decisions may not be globally
optimal.

We consider distributed policies in which decisions are
made sequentially to avoid collisions. If a node begins
transmission, neighboring nodes detect this transmission
and can activate a non-conflicting link rather than an
interfering link, in a manner similar to collision avoidance
in CSMA/CA2. This allows us to focus on the sub-
optimality resulting from making a local instead of a
global decision, rather than the transmission coordination
needed to avoid collisions3.

As mentioned above, the drawback of distributed
scheduling is that local decisions can be suboptimal. For
example, in Figure 2, node n can choose to schedule either
of its neighboring links; if it schedules its right child link,
then the total sum rate of the resulting schedule is 1, as
in Figure 2a, whereas scheduling the left link results in a
sum rate of 2, as in Figure 2b. In a distributed framework,
node n is unaware of the state of the rest of the network,
so it makes an arbitrary decision resulting in a throughput
loss. Moreover, the loss in efficiency due to suboptimal

2Here we assume a small propagation delay, such that nodes can
immediately detect if a neighbor is transmitting.

3Alternative transmission coordination schemes are also possible based
on RTS/CTS exchanges [13].
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Fig. 2: Example network: All links are labelled by their
channel state at the current time. Bold links represent
activated links.

decisions becomes more pronounced when moving beyond
the simple two-state channel model.

III. CENTRALIZED VS. DISTRIBUTED SCHEDULING

In the previous section, we introduced two primary
classes of scheduling policies: distributed and centralized
policies. It is known that a centralized scheme using
perfect CSI outperforms distributed schemes, due to the
aforementioned loss of efficiency in localized decisions.
However, these results ignore the effect of delays in
collecting CSI. In this section, we revisit the comparison
between centralized and distributed scheduling. We show
that for sufficiently large CSI delays, there exist distributed
policies that perform at least as well as the optimal
centralized policy.

As an example, consider the four node network in
Figure 3a, and a symmetric channel state model satisfying
p = q. Without loss of generality, assume node 1 is the
controller. In a centralized scheduling scheme, node 1
chooses a schedule based on current CSI for links (1, 2)
and (1, 4), and 1-hop delayed CSI for links (2, 3) and
(3, 4). The resulting expected throughput is computed by
first conditioning on the state of the links adjacent to
the controller, then on the delayed state of the remaining
links, and computing the optimal expected throughput
conditioned on this CSI.

C(p) = 1
4
( 3
4
(1 − p) + 1

4
p) + 1

2
· 3

2
+ 1

4
(1 + 3

4
(1 − p) + 1

4
p)

= 11
8
− 1

4
p. (6)

Now consider a distributed schedule, in which node 1
makes a scheduling decision based on the state of adjacent
links (1, 2) and (1, 4). After this decision is made, node
3 makes a non-conflicting decision based on the state of
links (3, 1) and (3, 4). The resulting expected throughput
is given by conditioning on the event that node 1 has an
ON adjacent link to activate.

D =
1
4
· 3

4
+

3
4
· 3

2
=

21
16

(7)

The expected throughput for centralized and distributed
scheduling in (6) and (7) is plotted in Figure 3b. As the
channel transition probability p increases, the memory in
the channel decreases, and the expected throughput of a
centralized scheduler decreases. The distributed scheduler,
on the other hand, is unaffected by the channel transition
probability, as it only uses non-delayed local CSI. For
channel transition probabilities p ≥ 1

4 , distributed schedul-
ing outperforms centralized scheduling over this network.

1

2

3

4

(a) Topology.
(b) Expected throughput as a function
of channel transition probability p.

Fig. 3: Four-node ring network example.

Next, we extend this result to general topologies. The
throughput degradation of the centralized scheme is a
function of the memory in the channel state process. Let
µ be a metric reflecting this memory. In the case of a
two-state Markov chain, we define

µ , 1− p− q. (8)

Note that µ is the second eigenvalue of the state transition
matrix for the two-state Markov chain, and thus represents
the rate at which the chain converges to its steady state
distribution [14].

Theorem 1. For a fixed steady-state probability π, there
exists a threshold µ∗ such that if µ ≤ µ∗, there exists a
distributed scheduling policy that outperforms the optimal
centralized scheduling policy.

Theorem 1 is proven by combining the following four
Lemmas.

Lemma 1. For a fixed steady-state probability π, and state
transition probabilities p and q = π

1−πp, the expected sum-
rate of any distributed policy is independent of the channel
memory µ.

Lemma 1 follows because the distributed policy does
not use delayed CSI.

Lemma 2. The expected sum-rate of the optimal cen-
tralized policy is greater than or equal to that of any
distributed policy when µ = 1.

Lemma 2 follows because when µ = 1, the controller
has perfect (non-delayed) CSI.

Lemma 3. There exists a distributed policy with sum
rate greater than or equal to the sum rate of the optimal
centralized policy when µ = 0.

The proof of Lemma 3 follows by showing that when
µ = 0, a centralized policy only has CSI pertaining to the
links adjacent to the controller. Thus, one can construct
a distributed policy that returns the same schedule as the
centralized policy.

Lemma 4. Let C(p, q) be the sum-rate of the optimal cen-
tralized algorithm as a function of the channel transition
probabilities p and q. For a fixed value of π, C(p, q) is
monotonically increasing in µ = 1− p− q.

Theorem 1 follows by combining Lemmas 1 - 4 to



prove that there exists a value of µ where distributed
and centralized achieve the same expected throughput.
Thus, there exists a threshold µ∗, such that for µ ≤ µ∗,
distributed scheduling outperforms the optimal centralized
scheduler. The value of µ∗ depends on the topology, and
in general, this threshold is difficult to compute. In the
following, we characterize the value of the threshold for
tree networks.

IV. TREE TOPOLOGIES

In this section, we characterize the expected throughput
over networks with tree topologies. The acyclic nature
of these graphs makes them amenable to analysis. We
focus on rooted trees, such that one node is the root and
every other node has a depth equal to the distance from
the root. Furthermore, for any node v, the nodes that are
connected to v but have depth greater than v are referred
to as children of v. If u is a child of v, then v is the
parent of u. This familial nomenclature is standard in the
graph-theoretic literature, and simplifies description of the
algorithms over tree networks. A complete k-ary tree of
depth n is a tree such that each node of depth less than n
has k children, and the nodes at depth n are leaf nodes, i.e.
they have no children. This section focuses on symmetric
channel models such that p = q to simplify the analysis,
but the results are easily extended to asymmetric channels
as well. Moreover, this paper provides results for complete
binary trees k = 2, but the results extend to the case of
k > 2 as well [15].

A. Distributed Scheduling on Tree Networks

Consider applying the distributed scheduling algorithm
over a complete binary tree of depth n, where transmission
priorities are assigned in order of depth (lower depth has
higher priority). The root node first makes a decision for its
neighboring links. Then, the children of the root attempt to
activate one of their child links, if this activation does not
conflict with their parent’s decision. Consequently, the av-
erage sum rate can be written recursively by conditioning
on the event that the root has an ON child link.

Proposition 1. Let Dn be the average sum rate of the
distributed algorithm over a complete binary tree of depth
n. The average sum-rate is computed recursively as

Dn =
3
4

+
5
4
Dn−1 +

3
2
Dn−2. (9)

A closed-form expression is obtained by solving the
recursion in (9).

Dn = − 9
77

(
− 3

4

)n
+

6
11
· 2n − 3

7
. (10)

The average sum-rate in (10) of the distributed schedul-
ing algorithm is independent of the link transition proba-
bility p, as each node only uses the CSI of the neighboring
links, which is available without delay. This follows from
Lemma 1.

Consider the asymptotic per-link throughput as the
number of links grows large. An n-level binary tree has
2n+1 − 2 links. Using the expression in (10), and taking

the limit as n grows large while dividing by the number
of links, yields

lim
n→∞

Dn

2n+1 − 2
=

3
11
. (11)

Thus, the distributed priority algorithm achieves a
throughput of at least 3

11 per link.

B. Centralized Scheduling on Tree Topologies

The optimal centralized policy schedules a maximum
weight matching over the network, where the weight of
each link is the belief given the delayed CSI. For tree
networks, the maximum-weight matching is the solution
to a dynamic programming (DP) problem. While dynamic
programming yields the optimal centralized schedule for
a specific observation of delayed CSI, computing the
average sum rate requires taking an expectation over
the delayed CSI. For larger trees, this analysis becomes
difficult; however, a recursive strategy can be used to
bound the expected solution to the DP.

Proposition 2. Let Cn be the average sum rate of the
centralized algorithm over a complete binary tree of depth
n, when the root node is chosen to be the controller. The
expected sum-rate throughput of the optimal centralized
controller is bounded recursively as

Cn ≤
3
4

+
3
2

(1− 2p)1Cn−1 +
1
2
p(2n + 1)

+ (1− 2p)2Cn−2 +
2
3
p(1− p)(2n−1 + 1).

(12)

Proposition 2 is proven by bounding the effect of delay
on centralized scheduling, and writing the expression for
expected throughput by conditioning on the possible state
of the links adjacent to the root, for which the optimal
decision is computed. Solving the recursion in (12) yields
a closed-form upper bound on the expected sum-rate
throughput achievable by a centralized scheduler.

The limiting ratio of the centralized throughput to the
number of links in the tree (for p > 0) is given by

lim
n→∞

Cn
2n+1 − 2

=
1
6

(13)

Note that this value is independent of p, since in the limit
as n grows large, infinitely many nodes are sufficiently far
from the root such that the controller has no knowledge of
their current state. One third of these links are scheduled
(size of a maximum cardinality matching) and they will be
in the ON state with probability 1

2 . Hence, the limiting per-
link throughput is 1

6 . Under distributed scheduling (11),
the achievable throughput is 3

11 . Therefore, as the network
grows large, distributed eventually outperforms centralized
scheduling.

The threshold p∗ beyond which distributed scheduling
is optimal is computed by combining (12) and (9). Figure
4 plots p∗ as a function of n. Note that as n gets large,
this threshold approaches zero, implying that distributed
is always better than centralized in large networks.



Fig. 4: Threshold value of p∗(n) such that for p > p∗(n),
distributed scheduling outperforms centralized scheduling on n-
level, binary tree.

V. SIMULATION RESULTS AND CONCLUSIONS

In this section, the performance of the distributed policy
is compared to the performance of a centralized controller
through simulation. For distributed scheduling, transmis-
sion priorities are assigned in reverse order of node degree.
For each network, we simulate decisions over 100,000
time slots. To begin, consider a 10-node, fully-connected
network. The average sum-rate throughput as a fraction of
the perfect-CSI throughput4 is plotted as a function of the
channel state transition probability p in Figure 5. In Figure
6, the simulation is applied to a five-by-five grid network,
where the centralized controller is located at the central-
most node. In both topologies, the distributed expected
throughput is constant, as in Lemma 1. These results
show that for p small, i.e. channels with high degrees
of memory, a purely centralized controller is optimal, as
in Lemma 2. As p increases, the expected throughput
of centralized scheduling decreases, as proven in Lemma
4, and eventually distributed scheduling outperforms the
optimal centralized scheme.

In summary, this work studied wireless scheduling in
networks where CSI updates are delayed proportional
to distance. In particular, we showed that a centralized
scheduling approach suffers from having delayed CSI, and
the resulting performance is a function of the memory in
the channel state process, as well as the network topol-
ogy. If the degradation to throughput is significant, we
show that distributed scheduling can outperform central-
ized scheduling, despite making suboptimal transmisison
decisions.
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APPENDIX

Lemma 3: There exists a distributed policy with sum
rate greater than or equal to the sum rate of the optimal
centralized policy when µ = 0.

Proof: If µ = 0, then the channel transition probabil-
ities p and q satisfy p = 1 − q. In this scenario, there is
no memory in the channel state process, and thus delayed
CSI is useless in predicting the current channel state. To
see this, consider the conditional probability of a channel
state given the previous channel state.

P(S(t+ 1) = 1|S(t) = 0) = p

= 1− q = P(S(t+ 1) = 1|S(t) = 1) (14)
P(S(t+ 1) = 0|S(t) = 0) = 1− p
= q = P(S(t+ 1) = 0|S(t) = 1) (15)

Thus, when µ = 0, the channel state process is IID over
time.

Let G be the graph representing the topology of the
network with the controller labeled as node 0. Let N0 be
the set of neighbors of node 0, and ∆ be the degree of
node 0, i.e. ∆ = |N0|. Let G0 ⊂ G be the graph obtained
by removing the links adjacent to the controller from the
network. Similarly, let Gi ⊂ G0 be the graph obtained
by removing all of the links adjacent to node i from G0.
Recall, a matching M of a graph G is any subset of the
edges of G such that no two edges share a node. Let M0

be a maximum (cardinality) matching over G0, and Mi be
a maximum cardinality matching over Gi.

Due to the IID channel process, each adjacent link either
has belief 0 or 1, and each non-adjacent link has belief
π. Thus, the optimal centralized scheduler operates as
follows. The controller observes the state of its adjacent
links and chooses a maximum throughput link activation.
There are 2∆ possible state combinations observed by the
controller; however, due to the fact that the controller can
only activate one adjacent link, the optimal centralized
schedule is one of at most ∆ + 1 matchings. Without
loss of generality, when the controller does not activate
an adjacent link, it activates matching M0, and if the
controller activates link (0, i) for i ∈ N0, then it also
activates matching Mi.

Lemma 3 is proved by constructing a distributed policy
which activates the same links as the optimal centralized
schedule. The ∆+1 potential activations can be computed
off-line5, and we assume each node knows the set of
possible activations. Each node must determine which
activation to use in a distributed manner. To accomplish
this, node 0 activates the same adjacent link as in the
centralized scheme, which is feasible since the centralized
controller uses only local CSI in the IID channel state
case. Each other node n activates links according to
the matching M0, unless that activation interferes with
a neighboring activation. If a conflict occurs, then node
0 must have transmitted according to some other Mi for

5To compute the set of potential activations, consider the case where
only one link adjacent to the controller is ON, as well as the case where
all adjacent links are OFF.

i ∈ N0, and node n detects this conflict, and activates
links according to the appropriate Mi. The remainder of
the proof explains the details of this distributed algorithm.

0

i

Path Pi

Fig. 7: Example of combining matchings to generate
components. Red links and blue links correspond to max-
imum cardinality matchings M0 and Mi. The component
containing node i is referred to as path Pi.

Consider the graph composed of the nodes in G and the
edges in both M0 and Mi, as done in [7], labeling edges
in M0 as red and edges in Mi as blue. An example is
shown in Figure 7. The resulting graph consists of multiple
connected components, where each component is either a
path or a cycle alternating between red and blue links. Note
that every component not containing node i has the same
number of red and blue links, since both matchings have
maximum cardinality. Consider the component including
node i, which must be a path since no blue links can
be adjacent to node i. Denote this path as Pi. If node 0
schedules link (0, i), then nodes in path Pi must schedule
blue links instead of red links. Since each node detects
neighboring transmissions, this can be accomplished in
a distributed manner. In all other components, either red
links or blue links can be scheduled to obtain maximum
throughput, because each component has equal red and
blue links, and switching between red and blue links will
not affect any other components.

The remaining detail concerns the decision of which
of the ∆ alternate matchings to use if M0 conflicts with
a neighboring transmission. As explained above, node n
is informed of the switch to matching Mi by blue links
being activated on path Pi, propagating from node i. If
node n does not lie on any path Pi for i ∈ N0, then
activating links according to matching M0 never conflicts
with any other transmissions. If node n lies on a single
path Pi, then upon detecting a conflicting transmission,
node n switches to matching Mi. If there is are i, j ∈ N0,
such that n ∈ Pi and n ∈ Pj , then node n decides between
Mi and Mj based on the direction (neighbor) from which
the conflicting transmission is detected, as illustrated in
Figure 8a. If Pi and Pj are such that the conflicting link
at node n is detected from the same neighbor, as in Figure
8b, then either Mi and Mj can be used.

Lemma 4: Let C(p, q) be the sum-rate of the optimal
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(a) Scenario 1. A conflict detected from neighbor x
corresponds to matching Mi, and a conflict detected
from neighbor y corresponds to matching Mj .
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(b) Scenario 2. Node n can activate either according
to Mi or Mj if a conflict is detected at neighbor x.

Fig. 8: Abstract representation of a node n’s position on
multiple conflicting paths.

centralized algorithm as a function of the channel transi-
tion probabilities p and q. For a fixed value of π, C(p, q)
is monotonically increasing in µ = 1− p− q.

Proof: Let Φ represent the set of feasible schedules
(matchings), and φ ∈ Φ be a binary vector, such that φl
indicates whether link l is activated in the schedule. Con-
sider two channel-state distributions, one with transition
probabilities p1 and q1, and the other with probabilities
p2 and q2, satisfying π1 = π2 = π. Furthermore,
assume that µ1 ≥ µ2. Let aks,1 (bks,1) represent the k-
step transition probability from s to 1 when the one-step
transition probabilities are p1 and q1 (p2 and q2). Lastly,
let dr(l) be the distance of link l from controller r, and let
S(t−dr) =

[
Sl(t−dr(l))

]
l∈L be the delayed CSI vector,

where the lth element is the delayed CSI of link l with
delay equal to dr(l).

Let φ1(s) and φ2(s) be binary vectors representing the
optimal schedules for state s, when the state transition
probability is (p1, q1) and (p2, q2) respectively, with an
arbitrary rule for breaking ties, i.e.

φ1(s) = argmax
φ∈Φ

∑
l∈L

φla
dr(l)
sl,1

(16)

φ2(s) = argmax
φ∈Φ

∑
l∈L

φlb
dr(l)
sl,1

. (17)

The expected sum-rate of the centralized scheme is
expressed as

C(p1, q1) =
∑
s∈S

P(S(t− dr) = s)
∑
l∈L

φ1
l (s)adr(l)

sl,1
(18)

C(p2, q2) =
∑
s∈S

P(S(t− dr) = s)
∑
l∈L

φ2
l (s)bdr(l)

sl,1
. (19)

To prove the monotonicity of C(p, q), we show that for

all p1, q1, p2, q2 satisfying π1 = π2 and µ1 ≥ µ2,

C(p1, q1)− C(p2, q2) ≥ 0. (20)

The above difference is bounded as follows.

C(p1, q1)− C(p2, q2)

=
∑
s∈S

P(S(t− dr) = s)
∑
l∈L

φ1
l (s)adr(l)

sl,1

−
∑
s∈S

P(S(t− dr) = s)
∑
l∈L

φ2
l (s)bdr(l)

sl,1
(21)

≥
∑
s∈S

P(S(t− dr) = s)
∑
l∈L

φ2
l (s)

(
a
dr(l)
sl,1
− bdr(l)

sl,1

)
(22)

where the inequality follows from the fact that φ2 is the
maximizing schedule for channel 2, and not channel 1.
The proof follows by partitioning the state space into states
which result in a specific schedule. Let Sφ ⊂ S be the set
of states such that φ is the optimal schedule, i.e.,

Sφ =
{
s ∈ S|φ2(s) = φ

}
. (23)

Due to the arbitrary tie-breaking rule in the optimization
of φ2(s) in (17), each s belongs to exactly one Sφ. In other
words, the sets {Sφi}i are disjoint, and

⋃
φ∈Φ Sφ = S.

Therefore, (22) can be rewritten as

C(p1, q1)− C(p2, q2)

≥
∑
φ∈Φ

∑
s∈Sφ

P(S(t− dr) = s)
∑
l∈L

φl

(
a
dr(l)
sl,1
− bdr(l)

sl,1

)
.

(24)

The quantity adr(l)
sl,1
−bdr(l)

sl,1
simplifies using µi = 1−pi−

qi, and the definition of the k-step transition probability.

a
dr(l)
sl,1
− bdr(l)

sl,1
= π + (sl − π)µdr(l)

1 − π − (sl − π)µdr(l)
2

(25)

= (sl − π)
[
µ
dr(l)
1 − µdr(l)

2

]
(26)

Combining (24) and (26) yields

C(p1, q1)− C(p2, q2) ≥
∑
φ∈Φ

∑
s∈Sφ

P(S(t− dr) = s)

·
∑
l∈L

φl(sl − π)
[
µ
dr(l)
1 − µdr(l)

2

]
(27)

=
∑
φ∈Φ

∑
s∈Sφ

∑
l∈L

φl(sl − π)
[
µ
dr(l)
1 − µdr(l)

2

]
·
(∏
j∈L

P(Sj(t− dr(j)) = sj)
)

(28)

=
∑
φ∈Φ

∑
l∈L

∑
s∈Sφ

φlπ(1− π)(−1)1−sl
[
µ
dr(l)
1 − µdr(l)

2

]
·
( ∏
j∈L\l

P(Sj(t− dr(j)) = sj)
)

(29)

where (28) follows from the independence of the channel
state process across links, and (29) follows from:

P(Sl(t− dr(l)) = sl)(sl − π)



= (πsl + (1− π)(1− sl))(sl − π) (30)
= πsl(sl − π) + (1− π)(1− sl)(sl − π) (31)

= (−1)1−slπ(1− π) (32)

We prove that for any schedule φ ∈ Φ and link l ∈ L,∑
s∈Sφ

φlπ(1− π)(−1)1−sl

·
[
µ
dr(l)
1 − µdr(l)

2

]( ∏
j∈L\l

P(Sj(t− dr(j)) = sj)
)
≥ 0

(33)

Fix a schedule φ ∈ Φ and link l ∈ L. The summand
in (33) is non-zero only if φl = 1, i.e. the link l is in the
schedule φ. The summand is negative if and only if sl = 0.
Consider a delayed CSI vector s ∈ Sφ such that sl =
0, and the delayed CSI vector s obtained from changing
the lth element of s to 1, i.e., sj = sj ∀j 6= l, sl = 1.
Since s ∈ Sφ, it follows that s ∈ Sφ. This is because link
l is scheduled under φ, and the throughput obtained by
scheduling link l is strictly increased in moving from s to
s, so the same schedule must remain optimal. Therefore,
for every element s ∈ Sφ contributing a negative term to
the summation in (33), there exists another state s ∈ Sφ
contributing a positive term of equal magnitude, implying
that the entire summation must be non-negative.

Proposition 2: For a complete binary tree of depth n, the
expected sum-rate throughput of the optimal centralized
controller is bounded recursively as:

C2
n ≤

3
4

+
3
2

(1− 2p)1C2
n−1 +

1
2
p(2n + 1) + (1− 2p)2C2

n−2

+
2
3
p(1− p)(2n−1 + 1) (34)

Proof: Proof of Theorem 2 Let Ckn(δ) be the expected
sum rate of a complete, k-ary subtree of depth n, where
the root of that subtree is a distance of δ hops from the
controller. Thus, the CSI of a link at depth h in the subtree
is delayed by δ + h− 1 time slots.

For a binary tree rooted at node v, let cL and cR be
the left and right children of v respectively. The expected
sum-rate is bounded by enumerating the possible states of
the links incident to the controller. Label the links adjacent
to the root as a and b. If both links a and b are OFF, as in
Figure 9a, then the root schedules neither link, and instead
schedules links over the two n− 1 depth subtrees. If only
link a (link b) is ON, then link a (b) will be scheduled,
and the links adjacent to that link cannot be scheduled, as
in Figure 9b (Figure 9c). If both a and b are ON, then the
controller chooses the maximum between the scenarios in
Figure 9b and Figure 9c. Combining these cases leads to
an expression for centralized throughput.

C2
n =

1
4
· 2C2

n−1(1) + 2 · 1
4

(1 + C2
n−1(1) + 2C2

n−2(2))

+
1
4

(
1 + E

[
max

(
g1(cL) + g2(cR), g2(cL) + g1(cR)

)])
(35)

≤ 3
4

+ C2
n−1(1) + C2

n−2(2) +
1
4

E
[
g1(cL) + g1(cR)

]
(36)

=
3
4

+
3
2
C2
n−1(1) + C2

n−2(2) (37)

where g1(v) is the maximum weight matching of the
subtree rooted at v, assuming that v activates one of its
child links, and g2(v) is the maximum weight matching
of the subtree rooted at v assuming that v cannot activate
a child link, due to interference from the parent of v. The
bound in (36) follows from the fact that g1(u) ≥ g2(u)
for any node u ∈ N . In order to get a recursive expression
for C2

n, we also need to bound C2
n(δ).

Let φl(s) be an indicator variable equal to 1 if and only
if link l is activated in the optimal schedule when the
delayed CSI of the network is given by s. Similarly, let
φδl (s) be an indicator variable equal to 1 if and only if
link l is activated in the optimal schedule when the CSI is
further delayed by δ slots. Applying (18), the centralized
sum rates are expressed as

C2
n(δ) =

∑
s∈S

P(S(t− dr) = s)
∑
l∈L

φδl (s)pdr(l)+δ
sl,1

, (38)

Equation (38) is bounded in terms of C2
n(0):

C2
n(δ) =

∑
s∈S

P(S(t− dr) = s)
∑
l∈L

φδl (s)pdr(l)+δ
sl,1

= (1− 2p)δ
∑
s∈S

P(S(t− dr) = s)
∑
l∈L

φδl (s)pdr(l)
sl,1

+
∑
s∈S

P(S(t− dr) = s)
∑
l∈L

φδl (s)pδ0,1

(39)

≤ (1− 2p)δ
∑
s∈S

P(S(t− dr) = s)
∑
l∈L

φl(s)pdr(l)
sl,1

+
∑
s∈S

P(S(t− dr) = s)
∑
l∈L

φδl (s)pδ0,1

(40)

= (1− 2p)δC2
n(0) + pδ0,1E[# Activated Links]

(41)

≤ (1− 2p)δC2
n(0) + pδ0,1

⌈
1
3

E[# Links]
⌉

(42)

≤ (1− 2p)δC2
n(0) + pδ0,1

1
3

(2n+1 + 1) (43)

Equation (39) follows from using the identity pi+js,1 =
pj0,1 + (1− 2p)jpis,1. Equation (40) follows from the fact
that φl(s) is the sum-rate maximizing schedule in C2

n(0).
The bound in (42) follows from noting that at most one
third of the links can be simultaneously scheduled due to
interference. Combining the bound in (43) with that in
(37) yields a recursive expression from which the upper
bound is computed.
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(a) Link a and link b are not activated. The expected throughput
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(b) If link a is scheduled, the dashed links cannot be scheduled,
and the solid links can.

C2
n

C2
n−1(1) C2

n−1(1)

C2
n−2(2) C2

n−2(2) C2
n−2(2) C2

n−2(2)

a b

(c) When link b is scheduled, the dashed links cannot be schedules
but the solid links can.

Fig. 9: Possible scheduling scenarios for centralized sched-
uler.


