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Abstract A search for the decay K 0
S → μ+μ− is per-

formed, based on a data sample of proton-proton collisions
corresponding to an integrated luminosity of 3 fb−1, col-
lected by the LHCb experiment at centre-of-mass energies
of 7 and 8 TeV. The observed yield is consistent with the
background-only hypothesis, yielding a limit on the branch-
ing fraction of B(K 0

S → μ+μ−) < 0.8 (1.0) × 10−9 at
90% (95%) confidence level. This result improves the pre-
vious upper limit on the branching fraction by an order of
magnitude.

1 Introduction

In the Standard Model (SM), the unobserved K 0
S → μ+μ−

decay proceeds only through a Flavour-Changing Neutral
Current (FCNC) transition, which cannot occur at tree level.
It is further suppressed by the small amount of CP viola-
tion in kaon decays, since the S-wave component of the
decay is forbidden when CP is conserved. In the SM, the
decay amplitude is expected to be dominated by long distance
contributions, which can be constrained using the observed
decays K 0

S → γ γ and K 0
L → π0γ γ , leading to the pre-

diction for the branching fraction B(K 0
S → μ+μ−) =

(5.0 ± 1.5) × 10−12 [1,2]. The predicted branching frac-
tion for the K 0

L decay is (6.85 ± 0.32) × 10−9 [3], in
excellent agreement with the experimental world average
B(K 0

L → μ+μ−) = (6.84 ± 0.11) × 10−9 [4]. The pre-
diction for K 0

S → μ+μ− is currently being updated with a
dispersive treatment, which leads to sizeable corrections in
other K 0

S leptonic decays [5].
Due to its suppression in the SM, the K 0

S → μ+μ−
decay is sensitive to possible contributions from dynamics
beyond the SM, notably from light scalars withCP-violating
Yukawa couplings [1]. Contributions up to one order of mag-
nitude above the SM branching fraction expectation nat-
urally arise in many models and are compatible with the
present bounds from other FCNC processes. An upper limit
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on B(K 0
S → μ+μ−) close to 10−11 could be translated into

model-independent bounds on the CP-violating phase of the
s→ d�+�− amplitude [2]. This would be very useful to dis-
criminate between scenarios beyond the SM if other modes,
such as K+ → π+νν, indicate a non-SM enhancement.

The current experimental limit, B(K 0
S → μ+μ−) <

9 × 10−9 at 90% confidence level (CL), was obtained using
pp collision data corresponding to 1.0 fb−1 of integrated
luminosity at a centre-of-mass energy

√
s = 7 TeV, collected

with the LHCb detector in 2011 [6]. This result improved the
previous upper limit [7] but is still three orders of magnitude
above the predicted SM level.

In this paper, an update of the search for the K 0
S → μ+μ−

decay is reported. Its branching fraction is measured using the
known K 0

S → π+π− decay as normalisation. The analysis
is performed on a data sample corresponding to 2 fb−1 of
integrated luminosity at

√
s = 8 TeV, collected in 2012,

and the result is combined with that from the previous LHCb
analysis [6]. Besides the gain in statistical precision due to
the larger data sample, the sensitivity is noticeably increased
with respect to the previous result due to a higher trigger
efficiency, as well as other improvements to the analysis that
are discussed in the following sections.

An overview on how K 0
S → μ+μ− decays are detected

and triggered in LHCb is given in Sect. 2, while the strategy
for this measurement is outlined in Sect. 3. Details of back-
ground suppression and the resulting sensitivity are given
in Sects. 4 and 5, respectively. The final result, taking into
account the systematic uncertainties discussed in Sect. 6, is
given in Sect. 7.

2 K 0
S decays in LHCb

The LHCb detector [8,9] is a single-arm forward spectrom-
eter covering the pseudorapidity range 2 < η < 5, designed
for the study of particles containing b or c quarks. The
detector includes a high-precision tracking system consist-
ing of a silicon-strip vertex locator (VELO) surrounding
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the pp interaction region, a large-area silicon-strip detec-
tor located upstream of a dipole magnet with a bending
power of about 4 Tm, and three stations of silicon-strip detec-
tors and straw drift tubes placed downstream of the magnet.
The tracking system provides a measurement of momen-
tum, p, of charged particles with a relative uncertainty that
varies from 0.5% at low momentum to 1.0% at 200 GeV/c.
The minimum distance of a track to a primary vertex (PV),
the impact parameter (IP), is measured with a resolution of
(15+29/pT) µm, where pT is the component of the momen-
tum transverse to the beam, in GeV/c. Different types of
charged hadrons are distinguished using information from
two ring-imaging Cherenkov detectors (RICH). Photons,
electrons and hadrons are identified by a calorimeter sys-
tem consisting of scintillating-pad and preshower detectors,
an electromagnetic calorimeter and a hadronic calorimeter.
Muons are identified by five stations which alternate layers
of iron and multiwire proportional chambers.

The online event selection is performed by the trigger [10],
which consists of a hardware stage, based on information
from the calorimeter and muon systems, followed by a two-
step software stage, which applies a full event reconstruction.
Candidates are subsequently classified as TOS, if the event
is triggered on the signal candidate, or TIS, if triggered by
other activities in the detector, independently of signal. Only
candidates that are classified as TOS at each trigger stage are
used to search for K 0

S → μ+μ− decays.
The trigger selection constitutes the main limitation to the

efficiency for detecting K 0
S decays. A muon is only selected

at the hardware stage when it is detected in all muon sta-
tions and a rough momentum estimation is provided. Trigger
requirements at this stage imply a momentum larger than
about 5 GeV/c, and a pT above 1.76 GeV/c. These thresh-
olds have an efficiency of order 1% for K 0

S → μ+μ− decays.
In the first step of the software trigger, all charged particles

with pT > 500 MeV/c are reconstructed. At this stage most
signal decays are triggered either by requiring a reconstructed
track loosely identified as a muon [10,11], with IP > 0.1 mm
and pT > 1.0 GeV/c, or by finding two oppositely charged
muon candidates forming a detached secondary vertex (SV).
Since these two categories, hereafter referred to as TOSμ and
TOSμμ, induce different kinematic biases on the signal and
background candidates, the analysis steps described below
are performed independently on each category. The two cat-
egories are made mutually exclusive by applying the TOSμμ

selection only to candidates not already selected by TOSμ.
In the second software trigger stage, an offline-quality

event reconstruction is performed. Signal candidates are
selected requiring a dimuon with pT > 600 MeV/c detached
from the primary vertex, with both tracks having pT >

300 MeV/c. In the 2011 data taking, the dimuon mass was
required to be larger than 1 GeV/c2 in the second software
trigger stage. This excluded the K 0

S region, making the use of

TIS candidates necessary. Due to the trigger reoptimisation,
no mass requirements were applied during 2012 and a lower
pT threshold for reconstructed tracks was used. According
to simulation, these changes improve the trigger efficiency
over the previous analysis [6] by about a factor 2.5.

Due to its large and well-known branching fraction and
its similar topology, the K 0

S → π+π− decay is taken as the
normalisation mode. A large sample of candidates is obtained
from an unbiased trigger, which does not apply any selection
requirement.

Despite the low trigger efficiency, the study detailed in
this paper profits from the unprecedented number of K 0

S pro-
duced at the LHC, O(1013) per fb−1 of integrated luminosity
within the LHCb acceptance, and from the fact that about
40% of these K 0

S decays occur inside the VELO region. For
such decays, the K 0

S invariant mass is reconstructed with a
resolution of about 4 MeV/c2.

The analysis makes use of large samples of simulated
collisions containing a signal decay, or background decays
which can be reconstructed as the signal, and contaminate
the μμ invariant mass distribution, such as K 0

S → π+π−
or K 0

S → π+μ−ν̄μ.1 In the simulation, pp collisions are
generated using Pythia [12,13] with a specific LHCb con-
figuration [14]. Decays of hadronic particles are described
by EvtGen [15], in which final-state radiation is generated
using Photos [16]. The interaction of the generated particles
with the detector, and its response, are implemented using the
Geant4 toolkit [17,18] as described in Ref. [19].

3 Selection and search strategy

Common offline preselection criteria are applied to K 0
S →

μ+μ− and K 0
S → π+π− candidates to cancel many sys-

tematic effects in the ratio. Candidates are required to decay
in the VELO region, where the best K 0

S mass resolution is
achieved. The two reconstructed tracks must have momen-
tum smaller than 100 GeV/c and quality requirements are set
on the track and secondary vertex fits. The SV must be well
detached from the PV by requiring the K 0

S decay time to be
larger than 8.95 ps, 10% of the K 0

S mean lifetime. The K 0
S IP

must be less than 0.4 mm, while the two charged tracks are
required to be incompatible with originating from any PV,
with IP χ2, defined as the difference of the χ2 of the PV fit
obtained with and without the considered track, to be larger
than 100.

Decays of Λ baryons to pπ− are suppressed by removing
candidates close to the expected ellipses in the Armenteros–
Podolanski (AP) plane [20]. In this plane the pT of the
final-state particles under the pion mass hypothesis is plot-
ted versus the longitudinal momentum asymmetry, defined

1 The inclusion of charge-conjugate processes is implied throughout.
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as α = (p+
L − p−

L )/(p+
L + p−

L ), where p±
L is the longitu-

dinal momentum of the charged tracks. Both pT and pL are
considered with respect to the direction of the mother parti-
cle. The K 0

S decays are symmetrically distributed on the AP
plane while Λ decays produce two ellipses at low pT and
|α| ∼ 0.7. A kaon veto, based on the response of the RICH
detector, is used to suppress K ∗0 → K+π− decays and other
possible final states including a charged kaon.

The preselection reduces the combinatorial background,
arising from candidates formed from secondary hadronic col-
lisions in the detector material or from spurious reconstructed
SV. The purity of the K 0

S → π+π− sample used for nor-
malisation, whose mass distribution is shown in Fig. 1, is
estimated from a fit to the mass spectrum to be 99.8%. The
fraction of events with more than one candidate is less than
0.1% for signal and 4% for the normalisation channel, and
all candidates are retained. Additional discrimination against
backgrounds for the signal mode is achieved through the use
of two multivariate discriminants. The first is designed to
further suppress combinatorial background, and the second
to reduce the number of K 0

S → π+π− decays in which both
pions are misidentified as muons.

After requirements on the output of these discriminants
have been applied, the number of signal candidates is
obtained by fitting the K 0

S → μ+μ− mass spectrum. The
number of candidates is converted into a branching fraction
using the yield of the K 0

S → π+π− normalisation mode,
and the estimated relative efficiency. Events in the K 0

S mass
region are scrutinised only after fixing the analysis strategy.

4 Backgrounds

The K 0
S → μ+μ− sample contains two main sources

of background. Combinatorial background candidates are
expected to exhibit a smooth mass distribution, and can there-
fore be estimated from the sidebands. The other relevant
source of background is due to K 0

S → π+π− decays where
both pions pass the loose muon identification requirements
after the trigger stage. This can be due either to π+ → μ+νμ

decays or to random association of muon detector hits with
the pion trajectory. In such cases the K 0

S mass, reconstructed
with a wrong mass hypothesis for the final-state particles, is
underestimated by 39 MeV/c2 on average, as shown in Fig. 1.
Despite the excellent mass resolution, the right-hand tail of
the reconstructed mass distribution under the dimuon hypoth-
esis extends into the K 0

S signal mass range and, given the large
branching fraction of the K 0

S → π+π− mode, constitutes a
nonnegligible background. Two multivariate discriminants,
based on a boosted decision tree (BDT) algorithm [21,22],
are applied on the preselected candidates to improve the sig-
nal discrimination with respect to these backgrounds.
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Fig. 1 Reconstructed mass for K 0
S → π+π− decays in trigger-

unbiased events, computed assuming the muon (dashed red line) or
pion (solid blue line) mass for the final-state tracks. Candidates satisfy
the selection criteria described in the text

The first discriminant, named hereafter BDTcb, aims to
reduce the combinatorial background, exploiting the differ-
ent decay topologies, kinematic spectra and reconstruction
qualities of signal and combinatorial candidates. It is opti-
mised separately for each trigger category. The algorithm
used for both categories is XGBoost [23], with a learning
rate of 0.02 and a maximum depth of 4. The optimal num-
ber of estimators is 2000 and 800 for the TOSμ and TOSμμ

trigger categories, respectively. A set of ten input variables
is used in BDTcb: the K 0

S pT and IP, the minimum IP of the
two charged tracks, the angle between the positively charged
final-state particle in the K 0

S rest frame and the axis defined
by the K 0

S boost direction, the χ2 of the SV fit, the distance
of closest approach between the two tracks, an SV isola-
tion variable, defined as the difference in vertex-fit χ2 when
the next nearest track is included in the vertex fit, and the SV
absolute position coordinates. The SV position is particularly
important, since a large fraction of the background is found
to originate from interactions in the detector material. This
set of variables does not distinguish between K 0

S → μ+μ−
and K 0

S → π+π− decays as it does not contain quantities
related to muon identification and ignores the K 0

S candidate
invariant mass distribution.

The signal training sample for BDTcb is composed of
about 11800 (TOSμ) and 2400 (TOSμμ) K 0

S → μ+μ− sim-
ulated candidates passing the trigger and preselection crite-
ria. A signal training sample consisting of K 0

S → π+π−
decays in data is also used as a cross-check, as explained
in Sect. 6. The background training sample is made from
K 0

S → μ+μ− data candidates surviving the trigger and pre-
selection requirements with reconstructed mass in the range
[520, 600] MeV/c2, and contains about 15000 and 4000 can-
didates for the TOSμ and TOSμμ trigger categories, respec-
tively. Since candidates in the same mass region are also used

123



678 Page 4 of 12 Eur. Phys. J. C (2017) 77 :678

to estimate the residual background, the training is performed
using a k-fold cross-validation technique [24] to avoid any
possible effect of overtraining.

A loose requirement on the BDTcb output is applied to
suppress the combinatorial background. The cut is chosen
to remove 99% of the background training candidates. The
corresponding signal efficiency is about 56 and 66% for the
TOSμ and TOSμμ trigger categories, respectively. To exploit
further the information provided by the discriminant, the can-
didates surviving this requirement are allocated to ten bins
according to their BDTcb value, with bounds defined in order
to have approximately equal population of signal training
candidates in each bin.

The background from misidentified K 0
S → π+π− decays

is further reduced with the second multivariate discriminant,
called BDTμ. Its input includes the position, time and number
of detector hits around the extrapolated track position to each
muon detector station, a global match χ2 between the muon
hit positions and the track extrapolation, and other variables
related to the tracking and the response of the RICH and
calorimeter detectors.

To train the BDTμ discriminant, highly pure samples of
1.2 million pions and 0.68 million muons are obtained from
TIS-triggered K 0

S → π+π− and B+ → J/ψK+ decays,
respectively. In the latter case, a probe muon from the J/ψ
is required to be TIS at all trigger stages, while stringent
muon identification requirements are set on the other muon,
reaching an estimated purity for muons above 99.9%. The
multivariate AdaBoost algorithm implemented in the TMVA
package [25] is used, with 850 trees and a maximum depth
of 3. Before using it in the BDTμ training, the muon sample
is weighted to have the same two-dimensional distribution in
p and pT as the pion sample, as well as the same distribution
of number of tracks in the event. This is to prevent the BDTμ

from discriminating pions and muons using these variables,
which are included in the input because of their strong corre-
lation with the identification variables. Weighting also allows
optimisation of the discrimination power for the kinematic
spectrum relevant to this search.

The level of misidentification of the discriminant for a pion
from K 0

S → π+π− decay is found to be 0.4% for 90% muon
efficiency. This reduces the level of double misidentification
background, for a given efficiency, by about a factor of four
with respect to the discriminant used in the previous publica-
tion [6], which was not tuned specifically for K 0

S → μ+μ−
searches.

The BDTμ discriminant is trained using half of the B+ →
J/ψK+ sample, while the other half is used to evaluate the
muon identification efficiency as a function of (p, pT). These
values are used to compute the efficiency of a BDTμ require-
ment on the candidate K 0

S → μ+μ− decays after selec-
tion and trigger requirements, in each bin of the BDTcb dis-
criminant. The muon spectra assumed in this calculation are

obtained from simulated decays, weighted to better repro-
duce the K 0

S pT spectrum observed in K 0
S → π+π− candi-

dates.
The BDTμ requirement on the signal candidates is opti-

mised by maximising the figure of merit [26] εμID/(
√
Nbg +

a/2), with a = 3, where εμID is the signal efficiency and
Nbg the expected background yield. The latter is estimated
from a fit to the mass distribution, after removing candidates
in the range [492, 504] MeV/c2 around the K 0

S mass, and
extrapolating the result into this region. In the fit, the contri-
bution of K 0

S → π+π− decays is modelled with a Crystal
Ball function [27] and the combinatorial background with an
exponential function, where all the parameters are left free
to vary. This optimisation is performed independently for the
two trigger categories, with no significant difference found
as a function of the BDTcb bin. The optimal threshold corre-
sponds to a signal efficiency of εμID ∼ 98% in both cases.

Other possible sources of background have been explored
and found to give negligible contribution to this search.
The irreducible background due to K 0

L → μ+μ− decays
and from K 0

S –K 0
L interference is evaluated from the known

K 0
L → μ+μ− branching fraction and lifetime, and by study-

ing the decay-time dependence of the selection efficiency for
K 0

S → π+π− decays in data. The yield from this background
becomes comparable to the signal for a branching fraction
lower than 2 × 10−11, which is well below the sensitivity of
this search.

Semileptonic K 0 → π+μ−νμ decays with pion misiden-
tification provide another possible source of background.
Simulated events, where the pion is forced to decay to μν

within the detector, are used to determine the efficiency of
the offline selection requirements. No event survives the trig-
ger selection. Under the very conservative hypothesis that the
trigger efficiency is the same as in K 0

S → μ+μ− decays, the
expected yields from both K 0

L and K 0
S semileptonic decays

are negligible.
Decays including a dimuon from resonances, like ω →

π0μ+μ− and η → μ+μ−γ , do not produce peaking struc-
tures in the mass distribution, and are accounted for in the
combinatorial background.

5 Search sensitivity

The observed number of K 0
S → μ+μ− candidates is con-

verted into a branching fraction using the normalisation
mode and its precisely known branching fraction B(K 0

S →
π+π−) = 0.6920 ± 0.0005 [4]. The computation is made in
every BDTcb bin i and trigger category j as follows

B(K 0
S → μ+μ−) = B(K 0

S → π+π−) · εππ

ε
μμ
i j

· N
μμ
i j

Nππ

≡ αi j N
μμ
i j , (1)
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Table 1 Values of the single
candidate sensitivity αi j and the
number of candidates NK

i j

compatible with the K 0
S mass

(reconstructed mass in the range
[492, 504] MeV/c2), for each
BDTcb bin i and trigger category
j . Only statistical uncertainties
are given. The first uncertainty
is uncorrelated, while the
second is fully correlated among
the BDTcb bins of the same
trigger category

Bin i αiTOSμ(×10−10) αiTOSμμ (×10−9) NK
iTOSμ

NK
iTOSμμ

1 7.48 ± 0.84 ± 0.16 5.30 ± 0.72 ± 0.12 49 13

2 7.72 ± 0.87 ± 0.17 4.71 ± 0.63 ± 0.10 28 9

3 7.85 ± 0.89 ± 0.18 4.88 ± 0.65 ± 0.11 9 14

4 7.93 ± 0.89 ± 0.19 4.66 ± 0.62 ± 0.10 18 10

5 7.53 ± 0.85 ± 0.18 4.65 ± 0.61 ± 0.10 6 3

6 7.78 ± 0.88 ± 0.19 4.95 ± 0.66 ± 0.11 2 2

7 7.56 ± 0.85 ± 0.19 4.60 ± 0.61 ± 0.10 3 1

8 7.90 ± 0.89 ± 0.19 5.00 ± 0.67 ± 0.11 2 1

9 7.81 ± 0.88 ± 0.18 4.72 ± 0.63 ± 0.11 1 1

10 7.75 ± 0.87 ± 0.17 4.66 ± 0.62 ± 0.11 0 0

where Nμμ
i j and Nππ denote the background-subtracted

yields for the signal and normalisation modes, respectively.
The total selection efficiencies ε can be factorised as

εππ

ε
μμ
i j

= εππ
sel

ε
μμ
sel

× εππ
trig

ε
μμ

trig; j
× 1

ε
μμ

BDT;i j
× 1

εμID;i j
. (2)

The first factor refers to the offline selection requirements,
which are applied identically to both modes and cancel to first
order in the ratio; the residual difference is mainly due to
the different interaction cross-sections for pions and muons
with the detector material, and is estimated from simula-
tion. The second factor is the ratio of trigger efficiencies;
the efficiency for the signal is determined from simulation,
with its systematic uncertainty estimated from data-driven
checks, while that for the normalisation mode is the prescale
factor of the random trigger used to select K 0

S → π+π−,
(9.38±1.01)×10−8. The third factor reflects the fraction of
candidates in each BDTcb bin, and is also determined from
simulation. Finally, the efficiency of the BDTμ requirement
is obtained from the B+ → J/ψK+ calibration sample
described in Sect. 4, for each BDTcb bin and trigger cate-
gory.

To account for the difference between the kaon pT spectra
observed in the K 0

S → π+π− decays in data and simulation,
all efficiencies obtained from simulation are computed in
six roughly equally populated pT bins. A weighted average
of the efficiencies is then performed, where the weights are
determined from the yields in each bin observed in data for
K 0

S → π+π− candidates.
The resulting values for the single candidate sensitivity

αi j are reported in Table 1. The quoted uncertainties are sta-
tistical only. They are separated between the uncertainty on
ε
μμ

BDT;i j , due to the limited statistics of simulated data and
uncorrelated among BDTcb bins, and all the other statis-
tical uncertainties, which are conservatively considered as
fully correlated among bins within the same trigger cate-
gory. Table 1 also presents the number of candidates around

Table 2 Relevant systematic uncertainties on the branching fraction.
They are separated, using horizontal lines, into relative uncertainties
on (i) αi j , (ii) on the signal yield from the signal model used in the
mass fit, and (iii) on the branching fraction, obtained combining the
two categories, from the background model

Source TOSμ TOSμμ

Tracking (%) 0.4 0.4

Selection (%) 1.9 1.8

Trigger (%) 8.1 11.5

K 0
S pT spectrum (%) 4.3 4.3

Muon identification (%) 0.2 0.3

Signal mass shape (%) 0.8 0.8

Background shape (%) 0.9

the K 0
S mass. The separation between signal and background

is presented in Sect. 7.

6 Systematic uncertainties

Several systematic effects, summarised in Table 2, contribute
to the uncertainty on the normalisation factors. Tracking effi-
ciencies are not perfectly reproduced in simulated events.
Corrections based on a J/ψ → μ+μ− data control sample
are determined as a function of the muon p and η. The aver-
age effect of these corrections on the ratio εππ

sel /ε
μμ
sel and its

standard deviation, added in quadrature, leads to a systematic
uncertainty of 0.4%.

The distributions of all variables relevant to the selec-
tion are compared in data and simulation for K 0

S → π+π−
decays. The largest differences are found in the kaon pT and
its decay vertex radial position. The effect on εππ

sel /ε
μμ
sel of

applying a two-dimensional weight to account for these dis-
crepancies is taken as a systematic uncertainty, and amounts
to a relative 1.9 and 1.8% for the TOSμ and TOSμμ trigger
categories, respectively.
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The difference between data and simulation in the kaon pT

spectrum could also affect the other factors in the computa-
tion of αi j . An additional uncertainty is assigned by repeating
the whole calculation with a finer binning in pT. Due to the
limited size of the data samples, this is possible only in the
TOSμ category. The average relative change in αi j , 4.3%, is
assigned as an uncertainty for both categories.

A specific cross-check is performed to validate the effi-
ciencies predicted by the simulation for the BDTcb require-
ments. An alternative discriminant is made using a signal
training sample consisting of trigger-unbiased K 0

S → π+π−
decays, selected with additional kinematic criteria which
mimic the effect of the muon trigger selections. The distribu-
tions of this alternative discriminant in data and simulation
are found to agree within the statistical uncertainty, and no
systematic uncertainty is assigned.

The uncertainty due to the simulation of TOS selections in
the first two trigger stages is assessed by comparing the trig-
ger efficiency in simulation and data, using a control sample
of B+ → J/ψ K+ decays. The resulting relative differences,
8.1% for TOSμ and 11.5% for TOSμμ, are assigned as sys-
tematic uncertainties. No uncertainty is considered for the
selection in the last trigger stage, which is based on the same
offline kinematic variables used in the selection, for which a
systematic uncertainty is already assigned.

The uncertainty on εμID;i j is estimated from half the dif-
ference between the values obtained with and without the
weighting of the B+ → J/ψ K+ sample used in the deter-
mination of the muon identification efficiency. This results
in an uncertainty of 0.2 and 0.3% for the TOSμ and TOSμμ

categories, respectively, which is comparable to the statisti-
cal uncertainties on these efficiencies due to the limited size
of the B+ → J/ψ K+ samples.

Systematic uncertainties on the signal yields Nμμ
i j are

related to the assumed models for the reconstructed K 0
S

mass distribution, determined from simulation. Possible dis-
crepancies from the shape in data are estimated by com-
paring the shape of the invariant mass distribution in data
and simulation for K 0

S → π+π− decays, leading to a rel-
ative 0.8% systematic uncertainty on the signal yield. The
final fit for the determination of the branching fraction is
performed with two different background models, as dis-
cussed in Sect. 7. This leads to a relative variation on the
branching fraction of 0.9%, which is assigned as a systematic
uncertainty.

7 Results

The μ+μ− mass distribution of the signal candidates is fit-
ted in the range [470, 600] MeV/c2 to determine the signal
and background yield in each trigger category and BDTcb

bin. The mass distribution of simulated signal candidates is
best described by a Hypatia function [28]. Its parameters are
determined from simulation and fixed in the fit to data. In the
background model, a power law function describes the tail of
the double-misidentification background from K 0

S → π+π−
decays, affecting the mass region below the K 0

S mass, while
the combinatorial background mass distribution is described
by an exponential function. The background model is vali-
dated on simulation, and its parameters are left free in the
fit to data to account for possible discrepancies. An alter-
native combinatorial background shape, based on a linear
function, is used instead of the exponential function to deter-
mine a systematic uncertainty due to the choice of the back-
ground shape. The signal yields in each BDT bin for the
two trigger categories are all compatible with the absence of
K 0

S → μ+μ− candidates. The μ+μ− invariant mass distri-
butions for the two highest BDTcb bins, which exhibit the best
signal-to-background ratio and therefore the best sensitivity
for a discovery, are shown in Fig. 2.

A simultaneous maximum likelihood fit to the dimuon
mass in all BDTcb bins is performed, using the values of αi j

given in Table 1 and the normalization channel yield Nππ , to
determine the branching fraction. The K 0

S → π+π− candi-
dates are counted within the mass region [460, 530] MeV/c2,
leading to Nππ = 70 318 ± 265. The quoted system-
atic uncertainties are included in the likelihood computa-
tion as nuisance parameters with Gaussian uncertainties. A
posterior probability is obtained by multiplying the likeli-
hood by a prior density, which is computed as the prod-
uct of the likelihood from the 2011 analysis and a flat
prior over the positive range of the branching fraction. Lim-
its are obtained by integrating 90% (95%) of the area of
the posterior probability distribution provided by the fit,
as shown in Fig. 3. Due to the much larger sensitivity
achieved with the 2012 data, the inclusion of the 2011
data result does not have a significant effect on the final
limit, and a uniform prior would have provided very sim-
ilar results. The expected upper limit, and the compati-
bility with background-only hypothesis have been com-
puted by means of pseudoexperiments, where samples of
background events are randomly generated according to
the mass distribution obtained by the best fit to data. The
median expected upper limit and its ±1σ range is B(K 0

S →
μ+μ−) < 0.95+0.42

−0.27 (1.17+0.45
−0.31) × 10−9 at 90% (95%) CL.

The observed limit is

B(K 0
S → μ+μ−) < 0.8 (1.0) × 10−9 at 90% (95%) CL.

The compatibility of the experimental measurement with the
background-only model, expressed in terms of p value is
0.52.

In conclusion, a search for the K 0
S → μ+μ− decay based

on a data sample corresponding to an integrated luminosity
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Fig. 2 Fits to the reconstructed kaon mass distributions, for the two
most sensitive BDTcb bins in the two trigger categories, TOSμ and
TOSμμ. The fitted model is shown as the solid blue line, while the com-

binatorial background and K 0
S → π+π− double misidentification are

overlaid with dotted red and dashed green lines, respectively. For each
fit, the pulls are shown on the lower smaller plots
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Fig. 3 Confidence level of exclusion for each value of the K 0
S →

μ+μ− branching fraction. The regions corresponding to 90% and 95%
CL are emphasised in green (dark shading) and yellow (light shading),
respectively

of 3 fb−1 of proton-proton collisions, collected by the LHCb
experiment at centre-of-mass energies

√
s = 7 and 8 TeV,

improves the upper limit for this decay by a factor 11 with
respect to the previous search published by LHCb [6], which
is superseded by this result.
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