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Multi-Stage Resource-Aware Scheduling for Data Centers with
Heterogeneous Servers

Tony T. Tran+ · Meghana Padmanabhan+ · Peter Yun Zhang◦ · Heyse
Li+ · Douglas G. Down∗ · J. Christopher Beck+

Abstract This paper presents a three-stage algorithm
for resource-aware scheduling of computational jobs in
a large-scale heterogeneous data center. The algorithm
aims to allocate job classes to machine configurations
to attain an efficient mapping between job resource re-
quest profiles and machine resource capacity profiles.
The first stage uses a queueing model that treats the
system in an aggregated manner with pooled machines
and jobs represented as a fluid flow. The latter two
stages use combinatorial optimization techniques to solve
a shorter-term, more accurate representation of the prob-
lem using the first stage, long-term solution for heuris-
tic guidance. In the second stage, jobs and machines
are discretized. A linear programming model is used
to obtain a solution to the discrete problem that maxi-
mizes the system capacity given a restriction on the job
class and machine configuration pairings based on the
solution of the first stage. The final stage is a schedul-
ing policy that uses the solution from the second stage
to guide the dispatching of arriving jobs to machines.
We present experimental results of our algorithm on
both Google workload trace data and generated data
and show that it outperforms existing schedulers. These
results illustrate the importance of considering hetero-
geneity of both job and machine configuration profiles
in making effective scheduling decisions.
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1 Introduction

The cloud computing paradigm of providing hardware
and software remotely to end users has become very
popular with applications such as e-mail, Google docu-
ments, iCloud, and dropbox. Providers of these services
employ large data centers, but as the demand for these
services increases, performance can degrade if the data
centers are not sufficiently large or are being utilized in-
efficiently. Due to the capital required for the machines,
many data centers are not purchased as a whole at one
time, but rather built incrementally, adding machines
in batches as demand increases. Data center managers
may choose machines based on the price-performance
trade-off that is economically viable and favorable at
the time [23]. Therefore, it is not uncommon to see data
centers comprised of tens of thousands of machines,
which are divided into different machine configurations,
each with a large number of identical machines.

Under heavy loads, submitted jobs may have to wait
for machines to become available. Such delays can be
significant and can become problematic. Therefore, it
is important to provide scheduling support that can di-
rectly handle the varying workloads and differing ma-
chine configurations so that efficient routing of jobs to
machines can be made to improve response times to
end users. We study the problem of scheduling jobs
onto machines such that the multiple resources avail-
able on a machine (e.g., processing cores and memory)
can handle the assigned workload in a timely manner.

We develop an algorithm to schedule jobs on a set of
heterogeneous machines to minimize mean job response
time, the time from when a job enters the system until it
starts processing on a machine. The algorithm consists
of three stages. In the first stage a queueing model is
applied to an abstracted representation of the problem,
based on pooled resources and jobs. In each successive



stage, a finer system model is used, such that in the
third stage we dispatch jobs to machines. Our experi-
ments are based on both job traces from one of Google’s
compute clusters [20] and carefully generated instances
that test behaviour as relevant independent variables
are varied. We show that our algorithm outperforms a
natural greedy policy that attempts to minimize the
response time of each arrival and the Tetris scheduler
[7], a dispatching policy that adapts heuristics for the
multi-dimensional bin packing problem to data center
scheduling.1

The contributions of this paper are:

– A hybrid queueing theoretic and combinatorial op-
timization scheduling algorithm for a data center
that performs significantly better than existing tech-
niques tested.

– An extension to the allocation linear programming
(LP) model [2] used for distributed computing [1] to
a data center that has machines with multi-capacity
resources.

– An empirical study of our scheduling algorithm on
both real workload trace data and randomly gener-
ated data.

The rest of the paper is organized into a definition
of the data center scheduling problem in Section 2, re-
lated work on data center scheduling in Section 3, a pre-
sentation of our proposed algorithm in Section 4, and
experimental results in Section 5. Section 6 concludes
our paper and suggests directions for future work.

2 Problem Definition

The data center of interest is comprised of on the or-
der of tens of thousands of independent servers (also
referred to as machines). These machines are not all
identical; the machine population is divided into dif-
ferent configurations denoted by the set M . Machines
belonging to the same configuration are identical in all
aspects.

We classify a machine configuration based on its re-
sources. For example, machine resources may include
the number of processing cores and the amount of mem-
ory, disk-space, and bandwidth. For our study, we gen-
eralize the system to have a set of resources, R, which
are limiting resources of the data center. A machine of
configuration j ∈ M has cjl amount of resource l ∈ R,

1 Earlier work on our algorithm, appearing at the Multi-
disciplinary International Scheduling Conference: Theory and
Applications (MISTA) 2015 presented a comparison only to
the Greedy policy. We have extended the paper by improving
our algorithm, including a comparison to the Tetris scheduler,
and significantly expanding the experimentation.
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which defines the machine’s resource profile. Within a
configuration j there are nj identical machines.

In our problem, jobs must be assigned to the ma-
chines with the goal of minimizing the mean response
time of the system. Jobs arrive to the data center dy-
namically over time with the intervals between arrivals
being independent and identically distributed (i.i.d.).
Each job belongs to one of a set of K classes where the
probability of an arrival being of class k ∈ K is αk. We
denote the expected amount of resource of type l re-
quired by a job of class k as rkl. The resources required
by a job define its resource profile, which can be differ-
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ent from the resource profile of the job class as the latter
is an estimate of a job’s actual profile. The processing
times for jobs in class k on a machine of configuration j
are assumed to be i.i.d. with mean 1

µjk
. The associated

processing rate is thus µjk.
Each job is processed on a single machine. How-

ever, a machine can process many jobs at once, as long
as the total resource usage of all concurrent jobs does
not exceed the capacity of the machine. Figures 1 and
2 depict an example schedule of six jobs on a machine
with two limiting resources: processing cores and mem-
ory. Here, the x-axis represents time and the y-axis the
amount of resource. The machine has four processing
cores and eight GBs of memory. Note that the start
and end times of each job are the same in both fig-
ures. This represents the job concurrently consuming
resources from both cores and memory during its pro-
cessing time.

Any jobs that do not fit within the resource capac-
ity of a machine must wait until sufficient resources be-
come available. We assume there is a buffer of infinite
capacity where jobs can queue until they begin process-
ing. Figure 3 illustrates the states a job can go through
in its lifetime. Each job begins outside the system and
joins the data center once submitted. At this point, the
job can either be scheduled onto a machine if there are
sufficient resources or it can enter the queue and await
execution. After being processed, the job will exit the
data center.

The key challenge in the allocation of jobs to ma-
chines is that the resource usage is unlikely to exactly
match the resource capacity. As a consequence, small
amounts of each resource will be unused. This phe-
nomenon is called resource fragmentation because while
there may be enough resources to serve another job,
they are spread across different machines. For exam-
ple, if a configuration has 30 machines with eight cores
available on each machine and each job assigned to the
configuration requires exactly three cores, the pooled

machine can process 80 jobs in parallel on its 240 pro-
cessors. In reality, of course, only two jobs can be placed
on each machine and so only 60 jobs can be processed in
parallel. The effect may be further amplified when mul-
tiple resources exist, as fragmentation could occur for
each resource. Thus, producing high quality schedules is
a difficult task when faced with resource fragmentation
under dynamic job arrivals.

3 Related Work

Scheduling in data centers has received significant at-
tention in the past decade. Mann [19] presents many
problem contexts and characteristics as the literature
has focused on different aspects of the problem. Unfor-
tunately, as Mann points out, the approaches are mostly
incomparable due to subtle differences in the problem
models. For example, some works consider cost sav-
ing through decreased energy consumption from lower-
ing thermal levels [25,28], powering down machines [3,
5], or geographical load balancing [14,15]. These works
often attempt to minimize costs or energy consump-
tion while maintaining some guarantees on response
time and throughput. Other works are concerned with
balancing energy costs, service level agreement perfor-
mance, and achieving a level of reliability [8,9,24].

The literature on schedulers for distributed comput-
ing clusters has focused heavily on fairness and locality
[11,21,29]. Optimizing these performance metrics leads
to equal access to resources for different users and the
improvement of performance by assigning tasks close to
the location of stored data to reduce data transfer traf-
fic. Locality of data has been found to be crucial for per-
formance in systems such as MapReduce, Hadoop, and
Dryad when bandwidth capacity is limited [29]. Our
work does not consider data transfer or equal access for
different users as the problem we consider focuses on the
heterogeneity of machines with regards to resource ca-
pacity. The characteristic of resource heterogeneity and
fragmentation that we study is an already considerable
scheduling challenge. We hope to incorporate locality
and fairness into our model as future work.

The literature on machine heterogeneity has some
key differences from our model. One area of research
considers heterogeneity in the form of processing time
and not resource usage and capacity [1,13,22]. Here,
the processing time of a job is dependent on the ma-
chine that processes the job. Without a model of re-
source usage, fragmentation cannot be reasoned about,
but efficient allocation of jobs to resources can still be
an important decision. Kim et al. [13] study dynamic
mapping of jobs to machines with varying priorities and
soft deadlines. They find that two scheduling heuristics



stand out as the best performers: Max-Max and Slack
Sufferage. In the former, a job assignment is made by
greedily choosing the mapping that has the best fitness
value based on the priority level of a job, its deadline,
and the job processing time. Slack Sufferage chooses
job mappings based on which jobs suffer most if not
scheduled onto their “best” machines. Al-Azzoni and
Down [1] schedule jobs to machines using a linear pro-
gram (LP) to efficiently pair job classes to machines
based on their expected processing times. The solution
of the LP maximizes the system capacity and guides the
scheduling rules to reduce the long-run average num-
ber of jobs in the system. Further, they are able to
show that their heuristic policy is guaranteed to be
stable if the system can be stabilized. Another study
that considers processing time as a source of resource
heterogeneity extends the allocation LP model to ad-
dress a Hadoop framework [22]. The authors compare
their work against the default scheduler used in Hadoop
and the Fair-Sharing algorithm and demonstrate that
their algorithm greatly reduces the mean response time,
while maintaining competitive levels of fairness with
Fair-Sharing. These studies illustrate the importance of
scheduling with processing time heterogeneity in mind.
While the focus of our work is resource capacity hetero-
geneity, we are able to demonstrate strong performance
in experiments that also include processing time hetero-
geneity (see Section 5.4.3).

Some work that studies resource usage and capacity
as the source of heterogeneity in a system makes use of a
limited set of virtual machines with pre-defined resource
requirements to simplify the issue of resource fragmen-
tation. Maguluri et al. [18] examine a cloud computing
cluster where virtual machines are to be scheduled onto
servers. There are three different types of virtual ma-
chines: Standard, High-Memory, and High-CPU, each
with specified resource requirements common to all vir-
tual machines of a single type. Based on these require-
ments and the capacities of the servers, the authors
determine all possible combinations of virtual machines
that can concurrently be placed onto each server. A pre-
emptive algorithm is presented that considers the pre-
defined virtual machine combinations on servers and is
shown to be throughput-optimal. Maguluri et al. later
extended their work to a queue-length optimal algo-
rithm for the same problem in the heavy traffic regime
[17]. They propose a routing algorithm that assigns
jobs to servers with the shortest queue (similar to our
Greedy algorithm presented in Section 5.1) and a mix of
virtual machines to assign to a server based on the same
reasoning proposed for their throughput optimal algo-
rithm. Since the virtual machines have predetermined
resource requirements, it is known exactly how virtual

machine types will fit on a server without having to
reason online about each assignment individually. This
difference from our problem means it is possible to ob-
tain performance guarantees for the scheduling policies
as one can accurately account for the resource utiliza-
tion of the virtual machines. However, the performance
guarantees are only with respect to virtual machines
which represent upper bounds on the true resource us-
age. Fragmentation will occur across virtual machines
when a job does not utilize all the resource in the virtual
machine it is assigned to.

Ghodsi et al. [6] examine a system where fragmen-
tation does occur, but they do not try to optimize job
allocation to improve response time or resource utiliza-
tion. Their focus is solely on fairness of resource al-
location through the use of a greedy algorithm called
Dominant Resource Fairness (DRF). A dominant re-
source is defined as the one for which the user has the
highest requirement normalized by the maximum re-
source capacity over all configurations. For example, if
a user requests two cores and two GB of memory and
the maximum number of cores and memory on any sys-
tem is four cores and eight GB, the normalized values
would be 0.5 cores and 0.25 memory. The dominant re-
source for the user would thus be cores. Each user is
then given a share of the resources with the goal that
the proportion of dominant resources for each user is
fair following Jain’s Fairness Index [12]. Note that this
approach compares resources of different types as the
consideration is based on a user’s dominant resource.

The work closest to ours is the Tetris scheduler [7].
Tetris considers resource fragmentation and response
time as a performance metric. In addition, fairness is
also integrated into their model. The Tetris scheduler
considers a linear combination of two scoring functions:
best fit and least remaining work first. The first score
favours large jobs, while the second favours small jobs.
Tetris combines these two scores for each job and then
chooses the next job to process based on the job with
the highest score. Tetris is compared against DRF and
it is demonstrated that focusing on fairness alone can
lead to poor performance, while efficient resource al-
location can be important. We directly compare our
scheduling algorithm to Tetris in Section 5 as it is the
most suitable model with similar problem characteris-
tics and performance metrics.

4 Data Center Scheduling

The problem we address requires the assignment of dy-
namically arriving jobs to machines. Each job has a
resource requirement profile that is known once the job
has arrived to the system. Machines in our data center



each belong to one machine configuration and each con-
figuration has many identical machines with the same
resource capacities. The performance metric of interest
is the minimization of the system’s average job response
time.

We propose Long Term Evaluation Scheduling (LoTES),
a three-stage queueing-theoretic and optimization hy-
brid approach. Figure 4 illustrates the overall schedul-
ing algorithm. The first two stages are performed offline
and are used to guide the dispatching algorithm of the
third stage. The dispatching algorithm is responsible
for assigning jobs to machines and is performed online.
In the first stage, we use techniques from the queueing
theory literature, using an allocation LP to represent
the queueing system as a fluid model where incoming
jobs can be considered in the aggregate as a continu-
ous flow [2]. We extend the LP model from the litera-
ture to account for multiple resources in our data center
system. The LP is used to find an efficient pairing of
machine configurations to job classes. The efficient al-
locations are then used to restrict the pairings that are
considered in the second stage where a machine assign-
ment LP model is used to assign specific machines to
serve job classes. In the final stage, jobs are dispatched
to machines dynamically as they arrive to the system
with the goal of mimicking the assignments from the
second stage.

4.1 Stage 1: Allocation of Machine Configurations

Andradóttir et al.’s [2] allocation LP was created for a
similar problem but with a single unary resource per
machine. The allocation LP finds the maximum arrival
rate for a given queueing network such that stability is
maintained. Stability is a formal property of queueing
systems [4] that can informally be understood as imply-
ing that the expected queue lengths in the system re-
main bounded over time. It is important to ensure that
a system is stable, otherwise performance will quickly
deteriorate. Although stability alone is not sufficient to
ensure that the system will have short response times,
finding the maximum arrival rate for a data center,
along with the allocation of resources to obtain system
stability with that rate, will provide efficient resource
usage to improve throughput.

We modify the allocation LP to accommodate |R|
resources. Additionally, the large number of machines is
reduced by combining each machine’s resources to cre-
ate a single super-machine for each configuration. Thus,
there will be exactly |M | pooled machines (one for each
configuration) with capacity cjl×nj for resource l. The
allocation LP ignores resource fragmentation, treating
the amount of incoming work of all jobs (a product

of the processing time and resource requirements) as a
continuous fluid to be allocated to these super-machines
in such a way as to maximize the amount of work that
can be sustained. Thus, the allocation LP is a relaxation
of the actual system where jobs must be treated as dis-
crete, indivisible tasks rather than continuous amounts
of work and machines do not share resources in an ag-
gregated manner. These two relaxations together allow
the allocation LP the freedom to divide a job across
multiple machines.

As an example assume jobs are processed at a rate
of one job per minute on a machine and there exist two
machines. There is only a single resource with the ma-
chines each having a capacity of five and jobs requiring
three units of the resource. In practice, only a single
job can be processed on each machine, so the maxi-
mum number of jobs that this system can handle is
two jobs per minute. If more than two jobs arrive each
minute, the system will acquire a queue that will con-
tinue to grow. The relaxation will treat the machines as
a super-machine that has a capacity of 10 and further-
more, jobs are divisible such that a machine can process
a job while it has fewer resources than required, but at
a slower rate. Then it is possible to fit 10

3 jobs on the
super-machine at any time and so the relaxed system
can handle 10

3 job arrivals per minute.
The extended allocation LP is:

max λ (1)

s.t.
∑
j∈M

δjklcjlnjµjk ≥λαkrkl k ∈ K, l ∈ R (2)

δjklcjl
rkl

=
δjk1cj1
rk1

j ∈M,k ∈ K, l ∈ R (3)

∑
k∈K

δjkl ≤ 1 j ∈M, l ∈ R (4)

δjkl ≥ 0 j ∈M,k ∈ K, l ∈ R (5)

The decision variable, λ, denotes the arrival rate of
jobs to the system and the objective is to maximize
that rate, while maintaining stability. The LP deter-
mines δjkl, the fractional amount of resource l that
super-machine j devotes to job class k. Constraint (2)
guarantees that sufficient resources are allocated for the



Fig. 4 LoTES Algorithm.

expected requirements of each class. Constraint (3) en-
sures that the resource profiles of the job classes are
properly enforced. For example, if the amount of mem-
ory required is twice the number of cores required, the
amount of memory assigned to the job class from a
single machine configuration must also be twice the
core assignment. The allocation LP does not assign
more resources than available due to constraint (4). Fi-
nally, constraint (5) ensures the non-negativity of as-
signments.

Solving the allocation LP will provide δ∗jkl values
which tell us how to efficiently allocate jobs to machine
configurations. The second stage of LoTES will make
use the allocation LP solution to guide its search in
an attempt to mimic these efficient allocations while
accounting for the discrete jobs and machines. .

4.1.1 Rationale for the Fluid Model

The first stage of our algorithm provides efficient match-
ings between job classes and machine configurations for
the latter two stages. Although the problem solved for
this stage is a relaxation, it captures the long-term be-
haviour of the system.

Our hypothesis is that we need to reason about both
the long-term stochastic behaviour of the system and
its short-term combinatorial aspects. As optimal solu-
tions to the combined problem are beyond existing op-
timization techniques, we choose to optimally solve a
relaxation that focuses on the long-term performance
and then use that solution to guide reasoning on the
combinatorial components.

The allocation LP builds upon the strong analyti-
cal results from the queueing theory literature that are
able to deduce tight upper bounds on the achievable
capacity and prescribe dispatching rules to achieve the
calculated bounds with an arbitrarily small approxima-
tion [1,2]. What distinguishes our allocation LP from
that of previous work is the inclusion of multiple re-

sources with capacity. This addition leads to fragmen-
tation, which results in the loss of the bound guarantee
and in the need for combinatorial reasoning. However,
even without tight bounds on the capacity of a network,
by taking into account the allocation LP results, the
later stages of LoTES incorporate information about
the long-term behaviour of the system. Typically, such
information is unavailable to combinatorial algorithms
[27].

4.2 Stage 2: Machine Assignment

In the second stage if the algorithm, we use the job-
class-to-machine-configuration results from the alloca-
tion LP to guide the choice of a configuration of job
classes that each machine will serve. We are concerned
with fragmentation and so treat each job class and each
machine discretely, building specific configurations of
jobs (which we call “bins”) that result in tightly packed
machines and then deciding which bin each machine will
emulate. As this stage is also offline, we continue to use
the expected resource requirements for each job class.

In more detail, recall that the δ∗jkl values from the
allocation LP provide a fractional mapping of the re-
source capacity of each machine configuration to each
job class. Based on the δ∗jkl values that are non-zero, the
expected resource requests of jobs and the capacities of
the machines, the machine assignment algorithm will
first create job bins. A bin is any multi-set of job classes
that together do not exceed the capacity of the machine
(in expectation). A non-dominated bin is one that is
not a subset of any other bin: if any additional job is
added to it, one of the machine resource constraints
will be violated. Figure 5 presents the feasible region
for an example machine. Assume that the machine has
one resource (cores) with capacity seven. There are two
job classes, job class 1 requires two cores and job class
2 requires three cores. The integer solutions represent



Fig. 5 Feasible bin configurations.

the feasible bins. All non-dominated bins exist along
the boundary of the polytope since any solution in the
polytope not at the boundary will have a point above
or to the right that is feasible.

We exhaustively enumerate all non-dominated bins.
The machine assignment model then decides which bin
each machine should emulate. Thus, each machine will
be mapped to a single bin, but multiple machines may
emulate the same bin.

Algorithm 1 below generates all non-dominated bins.
We define Kj , a set of job classes for machine config-
uration j containing each job class with positive δ∗jkl,
and a set bj containing all possible bins. Given κji , a
job belonging to the ith class in Kj , and bjy, the yth bin
for machine configuration j, Algorithm 1 is performed
for each machine configuration j. We make use of two
functions not defined in the pseudo-code:

– sufficientResource(κji , b
j
y): Returns true if bin bjy has

sufficient remaining resources for job κji .
– mostRecentAdd(bjy): Returns the job class that was

most recently added to bjy.

The algorithm starts by greedily filling the bin with
jobs from a class. When no additional jobs from that
class can be added, the algorithm will move to the next
class of jobs and attempt to continue filling the bin.
Once no more jobs from any class are able to fit, the
bin is non-dominated. The algorithm then searches for
another non-dominated bin by removing the last job
added and trying to add jobs from other classes to fill
the remaining unused resources. This continues until
the algorithm has exhaustively searched for all non-
dominated bins.

Since the algorithm performs an exhaustive search,
solving for all non-dominated bins may take a signifi-
cant amount of time. If we let Lk represent the maxi-
mum number of jobs of class k that we can fit onto the

Algorithm 1 Generation of all non-dominated bins
y ← 1
x← 1
x∗ ← x
nextBin← FALSE
while x ≤ |Kj | do

for i = x∗ → |Kj | do

while sufficientResource(κj
i , bjy) do

bjy ← bjy + κj
i

nextBin← TRUE
end while

end for
x∗ ← mostRecentAdd(bjy)
if nextBin then
bjy+1 ← bjy − κ

j
x∗

y ← y + 1
else
bjy ← bjy − κ

j
x∗

end if
if bjy == {} then
x← x+ 1
x∗ ← x

else
x∗ ← x∗ + 1

end if
end while

machine of interest, then in the worst case, we must
consider

∏
k∈K Lk bins to account for every potential

mix of jobs. We can improve the performance of the
algorithm by ordering the classes in decreasing order of
resource requirement. Of course, this is made difficult
as there are multiple resources. One would have to as-
certain the constraining resource on a machine and this
may be dependent on which mix of jobs is used.2

Although the upper bound on the number of bins is
very large, we are able to find all non-dominated bins
quickly (i.e., within 1 second on an Intel Pentium 4
3.00 GHz CPU) because the algorithm only considers
job classes with non-zero δ∗jkl values. We generally see a
small subset of job classes assigned to a machine config-
uration. Table 1 in Section 5 illustrates the size of Kj ,
the number of job classes with non-zero δ∗jkl values for
each configuration. When considering four job classes,
all but one configuration has one or two job classes with
non-zero δ∗jkl values. When running Algorithm 1, the
number of bins generated is in the thousands. Without
the δ∗jkl values, there can be millions of bins.

With the created bins, individual machines are then
assigned to emulate one of the bins. To match the δ∗jkl
values for the corresponding machine configuration, we
must find the contribution that each bin makes to the
amount of resources allocated to each job class. We de-
fine Nijk as the number of jobs from class k that are

2 It may be beneficial to consider the dominant resource
classification of Dominant Resource Fairness when creating
such an ordering [6].



present in bin i of machine configuration j. Using the
expected resource requirements, we can calculate the
amount of resource l on machine j that is used for jobs
of class k, denoted εijkl = Nijkrkl. We then solve a
second LP to assign machines as follows:

max λ (6)

s.t.
∑
j∈M

∆jklµjk ≥ λαkrkl k ∈ K, l ∈ R (7)

∑
i∈Bj

εijklxij = ∆jkl j ∈M,k ∈ K, l ∈ R (8)

∑
i∈Bj

xij = nj j ∈M (9)

xij ≥ 0 j ∈M, i ∈ Bj (10)

Here, the decision variables are λ, the arrival rate
of jobs, ∆jkl, the amount of resource l from machine
configuration j that is devoted to job class k, and xij ,
the total number of machines from configuration j that
are assigned to bins of type i. The machine assignment
LP will map machines to bins with the goal of maxi-
mizing the arrival rate that maintains a stable system.
Constraint (7) is the equivalent of constraint (2) of the
allocation LP while accounting for discrete machines.
The constraint ensures that a sufficient number of re-
sources are available to maintain stability for each class
of jobs. Constraint (8) determines the total amount of
resource l from machine configuration j assigned to job
class k to be the sum of each machine’s resource con-
tribution. Here, εijkl is the amount of resource l of a
machine in configuration j that is assigned to job class
k if the machine emulates bin i and Bj is the set of
bins in configuration j. In order to guarantee that each
machine is mapped to a bin type, we use constraint (9).
Finally, constraint (10) forces xij to be non-negative.

Although we wish each machine to be assigned ex-
actly one bin type, such a model requires xij to be an
integer variable and therefore the LP becomes an in-
teger program (IP). However, solving the IP model for
this problem is not practical given a large set Bj . There-
fore, we use an LP that allows the xij variables to take
on fractional values. Upon obtaining a solution to the
LP model, we must create an integer solution. The LP
solution will have qj machines of configuration j which
are not properly assigned, where qj can be calculated

as

qj =
∑
i∈Bj

xij − bxijc.

We assign these machines by sorting all non-integer
xij values by their fractionality (xij − bxijc) in non-
increasing order, where ties are broken arbitrarily if
there are multiple bins with the same fractional con-
tribution. We then round the first qj fractional xij val-
ues up and round all other xij values down for each
configuration.

The rounding procedure is guaranteed to generate a
feasible solution for the machine assignment LP. Con-
straint (9) naturally follows due to the way that round-
ing is performed selectively to round up the correct
number of fractional xij variables and round down the
remainder. Based on these updated integer xij values,
∆jkl will be calculated accordingly in Constraint (8),
which in turn dictates the maximum λ value for Con-
straint (7).

4.2.1 Rationale for the Machine Assignment Problem

The second stage of our algorithm reasons about the
combinatorial aspects of the system. Unlike in the first
stage that uses a fluid relaxation to ensure that the
resulting model is tractable, the machine assignment
LP restricts decisions based on the allocation LP solu-
tion and considers a combinatorial optimization prob-
lem that is tractable via relaxation of the IP.

The generated bins make use of expected resource
requirements as this is the most accurate way to repre-
sent the resource usage of jobs on machines without us-
ing stochastic models. Although stochastic models can
potentially provide a more accurate representation, it
is not clear how to model such a system, given that de-
cisions in the third stage will dictate the correct model
to use, or how to solve the resulting stochastic model.

The bins generated are restricted by the δ∗jkl values
obtained by the allocation LP. We chose to restrict the
system as such because the δ∗jkl solution represents what
is, for the relaxed problem, an efficient matching and
considerably reduces the number of possible bins based
on this efficient matching. The bin generating problem
is similar to the multi-dimensional knapsack problem
with an exponentially large search space, representing
the number of unique bins that can be generated.

The second step, the machine assignment LP, is an
extension of the allocation LP that combines aspects
of the first stage LP along with discretized bins and
machines. However, the machine assignment LP does
not exactly model the system with discrete machines
since the assignment allows for a fractional number of



machines to be assigned to a bin. We chose this repre-
sentation because the LP problem is tractable and does
not lead to significantly worse solutions. We round the
LP solution to integer values. However, these variables
represent the number of machines assigned to a bin.
These values tend to be in the hundreds or thousands
while the error due to rounding is, of course, less than
0.5. Therefore, the use of the LP instead of the IP does
not significantly impact the quality of the solution (i.e.,
we observed a reduction in the solution quality of less
than 0.001% due to rounding). Furthermore, since the
model presented thus far is an approximation of the
system rather than a perfectly accurate representation,
optimizing for such small differences is unlikely to pro-
vide meaningful performance improvements.

4.3 Stage 3: Dispatching Policy

In the third and final stage of the scheduling algorithm,
jobs are dispatched to machines. There are two events
that change the system state such that a scheduling
decision can be made. The first event is a job arrival
where the scheduler can assign the arriving job to a
machine. However, it may be that machines do not have
sufficient resources and so the job must enter a queue
and wait until it can be processed by a machine. The
second event is the completion of a job. Once a job has
finished processing, resources on the machine become
available again and if there are jobs in queue that can
fit on the machine, the scheduler can have the machine
begin processing the job. However, it is possible that a
machine with sufficient resources for a queued job will
not process the job and stay idle instead. See Section
4.3.2 for further details on when a machine will choose
to idle instead of processing a job.

4.3.1 Job Arrival

A two-level dispatching policy is used to assign arriving
jobs to machines so that each machine emulates the bin
it was assigned to in the second stage. In the first level
of the dispatcher, a job is assigned to one of the |M |
machine configurations. The decision is guided by the
∆jkl values to ensure that the correct proportion of jobs
is assigned to each machine configuration. In the second
level of the dispatcher, the job is placed on one of the
machines in the selected configuration. At the first level,
no state information is required to make decisions. In
the second level, the dispatcher makes use of the exact
resource requirements of a job as well as the states of
machines to make a decision.

Deciding which machine configuration to assign a
job to can be done by revisiting the total amounts of

resources each configuration contributes to a job class.
We can compare the ∆jkl values to create a policy that
will closely imitate the machine assignment solution.
Given that each job class k has been devoted a total of∑|M |
j=1∆jkl resources of type l, a machine configuration

j should serve a proportion

ρjk =
∆jkl∑|M |

m=1∆mkl

of the total jobs in class k. The value of ρjk can be cal-
culated using the ∆jkl values from any resource type l.
To decide which configuration to assign an arriving job
of class k, we use roulette wheel selection. We generate
a uniformly distributed random variable, u = [0, 1] and
if

j−1∑
m=0

ρmk ≤ u <
j∑

m=0

ρmk,

then the job is assigned to machine configuration j.
The second step will then dispatch the jobs directly

onto machines. Given a solution x∗ij from the machine
assignment LP, we create an nj × |K| matrix, Aj , with
element Aj

ik = 1 if the ith machine of j emulates a bin
with one or more jobs of class k assigned. Aj indexes
which machines can serve a job of class k.

The dispatcher will attempt to dispatch the job to
a machine belonging to the configuration that was as-
signed from the first step. Of the machines in this con-
figuration, a score of how far the current state of the ma-
chine is from the assigned bin is calculated for the class
of the arriving job. Given the job class k, the machine
j, the bin i that the machine emulates, and the current
number of jobs of class k processing on the machine κjk,
a score υjk = Nijk − κjk is calculated. For example, if
the bin has three jobs of class 1 (Nijk = 3), but there
is currently one job of class 1 being processed on the
machine (κjk = 1), then υjk = 2. The dispatcher will
choose the machine with the highest υjk value that still
has sufficient remaining resources to schedule the arriv-
ing job. In the case where no machines in the desired
configuration are available, the dispatcher will use the
roulette wheel selection method to choose another ma-
chine configuration with ∆jkl > 0 that has not already
been considered. If all configurations with ∆jkl > 0
have insufficient capacity, the dispatcher will then check
all remaining machines and immediately assign the job
if one with sufficient idle resources is found. After all
these checks, if there exists no machine that can imme-
diately process the job, it will enter a queue belonging
to the class of the job. Thus, there are a total of |K|
queues, one for each job class.



4.3.2 Job Exit

When a job completes service on a machine, resources
are released and there is potential for new jobs to start
service. The jobs that are considered for scheduling are
those waiting in the job class queues. To decide which
job to schedule on the machine, the dispatch policy will
calculate the score υjk as discussed above, for every job
class with ∆jk > 0. We use the calculation of υjk to
create a priority list of job classes where a higher score
represents a class that we prefer to schedule first.

The scheduler considers the first class in the ordered
list. The jobs in the queue are considered in the order
of their arrival and if any job fits on the machine, the
job is dispatched and υjk is decreased by one. While the
change in score does not alter the ordering of the pri-
ority list sorted using υjk, the search within the queue
will continue. If the top priority class gets demoted due
to the scheduling of a job, then the next class queue
is considered. This is continued until all classes with
positive ∆jk values have been considered and all jobs
in each of these queues cannot be scheduled onto the
machine.

By dispatching jobs using the proposed algorithm,
the requirement of system state information is often
reduced to a subset of machines that a job is poten-
tially assigned to. Further, keeping track of the detailed
schedule on each machine is not necessary for schedul-
ing decisions since the only information used is whether
a machine currently has sufficient resources and its job
mix.

4.3.3 Rationale for the Dispatching Policy

During a job arrival event, the roulette wheel selection
method allows for the assignment to be probabilisti-
cally equivalent to the ∆jkl allocations while avoiding
the necessity to obtain system state information. Note
that using state information may improve selection by
choosing a configuration that more accurately follows
the prescribed ∆jkl values dynamically. However, there
is a trade-off between gathering and maintaining the
additional machine state information and the possible
improvement due to reduced variability.

The second major decision for dispatching a job
upon arrival is to assign it to a machine such that the
mix of jobs on the machine fits the bin that the machine
emulates. The method chosen is a simple count of the
number of jobs that is compared to the bin’s job mix,
which we see as the most straightforward approach to-
wards the goal of matching the bins. An alternative is
to reason about the actual resources dedicated to the

different job classes rather than the count of jobs. How-
ever, such an approach would require modeling the vari-
ance of resource requirements and developing a more
complicated measure of bin emulation. As we currently
see no obvious ways forward in this direction, we de-
cided on our more straightforward approach.

Finally for the job arrival event, we check all other
configurations before allowing a job to enter the queue
because doing so allows for the exploitation of idle re-
sources, even if they deviate from the guidance of the
LP solutions. Such a deviation is beneficial because
presence of idle resources means the system is likely
to be in a lower capacity state, where responding to
jobs immediately is more important than long-term ef-
ficiency. This policy attempts to schedule jobs immedi-
ately whenever possible to reduce response times, while
biasing towards placing jobs in such a way as to mimic
the bins which have been found to reduce the effects of
resource fragmentation. Our policy does not preclude
the assignment of a pairing between a job class and
machine configuration with ∆∗jkl = 0 when the system
is heavily loaded, since the requirement is only that at
least one machine has available resources. Specifically,
if very few machines have sufficient idle resources, the
scheduler may prefer queueing a job even though it can
be immediately processed. However, the reasoning re-
garding when one should switch strategies is not clear
and so the policy presented aims to simplify this de-
cision by assuming that any time a machine has free
resources, the scheduler will treat the system as though
it were lightly loaded. A more nuanced approach may
improve system performance, but we do not explore this
detail.

The rationales for our choices in the job exit event
are similar to the job arrival choices. By using a count
of how the actual mix of jobs deviates from the emu-
lated bin, the policy more closely mimics the chosen bin.
Unlike the job arrival event, the choice of not schedul-
ing any job classes with ∆jkl = 0 is made since the
system is likely heavily loaded (a queue has formed)
and pairing efficiency has increased importance to im-
prove system throughput. Therefore, it is possible that
LoTES will idle a machine’s resources even though a
job in a queue with ∆jk = 0 can fit on the machine
because it is likely better to reserve those resources for
a more efficient matching.

5 Experimental Results

We test our algorithm on real cluster workload trace
data and on generated data. In this section, we provide
details of our experiments. We start by presenting two



scheduling algorithms we compare to our approach, fol-
lowed by a discussion of the implementation challenges.
We then describe and present results for the algorithms
on the workload trace data and the generated data.

5.1 Algorithms for Comparison: A Greedy Dispatch
Policy and the Tetris Scheduler

We consider two alternative schedulers: a Greedy policy
and the Tetris scheduler. We chose to compare LoTES
against the Greedy dispatch policy because it is a nat-
ural heuristic, which aims to quickly process jobs. Like
the LoTES algorithm, the Greedy dispatch policy at-
tempts to schedule jobs onto available machines imme-
diately if a machine is found that can process a job.
This is done in a first-fit manner where the machines
are ordered following the list of machines in Table 1
(from top to bottom). In the case where no machines
are available for immediate processing, the job enters a
queue. Unlike the LoTES scheduler, since the Greedy
dispatch policy does not make use of job class infor-
mation, jobs enter a queue for a single machine. The
policy will choose the machine with the shortest queue
of waiting jobs with ties broken randomly. If a queue
forms, jobs are processed in FCFS order.

The Tetris scheduler [7] aims to improve packing
efficiency and reduce average completion time through
use of a linear combination of two metrics. The packing
efficiency metric is calculated by taking the dot prod-
uct of the resource profiles of a job and the resource
availabilities on machines. If we denote r as a vector
representing the resource profile of a job and C as the
resource profile for the remaining resources on a ma-
chine, then we can define the packing efficiency score
as ω = r · C. A higher score represents a better fit of
a job on a machine. The second metric, the amount of
work, is calculated as the total resource requirements
multiplied by the job duration. That is, given the pro-
cessing time of a job p, the work score is γ = pr · 1,
where 1 is a vector of ones. The Tetris scheduler pri-
oritizes jobs with less work in order to reduce overall
completion times of jobs. For our experiments, we give
each of the metrics equal weighting and found that the
relative performance of the Tetris scheduler does not
improve with different weightings. The score for each
job is then calculated as ω−γ, where a larger score will
have higher priority.

The Tetris scheduler addresses resource fragmenta-
tion through the use of the packing efficiency score. By
placing jobs on machines with higher packing scores,
machines with resource profiles that are similar to the
job resource profiles are prioritized. Tetris benefits from
being able to make packing decisions online, unlike LoTES.

However, Tetris makes decisions myopically, without
the foresight that new jobs will be arriving. In con-
trast, LoTES considers packing jobs in the long-term
by generating bins in advance so that individual jobs
may not share similar resource profiles as a machine,
but the combination of jobs will be able to better make
use of the resources of a machine.

Each scheduler requires different information to make
scheduling decisions. All approaches make a scheduling
decision when a job arrives to the system and use at
least information regarding the resource requirements
of a job along with the available resources of the ma-
chines. The Greedy scheduler maintains a queue for
each machine and must also know the length of this
queue. The Tetris scheduler requires the processing time
of a job to calculate γ. Finally, LoTES uses job class
data for the first two stages and the number of jobs
from each class that are scheduled on a machine. In
general, all these requirements can be obtained, if not
exactly, then at least approximately. Although in prac-
tice, a scheduling model’s performance is influenced by
the accuracy of system data, we do not consider the
sensitivity of the models to inaccuracies in data as each
scheduler makes use of different information.

5.2 Implementation Challenges

In our experiments, we have not directly considered the
time it takes for the scheduler to make dispatching de-
cisions. As such, as soon as a job arrives to the system,
the scheduler will immediately assign it to a machine. In
practice, decisions are not instantaneous and, depend-
ing on the amount of information needed by the sched-
uler and the complexity of the scheduling algorithm,
this delay may be an issue. For every new job arrival,
the scheduler requires the currently available resources
and the size of the queue of one or more machines. As
the system becomes busier, the scheduler may have to
obtain such information for all machines in the data
center. Thus, scaling may be problematic as the algo-
rithms may have to search over a very large number
of machines. However, in heavily loaded systems where
there are delays before a job can start processing, the
scheduling overhead will not adversely affect system
performance as we see that the waiting time delays of
jobs are orders of magnitude larger than the process-
ing time. An additional issue may be present that could
reduce performance as the scheduler itself creates addi-
tional load on the network connections within the data
center. This may need to be accounted for if the net-
work connections become sufficiently congested.

Note, however, that the dispatching overhead of ar-
riving jobs for LoTES is no worse than that of the



Greedy policy or Tetris. The LoTES algorithm bene-
fits from the restricted set of machines that it considers
based on the ∆jk values. At low loads where a job can
be dispatched immediately as it arrives, the Greedy pol-
icy and LoTES will not have to gather state informa-
tion for all machines. In contrast, the Tetris scheduler
will always gather information on all machines to de-
cide which has the best score. However, in the worst
case, LoTES may require state information on every
machine when the system is heavily loaded, just as the
other algorithms.

A system manager for a very large data center must
take into account the overhead required to obtain ma-
chine state information regardless of which algorithm is
chosen. There is work showing the benefits of only sam-
pling state information from a limited set of machines
to make a scheduling decision [10]. If the overhead of ob-
taining too much state information is problematic, one
can further limit the number of machines to be consid-
ered once a configuration has already been chosen. Such
a scheduler could decide which configuration to send an
arriving job to and then sample N machines randomly
from the chosen configuration, where N ∈ [1, nj ]. Re-
stricting the scheduler to only these N sampled ma-
chines, the scheduler can dispatch jobs following the
same rules as LoTES, allowing the mappings from the
offline stages of LoTES to still be used but with sub-
stantially less overhead for the online decisions.

5.3 Google Workload Trace Data

The first experiment we perform tests the algorithms on
cluster workload trace data provided by Google.3 These
data represent the workload for one of Google’s com-
pute clusters over the one month period of May 2011,
providing information on the machines in the system as
well as the jobs that arrive, their submission times, their
resource requests, and their durations, which can be in-
ferred from the time for which a job is active. However,
because we calculate the processing time of a job based
on the actual processing time realized in the workload
traces, it is unknown to us how processing times may
have differed if a job were to be processed on a different
machine or if the load on the machine were to be dif-
ferent. Therefore, we assume that processing times are
independent of machine configuration and load.4

Although the information provided is extensive, we
limit what we use for our experiments to only the re-
sources requested and duration for each job. We do not

3 The data can be found at
https://code.google.com/p/googleclusterdata/.

4 We examine the impact of processing time variation in
subsequent experiments (see Section 5.4.3).
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Fig. 6 The number of jobs arriving in each hour in the
Google workload trace data.

consider failures of machines or jobs: jobs that fail and
are resubmitted are considered to be new, unrelated
jobs. Figure 6 shows the number of jobs arriving dur-
ing each hour for the entire month of the trace data.
Machine configurations change over time due to fail-
ures, the acquisition of new servers, or the decommis-
sioning of old ones, but we only use the initial set of
machines and keep that constant over the whole month.
Furthermore, system micro-architecture is provided for
each machine and some jobs are limited in which types
of architecture they can be paired with and how they
interact with these architectures. We ignore this limita-
tion for our scheduling experiments. It is easy to extend
the LoTES algorithm to account for system architecture
by setting µjk = 0 whenever a job cannot be processed
on a particular architecture.

5.3.1 Machine Configurations

The data center has 10 machine configurations as pre-
sented in Table 1. Each configuration is defined strictly
by its resource capacities and the number of identi-
cal machines with that resource profile. The resource
capacities are normalized relative to the configuration
with the most resources. Therefore, the job resource re-
quests are also provided after being normalized to the
maximum capacity of machines.

5.3.2 Class Clustering

The Google data does not define job classes and so in
order for us to use the data to test our LoTES algo-
rithm, we must first cluster jobs into classes. We follow
Mishra et al. [20] by using k-means clustering to cre-
ate job classes and use Lloyd’s algorithm [16] to create



# of machines Cores Memory |Kj|
6732 0.50 0.50 4
3863 0.50 0.25 2
1001 0.50 0.75 1
795 1.00 1.00 2
126 0.25 0.25 2
52 0.50 0.12 1
5 0.50 0.03 1
5 0.50 0.97 2
3 1.00 0.50 2
1 1.00 0.06 1

Table 1 Machine configuration details for Google workload
trace data.

Job class 1 2 3 4
Avg. Time (h) 0.03 0.04 0.04 0.03

Avg. Cores 0.02 0.02 0.07 0.20
Avg. Mem. 0.01 0.03 0.03 0.06
Proportion 0.23 0.46 0.30 0.01

of Total Jobs

Table 2 Job class details.

the different clusters. To limit the amount of informa-
tion that LoTES is using in comparison to our bench-
mark algorithms, we only use the jobs from the first day
to define the job classes for the month. These classes
are assumed to be fixed for the entire month. Due to
this assumption and because the Greedy policy and the
Tetris scheduler do not use class information, any in-
accuracies introduced by forming clusters in this way
will only make LoTES worse when we compare the two
algorithms.

The clustering procedure resulted in four classes be-
ing sufficient for representing most jobs. Increasing the
number of classes led to less than 1% of jobs being al-
located to the new classes. The different job classes are
presented in Table 2. Although we only use the first
day for determining the job class parameters, Figure 7
shows how the proportion of arriving jobs calculated is
not constant for the entire data set. Rather, the values
change heavily throughout the scheduling horizon.

5.3.3 Simulation Results

We created an event-based simulator in C++ to em-
ulate a data center with the workload data as input.
The LP models are solved using IBM ILOG CPLEX
12.6.2. We ran our tests on an Intel Pentium 4 CPU

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25

Pr
op

or
tio

n 
of

 A
rr

iv
al

s

Day

Job Class 1
Job Class 2
Job Class 3
Job Class 4

Fig. 7 Daily proportion of jobs belonging to each job class.

3.00 GHz, 1 GB of main memory, running Red Hat 3.4-
6-3. Because the LP models are solved offline prior to
the arrival of jobs, the solutions to the first two stages
are not time-sensitive. Regardless, the total time to ob-
tain solutions to both LP models and generate bins is
less than one minute of computation time. This level of
computational effort means that it is realistic to re-solve
these two stages periodically, perhaps multiple times a
day, if the job classes or machine configurations change
due, for example, to non-stationary workload. We leave
this for future work.

Figure 8 presents the performance of the system
over the one month period. The graph provides the
mean response time of jobs on a log scale over every 24-
hour interval. We include an individual job’s response
time in the mean response time calculation for the inter-
val in which the job begins processing. We see that the
LoTES algorithm greatly outperforms the Greedy pol-
icy and generally has lower response times than Tetris.
On average, the Greedy policy has response times that
are orders of magnitude longer (15-20 minutes) than
the response times of the LoTES algorithm. The Tetris
scheduler performs much better than the Greedy pol-
icy, but still has about an order of magnitude longer
response times than LoTES.

The overall performance shows the benefits of LoTES,
however, a more interesting result is the performance
difference when there is a larger performance gap be-
tween the scheduling algorithms. In general, LoTES is
as good as Tetris or better. However, when the two al-
gorithms deviate in performance, LoTES can perform
significantly better. For example, around the 200 hour
time point in Figure 8, the average response time of
jobs is minutes with the Greedy policy, seconds under
Tetris, and micro-seconds with LoTES.

The Greedy policy performs worst as it is the most
myopic scheduler. However, the one time period that it
does exhibit better behaviour than any other scheduler
is the first period when the system is in a highly tran-
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sient state and is heavily loaded. We suspect this is also
due to the scheduler being myopic and optimizing for
the immediate time period which leads to better short-
term results, but the performance then degrades over a
longer time horizon.

Although it is shown in Figure 8 that LoTES can
reduce response times of jobs, the large scale of the
system obscures the significance of even these seem-
ingly small time improvements between LoTES and
Tetris. Often, the difference in average response times
for these two schedulers is tenths of seconds (or even
smaller). When examining the distribution of response
times from Figure 9, we see that Tetris has a much
larger tail where more jobs have a significantly slower
response time. For the LoTES scheduler, less than 1%
of jobs have a waiting time greater than one hour. In
comparison, the Tetris scheduler has just as many jobs
that have a waiting time greater than seven hours and
the Greedy policy has 1% of jobs waiting longer than
17 hours. These values show how poor performance can
become during peak times, even though on average, the
response times are very short because the vast majority
of jobs are immediately processed.

Finally, Figure 10 presents the number of jobs in
queue over time. We see that for most of the month, the
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Fig. 10 Number of jobs in queue.

queue size does not grow to any significant degree for
LoTES. Tetris does have a queue form at some points in
the month, but even then, the queue length is relatively
small. Other than at the beginning of the schedule, the
throughput of jobs for Tetris and LoTES is generally
maintained at a rate such that arriving jobs are pro-
cessed immediately. The large burst of jobs early on in
the schedule is due to the way in which the trace data
was captured: all these jobs enter the system at the be-
ginning as a large batch to be scheduled. However, as
time goes on, these initial jobs are processed and the
system enters into more regular operation. The Greedy
policy on the other hand has increased queue lengths
at all points during the month.

Given that, for the majority of the scheduling hori-
zon, LoTES is able to maintain empty queues and sched-
ule jobs immediately, we found that a scheduling deci-
sion can often be made by considering only a subset of
machine configurations rather than all machines in the
system. In contrast, the Tetris scheduler, regardless of
how uncongested the system is, will always consider all
machines to find the best score. We do not present the
scheduling overhead, but it is apparent from the graph
that without a queue build up, the overhead of LoTES
will be no worse, and more likely better, than Tetris.

It is important to state here again that LoTES makes
use of additional job class information, which is not
considered by the other schedulers. However, the infor-
mation can be inaccurate as seen in Figure 7, where the
proportion of arriving jobs belonging to a job class can
be seen to change over time. One would expect that
improvements could be made by dynamically updating
the parameters of the job classes to ensure that LoTES
maintains an accurate representation of the system. Re-
gardless, even with a fairly naive approach where the
job classes defined are assumed to be static, the LoTES
scheduler is able to perform well.



5.4 Randomly Generated Workload Trace Data

Randomly generated data is used to show the behaviour
of LoTES when we vary the resource requirements of
job classes and include machine dependent processing
times.

In two experiments, we have nine job classes that all
arrive at the same rate αλ, where α = 1

9 and λ is the
total arrival rate of the system. Jobs arrive following
a Poisson process with exponentially distributed inter-
arrival times. Each job, z, has an amount of work, wz
that must be done, which is generated from an exponen-
tial distribution with mean one. The work will be used
to define the processing time as pz = wz

µjk
given that job

z is a job of class k and is processed on a machine of
configuration j. To generate the resource requirements
of a job, a randomly generated value following a trun-
cated Gaussian distribution with mean rkl, coefficient
of variation 0.5 for class k and resource l, and truncated
to be in the interval [0, 1], is obtained for each resource
l ∈ R.

5.4.1 Machine Configurations

We use the same machine configurations from the Google
workload trace data in Table 1, except we change the
total number of machines in each configuration. We use
1000 machines per configuration so that the system is
more equally balanced between the different types of
configurations available. Although balancing the con-
figurations is not crucial, it is done to emphasize the
heterogeneity of machines; more specifically, we wish to
avoid having one or two configurations that represent
the majority of all machines in the system.

5.4.2 Job Class Details: Varying Resource
Requirements

The first set of generated data we test varies the re-
source requirements between different classes. We con-
sider a range of systems starting with one where all nine
job classes have the same resource requirement distri-
bution and progressively increasing the differences be-
tween the job classes.

We define the parameter Φ to denote the measure
of the difference in resource requirements of job classes.
Given some value Φ, we randomly generate a value for
each job class and resource pair φkl = U [−Φ,Φ] follow-
ing a uniform distribution. Jobs from class k will then
have resource requirements generated from a truncated
Gaussian distribution with mean rkl = 0.025 + φkl,
coefficient of variation of 0.5, and truncated to be in
[0,1]. As Φ grows, we expect to see larger differences
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Fig. 11 Results for varying resource requirements between
job classes.

between the resource requirements of jobs between dif-
ferent classes. When Φ = 0, all job classes have the
same resource requirement distribution.

We choose an arrival rate of λ = 0.97λ∗, where λ∗

is the solution of the machine assignment LP. This load
represents a heavily utilized system that is, from prelim-
inary experiments, still stable for LoTES and Tetris.5

However, we found that the Greedy policy is not stable:
queue sizes increase unboundedly with time. Therefore,
we only show results for LoTES and Tetris.

Simulations are done for values of Φ between 0 and
0.015, in increments of 0.003. Thus, the systems we test
range from one where all mean resource requirements
are 0.025 regardless of job class or resource, to one that
can have average resource requirements ranging from
0.01 to 0.04. The processing rate is generated by first
obtaining a uniformly distributed random value uk =
U [0, 1] for each job class k, and setting µjk = u−1

k for
all machine configurations j. For each value of Φ, we
generate five different instances, by generating rkl and
uk values independently, and simulating the system for
100 hours. The mean response time for all jobs in the
100 hour simulation is recorded and the mean over the
five instances for each tested Φ is presented in Figure
11.

When Φ = 0, all job classes are the same and we see
that both scheduling algorithms yield short response
times. Due to the logarithmic scaling of our graph, the
apparent difference is actually insignificant.

As Φ increases, we see that both scheduling algo-
rithms have longer response times. We believe this to
be due to the fact that the maximum system load, λ∗

becomes looser as Φ grows due to fragmentation and
wasted resources. This issue is further exacerbated by

5 Note that λ∗ represents an upper bound on the sys-
tem load that can be handled. The bound may not be tight
depending on the fragmentation of resources on a machine
and/or the inefficiencies in the scheduling model used.
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Fig. 12 Results for varying resource requirements between
job classes. System load of 0.90.

the inefficiencies in scheduling that decrease the through-
put of machines, effectively increasing the system load.
Thus, we see that both scheduling models have longer
response times when Φ > 0, and that Tetris becomes
much worse than LoTES. LoTES takes better advan-
tage of efficient packing of jobs onto machines using the
allocation LP and machine assignment LP solutions.

5.4.3 Job Class Details: Varying Processing Time

The second set of generated data we consider looks at
processing times that are dependent on the machine
configuration. For these experiments, we use the re-
source requirements, rkl, generated from the previous
experiment with Φ = 0.06. Rather than using a random
value uk to obtain the processing rate, we include an
additional value ωjk, a multiplier that makes the pro-
cessing rate dependent on the machine configuration.
Given some value Ω, we randomly generate ωjk from a
uniform distribution U [1− Ω, 1 + Ω] for each machine
configuration j and job class k. The processing rate is
then calculated as µjk = ukωjk.

We test a range of Ω values to observe how the
scheduling models behave as we change from a sys-
tem with machine-configuration-independent process-
ing times to ones with increased machine configura-
tion dependency. As before, five instances are gener-
ated for each value of Ω where we use the same rkl
values from the previous experiment, but generate ωjk
independently for each instance. A simulation time of
100 hours is performed and the mean response time is
recorded.

We consider two different system loads: 0.90 and
0.95. Both these loads are chosen to be lower than in
the previous experiment as we found from preliminary
experiments that a load of 0.97 often led to instability
in the system. Figures 12 and 13 show the system per-
formance with loads of 0.90 and 0.95, respectively. We
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Fig. 13 Results for varying resource requirements between
job classes. System load of 0.95.

do not present results for Greedy as we found at these
loads, the system is not stable. At a load of 0.95, we
also found that Tetris appears to be unstable at higher
values of Ω and thus response times are only reported
for Ω ≤ 0.1.

At a load of 0.90, LoTES is essentially able to start
all jobs immediately. In comparison, Tetris is able to
start all jobs immediately when Ω = 0, but we see a
continual increase in the average response time as Ω
increases, as scheduling inefficiencies result in a drastic
reduction of system throughput. To illustrate the per-
formance of LoTES with increased Ω, we test a system
load of 0.95 so that LoTES is no longer able to imme-
diately start all jobs. Similar to Tetris, we see a rapid
growth in response time with Ω. We suspect that the
reason that LoTES outperforms Tetris on these exper-
iments is due to its ability to find efficient allocations
that take into account the trade-off between process-
ing time dependencies and fragmentation due to job
mixes. Tetris also considers processing time dependen-
cies and job fragmentation, but does so greedily by pri-
oritizing low processing time allocations and best-fits of
the resource requirements rather than efficient mixes.
Incorporating longer term reasoning that considers the
system performance rather than the job performance
means that the LoTES algorithm is better equipped to
handle varied processing times as it can make informed
decisions on a set of jobs.

6 Conclusion and Future Work

In this work, we developed the LoTES scheduling algo-
rithm that improves response times for large-scale data
centers by creating a mapping between jobs and ma-
chines based on their resource profiles. The algorithm
consists of three stages:



1. A queueing model uses a fluid representation of the
system to allocate job classes to machine configu-
rations. This stage extends existing models in the
queueing theory literature to include multi-capacity
resources and provides long-term stochastic knowl-
edge by finding efficient pairings of job classes and
machine configurations that lead to maximizing sys-
tem throughput for the abstracted system.

2. A stage that assigns a particular job mix to each
machine. The assignment is restricted by the solu-
tion of the first stage in order to both reduce the
combinations that are considered and to incorpo-
rate the long-term view of the system. This stage
treats jobs and machines as discrete entities and
performs combinatorial reasoning without losing the
long-term knowledge.

3. A dispatching policy to realize the machine assign-
ments made in the second stage. The primary goal
of this stage is to ensure that the system tends to-
wards scheduling decisions that will have machines
processing a set of jobs similar to the job mixes as-
signed in Stage 2. However, the policy also aims to
reduce response times by actively deviating from the
prescribed assignments when the system has idle re-
sources. This stage allows for the scheduling sys-
tem to respond to the incoming arrival of tasks in
a timely manner while benefiting from the offline
optimization.

Our algorithm was tested on Google workload trace
data and on randomly generated data, where we found
it was able to reduce response times by orders of magni-
tude when compared to a benchmark greedy dispatch
policy and by an order of magnitude when compared
to the Tetris scheduler [7]. We believe that the main
advantage of LoTES over Tetris is that the former con-
siders future job arrivals by generating efficient bins in
advance, which can then be mimicked by the machines
online. LoTES behaves less myopically and can reason
about good packing efficiency based on combinations of
jobs rather than a single job at a time. This improve-
ment is also computationally cheaper during the online
scheduling phase since LoTES often requires state in-
formation for fewer machines when making assignment
decisions.

The data center scheduling problem is very rich from
the scheduling perspective and our approach can be
expanded in many different ways. Our algorithm as-
sumes stationary arrivals over the entire duration of the
scheduling horizon. However, the real system is not sta-
tionary and the arrival rate of each job class may vary
over time. Furthermore, the actual job classes them-
selves may change over time as resource requirements
may not always be clustered in the same manner. As

noted, the offline phase is sufficiently fast (about 1 minute
of CPU time) that it could be run multiple times per
day as the system and load characteristics change. Be-
yond this, we plan to extend the LoTES algorithm to
more accurately represent dynamic job classes, allowing
LoTES to learn to predict the expected mix of jobs that
will arrive to the system and make scheduling decisions
with these predictions in mind. Not only do we wish
to be able to adapt to a changing environment, but we
also wish to extend our algorithm to be able to more in-
telligently handle situations when the mix of jobs varies
greatly from the expectation. Large deviations from the
expectation will lead to system realizations that differ
significantly from the bins created in the second stage
of the LoTES algorithm and make the offline decisions
less relevant to the realized system.

We also plan to study the effects of errors in job
resource requests. We used the amount of requested re-
sources of a job as the amount of resource used over
the entire duration of the job. In reality, users may un-
der or overestimate their resource requirements and the
utilization of a resource may change over the duration
of the job itself. Uncertainties in resource usage add dif-
ficulty to the problem because instead of knowing the
exact amount of requested resources once a job arrives,
we only have an estimate and must ensure that a ma-
chine is not underutilized or oversubscribed.

Finally, the literature on data center scheduling has
considered a various different objectives and constraints.
Fairness among multiple users has been an important
topic to ensure that the system not just responds quickly
to job requests, but provides equal access to resources
[11,29]. We would like to include fairness considerations
using LoTES, which can be accomplished by either in-
cluding users in the LP models of the first two stages
to ensure resources are shared, or by introducing prior-
itization for fairness in the dispatch policy of the third
stage in a similar way as Delay scheduling [29]. An-
other important system aspect is energy consumption
[3,15]. Tarplee et al. [26] present a multi-stage schedul-
ing model similar to LoTES that directly considers en-
ergy consumption in a data center, where jobs do not
arrive dynamically over time (as they do in our system).
Their scheduler uses an LP relaxation with similar goals
to ours in that it relaxes the problem to allow the ability
to divide the load of a job across multiple machines. The
LP solution then is used to guide the scheduling choices.
The minimization of energy consumption is crucial for
running low-cost data centers and is an important area
for future work.
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