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First Observation of a Baryonic B0
s Decay

R. Aaij et al.*

(LHCb Collaboration)
(Received 28 April 2017; published 25 July 2017)

We report the first observation of a baryonic B0
s decay, B0

s → pΛ̄K−, using proton-proton collision data
recorded by the LHCb experiment at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated
luminosity of 3.0 fb−1. The branching fraction is measured to be BðB0

s → pΛ̄K−Þ þ BðB0
s → p̄ΛKþÞ ¼

½5.46� 0.61� 0.57� 0.50ðBÞ � 0.32ðfs=fdÞ� × 10−6, where the first uncertainty is statistical and the
second systematic, the third uncertainty accounts for the experimental uncertainty on the branching fraction
of the B0 → pΛ̄π− decay used for normalization, and the fourth uncertainty relates to the knowledge of the
ratio of b-quark hadronization probabilities fs=fd.

DOI: 10.1103/PhysRevLett.119.041802

The experimental study of B-meson decays to
baryonic final states has a long history, starting with
the first observation of baryonic B decays by the CLEO
Collaboration in 1997 [1]. The asymmetric eþe− collider
experiments BABAR and Belle reported numerous
searches and observations of decays of B0 and Bþ mesons
to baryonic final states [2]. The LHCb Collaboration
published the first observation of a baryonic Bþ

c decay in
2014 [3]. Until now, no baryonic B0

s decay has ever
been observed with a significance in excess of five
standard deviations; the Belle Collaboration provided
the only evidence for such a process in the study of
B0
s → Λ̄−

cΛπþ decays, with a significance of 4.4 standard
deviations [4].
Areas of particular interest in baryonic B decays are the

study of the hierarchy of branching fractions and the
threshold enhancement in the baryon-antibaryon mass
spectrum [2,5]. Multibody baryonic B decays are expected
to have higher branching fractions than two-body decays
[6,7]. The B0 → pΛ̄π− and B0

s → pΛ̄K− branching frac-
tions are predicted to be of the order of 10−6 [8]. The
notation B0

s → pΛ̄K− is used hereafter for the sum of
both accessible final states B0

s → pΛ̄K− and B0
s → p̄ΛKþ.

As emphasized in Ref. [8], which studied the decays
B0
s → pΛ̄h−, the decay B0

s → pΛ̄K− is a unique baryonic
B decay in that it is the only presently known decay where
all four processes, namely the decays of a B0

s or a B̄0
s meson

to either the pΛ̄K− or the p̄ΛKþ final state, can occur.
A B -flavor-tagged decay-time-dependent study is required
in order to separate the two possible final states and

measure their individual branching fractions as well as
CP violation observables.
The current experimental knowledge on the family of

B0
ðsÞ → pΛ̄h− decays (h ¼ π, K) and related modes such

as B0
ðsÞ → pΣ̄0h−, with Σ̄0 → Λ̄γ, is rather scarce. The

B0 → pΛ̄π− decay has been studied by the BABAR [9] and
Belle [10,11] collaborations and the Belle Collaboration
has reported the 90% confidence level upper limits BðB0→
pΛ̄K−Þ<8.2×10−7 and BðB0→pΣ̄0π−Þ<3.8×10−6 [11].
Manifestations of CP and T violation in baryonic B

decays have been studied from a theoretical viewpoint;
see for example Ref. [12] and references therein. A large
CP-violation asymmetry of order 10% is expected for the
B0 → pΛ̄π− decay mode [12], which further motivates the
experimental study of B0

ðsÞ → pΛ̄h− decays.
This Letter presents the first observation of a charmless

baryonic B0
s decay. The branching fraction of the B0

s →
pΛ̄K− decay is measured relative to that of the topologi-
cally identical B0 → pΛ̄π− decay to suppress common
systematic uncertainties:

BðB0
s → pΛ̄K−Þ þ BðB0

s → p̄ΛKþÞ

¼ fd
fs

NðB0
s → pΛ̄K−Þ

NðB0 → pΛ̄π−Þ
ϵB0→pΛ̄π−

ϵB0
s→pΛ̄K−

BðB0 → pΛ̄π−Þ; ð1Þ

where N represents yields determined from mass fits,
fq stands for the b hadronization probability to the meson
Bq, and ϵ represents the selection efficiencies. The inclu-
sion of charge-conjugate processes is implied, unless
otherwise stated.
The data sample analyzed corresponds to an integrated

luminosity of 1.0 fb−1 of proton-proton collision data
collected by the LHCb experiment at center-of-mass
energies of 7 TeV in 2011 and 2.0 fb−1 at 8 TeV in
2012. The LHCb detector is a single-arm forward spec-
trometer covering the pseudorapidity range 2 < η < 5,
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designed for the study of particles containing b or c
quarks [13,14]. The pseudorapidity is defined as η ¼
− ln ½tanðθ=2Þ�, where θ is the polar angle with respect
to the proton in the positive z direction. The detector
elements that are particularly relevant to this analysis are a
silicon-strip vertex detector surrounding the proton-proton
interaction region that allows heavy hadrons to be identified
from their characteristically long flight distance, a tracking
system that provides a measurement of momentum, p, of
charged particles, two ring-imaging Cherenkov detectors
that are able to discriminate between different species of
charged hadrons, a calorimeter system for the measurement
of photons and neutral hadrons, and multiwire proportional
chambers for the detection of muons. Simulated data
samples, produced as described in Refs. [15–20], are used
to evaluate the response of the detector and to investigate
and characterize possible sources of background.
Events are selected in a similar way for both the signal

decay B0
s → pΛ̄K− and the normalization channel B0 →

pΛ̄π−, where Λ̄ → p̄πþ. Real-time event selection is
performed by a trigger [21] consisting of a hardware stage,
based on information from the calorimeter and muon
systems, followed by a software stage, which performs a
full event reconstruction. The hardware trigger stage
requires events to have a muon with high transverse
momentum, pT, or a hadron, photon, or electron with high
transverse energy deposited in the calorimeters. For this
analysis, the hardware trigger decision can either be made
on the signal candidates or on other particles in the event.
The software trigger requires a two- or three-track secon-
dary vertex with a significant displacement from all
the primary pp interaction vertices (PVs). At least one
charged particle must have high pT and be inconsistent
with originating from a PV. A multivariate algorithm [22] is
used for the identification of secondary vertices consistent
with the decay of a b or c hadron.
The Λ decays are reconstructed in two different catego-

ries: the first consists of Λ baryons that decay early enough
for the proton and pion to be reconstructed in the vertex
detector, while the second contains those that decay later
such that track segments cannot be reconstructed in the
vertex detector. These reconstruction categories are referred
to as long and downstream, respectively.
The selection of B0

ðsÞ candidates, formed by combining a

Λ candidate with a proton and a pion or kaon, is carried out
with a filtering stage, a requirement on the response of a
multilayer perceptron [23] (MLP) classifier, and particle
identification (PID) criteria discussed below. The proton
and pion or kaon, of opposite charge, both decay products
of the B meson, are hereafter referred to as the charged
hadrons. Unless stated otherwise, the terms proton and pion
refer to the charged hadrons from the B-meson decay, not
to the Λ decay products. Both the B0 → pΛ̄π− and the
B0
s → pΛ̄K− decay chains are refitted [24] employing a

mass constraint on the Λ candidates.

In the filtering stage the Λ decay products are required to
have a minimum momentum, p, form a good quality vertex
and satisfy jmðpπ−Þ −mΛj < 20ð15Þ MeV=c2 for down-
stream (long) candidates, where mΛ is the Λ mass [25].
They must have a large impact parameter (IP) with respect
to all PVs, where the IP is defined as the minimum distance
of a track to a PV. A minimum χ2IP with respect to any PV is
imposed on each Λ decay product, where χ2IP is defined as
the difference between the vertex-fit χ2 of a PV recon-
structed with and without the particle in question. A loose
PID requirement, based primarily on information from the
ring-imaging Cherenkov detectors, is imposed to select the
proton candidate from the Λ baryon to remove background
from K0

S decays. For downstream Λ candidates a minimum
momentum is also required.
A minimum requirement is imposed on the scalar sum

of the pT of the Λ candidate and the two charged hadrons.
The distance of closest approach among any pair from (p,
Λ̄, h−) divided by its uncertainty must be small. The B
candidate must have a good quality vertex, have a mini-
mum pT and a small χ2IP with respect to the associated PVas
its reconstructed momentum vector should point to its
production vertex; the associated PV is the one with which
it forms the smallest χ2IP. The pointing condition of the B
candidate is further reinforced by requiring that the angle
between the B-candidate momentum vector and the line
connecting the associated PV and the B-decay vertex (B
direction angle, θB) is close to zero.
Backgrounds from the B0 → Λ̄−

c p decay with Λ̄−
c →

Λ̄π− (Λ̄−
c → Λ̄K−) are removed from the pΛ̄π− (pΛ̄K−)

samples with a veto around the Λþ
c mass [25] of three times

the Λ̄π− (Λ̄K−) invariant mass resolution of approximately
6 MeV=c2. No veto is found to be necessary to suppress
backgrounds from B decays to charmonia and πþπ− pair
final states.
Further separation between signal and combinatorial

background candidates relies on MLPs implemented
with the TMVA toolkit [26]. The MLPs are trained using
simulated B0 → pΛ̄π− samples, generated according to a
constant matrix element without intermediate resonances,
to represent the signal, and with data from the high-
mass sideband region 5400<mðpΛ̄π−Þ<5600MeV=c2

for the background, to avoid partially reconstructed back-
grounds. Separate MLPs are trained and optimized for each
year of data taking and for the two Λ reconstruction
categories. Each MLP is used to select both B0 → pΛ̄π−
and B0

s → pΛ̄K− candidates.
The 17 variables used in the MLP classifiers are proper-

ties of the B candidate, the charged hadrons, and the Λ
decay products. The input variables are the following: the
χ2 per degree of freedom of the kinematic fit of the decay
chain [24]; the IP for all particles calculated with respect to
the associated PV; the distance of closest approach between
the two charged hadrons and the sum of their corresponding
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χ2IP; the Λ candidate decay-length significance with respect
to the B vertex, i.e., the decay length divided by its
uncertainty; the angle between the Λ momentum and the
spacial vector connecting the B and Λ decay vertices in the
B rest frame; the Λ decay time; the B-meson pT, pseudor-
apidity, direction angle θB, decay-length significance and
decay time; the Λ helicity angle defined by the Λ
momentum in the B rest frame and the boost axis of the
Bmeson, which is given by the B-meson momentum in the
laboratory frame; and the pointing variable defined as
P¼ ½Pp;Λ̄;h−p× sinθB�=½

P
p;Λ̄;h−p× sinθB þ

P
p;Λ̄;h−pT�.

The optimal MLP requirement for each of the four
subsamples is determined by maximizing the signal sig-
nificance of the B0 → pΛ̄π− normalization decay, with the
variation of the signal efficiency with the MLP cut value
determined from simulation.
A PID selection is applied to the charged hadrons after

the MLP selection. No additional PID requirement is
applied to the proton from the Λ candidate since no
contamination from misidentified K0

S → πþπ− decays is
observed. The optimization of the PID requirements
follows the same procedure as the optimization of the
MLP selection. If more than one candidate is selected in
any event of any subsample, which occurs in about 5% of
selected events, one is chosen at random.
Large data control samples of D0 → K−πþ, Λ → pπ−,

and Λþ
c → pK−πþ decays are employed [27] to determine

the efficiency of the PID requirements. All other selection
efficiencies are determined from simulation. It is necessary
to account for the distribution of signal candidates and the
variation of the efficiency over the phase space of the decay.
The variation is well described by the factorized efficien-
cies in the two-dimensional space of the variables m2ðpΛ̄Þ
and m2ðph−Þ defining the Dalitz plot. Simulated events
are binned in m2ðpΛ̄Þ in order to determine the selection
efficiencies, the variation in m2ðph−Þ being mild and
therefore integrated out. The distribution of signal decays
in the phase space is obtained separately for each spectrum
with the sPlot technique [28] with the B-meson candidate
invariant mass used as the discriminating variable. The
overall efficiencies of this analysis are of order 10−4.
The efficiency of the software trigger selection on both

decay modes varied during the data-taking period. During
the 2011 data taking, downstream tracks were not recon-
structed in the software trigger. Such tracks were included
in the trigger during the 2012 data taking and a further
significant improvement in the algorithms was imple-
mented mid-year. The corresponding changes to the trigger
efficiency are taken into account.
Potential sources of background to the pΛ̄h− spectra

are investigated using simulation samples. Cross-feed
between the B0 → pΛ̄π− and B0

s → pΛ̄K− decay modes
is the dominant source of peaking background. The
loop-mediated decays B0 → pΛ̄K− and B0

s → pΛ̄π− are

suppressed and estimated to be insignificant [8]. Pion-kaon
misidentification from b-baryon decays such as the recently
observed decays Λ0

b → Λhþh0− [29] is found to be negli-
gible. The influence of proton-pion misidentification in
the reconstruction and selection of the Λ baryon arising
from K0

S cross-feed is checked since the PID requirement
on the proton from the Λ is rather loose. It is verified
with Armenteros-Podolanski plots [30] that the K0

S con-
tamination can be ignored. Cross-feed from the presently
unobserved decay Λ0

b → Λpp̄ due to proton-pion and
proton-kaon misidentification is assumed to be negligible
considering that the proton misidentification rate is small.
Partially reconstructed decays such as the unobserved
B0 → pΛ̄ρ− and B0

s → pΛ̄K�− modes are treated as a
source of systematic uncertainty. Decay modes containing
a Σ̄0 baryon decaying into Σ̄0 → Λ̄γ, where the γ is not
detected, can pollute the signal regions due to the small
mass difference mðΣ0Þ −mðΛÞ ≈ 77 MeV=c2 [25]. The
decay B0 → pΣ̄0π− is expected to have a branching
fraction at the level of 10−6 [31], though searches for
the B0

ðsÞ → pΣ̄0h− family of decays have found no signal

[11]. The decays B0 → pΣ̄0π− and B0
s → pΣ̄0K− are

expected to be the dominant members of the family and
are included in the fits to the data.
The yields of the signal and background candidates in

eight subsamples are determined from a simultaneous
unbinned extended maximum likelihood fit to the pΛ̄h−
invariant mass distributions. The eight subsamples corre-
spond to the 2011 and 2012 data-taking periods, the two Λ
reconstruction categories, and the pΛ̄π− and pΛ̄K− final
state hypotheses. This approach allows the use of common
shape parameters, and the level of cross-feed background
can be better constrained by fitting all subsamples simulta-
neously. The probability density function in each subsam-
ple is defined as the sum of components accounting for the
signal decay, the cross-feed contribution, the B0 → pΣ̄0π−

and B0
s → pΣ̄0K− decays, and combinatorial background.

The signal and normalization modes are modeled with
the sum of two Novosibirsk functions [32]. All shape
parameters are fixed to the values obtained separately for
each subsample from simulation samples. The B0 → pΛ̄π−
and B0

s → pΛ̄K− peak positions are free parameters deter-
mined simultaneously in all subsamples. The cross-feed
B0
s → pΛ̄K− (B0 → pΛ̄π−) in the pΛ̄π− (pΛ̄K−) invariant

mass distribution is modeled with the sum of a Gaussian
and a modified Fermi function defined as the product of an
exponential and a Fermi-Dirac function. The B0 → pΣ̄0π−

and B0
s → pΣ̄0K− decays are modeled differently accord-

ing to theΛ reconstruction category and the pΛ̄h− invariant
mass hypothesis under which they are reconstructed.
Depending on the category, a modified Fermi function,
a sum of two Novosibirsk functions, the sum of a
Novosibirsk and a Gaussian function, or the sum of a
Novosibirsk and a modified Fermi function, are used.
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A combinatorial background component described by an
exponential function is present for both pΛ̄h− final states.
The yields of the B0 → pΛ̄π− candidates are determined

in the fit together with the ratio of the B0
s → pΛ̄K− to B0 →

pΛ̄π− branching fractions, which is determined simulta-
neously across all subsamples accounting for differences in
selection efficiencies. These depend on the data-taking
period, Λ reconstruction category, and mass hypothesis of
the meson from the B decay. The uncertainties arising
from the ratios of efficiencies are included in the fit as
Gaussian constraints. The yields of the B0 → pΣ̄0π− and
B0
s → pΣ̄0K− decays are defined relative to those of the

corresponding B0 → pΛ̄π− and B0
s → pΛ̄K− decays,

respectively. These two Σ0-to-Λ decay yield ratios are
determined simultaneously in the fit across all subsamples
following the same procedure as for the B0

s → pΛ̄K−

decay. The combinatorial background yield and shape
parameters are treated independently in each subsample
and are allowed to vary in the fit.
Figure 1 presents the fit to the pΛ̄h− invariant mass

distributions for all subsamples combined. Both B0 →
pΛ̄π− and B0

s → pΛ̄K− signals are prominent. In particu-
lar, the B0

s → pΛ̄K− decay is observed with a statistical
significance above 15 standard deviations, estimated from
the change in log-likelihood between fits with and without
the B0

s → pΛ̄K− signal component [33]. It constitutes the
first observation of a baryonic B0

s decay. The yields
summed over all subsamples are NðB0 → pΛ̄π−Þ ¼ 519�
28 and NðB0

s → pΛ̄K−Þ ¼ 234� 29, where the uncertain-
ties are statistical only.
The sPlot technique is used to subtract the background

and obtain the phase space distribution of signal candidates.
Figure 2 shows the mðpΛ̄Þ invariant mass distributions
for the B0 → pΛ̄π− and B0

s → pΛ̄K− candidates after
correcting for the distribution selection efficiencies. Both
distributions show a pronounced enhancement at threshold

FIG. 1. Mass distributions for b-hadron candidates for (top) the
pΛ̄π− and (bottom) the pΛ̄K− sample for the combined long
and downstream categories. The black points represent the data,
the solid blue curve the result of the fit, the red dashed curve the
B0
s → pΛ̄K− contribution, the black (magenta) dotted curve the

B0 → pΛ̄π− (B0
s → pΣ̄0K−) and the green dash-dotted curve

the contribution from B0 → pΣ̄0π− decays. The combinatorial
background distribution is indicated by the shaded histogram.

FIG. 2. Efficiency-corrected and background-subtracted mðpΛ̄Þ
invariant mass distributions for (top) B0 → pΛ̄π− and (bottom)
B0
s → pΛ̄K− candidates. The distributions are normalized to unity.
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in the baryon-antibaryon invariant mass, first suggested in
Ref. [5] and observed in several baryonic B decay modes.
The sources of systematic uncertainty arise from the fit

model, the knowledge of the selection efficiencies, and the
uncertainties on the B0 → pΛ̄π− branching fraction and on
the ratio of hadronization probabilities fs=fd. Uncertainties
on the selection efficiencies arise from residual differences
between data and simulation in the trigger, reconstruction,
selection, and particle identification. Additional uncertain-
ties arise due to the limited size of the simulation samples
and the corresponding uncertainty on the distribution of the
efficiencies across the decay phase space. As the efficien-
cies depend on the signal decay-time distribution, the effect
coming from the different lifetimes of the B0

s mass
eigenstates has been evaluated [34]. Pseudoexperiments
are used to estimate the effect of using alternative shapes
for the fit components, of including additional backgrounds
in the fit such as partially reconstructed decays, and of
excluding the B0 → pΣ̄0π− and B0

s → pΣ̄0K− decays that
show no significant contribution. Intrinsic biases in the fitted
signal yields are investigated with ensembles of simulated
pseudoexperiments. A small bias is found and added to the
systematic uncertainty on the fit model. The systematic
uncertainty due to the knowledge of the efficiencies involved
in the definition of fit constraints is negligible. The total
systematic uncertainty on the B0

s → pΛ̄K− branching frac-
tion is given by the sum of all uncertainties added in
quadrature and amounts to 10.5%; it is dominated by the
systematic uncertainty on the fit model.
The uncertainty on the branching fraction of the normali-

zation decay, BðB0→pΛ̄π−Þ¼ð3.14�0.29Þ×10−6 [25], is
taken as a systematic uncertainty from external inputs. The
5.8% uncertainty on the latest fs=fd combination from
LHCb, fs=fd ¼ 0.259� 0.015 [35], is taken as a second
source of systematic uncertainty from external inputs.
The B0

s → pΛ̄K− branching fraction, determined relative
to that of the B0 → pΛ̄π− normalization channel according
to Eq. (1), is measured to be

BðB0
s →pΛ̄K−ÞþBðB0

s → p̄ΛKþÞ
¼ ½5.46�0.61�0.57�0.50ðBÞ�0.32ðfs=fdÞ�×10−6;

where the first uncertainty is statistical and the second
systematic, the third uncertainty accounts for the exper-
imental uncertainty on the branching fraction of the
B0 → pΛ̄π− decay, and the fourth uncertainty relates to
the knowledge of fs=fd.
In summary, the first observation of the three-body

charmless baryonic decay B0
s → pΛ̄K− is reported using

a proton-proton collision data sample collected by the
LHCb experiment, corresponding to an integrated lumi-
nosity of 3.0 fb−1. The decay is observed with a statistical
significance above 15 standard deviations, which consti-
tutes the first observation of a baryonic B0

s decay.

Decays of B mesons to final states containing baryons
are now observed for all B-meson species. Their study
provides valuable information on the dynamics of hadronic
decays of B mesons. The present analysis motivates further
theoretical studies of baryonic B0

s decays in addition to
those currently published [6,8,36,37].
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