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Abstract

Progressive kidney diseases are often associated with scarring of the kidney’s filtration unit, a 

condition called focal segmental glomerulosclerosis (FSGS). This scarring is due to loss of 

podocytes, cells critical for glomerular filtration, and leads to proteinuria and kidney failure. 

Inherited forms of FSGS are caused by Rac1-activating mutations, and Rac1 induces TRPC5 ion 

channel activity and cytoskeletal remodeling in podocytes. Whether TRPC5 activity mediates 

FSGS onset and progression is unknown. We identified a small molecule, AC1903, that 

specifically blocks TRPC5 channel activity in glomeruli of proteinuric rats. Chronic 

administration of AC1903 suppressed severe proteinuria and prevented podocyte loss in a 
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transgenic rat model of FSGS. AC1903 also provided therapeutic benefit in a rat model of 

hypertensive proteinuric kidney disease. These data indicate that TRPC5 activity drives disease 

and that TRPC5 inhibitors may be valuable for the treatment of progressive kidney diseases.

Progressive chronic kidney diseases affect more than 500 million people worldwide and are 

increasing in prevalence (1,2). As a leading cause of kidney failure, focal segmental 

glomerulosclerosis (FSGS) in its most severe form is associated with the nephrotic 

syndrome, which is diagnosed on the basis of proteinuria, the spilling of essential proteins 

into the urine, and histopathologic findings including scarring in large segments of the 

glomerulus, the filtering unit of the kidney (3). This scarring is due to injury and loss of 

terminally differentiated cells of the kidney filter, the podocytes (3,4). Both the proteinuria 

and the histopathologic abnormalities contribute to patient symptoms (such as severe edema 

and shortness of breath) and increase the risk of kidney failure, heart failure, and premature 

death (3). Current therapy for FSGS consists of off-label use of nonspecific medications, 

which do not alter the progression of disease and are associated with toxicities (3).

Inherited and sporadic forms of FSGS are caused by mutations in genes that encode 

regulators of the actin cytoskeleton (5)—specifically, modulators of Rac1. Mutations in 

these genes, including ARHGAP24 (6), ARHGDIA (7), and ARHGEF17 (8), result in 

excess Rac1 signaling in podocytes (6–8). Activation of Rac1 signaling leads to the vesicular 

insertion of transient receptor potential canonical-5 (TRPC5) ion channels into the podocyte 

plasma membrane, making them available for activation by receptors such as the angiotensin 

II type 1 receptor (AT1R) (9,10). This results in transient Ca2+ influx into the podocyte, and 

further Rac1 activation, feeding a circuit that promotes podocyte cytoskeletal remodeling 

(10–12). Because little is known about the pathophysiologic role of the Rac1-TRPC5 

pathway in the onset and progression of FSGS, which is the result of podocyte loss (3), we 

investigated two critical questions: Is this pathway responsible for disease progression in 

FSGS and, if so, can it be blocked for therapeutic benefit?

To study the role of Rac1-TRPC5–mediated podocyte injury in FSGS, we used AT1R 

transgenic (TGNeph-hAT1R/185 or AT1R Tg) rats, which express the human AT1R in a 

podocyte-specific manner (13). Similar to FSGS patients (3), these rats develop all the 

classical features of nephrotic syndrome (13, 14). Because they have podocyte-specific 

expression of the AT1R, these animals do not experience any of the systemic effects of 

excess angiotensin signaling, such as hypertension or vascular disease (13), thus allowing us 

to focus on podocyte-specific pathology. In our studies, AT1R Tg rats developed severe, 

progressive proteinuria over the course of 50 weeks, with onset of disease at 8 to 14 weeks 

and severe escalation in proteinuria beyond 14 weeks (fig. S1A). As a consequence of their 

progressive kidney failure, AT1R Tg rats died at an average age of 400 days, whereas wild-

type (WT) control rats lived beyond 700 days (fig. S1B). In these studies, we focused on 

AT1R Tg rats with established disease (Advanced, ~18 weeks), defined by severe proteinuria 

(>25 mg/day), and compared them to younger rats with early disease (Onset, ~12 weeks, >5 

mg/day proteinuria) (fig. S1A).

We examined TRPC channel activity in isolated rat glomeruli by recording podocyte Ca2+ 

transients in response to angiotensin II (AngII). These experiments suggested that the 
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lanthanum (La3+)- sensitive TRPC6 plays a homeostatic role in WT glomeruli, but TRPC5, 

unmasked by La3+, shows increased activity early on (Onset) and predominates during 

disease progression (Advanced) (fig. S2, A and B). To confirm these results, we used patch-

clamp electrophysiology adapted to the isolated glomeruli preparation. We tested riluzole, a 

direct activator of TRPC5 channel activity (15), and ML204, a tool compound that blocks 

TRPC5 (16). In inside-out recordings of podocytes from AT1R Tg rat glomeruli isolated at 

disease onset, we recorded significant ML204 inhibition of channel activity. In glomeruli 

from rats with established disease (Advanced), riluzole activated a large TRPC5 

conductance, which was blocked by ML204 (Fig. 1, A and B, and fig. S3, A and B). By 

contrast, we recorded minimal riluzole-mediated TRPC5 activation in WT rat glomeruli in 

age-matched controls (Fig. 1, A and B, and fig. S3, A and B). To examine effects on TRPC6 

channels, we used 1-oleoyl-2-acetyl-glycerol (OAG), which directly activates these channels 

(17). We noted no inhibition of ML204 on OAG-induced conductances in recordings from 

age-matched AT1R Tg rats and WT controls (fig. S3C). We therefore excluded the 

possibility that the effect of ML204 can be explained by its targeting of TRPC6 channel 

activity in AT1R Tg rats at any stage of disease progression (fig. S3C). The conclusion from 

Ca2+ imaging and electrophysiology in rat glomeruli is that TRPC5-mediated Ca2+ influx in 

podocytes correlates with FSGS disease progression (Fig. 1C).

We next tested the efficacy of ML204 in vivo. Intraperitoneal administration of ML204 

twice daily for 7 days to animals at disease onset induced remission of proteinuria: Urine 

protein concentrations in treated rats were comparable to those in WT controls (fig. S4, A 

and B). Furthermore, administration of ML204 (25 mg/kg) twice daily over the course of 14 

days in rats with severe disease (Advanced) suppressed progression of proteinuric disease at 

7 days and 14 days (Fig. 1D) without evidence of toxicity (fig. S4, C to G). Control AT1R 

Tg animals continued to have escalating proteinuria (Fig. 1D). Morphometric analysis 

(18,19) (see methods) showed that ML204 prevented podocyte loss in AT1R Tg rats with 

advanced disease, maintaining the numbers of podocytes at near-baseline WT levels, in 

contrast to significant podocyte loss in control phosphate-buffered saline (PBS)–treated 

AT1R Tg rats (Fig. 1E). AT1R Tg rats with advanced disease also had numerous podocyte 

pseudocysts (fig. S4H), similar to previously described pseudocysts leading to podocyte loss 

through detachment from the basement membrane in various models of FSGS (20). 

Treatment with ML204 prevented pseudocyst formation, suggesting that podocytes were 

rescued from detachment and loss (fig. S4, H and I). Thus, podocyte numbers are preserved 

by treatment with ML204.

Because ML204 blocks TRPC5 and TRPC4 channels, and weakly blocks TRPC6 channels 

(16), we set out to develop a more specific TRPC5 inhibitor. We sought a compound with 

podocyte-protective properties and no unwanted on-target effects on TRPC4 channels 

[which, although not expressed in podocytes (10), are expressed in endothelium (21)] or 

TRPC6 channels. Based on the structures of published blockers (16,22), we synthesized and 

tested a series of 50 molecules for activity against TRPC5, TRPC4, and TRPC6 and 

identified compound AC1903 (Fig. 2A) as a promising candidate. Patch-clamp 

electrophysiology experiments in human embryonic kidney 293 (HEK-293) cells expressing 

TRPC5, TRPC4, or TRPC6 revealed that AC1903 is TRPC5-selective: In dose-response 

experiments, it blocked riluzole-activated TRPC5 whole-cell current, but failed to block 
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carbachol (CCh)–induced TRPC4 and OAG-induced TRPC6 currents, even at high 

micromolar concentrations (Fig. 2B and fig. S5, A to C). We also compared the dose 

responses of AC1903 and ML204 and found that the two inhibitors were nearly equipotent, 

with half-maximal inhibitory concentration of ML204 (IC50 ML204) = 13.6 μM versus 

IC50 AC1903 = 14.7 μM (Fig. 2C). In standard kinase profiling assays, AC1903 did not have 

offtarget effects (table S1). Thus, AC1903 selectively blocks TRPC5 ion channels.

Rac1 activation leads to increased production of reactive oxygen species (ROS) (23,24). To 

establish a mechanistic understanding for the effects of AC1903 on the Rac1-TRPC5 

pathway in podocytes, we measured ROS levels in vitro in podocytes treated with AngII 

(Fig. 2D). AngII treatment induced a significant increase in ROS, which was blocked by 

AC1903 and the ROS scavenger N-acetylcysteine (NAC) (Fig. 2D). Next, we engineered 

podocytes to overexpress a well-characterized, constitutively active mutant of the human 

AT1R, which is unable to inactivate and undergo endocytosis (caAT1R) (25). Increased ROS 

production was detected in the presence of caAT1R (Fig. 2E). AC1903, ML204, and the 

Rac1 inhibitor (NSC23677) blocked caAT1R-induced ROS generation (Fig. 2E). We also 

noted increased podocyte cell death within 36 hours of caAT1R expression (Fig. 2F). By 

contrast, podocytes treated with AC1903, ML204, or the Rac1 inhibitor were protected from 

cell death (Fig. 2F). These data suggest that excess ROS production contributes to the 

molecular events linking Rac1-TRPC5 signaling to podocyte loss.

After characterizing the pharmacokinetic properties of AC1903 (fig. S6), we investigated 

whether AC1903 could suppress proteinuria in AT1R Tg rats with established disease. 

Twice-daily intraperitoneal injections of AC1903 (50 mg/kg) for 7 days suppressed severe 

proteinuria in AT1R Tg rats (Advanced) (Fig. 3A), without evidence of toxicity (fig. S7, A 

to C). Inside-out electrophysiology measurements in isolated glomeruli from AT1R Tg rats 

confirmed that AC1903 blocks TRPC5 channel activity during proteinuric disease 

progression (Fig. 3, B and C). Morphometric analysis demonstrated that treatment with 

AC1903 led to a significant reduction in pseudocyst formation and in podocyte loss in AT1R 

Tg rats with advanced disease (Fig. 3, D to F). Thus, AC1903 inhibits the progression of 

proteinuric kidney disease by preserving podocytes.

To characterize the transcriptional responses to AC1903-mediated inhibition of Rac1-

TRPC5 signaling and enhanced podocyte survival in vivo, we compared gene expression 

profiles [RNA sequencing (RNA-seq)] in isolated glomeruli from WT rats, AC1903-treated 

AT1R Tg rats in the advanced cohort, and vehicle-treated, age-matched AT1R Tg controls 

(fig. S8A). We identified 541 differentially expressed genes in AT1R Tg rats compared to 

WT controls (table S2 and fig. S8B). In support of the hypothesis that Rac1-mediated ROS 

generation and TRPC5 Ca2+ (cation) –mediated signaling lead to disease progression, Gene 

Ontology (GO) term enrichment analysis revealed ROS-related and cation channel and 

transporter activity gene signatures (fig. S8C). In line with this, ROS-related genes 

previously implicated in podocyte injury such as Nox4 (26,27) were found to be up-

regulated. After treatment with AC1903,42 genes were differentially expressed in AC1903-

treated versus vehicle-treated AT1R Tg rats (table S2 and fig. S8B). This smaller number of 

genes suggests that AC1903 targets a specific signaling network to confer its therapeutic 

benefit. GO term enrichment analysis revealed cell adhesion and integrin signaling gene sets, 
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in support of the notion that AC1903 fortifies the cytoskeleton, prevents pseudocysts, and 

promotes cell adhesion to prevent podocyte loss (table S2 and fig. S8D).

We also investigated the efficacy of AC1903 in Dahl salt-sensitive (Dahl S) rats, a model of 

hypertension-induced FSGS (28,29) that recapitulates many of the systemic conditions 

leading to progressive proteinuric kidney disease in patients. On a low-salt diet, Dahl S rats 

exhibit progressive, age-related kidney injury with moderate hypertension. On a high-salt 

diet, Dahl S rats demonstrate progressive nephrotic range proteinuria and decline in kidney 

function with AngII-mediated hypertension (30,31). We administered AC1903 or a vehicle 

control to hypertensive Dahl S rats with salt loading (2% NaCl). First, we initiated injection 

of AC1903 (50 mg/kg twice daily i.p.) into 6-week-old Dahl S rats at the start of 2% NaCl 

diet (Onset, Fig. 4A). As expected, control rats developed severe and escalating proteinuria 

within a week of salt administration. By contrast, the rate of progressive proteinuria in 

AC1903-treated animals was significantly reduced (Fig. 4A). Next, we asked whether 

AC1903 could suppress progressive proteinuria in rats with more advanced disease. Here, 6-

week-old Dahl S rats received 2% NaCl for 1 week, leading to severe, progressive 

proteinuric disease (Advanced, Fig. 4B). AC1903 treatment was initiated on day 7, and 

animals were treated for 1 week until day 14 (2-week salt loading). Whereas progressive 

proteinuria continued to escalate in control rats, AC1903-treated rats had significant 

suppression of proteinuria (Fig. 4B) with preserved podocyte numbers (Fig. 4C). 

Morphometric analysis showed that the numbers of podocytes in AC1903-treated Dahl S rats 

was higher compared to vehicle-treated controls, and similar to the numbers of podocytes in 

WT and AC1903-treated AT1R Tg rats (~120 podocytes per glomerulus; Figs. 1E, 3F, and 

4C). AC1903 had no effect on body weight, blood urea nitrogen, or creatinine in Dahl S rats 

in these experiments (fig. S9, A to C). Notably, treatment with AC1903 did not affect the 

mean arterial pressure (MAP), suggesting that the therapeutic benefit is not related to 

changes in blood pressure but more likely is due to a protective effect on podocytes (Fig. 

4D).

Our animal data demonstrate that a specific TRPC5 small-molecule inhibitor administered at 

the time of severe, established proteinuria, but before creatinine is elevated, can rescue 

podocytes and attenuate the progression of morphologic and molecular changes that 

characterize FSGS (fig. S10). These findings provide a mechanistic rationale for 

therapeutically targeting TRPC5 channels, in contrast to earlier work, which had 

extrapolated from TRPC6 gain-of-function mutations to suggest a role for TRPC6 inhibition 

in acquired FSGS (32). Our real-time measurements of single-channel activity in isolated 

glomeruli show that increased TRPC5 activity is associated with proteinuric disease 

progression, whereas TRPC6 activity appears to be homeostatic. This is supported by the 

observation that (in addition to gain-of-function mutations) loss-of-function mutations in 

TRPC6 also lead to FSGS (33). Our early data with the hypertensive Dahl S rat model 

support a broader applicability of TRPC5 inhibition as a therapeutic strategy.

In the context of precision medicine, genomic sequencing efforts may help identify a patient 

population with mutations in genes that result in Rac1 activation for initial clinical studies. 

Although careful toxicology studies will be needed before taking TRPC5 inhibitors into the 

clinic, several lines of evidence are reassuring: Rats treated with TRPC5 inhibitor for up to 
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14 days show no detectable toxicity, and mice genetically lacking TRPC5 from birth show 

no gross abnormalities, except for an attenuated fear response due to a developmental defect 

in the amygdala (34). The promising preclinical results with TRPC5 inhibitors suggest that 

these drugs may form the basis of much-needed, mechanistically based therapies for 

progressive chronic kidney diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Escalating TRPC5 ion channel activity correlates with disease progression, and TRPC5 
inhibition rescues podocytes in AT1R Tg rats
(A) ML204 (1 μM) blocks TRPC5 single-channel activity induced by Riluzole (Rilu, 3 μM) 

in inside-out recordings from rat glomeruli isolated during early disease (Onset), as 

compared to barely detectable current in age-matched WT glomeruli (Onset). ML204 blocks 

a significantly greater Rilu-activated conductance in glomeruli from rats with established 

disease (Advanced), compared to minimal TRPC5 activity in age-matched WT glomeruli 

(Advanced). C, close state; O1, open channel level 1; O2, open channel level 2. Vm = −60 

mV. (B) Quantification of open channel probability (NPo) for the conductances recorded in 

(A). WT Rilu n = 4 and 5, WT Rilu + ML204 n = 4 and 5, AT1R Tg Rilu n = 4 and 5, AT1R 

Tg Rilu + ML204 n = 4 and 5 for Onset and Advanced groups, respectively. Mean ± SEM, 

*P < 0.05, **P < 0.01. (C) TRPC6 channel activity contributes to podocyte Ca2+ 

homeostasis. TRPC5 activity is coincident with onset of proteinuria and correlates with 
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FSGS disease progression. (D) Progressive proteinuria suppressed by twice-per-day i.p. 

administration of ML204 in the Advanced cohort of AT1R Tg rats treated for 14 days. AT1R 

Tg PBS n = 23, AT1R Tg ML204 n= 23. Mean ± SEM, *P < 0.05, **P < 0.01. (E) Rescue 

of podocyte numbers in vivo in ML204-treated AT1R Tg rats with established disease 

(Advanced). WT PBS n = 7, AT1R Tg PBS n = 8, AT1R Tg ML204 n = 8. Mean ± SEM, 

**P < 0.01.
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Fig. 2. AC1903, a specificTRPC5 small-molecule inhibitor, protects podocytes from ROS-
mediated injury
(A) Chemical structure of AC1903. (B) Selectivity of AC1903 (1 to 100 μM) for TRPC5 

over TRPC4 and TRPC6 in dose-response patch-clamp experiments in the whole-cell 

configuration. n > 3 for each dose. Mean ± SEM. (C) Equipotency between AC1903 and 

ML204 in dose-response patch-clamp experiments in the whole-cell configuration in 

response to Rilu (3 μM). ML204 n >3, AC1903 n > 3 for each dose Mean ± SEM. (D) ROS 

generation blocked by AC1903 (30 μM) in vitro in WT podocytes treated with AngII (10 

μM). DMSO, dimethyl sulfoxide; Veh, vehicle. DMSO + Veh n = 23, Ang II + Veh n = 23, 

Ang II + AC1903 n = 24, Ang II + NAC n = 24, each from three independent replicates. 

Mean ± SEM, ***P < 0.001. (E) ROS generation blocked by AC1903 (30 μM), ML204 (30 

μM), and NSC23677 (50 μM) in vitro in caAT1R-expressing podocytes. Veh n = 40 and 60; 

ML204 n = 40 and 60; AC1903 n = 40 and 60; NSC23677 n = 40 and 60, for control and 

caAT1R-expressing podocytes, respectively, each from four independent replicates. Mean ± 

SEM, **P < 0.01. (F) Podocyte cell death rescued by AC1903 (30 μM), ML204 (30 μM), 

and NSC23677 (50 μM). Control n = 24, Veh n = 24, ML204 n = 24, AC1903 n = 24, 

NSC23677 n = 12, each from four independent replicates. Mean ± SEM, *P < 0.05.
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Fig. 3. AC1903 suppresses proteinuric kidney disease progression and rescues podocytes in AT1R 
Tg rats with advanced disease
(A) AC1903 (50 mg/kg) ameliorates proteinuria in AT1R Tg rats with established, advanced 

disease. Veh n = 13, AC1903 n = 14. Mean ± SEM, ***P < 0.001. (B) AC1903 inhibition of 

TRPC5 channel activity in insideout recordings from advanced-disease AT1R rat glomeruli. 

(C) Quantification of open channel probability (NPo) for the conductances recorded in (B). 

Each n = 6. Mean ± SEM, *P < 0.05. (D) Toluidine blue semithin sections of rat kidneys. 

Red asterisks indicate pseudocysts. Bar, 50 μM. (E) Reduction of pseudocyst volume in 

AT1R Tg AC1903 rats compared to AT1R Tg vehicle rats. WT Veh n = 7, AT1R Tg Veh n = 

7, AT1R Tg AC1903 n = 7. Mean ± SEM, *P < 0.05, **P < 0.01. (F) Rescue of podocyte 

numbers in vivo in AC1903-treated AT1R Tg rats with established disease (Advanced). WT 

Veh n = 7, AT1R Tg Veh n = 7, AT1R Tg AC1903 n = 7, Advanced. Mean ± SEM, *P < 

0.05.
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Fig. 4. AC1903 suppresses proteinuric kidney disease progression and rescues podocytes in 
hypertensive Dahl S rats
(A) AC1903 (50 mg/kg) ameliorates proteinuria in Dahl S rats when administered at the 

same time as high salt intake (Onset). Veh n = 8, AC1903 n = 8. Mean ± SEM, ***P < 

0.001. (B) AC1903 (50 mg/kg) suppresses proteinuria in Dahl S rats with established, 

advanced disease (Advanced). Veh n = 9, AC1903 n = 14. Mean ± SEM, ***P < 0.001. (C) 

Rescue of podocyte numbers in vivo in AC1903-treated Dahl S rats with established disease 

(Advanced). Veh n = 9, AC1903 n = 14. Mean ± SEM, *P < 0.05. (D) Administration of 

AC1903 has no detectable effect on mean arterial pressure (MAP) of Dahl S rats. Veh n = 9, 

AC1903 n = 14. Mean ± SEM.

Zhou et al. Page 12

Science. Author manuscript; available in PMC 2018 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4

