Time Scale Decomposition: The Role of Scaling in Linear Systems and Transient States in Finite-State Markov Processes

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
77 Mass. Ave., Cambridge, MA. 02139

I. Introduction

In this paper we report on some of our recent work on time scale decomposition and aggregation of large-scale linear systems containing weak couplings and finite-state Markov processes (FSMP's) containing rare transitions. Our work builds on that of Coderch, et. al. [1,2]. The focus of the work in [1] is on the asymptotic approximation of the linear system:

\[\dot{x}(t) = A(\varepsilon)x(t). \]

(1.1)

To set the stage for our work, consider a second system:

\[\dot{x}(t) = B(\varepsilon)x(t). \]

(1.2)

We say that (1.2) is asymptotically equivalent to (1.1) if

\[\lim_{\varepsilon \to 0} \sup \| A(\varepsilon)t - B(\varepsilon)t \| = 0 \]

(1.3)

The focus of [1] is on the construction of a system as in (1.2) where

\[B(\varepsilon) = T \text{diag}(A_0, \varepsilon A_1, \ldots, \varepsilon^p A_p)T^{-1} \]

(1.4)

so that \(A_0 \) captures the order 1 time scale, \(\varepsilon A_1 \), the \(O(1/\varepsilon) \) scale, etc. What is accomplished in [1] is the development of a procedure which determines if such a complete time scale decomposition is possible and, if so, computes the \(A_i \). In our opinion, this is a very important result, but [1] left much to do, for example in "peeling back" the mathematics of [1] to allow us to obtain a far clearer and deeper understanding of time scale decompositions.

In [3] we presented some of our first results on an algebraic approach to the problem of time scale decomposition of (1.1) based on viewing \(A(\varepsilon) \) as a matrix over the ring \(\mathbb{W} \) of functions of \(\varepsilon \) that are analytic at \(\varepsilon = 0 \). This work allowed us to relate the general result of [1] to earlier work as in [4] on special cases for which the form of the time scale decomposition is intuitively clear.

Furthermore, by making clear the role of invariant factors in time scale decompositions, we were able to formulate and solve a "time scale control" problem. This algebraic approach also allows us to consider and solve several other important problems which we report on in Section II. In particular, we have been able to obtain a complete characterization of the relationship between the eigenvalues of \(A(\varepsilon) \), its invariant factors, and a condition introduced in [1] in a complicated way but to which we can now give a far clearer interpretation. This characterization is then used to develop a procedure for computing the invariant factors (and thus determining the number of modes at each time scale) from the gcd's of principal minors of \(A(\varepsilon) \), and a method for scaling the FSMP when it does not have a uniform time scale approximation to obtain a system that does.

The work in [2] applies the method of [1] to FSMP's with rare transitions (as parametrized by \(\varepsilon \)). In such a case \(x(t) \) in (1.1) is a vector of state probabilities and \(A(\varepsilon) \) is a stochastic matrix (offdiagonal elements \(\geq 0 \) and column sums \(\leq 0 \)). What is done in [2] is to interpret the results of [1] as defining a succession of stochastically discontinuous processes representing the evolution of \(x \) at successively slower time scales \((t, t/\varepsilon, \ldots) \) so that at each stage transitions that occur at a faster rate appear to occur instantaneously. This led naturally to an aggregation at each stage that had the effect of removing these discontinuous transitions. While this is an extremely important result, it does have some drawbacks. In particular, the direct application of the results of [1] involves a procedure whose probabilistic interpretation is, at best, obscure. Furthermore, the computational feasibility of this approach is dubious. This is in marked contrast to other work in this area, such as [8], in which an intuitively appealing approach to aggregation is described for the special class of models devoid of transient states at any time scale: to obtain an aggregate description of the FSMP at the slower time scale, we lump together the states in each separate ergodic class at the faster time scale \((t, \varepsilon = 0) \) and compute an average transition rate between these ergodic classes to be used to describe evolution at the slower time scale.

While the intuition provided in this method is desirable, the limitations of methods as in [8] are both the absence of proofs of uniform asymptotic equivalence of the approximations produced and their inability to handle transient states. In our recent work, described in Section III, we have been working to bridge the gap...
between the methods of [1] and [8]. In particular, we have developed an understanding of the role of transient states and, in particular, of what we call "splitting transient states." This understanding has allowed us to formulate an approach to aggregation and asymptotic approximation that in essence follows the procedure of [1] but does so by modifying the FSMP at each stage so that the computations involved are essentially those of the extension of the methods of [9] to allow for transient (but nonsplitting) states. The procedure we describe and illustrate in Section III is computationally feasible for the analysis of very complex systems.

II. Algebraic Methods for Time Scale Analysis

The perturbed matrix $A(t)$ from (1.1) can be expressed in the Smith-decomposed form $A(t) = P(t)D(t)Q(t)$, where $P(t)$ and $Q(t)$ are unimodular (i.e., $|P(0)| = 1$ and $|Q(0)| = 1$) and

$$D(t) = \begin{bmatrix} d_{11} & \cdots & d_{1n} \\ \vdots & \ddots & \vdots \\ d_{m1} & \cdots & d_{mn} \end{bmatrix}$$

with $d_{ij} = \delta_{ij}$, where δ_{ij} is the Kronecker delta.

The diagonal elements of $D(t)$ are the invariant factors of $A(t)$. Since $P(t)$ and $Q(t)$ are unimodular, the diagonal elements of $D(t)$ are the invariant factors of $A(t)$ and $D(t)A(t)$ are clustered in m groups, with those in the k-th group lying between $0 < d_{k1} < \ldots < d_{km}$.

The diagonal elements of $D(t)$ are the invariant factors of $A(t)$. Since $P(t)$ and $Q(t)$ are unimodular, the diagonal elements of $D(t)$ are the invariant factors of $A(t)$ and $D(t)A(t)$ are clustered in m groups, with those in the k-th group lying between $0 < d_{k1} < \ldots < d_{km}$.

What we term a reduced explicit form for (1.1) is then obtained by replacing the unimodular matrix $A(t) = Q(t)F(t)$ by the constant matrix $A(0) = Q(0)F(0)$, which we shall from now on simply denote by A. To form the explicit form:

$$z(t) = D(t)Q(t)F(t)z(t) = D(t)A(t)z(t),$$

where $A(t)$ is unimodular.

(2.1)

The partitioning in (2.2) is that induced by the block sizes in $D(t)$.

A key role in our theorems is played by a set of matrices derived from A in (2.2). To obtain this set, we first write

$$A = \begin{bmatrix} A(1) \\ A(2) \end{bmatrix}$$

and denote the Schur complement of $A(1)$ in $A(2)$ and A_1 denote the $n_1 \times n_1$ leading principal submatrix of this Schur complement, so that

$$A_{22} = A_{22} - A_{21}A_1^{-1}A_{12}.$$ (2.3b)

Thus A_{22} is defined iff A_{11} is nonsingular. Continuing this, we define $A_i = A_{11}^{-1}$, $i = 1$ to m, as the $n_i \times n_i$ leading principal submatrix of the i-th Schur complement, A_i, of A_{11}, of A_{12}, $i = 1$, again, it is defined iff A_{11}^{-1} is nonsingular.

A. Connections to Results of [1,5]

It was shown in [5] that the necessary and sufficient condition for (1.1) to have a complete time-scale decomposition is that $A(t)$ satisfy a so-called "multiple semi-stability" (MSSST) condition. Another condition on $A(t)$ that will be of considerable interest to users, though it plays only a subsidiary role in [5] and [11], is the multiple semi-simple null structure" (MSSNS) condition.

The proofs of all the results that follow are in (or may be readily deduced from) [5,6]

Theorem 1: The following are equivalent:

(a) $A(t)$ in (1.1) satisfies the MSSNS condition of [1].

(b) The orders of the eigenvalues of $A(t)$ are identical to the orders of its invariant factors.

(c) $\Pi(t)A$ in (2.2) satisfies MSSNS.

(d) A_{ii}, $i = 1$ to m, are defined and nonsingular.

Although our focus here is on MSSNS, we note that the statements in Theorem 1 have analogs valid for MSSST. If we replace MSSNS by MSSST and replace nonsingular by Hurwitz in 1d, then the following implications hold:

(a) \iff (c)\iff (d).

Theorem 2: If $A(t)$ satisfies MSSNS, the eigenvalues of $A(t)$ and $D(t)A(t)$ are clustered in m groups, with those in the k-th group lying between $0 < d_{k1} < \ldots < d_{km}$.

It is evident from Theorem 1(b) and Theorem 2 that the MSSNS condition is of value in frequency-scale approximation, a topic traditionally studied in the context of root loci, see for example [7]. The Bode frequency scales are equal to its invariant factors precisely under the MSSNS condition, which is directly checked via Theorem 1(d). The eigenvalues of $A(t)$ at the different frequency scales are then approximated, according to Theorem 2, via the A_{ii}.

In general, the invariant factors of $A(t)$ are obtained from the gcd $g(t)$ of all i-th minors for each i, where the eigenvalues of $A(t)$ are determined solely by its principal minors. By (b) of Theorem 1, it must be true that, when $A(t)$ satisfies MSSNP, the invariant factors are also determined by the principal minors alone -- in fact, by the gcd's of the i-th principal minors for each i, as described in the next theorem. For the statement of the theorem, denote the orders of the i-th principal minors by $p(i)$, $i = 1$ to n, and define $p(0) = 0$.

Now let $b(i)$ be the slopes of the line segments forming the lower (boundary of the convex) hull in the graph of $p(i)$ versus i.

Theorem 3: (a) If $A(t)$ satisfies MSSNS, then the orders of its invariant factors are equal to $b(i)$, $i = 1$ to n.

(b) If $A(t)$ has invariant factor orders equal to the $b(i)$ of the explicit form, then $A(t)$ satisfies MSSNS.

Such "Newton polygon" constructions are to be expected in the context of the present problem. Cf. [7]. However, we have not encountered a statement as simple as that of the above theorem in the literature. The result will be useful in the discussion of scaling (II.B). Another use is illustrated in example 1.

Example 1: Suppose $n = 4$, and suppose $p(1) = 3$, $p(2) = 2$, $p(3) = 1$, and $p(4) = 0$. Then Figure 2.1 shows that the $b(i)$ are $3/2, 2/3, 2/3$ and 1. Since invariant factors of $A(t)$ cannot be of fractional order, the only possible conclusion is that $A(t)$ does not satisfy MSSNS.
B. Scaling

A matrix $A(c)$ that does not satisfy MSSNS -- and that therefore has eigenvalue orders different from invariant factor orders, see Theorem 1(b) -- can often be transformed by non-unimodular similarity transformations to a matrix that does satisfy MSSNS. An important reason for trying to induce MSSNS like this is to enable the application of decomposition results such as Theorem 2 to estimating the natural frequencies of (1.1).

We restrict ourselves to c-dependent scaling of variables, i.e. to non-unimodular diagonal similarity transformations. This enables us to build directly on Theorem 1(b), because such transformations leave both eigenvalues and principal minors unchanged, while they still permit some modification of invariant factors. Before stating the procedure in a general way, we consider an example.

Example 2:

Let $A(c) = \begin{bmatrix} c & 1 & 0 \\ 0 & c & 1 \\ 0 & 0 & c \end{bmatrix}$. The explicit form and reduced explicit form of $A(c)$ (from $n-1$ to n) are then

$$A_e(c) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & c \end{bmatrix}$$

Since $A_{11} = 0$, it is evident from Theorem 1(d) that $A(c)$ does not satisfy MSSNS. If we let $S(c) = \text{diagonal} [1,1,1]$, and transform the explicit form to $A(c) = S(c)D(c)A(c)S^{-1}(c)$ the resulting matrix satisfies both MSSNS and NSST. Below, we outline a systematic approach for generating appropriate scaling matrices $S(c)$.

The first step of our general scaling procedure, again driven by Theorem 3(b), is to transform $A(c)$ to its explicit form, $A_e(c) = D(c)A(c)$, see (2.1). The second step then involves marking what we term a skeleton in the explicit form: precisely one element from each row and column of $A_e(c)$, with the additional constraint that no other element in a row have lower order (in c) than the skeleton element. Since $A(O)$ is nonsingular, the skeleton element in the i-th row has order equal to the order of the i-th entry of $D(c)$. (The choice of skeleton may not be unique, but see Remark 1 below.)

Now identify the skeleton above with the $n \times n$ permutation matrix that has 1's at the locations of the skeleton elements and 0's elsewhere. Recall that any permutation can be uniquely expressed as a product of disjoint cycles. It follows that, after some re-ordering of the variables associated with our system, the elements of the skeleton can be brought to the positions occupied by 1's in a block diagonal canonical circulant matrix, whose diagonal blocks take the form:

$$A_e(c) = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & \cdots & 0 \end{bmatrix}$$

We shall restrict ourselves here to the case of only a single block: the extension of the following results to the multiple block case is described in [6]. Note that the required re-ordering of variables corresponds to using a permutation matrix for similarity transformation of the explicit form, and the result is still in explicit form. This re-ordering of variables is the third step of our procedure.

The following description now takes $A(c)$ to have a skeleton corresponding to a single canonical circulant block. We denote the order of the skeleton element in the i-th row by $a(i)$ -- note that these are just the orders of the invariant factors. We make three further assumptions. The first of these is that the orders of the diagonal entries in the matrix are in non-decreasing order; this assumption is also lifted in [6]. We have, however, been unable to relax the remaining two assumptions:

Assumption 1:

$b(i) > a(j)$ for $i,j = 1$ to $n-1$. To visualize what the assumption states, plot both $p(i)$ and $q(i)$ versus i, as in Figure 2.2. Then the slopes of the (solid) line segments making up the lower hull of the $p(i)$ curve are assumed to be not less than the slopes of those making up the $q(i)$ curve (the dotted lines), except at the last step (from $n-1$ to n).

Assumption 2:

In any principal submatrix of $A(c)$, the order of any term formed by taking the product of precisely one element from every row and column of the submatrix is not less than the order of the corresponding principal minor.

With all the above assumptions, the following scaling can be shown to transform the matrix to one that satisfies MSSNS:

$$S(c) = \text{diagonal} [s_1, s_2, \ldots, s_{n-1}, 1], \text{ or equivalent}$$

where

$$v_i = s_{i-1} + b(i) - a(i), \quad s_n = 0.$$

The arguments, even for the special case we are considering, are rather intricate, and are presented in [6]. They show that, under Assumptions 1 and 2, the above scaling produces invariant factor orders equal to $b(i)$.

The following example illustrates the process.

Example 3:

Suppose

$$A(c) = \begin{bmatrix} c^3 & c^4 & c^5 \\ c & c & c \\ c & c & c \end{bmatrix}, \text{ where the circled elements constitute a skeleton.}$$

It is easy to see that $A(c)$ is already in explicit form. Similarity transformation by a permutation matrix, corresponding to a re-ordering of variables, brings it to the form

$$A_e(c) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & c \end{bmatrix}.$$

It is evident that $a(1)=1, a(2)=1, a(3)=0, a(4)=6$, while some computation shows that $b(1)=2$ for $i=1$ to 4. This information can be visualized via Figure 2.3. From (2.5b) we have $s_2=2, s_3=3$ and $s_4=4$. Similarity transformation of $A(c)$ by $S(c)$ defined in (2.5a), we get the matrix.
We conjecture is a good bit stronger. Specifically we claim that $A(0)$ and $P(0)BP(0)$ together provide a uniform approximation to the original FSM that is that $A(0) = A + cB$ can be replaced by $A(0) = A + cP(0)BP(0)$. Note that in this approach all that is required is $P(0)$, which is nothing more than the ergodic projection matrix associated with $A(0) = A$. An example illustrating this is shown in Figure 3.1. The original process is shown in (a), for this process.

$$P(0) = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 0 & 2/3 & 1/3 & 0 \\ 0 & 1/3 & 1/3 & 0 \end{bmatrix}$$ (3.2)

The process corresponding to $\hat{A}(0)$ is shown in (b). While this process may appear to be more complex, what we have in fact done is to maintain the equilibrium of the fast dynamics after rare transition. Further, since A and $P(0)BP(0)$ commute

$$\hat{A}(0)t = e^{At}P(0)BP(0)t \quad (3.3)$$

As in [2], we can write $P(0)$ as

$$P(0) = \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 2/3 & 1/3 & 1/3 \end{bmatrix}$$ (3.4)

where the columns of U represent the two possible ergodic probability vectors of A, and V lumps the states in each ergodic class.

Combining (3.3) and (3.4) we have that

$$\hat{A}(0)t = e^{At}Ue^{B't}tv \quad (3.5)$$

where

$$S' = VBU = \begin{bmatrix} -1/2 & 0 \\ 1/2 & 0 \end{bmatrix}$$ (3.6)

Figure 3.1(c) provides the interpretation of (3.5): the matrix S' describes the evolution of the slow aggregated process, while the matrix A specifies the faster evolution within either of the two aggregate classes.

This procedure can be extended in a straightforward fashion to systems exhibiting multiple time scales when there are no transient states at the first time scale. In such cases the generator $\hat{A}'(0) = A = cB(0)$ where A generates no transient states. In this case, we again conjecture that $A'(0)$ and $\hat{A}'(0)BP(0)P(0)$ are asymptotically equivalent. One can then proceed as in the example to aggregate $S'(0)$: one may then repeat this procedure several times as in the procedures of [2] and [9].

A natural question that arises at this point concerns the role and effect of transient states. This topic is taken up in the next subsection.

Transient States

Though indecomposable structure of $A(0)$ is a sufficient condition for using the simplified procedure described above, a less restrictive condition is available. In particular, we can allow $A(0)$ to possess "non-splitting transient states," i.e. transient states that may have $0(t)$ transitions
into more than one A(0)-ergodic class but do not have direct transitions into other such classes with states of any higher order. If such splitting transient rates are present, then the FSMP may exhibit implicit time scales that can't be captured directly by our simplified procedure. As an example, consider the FSMP shown in Figure 3.2. Though this chain has only linear perturbation terms, the eigenvalues are 0, 0(1), and 0(£'). The generator P(O)A(0)P(O) = 0, obviously does not capture the t/c rate time scale behavior. An intuitive explanation of this is that using this reduction process implicitly assumes that the "fast" components equilibrate between rare O(£') rate transitions. In this example, the t/c behavior is split between two or three transitions (state 1 to 2 followed by 2 to 3). Beginning in state 2, there is an O(1) probability of entering state 1 and an O(£') probability of entering 3. Effectively, this O(£') probability is lost in the reduction procedure.

Transient states which do not exhibit such O(£') probability of entering various recurrent classes do not cause this problem. Consider the related FSMP shown in Figure 3.3. Both states 2a and 2b are transient at £=0, but neither of them splits as state 2 does in the previous example. The O(£') rate is explicit and P(O)A(£)P(O) successfully captures the t/c behavior. This chain is derived from the first by "splitting" the transient state 2 into the nonsplitting transient states 2a and 2b, depending on the first recurrent class entered. If we imagine having an observation mechanism for this process that the yields the value 1 or 3 if the FSMP is in state 1 or 3 respectively and the value 2 if the FSMP is in 2a or 2b, then the transition rates between these observation values are exactly those given in Figure 3.2. An approximation of the process shown in Figure 3.3 can then be used to construct an approximation of the original process.

C. The General Procedure

An interactive procedure can be derived to construct a sequence of aggregate perturbed generators such successive time scale. The steps involved in computing B'(£) from A(£) consist of (i) identifying the recurrent classes and transient states at £=0, (ii) calculating the invariant probabilities of the recurrent classes at £=0 (together (i) and (ii) determine P(0)), (iii) calculating the £-dependence of the trapping probabilities starting in any state of the transient class (so that we may split any splitting transient class), and finally (iv) computing the aggregate rates B'(£) from these quantities. From A(0), B'(0), etc., an approximation can be calculated which we conjecture is the same uniform approximation derived in [2]. This procedure can further be simplified by identifying modifications of a perturbed chain which preserve its time scale behavior. For example, it is conjectured that only the leading order term in £ of any transition rate affects asymptotic behavior. Also, if there is an indirect sequence of O(1) rate transitions from one state to another, then any direct O(£') rate between these states can be safely "pruned."

Though the reduction algorithm as outlined above has produced the same uniform approximation as the methods of [2] and [9] in all the examples we have considered, the proof that this is necessarily true has not yet been established. Explicitly, two fundamental conjectures form the basis of the result.

1) A(£)=A(0)+£B(£) : Markov generator with A(0)

irreducible

\[P(£)P(0)=P(0)B(£)P(0) \]

\[\lim_{\varepsilon \to 0} \sup \| \exp(A(\varepsilon)t) - \exp(F(\varepsilon)t) \| = 0 \]

\[\lim_{\varepsilon \to 0} \sup \| \exp(A(\varepsilon)t) - \exp(A(0)t) \exp(B(\varepsilon)t) \| = 0 \]

2) Conjecture 1 is also true if A(0) has no splitting transient states, that is under the following condition. Let \(T \) denote the set of recurrent states of A(0) and let \(R_1, \ldots, R_m \) denote its ergodic classes. Let \(\varphi(t) \) denote the sample path of the FSMP (with \(\varepsilon \) included). Then for all \(x_{0:T} \) and all \(i=1, \ldots, m \)

\[\Pr(\varphi(t) \in R_i | t < \inf(t : (t:t=T) \in \varphi)) = 0 \text{ or } 1 \]

Proving this second result allows us to consider arbitrary generators A(£) by conceptually splitting the transient class T into m copies, \(T_1, \ldots, T_m \), associated with the classes \(R_1, \ldots, R_m \).

REFERENCES

FIGURES

Figure 2.1

Figure 2.2

Figure 2.3