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Abstract

Gasper & Rahman’s multivariate q-Racah polynomials are shown to arise as connection coefficients 
between families of multivariate q-Hahn or q-Jacobi polynomials. The families of q-Hahn polynomials 
are constructed as nested Clebsch–Gordan coefficients for the positive-discrete series representations of the 
quantum algebra suq(1, 1). This gives an interpretation of the multivariate q-Racah polynomials in terms of 
3nj symbols. It is shown that the families of q-Hahn polynomials also arise in wavefunctions of q-deformed 
quantum Calogero–Gaudin superintegrable systems.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

0. Introduction

This paper shows that Gasper & Rahman’s multivariate q-Racah polynomials arise as the 
connection coefficients between two families of multivariate q-Hahn or q-Jacobi polynomials. 
The two families of q-Hahn polynomials are constructed as nested Clebsch–Gordan coefficients 
for the positive-discrete series representations of the quantum algebra suq(1, 1). This result gives 
an algebraic interpretation of the multivariate q-Racah polynomials as recoupling coefficients, or 
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3nj -symbols, of suq(1, 1). It is also shown that the families of q-Hahn polynomials arise in 
wavefunctions of q-deformed quantum Calogero–Gaudin superintegrable systems of arbitrary 
dimension.

The multivariate q-Racah polynomials considered in this paper were originally introduced 
by Gasper and Rahman in [7] as q-analogs of the multivariate Racah polynomials defined by 
Tratnik in [34,35]. These q-Racah polynomials sit at the top of a hierarchy of orthogonal polyno-
mials that extends the Askey scheme of (univariate) q-orthogonal polynomials; Tratnik’s Racah 
polynomials and their descendants similarly generalize the Askey scheme at q = 1. These two 
hierarchies will be referred to as the Gasper–Rahman and Tratnik schemes, respectively. The 
Gasper–Rahman scheme of multivariate q-orthogonal polynomials should be distinguished from 
the other multivariate extension of the Askey scheme based on root systems, which includes the 
Macdonald–Koornwinder polynomials [25] and the q-Racah polynomials defined by van Diejen 
and Stokman [36].

Like the families of univariate polynomials from the Askey scheme, the polynomials of the 
Gasper–Rahman and the Tratnik schemes are bispectral. Indeed, as shown by Iliev in [17], and 
by Geronimo and Iliev in [14], these polynomials simultaneously diagonalize a pair of commu-
tative algebras of operators that act on the degrees and on the variables of the polynomials, 
respectively. The bispectral property is a key element in the link between these families of 
polynomials, superintegrable systems, recoupling of algebra representations, and connection co-
efficients of multivariate orthogonal polynomials. Recall that a quantum system with d degrees 
of freedom governed by a Hamiltonian H is deemed maximally superintegrable if it admits 
2d − 1 algebraically independent symmetry operators, including H itself, that commute with the 
Hamiltonian [26].

For the univariate Racah polynomials, one has the following picture [11]. First, upon consid-
ering the 3-fold tensor product representations of su(1, 1), one finds that the two intermediate 
Casimir operators associated to adjacent pairs of representations in the tensor product satisfy the 
(rank one) Racah algebra, which is also the algebra generated by the two operators involved in 
the bispectral property of the univariate Racah polynomials. This leads to the identification of 
the Racah polynomials as 6j (or Racah) coefficients of su(1, 1), which are the transition co-
efficients between the two eigenbases corresponding to the diagonalization of the intermediate 
Casimir operators. Second, if one chooses the three representations being tensored to belong to 
the positive-discrete series, the total Casimir operator for the 3-fold tensor product representa-
tion can be identified with the Hamiltonian of the so-called generic superintegrable system on 
the 2-sphere, and the intermediate Casimir operators correspond to its symmetries. Finally, one 
obtains the interpretation of the univariate Racah polynomials as connection coefficients between 
two families of 2-variable Jacobi polynomials that arise as wavefunctions of the superintegrable 
Hamiltonian. For a review of the connection between the Askey scheme and superintegrable sys-
tems, see [21]. For a review of the approach just described, the reader can also consult [10,12].

The picture described above involving the one-variable Racah polynomials has recently been 
fully generalized to Tratnik’s multivariate Racah polynomials. In [20], Iliev and Xu have shown 
that these polynomials arise as connection coefficients between bases of multivariate Jacobi poly-
nomials on the simplex [5] and used this to compute connection coefficients for families of 
discrete classical orthogonal polynomials studied in [19], as well as for orthogonal polynomials 
on balls and spheres. In [18], Iliev has established the connection between the bispectral oper-
ators for the multivariate Racah polynomials and the symmetries of the generic superintegrable 
system on the d-sphere. In [2], De Bie, Genest, van de Vijver and Vinet have unveiled the re-
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lationship between this superintegrable model, d-fold tensor product representations of su(1, 1)

and the higher rank Racah algebra. See also [8,29,30].
Many of these results have yet to be extended to the q-deformed case. The interpretation of 

the univariate q-Racah polynomials as 6j coefficients for the quantum algebra suq(1, 1) is well 
known [37], as is its relation with the Zhedanov algebra and the operators involved in the bispec-
trality of the one-variable q-Racah polynomials [16,38]. Dunkl has also shown in [4] that these 
polynomials arise as connection coefficients between bases of two-variable q-Jacobi or q-Hahn 
polynomials. On the multivariate side, Rosengren has observed that q-Hahn polynomials arise by 
considering nested Clebsch–Gordan coefficients for suq(1, 1) and derived some explicit formu-
las [31]. Moreover, Scarabotti has examined similar families of multivariate q-Hahn polynomials 
associated to binary trees and their connection coefficients [32].

Nevertheless, the identification of the multivariate q-Racah polynomials as 3nj coefficients 
of the quantum algebra suq(1, 1) has not been achieved. Moreover, the connection between 
q-Racah polynomials, both univariate and multivariate, and superintegrable systems remains to 
be determined. The present paper addresses these questions. As stated above, it will be shown that 
Gasper & Rahman’s multivariate q-Racah polynomials arise as connection coefficients between 
bases of multivariate orthogonal q-Hahn or q-Jacobi polynomials. The bases will be constructed 
using the nested Clebsch–Gordan coefficients for multifold tensor product representations of 
suq(1, 1), which will provide the exact interpretation of the multivariate q-Racah polynomials 
in terms of coupling coefficients for that quantum algebra. Finally, we will indicate how these 
bases also serve as eigenbases for q-deformed Calogero–Gaudin superintegrable systems.

The paper is organized as follows. In Section 1, background material on suq(1, 1) and its 
positive-discrete representations is provided. In Section 2, the generalized Clebsch–Gordan prob-
lem of suq(1, 1) is considered. The bases of multivariate q-Hahn polynomials are introduced and 
their bispectrality is related to commutative subalgebras of suq(1, 1)⊗d . In Section 3, it is shown 
that the multivariate q-Racah polynomials arise as connecting coefficients between these bases. 
The proof of the one variable case relies on a new generating function argument. In Section 4, 
the connection with superintegrability is established. We conclude with an outlook.

1. Basics of suq(1, 1)

This section provides the necessary background material on the quantum algebra suq(1, 1). 
In particular, the coproduct and the intermediate Casimir operators are introduced, and the rep-
resentations of the positive-discrete series are defined.

1.1. suq(1, 1), tensor products and Casimir operators

Let q be a real number such that 0 < q < 1. The quantum algebra suq(1, 1) has three genera-
tors A0, A± that satisfy the defining relations

A−A+ − qA+A− = q2A0 − 1

q1/2 − q−1/2 , [A0,A±] = ±A±, (1)

where [A, B] = AB − BA. Upon taking Ã+ = A+q−A0/2, Ã− = q−A0/2A− and Ã0 = A0, one 
recovers the defining relations of suq(1, 1) in their usual presentation, that is

[Ã−, Ã+] = qÃ0 − q−Ã0

q1/2 − q−1/2 , [Ã0, Ã±] = ±Ã±.
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The Casimir operator �, which commutes with all generators, has the expression

� = q−1/2qA0 + q1/2q−A0

(q1/2 − q−1/2)2 − A+A−q1−A0 . (2)

The coproduct map � : suq(1, 1) → suq(1, 1) ⊗ suq(1, 1) is defined as

�(A0) = A0 ⊗ 1 + 1 ⊗ A0, �(A±) = A± ⊗ 1 + qA0 ⊗ A±.

The coproduct � can be iterated to obtain embeddings of suq(1, 1) into higher tensor powers. 
For a positive integer d , let �(d) : suq(1, 1) → suq(1, 1)⊗d be defined by

�(d) = (1⊗(d−2) ⊗ �) ◦ �(d−1), �(1) = Id, (3)

where Id stands for the identity; one has �(2) = �.
For 1 ≤ i < j ≤ d , let [i; j ] denote the set {i, i + 1, . . . , j}. To each set [i; j ], one can as-

sociate a realization of suq(1, 1) within suq(1, 1)⊗d . Denoting by A(k)
0 , A(k)

± the generators of 
the kth factor of suq(1, 1) in suq(1, 1)⊗d , the realization associated to the set S = [i; j ] has for 
generators

AS
0 =

j∑
k=i

A
(k)
0 , AS± =

j∑
k=i

q
∑k−1

�=i A
(�)
0 A

(k)
± . (4)

To each set S = [i; j ], one can thus associate an intermediate Casimir operator �S defined as

�S = q−1/2qAS
0 + q1/2q−AS

0

(q1/2 − q−1/2)2 − AS+AS−q1−AS
0 . (5)

For a given value of d , the Casimir operator �[1;d] will be referred to as the full Casimir operator.

1.2. Representations of the positive-discrete series

Let α > 0 be a positive real number and let V (α) be an infinite-dimensional vector space with 
orthonormal basis e(α)

n , where n is a non-negative integer. The space V (α) supports an irreducible 
representation of suq(1, 1) defined by the actions

A0e
(α)
n = (n + (α + 1)/2)e(α)

n , A+e(α)
n =

√
σ

(α)
n+1e

(α)
n+1, A−e(α)

n =
√

σ
(α)
n e

(α)
n−1, (6)

with 〈ei, ej 〉 = δij and where σn is given by

σ (α)
n = q1/2 (1 − qn)(1 − qn+α)

(1 − q)2 . (7)

Note that σ (α)
0 = 0 and that when 0 < q < 1, one has σ (α)

n > 0 for n ≥ 1. It follows that A†
± = A∓, 

A
†
0 = A0 as well as �† = � on V (α). The suq(1, 1)-modules V (α) belong to the positive-discrete 

series. On V (α), the Casimir operator (2) acts as a multiple of the identity. Indeed, one easily 
verifies using (2) and (6) that

�e(α)
n = γ (α) e(α)

n , γ (α) = qα/2 + q−α/2

(q1/2 − q−1/2)2 . (8)
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With the help of the nested coproduct defined in (3), one can define tensor product representations 
of suq(1, 1). Let α = (α1, α2, . . . , αd) with αi > 0 be a d-dimensional multi-index and let W(α)

be the d-fold tensor product

W(α) = V (α1) ⊗ · · · ⊗ V (αd). (9)

As per (4), the space W(α) supports a representation of suq(1, 1) realized with the generators 
A

[1;d]
0 , A[1;d]

± . The space has a basis e(α)
y defined by

e(α)
y = e(α1)

y1
⊗ · · · ⊗ e(αd)

yd
, 〈e(α)

y , e
(α)

y′ 〉 = δyy′ , (10)

where y = (y1, . . . , yd) is a multi-index of non-negative integers. The action of the generators 
A

[1;d]
0 , A[1;d]

± on the basis vectors (10) is easily obtained by combining (4) and (6). As a represen-
tation space, W(α) is reducible and has the following decomposition in irreducible components:

W(α) =
∞⊕

k=0

mkV
(2k+Ad+d−1), Ak =

k∑
i=1

αi, mk =
(

k + d − 2

k

)
. (11)

When d = 2, a detailed proof of the decomposition (11) can be found in [33], see Theorem 2.1. 
The proof in arbitrary dimension follows easily by induction on d , using the identity

s∑
k=0

(
k + a

k

)
=

(
s + a + 1

s

)
.

It follows from (11) that the total Casimir operator �[1;d] defined by (5) is diagonalizable 
on W(α). Its eigenvalues λ[1;d]

k are given by

λ
[1;d]
k = γ (2k + Ad + d − 1), k = 0,1,2, . . . ,

where γ (α) is given by (8); these eigenvalues have multiplicity mk .

2. Multivariate q-Hahn bases and the Clebsch–Gordan problem

In this section, two orthogonal bases of multivariate q-Hahn polynomials are constructed in 
the framework of the generalized Clebsch–Gordan problem for suq(1, 1). The connection be-
tween the standard Clebsch–Gordan problem involving two-fold tensor product representations 
and the one-variable q-Hahn polynomials is first reviewed, and then generalized to the multifold 
tensor product case. Two related bases of multivariate q-Jacobi polynomials are also introduced 
through a limit.

2.1. Univariate q-Hahn polynomials and Clebsch–Gordan coefficients

We first consider the d = 2 case where W(α1,α2) = V (α1)⊗V (α2). In addition to the direct prod-
uct basis (10), the space W(α1,α2) admits another basis which is associated to its multiplicity-free 
decomposition (11) in irreducible components. These basis elements f (α1,α2)

n1,n2 are defined by the 
eigenvalue equations

�[1;2]f (α1,α2)
n1,n2

= γ (2n1 + A2 + 1)f (α1,α2)
n1,n2

, qA
[1;2]
0 f (α1,α2)

n1,n2
= qn1+n2+(A2+2)/2f (α1,α2)

n1,n2
,

with n1, n2 non-negative integers and where A2 = α1 + α2.
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Remark 1. In the expansion V (α1,α2) = ⊕∞
k=0 V (2k+α1+α2+1), the “coupled” basis vector 

f
(α1,α2)
n1,n2 corresponds to e(2n1+α1+α2+1)

n2 ∈ V (2n1+α1+α2+1).

The Clebsch–Gordan coefficients are the (real) expansion coefficients between the coupled 
basis f (α1,α2)

n1,n2 defined above and the direct product basis e(α1,α2)
y1,y2 = e

(α1)
y1 ⊗ e

(α2)
y2 . One has

f (α1,α2)
n1,n2

=
∑
y1,y2

C(α1,α2)
n1,n2

(y1, y2) e(α1,α2)
y1,y2

, e(α1,α2)
y1,y2

=
∑
n1,n2

C(α1,α2)
n1,n2

(y1, y2) f (α1,α2)
n1,n2

,

(12)

where C(α1,α2)
n1,n2 (y1, y2) = 〈f (α1,α2)

n1,n2 , e(α1,α2)
y1,y2 〉 = 〈e(α1,α2)

y1,y2 , f (α1,α2)
n1,n2 〉 are the Clebsch–Gordan coeffi-

cients. These coefficients vanish unless n1 +n2 = y1 +y2. They enjoy the explicit expression [37]

C(α1,α2)
n1,n2

(y1, y2) = δn1+n2,y1+y2 ĥn1(y1, α1, α2, y1 + y2;q), (13)

where ̂hn(x, α, β, N; q) are the orthonormal q-Hahn polynomials multiplied by the square root 
of their weight function. One has

ĥn(x,α,β,N;q) =
√

ω(x;α,β,N;q)

η(n,α,β,N;q)
hn(x,α,β,N;q), (14)

with hn(x, α, β, N; q) the q-Hahn polynomials [23]

hn(x,α,β,N;q) = (qα+1;q)n(q
−N ;q)n 3φ2

(
q−n, qn+α+β+1, q−x

qα+1, q−N
;q, q

)
, (15)

where (a; q)n is the q-Pochhammer symbol

(a;q)n = (1 − a)(1 − aq) · · · (1 − aqn−1), (a;q)0 = 1,

for n a non-negative integer, and where rφs is the basic hypergeometric series [6]

rφs

(
a1, . . . , ar

b1, . . . , bs

;q, z

)
=

∞∑
k=0

(a1;q)k · · · (ar ;q)k

(q;q)k(b1;q)k · · · (bs;q)k

[
(−1)kq

(k
2

)]1+s−r

zk.

The weight function ω(x; α, β, N; q) and the normalization coefficient η(n, α, β, N; q) have the 
expressions

ω(x;α,β,N;q) = (qα+1;q)x(q
β+1;q)N−x

(q;q)x(q;q)N−x

q(N−x)(α+1),

and

η(n,α,β,N;q) = (qα+β+2;q)n+N

(q;q)N−n

q2
(n

2

)−2Nn

× 1 − qα+β+1

1 − q2n+α+β+1

(q;q)n(q
α+1;q)n(q

β+1;q)n

(qα+β+1;q)n
qn(α+1).

The q-Hahn functions ̂hn(x, α, β, N; q) satisfy the orthogonality relation

N∑
x=0

ĥn(x,α,β,N;q)̂hn′(x,α,β,N;q) = δnn′ . (16)
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The coefficients C(α1,α2)
n1,n2 (y1, y2) satisfy the orthogonality relations∑

y1,y2

C(α1,α2)
n1,n2

(y1, y2)C
(α1,α2)

n′
1,n

′
2

(y1, y2) = δn1n
′
1
δn2n

′
2
,

∑
n1,n2

C(α1,α2)
n1,n2

(y1, y2)C(α1,α2)
n1,n2

(y′
1, y

′
2) = δy1y

′
1
δy2y

′
2
.

(17)

If we define the shift operators T ±
yi

f (yi) = f (yi ± 1), then using (6) we see that the generators 
of each copy of suq(1, 1) will be represented by the following operators

qA
(i)
0 �→ qyi+(αi+1)/2, A

(i)
+ �→

√
σ

(αi)
yi+1T

+
yi

, A
(i)
− �→

√
σ

(αi)
yi

T −
yi

. (18)

In particular, per (5), the Casimir �[1;2] is identified with the operator

�[1;2] �→
(
γ (α1)q

−(y2+(α2+1)/2) + γ (α2)q
y1+(α1+1)/2

−
(

q1/2 + q−1/2

(q1/2 − q−1/2)2

)
qy1−y2+(α1−α2)/2

)
− q−(y2+(α2−1)/2)

√
σ

(α1)
y1+1σ

(α2)
y2 T +

y1
T −

y2
− q−(y2+(α2+1)/2)

√
σ

(α1)
y1 σ

(α2)
y2+1T

−
y1

T +
y2

.

By construction, this operator acts in a diagonal fashion on the functions C(α1,α2)
n1,n2 (y1, y2) with 

eigenvalues γ (2n1 + A2 + 1).

Remark 2. Let us note that the functions C(α1,α2)
n1,n2 (y1, y2) are bispectral. Indeed, if we consider y

and n such that

y1 + y2 = n1 + n2 = N,

then in view of (13), we can think of C(α1,α2)
n1,n2 (y1, y2) as an orthonormal q-Hahn polynomial of 

the variable y1, with index n1, multiplied by the square root of the weight. In addition to the 
spectral equation in y1 stemming from the realization (18), they obey also a recurrence relation 
in the index n1. This property, which is well known (see [23, Section 14.6]), can be derived 
explicitly in the present context by considering the matrix element

〈qA
(1)
0 f (α1,α2)

n1,n2
, e(α1,α2)

y1,y2
〉 = 〈f (α1,α2)

n1,n2
, qA

(1)
0 e(α1,α2)

y1,y2
〉 = qy1+(α1+1)/2C(α1,α2)

n1,n2
(y1, y2),

and by computing the action of qA
(1)
0 on f (α1,α2)

n1,n2 .

2.2. Nested Clebsch–Gordan coefficients and q-Hahn bases

We now consider the general d-fold tensor product representation W(α) defined in (9), and its 
decomposition in irreducible components (11). Since there are multiplicities in the decomposi-
tion, the eigenvalue problem for the total Casimir operator �[1;d] is degenerate. In the following, 
we will construct two bases associated to the diagonalization of two different sequences of inter-
mediate Casimir operators.
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2.2.1. First basis
Consider the following sequence of intermediate Casimir operators: {�[1;2], �[1;3], . . . ,

�[1;d−1], �[1;d]}. By construction, these operators commute with one another, and can thus be 
diagonalized simultaneously. Moreover, since the intermediate Casimir operators are self-adjoint 
on W(α), the resulting basis will be orthogonal. Taking n = (n1, . . . , nd), we define the orthonor-
mal basis g(α)

n of W(α) by the eigenvalue equations

�[1;k]g(α)
n = γ (2Nk−1 + Ak + k − 1)g(α)

n , k = 2, . . . , d,

qA
[1;d]
0 g(α)

n = qNd+(Ad+d)/2g(α)
n ,

(19)

where Nk and Ak are defined as Nk = ∑k
i=1 ni and Ak = ∑k

i=1 αi . We shall consider the ex-

pansion coefficients of the coupled basis g(α)
n in the direct product basis e(α)

y . Upon iterating the 
Clebsch–Gordan decomposition (12), one obtains the following result.

Proposition 1. Let �(α)
n (y) be defined by the expression

�(α)
n (y) = δNdYd

d−1∏
k=1

ĥnk
(Yk − Nk−1,2Nk−1 + Ak + k − 1, αk+1, Yk+1 − Nk−1;q), (20)

where Yk = ∑k
i=1 yi , and where ĥn(x, α, β, N; q) is given by (14). These functions satisfy the 

orthogonality relations∑
y

�(α)
n (y)�

(α)

n′ (y) = δnn′ ,
∑
n

�(α)
n (y)�(α)

n (y′) = δyy′ , (21)

and arise in the expansion formulas

g(α)
n =

∑
y

�(α)
n (y) e(α)

y , e(α)
y =

∑
n

�(α)
n (y) g(α)

n . (22)

Proof. One starts from the direct product basis e(α)
y of W(α). One can diagonalize the interme-

diate Casimir operator �[1;2] using the expansion (12). This leads to

e(α)
y =

∑
n1 ,̂n1

C
(α1,α2)
n1 ,̂n1

(y1, y2) f
(α1,α2)
n1 ,̂n1

⊗ e(α3)
y3

⊗ · · · e(αd)
yd

.

Upon using Remark 1 to identify f (α1,α2)
n1 ,̂n1

with e(2n1+α1+α2+1)
n̂1

∈ V (α1) ⊗ V (α2), one can use (12)

on f (α1,α2)
n1 ,̂n1

⊗ e
(α3)
y3 to diagonalize �[1;2] and �[1;3] simultaneously. One then obtains

e(α)
y =

∑
n1 ,̂n1,n2 ,̂n2

C
(α1,α2)
n1 ,̂n1

(y1, y2) C
(2n1+α1+α2+1,α3)
n2 ,̂n2

(̂n1, y3)

× f
(2n1+α1+α2+1,α3)
n2 ,̂n2

⊗ e(α4)
y4

⊗ · · · ⊗ e(αd )
yd

.

Using Remark 1 again to identify f (2n1+α1+α2+1,α3)
n2 ,̂n2

with the vector e(2n1+2n2+α1+α2+α3+2)
n̂2

∈
V (α1) ⊗V (α2) ⊗V (α3), one can use (12) on f (2n1+α1+α2+1,α3)

n2 ,̂n2
⊗ e

(α4)
y4 to diagonalize �[1;2], �[1;3]

and �[1;4] simultaneously. This leads to
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e(α)
y =

∑
n1,n̂1

∑
n2,n̂2

∑
n3,n̂3

C
(α1,α2)

n1,n̂1
(y1, y2)C

(2n1+α1+α2+1,α3)

n2,n̂2
(n̂1, y3)

× C
(2n1+2n2+α1+α2+α3+2,α4)

n3,n̂3
(n̂2, y4) f

(2n1+2n2+α1+α2+α3+2,α4)

n3,n̂3
⊗ e(α5)

y5
⊗ · · · ⊗ e(αd )

yd
,

and so on. Then one can use (13) to deduce that the terms in the sum above vanish unless

n̂j = Yj+1 − Nj , j = 1,2, . . . , d − 1.

Upon substituting the above condition in the expansion of e(α)
y we obtain the second formula 

in (22) where the coefficients �(α)
n (y) are given in (20). Since both bases {e(α)

y } and {g(α)
n } are 

orthonormal, (21) and the first formula in (22) follow from the fact that the matrix (�(α)
n (y))n,y

is orthogonal. �
The coefficients �(α)

n (y) can be viewed as nested Clebsch–Gordan coefficients for the pos-
itive discrete series of irreducible representations of suq(1, 1). A different approach to obtain 
multivariate q-Hahn polynomials was outlined by Rosengren in [31]. Note that

�(α)
n (y) = 〈g(α)

n , e(α)
y 〉.

Using (18), we can represent the action of �[1;k] as a difference operator in the variables y. Then, 
the equation

〈�[1;k]g(α)
n , e(α)

y 〉 = 〈g(α)
n ,�[1;k]e(α)

y 〉
combined with (19) shows that �(α)

n (y) are eigenfunctions of the difference operators �[1;k]
with eigenvalues γ (2Nk−1 + Ak + k − 1). The results in [17] imply that the functions �(α)

n (y)

are also eigenfunctions of commuting operators acting on the variables n, and therefore are 
bispectral. The natural extension of the arguments in Remark 2 provides a Lie-interpretation of 
the corresponding bispectral algebras of partial difference operators.

2.2.2. A family of multivariate q-Hahn polynomials
The orthonormal functions �(α)

n (y) can be expressed in terms of the multivariate q-Hahn 
polynomials introduced by Gasper and Rahman in [7]. Indeed, one can write

�(α)
n (y) = δNdYd

√
ρ(α)(y)

�
(α)
n

H(α)
n (y), (23)

with ρ(α)(y) given by

ρ(α)(y) =
d∏

k=1

(qαk+1;q)yk

(q;q)yk

qyk(Ak−1+k−1). (24)

The normalization factor �(α)
n has the expression

�(α)
n = (qAd+d ;q)nd+2Nd−1

(q;q)nd

q
2
(Nd−1

2

)−2NdNd−1

×
d−1∏
k=1

1 − qAk+1+k

1 − q2Nk+Ak+1+k

(q;q)nk
(qAk+k;q)nk+2Nk−1(q

αk+1+1;q)nk

(qAk+1+k;q)nk+2Nk−1

qnk(2Nk−1+Ak+k),
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and H(α)
n (y) are the Gasper–Rahman multivariate q-Hahn polynomials defined as

H(α)
n (y) =

d−1∏
k=1

hnk
(Yk − Nk−1,2Nk−1 + Ak + k − 1, αk+1, Yk+1 − Nk−1;q), (25)

where hn(x, α, β, N; q) are the q-Hahn polynomials given in (15). These multivariate q-Hahn 
polynomials are a direct q-deformation of Karlin & McGregor’s multivariate Hahn polynomials 
[22]. Upon fixing M ∈ N and taking n and n′ such that Nd = N ′

d = M , these polynomials satisfy 
the orthogonality relation∑

y
Yd=M

ρ(α)(y) H (α)
n (y) H

(α)

n′ (y) = �(α)
n δnn′ . (26)

Remark 3. Note that when dealing with the polynomials (25), one usually fixes Yd = Nd = M

and takes nd = M − Nd−1. The resulting polynomials have parameters α1, . . . , αd and M , and 
degree indices n1, . . . , nd−1. Alternatively, H(α)

n (y) can be described as orthogonal polynomials 
of total degree Nd−1 in the variables q−Y1, q−Y2 , . . . , q−Yd−1 .

2.2.3. Second basis
Consider the sequence of operators {�[2;3], �[2;4], . . . , �[2;d], �[1;d]}. These operators are self-

adjoint on W(α), and they commute with one another. Consequently, one can construct an 
orthonormal basis that simultaneously diagonalizes them. Taking m = (m1, . . . , md), the or-
thonormal basis u(α)

m of W(α) is defined by the eigenvalue equations

�[2;k]u(α)
m = γ (2Mk−2 + Ãk + k − 2)u(α)

m , k = 3, . . . , d,

�[1;d]u(α)
m = γ (2Md−1 + Ad + d − 1)u(α)

m , qA
[1;d]
0 u(α)

m = qMd+(Ad+d)/2 u(α)
m ,

(27)

where Mk = ∑k
i=1 mi and where Ãk = ∑k

i=2 αi . Once again we consider the expansion coeffi-

cients of the coupled basis u(α)
m in the direct product basis e(α)

y . One has the following result.

Proposition 2. Let �(α)
m (y) be defined by the expression

�(α)
m (y) = δMdYd

d−2∏
k=1

ĥmk
(Ỹk+1 − Mk−1,2Mk−1 + Ãk+1 + k − 1, αk+2, Ỹk+2 − Mk−1;q)

× ĥmd−1(y1, α1,2Md−2 + Ãd + d − 2, Yd − Md−2;q), (28)

where Ỹk = ∑k
i=2 yi and where ̂hn(x, α, β, N; q) is given by (14). The function �(α)

m (y) satisfy 
the orthogonality relations∑

y

�(α)
m (y)�

(α)

m′ (y) = δmm′ ,
∑
m

�(α)
m (y)�(α)

m (y′) = δyy′ , (29)

and arise in the expansion formulas

u(α)
m =

∑
y

�(α)
m (y) e(α)

y , e(α)
y =

∑
m

�(α)
m (y)u(α)

m . (30)
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Proof. The proof is along the same lines as that of Proposition 1. Starting from the direct product 
basis e(α)

y , one diagonalizes the operator �[2;3] by using the expansion (12). This leads to

e(α)
y =

∑
m1,m̂1

C
(α2,α3)
m1,m̂1

(y2, y3) e(α1)
y1

⊗ f
(α2,α3)
m1,m̂1

⊗ e(α4)
y4

⊗ · · · ⊗ e(αd )
yd

.

One can use Remark 1 to identify f (α2,α3)
m1,m̂1

with e(2m1+α2+α3+1)
m̂1

∈ V (α2) ⊗ V (α3) and use (12)

on the vector f (α2,α3)
m1,m̂1

⊗ e
(α4)
y4 . Repeating this procedure until �[2;d] is diagonalized, one finally 

diagonalizes the total Casimir operator �[1;d] by applying (12) one last time. Using the explicit 
expression (13) then yields (28). �

The coefficients �(α)
m (y) can also be viewed as nested Clebsch–Gordan coefficients and satisfy 

bispectral equations.

2.2.4. Another family of multivariate q-Hahn polynomials
The orthogonal functions �(α)

m (y) can also be written in terms of a family multivariate orthog-
onal polynomials of q-Hahn type. One has indeed

�(α)
m (y) = δMdYd

√
ρ(α)(y)

�
(α)
m

G(α)
m (y), (31)

where ρ(α)(y) is given by (24). The normalization factor �(α)
m is of the form

�(α)
m = (qAd+d ;q)md+2Md−1q

2
(Md−1

2

)−2MdMd−1

(q;q)md

×
d−2∏
k=1

1 − qÃk+2+k

1 − q2Mk+Ãk+2+k

(q;q)mk
(qÃk+1+k;q)mk+2Mk−1(q

αk+2+1;q)mk

(qÃk+2+k;q)mk+2Mk−1

qmk(2Mk−1+Ãk+1+k)

× 1 − qAd+d−1

1 − q2Md−1+Ad+d−1

(q;q)md−1(q
Ãd+d−1;q)md−1+2Md−2(q

α1+1;q)md−1

(qAd+d−1;q)md−1+2Md−2

qMd−1(α1+1),

and the polynomials G(α)
m (y) have the expression

G(α)
m (y) =

d−2∏
k=1

hmk
(Ỹk+1 − Mk−1,2Mk−1 + Ãk+1 + k − 1, αk+2, Ỹk+2 − Mk−1;q)

× q−y1Md−2hmd−1(y1, α1,2Md−2 + Ãd + d − 2, Yd − Md−2;q), (32)

where hn(x, α, β, N; q) are the q-Hahn polynomials (15). These polynomials are orthogonal 
with respect to the same measure as the Gasper–Rahman q-Hahn polynomials H(α)

n (y) given by 
(25). Upon fixing L ∈N and taking m and m′ such that Md = M ′

d = L, the orthogonality relation 

for the polynomials G(α)
m (y) reads∑

y
Yd=L

ρ(α)(y) G(α)
m (y) G

(α)

m′ (y) = �(α)
m δmm′ . (33)
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Remark 4. Once again, one can take md = L −Yd−1. The resulting polynomials have parameters 
α1, . . . , αd and L, and degree indices m1, . . . , md−1. Alternatively, G(α)

m (y) can be described as 
orthogonal polynomials of total degree Md−1 in the variables q−Y1, q−Y2, . . . , q−Yd−1 .

Let us quickly recap the results obtained so far. We have used nested Clebsch–Gordan co-
efficients for multifold tensor product representations of suq(1, 1) to construct two bases of 
multivariate orthogonal functions �(α)

n (y) and �(α)
m (y) that diagonalize two commutative subal-

gebras of intermediate Casimir operators. From �(α)
n (y) and �(α)

m (y), we then constructed two 
families of multivariate q-Hahn polynomials H(α)

n (y) and G(α)
m (y) that are orthogonal with re-

spect to the same measure ρ(α)(y) given in (24).

2.3. q-Jacobi bases

The orthogonal functions �(α)
n (y) and �(α)

m (y) defined in (20) and (28) are both non-zero 
if the condition Yd = Nd = Md is satisfied. The corresponding families of multivariate q-Hahn 
polynomials H(α)

n (y) and G(α)
m (y) consequently satisfy the finite orthogonality relations (26)

and (33). It is therefore meaningful to consider limits of these families of functions and polyno-
mials as Yd = Nd = Md goes to infinity. We shall consider the limits of the functions �(α)

n (y)

and �(α)
m (y) and extract orthogonal polynomials from each of those limits. These results will 

prove useful later.
Let pn(x, α, β; q) be the little q-Jacobi polynomials [23]

pn(x,α,β;q) = (qα+1;q)n 2φ1

(
q−n, qn+α+β+1

qα+1 ;q, qx+1
)

. (34)

Define the functions p̂n(x, α, β; q) as follows:

p̂n(x,α,β;q) =
√

μ(x,α,β;q)

κ(n,α,β;q)
pn(x,α,β;q),

where μ(x, α, β; q) and κ(n, α, β; q) are given by

μ(x,α,β;q) = (qα+1;q)∞
(qα+β+2;q)∞

(qβ+1;q)x

(q;q)x
qx(α+1),

κ(n,α,β;q) = 1 − qα+β+1

1 − q2n+α+β+1

(q;q)n(q
α+1;q)n(q

β+1;q)n

(qα+β+1;q)n
qn(α+1).

The functions p̂n(x, α, β; q) satisfy the orthogonality relation [23]∑
x≥0

p̂n(x,α,β;q) p̂m(x,α,β;q) = δnm. (35)

2.3.1. A first basis of q-Jacobi functions
Let us first consider the limit of the functions �(α)

n (y) as Yd = Nd goes to infinity. We find the 
following result.

Proposition 3. Let s = (s1, . . . , sd−1), x = (x1, . . . , xd−1) and α = (α1, . . . , αd). Furthermore, 
let J (α)

s (x) be the functions defined as
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J (α)
s (x) =

d−1∏
k=1

(−1)sk p̂sk (xk,2Sk−1 + Ak + k − 1, αk+1;q), (36)

where Sk = ∑k
i=1 si and Ak = ∑k

i=1 αi . Upon taking s̃L = (s1, s2, . . . , sd−1, L − Sd−1) and 
x̃L = (L − Xd−1, x1, . . . , xd−1), one has

lim
L→∞�

(α)
s̃L

(̃xL) = J (α)
s (x).

The functions J (α)
s (x) obey the orthogonality relation∑

x

J (α)
s (x) J (α)

s′ (x) = δss′ , (37)

where the multi-index x runs over multi-indices of non-negative integers.

Proof. The orthogonality relation (37) follows from (35). The limit can be taken directly. The 
calculation is long, but otherwise straightforward. The following result relating the q-Hahn to 
the q-Jacobi polynomials is useful [6]:

lim
N→∞

hn(N − x,α,β,N;q)

(q−N ;q)n
= pn(x,α,β;q). � (38)

2.3.2. A first basis of q-Jacobi polynomials
The functions J (α)

s (x) naturally give rise to a family of q-Jacobi polynomials with d − 1
variables. Indeed, taking x = (x1, . . . , xd−1), s = (s1, . . . , sd−1) and α = (α1, . . . , αd), one can 
write the functions J (α)

s (x) as follows

J (α)
s (x) =

√
ν(α)(x)

ι
(α)
s

J (α)
s (x), (39)

with ν(α)(x) given by

ν(α)(x) = (qα1+1;q)∞
(qAd+d ;q)∞

d∏
k=2

(qαk+1;q)xk−1

(q;q)xk−1

qxk−1(Ak−1+k−1). (40)

The normalization factor ι(α)
s has the expression

ι(α)
s =

d−1∏
k=1

1 − qAk+1+k

1 − q2Sk+Ak+1+k

(q;q)sk (q
Ak+k;q)sk+2Sk−1(q

αk+1+1;q)sk

(qAk+1+k;q)sk+2Sk−1

qsk(2Sk−1+Ak+k),

and J (α)
s (x) are some multivariate q-Jacobi polynomials

J (α)
s (x) =

d−1∏
k=1

(−1)sk qxkSk−1psk (xk,2Sk−1 + Ak + k − 1, αk+1;q). (41)

These polynomials satisfy the orthogonality relation∑
x

ν(α)(x) J (α)
s (x) J

(α)

s′ (x) = ι(α)
s δss′ ,

where x runs over the multi-indices of non-negative integers.
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Remark 5. The functions J
(α)
s (x) are polynomials of total degree Sd−1 in the variables 

q
∑d−1

j=1 xj , q
∑d−1

j=2 xj , . . . , qxd−1 with parameters α1, α2, . . . , αd .

2.3.3. A second basis of q-Jacobi functions
Let us now consider the limit of the functions �(α)

m (y) as Md = Yd goes to infinity. We obtain 
the following result.

Proposition 4. Let t = (t1, . . . , td−1), x = (x1, . . . , xd−1) and α = (α1, . . . , αd). Moreover, let 
Q(α)

t (x) be the functions defined by

Q(α)
t (x) =

d−2∏
k=1

ĥtk (Xk − Tk−1,2Tk−1 + Ãk+1 + k − 1, αk+2,Xk+1 − Tk−1;q)

× (−1)td−1 p̂td−1(Xd−1 − Td−2, α1,2Td−2 + Ãd + d − 2;q). (42)

Upon taking ̃xL = (L − Xd−1, x1, . . . , xd−1) and ̃tL = (t1, . . . , td−1, L − Td−1), one has

lim
L→∞�

(α)

t̃L
(̃xL) = Q(α)

t (x).

The functions Q(α)
t (x) satisfy the orthogonality relation∑

x

Q(α)
t (x)Q(α)

t ′ (x) = δtt ′ .

Proof. The orthogonality relation follows from (16) and (35). The calculation of the limit is 
direct, and involves using (38) once. �
2.3.4. A second basis of mixed q-Jacobi and q-Hahn polynomials

The functions Q(α)
t (x) also give rise to a family of multivariate orthogonal polynomials. 

These polynomials, given below, are a mixture of q-Hahn and q-Jacobi polynomials. Upon tak-
ing x = (x1, . . . , xd−1), t = (t1, . . . , td−1), and α = (α1, . . . , αd), one can write

Q(α)
t (x) =

√
ν(α)(x)

τ
(α)
t

Q
(α)
t (x), (43)

with ν(α)(x) given by (40). The normalization constant τ (α)
t is of the form

τ
(α)
t = q

2
(Td−2

2

)

×
d−2∏
k=1

1 − qÃk+2+k

1 − q2Tk+Ãk+2+k

(q;q)tk (q
Ãk+1+k;q)tk+2Tk−1(q

αk+2+1;q)tk

(qÃk+2+k;q)tk+2Tk−1

qtk(2Tk−1+Ãk+1+k)

× 1 − qAd+d−1

1 − q2Td−1+Ad+d−1

(q;q)td−1(q
Ãd+d−1;q)td−1+2Td−2(q

α1+1;q)td−1

(qAd+d−1;q)td−1+2Td−2

qTd−1(α1+1),

and the (d − 1)-variate polynomials Q(α)
t (x) have the expression
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Q
(α)
t (x) =

d−2∏
k=1

htk (Xk − Tk−1,2Tk−1 + Ãk+1 + k − 1, αk+2,Xk+1 − Tk−1;q)

× (−1)td−1qXd−1Td−2 ptd−1(Xd−1 − Td−2, α1,2Td−2 + Ãd + d − 2;q).

These polynomials are orthogonal with respect to the same measure as the multivariate Jacobi 
polynomials (41); that is∑

x

ν(α)(x) Q
(α)
t (x) Q

(α)

t ′ (x) = τ
(α)
t δtt ′ . (44)

Remark 6. The functions Q
(α)
t (x) are polynomials of total degree Td−1 in the variables 

q
∑d−1

j=1 xj , q
∑d−1

j=2 xj , . . . , qxd−1 with parameters α1, α2, . . . , αd .

3. Interbasis expansion coefficients and q-Racah polynomials

In this section, we shall consider the expansion coefficients between the bases �(α)
n (y) and 

�
(α)
m (y) and show that they are expressed in terms of Gasper & Rahman’s multivariate q-Racah 

polynomials. Given the interpretation of the functions �(α)
n (y) and �(α)

m (y) as nested Clebsch–
Gordan coefficients of the d-fold tensor product representation W(α), this will provide an inter-
pretation of the multivariate q-Racah polynomials in terms of 3nj symbols for suq(1, 1).

3.1. The main object

Let n = (n1, . . . , nd), m = (m1, . . . , md) and α = (α1, . . . , αd). We define the functions 
R(α)

m (n) as the coefficients that appear in the expansion

�(α)
m (y) =

∑
n

R(α)
m (n) �(α)

n (y), (45)

where �(α)
n (y) and �(α)

m (y) are respectively given by (20) and (28). Since the functions �(α)
n (y)

and �(α)
m (y) are both orthonormal, one can write the coefficients R(α)

m (n) as

R(α)
m (n) =

∑
y

�(α)
m (y)�(α)

n (y). (46)

Because both �(α)
n (y) and �(α)

m (y) arise from the expansion of joint eigenvectors of qA
[1;d]
0 and 

the total Casimir operator �[1;d], it is clear that expansion coefficients R(α)
m (n) vanish unless 

Md = Nd and Md−1 = Nd−1. These two conditions imply in particular that the coefficients 
R(α)

m (n) vanish unless nd = md . Moreover, since the total Casimir operator �[1;d] commutes 
with the raising/lowering operators A[1;d]

± , the coefficients R(α)
m (n) are in fact independent of nd

and md . Consequently, with Nd−1 = Md−1, one can take nd = L − Nd−1 and md = L − Md−1

in (46) and take L → ∞ without affecting the value of R(α)
m (n). This leads to the expression

R(α)
m (n) =

∑
x

Q(α)
m (x)J (α)

n (x), (47)
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where the summation runs over all multi-indices x = (x1, . . . , xd−1) of non-negative integers and 
where we have taken m = (m1, . . . , md−1) and n = (n1, . . . , nd−1), allowed given the indepen-
dence of R(α)

m (n) on the last quantum numbers md and nd . The functions J (α)
n (x) and Q(α)

m (x)

are given by (36) and (42), respectively. One has also

Q(α)
m (x) =

∑
n

R(α)
m (n)J (α)

n (x), (48)

where the sum runs over the multi-indices n = (n1, . . . , nd−1) such that Nd−1 = Md−1. Here 
also, the coefficients are independent of the coordinates x.

3.2. Connection coefficients between multivariate polynomials

The functions R(α)
m (n) are connection coefficients between families of multivariate orthogo-

nal polynomials. Indeed, it follows from (23), (31) and (45) that√
1

�
(α)
m

G(α)
m (y) =

∑
n

R(α)
m (n)

√
1

�
(α)
n

H(α)
n (y), (49)

where the sum is over the multi-indices n such that Nd = Md and Nd−1 = Md−1. One can also 
use the orthogonality relation for H(α)

n (y) to get the formula

R(α)
m (n) =

√
1

�
(α)
n �

(α)
m

∑
y

ρ(α)(y)H (α)
n (y) G(α)

m (y),

where the sum is restricted to all y such that Yd = Nd = Md . Furthermore, from (39), (43) and 
(48) one finds that√

1

τ
(α)
m

Q(α)
m (x) =

∑
n

R(α)
m (n)

√
1

ι
(α)
n

J (α)
n (x),

which is equivalent to

R(α)
m (n) =

√
1

τ
(α)
m ι

(α)
n

∑
x

ν(α)(x) Q(α)
m (x) J (α)

n (x).

As can be seen, the coefficients R(α)
m (n) serve as connection coefficients between bases of multi-

variate q-Hahn or q-Jacobi polynomials. Since these bases are themselves orthogonal, it follows 
from elementary linear algebra that the functions R(α)

m (n) satisfy the orthogonality relations∑
n

R(α)
m (n)R(α)

m′ (n) = δmm′ , (50a)

∑
m

R(α)
m (n)R(α)

m (n′) = δnn′ . (50b)

These relations are meaningful when the indices n, n′, m and m′ are such that Nd−1 = N ′
d−1 =

Md−1 = M ′ , which insure that R(α)
m (n) does not trivially vanish.
d−1
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3.3. The d = 3 case: one-variable q-Racah polynomials

Let us now consider the expansion coefficients R(α)
m (n) for d = 3. As we noted above, the 

coefficients R(α)
m (n) vanish unless M2 = N2 and m3 = n3, and are independent of the quantum 

numbers m3 and n3. Throughout this subsection, we assume that m and n satisfy these condi-
tions, and to simplify the notation, we will omit m3 and n3 when we display the coefficients, i.e. 
we will write simply R(α1,α2,α3)

m1,m2 (n1, n2) instead of R(α1,α2,α3)
m1,m2,m3 (n1, n2, n3).

Upon writing (48) explicitly, one gets

(−1)m2qm1(x1+x2)hm1(x1, α2, α3, x1 +x2;q)pm2(x1 +x2 −m1, α1,2m1 +α2 +α3 +1;q)

=
∑
n

R(α1,α2,α3)
m1,m2

(n1, n2)

√√√√τ
(α1,α2,α3)
m1,m2

ι
(α1,α2,α3)
n1,n2

× (−1)n1+n2qn1x2pn1(x1, α1, α2;q)pn2(x2,2n1 + α1 + α2 + 1, α3;q), (51)

where hn(x, α, β, N; q) and pn(x, α, β; q) are the q-Hahn and q-Jacobi polynomials defined in 
(15) and (34). We now set x1 = (u − v)/2, x2 = (u + v)/2 as well as t = qu+1, and we consider 
the limit of (51) as v → ∞. Recalling that 0 < q < 1, one can use the transformation formula [6]

3φ2

(
q−n, c/b,0

c, cq/bz
;q, q

)
= (bz/c;q)∞

(bzq−n/c;q)∞
2φ1

(
q−n, b

c
;q, z

)
,

to find that the left-hand side of (51) becomes under the limit v → ∞
lim

v→∞(−1)m2qm1uhm1((u − v)/2, α2, α3, u;q)pm2(u − m1, α1,2m1 + α2 + α3 + 1;q)

= (−1)m1+m2 q
(m1

2

)
(qα2+1;q)m1(q

α1+1;q)m2

× 2φ1

(
q−m1, q−m1−α3

qα2+1 ;q, qm1+α2+α3+1t

)
2φ1

(
q−m2, qm2+2m1+α1+α2+α3+2

qα1+1 ;q, q−m1 t

)
.

Upon taking the same limit on the right-hand side of (51), one easily finds

lim
v→∞(−1)n1+n2qn1(u+v)/2pn1((u−v)/2, α1, α2;q)pn2((u+v)/2,2n1 +α1 +α2 +1, α3;q)

= (−1)n1+n2
(q−n1;q)n1(q

n1+α1+α2+1;q)n1(q
2n1+α1+α2+1;q)n2

(q;q)n1

tn1 .

As a consequence, one has

2φ1

(
q−m1, q−m1−α3

qα2+1 ;q, qm1+α2+α3+1t

)
2φ1

(
q−m2, qm2+2m1+α1+α2+α3+2

qα1+1 ;q, q−m1 t

)
=

∑
n1,n2

R(α1,α2,α3)
m1,m2

(n1, n2)

×
⎡⎣

√√√√τ
(α1,α2,α3)
m1,m2

ι
(α1,α2,α3)
n1,n2

(q−n1;q)n1(q
n1+α1+α2+1;q)n1(q

2n1+α1+α2+1;q)n2

(q;q)n1q
(m1

2

)
(qα1+1;q)m1(q

α2+1;q)m2

⎤⎦ tn1, (52)

where the sum runs over all n1, n2 such that n1 + n2 = m1 + m2. The generating relation 
(52) can be seen to coincide with that of the one-variable q-Racah polynomials. Indeed, let 
rn(x, a, b, c, N; q) be the q-Racah polynomials [23]
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rn(x,a,b, c,N;q) =

(qa+1;q)n(q
b+c+1;q)n(q

−N ;q)nq
n(N−c)/2

4φ3

(
q−n, qn+a+b+1, q−x, qx+c−N

qa+1, qb+c+1, q−N
;q, q

)
.

Let σ(x, a, b, c, N; q) be defined as

σ(x,a,b, c,N;q) =
1 − q2x+c−N

1 − qc−N

(qc−N ;q)x(q
a+1;q)x(q

b+c+1;q)x(q
−N ;q)x

(q;q)x(qc−a−N ;q)x(q−b−N ;q)x(qc+1;q)x
q−x(a+b+1),

and let υ(n, a, b, c, N; q) have the expression

υ(n,a,b, c,N;q) = (q−c;q)N(qa+b+2;q)N

(qa−c+1;q)N(qb+1;q)N
(q;q)n(q

a+1;q)n(q
b+1;q)n

× (qa−c+1;q)n(q
b+c+1;q)n(q

−N ;q)n
1 − qa+b+1

1 − q2n+a+b+1

(qN+a+b+2;q)n

(qa+b+1;q)n
.

The q-Racah functions ̂rn(x, a, b, c, N; q) defined as

r̂n(x,a,b, c,N;q) =
√

σ(x,a,b, c,N;q)

υ(n,a,b, c,N;q)
rn(x,a,b, c,N;q),

satisfy the orthogonality relation

N∑
x=0

r̂n(x,a,b, c,N;q) r̂n′(x,a,b, c,N;q) = δnn′ .

Their generating relation reads

2φ1

(
q−n, q−n−b

qa+1 ;q, qn+a+b+1t

)
2φ1

(
qn−N,qn+b+c+1

qc−a−N
;q, q−nt

)

=
N∑

x=0

(qb+c+1;q)x(q
−N ;q)x

(q;q)x(qc−a−N ;q)x

qn(c−N)/2

(qa+1;q)n(qb+c+1;q)n(q−N ;q)n
rn(x,a,b, c,N;q) tx. (53)

Upon comparing (52) with (53), we obtain the following.

Proposition 5. When d = 3, the expansion coefficients R(α1,α2,α3)
m1,m2 (n1, n2) can be expressed in 

terms of the univariate q-Racah polynomials. Explicitly, one has

R(α1,α2,α3)
m1,m2

(n1, n2) = δN2M2 (−1)m1 r̂m1(n1, α2, α3, n1 + n2 + α1 + α2 + 1, n1 + n2;q).

Proof. The result follows from the above discussion and from comparing (52) and (53). It is 
seen that the two coincide, up to normalization factors, if one takes

n = m1, x = n1, N = n1 + n2, a= α2, b= α3, c = N2 + α1 + α2 + 1.

The calculation of the normalization factors is straightforward. �
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Let us note that our derivation of Proposition 5 is much simpler than the one presented in [4], 
which used different methods. Moreover, our construction has the advantage of unifying two 
of the main interpretations of the one-variable q-Racah polynomials: 1) their interpretation as 
connection coefficients for 2-variable q-Hahn or q-Jacobi polynomials, and 2) their interpretation 
as 6j coefficients for positive-discrete series representations of suq(1, 1). In the next section, we 
shall give a new interpretation in connection with q-deformed quantum superintegrable systems.

Remark 7. We can use special values of the y variables in equation (49) to obtain other 
generating functions for the q-Racah polynomials. First, note that by using the q-analog of 
the Chu–Vandermonde identity, the q-Hahn polynomials in (15) reduce to simple products of 
q-Pochhammer symbols when x = −(α + 1) or x = N :

hn(−α − 1, α,β,N;q) = (qα+1;q)n(q
−N−α−β−n−1;q)n qn(n+α+β+1),

hn(N,α,β,N;q) = (q−N ;q)n(q
−n−β;q)n qn(n+α+β+1).

If we fix N3 = Y3 = L, with y1 = −α1 −1, y2 = L +α1 +1, y3 = 0 and replace L with w, where 
w = q−L−α1−1, then equations (25), (32), together with the above formulas show that

H(α)
n (−α1 − 1,L + α1 + 1,0) ≡ (wq−α2−n1;q)n1(wqα1+n1+1;q)n2,

G(α)
m (−α1 − 1,L + α1 + 1,0) ≡ (w;q)m1(wq−(α2+α3+m1+m2+1);q)m2,

where ≡ means that the equality holds up to a multiple independent of w. For generic values of 
α1, α2, α3, the polynomials of w in each of the sets:

• {
(w;q)m1(wq−(α2+α3+m1+m2+1);q)m2 : (m1,m2) ∈N

2
0

}
, and

• {
(wq−α2−n1;q)n1(wqα1+n1+1;q)n2 : (n1, n2) ∈N

2
0

}
are linearly independent. Therefore, if we substitute y1 = −α1 − 1, y2 = L + α1 + 1, y3 = 0
into (49) and use the above formulas, we obtain the q-Racah polynomials R(α1,α2,α3)

m1,m2 (n1, n2)

as connecting coefficients between the different bases {(wq−α2−n1; q)n1(wqα1+n1+1; q)n2} and 
{(w; q)m1(wq−(α2+α3+m1+m2+1); q)m2} of polynomials in w. This connection was observed in 
[24] in a different setting and notations, see Remark 4.11(iii) on page 815.

3.4. Multivariate q-Racah polynomials and 3nj coefficients for suq(1, 1)

We shall now generalize the result of Proposition 5 to the multivariate case. While this result 
can be proven by induction, the proof is cumbersome and fails to provide additional insight into 
the structure of the coefficients R(α)

m (n). In the following, we thus opt to construct the expres-
sion for the connection coefficients R(α)

m (n) in the d = 4 case in terms of 2-variable q-Racah 
polynomials. The result is then seen to extend directly to an arbitrary number of variables.

3.4.1. The d = 4 case
Consider the basis functions �(α)

m (y) when d = 4. One has

�(α)
m (y) = ĥm1(y2, α2, α3, y23;q)

× ĥm2(y23 − m1,2m1 + α23 + 1, α4, y234 − m1;q)

× ĥm3(y1, α1,2m12 + α234 + 2, y1234 − m12;q), (54)
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where we used the notation xij = xi + xj and xijk = xi + xj + xk . If one defines ̃y2 = y23 − m1, 
α̃2 = 2m1 + α23 + 1, ̃α3 = α4, ̃y1 = y1 and ̃y3 = y4, it is seen that (54) reads

�(α)
m (y) = ĥm1(y2, α2, α3, y23;q)

× ĥm2(ỹ2, α̃2, α̃3, ỹ23;q) ĥm3(ỹ1, α1,2m2 + α̃23 + 1, ỹ123 − m2). (55)

It is observed that the last two q-Hahn functions in (55) have the appropriate form to apply 
Proposition 5. We thus have

�(α)
m (y) =∑

n2,n3
n2+n3=m2+m3

(−1)m2 r̂m2(n2,2m1 + α23 + 1, α4, n23 + 2m1 + α123 + 2, n23;q)

× ĥm1(y2, α2, α3, y23;q) ĥn2(y1, α1,2m1 + α23 + 1, y123 − m1;q)

× ĥn3(y123 − m1 − n2,2n2 + 2m1 + α123 + 2, α4, y1234 − m1 − n2;q). (56)

It is further seen that the first two q-Hahn functions now have the appropriate form to apply 
Proposition 5 a second time. This leads to the following:

�(α)
m (y) =

∑
n2,n3

n2+n3=m2+m3

∑
n′

1,n
′
2

n′
1+n′

2=m1+n2

× (−1)m2 r̂m2(n2,2m1 + α23 + 1, α4, n23 + 2m1 + α123 + 2, n23;q)

× (−1)m1 r̂m1(n
′
1, α2, α3,m1 + n2 + α12 + 1,m1 + n2;q)

× ĥn′
1
(y1, α1, α2, y1 + y2;q)̂hn′

2
(y12 − n′

1,2n′
1 + α12 + 1, α3, y123 − n′

1;q)

× ĥn3(y123 − m1 − n2,2n2 + 2m1 + α123 + 2, α4, y1234 − m1 − n2;q). (57)

Upon taking n2 = n′
1 + n′

2 − m1 and then renaming n′
1 → n1, n′

2 → n2, one finds

�(α)
m (y) =

∑
n

R(α)
m (n) �(α)

n (y),

where the summation runs over the multi-indices n such that n1 + n2 + n3 = m1 + m2 + m3 and 
where

R(α)
m (n) = (−1)m1+m2 r̂m1(n1, α2, α3, n12 + α12 + 1, n12;q)

× r̂m2(n12 − m1,2m1 + α23 + 1, α4, n123 + m1 + α123 + 2, n123 − m1;q). (58)

3.4.2. The general result
Let us now state the general result giving the explicit expression of the coefficients R(α)

m (n)

for an arbitrary number of variables.

Proposition 6. Let m = (m1, . . . , md), n = (n1, . . . , nd) and α = (α1, . . . , αd). The interbasis 
expansion coefficients R(α)

m (n) defined in (45) have the explicit expression
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R(α)
m (n) = δmdnd

δMd−1Nd−1

d−2∏
k=1

(−1)mk

× r̂mk
(Nk −Mk−1,2Mk−1 +Ãk+1 +k−1, αk+2,Nk+1 +Mk−1 +Ak+1 +k,Nk+1 −Mk−1;q).

(59)

Proof. By induction; following the steps outlined in the previous subsection. The basic case 
d = 3 is proven in Proposition 5. Suppose that the result holds at level d − 1. Consider the basis 
functions �(α)

m (y) at level d . One can write

�(α)
m (y) = ĥm1(y2, α2, α3, y2 + y3;q) ×

[
�

(̃α1,...,̃αd−1)
m2,...,md

(ỹ1, . . . , ỹd−1)
]
,

with

α̃1 = α1, α̃2 = 2m1 + α23 + 1, α̃k = αk+1,

ỹ1 = y1, ỹ2 = y2 + y3 − m1, ỹk = yk+1.

Then, one uses the induction hypothesis to develop the functions �(̃α1,...,̃αd−1)
m2,...,md

(ỹ1, . . . , ̃yd−1) in 

the basis functions �(̃α1,...,̃αd−1)
n2,...,nd

(ỹ1, . . . , ̃yd−1). The procedure is completed by applying Propo-
sition 5 one last time. �

We have thus obtained the explicit expression (59) for the expansion coefficients R(α)
m (n)

between the q-Hahn bases �(α)
n (y) and �(α)

m (y) defined in (20) and (28). These are also the 
expansion coefficients between the q-Jacobi bases J (α)

n (y) and Q(α)
m (y) defined in (36) and 

(42). Moreover, since these coefficients are the overlaps between basis vectors corresponding to 
irreducible decompositions of the multifold tensor product representation W(α) of suq(1, 1), the 
coefficients R(α)

m (n) can also be considered as particular 3nj -coefficients.

Remark 8. Using (59), we show in the next subsection that the coefficients R(α)
m (n) can be 

expressed in terms of multivariate q-Racah polynomials defined by Gasper and Rahman in [7]. 
Similarly to the d = 3 case discussed in Remark 7, we can use special values of the y variables in 
equation (49) to obtain different identities for these polynomials. However, if we fix the values of 
y1, . . . , yd , so that the q-Hahn polynomials reduce to products of q-Pochhammer symbols, there 
will be just one free variable left, which is not sufficient to characterize the q-Racah polynomials 
in the multivariate setting.

3.5. Multivariate q-Racah polynomials

The coefficients R(α)
m (n) can be expressed in terms of the multivariate q-Racah polynomials 

introduced by Gasper and Rahman in [7]. In the s-variable case, these polynomials can be written 
as

Z�(y;β,M;q) =
s∏

k=1

r�k
(yk −Lk−1,2Lk−1 +βk −β0 −1, βk+1 −βk −1, yk+1 +Lk−1 +βk, yk+1 −Lk−1;q),

(60)
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where y0 = 0, ys+1 = M , and M ∈ N and β = (β0, β1, . . . , βs+1) are parameters. It is not hard 
to see that Z�(y; β, M; q) is a polynomial of total degree Ls in the variables zk = q−yk + βkq

yk . 
Moreover, they are orthogonal on the simplex

WM = {y ∈N
s
0 : 0 ≤ y1 ≤ y2 ≤ · · · ≤ ys ≤ M},

with respect to the weight function

χ(β)(y) =
s∏

k=0

(qβk+1−βk ;q)yk+1−yk
(qβk+1;q)yk+1+yk

(q;q)yk+1−yk
(qβk+1;q)yk+1+yk

s∏
k=1

1 − q2yk+βk

1 − qβk
qyk(βk−1−βk). (61)

The parametrization in [7] can be obtained by taking a1 = qβ1 , ak = qβk−βk−1 for k = 2, . . . , s+1
and b = qβ1−β0−1. The square of the norm is

ϒ
(β)

� = 〈Z�(y;β,M;q),Z�(y;β,M;q)〉

= q−M(2Ls+βs)+Ls(Ls−1)+β0(M−Ls)
(qβs+1;q)L+Ls (q

βs+1−β0;q)L+Ls

(q;q)L−Ls (q
β0+1;q)L−Ls

×
s∏

k=1

(q;q)�k
(qβk+1−βk ;q)�k

(qβk−β0;q)Lk+Lk−1

(qβk+1−β0−1;q)Lk+Lk−1

1 − qβk+1−β0−1

1 − qβk+1−β0−1+2Lk
. (62)

Upon comparing (60) with (59), it is seen that the coefficients (59) will be proportional to the 
polynomials (60) if one takes s = d − 2 and

�i = mi, i = 1, . . . , d − 2,

yi = Ni, i = 1, . . . , d − 1,

βk = Ak+1 + k, k = 0,1, . . . , d − 1.

(63)

The expansion coefficients (59) can be expressed in terms of the multivariate q-Racah polyno-
mials (60) as follows:

R(α)
m (n) = δmdnd

δMd−1Nd−1(−1)Md−2

√√√√χ(β)(y)

ϒ
(β)

�

Z�(y;β,M;q), (64)

where the connection between the original variables and parameters n, m, α and y, �, β, M is 
provided by (63).

3.6. Duality

The orthogonality relation (50a) for the interbasis expansion coefficients R(α)
m (n) is equivalent 

to the orthogonality relation for the multivariate Gasper–Rahman q-Racah polynomials (60). The 
second orthogonality relation (50b) can be explained through a duality relation satisfied by the 
coefficients R(α)

m (n).
Let us define dual indices �̃, variables ỹ, and parameters β̃ by

�̃j = ys+2−j − ys+1−j , j = 1, . . . , s,

ỹj = M − Ls+1−j , j = 1, . . . , s,

β̃0 = β0,

β̃j = β0 − βs+2−j − 2M + 1, j = 1, . . . , s + 1.

(65)
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Proposition 7. The map

(�,y,β,M) �→ (�̃, ỹ, β̃,M), (66)

is an involution. Moreover, the q-Racah polynomials (60) satisfy the following duality relation

Z�(y;β,M;q)

qMLs (q−M ;q)Ls (q
−M−β0)Ls

∏s
j=1 q�j βj /2(qβj+1−βj ;q)�j

= Z�̃(ỹ; β̃,M;q)

qML̃s (q−M ;q)
L̃s

(q−M−β̃0)
L̃s

∏s
j=1 q�̃j β̃j /2(qβ̃j+1−β̃j ;q)

�̃j

. (67)

Proof. The statement can be deduced from [17], but we provide a direct proof here for the 
convenience of the reader. Applying Sears’ transformation formula [6, page 49, formula (2.10.4)]
one can show that

rn(x, a, b, c,N;q) = rn(N − x, b, a,−c,N;q). (68)

Using (68), we can rewrite the multivariate q-Racah polynomials as follows

Z�(y;β,M;q) =
s∏

k=1

r�k
(yk+1 −yk,βk+1 −βk −1,2Lk−1 +βk −β0 −1,−yk+1 −Lk−1 −βk, yk+1 −Lk−1;q).

(69)

Substituting the dual variables (65) into (69), one can show that the 4φ3 series in r�k

above coincides with the 4φ3 series in r
�̃s+1−k

in the dual variables. Thus all 4φ3 terms in 

Z�(y; β, M; q)/Z�̃(ỹ; β̃, M; q) cancel. Simplifying and rearranging the remaining products, we 
obtain equation (67). �

Using formulas (61), (62) and (65) one can check that

ϒ
(β)

� χ(β̃)(ỹ)[
qMLs (q−M ;q)Ls (q

−M−β0)Ls

∏d
j=1 q�j βj /2(qβj+1−βj ;q)�j

]2

= q−M(βs+β̃s−β0+M) (q
βs+1;q)2M(qβ̃s+1;q)2M[
(q;q)M(qβ0+1;q)M

]2 . (70)

Since the right-hand side of (70) is invariant under the involution (66), the last identity combined 
with Proposition 7 shows that q-Racah polynomials, viewed as polynomials in the indices, are 
also orthogonal with respect to an appropriate multivariate q-Racah weight (61). More precisely, 
the following statement holds.

Corollary 8. With the notations above we have√√√√χ(β)(y)

ϒ
(β)

�

Z�(y;β,M;q) =
√√√√√χ(β̃)(ỹ)

ϒ
(β̃)

�̃

Z�̃(ỹ; β̃,M;q). (71)
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The last equation combined with (64) and (65) relates the dual orthogonality relation (50b) to 
the orthogonality of the Gasper–Rahman q-Racah polynomials.

4. q-Deformed Calogero–Gaudin systems

In this section, it is shown that the multivariate functions �(α)
n (y) and �(α)

m (y) constructed in 
Section 2 are in fact wavefunctions for quantum q-deformed Calogero–Gaudin superintegrable 
systems.

Let us return to the realization (18) of the quantum algebra suq(1, 1); i.e. we take

qA
(i)
0 = qyi+(αi+1)/2, A

(i)
+ =

√
σ

(αi)
yi+1T

+
yi

, A
(i)
− =

√
σ

(αi)
yi

T −
yi

, (72)

where T ±
yi

f (yi) = f (yi ± 1) is the discrete shift operator in the variable yi , and where σ (α)
n is 

given by (7). Following the coproduct construction (4), one has suq(1, 1) realizations suS
q (1, 1)

associated to each set S = [i; j ] acting on the variables yi, . . . , yj . These realizations read

A
[i;j ]
0 =

j∑
k=i

A
(k)
0 , A

[i;j ]
± =

j∑
k=i

q
∑k−1

�=i A
(�)
0 A

(k)
± .

For a given value of d , the “full” suq(1, 1) realization corresponds to the set S = [1; d]. To each 
set S = [i; j ], one has the intermediate Casimir operators

�[i;j ] = q−1/2qA
[i;j ]
0 + q1/2q−A

[i;j ]
0

(q1/2 − q−1/2)2 − A
[i;j ]
+ A

[i;j ]
− q1−A

[i;j ]
0 ,

as per (5). Through (72), the intermediate Casimir operators �[i;j ] are easily converted to con-
crete q-difference operators acting on the variables yi, . . . , yj . For a given d , we define the 
Hamiltonian

H = �[1;d]. (73)

The Hamiltonian (73) corresponds to a q-deformed quantum Gaudin–Calogero system in (d −1)

dimension. These systems have been discussed in [28] in particular. Their integrability was 
shown, and the eigenvalues and a set of eigenvectors were obtained. In the present approach, it is 
clear that the Hamiltonian (73) is in fact superintegrable. Indeed, the elements of the two commu-
tative subalgebras 〈�[1;2], �[1;3], · · · , �[1;d−1]〉 and 〈�[2;3], �[2;4], . . . , �[2;d]〉, together with the 
Hamiltonian H , form a set of 2d − 3 algebraically independent symmetries of H . Furthermore, 
the bases �(α)

n (y) and �(α)
m (y) are wavefunctions for this Hamiltonian satisfying the eigenvalue 

equations

H �(α)
n (y) = ENd

�(α)
n (y), H �(α)

m (y) = EMd
�(α)

m (y),

with energies EN = γ (2N + Ad + d − 1) as per (19) and (27). The multivariate q-Racah poly-
nomials then correspond to the connection coefficients between two bases for the eigenstates of 
the quantum Calogero–Gaudin model (73).
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5. Conclusion

Summing up, we have constructed bases of multivariate q-Hahn and q-Jacobi polynomials in 
the framework of multifold tensor product representations of the quantum algebra suq(1, 1). We 
have shown that the Gasper–Rahman multivariate q-Racah polynomials arise as the connection 
coefficients between these bases of q-Hahn and q-Jacobi polynomials, and we have provided 
an interpretation for these polynomials in terms of special 3nj -coefficients for suq(1, 1). Lastly, 
we have explained how the q-Hahn bases can be interpreted as wavefunctions for q-deformed 
quantum Calogero–Gaudin superintegrable systems of arbitrary dimension, and we have given 
its symmetries in terms of intermediate Casimir operators.

It would be of great interest in the future to determine the invariance algebra generated by the 
symmetries of the Hamiltonian (73). In addition to providing a q-extension of the generalized 
Racah algebra obtained in [2,18], it would give an algebraic framework for the bispectral op-
erators of the Gasper–Rahman multivariate q-Racah polynomials constructed in [17]. It would 
also allow to define the higher rank Zhedanov algebra. We note that a different interpretation 
of the bispectral operators for the Gasper–Rahman multivariate q-Racah polynomials within the 
context of the q-Onsager algebra was given in [1].

It is natural to ask for extensions of the results in the present paper for the multivariate 
q-Racah functions and their bispectral and duality properties established in [15]. Also of in-
terest would be to consider a similar approach based on the ospq(1, 2) quantum superalgebra. 
This should give rise to superintegrable Calogero–Gaudin models with ospq(1, 2) symmetry, 
as introduced in [27]. It would also provide a framework to obtain a q-deformation of the 
higher rank Bannai–Ito algebra; see [3,9,13]. We plan to report on these questions in the near 
future.
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