Design of a High Pressure Ratio Fan Stage to
Take Advarntage of Boundary Layer Suction

by
Lawrence M. Smilg
S.B., Massachusetts Institute of Technology (1993)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 1994

© Massachusetts Institute of Technology 1994. All rights reserved.

Author. e
Deparfment of Aeronautics and Astronautics
August 22, 1994

"
Certified DY. .. jvvrcp s e g e s v i e
Professor Jack Kerrebrock

Richard Maclaurin Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by e
Prdfessor Harold Y. Wachman
Chairman, Departmental Committee on Graduate Students

MASSACHUISETTS INSTITUTE
ToTmera gy

SEP 211994

LiBhAMicd

ARCHIve:.

Design of a High Pressure Ratio Fan Stage to Take
Advantage of Boundary Layer Suction
by

Lawrence M. Smilg

Submitted to the Department of Acronautics and Astronautics
on August 22, 1994, in partial fulfillment of the
requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

This thesis presents a design for a high pressure fan stage suitable for use as the
first stage of a commercial next generation high-bypass ratio turbofan engine. The
motivation for a high pressure ratio fan stage is to optimize propulsive efficiency by
matching fan and core exit velocities for the turbofan engine. The high pressure ratio
of the stage is made possible by using suction along the chord of the blade to delay
boundary layer separation. The design was made by using a streamline curvature
program, SC, to compute the fan throughflow, then using MISES, written by Mark
Drela, to design the blade sections and estimate performance.

Thesis Supervisor: Professor Jack Kerrebrock
Title: Richard Maclaurin Professor of Aeronautics and Astronautics

Acknowledgments

I would like to thank Professor Jack Kerrebrock, for guiding me throngh my work
here. I would also like to thank Mark Drela for writing the MISES code that made
this type of design work possible. I would also like to thank the other professors
that have also given me insight in my graduate work: Eugene Covert, Ed Greitzer,
Alan Epsicin, and Jaime Peraire. I cannot give enough thanks to Duncan Reijnen,
my partner and mentor, whom [am leaving behind to see if this stuff really works.
[would like to thank Don Cho, Pam Barry, Yong-Cheng Liang, Don Hoving, Dave
Carr, Dave Underwood, and other students around the GTL who have listened to me
ramble on about some idea or another. I would like to thank my family which has
given me all the support I have needed, and I would like to thank my fiancee Jennifer

Peskin, who has done so much for me, [cannot begin to describe it.

Contents

1 Introduction
1.1 Motivation for high pressureratio
1.2 Usage of boundary layer suction

1.3 Design procedure

2 Streamline Curvature Analysis
21 Purposeofanalysis,, ..
2.2 Structureofcode
23 Coderesults

2.4 Blade section generation

3 Blade Section Design
3.1 MISESdesigncode
3.2 Rotor and Stator blade section choice
3.3 Rotor and Stator blade section design process
3.4 Scoop Height Computation.

3.5 Performance Estimation

4 Summary and Conclusions
4.1 Engine system comparison

4.2 Conclusions and Recommendations for further study

A Source Code For Streamline Curvature Analysis

10
11
18
19

21
21
21

23

26

33

34
35
37
40

43
43
4

146

B Velocity Triangles

C Blade Sections

92

98

- List of Figures

B-5

Schematic of a turbofan engine

Optimum fan temperature ratio for a range of bypass ratios

Thrust per unit of airflow for matched jet velocities

Specific Impulse for matched jet velocities

Thrust per unit of airflow for a range of temperature ratios

Specific Impulse for a range
Boundary layer behavior at

Blade cross section with a b

of temperature ratios
ASCOOP + v v v v e e

oundary laver scoop

r-m coordinate system for streamline curvature analysis

Computation grid for the fa

Duct total Mach number .

0

........................

Diffusion factor across thefan

AVDR across the fan . . .

........................

Duct streamwise Mach number

Blade passage showing throat and flow angles

Stator blade before redesign

Rotor hub velocity triangle

Rotor 1/4 span velocity tria

.......................

........................

ngle oo

Rotor 1/2 span velocity triangle

........................

(=)}

11
11

15
16
16

o
Y

b
o

93
93
94
94
95

B-6 Stator hub velocity triangleo 90

B-7 Stator 1/4 span velocity triangleo 96
B-8 Stator 1/2 span velocity triangleo o0 96
B-9 Stator 3/4 span velocity triangleo o000 97
B-10 Stator tip velocity triangleo 97
C-1 Surface Mach distribution - Rotor hub 98
C-2 Computation grid - Rotorhub 99
C-3 Contour Mach plot - Rotorhubo 99
C-1 Suction side boundary laver thickness - Rotor hub 100
C-5 Surface Mach distribution - Rotor /4 span. 101
C-6 Computation grid - Rotor 1/4span 101
C-7 Contour Mach plot - Rotor 1/4span 102
C-8 Suction side boundary layer thickness - Rotor 1/4 span 102
C-9 Surface Mach distribution - Rotor 1/2span. 103
C-10 Computation grid - Rotor 1/2span 103
C-11 Contour Mach plot - Rotor 1/2span 104
C-12 Suction side boundary layer thickness - Rotor 1/2span 104
C-13 Surface Mach distribution - Rotor 3/4span. 105
C-14 Computation grid - Rotor 3/4span 105
C-15 Contour Mach plot - Rotor 3/4span 106
C-16 Suction side boundary laver thickness - Rotor 3/4span 106
C-17 Surface Mach distribution - Rotor tip 107
C-18 Computation grid - Rotor tip 107
C-19 Contour Mach plot - Rotor tip, 108
C-20 Suction side boundary laver thickness - Rotor tip 108
C-21 Surface Mach distribution - Stator hub 109
C-22 Computation grid - Stator hubo 109
C-23 Contour Mach plot - Stator hub 110
C-24 Suction side boundary layer thickness - Stator hub. 110

-~

C-25 Surface Mach distribution - Stator 1/4span 116

C-26 Computation grid - Stator 1/4span 117
C-27 Contour Mach plot - Stator 1/4span 117
C-28 Suction side boundary layer thickness - Stator 1/4 span 118
C-29 Surface Mach distribution - Stator 1/2span 119
C-30 Computation grid - Stator 1/2span 120
C-31 Contour Mach plot - Stator 1/2span 120
C-32 Suction side boundary layer thickness - Stator 1/2span 121
C-33 Surface Mach distribution - Stator 3/4span 122
C-34 Computation grid - Stator 3/4span 123
C-35 Contour Mach plot - Stator 3/4span 123
C-36 Suction side boundary layer thickness - Stator 3/4 span 124
C-37 Surface Mach distribution - Stator tip 125
C-38 Computation grid - Stator tip, 126
C-39 Contour Mach plot - Stator tip 126
C-40 Suction side boundary layer thickness - Stator tip 127

List of Tables

1.1 Comparison of high pressure fan with current fans 17
3.1 Suction percentage and scoop height 40
3.2 Lossfactors 41
3.3 Streamline efficiency and pressureratio 42

Chapter 1

Introduction

Modern high bypass ratio turbofan engines are made to give a certain level of thrust
while meeting noise standards and using a minimum amount of fuel. To minimize fuel
use, engines are designed with large bypass ratios, to take as much power as possible
out of the core flow and put it into the bypass stream. The highest engine specific
impulse comes when the amount of power taken from the core and put into the bypass
makes the exit velocities of the bypass flow and core flow equal. Current commercial
engine designs do not do this because noise requirements limit them to one stage in
the fan. Using current technology, the pressure rise from a one stage fan cannot give
the fan flow the optimum velocity. Using the technology of boundary layer suction, a
design for a single stage fan will be proposed that gives a high enough pressure ratio
to optimize the propulsive efficiency. This argument is developed in this chapter.

Chapter two describes the streamline curvature analysis which was used to com-
pute the throughflow of the fan.

Chapter three describes the use of MISES to design the blade sections.

Chapter four describes the results of the design, compares it to a current technol-

ogy fan, and gives recommendations for further work.

10

1.1 Motivation for high pressure ratio

One goal in designing a turbofan engihe for a specific use is fuel efficiency. This
goal can be met by increasing two types of efficiencies: thermal cycle efficiency and
propulsive efficiency. For the turbofan/turbojet cycle, the thermal efficiency, n,, is
given by:

Ty

=1- = 1.
n=1 T; (1)

Ty refers to the ambient static temperature, and T3 refers to the static temperature

at the compressor exit. See figure 1-1 for a schematic of the engine locations used in

this chapter.

.

.................... S

inlet fan compressor burner turbine nozzle exit

Figure 1-1: Schematic of a turbofan engine

This thermal efficiency depends only on the compressor temperature ratio. which
is really a function of the overall compressor pressure ratio, m.. As the total pressure
ratio of the compressor increases, the efficiency of the engine rises until the temper-
ature rise of the compressor is so great that it allows no energy to be added in the
burner. This pressure ratio is generally fixed for a given technology, and may also be
set as a function of turbine inlet temperature ratio, ©,, and Mach number to give the
maximum thrust per unit airflow.

Propulsive efficiency, 7,, is defined as the ratio of the power delivered to the vehicle

11

to the net power delivered to the engine flow, given by:

QUO
ue + uo

T = (1.2)

where ug is the flight velocity and u, is the mass averaged exit velocity from the
engine.

As the engine mass averaged exit velocity decreases, the propulsive efficiency in-
creases for a given flight velocity. In a turbofan engine, as more energy is taken from
the core and put into the bypass stream the overall exit velocity decreases, so the
propulsive efficiency goes up. The propulsive efficiency is maximized when the core
and bypass streams have equal exit velocities. Energy can be taken from the core
in two ways: increasing the bypass ratio, a, or increasing the pressure ratio of the
bypass fan. Since commercial engines are limited to a single stage fan, the pressure
ratio available from the fan is critical for efficiency.

The use proposed here for boundary layer suction would be to increase the pressure
ratio of the bypass fan, thus increasing propulsive efficiency. Another advantage of
boundary layer removal from the compressor would be that high entropy air takes
more work to compress in the later stages of the compressor, so overall compressor
efficicncy can be increased by suction. A description of this effect can be found in
(2], and will not be considered here. To find the optimum pressure ratio of the fan,
we must make assumptions about the performance of the other components of the
engine, set the bypass and core velocities equal, then solve for the fan pressure ratio.
If we assume that the fan and core exit nozzles are choked, which is true at cruise,

we get the result:

CptO¢
Tf — Cpceo +(f) (1+a—'7—c) (1_3)
(1) ‘+a (&)
), Fele
f is the fuel to air mass ratio, which is equal to:
C,T,
f= n’; 2[(1 + £)©, — ©yr.] (1.4)

12

It should be noted that «, the bypass ratio, is defined as the ratio of the bypass
mass flow tc the core mass flow. This value would change for an engine utilizing
suction because of mass removal, but I have assumed here that the effects of the
suction on the value of the bypass ratio is small.

In this case, fan thrust is given by:

Fy ug 1 Tgup (Po)]
— =14+ —s=—|1-— 1.5
Mg [’Uo %Mg To ug Ps (1.5)
where:
Tg _ eon

To 1+ %M2

-1
1+7c—1M2= @671'71' e
2 8 pBOdf

@_%‘/Zs.
Up _Mo To

The core thrust is given by:

Fs 1+ f R Tgup Po
1+ f) =8 ttslofy B .
Mg =1+ f) 1+ %Mg R. Ty ug (1 De (1.6)
where:
Ts 9;7’;

Ty, 1+ M2

1=l

Tt
(6o7rd7rc7rb7rt)
Us _ _% /’YtR:Ts
Ug My ¥V ~v.R:To
Total thrust can be computed by adding the fan and core thrusts, and the specific

impulse is given by;

1+

F ao (1+ a) F 1
I=—= - =
grg g ta(l+a)f

(1.7)
Values used here are typical of a next-generation, high-bypass ratio commercial

13

Optimum Fan Temperature Ratio, Non-deal case, choked et

15

1.45F

-
»
T

1.35}

Temperature Rato
@

1.25¢
1.2+ - . . \
115 6 8 12 14 16

10
Bypass Ratio

Figure 1-2: Optimum fan temperature ratio for a range »f bypass ratios

turbofan; My, = 0.8, Tp =222 K, g = 9.8 m/s?, R =287 J/kg K, 7. = 1.4, v = 1.34.
Cpe = 1000 J/kg K, C, = 1130 J/kg K, h = 43,090,000 3/kg, O, = 7.5, = = 30.0,
mq = 0.95, mp = 0.95, Npaty = 0.90, 1, = 0.95, and 7, = 0.9.

Figure 1-2 shows the optimum fan temperature ratio for z range of bypass ratios.
The optimum fan temperature ratio drops as the bypass ratio increases because more
energy is taken from the core flow as the bypass ratio increases, so less work has to
be done on ihe flew tc equalize the flow velocities. A bypass ratio of ten was selected
as typical for a next generation engine.

Figurss 1-3 and 1-4 show the change in thrust per unit airflow and specific impulse
as the bypass ratio changes. These are plotted for matched jet velocities. The thrust
per unit airflow drops as bypass ratio increases because more air is being drawn
through for the s::me amount of energy added. The specific impulse increases because
more energy is being taken from the core as bypass ratio increases.

Figure 1-5 shows how the thrust per unit airflow changes as the temperature ratio
«f the fan is varied for a bypass ratio of ten. The optimum value comes when the
jet velocities are equalized. At fan temperature ratios that are too high, the thrust

drops off rapidly because the core starts losing thrist and eventually cannot provide

14

Thrust for matched velocities
1 v - r - B

o
©
=4

o
[--]
T

=4
o
T

Thrust per unit airflow normalized by a0
o
~

o
[2,)
T

i i e

T4 6 8 10 12 14 16
Bypass Ratio

Figure 1-3: Thrust per unit of airflow for matched jet velocities

Specific Impuise for matched veiocitiss
8600 T Y v v

8400} / 4

sec)
:

-

~

[}

8
1

i 4 i

12 14 16

8 10
Bypass Ratio

Figure 1-4: Specific Impulse for matched jet velocities

15

Thrust at bypass ratio = 10

0.65 . T T - v v

06

o
L)

Thrust per unit airflow nommalized by a0

i i

fos 1.1 1.15 1.2 125 13 1.35 1.4
Temperature Ratio

Figure 1-5: Thrust per unit of airflow for a range of temperature ratios

Specific iImputse at bypass ratio = 10

8000
7500
7000

~ 8500

Impulse (sac
g

5500

g 5000

i

.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
Temperature Ratio

? 4500
4000
3500
a0

Figure 1-6: Specific Impulse for a range of temperature ratios

16

Specific | Specific
Tf Impulse (s) | Thrust

1.15 6722 0.507
1.23 7813 0.589
1.27 8002 0.603

Table 1.1: Comparison of high pressure fan with current fans

enough power to sustain the temperature ratio desired in the fan. Figure 1-6 shows
how specific impulse changes with fan temperature ratio. This plot follows the same
pattern as the thrust variation plot, and has its optimum at the same point.

For a bypass ratio of ten, the optimum temperature ratio is 1.27. Current fans
provide temperature ratios around 1.15. By comparing the thrust and specific impulse
of the fans, we can get an idea of whot sort of advantage is gained by increasing the
fan temperature ratio to optimum. Table 1.1 shows that a nireteen percent increase
in specific thrust and specific impulse is possible. The temperature ratio for the fan
designed here is 1.23. This value gives a sixteen percent increase in specific impulse
and specific thrust. The slightly higher performance of a fan with 7, = 1.27 is not
worth the difficulty of creating a fan to provide the necessary turning.

A disadvantage that would cancel out some of the gains possible in engine size
and fuel consumption is the fact that with a higher fan pressure ratio, the turbine
must be larger to provide enough power to turn the fan. The power required to turn
the fan is given by:

FanPower = amCl, (T — Ti2) (1.8)

Dividing through by amC,.T; gives:

FanPower « (1, — 1) (1.9)

This proportionality tells us that the low pressure turbine must increase in size to
power a fan with a temperature ratio of 1.23 instead of one with a temperature ratio of

1.15. The power required by the fan increases by 53 percent. However, the advantages

17

/

Figure 1-7: Boundary layer behavior at a scoop

of the increase in specific thrust will allow a smaller engine, which should more than

make up for the larger turbine.

1.2 Usage of boundary layer suction

Previous experimental studies of boundary layer suction have shown that beneficial
results can be obtained from suction in the correct places [8]. The suction would
be applied at the point along the suction surface of the blade where the boundary
layer is near separation.‘ It is likely that this would also be near the point where
the passage shock hits the surface of the blade. The pressure rise across the shock
would thicken the boundary layer quickly. A possible advantage that has not been
considered here is that the placement of suction could stabilize the shock position,
reducing unsteadiness and noise in the compressor.

The suction would take the form of a scoop (see figure 1-7). This type of suction
would provide the best means of restarting the boundary layer, since it would almost.
guarantee that none of the air that is sucked off would reenter the flow. Use of a
porous surface or suction holes would create a mixing region, and would not suck off

the boundary layer as cleanly as a scoop.

18

Figure 1-8: Blade cross section with a boundary layer scoop

1.3 Design procedure

The procedure used to design the fan consisted of three parts. The first part was
to choose an engine type, make some assumptions about its performance, and then
compute the fan temperature ratio desired for optimum efficiency. This was done in
section 1.1. The second step in the design was to compute the streamline locations for
a rotor and stator that would perform as computed in the first step. This was done
with a streamline curvature computation, described in chapter 2. These streamline
locations would be used in the third step of the design, described in chapter 3, whick
is to use MISES in the quasi-3D design mode to design the blade cross-sections that
go along the streamline paths previously computed. Once the flow along all the
streamlines has been computed, loss factors and other performance metrics can be
computed. If the design becomes unworkable at any stage of the design process,
iteration at an earlier step would be used to modify the design. A full 3D code
would be used only to validate the findings of MISES, and would not be necessary
as an iteration in the design process because the 3D streamtube interaction has been
accounted for by the streamline curvature code and MISES.

The fan design is intended as one that could be used on commercial jet engines, so

19

there are some limitations on the fan parameters that went into the design. Since the
noise has to be kept low, the rotational speed of the fan is Mach 1 at the tip. Tt would
have been better to make the fan even slower so that the relative Mach number of the
incoming air was below Mach 1, but this was not feasible. The fan is also designed to
give constant work across its span. This is done to keep the design simple. A varying
temperature ratio may be advantageous if, for example, one cannot get the higher
temperature ratio at the hub of the fan, so that the higher temperature ratio is only
used in the bypass flow. Although that could increase the bypass velocity towards
optiinum, mixing after the rotor would degrade the effectiveness of such an approach.

Some limits to the design were imposed in the streamline curvature program.
These could be relaxed with some modifications to the SC code. Outside of the rotor
and stator areas, there is no swirl in the flow. This corresponds to having no inlet
guide vanes, and having the stator return the flow to axial. Both of these conditions
are desirable in the fan stage of an engine. The lack of inlet guide vanes increases
the flow per unit area and reduces noise, and the return to axial flow is used because
any swirl velocity in the bypass flow exit will be energy wasted. The flow quantities
that change through the rotor and stator like enthalpy and entropy were assumed to
change linearly through the rotor and stator.

The position of the scoop and the flow along each streamsurface is found by use of
the MISES solver. This code, as modified by Duncan Reijnen, can predict the effects
of suction on a stream surface that is changing position in a rotating compressor.
The boundary layer solution in MISES can be used to predict separation and loss
generation. Suction is not modeled in the streamline curvature code because the
small amount removed should not have an effect on the streamline curvature. The

modifications to MISES to model suction will be described in chapter 3.

20

Chapter 2

Streamline Curvature Analysis

2.1 Purpose of analysis

After the fan pressure ratio and size were decided upon, the next step was to compute
the streamlines that go through the fan. The streamline curvature analysis would give
an estimate of the turning needed from the streams, the Mach number of the flow,
the diffusion factor on each blade, and the contraction desired from the fan’s duct.
Another important piece of information given by the code is the actual locations
of the streamlines. The quasi-3D analysis done by MISES assumes the flow moves
along a stream tube that is changing its radial position and may be contracting or
expanding. The streamline curvature analysis computed the radial location and width

of the streamtubes that go through the rotor.

2.2 Structure of code

The streamline curvature analysis is done in the r-m coordinate system. The r coor-
dinate refers to the distance from the hub, and the m coordinate refers to the distance
along a streamline. This coordinate system is illustrated in figure 2-1.

The streamline curvature equation (2.1) tells us the change in streamwise velocity
across the compressor annulus in this coordinate system. A derivation of this equation

can be found in [7].

21

rotor stator

Figure 2-1: r-m coordinate system for streamline curvature analysis

10 ;4\ _ Ohy _0s Ovm . v2, 1 0(r*?) v, O
-2-5 ('Um) = 5 - E'. +vm—a—;l-sm¢+ -ECOS(ﬁ— F—ar—' + Ta—Tn. (rvm)tanf.
(2.1)
The term %% (v%) gives the change in velocity across the annulus. The %’ir‘ term

refers to the change in enthalpy across the radius, which is zero for a constant work
fan. The T% term refers to the change in entropy across the annulus, which could
be due to differences in loss from hub to tip. The term vm%ﬂ’;l sin ¢ refers to the
component, of the streamwise acceleration in the r direction. The %cos¢ term is
due to the pressure gradient from streamline curvature. The 5%72%2 term is from
the change in angular momentum across the annulus, which is zero for a constant
work (free vortex) fan. The term 2?5‘—’"—1 (rum) tan € refers to the mean radial pressure
gradient created when the blades are angled in the tangential direction with angle e.
Here it is assumed that the blades have no tangential lean, so this term was dropped
from the code. This is not exactly true as the blades will have some local lean due
to the change in blade cross section from hub to tip. The SC code does compute the

two terms that should vanish for a constant work fan.

To use this equation to compute the change in streamwise velocity across the

22

radius, h;, vg, and s must be specified throughout the flow field. h, is specified so
that it changes across the rotor linearly and is constant everywhere else. s changes
through the rotor and stator by the inclusion of a loss factor, @, which is used to
compute the entropy change [7]. v is computed from the local enthalpy and the

Euler turbine equation 2.2.

Cp (Tee = Tp) = w (reve — ThUs) (2.2)

With equations 2.1, 2.2, and the flow definitions the code computes the change in
velocity across the annulus. However, this does not satisfy conservation of mass. We

must apply equation 2.3 explicitly across the annulus to ensure that mass is conserved.

2 /rT Bl (r) pvp, cos ¢ rdr = 1 (2.3)

H

To solve for the flow through the duct, the code starts at the iniet and marches
downstream. At each meridional station, the code uses equation 2.1 to compute
the change in v, across the annulus. These velocities are then scaled to conserve
mass according to equation 2.3. Then the streamlines are displaced so that the mass
flowing through each streamtube is constant. Then the code returns to the beginning
of this procedure until convergence is achieved at the meridional station. After the
end of the duct is reached, the code iterates down the duct again until the streamlines
converge on a radial location.

Source code for the SC program can be found in appendix A, and details of the

algorithm and solution procedures can be found in references 7}, (10], [6], [9] and [5].

2.3 Code results

The final design selected for the design has a hub to tip ratio of 0.55. The final
computation grid for the fan passage is shown in figure 2-2. The fan duct was designed
to keep the axial Mach number approximately constant, and was finalized by iterating

back and forth between MISES. The major parameters that had to be tested in MISES

23

.- Streamilna Curvature Calcutation’ fg14

~ \Grid
1.60

1.20

I}

80 4

W
Ui
W
[\
\|

AN

A
AAMHTH

AN

LV

(RRRNNRRAN

VAV AT
LAV L

jAmuunununn

.40

-.60 -20 .20 .80 1.00
17 Aug 94 10:37:19

Figure 2-2: Computation grid for the fan

were the numbers of rotors and stators, to change the solidity, and the overall hub to
tip ratio, which would change the amount of turning necessary at the hub. The grid
has 17 radial computation stations (streamlines) and 29 axial 'computation stations.
The turning level chosen for the rotor combined with the hub to tip ratio keeps the
rotor absolute frame exit velocity at the hub subsonic, as shown in figure 2-3.

The diffusion factor for a hlade row measures the loading on a blade, which can
be correlated to losses. The fan diffusion factors computed by SC range from 0.56 to
0.69, as shown in figure 2-4. This level of diffusion would imply unacceptable losses
for a fan that did not use boundary layer control, but since the diffusion factor is
related to boundary layer growth, a scoop that restarts the boundary layer makes
such a high diffusion factor acceptable. The design has 32 rotor blades and 49 stator
blades around the annulus.

Another important parameter computed by SC across the rotor and stator is the
axial velocity-density ratio (AVDR). The AVDR is simply the ratio of the streamtube
area at the fan inlet to that at the fan exit. The greater the AVDR, the more

24

2.80

200 4

1.20 4

.40

4.

ez oo ot o
¥ o

X

L7

-.80

0.7

Figure 2-3: Duct total Mach number

0.68

o o o
8 ® 2
- T —

SC Dittusion factor

o
o
T

0.58

O Rotor

x

0.5& o

0.65

streamiine entrance posmori - hub/tip

Figure 2-4: Diffusion factor across the fan

1.36

1.24

.76

.64

.52

.40

1.8
© Rotor
1.7 x Stator
1.6
1.5
]
S14 \;
X
1.3} N
Y
AY
AY
1.2f .
\)(- ----- <
11 Tvxe L A
-x

0‘.55 0.6 0.65 0.7 0.75 08 0.85 0.9 0.95 1
streamline entrance position - hubtip

Figure 2-5: AVDR across the fan

streamtube contraction there is, and the more risk of choking. This fan has a greater
AVDR than normal because in general, fans are designed to keep the axial velocity
constant, and with a higher pressure ratio than most fans, the streamtubes must
contract more than average. The AVDR across the fan is shown in figure 2-5. The
duct streamwise Mach number is shown in figure 2-6.

SC also computes the velocity triangles for the streamlines in the fan. Five stream-
lines were chosen to be computed in MISES. 1, 5, 9, 13, and 17. These correspond to
the hub, quarter-span, mid-span, three-quarter-span, and the tip streamlines. One-
fourth of the total mass flow passes between adjacent computed streamlines. The
velocity triangles for the rotor and stator along those five streamlines can be found

in appendix B.

2.4 Blade section generation

The SC code contains a procedure that generates blade sections for use with the
MISES analysis program. The blade sections generated are the best guess that SC can

make to approximate the performance necessary for the fan to perform the amount of

26

2.80 -

.640
610
.560
2.00 -
.550
520
.480

1.20 A
.460

.430

.400

-.80 .00 .80 1.60

Figure 2-6: Duct streamwise Mach number

work that is required of the rotor at an acceptable level of loss. For MISES to analyze a
blade section in quasi-3D mode, it needs three files: BLADE.xxx, STREAM.xxx, and
[SES.xxx, where xxx is the file suffix which identifies the blade section. BLADE.xxx
contains the blade cross-sectional geometry, initial inlet and exit fiow angles, and
the distance upstream and downstream of the blades to end the grid. STREAM.xxx
contains the streamtube thicknesses, positions, and rotational speed for quasi-3D
analysis. ISES.xxx contains the global variables and constraints as well as other
numerical parameters that MISES uses.

The blade cross section is generated as an estimate of what blade shape can
produce the required turning levels under the conditions computed by SC. The blade
suape used is known as a multiple circular arc (MCA). The blade is defined by two
arcs that make up the upper surface and a single circular arc tc make the lower
surface. The nose of the blade is a half circle, inclined at the flow entrance angle
(B1) with a zero to negative two degree angle of incidence. The critical consideration

when giving an initial guess at the blade shape was to prevent choking. If the blade

27

Figure 2-7: Blade passage showing throat and flow angles

chokes, no initial solution can be obtained by MISES, so the blade cannot even be
redesigned to allow more mass flow. SC does not check if a blade passage chokes.
Such a calculation is possible, but because SC is a design program, it is quicker to
simply generate blade sections that will not choke, instead of checking for choked
conditions with specified blades.

The critical point where the blade tends to choke (the throat) is where the normal
line across the passage touches the leading edge of one blade and the suction surface
of the blade next to it. The critical design objective is to make this throat width large
enough to pass the incoming mass flow. An analysis using a throat area computation
method shown by Davis and Millar in [1] is done when generating the blades to ensure
that they will not choke. Although the width in the circumferential direction is set
by the spacing, the flow can be turned in the entry region so that the flow angle is
closer to axial and the flow has more normal area to pass through. The critical flow

angle at the throat, O,:, is computed as follows:

x, = ssin(f))

28

+1
41 (1 + 21 (M;)’) -

Y7 el

Streamtube height at the throat, A, is computed by linearly interpolating between

inlet streamtube height, h,, and exit streamtube height, h,.

d, = scos(3;)

Al = d|h|

Amin is the minimum area possible that will pass the required mass flow. I, is
the largest flow angle allowable at the throat that will give at least A,,,, for the flow

to pass through.

Amin =

] 2>

Amin
Bimaez = arccos ()
h.¢8

ﬂt = ﬁma:: - Bl ;ﬂez

Bez is the exit slope of the flow plus a deviation angle which ranged from twenty-
five to forty percent of the desired turning angle, and is computed as follows for thirty

percent deviation:

Pez = B2 — 0.30 (8} -)

29

s .
A= §Sln(ﬁ; + dg)
The beginning slope 3}, and ending slope 3, along with the axial distance A,
gives enough information to define the arc of a circle. If the circle’s center is assumed

to be at (0,0), and the two points of the arc are (zo,40) and (z,,), then:

sin(8;)
sin(3y) — sin(f:)

TIog = —

I, =TI+ A

Y= tan(B))

—_ —I
n= tan(5:)

The rear section of the suction surface is defined similarly, with the arc going from
B, to B.; and the axial distance of the arc given as the remainder of the meridional
chord distance.

The lower (pressure) side of the blade is given as a single arc. This arc has the
beginning and ending points defined exactly, because they have to match the upper
surface endpoints. The inlet slope of this arc is defined to be equal to the slope of the
inlet flow, 3], minus a constant number of degrees. This gives a larger wedge angle
to the underside of the nose, placing some compression on the flow after it passes
through the throat. In the rotor, no wedge angle is added. In the stator, the wedge
angle went from zero to five degrees, depending on the case. With this information,

the center of the circle is found to be at:

30

2 Ay~
- g+ 31 - ol? - Bl
Ie= 2 _ _ 2yi-ye
(:rl Io) tan(3}

v = Ie— Ip
TP tan(B)

The coordinates generated by these arcs are used to make the BLADE.xxx file for
MISES. The STREAM.xxx file is made from the streamtube thicknesses and locations.
The R coordinate is given by the y location of the streamline normalized by the chord.
The value of B, the streamtube thickness is given by taking the difference between
the y position of the two streams above and below the desired streamline. For the
hub and tip streamlines, the streamtube thickness is given by the difference in y of
the stream itself and the next stream towards the interior. Before and after the blade
passage, the streamtube thickness is given to MISES as constant. This is done because
if MISES were given the actual computed stream thickness up and downstream, the
flow would accelerate as it approaches the blade (for subsonic relative Mach numbers)
because of the streamtube contraction, and the mass flow through the blade would
be greater than what it ought to be, thus the inlet plane Mach number would have
to be adjusted for this effect. To get an accurate model of what the flow is like in the
blade passages, MISES is given no stream tube contraction before or after the blade
passage.

The ISES.xxx file, containing the Mach numbers, flow angles, Reynolds number,
boundary conditions, and other parameters dealing with the MISES numerics, is
also generated from information computed by SC. The global constraints and global
variables chosen to be used in MISES were chosen so that the mass flow and entry
angle could vary at the grid edge, but the characteristic is held constant, so there
is no actual work being done before the grid inlet. For these computations, global

constraints 16, 3, 4, and 18 are used. These correspond to the Kutta conditions

31

(continuous pressure) at leading and trailing edges, a fixed inlet flow Mach number,
and the exit static pressure being fixed. The MISES global variables are 1, 2, 5, and
15, which correspond to allowing inlet angle, exit angle, total inlet mass flow, and the

location of the leading edge stagnation point to vary.

32

Chapter 3

Blade Section Design

3.1 MISES design code

MISES, Multiple Interacting Streamtube Euler Solver, is a coupled viscid/inviscid
flow solver that can operate in either design or analysis mode. The inviscid flow
is solved using the steady Euler equations, and the viscous portion of the flow is
solved using integral boundary layer equations that march downstream. The Newton-
Raphson linearization technique is used to solve the inviscid flow equations. The
results from the inviscid flow are used to compute a boundary layer. The inviscid flow
is then displaced by the boundary layer displacement thickness, §°, and the program
will iterate in this fashion until a solution is converged upon. The three dimensional
effects of streamtube contraction and rotation are included in the MISES calculations.

In analysis mode, the code will take a blade of a given geometry and boundary
conditions, and compute the Mach and pressure distribution in the flow, as well as
loss and shock information. In the design (inverse) mode, the code will take a given
surface Mach number distribution and modify the blade geometry to minimize the
error from that distribution. The code will also operate in a mixed mode, where
part of the blade has the geometry specified, and the rest of the blade has the Mach
number specified.

Details of how MISES works can be found in previous works [3] [11].

The modification to the code that was made for this work was an addition of

33

suction effects, done by Duncan Reijnen. Suction on a blade would have two effects:
delay of boundary layer separation and mass removal. The delay in separation has
been modeled through a reduction in the momentum thickness, 6 over a few grid
points in the domain. MISES applies three equations to compute the boundary
layer: the Von Karman integral momentum equation, a shapc factor equation derived
from the integral kinetic energy equation, and a dissipation lag equation in turbulent
regions. In laminar regions, a transition equation replaces the dissipation lag equation.
These equations and derivations of them can be found an appendix B of Youngren's
report [11]. These equations are solved by logs, and if their residual is driven to a
factor instead of to zero, this simulates a reduction of the boundary laver momentum
thickness, 8. The reduction of 6 reduces the boundary layer thickness and shape
factor, defined as H = §°/6. A reduced shape factor is indicative of a boundary layer
that has a fuller profile and is less likely to separate. The mass removai is modeled
by subtracting the height of the scoop from the height of the blade. This can result
in a negative blade thickness at the blade trailing edge and grid overlap in the wake
zone behind the blade. The mass flow that is in the overlapping zone is considered

to have been removed.

3.2 Rotor and Stator blade section choice

The initial blade section choice was to use a double circular arc (DCA) blade. A
DCA blade is defined by a circular arc that makes up each of the bottom and top
surfaces. The arcs were created by drawing a circular arc with the inlet flow angle
as the incoming angle and the exit flow angle plus a deviation as the exit arc angle.
This arc gave the beginning and ending points of the blade, and then by assuming a
midspan thickness, a third point was placed on the top and bottom surfaces. These
points would define the arc for each of the top and bottom surfaces. This design
ended up being generally unanalyzable. The blades would choke, and MISES would
be unable to converge on a solution. This happened because the incoming flow would

be deflected upward, away from the axial direction, thus reducing the effective flow

34

area. The streamtube contraction also reduced the flow area, and since the Mach
numbers were generally near one, the flow choked easily. The next attempt was
to eliminate the flow compression on the upper surface in the entry region of the
blade h. Jore the throat. This was done by making that entry surface straight, then
making a circular arc for the rear portion of the upper surface, and another aic for the
lower surface. This blade still choked, because although the flow width was constant,
causing no contraction, the streamtube contraction in the spanwise direction was still
too great for the flow to tolerate without choking. The design used for this fan has
a multiple circular arc (MCA) geometry, as described in section 2.4. The flow in the

inlet region turns toward the axial direction so that the flow does not choke.

3.3 Rotor and Stator blade section design process

Once the necessary files are created by SC, computation grids must be generated
for the blade sections. The grid type used was the standard grid, as opposed to the
other grid option in the MISES grid generator, known as the offset-periodic grid. The
offset periodic grid has separate blocks for each part of the blade, so the normal grid
lines are more perpendicular to the flow direction. This makes the grid blocks more
rectangular, so the shock resolution is better and the computation is smoother around
the leading edge of the blade. The drawback of the offset-periodic grid type is that it
takes approximately 5 times longer to solve a case than on the standard grid because
the matrix that is made by MISES has a larger bandwidth (more nonzero diagonals).
The standard grid was used, and it seems that the results were satisfactory. Some
extra points were clustered around the nose by changing the curvature weighting
exponent in the grid generator to 0.8.

These sections were then analyzed in MISES. The first step was to compute the
solution with the given blade and no viscosity. MISES solves the Euler equations
for the flow, accounting for the 3D effects (rotation, streamtube contraction and
displacement). The boundary layer displacement is zero for the inviscid analysis.

After the quasi-3D inviscid solution was found for the MCA blade, redesign would

35

STATOR STREAM 09

1.6 rwises
v 2.0 MACHI = 0.726
BETAl = S0.11 BETR2 = 4.25
1.4 P2/P1 = 1.2199 (@R/V1 = 0.0000
Wwave * 0.0736 w + 0.0736
1.2
M
1.0
0.8 /
0.6 H \/—'—_‘
0.4 '
0.2
0.0% .

Figure 3-1: Stator blade before redesign

be done if the blade Mach profile seemed poor. For example, if the stator had a
strong shock, it would be redesigned to make the shock weaker. An example of a
blade section needing redesign is shown in figure 3-1. In that case, the shock that
had {ormed was removed by a camber redesign. The code eliminated the acceleration
that led to the shock By flattening the camber line. To redesign the blades, the
Mach profile was modified to be smoother, then MISES was ran in mixed-inverse
design mode, with global variables and constraints 11, 12, 13, and 14 selected. When
iterating in design mode, the blade geometry would be changed to make the computed
Mach profile match the input Mach profile.

After that redesign, a viscous solution would be computed. To make the solution
easier, suction was added in a position estimated to do the most good. It there was
a strong shock in the flow, suction would be near the shock position. If there was no
shock, the' suction would be placed at approximately 70-80 percent chord to allow the
boundary layer to restart after the suction and prevent separation as the flow goes

toward the trailing edge. The reduced wake thickness greatly decreases the computed

36

loss. The placement and strength of the suction would be modified if necessary.

The last step in the design is to make sure the blade turns the flow to the correct
angle, which would be the angie output by SC. The turning of the blade was driven
to the correct value by choosing constraint 2, output flow angle, and variable 27,
a pattern of geometry variation allowing the trailing edge to move. MISES would
modify the geometry of the trailing edge to make the overall turning match the input
value. The total temperature ratio (work) of the blade is then guaranteed to be correct.
because the input and output flow match the values given by SC. This step had to be
applied one iteration at a time, because the calculation seemed to be unstable in this
mode. After applying one iteration allowing the trailing edge to move, the geometry
would be frozen, and the solution reconverged. This allowed the blade to be modified
so that the flow exit angle would be within 2 degrees of the desired angle.

The streamline mach plots and suction side boundary layer thicknesses are given

in appendix C.

3.4 Scoop Height Computation

The results presented here do not include the mass removal effects that were described
in section 3.1. This is due to the fact that the solver did not behave very well when
the scoop height was added into the computation scheme. The procedure attempted
was to complete a design as described previously, then to write out the modified blade
geometry file, compute the scoop height, generate a new grid, then recompute the
solution. Unfortunately, the solution would generally not reconverge. One possible
problem is the technique used to model the scoop. In the grid generator, the user is
asked for the scoop height, but not where the scoop is placed. The program simply
thins the blade linearly along the span until the full scoop height is reached at the
blade trailing edge. When running the solver, the user is again asked for the scoop
height, but this time, the program knows where the scoop is. A better approach
would have the user specify only the percentage of 6* or 8 to remove, then have the

code compute the proper scoop height and displace the inviscid flow by an additional

37

amount to model the scoop mass removal.

The method used to compute the proper scoop height depends on a given profile,
known as Cole’s profile, which is that used by Drela in his code [4]. The profile has an
assumed slip velocity at the wall, and increases to the freestream velocity at the edge
of the boundary layer as the sine function. All of the equations that follow are in the
MISES code. These were used tc compute u,, the wall slip velocity normalized by the
edge velocity, as a function of nondimensional displacement thickness, nondimensional

momentum thickness, Reynolds number, and boundary layer edge Mach number.

6‘
H=> (3.1)
H — 0.20M2
He = T roamme (3.2)
Reg = ORe, (3.3)
400
H,=30+ R_eo- (3.4)
H, - H;

H,- = m (35)
H—05H2L+15 (3.6)
*TUUUTH 405 0 '

u, = 0.15H, (3.0 - 4.051%1'9) (3.7)

The following relations allow 4, 6, and the velocity throughout the boundary layer

to be computed.

1.72 .
d=20 (3.15 + -I-_I-k_—lo) +46 (3.8)

38

6 = /0°° (1 - f) id:c (3.9)

u /r

- (3-) = (1 - u,)sin (6 ;) + u, (3.10)

By substituting the velocity function into the integral, we get:

6 = /[l—u sm(ag) (lu;’) cos(é) O5+2u,-—00u]d§ (3.11)

If we integrate this from zero to one we get an expression for theta of this profile.

6=(1-ul) % — (0.5 - 2u, +0.5u2) (3.12)

The suction scoop is assumed to remove the lower portion of the boundary layer to
reduce € by a given amount. The suction leaves the top fraction of the boundary layer,
with the height of the part remaining equal to (1 — p,) 8 where p, is the percentage of
6 that is removed. We integrate 6 from % to one and set that equal to the remainder

of 6.

(1-p,)0= (1 - u2) Zcos (6 2) gl—_z—f-’-z—sm (6)—(0.5 — 2u, +O.5‘uf) (l - %)
(3.13)

This can be solved iteratively for ¥ and that, multiplied by 4, gives the necessary
scoop height to remove the desired portion of the momentum thickness.

The computed scoop heights and the suction locations are given in table 3.1. The
mass percentage refers to the amount of the passage mass flow that is taken in by
the scoop. The amount of mass sucked in by the scoop was estimated by taking the
percentage of the passage width that was blocked by the scoop, and multiplying by
the average velocity in the boundary layer, which is 1‘-‘2*—‘ The mass averaged amount

of mass removed in the rotor is 3.8 percent, and the average amount of mass removed

39

Suction Suction Scoop Mass
Streamline | Amount (% 6) | Position (%x/c) | Height (x/c) | Percentage
Rotor hubt - - - -
Rotor 1/4 span 75 55 0222 3.4
Rotor 1/2 span 75 40 .0279 3.2
Rotor 3/4 span 75 40 .0521 4.9
Rotor tip 50 40 .0386 3.4
Stator hub 50 70 .0379 8.7
Stator 1/4 span 50 75 .0379 7.2
Stator 1/2 span 50 80 .0501 8.3
Stator 3/4 span 75 80 .0507 8.2
Stator tip 85 80 .0549 8.5

T The rotor hub was not converged, so no suction was found.

Table 3.1: Suction percentage and scoop height

of the inlet mass.

3.5 Performance Estimatiqn

in the stator is 8.1 percent. This gives an overall stage mass removal of 11.6 percent

The loss is estimated by computing the loss along each streamline, then mass aver-
aging. Although the total temperature ratio should be the same on each streamline,
the losses and thus the total pressure ratio may differ as the hub section of the rotor
has to do more turning of the fluid since it has a lower blade speed, for example. The

loss factor on each streamline is the sum of the viscous and inviscid (shock) losses.

Stage efficiency, 7, is related to the loss factor by the following equation [7]:

Ne=1-—

~1 [t Py — P,
77—(% (1—,7;;) +wc(1—-,;;;))

Pry
P,

Ts_'l

y—=1, 12 =

2

40

(3.14)

APTc _ (1 + ’)’_—'].MQ)W_ET
P 2 ¢

From equation 3.14, we can compute the stage efficiency along each streamline.
Then the stage pressure ratio, m. and polytropic efficiency, ny., are computed from

the following:

=1
7rc1 -1

1
Tc— 1 (3.15)

ne =

=1
7rc7 -1
e =~

n,
7rcp—

(3.16)

The loss factors for each streamline are shown in table 3.2, and the efficiencies are

shown in table 3.3.

Loss Inlet
Streamline | Factor | Mach
Rotor hub | .0300 (est) | 0.738

Rotor 1/4 span .0199 0.889

Rotor 1/2 span .0349 1.004

Rotor 3/4 span 0474 1.095

Rotor tip .0658 1.173
Rotor Average 0375
Stator hub .0356 0.919

Stator 1/4 span .0234 0.848

Stator 1/2 span .0280 0.800

Stator 3/4 span 0319 0.764

Stator tip 0277 0.735
Stator Average .0287

Table 3.2: Loss factors

41

Streamline | 7 e Te Tholy
Hub | 1.23 | 0.953 | 1.95 | 0.953

1/4 span | 1.23 | 0.969 | 2.017 | 0.969
1/2 span | 1.23 | 0.948 | 1.995 | 0.953
3/4 span | 1.23 | 0.934 | 1.976 | 0.940
Tip | 1.23 | 0.919 | 1.957 | 0.926
Average | 1.23 | 0.945 | 1.991 | 0.950

Table 3.3: Streamline efficiency and pressure ratio

42

Chapter 4

Summary and Conclusions

4.1 Engine system comparison

The baseline fan used for design comparison has a total temperature ratio of 1.15,
a hub to tip ratio of 0.5, and a polytropic efficiency of 0.90. The fan designed here
has a total temperature ratio of 1.23, and a hub to tip ratio of 0.55. The average
computed polytropic efficiency is 0.95. Using the other engine parameters defined in
section 1.1, the computed gain in specific impulse is 17.6 percent and the computed
gain in thrust per unit of airflow is 22.9 percent. Even if the losses are actually higher
than computed, and the average polytropic efficiency is only 0.90, the gain in specific
impulse is 16.2 percent and the gain in thrust per unit airflow is 16.2. If ihe 7.0
percent reduction in fan area and the 11.5 percent mass removal are accounted for,
the increase in thrust per unit diameter is 18.9 percent for the high efficiency case
and 13.3 for the lower efficiency fan.

Although most of the performance gain comes from the increase in fan work, the
reduction in loss also helps the overall system performance. The reason that a fan
using suction can get lower loss with higher turning is that the viscous losses mostly
show up in the wake, but the suction reduces the size of the wake, so the losses do

not enter the flow.

43

4.2 Conclusions and Recommendations for fur-

ther study

The design system used in this work is a very convenient and powerful mechanism for
the design of turbomachinery. The combination of the streamline curvature code that
can quickly generate a streamline pattern and velocity triangles given the amount of
work and duct geometry with a fast quasi-3D solver with redesign capability allows
an experienced user to get a preliminary design for a fan stage in less than a day. On
the RS/6000 model 590 a streamline would take less than 2 minutes to converge on
an initial solution, and each redesign or adding the boundary layer to the biade takes
about the same amount of time.

The major problem with the design system is the lack of a dependable means
for modeling the suction mass removal. A better process would be to integrate the
scoop height calculation into MISES, and displace the inviscid flow by the correct
amount. This would eliminate the need to find the boundary layer profile before
the computation grid is generated. The means for inviscid flow displacement and
boundary layer profile computation are already in the MISES code. It would also be
desirable to integrate the suction position and strength parameters into the ISES.xxx

file, instead of prompting the user for the information before each set of iterations.

_ The biggest fault in the design presented here is the unconverged solution at the |

hub of the rotor. It is possible that the high turning level at the hub causes an un-
steady flow situation to exist, which MISES, a steady flow solver, cannot model. A
more detailed 2D computational study would attempt to calculate the rotor perfor-
mance at the hub.

Another useful task would be to validate the design system with a full 3D calcu-
lation of the rotor-stator flow. Ideally, the flow would be computed with both viscous
effects and suction included. Modeling viscosity or suction alone would not be pro-
ductive, because if only viscosity were modeled, be boundary layer behavior would
be much different, and there is no usefulness in modeling the suction without the

viscosity. An 3D inviscid analysis could be done to validate the streamline locations

44

by adding the displacement thicknesses computed by MISES to the blade surface.
The ultimate design validation would be to build the stage as described and test
it. This could be done in a facility like the Blowdown Compressor ai the MIT Gas
Turbine Lab. Flowfield measurements that provided total temperature data would
determine whether the fan really performs as designed. If the data showed that the
flow was separated, that would imply that the suction was modeled incorrectly and

it did not work as well as predicted in delaying separation of the boundary layer.

45

Appendix A

Source Code For Streamline

Curvature Analysis

Main Program - main.f

include ’vars.inc’

C sc.f begun 1/31/94, retyped 3/2/94
C By Larry Smilg

C This program calculates the axisymmetric throughflow though a fan.

C Entropy, Total Enthalpy, and geometric blockage
C must be defined in defs.f as functions of y and z

C Y is the radial direction and denoted by numr, and loop i
C Z is the axial direction and denoted by numm, and loop j

C The geometry is defined by the placement of the top and bottom
C streamlines. They do not move.

C The velocity along a streamline is calculated by a streamwise

C equation of motion, and the radial (Y) position of the stream is

C computed by calculating conservation of mass between the streams.
C The Z position of each station does not move.

C Initialize variables and matrices
call initial

tol = 0.001

C When iterlim is set to zero, initial conditions can be examined
if (iterlim .eq. 0) goto 20

9 iter=20

46

10

20

C Loop through the iterations
10 continue
iter = iter + 1

errtot = 0.0

C Set up the old matrices for each position
do j = 1,numm
do i = 1l,numr
yold(ij) = y(iJ)
vmold(i,j) = vm(i,j)
end do
end do

C Compute inlet boundary
call inlbc
do j = 2,numm-1

C Cornpute state variables
do i = 1,numr
call comstate
end do

C Find Vm across the passage with discretized eqn of motion
call findvim .

C Adjust computed velocities to conserve mass, then adjust positions
C This procedure loops if necessary

call adj
end do
C Update exit boundary (nonreflective)
call exitbc

C update y positions by the relax factor
do i = 1,numr
do j = 1,numm
errtot = errtot+(y(i,j)—yold(i,j))**2
y(ij) = yold(i,j) + relax*(y(ij)—yold(i.j))
end do
end do

rmserr(iter) = sqrt(errtot / (numr*numm))

tol = rmserr(iter)

write(6,931)’RMS error:’ rmserr(iter),’ massflow: ’,
x mdotin,’ at iteration ’,iter

if (iter.lt.iterlim) goto 10

931 format(a,gl5.6,a,(8.3,a,i4)

47

20 continue

C Use GRAFIC to look at the data
call output
if (iterlim.gt. 0) goto 10
write(6,*) 'BYE BYE!’

end

Varable declarations - vars.inc

implicit none

integer maxr,maxm
parameter(maxr=33,maxm=256)

real*8 y(maxr,maxm),z(maxr,maxm)
integer numr,numm
common /grid / y,z,numr,numm

real ytip,ttf,rosta,roend,ststa,stend,psrat,omega
common/ fan / ytip,ttf,rosta,roend,ststa stend,psrat,omega

real rlossfac,slossfac,rthick,sthick,rhubtc,rtiptc,shubtc,stiptc
integer nrot,nstat

common /perf / rlossfac,slossfac,rthick,sthick,nrot,nstat,
& rhubtc,rtiptc,shubtc,stiptc

real*8 mto(maxr,maxm),mm(maxr,maxm),mth(maxr,maxm)

real*8 vto(maxr,maxm),vm(maxr,maxm),vth(maxr,maxm)

real*8 t(maxr,maxm),tt(maxr,maxm),pt(maxr,maxm),p(maxr,maxm)
real*8 rho(maxr,maxm),beta(maxr,maxm},a(maxr,maxm)
common/ stat / mto,mm,mth,vto,vi,vth,t,tt,p,pt,rho,beta,a

real*8 vthrel(maxr,maxm),vtorel(maxr,maxm),mtorel(maxr,maxm)
real*8 mthrel(maxr,maxm),aastar(maxr,maxm),aainl(maxr,maxm)
real*8 betarel(maxr,maxm),ptrel(maxr,maxm),ttrel(maxr,maxm)
real*8 anormrel(maxr,maxm),htrel(maxr,maxm),aastinl(maxr,maxm)
real*8 anorm(maxr,maxm),ar(maxr,maxm)

common /relst/ vihrel,vtorel,mtorel,mthrel,aastar,betarel,
& ptrel,ttrel,aainl,anormrel,htrel,aastinl,anorm,ar

real*8 phi(maxr,maxm)
real*8 rcinv,rc,drdz,drdz2,dr,dz
common /geom / rcinv,rc,phi,drdz,drdz2,dr,dz

integer iter

real*8 errtot,rmserr(10000)
common/ errs / errtot,rmserr,iter

48

real*8 tol,visc
common/ crap / visc,tol

real*8 mdotcalc,mdotstr(maxr—1),mdotin,dmdwmo,wmo
common/ mass / mdotcalc,dmdwmo,wmo,mdotstr,mdotin

real cp,r,g,patm,tatm,tcru,pcru,mcru,minlet
common/ cond / cp,r,g,patm,tatm,tcru,pcru,mcru,minlet

integer iterlim,i,j,k
real relax
common/ run / iterlim,relax,i,j,k

real*8 yold(maxr,maxm),vmold(maxr,maxm)
common/ old / yold,vmold

logical masschk
common/ chk / masschk

real*8 x1,x2,x3,y1,y2,y3,xr,yr,rds
common/ circ / x1,x2,x3,y1,y2,y3,xr,yr,rds

integer plottype,indgr,ncont
real cont(200)
common/ plot / plottype,indgr,ncont,cont

Function definitions - fns.inc

real*8 s,ht,w,bl,masscomp

Flowfield initialization - init.f

C Initialize variables and read in grid
subroutine initial

include ’vars.inc’
include ’fns.inc’

character*4 id
character*12 grname,dfname
real yy(maxr,maxm),zz(maxr,maxm)

C define some constants

cp = 1003.0
r = 287.0
g=14

C define inlet conditions

49

C Initialize the velocity, the geometries and the streams 20

write(6,*) ’Enter the four character file ID: °’
read(5,1000) id
1000 format(a4)

grname(1:4) = id
grname(5:12) = ’grid.dat’
dfname(1:4) = id
dfname(5:12) = 'data.dat’
30
C Initialize GRAFIC
call grinit(5,6,”Streamline Curvature Calculation: ’//id)

open(3,file=dfname,status='01d’)
read(3,*) numr,numm

read(3,*) rosta,roend
read(3,*) ststa,stend

read(3,*) ttf,minlet
read(3,*) omega 40
read(3,*) patm,tatm

read(3,*) mcru

read(3,*) rlossfac,slossfac

read(3,*) rhubtc,rtiptc

read(3,*) shubtc,stiptc

read(3,*) nrot,nstat

read(3,*) plottype

close(3)

open(2,file=grname,status=’0ld’) 50
do i = 1,numr
do j = 1,numm
read(2,*) z(i,j),y(i4)
end do
end do
close(2)

C define cruise static pressure and temperature
peru = patm*((1+(g—1)/2*meru**2))**(g/(g-1))
teru = tatm*((1+(g—1)/2*mcru**2)) 60

write(6,*)

50 format(A,F8.4)
dr = abs(y(1,1)-y(numr,1))
write(6,50)’dr = ’ dr
dz = abs(z(1,numm)-z(1,1))/(numm-1)
write(6,50)’dz = ’,dz

relax = 1.0/(1.0+.17*.36%dr**2/dz**2) 70

write(6,50) 'Optimum relax factor set at’,relax
write(6,*)

50

C Initialize state of matrix
do j = 1,numm
do i = 1,numr
tt(ij) = ht(yold(i,j),z(iJ))/cp
pt(ij) = peru*(tt(i,j)/tcru)**(g/(g—1))*
x exp(—1.0*s(i,j)/r)
if (j .le. rosta) then
C flow before rotor — no swirl
vth(i,j) =0
else if (j .le. rcend) then
C flow in rotor — Apply euler eqn
vth(i,j) = cp*(tt(ij)—tt(i,1))/(omega*y(iJ))
else if (j.le.ststa) then
C flow between rotor & stator — ang. mom. is same as rotor outlet
vth(ij) = vth(i,roend)*y(i,roend)/y(i.j)
else if (j.le.stend) then
C flow in stator — vth decreases linearly
vth(i,j) = vth(i,roend)*(1.0-w(z(i,ststa),
& z(i,j),z(i,stend)))
else
C flow after stator — axial
vth(ij) =0
end if

mth(i,j) = vth(i,j)/sqrt(g*r*275.0)

mm(i,j) = minlet
mto(i,j) = sqrt(mm(i,j)**2+mth(i,j)**2)

t(ij) = tt(i) / (1+(g—1)/2*mto(i,j)**2)
p(ij) = pt(iJ) / (1+(g—1)/2*mto(ij)**2)**(g/(g~1))
a(ij) = sqrt(g*r*t(ij))
vto(ij) = a(i,j)*mto(i,j)
vm(i,j) = a(i,j)*mm(i,j)
beta(i,j} = atan(vth(i,j)/vm(i,j))
rho(i,j) = p(ij)/(r*t(iJ))
vthrel(i,j) = omega*y(i,j)—vth(i,j)
vtorel(i,j) = sqrt(vm(i,j)**2+vthrel(i,j)**2)
mtorel(i,j) = vtorel(i,j)/a(i,j)
htrel(i,j) = ht(y(i,j),z(i,j))+vtorel(i,j}**2/2.0
betarel(i,j) = atan(vthrel(i,j)/vm(i,j))
beta(i,j) = atan(vth(i,j)/vm(i,j))

end do 4

end do

C Compute the initial mdot. This is conserved down the stream
C This assumes straight flow at constant speed and density

mdotin = 0.0
i=1
do i = 2,numr
mdotin = mdotin + masscomp(i—1,i)
end do

51

80

90

100

110

120

write(6,50)’Initial mdot in: ’,mdotin
write(6,¥)

write(6,*)’ Enter number of iterations:’
read(5,*) iterlim

return
end

130

State computations - state.f

C Apply the streamline curvature equation to compute vm variation
C This is done in relative coordinates inside the rotor

C This works from the center streamline velocity outward to the hub
C and tip. The center streamline velocity does not change.

subroutine findvin

include ’vars.inc?
include ’fns.inc’

real*8 dhtdr,tdsdr,acc,cent,swirl,change,dm,rotfram
integer aa,bb,center

center = (numr+1)/2

do i = center—1,1,—-1
aa =i+l
bb =i

dm = sqrt((y(iJ) -y (ii—1))**2+(z(i)-z(i,-1))**2)
x +sqrt((y(ij+1)-y(id))**2+(2(i+1) —z(i)) **2)
dr = y(aa,j)-y(bb,j)

dhtdr = (ht(y(aa,j),z(aa,j))—ht(y(bb,j),z(bb,j)))/dr

swirl = ((y(aa,j)*vth(aa,j))**2~(y(bb,j)*vth(bb,j))**2)
x [(2*y(i,j)**2*dr)

tdsdr = t(i,j) / dr * (s(aa,j)—s(bb,j))

acc = vm(i,j)*sin(phi(i,j)) /dm*(vm(ij+1)-vm(i,j—1))

cent = (vm(i,j)**2)*rcinv*cos(phi(i,j))

change = dhtdr—-tdsdr+acc+cent—swirl
vm(i,j) = sqrt(vm(i+1,j)**2—-2*change*dr)
C vm(i,j) = vmold(i,j) + 1.0*(vm(i,j)—vmold(i,j))
end do
doi= center+l;numr
aa =i
bb =i-1

dm = sqrt((y(ij)-y(ij—1))**2+(z(ij)-2(ii-1))**2)

52

10

20

30

40

x +sqrt((y(ig+1) -y (i) **2+(2(i.j+1) -2(i4)) **2)
dr = y(aa,j)—y(bb,j)

dhtdr = (ht(y(aa,j),z(aa,j))-ht(y(bb,j),z(bb,j)))/dr

swirl = ((y(aa,j)*vth(aa,j))**2—(y(bb,j)*vth(bb,j))**2)
x / (2*y(i,j)**2*dr)

tdsdr = t(i,j) / dr * (s(aa,j)—s(bb,j})

acc = vm(i,j)*sin(phi(i,j))/dm*(vm(i,j+1)—vm(i,j—1))

cent = (vm(i,j)**2)*rcinv*cos(phi(i,j))

change = dhtdr—tdsdr+acc+cent—swirl
vm(i,j) = sqrt(vm(i—1,j)**2+2*change*dr)

C vm(i,j) = vmold(i,j) + 1.0*(vm(i,j)—vmold(i,j))
end do

end

C———=

C Compute the new values of the thermodynamic state variables
subroutine comstate

include ’vars.inc’
include 'fns.inc’

real*8 mtp,ainl,height,htinl,astar,aast,astarinl
real*8 mguess,aastmg,dadm,mng
real*8 spacing,soffset,block

tt(i,j) = ht(yold(i,j),z(iJ))/cp
31 format(a,f9.3)
32 format(a,f9.3,9.3)

if ((j.le.roend).and.(j.ge.rosta)) then
ttrel(i,j) = tt(i,1)+omega**2*y(i,j)**2/(2.0*%cp)

vth(i,j) = cp*(tt(ij)—tt(i,1))/(omega*y(i,j))
vto(i,j) = sqrt(vth(ij)**2+vm(i,j)**2)
vthrel(i,j) = vth(i,j) — omega*y(i,j)
vtorel(i,j) = sqrt(vthrel{(i,j)**2+vm(i,j)**2)

t(i,j) = ttrel(i,j)--vtorel(i,j)**2/(2.0*cp)
a(i,j) = sqrt(g*r*t(iJ))

mthrel(i,j) = vthrel(i,j)/a(ij)
mth(i,j) = vth(i})/a(iJ)
mto(i,j) = vto(ij)/a(i)
mtorel(i,j) = vtorel(i,j)/a(i,j)
mm(ij) = vm(ij)/a(i)

ptrel(ij) = peru*(ttrel(i,j)/teru)**(g/(g-1))*

53

& exp(—1.0*s(i,j)/r)
pt(ij) = peru*(tt(ij)/tcru)**(g/(g—1))*
& exp(—1.0*s(i,j)/r)
lp(ixi) = ptrel(ij) / (1+(g—1)/2*mtorel(i,j)**2)**(g/(g—1))
C Fl;w is not in the rotor

if (j .le. rosta) then
C flow before rotor — no swirl
vth(i,j) =0
C else if (j .le. roend) then
C flow in rotor — Apply euler eca
C vth(i,j) = cp*(tt(i,j)—tt(i,1))/(omega*y(iy))
else if (j.le.ststa) then
C flow between rotor & stator — ang. mom. is same as rotor outlet
vth(i,j) = vth(i,roend)*y(i,roend)/y(i,j)
else if (j.le.stend) then
C flow in stator — vth decreases linearly
vth(i,j) = vth(i,roend)*(1.0—w(z(i,ststa),

& z(i,j),z(i,stend)))
else
C flow after stator — axial
vth(i,j) =0
end if

vto(i,j) = sqrt(vth(ij)**2-+vm(ij)**2)

pt(ij) = peru*(tt(i,j)/tcru)**(g/(g—1))*exp(—1.0*s(i,j)/r)
t(i,j) = tt(i,j)—vto(i,j)**2/(2.0%cp)
a(i,j) = sqrt(g*r*t(i,j))
mto(i,j) = vto(ij)/a(i,j)
mth(i,j) = vth(i)/a(i)
mm(i,j) = vm(i,j)/a(iJ)
p(i) = pt(i) / (1+(g-1)/2*mto(ij)**2)**(g/(g-1))
mthrel(i,j) = mth(i,j) — omega*y(i,j)/a(i,j)
mtorel(i,j) = sqrt(mthrel(i,j)**2+mm(i,j}**2)
end if

rho(i,j) = p(ij)/(r*t(i))
beta(i,j) = a.ta.n(vth(l,J)/vm(i,J))
betarel(i,j) = atan(mthrel(i,j)/mm(i,j))

drdz = 0.5*((yold(i,j+1)—yold(i,j))/ (z(i,j+1)—2z(i,j))+

x (yold(ij)—yold(i,j—1))/(z(i.j)—z(ij-1)))

drdz2 = 2.0/(z(i,j+1)-z(i,j—1))*((yold(i,j+1) —yold(i,j)) /
x (z(ij+1)—z(ij)) — (yold(ij)—yold(ij-1)) /

x (2(i))-z(ij-1))) ‘

phi(i,j) = atan(drdz)

if (i.eq.1) then

ar(ij) = 3.14159*(y(2,§)**2-y(1)**2)*bl(y(i,j),2(i.i))
else if (i.eq.numr) then

ar(i,j) = 3.14159*(y(id)**2-y(i—1,§)**2)*bl(y(iJ),2(ij))
else

54

100

110

120

130

140

ar(i,j) = 3.14159*(y(i+1,j)**2—y(i—1,§)**2)*bl(y(i,j) z(i,j))
end if

anormrel(i,j) = ar(i,j)*cos(betarel(i,j)) *cos(phi(i,j))
anorm(i,j) = ar(i,j)*cos(phi(i,j))

rcinv = drdz2 / (1.0 + drdz**2.0)**1.5

real*8 function masscomp(il,i2)
include ’vars.inc’

integer i1,i2
real*8 bl
real*8 rhoav,phiav,vmav,yav,ds,ma

rhoav = (rho(il,j)+rho(i2,j))/2.0
phiav = (phi(il,j)+phi(i2,j)) /2.0
vmav = (vm(il,j)+vm(i2,j))/2.0
yav = (y(il,j)+y(i2,j))/2.0

ds = bl(yav,z(i1,j))*3.14159*cos(phiav)*(y(i2,j)**2—y(il,j)**2)

ma = rhoav*vmav*ds
masscomp = ma

return
end

150

160

170

Streamline position and velocity adjustment - adj.f

subroutine adj

C adjust all streamline velcities to conserve overall mass,
C then adjust streamline positions to conserve streamtube mass

30

real*8 rhoav,phiav,vmav,mmav,yav
real*8 scale,ds,oldscale,screl

include ’vars.inc’
include ’fns.inc’

oldscale = 5.0
screl = 1.0

continue
wmo = vm((numr+1)/2,j)

mdotcalc = 0.0
dmdwmo = 0.0

55

10

if(y(numr—1j).gt.y(numr,j)) then
C scale velocities to put y values back into duct

scale = 0.1

else
C Sum mdot and d(mdot)/d(wmo)

do i = 2,numr
rhoav = (rho(i,j)+rho(i—1,))/2.0
vmav = (vm(i,j)+vm(i—1))/2.0
mmav = (mm(ij)+mm(i—1,;)/2.0
yav = (y(ij)+y(i-14j))/2.0
ds = bl(yav,z(i,j))*3.14159*cos(phiav)*

& (y(ig)**2-y(i-14)**2)
mdotcalc = mdotcalc+masscomp(i—1,i)
dmdwmo = dmdwmo + rhoav*(1.0-mmav**2)*vmav/wmo®ds
end do
scale = (mdotin—mdotcalc)/(wmo*dmdwmo)
if (scale.lt.—1.0) scale = -0.5
if(abs(scale).gt.abs(oldscale)) screl = 0.5*screl
end if

doi = 1,numr

vm(ij) = vm(i,j}*(1.0+scale*screl)

C Find new state variables with change in vmn

&

&

vto(i,j) = sqrt(vm(i,j)**2+vth(i,j)**2)

if ((j.le.roend).and.(j.ge.rosta)) then
vtorel(i,j) = sqrt(vm(ij)**2+vthrel{i,j)**2)
t{i,j) = ttrel(i,j)—vtorel(i,j)**2/(2.0%cp)
a(i,j) = sqrt(g*r*t(ij))
mtorel(i,j) = vtorel(i,j)/a(ij)
mto(i,j) = vto(ij)/a(ij)
p(ij) = ptrel(i,j)/(1.0+(g-1.0)/2.0*
mtorel(i,j)**2)**(g/(g—1.0))
else
t(ij) = tt(ij)—vto(ij)**2/(2.0%cp)
a(ij) = sqrt(g*r*t(ij))
vtorel(i,j) = sqrt(vm(i,j)**2+vthrel(i,j)**2)
mto(i,j) = vto(i,j)/a(i)
mtorel(i,j) = vtorel(i,j)/a(i,j)
p(iJj) = pt(ij)/(1.0+(g—1.0)/2.0*
mto(i,j)**2)**(g/(g-1.0))
end if

mth(i,j) = vth(ij)/a(ij)

mthrel(i,j) = vthrel(ij)/a(i,j)

mm(ij) = vm(ij)/aiJ)

rho(ij) = p(iJ)/(r*t(id))

beta(i,j) = atan(vth(i,j)/vm(iJj))
betarel(i,j) = atan(vthrel(i,j)/vm(i,j))

end do

56

30

40

70

if((abs(scale).gt. tol).and.(y(numr j).gt.y(numr—1j))) goto 30

C Adjust the streamline positions by computing the mass
C flowing between them

do i = 2,numr-1
rhoav = (rho(i,j)+rho(i—1,j))/2.0
vmav = (vm(ij)+vm(i—1,))/2.0
phiav = (phi(i,j)+phi(i-1,))/2.0
yav = (y(ij)+y(i-1,))/2.0

y(ij) = sqrt(y(i—1,j)**2+mdotstr(i—1)/(3.14159°rhoav
& *cos(phiav)*vmav*bl(yav,z(i,j))))
end do

C Check mass across the modified streamtubes
mdotcalc = 0.0
de i = 2,numr

mdotcalc = mdotcalc+masscomp(i—1,i)
end do

if(abs((mdotcalc—-mdotin)/mdotin).gt.tol)
& goto 30

end

&0

100

Boundary computations - bcs.f

C This routine applies nonreflective BCs at the inlet instead of
C enforcing uniform values

subroutine inlbc

include ’vars.inc’
include ’fns.inc’

real*8 rhoav,phiav,vmav,mmav,yav,dm
real*8 scale,ds,desmdot

do i = l,numr

C The inlet mach number is given, and there is no pre—swirl
mth(i,1) = 0
mto(i,1) = minlet
p(i,1) = pt(i,1) / (1+(g-1)/2*mto(i,1)**2)**(g/(g-1))

tt(i,1) = ht(yold(i,1),2(i,1))/cp

pt(i,1) = peru®(tt(i,1)/tcru)**(g/(g—-1))*
X exp(—1.0*s(i,1)/r)

57

10

mm(i,1) = sqrt(mto(i,1)**2—mth(i,1)**2)
t(i,1) = tt(i,1) / (1+(g—1)/2*mto(i,1)**2)
a(i,1) = sqrt(g*r*t(i,1))

vto(i,1) = a(i,1)*mto(i,1)

vth(i,1) = a(i,1)*mth(i,1)

vm(i,1) = a(i,1)*mm(i,1)

beta(i,1) = atan(vth(i,1)/vm(i,1))

rho(i,1) = p(i,1)/(r*t(i,1))

drdz = (yold(i,2)~yold(i,1))/(z(i,2)~z(i,1))
phi(i,1) = atan(drdz)

end do

C Compute the mass flowing into the duct

mdotin = 0.0
i=1

do k = 1,numr-1

mdotstr(k) = masscomp(k,k+1)
mdotin = mdotin+mdotstr(k)

end do

desmdot = mdotin/(numr—1.0)

do i = 2,numr—1

X

rhoav = (rho(i,1)+rho(i-1,1))/2.0
phiav = (phi(i,1)+phi(i-1,1))/2.0
vmav = (vm(i,1)+vm(i-1,1))/2.0
yav = (y(i,1)+y(i-1,1))/2.0

y(i,1) = sqrt(y(i-1,1)**2+desmdot / (3.14159*rhoav
*cos(phiav)*vmav*bl(yav,z(i,1))))

end do

C Recheck mass

mdotin = 0.0

do k = 1,numr-1

mdotstr(k) = masscomp(k,k+1)
mdotin = mdotin+mdotstr(k)

end do

C Compute the exit conditions

subroutine exitbc

include ’vars.inc’

58

40

70

include ’fns.inc’

real*8 rhoav,phiav,vmav,mmav,yav
real*8 scale,ds,oldscale,screl

do i = 1,numr

C Assume unchanging static pressure and no exit swirl
C then compute state

mth(i,numm) = 0

p(i,numm) = p(i,numm-1)

tt(i,numm) = ht(yold(i,numm),z(i,numm))/cp

pt(i,numm) = pcru*(tt(i,numm)/tcru)**(g/(g—1))*
X exp(—1.0*s(i,numm)/r)

mto(i,numm) = (2.0/(g—1.0)*((pt(i,numm)/p(i,numm))
x **((g—1)/g)—1.0))**0.5

mm(i,numm) = sqrt(mto(i,numm)**2-mth(i,numm)**2)

t(i,numm) = tt(i,numm)/(1+(g—1)/2*mto(i,numm)**2)

a(i,numm) = sqrt(g*r*t(i,numm))

vto(i,numm) = a(i,numm)*mto(i,numm)
vth(i,numm) = a(i,numm)*mth(i,numm)
vm(i,numm) = a(i,numm)*mm(i,numm)
beta(i,numm) = atan(vth(i,numm)/vm(i,numm))
rho(i,numm) = p(i,numm)/(r*t(i,numm))

drdz = (yold(i,numm)-yold(i,numm-1))/(z(i,numm)-2z(i,numm-1))
phi(i,numm) = atan(drdz)

end do

C Adjust streamline velocities to conserve overall mass,
C then adjust stream positions to conserve streamtube mass.

30

oldscale = 5.0

screl = 1.0

j = numm

continue

wmo = vm((numr+1)/2,numm)
mdotcalc = 0.0

dmdwmo = 0.0

Integrate to find mdotcalc and dmdwmo
j = numm

if (y(numr-1j).gt.y(numr,j)) then

&9

90

100

110

120

130

C scale velocities to put y values back inside the duct
scale = 0.01
else
C Integrate to find mdotcalc and dmdwmo

C Sum mdot and d(mdot)/d(wmo)
do i = 2,numr
rhoav = (rho(i—1,j)+rho(i,j))/2.0
mmav = (mm(i—1j)+mm(i,j))/2.0
vmav = (vm(i-1,j)+vm(i,j))/2.0
phiav = (phi(i—1,j)+phi(i,j)) /2.0
yav = (y(ij)+y(i-14))/2.0

ds = bl(yav,z(i~1,j))*3.14159*cos(phiav)*
& (y(ij)**2-y(i-1§)**2)

mdotcalc = mdotcalc+masscomp(i—1,i)
C write(6,*) mdotcalc

dmdwmo = dmdwmo + rhoav*(1.0~mmav**2)*vmav/wmo*ds

end do

scale = (mdotin—mdotcalc)/(wmo*dmdwmo)
end if

if (abs(scale).gt.abs(oldscale)) then
screl = 0.5*screl
if (screl.lt. 0.0001) screl = 0.5
write(6,*) 'Relaxing scale factor in exit.’
write(6,*)’sc rel’ scalescrel
write(6,*)'mdi mdc’,mdotin,mdotcalc
endif

if (mdotcalc.1t.0) scale = ~1.0*scale
if (scale.le.~1.0) scale = —-0.5

do i = 1,numr
vm(i,numm) = vm(i,numm)*(1.0+scale*screl)
end do

oldscale = scale
if ((abs(scale) .gt. tol).and.(y(numr,j).gt.y(numr—1,j))) goto 30

C Adjust the streamline positions by computing the mass
C flowing between them.

do i = 2,numr—1

rhoav = (rho(i,j)*y(i,j)+rho(i—1,)*y(i-1))/
x (y(ig)+y(i-14))

phiav = (phi(ij)*y(ij)+phi(i-14)*y(i-1))/
x (y(id)+y(i-14))

vmav = (vin(i,j)*y(ij)+vm(i-1,)*y(i-14))/

60

140

160

170

180

3 (YA +y(G-13))
yav = (y(i-13)**2+y(13)**2)/(y(i-1§) +y(iJ))

y(ij) = sqrt(y(i—1,j)**2+mdotstr(i—1) / (3.14159*rhoav
x *cos(phiav)*vmav*bl(yav,z(i,j))))

end do
C Check mass in the modified streamtubes
mdotcalc=0.0
do i = 2,numr
mdotcalc = mdotcalc+masscomp(i—1,i)
end do
if (abs((mdotcalc—mdotin)/mdotin) .gt. tol) goto 30

end

200

State input definitions - defs.f

C Define these functions to give the geometry of the blade

C Entropy function
C entropy must be defined as zero at the beginning of each streamline

real*8 function s(ii,jj)
include ’'vars.inc’

integer ii,jj
real*8 mtip,mtang,mbp2,mc2
real*8 rloss,sloss,w

mtang = omega*y(ii,jj)/a(ii,jj)
mbp2 = mm(ii,rosta)**2 + mtang**2
mc2 = mto(ii,ststa)**2

rloss = ~1.0*r*log(1~-rlossfac*(1-(1+(g—1)/2*mbp2)**(g/(1-g))))
sloss = —1.0*r*log(1-slossfac*(1-(1+(g—1)/2*mbp2)**(g/(1-g))))

if (jj .le. rosta) then
C flow before rctor
s=0
else if (jj .le. roend) then
C flow in rotor — Apply euler eqn
8 = rloss*w(z(ii,rosta),z(ii,jj),z(ii,roend))
else if (jj .le. ststa) then

61

20

C flow between rotor & stator
s = rloss
else
C flow in stator (or after)
s = rloss+sloss*w(z(ii,ststa),z(ii,jj),z(ii,stend))
end if

return
end

C total enthalpy function
real*8 function ht(yy,2z)
include ’vars.inc’,
real*8 yy,zz,htb,w

htb = cp*tcru*(1+(g—1)/2*mcru**2)
ht = htb*(1+w(z(i,rosta),zz,z(i,roend))*(ttf~1))

return
end

C "Work" function called by other functions
C gives fraction of distance (0—1) between two points

real*8 function w(pl,p2,p3)
include ’vars.inc’
real*8 p1,p2,p3

if (p2.1t.p1) then

w=0.0
else if (p2.gt.p3) then
w=1.0
else
w = (p2—-pl1)/(p3—p1)
end if .
return
end

C Blockage function (0—1 where 1 is completely open)

real*8 function bl(yy,zz)
include ’vars.inc’

real*8 yy,zz,thick,circum,block,w
real*8 rch,sch,bl,b2,dx,x0,y0,xi,yi,sta

30

40

70

80

C Blockage from wakes assumed to be .05 of max blade thickness.
C Loss model should account for the mixed out wakes

bl = --1.0*betarel(i,rosta)

b2 = —1.0*betarel(i,roend)

dx = sqrt((z(i,roend)—z(i,rosta))**2+

& (y(i,roend)—y(i,rosta))**2)

x0 = —1.0%dx*sin(b1)/(sin(b1l)-sin(b2)) 90
y0 = —1.0/tan(b1)*x0
xi = x0+dx

yi = —1.0/tan(b2)*xi

sta = atan((yi—y0)/(xi—x0))

rch = dx/cos(sta)

rthick = rch*(rhubtc+(rtiptc—rhubtc)*

& w(y(1,rosta),y(i,rosta),y(numr,rosta)))

bl = beta(i,ststa)

b2 = beta(i,stend) 100
dx = sqrt((z(i,stend)—z(i,ststa))**2+

& (y(i,stend)—y(i,ststa))**2)

x0 = —-1.0*dx*sin(b1)/(sin(b1)—-sin(b2))

y0 = —1.0/tan(b1)*x0

xi = x0+dx

yi = sqrt(x0**2+y0**2)

sta = atan((yi—y0)/(xi—x0))

sch = dx/cos(sta)

sthick = sch*(shubtc+(stiptc—shubtc)* 10
& w(y(1ststa),y(i,ststa),y(numr,ststa)))

if (j .le. rosta) then
C flow before rotor
thick = 0
else if (j .le. roend) then
C flow in rotor
thick = rthick*nrot*(1.0—2.0*abs(0.5—
& w(z(i,rosta),zz,z(i,roend)))+.05*w(
& z(i,rosta),zz,z(i,roend))) 120
else if (j.le.ststa) then
C flow between rotor & stator
thick = 0.05*rthick*nrot
else if (j.le.stend) then
C flow in stator
thick = 0.05*rthick*nrot+sthick*nstat*
& (1.0-2.0*abs(0.5—w(z(i,ststa),zz,z(i,stend))) +.05*
& w(z(i,ststa),zz,z(i,stend)))

else
C flow after stator 130
thick = 0.05*(rthick*nrot+sthick*nstat)
end if

circum = 2‘3.14159*)’}'

if (circum.eq.0) circum = 1000000.0
block = 1.0 - thick/circum

63

if (block.it.0.0) then
write(5,*)’blockage error! bl was ’,block
write(5,*)'bl set to 0.1 at i j’,i,j

block = 0.1
end if

bl = block

return
end

C———

140

150

Plotting routine - output.f

C This calls the GRAFIC routine for output

subroutine output
include ’vars.inc’
include ’fns.inc’

integer ans, key,gd,lins,aa,bb

real rms(10000),ints(16000),var(maxr,maxm)

real zz(maxr,maxm),yy(maxr,maxm),st(maxr,maxm)
real mstr(maxr—1),div

character*50 title

C Convert grid doubles to reals for GRAFIC. This is also done to the
C state variables in coplot

do i = 1,numr

do j = 1,numm
22(i,j) = z(i,j)
yy(iJ) = y(iJ)

end do
end do

ncont = 25
indgr = 23

10 write(6,*)

write(6,%)’ Choose number of choice:’

write(6,*)’0.
write(6,*)’1.
write(6,%)’2.
write(6,*)’3.
write(6,*)’4.

Exit Program’

Run more iterations’
Change plot type’

Change relaxation factor’
Save camber lines’

write(6,*)’ Look at data for:’

write(6,*)’5.
write(6,*)’6.
write(6,*)’7.

RMS error (convergence history)’
Velocity triangles and flow path’
Fipal Grid’

64

10

20

30

write(6,*)’8.
write(6,*)’9.

write(6,%)’10.
write(6,*)’11.
write(6,*)’12.
write(6,*)’13.
write(6,*)’14.
write(6,*)’15.
write(6,%)’ 16.
write(6,*)’17.
write(6,*)’18.
write(6,*)’19.
write(6,%)’20.
write(6,%)’21.
write(6,%)’22.
write(6,%)?23.
write(6,%)’24.
write(6,*)’25.
write(6,*)’26.
write(6,%)°27.
write(6,*)’28.
write(6,*)’29.
write(6,%)’30.

read(5,*) ans

Streamwise Velocity’
Streamwise Mach Number’
Swirl Velocity’

Total Velocity’

Total Mach number’

Axial Flow Angle (phi)’
Swirl Flow Angle (beta)'’
Density’

Total Pressure’

Static Pressure’

Total Enthalpy’

Static Temperature’
Entropy’

Blockage Factor’

Relative Total Enthalpy’
Relative Total Mach number’
Relative Swirl Mach number '
Relative Total Velocity’
Relative Swirl Velocity’
Relative Total Temperature’
Relative Total Pressure’
Relative Swirl Angle’
Streamwise Flow Area (relative flow)’

if (ans.eq.0) goto 100

goto (122,121,120,118,119,117,101,102,103,104,105,106,107,108,
x 109,110,111,112,113,114,116,123,124,125,126,127,

x 128,129,130,131) (ans)

write(6,*)’ Invalid Choice. Choose 0-30 only.’

goto 10
100 iterlim =0
goto 500

gotc 10

do i= 1,numr

101 call grgrid(zz,yy,numr,numm,maxr,maxm,’ “z"r~Grid’,indgr)

102 title = '~“z~r-Velocity contours’

do j = 1,numm
st(ij) = vm(ij)

end do
end do

call coplot(st,title,zz,yy)

goto 10

do i= 1,numr

103 title = ’~z"r~Streamwise Mach Number contours’

40

50

60

70

80

do j = 1,numm
st(ij) = mm(ij)

end do
end do

65

call coplot(st,title,zz,yy)
goto 10

104 title = '~z r"Swirl Velocity contours’

do i= 1,numr

do j = 1,numm

st(i,j) = vth{i,j)

end do
end do
call coplot(st,title,zz,yy)
goto 10

105 title = ’“z"r~Total Velocity contours’

do i= 1,numr

do j = 1,numm

st(ij) = vto(i,j)

end do
end do
call coplot(st,title,zz,yy)
goto 10

106 title = *~“z"r~Total Mach Number contours’

do i= 1,numr

do j = 1,numm

st(ij) = mto(i,j)

end do
end do
call coplot(st,title,zz,yy)
goto 10

107 title = *~z~r~Flow Angle (phi) contours’

do i= 1,numr

do j = 1,numm

st(i,j) = phi(i,j)*180.0/3.14159

end do
end do
call coplot(st,titie,zz,yy)
goto 10

108 title = *~2"r~Swirl Flow Angle (beta) contours’

do i= 1,numr

do j = 1,numm

st(i,j) = 180.0/3.14159*beta(i,j)

end do
end do
call coplot(st,title,zz,yy)
goto 10

109 title = *~z"r~Density contours’
do i= 1,numr
do j = 1,numm
st(i,j) = rho(i,j)
end do
end do

66

100

110

120

130

140

call coplot(st,title,2z,yy)
goto 10

110 title = ’“2"r~Total Pressure contours’

do i= 1,numr

do j = 1l,numm

st(ij) = pt(iJ)

end do
end do
call coplot(st,title,zz,yy)
goto 10

111 title = ’~z"r~Static Pressure contours’

do i= 1,numr

do j = 1,numm

st(ij) = p(iJj)

end do
end do
call coplot(st,title,zz,yy)
goto 10

112 title = ’*~z"r~Total Enthalpy contours’

do i= 1,numr

do j = 1,numm

st(i,j) = ht(y(ij).z(ij))

end do
end do
cali coplot(st,title,zz,yy)
goto 10

113 title = *“z"r~Static Temperature contours’

do i= 1,numr

do j = 1,numm

st(ij) = t(iJ)

end do
end do
call coplot(st,title,zz,yy)
goto 10

114 title = ’~“z~r~Entropy contours’

do i= 1,numr

do j = 1,numm

st(ij) = s(ij)

end do
end do
call coplot(st,title,zz,yy)
goto 10

116 title = ’~“z"r“Blockage contours’
do i= 1,numr
do j = 1,numm
st(ij) = bl(y(iJ)z(id))
end do
end do

67

150

160

170

180

190

call coplot(st,title,zz,yy) 200
goto 10

117 call viri
goto 10

118 call savecam
goto 10

119 write(6,*)’Convergence History’
do i = 1,iter 210
ints(i) = i*1.0
rms(i) = logl0(rmserr(i))
end do

call grline(1,0,1,’ "Iteration~log RMS error~Convergence History’,
X 2l,ints,rms,iter)
goto 10

120 write(6,*)’01d relaxation factor was: ’relax
write(6,*)’Enter new relaxation factor:’ 220
read(5,*) relax
goto 10

121 write(6,*)’ °’
write(6,*)’Change plot parameters’
write(6,*)’1. Contour plot style (color/grey/line): PLOTTYPE= '’
x , plottype
write(6,*)’2. Number of contours: NCONT = ’ ncont
write(6,*)°3. Change INDGR: INDGR = ’,indgr
write(6,*)°4. return to plot menu’ 230
read(5,*) ans

goto (201,202,203,200) (ans)
write(6,*) ’Invalid Choice. Choose 1-4 only’
goto 121

200 goto 10

201 write(6,*)’ ’
write(6,*)’Enter plot type’ 240
write(6,*)’1. Color’
write(6,*)’2. Greyscale’
write(6,*)’3. B/W lines’
write(6,*)’4. Return to parameter menu’
read(5,*) ans

if (ans .eq. 4) goto 121
goto (210,210,210) (ans)
250

write(6,*)’Invalid Choice. choose 1-4 only’
goto 201

68

210 write{6,*)’
write(6,¥)°0. No key °’
write(6,*)’1. Key ’
read(5,*) key

write(6,*)’ ’

write(6,*)'0. No grid ’
write(6,*)’1. Superimpose grid °’
read(5,*) gd

if (ans .eq. 3) goto 303

write(6,%)’
write(6,*)’0. No lines’

write(6,*)’1. Superimpose contour lines ’

read(5,*) lins

if (ans .eq. 2) goto 302

301 call grinit(5,6,’ Streamline Curvature calculation’)

plottype = 2+gd*4+key*8+lins
goto 121

302 call grgrey
plottype = 2+gd*4+key*8+lins
goto 121

303 plottype = 1+gd*4+key*8
goto 121

202 write(6,*)’Enter nev number of contours:’

read(5,*) ncont
goto 121 .

203 write(6,*)’enter new value of INDGR’
read(5,*) indgr
goto 121

122 write(6,*)’Enter number of additional iterations:’

read(5,*) ans
iterlim = iterlim + ans
goto 500

123 title = ’~“z"r"Total Relative Enthalpy contours’

do i= 1,numr
do j = 1,numm
st(i,j) = htrel(i,j)
end do
end do
call coplot(st,title,zz,yy)
goto 10

124 title = ’~“2"r"Total Relative Mach contours’

do i= 1,numr

69

260

270

280

290

300

do) = l,numm
st(ij) = mtorel(i,))
end do
end do
call coplot(st,title,zz,yy)
goto 10

125 title = '“z"r"Swirl Relative Mach contours’

do i= 1,numr

do j = l,numm

st(ij) = mthrel(i,j)

end do
end do
call coplot(st,title,zz,yy)
goto 10

126 title = '~z r"Total Relative velocity contours’

do i= l,numr

do j = 1,numm

st(i,j) = vtorel(i,j)

end do
end do
call coplot(st,title,zz,yy)
goto 10

127 title = *~z"r~Swirl Relative velocity contours’

do i= 1,numr

do j = 1,numm

st(i,j) = vtheel(i,j)

end do
end do
call coplot(st,title,zz,yy)
goto 10

128 title = '~z r~Relative Total Temperature contours'’

do i= l,numr

do j = 1,numm

st(i,j) = ttrel(i,j)

end do
end do
call coplot(st,title,zz,yy)
goto 10

129 title = ’~z"r~Relative Total Pressure contours’

do i= 1,numr

do j = 1,numm

st(ij) = ptrel(i,j)

end do
end do
call coplot(st,title,zz,yy)
goto 10

130 title = '~z r"Relative Swirl Flow Angle (beta) contours’
do i= l,numr

70

310

120

33

340

3%0

160

do j = 1,numm
st(i,j) = 180.0/3.14159*betarel(i,j)
end do
end do
call coplot(st,title,zz,yy)
goto 10

131 title = *~“z"r-Streamwise Area contours’
do i= 1,numr
do j = 1,numm
if ((j.le.roend) .and. (j.ge.rosta)) then
st(ij) = anormrel(i,j)/anormrel(i,rosta)
else
st(i,j) = anorm(i,j)/anormrel(i,rosta)
end if
end do
end do
call coplot(st,title,zz,yy)
goto 10

134 call ochoke
goto 10

500 continue
end

subroutine coplot(state,title,zz,yy)
include ’vars.inc’

C Make a contour plot using the state variable given

real state(maxr,maxm),zz(maxr,maxmy),yy(maxr,maxm)
character*40 title

write(6,*) title(6:30)

call grcfil(state,numr,numm,maxr,maxm,ncont,cont)
call grcont(zz,yy,state,numr,numm,maxr,maxm,title,
x indgr,cont,ncont,plottype)

subroutine ochoke
include ’'vars.inc’
include 'fns.inc’

real*8 amin,ainl,aex,at
real*8 bl,b2,h1,h2
real*8 dinl,dt,dex
real*8 minl,xt,aast
real*8 rle,ch,dx,spc,thick

71

380

390

400

410

real*8 rd,bmt

write(6,*) 'Stream di dt do ai at ao amin
& bl b2 bmt’
420
rd = 180.0/3.141593

doi = l,numr

bl = —1.0*betarel(i,rosta)
b2 = —1.0*betarel(i,roend)

if (i.eq.1) then
hl = y(2,rosta)-y(1,rosta)
h2 = y(2,roend)~y(1,roend) 430
else if (i.eq.numr) then
hl = y(numr,rosta)—y(numr-1,rosta)
h2 = y(numr,roend)-y(numr—1,roend)
else
hl = y(i+1,rosta)—y(i—1,rosta)
h2 = y(i+1,roend)-y(i—1,roend)
end if

dx = sqrt((z(i,roend)—z(i,rosta))**2+
& (y(i,roend)—y(i,rosta))**2) 440
spc = 2*3.14159*y(i,rosta)/nrot

thick = (rhubtc+(rtiptc—rhubtc)*

& w(y(1,rosta),y(i,rosta),y(numr,rosta)))
ch = dx/cos((bl1+b2)/2.0)
rle = thick*ch*.005

xt = spc/2.0%sin(2.0*b1)

minl = mtorel(i,rosta)

aast = 1.0/minl*((1.0+0.2*minl**2.0)/1.2)**3.0 450
ht = h1+(h2-h1)*w(0,xt,dx)

dinl = spc*cos(bl)
dt = dinl - rle
dex = spc*cos(b2)

ainl = dinl*hl
at = dt*ht
aex = dex*h?2
460
amin = ainl/aast

bmt = acos(amin/(ht*spc))
13 format(i6,£7.4,(7.4,17.4,(7.4,{7.4,{7.4,£7.4,£7.3,£7.3,{7.3)
write(6,13) i,dinl,dt,dex,ainl,at,aex,amin,b1*rd,b2*rd,bmt*rd

end do

end

72

Velocity triangle generator - veltri.f

C Make velocity triangles and blade sketches for rotor and stator

subroutine vtri
include ’vars.inc’

integer str,b,c,c2,d

C

haracter*10 titl(6)

integer ilin(6),isym(6),nper(6)
real th(12),me(12)

real drot,dstat,solrot,solstat,rch,sch
real wb,wc,vb,vc,vbp,vcp,vd
integer lpt,npts,rp

r

eal z1,23,bp,bpo

real zp(600),tp(600),sp(€00)

500

format(a,f7.3)

b = rosta

C

= roend

c2 = ststa
d = stend

write(6,*)’Enter the stream number for the triangles’

r

ead(5,*) str

C Draw rotor

bpo = atan((vth(str,b)—omega*y(str,b))/vm(str,b))
bp = atan((vth(str,b+1)—omega*y(str,b+1))/vm(str,b+1))

zp(1) = z(str,b)
tp(1) =0
sp(1) = 2*3.14159*y(str,b) /nrot

Ipt =2
doi =b,c-1

&
&

zl = z(str,i)
23 = z(str,i+1)
doj=19
zp(lpt) = z(str,i)+j/10.0%(z(str,i+1)—z(str,i))
tp(lpt) = tp(lpt—1)+tan(bpo+(zp(lpt)~21)/(z3-21)
(bp—bpo))(zp(lpt) —zp(lpt—1))
sp(Ipt) = 2*3.14159*(y(str,i)+(zp(lpt)-21) /(23—-21)*
(y(str,i+1)—y(str,i)))/nrot
Ipt = Ipt + 1
end do

"bpo = bp
bp = atan((vth(str,i+2)—omega*y(str,i+2))/vm(str,i+2))

73

10

20

30

40

50

zp(lpt) = z(str,i+1)
tp(lpt) = tp(lpt—1)+tan(bpo)*(zp(lpt)-zp(lpt-1))
sp(lpt) = 2*3.14159*y(str,i+1)/nrot

Ipt=ipt +1
end do
npts = lpt—1

do i = npts+1,2*npts
zp(i) = zp(i-npts)
tp(i) = tp(i—npts)+sp(i—npts)
zp(i+npts) = zp(i)
tp(i+npts) = tp(i—npts)—sp(i—npts)
end do

rch = sqrt((zp(npts)~zp(1))**2+(tp(npts)—tp(1))**2)

ilin(1) = 1
ilin(2) =3
ilin(3) = 3
isym(1) =0
isym(2) =0
isym(3) = 0
nper(1) = npts
nper(2) = npts
nper(3) = npts

titl(1) = ’Rotor !
titl(2) = ’distance
titl(3) = ’distance °’

rp = 3*npts
C Now do Stator

zp(rp+1) = z(str,c2)
tp(rp+1) = tp(npts)
sp(rp+1) = 2*3.14159*y(str,c2)/nstat

Ipt =2
doi=c2d-1
zl = z(str,i)
23 = z(str,i+1)
doj=19
zp(rp+lpt) = z(str,i)+j/10.0*(z(str,i+1)—z(str,i))
tp(rp+lpt) = tp(rp+Ipt—1)+tan(beta(str,i)+(zp(rp+Ipt)—z1)
/(z3—z1)*(beta(str,i+1)—beta(str,i)))*
(zp(rp+lpt)—zp(rp+Ipt—1))
sp(rp+Ipt) = 2*3.14159*(y(str,i)+(zp(rp+Ipt)—21)/(z3-21)*
(y(str,i+1)—y(str,i)))/nstat
Ipt =1Ipt +1
end do

R R

zp(rp+Ipt) = z(str,i+1)

74

tp(rp+Ipt) = tp(rp+lpt—1)+tan(betalstr,i+1))*
& (zp(rp+Ipt)—zp(rp+ipt—1))
sp(rp+Ipt) = 2*3.14159*y(str,i+1)/nstat

Ipt =lpt +1
end do
110
npts = lpt—1

sch = sqrt((zp(rp+npts)—zp(rp+1))**2+(tp(rp+npts)—tp(rp+1))**2)

do i = npts+1,2*npts
zp(rp+i) = zp(rp+i—npts)
tp(rp+i) = tp(rp+i—npts)+sp(rp+i—npts)
zp(rp+i+npts) = zp(rp+i)
tp(rp+i+npts) = tp(rp+i—npts)—sp(rp+i—npts)
end do 120

ilin(4) = 2

ilin(5) = 3

ilin(6) =3

isym(4) =0

isym(5) =0

isym(6) = 0

nper(4) = npts

nper(5) = npts

nper(6) = npts 130

titl(4) = ’Stator !
titl(5) = 'distance
titl(6) = ’distance °’

C Draw the blades
call grklin(ilin,isym,nper,titl,6,zp,tp,’ "m"m~Blade paths’,23)

C Do the rotor triangle
140

C Vb

nper(l) = 2

ilin(1) = 2

isym(1) =0

titl(1) = 'vb g

th(l) = 0.0

me(1) = 0.0

th(2) = 0.0

me(2) = vm(str,b)

vb = sqrt(th(2)**2+me(2)**2) 150
C omega rb

nper(2) = 2

ilin(2) =1

isym(2) =0

titl(2) = *wrd ’

th(3) = 0.0

me(3) = vm(str,b)

75

th(4) = omega*y(str,b)
me(4) = vm(str,b) 160
wb = omega*y(str,b)

C Vb prime
nper(3) = 2
ilin(3) = 3
isym(3) =
titl(3) = *Vvb* !
th(5) = 0.0
me(5) = 0.0
th(6) = omega*y(str,b) 170

me(6) = vm(str,b)
vbp = sqrt(th(6)**2+me(6)**2)

C Ve
nper(4) = 2
ilin(4) = 4
isym(4) = 0
titl(4) = Ve ’
th(7) = 0.0
me(7) = 0.0 180

th(8) = —1.0*vth(str,c)
me(8) = vm(str,c)
vc = sqrt(th(8)**2+me(8)**2)

C omega rc
nper(5) = 2
ilin(5) =1
isym(5) =0
titl(5) = ’wrc !
th(9) = ~1.0*vth(str,c)+omega*y(str,c) 190

me(9) = vm(str,c)
th(10) = —1.0%vth(str,c)
me(10) = vm(str,c)

wc = omega*y(str,c)

C Vc prime
nper(6) = 2
ilin(6) = 5
isym(6) = 0
titl(6) = Ve ! 200
th(11) = 0.0
me(11) = 0.0

th(12) = omega*y(str,c)—vth(str,c)
me(12) = vm(str,c)
vep = sqrt(th(12)**2+me(12)**2)

solrot = rch / (2*3.14159*y(str,c)/nrot)
drot = 1 — vcp/vbp + abs(vth(str,c)*y(str,c)—
& vth(str,b)*y(str,b))/ ((y(str,b)+y(str,c))*solrot * vbp)
210
write(6,500)’omega rb = ’,wb
write(6,500)’omega rc = ’,wc

76

write(6,500) ’Mrot b = ’ wb/a(str,b)
write(6,500) ’Mrot c = ’,wc/a(str,c)
write(6,%)

write(6,500)’Vb = ’,vb
write(6,500)’Vb¢ = ’ vbp
write(6,500)’Vc‘ = ? vcp
write(6,500)’Vc = ’,vc

write(6,*)

write(6,500)’Mb = ’,vb / a(str,b)
write(6,500) ’Mb‘ = ’ vbp / a(str,b)

(&3
X3
o

write(6,500)°Mc* ', vep / a(str,c)
write(6,500) 'Mc = ’,vc / a(str,c)
write(6,*)

write(6,500)'Beta b¢ = *,—180.0/3.14159*atan(th(6)/me(6))
write(6,500) ’Beta c‘ = ’,—180.0/3.14159*atan(th(12)/me(12))
write(6,500)’Beta ¢ = ’,—180.0/3.14159*atan(th(8)/me(8))

write(6,*)

write(6,500)’r in: ’,y(str,b) 230
write(6,500)’r out: ’,y(str,c)

write(6,%)

write(6,500)’Solidity in rotor: ’,solrot
write(6,500)’D in rotor: ’,drot

call grklin(ilin,isym,nper,titl,6,th,me,
& '“m/s"m/s”Rotor Velocity Triangle’,23)

write(6,*)
240

C Make Stator velocity triangle
C Ve

nper(1) =2

ilin(1) = 4

isym(1) =0

titl(1) = Ve ’

th(1) = 0.0

me(1) = 0.0

th(2) = —1.0*vth(str,c2) 250

me(2) = vm(str,c2)

ve = sqrt(th(2)**2+me(2)**2)
Cvd

nper(2) = 2

ilin(2) = 1

isym(2) =7

titl(2) = ’vd ’

th(3) = 0.0

me(3) = 0.0 260

th(4) = vth(str,d)
me(4) = vm(str,d)
vd = sqrt(th(4)**2+me(4)**2)

solstat = sch / (2*3.14159*y(str,d)/nstat)
dstat = 1- vd/vc + (abs(vth(str,d)*y(str,d)—vth(str,c)*

7

& y(str,c)))/((y(str,c)+y(str,d))‘solstat‘fvc)

write(6,500) Ve
write(6,500)'vd
write(6,*)
write(6,500)’Mc
write(6,500)*Md
write(6,*)
write(6,500) 'Beta ¢ = ’,—180.0/3.14159*atan(th(2)/me(2))
write(6,*) :
write(6,500)'r in: ’,y(str,c2)

write(6,500)’r out: ’,y(str,d)

write(6,*)

write(6,500)’Solidity in stator: ’solstat
write(6,500)’D in stator: ’,dstat

?.ve
' vd

? ve/a(str,c2)
) vd/a(str,d)

call grklin(ilin,isym,nper,titl,2,th,me,
& ’“m/s"m/s"Stator Velocity Triangle’,23)

return
end

270

290

MISES interface - savecam.f

C Write the camber lines for a rotor or stator streamline

subroutine savecam
include ’vars.inc’
include ’fns.inc’

integer str,b,c,rsv,sp,sm

integer Ipt,npts,nbl

real*8 z1,23,bp,bpo,zpi,zpo,zpc,tpc,tpi

reai*8 ch,chtip,gang,gangtip,reyn,ir,ypt,ppa
real*8 zp(500),tp(500),rp(500)

real*8 mpu(100),thu(100),mpl(100),thl(100)
rcal*8 zrp(500),trp(500),zsta,zend,inum

real*8 x0,y0),rad,ang0,angl,dx,da

integer sx0,sx1,st0,st1

real*8 strcomp(256,3),offset,sfl,angin,angout
real*8 thick,hc,disp,theta,sinl,sout,ang,mch,rot,mchout
real*8 tipthick,xc,yc,sol,dfac,xcen,ycen,xmov,ymov
real*8 rch,sch,bl,b2,xi,yi,sta,spa

real*8 dinl,ainl,amin,angt,angb

real*8 minl,aast,spc,h1,h2xt

integer oflag

78

10

20

character*4 fsu,check
character*10 fsn
character*11 fsn2
character*9 fsn3
character*16 cname

500 format(a,f7.3) 30
505 format(a4)

50

oflag =1
if (oflag.eq.1) then
write(6,*) 'Regular grid selected in code’
else if (oflag.eq.--1) then
write(6,*) '0ffset periodic grid selected in code’
else
write(6,*) 'oflag set incorrectly. Check SC code.’
goto 3000 40
end if
write(6,*)

write(6,*) 'Enter file suffix ID for MISES (4 char max)’
write(6,*) ’0r enter xxxx to write out all blade info to a file’

read(5,505) fsu

check = ’*xxxx’
50

if (fsu(1:4).eq.check(1:4)) goto 2000
str = 10*(ichar(fsu(2:2))—48)+ichar(fsu(3:3))-48
write(6,*) *Using streamline: °’str

1sv=20
if (fsu(1:1).eq.’r’) then
rsv=1
write(6,*) ’Rotor Streamline’ 60
else if (fsu(1:1).eq.’s’) then
sv = 2
write(6,*) ’Stator Streamline’
end if
if (rsv.eq.0) then
write(6,*) ’Enter 1 for a rotor, 2 for a stator’
read(5,*) rsv
end if

goto (101,102) (rsv) 70

write(6,*)’Try again!’
goto 50

101 b = rosta

¢ = roend
nbl = nrot

79

rot = omega

thick = (rhubtc+(rtiptc—rhubtc)*

& w(y(1,rosta),y(str,rosta),y{numr,rosta)))

mch = mtorel(str,b)

mchout = sqrt((omega*y(str,c)—vth(str,c))**2+(vm(str,c))**2)/
& a(str,c)

angin = —1.0*betarel(str,b)

angout = —1.0*betarel(str,c)

minl = mch

goto 200

102 b = ststa
¢ = stend
nbl = nstat
thick = (shubtc+(stiptc—shubtc)*
& w(y(1,ststa),y(str,ststa),y(numr,ststa)))
mch = mto(str,b)
mchout = mto(str,c)
rot = 0.0
angin = beta(str,b)
angout = beta(str,c)
minl = mch

C find the points
200 continue

sinl = tan(angin)
sout = tan(angout)

zsta = z(str,b)
zend = z(str,c)
dx = sqrt((y(str,c)—y(str,b))**2 + (zend—zsta)**2)/y(str,c)*1.2

C add some degrees to inlet angle to make flow better (an estimate)
if (rsv.eq.1) then
ang0 = angin + 2.0*3.14159/180.0
else
ang0 = angin + 0.5%3.14159/180.0
end if
C Add fraction of turning to outlet angle for deviation (an estimate)
if (rsv.eq.1) then
angl = angout — .27*(angin—angout)
else
angl = angout — .38*(angin—angout)
end if
C Estimate chord and spacing
ch = dx/cos((angin+angout)/2.0)
spa = 2*3.14159*y(str,b)/nbl

C Compute the upper surface rounded nose

disp = ch/150.0
ang = ang0

80

80

920

100

110

120

130

xc = disp*cos(ang)
yc = disp*sin(ang)

doi=19
ir = ((1.0-i*1.0)/16.0+1.0)*3.14159+ang
mpu(i) = xc+disp*cos(ir)
thu(i) = yc+disp*sin(ir)

end do

C Compute the entry arc

if (str.eq.1) then
hl = y(2,b)-y(1,b)
h2 = y(2,c)-y(1,c)
else if (str.eq.numr) then
hl = y(str,b)—y(str—1,b)
h2 = y(str,c)—y(str—1,c)
else
hl = y(str+1,b)—y{str—1,b)
h2 = y(str+1,c)~-y(str—1,c)
end if

xt = spa/2.0*sin(2.0*ang0)
aast = 1.0/minl*((1.0+0.2*minl**2.0)/1.2)**3.0

ht = h14(h2-h1)*w(0,xt,dx)
dinl = spa*cos(ang0)

ainl = dinl*h1
amin = ainl/aast

if (rsv.eq.1) then

angt = acos(amin/(ht*spa))+(angl—ang0)/8.0
else

angt = acos(amin/(ht*spa)) — ang0/8.0
end if :

C Make an arc from ang0 to angt

C Find circular arc blade shape given
C the slopes of the inlet and outlet and the streamwise distance
C The center of the circle is at (0,0)

da = spa/2.0*sin((ang0+angt))

x0 = —1.0¥da*sin(ang0)/(sin(ang0)—sin(angt))
x1 = x0+da

y0 = —1.0/tan(ang0)*x0

yl = —1.0/tan(angt)*x1

rad = sqrt(x0**2+y0**2)

C Move arc to correct position

xmov = mpu(9)—x0
ymov = thu(9)-y0

xcen = 0.04+xmov
ycen = 0.0+ymov

81

140

150

160

170

180

x1 = x1+xmov
yl = yl4+ymov
x0 = x0+xmov
y0 = yO+ymov

doi = 10,29
mpu(i} = mpu(9)+(i—~9.0)/20.0*(x1—mpu(9))
thu(i) = ycen+sqrt(rad**2—(mpu(i)—xcen)**2)
end do :

C Compute the rear circular arc region
C Make an arc from angt to angl

da = dx—da
x0 = —1.0*da*sin(angt)/(sin{angt)—sin(angl))
x1 = x0+da

y0 = —1.9/tan(angt)*x0
yl = —1.0/tan(angt)*x1
rad = sqrt(x0**2+y0**2)

C Move beginning of arc to end of entry region
xmov = mpu(29)—x0
ymov = thu(29)-y0

xcen = 0.0+xmov
ycen = 0.0+ymov
x1 = x14xmov

yl = yl4+ymov
x0 = x0+xmov
y0 = yO0+ymov

C Compute the real chord
ch = sqrt(x1¥*2+y1**2)

doi = 30,49
mpu(i) == mpu(29)+(i—29.0)/20.0* (x1—mpu(29))
thu(i) = ycen+sqrt(rad**2—(mpu(i)—xcen)**2)
end do

C Compute the rounded nose for the bottom surface

doi=1,8 '
ir = ((i*1.0)/16.0+1.0)*3.14159+ang
mpl(i) = xc+disp*cos(ir)
thl(i) = yc+disp*sin(ir)

end do

C Make an arc on the bottom surface with a entrance slope equal to
C the upper surface slope

x0 = mpl(8)
y0 = thl(8)

C Add trailing edge thickness

82

190

200

210

220

230

x1 = mpu(49)+disp/2.0*sin(angl)
yl = thu(49)—disp/2.0*cos(angl)

C Add a wedge angle to the lower surface
if (rsv.eq.2) then
angb = ang0-0.0/180*3.14159
else
angb = ang0—-7.0/180%3.14159
end if

xcen = (x1**2—x0**2+(y1-y0)**2-2.0*(y1—-y0)*x0/tan(angb))/
& (2.0%(x1-x0)-2.0%(y1—y0)/tan(angb))
ycen = y0—(xcen—x0)/tan(angb)

rad = sqrt((x0—xcen)**2+(y0—ycen)**2)
sta = atan((yl—thi(8))/(x1—mpl(8)))

doi = 9,49
mpl(i) = mpl(8)+(1—8.0)/41.0%(x1—mpl(8))
thl(i) = ycen+sqrt(rad**2—(mpl(i)—xcen)**2)
end do

C Write out the ’blade.xxx’ file

21 format(f10.5,£10.5,£10.5,£10.5,f10.5)
22 format(f12.7,f12.7)

38 format(a32)

sol = ch/(2*3.14159*y(str,c)/nbl)
dfac = 1 — mchout/mch -+ abs(mth(str,c)*y(str,c)—
& mth(str,b)*y(str,b))/ ((y(str,b)+y(str,c))*sol*mch)

fsn(1:6) = ’blade.’
fsn(7:10) = fsu
open{unit=1,file=fsn,status=’UNKNOWN*)

write(6,*)’Enter 32 character max name of case:’
C read(5,38) cname

if (rsv.eq.1) then
cname(1:14) = ’ROTOR STREAH °’

else
cname(1:14) = *STATOR STREAM '’
end if

cname(15:16) = fsu(2:3)

write(6,38) cname

write(1,38) cname

write(1,21) sinl,sout,0.2,0.2,2*3.14159/nbl

C Write top surface
doi=491,-1
write(1,22) mpu(i),thu(i)
end do

83

240

250

260

270

280

290

C Write bottom surface
doi =149
write(1,22) mpl(i),thl(i)
end do

close(1)

C make ’stream.xxx’ file
fsn2(1:7) = ’stream.’
fsn2(8:11) = fsu

open{unit=1 file=fsn2,status="'UNKNOWN")
write(1,*) —1.0%oflag*rot*ch/sqrt(g*r*tt(str,1))

sp = str+1
sm = str—1

if (str.eq.1) then
sm =1

clse if (str.eq.numr) then
sp = numr

end if

offset = €

doi = b,
strcomp(i—b+1,1) = sqrt((z(str,i)~

& z(str,b))**2+(y(str,i)—y(str,b))**2)/y(str,i)
strcomp(i—b+1,2) = y(str,i)/ch
strcomp(i—b+1,3) = (y(sp,i)—y(sm,i))/ch

end do

24 format(f11.5,f11.5,f11.5)
doi=10,1,-1
ir = i*1.0/10.0
write(1,24) strcomp(1,1)—offset—2.0%ir,
& strcomp(1,2),strcomp(1,3)
end do

doi=1l,c~b+1l

write(1,24) strcomp(i,1)—offset,strcomp(i,2),strcomp(i,3)

end do
doi=1,10

ir = 1*1.0/10.0

write(1,24) strcomp(c—b+1,1)—offset+2.0%r,
& strcomp(c~b+1,2),strcomp(c-b+1,3)
end do
close(1)

write(6,*) 'Files ’ (fsn,’ and ’,fsn2,’ saved.’

84

300

310

330

340

C Write an ’'ises.xxx’ file. This may need to be changed depending on
C the boundary conditions and design/analysis mode.

31 format(f7.3,7.3,£7.3,7.3,(6.2,a)
32 format(ell.3,6.2,7.3,f7.3,a)
fsn3(1:53) = 'ises.’
fsn3(6:9) = fsu
open(unit=1, file=fsn3,status='UNKNOWN')

C if (rsv.eq.2) then
C Wl'ite(l..) "1,2,5, 00 0000000000000 00000000’
C write(l") ,1|3'4."|'.........'...........
C else
write(l,‘) "1,2,5,18, 00000000000 00000000000’
write(l,") '16,3,4,18,,,, 0000000000000 0000008’
C endif

if (rsv.eq.2) then
ppa = (1.0+(g—1.0)/2.0*mto(str,c)**2)**(-3.5)*pt(str,c)/
& pt(str,b)
else
ppa = p(str,c)/pt(str,b)
end if

write(1,31) mch,sinl*oflag,sout*oflag,ppa,0.0,

& * | MACH SINL SOUT P2/POa MFRIN’

reyn = rho(str,b)*vto(str,b)*ch/1.86e—-5

write(1,32) 0.0,6.0.0.02,0.02,’ | RE ACRIT XTRS XTRP’

write(1,*) '3 0.2 0.90 1.0 | ISMOM PCWT'
& ,’ MCRIT MUCON’
write(1,¥) 0 0 | NITER 1GLOSEN’

write(1,*) ’0.0 0.0 0. 0. 0. 0. 0. 0. 0. 0. 0. | Dmov Drot ’,
& ' Dmod1-9’
write(1,%)

100 format(a,f12.6,a,f12.6)
104 format(a,f12.6,a,e12.6)
write(1,100)’MACHin = ’,mch,’ MACHout = ’ mchout
write(1,*)
write(1,100)’ANGIN = ’,angin*180/3.14159,
& ' ANGOUT = ’,angout*180/3.14159
write(1,%)
write(1,104)'D = ’ dfac,” REYN = ’ reyn
write(1,*)
write(1,100)’p2/p0a = ’,ppa

close(1)
write(6,*) fsn3,” has been saved. This may nead to be changed’
write(6,*) 'depending on boundary conditions and design mode.’

goto 3000

2000 continue
C Write out general info

open(urit=1,file='bladinfo’ status='UNKNOWN’)

85

350

60

370

180

o0

400

2059 format(i7,f10.3,f8.2,f8.2,£7.3,£7.3,e11.3)
C Start writing rotor info

b = rosta

¢ = roend

nbl = nrot ,

thick = rthick 110
rot = omega

write(1,*) '"ROTOR STREAMLINE INFOQ’
write(1,*) ’stream mp-ch angin angout Min Mout Re
& rin rout’

do str = 1,numr
mch = sqrt(vm(str,b)**2+(omega*y(str,b))**2)/a(str,b)
mchout = sqrt((omega®*y(str,c)—vth(str,c))**2+(vm(str,c))**2)/
& a(str,c) : 420

angin = 180.0/3.14159*atan(~1.0*(vth(str,b)—rot*y(str,b))/
& vm(str,b))

angout = 180.0/3.14159*atan(~1.0*(vth(str.c)—rot*y(str.c))/
& vm(str,c))

zsta = z(str,b)
zend = z(str,c)
if (y(str,c).eq.y(str,b)) then
ch = (zend-—zsta)/y(str,c) 430
else
ch = sqrt(((zend~zsta)/(y(str,c)—y(str,b)))**2+1.0)*
& log(y(str,c)/y(str,b))
end if
ch = abs(ch)
reyn = rho(str,b)*vto(str,0)*ch/1.86e—5

write(1,2059) str,ch,angin,angout,mch,mchout,reyn
end do
1o
C Write stator info
b = ststa
¢ = stend
nbl = nstat
thick = sthick
rot = 0.0

write(1,*)

write(1,*) 'STATOR STREAMLINE INFO’

write(1,*) 'stream mp-ch angin angout Min Mout Re 450
& rin rout’

do str = 1,numr

mch = mto(str,b)
mchout = mto(str,c)

86

angin = 180/3.14159*atan(—1.0*(vth(str,b)—rot*y(str,b))/
& vm(str,b))

angout = 180/3.14159%atan(—1.0*(vth(str,c)—rot*y(str,c))/
& vm(str,c))

zsta = z(str,b)
zend = z(str,c)
if (y(str,c).eq.y(str,b)) then
ch = (zend—zsta)/y(str,c)
else
ch = sqrt(({zend—zsta)/(y{str,c)-y(str,b)))**2+1.0)*
& log(y(str,c)/y(str,b))
end if
ch = abs(ch)
reyn = rho(str,b)*vto(str,b)*ch/1.86e-5
write(1,2059) str,ch,angin,angout,mch,mchout,reyn
end do

3000 return

end

460

470

Compute radius of curvature - roc.f

subroutine roc

C This fills xr,yr,rds in the common block for a given
C x1,x2,x3,y1,y2,y3

C Three points determine a circle, and the center is at the
C intersection of the perpendicular bisectors

include ’vars.inc’
real*8 sa,sb,xa,xb,ya,yb

xa = (x1+x2)/2
ya = (yl+y2)/2
sa = (x1-x2)/(y2-yl)

xb = (x3+x2)/2
yb = (y3+y2)/2
sb = (x3-x2)/(y2-y3)

if (y2.eq.y3) then

xr = xb

yr = ya+sa*(xr—xa)
else if (y2.eq.yl) then

Xr = xa
yr = yb+sb*(xr—xb)
else

xr = (sb*xb-yb-sa*xa+ya)/(sb—sa)

87

20

yr = ya+sa*(xr—xa)
end if

rds = sqrt((x1—xr)**2+4(yl-yr)**2)
if (yr.gt.y2) rds = —1.0%rds
return

end

34

Grid generation program - gridfan.f

C procedure for defining initial streams and geormetry
C The top stream y(numr,m) must have a larger y coordinate
C than the bottom stream y(1,m)

C This program gridfan.f is separate

implicit none
integer maxm,maxr
parameter(maxr=33,maxm=256)

dimension yy(maxm,maxr),zz(maxm,maxr)
real yy,zz

character*12 grname,dfname

character*4 id

integer i,j,plottype,numm,numr

integer rosta,roend,ststa,stend,exitm

real ytop,ybot,ybotl,ybot2,ybot3,ybot4,ybot5,ybot6
real mdotstr,psrat,dx,mcru,patm,tatm

real w,ttf,omega,minlet,visc

write(6,*)'Enter a four character id name for the run’
read(5,1000) id
1000 format(a4)
grname(1:4) = id
grname(5:12) = ’grid.dat’
dfname(1:4) = id
dfname(5:12) = ’data.dat’

write(6,*)’Enter the number of points in the r-direction’
write(6,*)’This must be an odd number’

write(6,*)’The maximum is: ’ maxr

read(5,*) numr

write(6,*)'Point m=1 is the duct entrance’
write(6,”)’Enter the m value of the rotor start’

write(6,*)'Be sure that all m values are increasing integers’
read(5,*) rosta

88

20

30

10

write(6,*)’Enter the m value of the rotor end’
read(5,*) roend

write(6,*)’Enter the m value of the stator start’
read(3,*) ststa

write(6,*)’Enter the m value of the stator end’
read(5,*) stend

write(6,*)’Enter the m value of the duct exit’
read(5,*) exitm
numm = exitm

write(6,*)’Enter the y value of the top of the duct’
read(5,*) ytop

write(6,*)’Enter the m=1 y bottom coordinate.’
read(5,*) ybotl

write(6,*)’Enter the y value of the bottom of the rotor start’
read(5,*) ybot2

write(6,*) ’Enter the y value of the bottom of the rotor end’
read(5,*) ybot3

if (ststa .ne. roend) then

write(6,*)’Enter the y value of the bottom of the stator start’
read(5,*) ybot4

else
ybot4 = ybot3

end if

write(6,*)’Enter the y value of the bottom of the stator end’
read(5,*) ybot5

write(6,*)’Enter the y value of the duct exit’
read(5,*) ybot6

ttf = 1.27

write(6,*)’Enter duct inlet mach number’
read(5,*) minlet

write(6,*)Enter wheel rotation freq. (rad/s)’
read(5,*) omega

write(6,*)’Enter the grid spacing in x (m)’
read(5,*) dx

patm = 37000.0

tatm = 222.0
mcru = 0.8

89

50

60

70

80

20

plottype = 1
do i = l.numm
do j = l,numr
zz(i,j) = (i—rosta)*dx
end do

if (i.lt.rosta) then

ybot = ybotl+w(1,i,rosta)*(ybot2—ybot1)

else if (i.lt.roend) then

ybot = ybot2+w(rosta,i,roend)*(ybot3—ybot2)

else if (i.lt.ststa) then

ybot = ybot3+w(roend,i,ststa)*(ybot4—ybot3)

else if (i.lt.stend) then

ybot = ybot4+w(ststa,i,stend)*(yhot5—ybot4)

else

ybot = ybot5+w(stend,i,exitm)*(ybot6—ybot5)

end if

yy(i,1) = ybot
yy(i,numr) = ytop

mdotstr = 0.5*(yy(i,numr)**2-yy(i,1)**2)/(numr—1.0)

do j = 2,numr-1

yy(ij) = sqrt(yy(i,j—1)**2+2*mdotstr)

end do
end do

C Write out grid and datafile

11
12
21
22

open(file=grname,unit=1)
doi = 1,numr
do j = 1,numm

write(1,*) zz(j,i),yy (j,i)

end do
end do
close(1)

write(6,*) grname,’ is made.’

open(2file=dfname)

format(i30,a)
format(f30.5,a)
format(il5,i15,a)
format(f15.5,f15.5,a)

write(2,21) numr,numm,’
write(2,21) rosta,roend,’
write(2,21) ststa,stend,’
write(2,22) 1.23,minlet,’
write(2,12) omega,’ !

! numr,numm’

! rotor start, end’

! stator start, end’

! Fan Temp ratio, Inlet Mach no.'
rotation frequency’

20

110

120

130

140

write(2,22) patm,tatm,” ! Atm. Press., Temp.’

write(2,12) mcru,” ! Cruise mach number’ 150
write(2,22) 0.05,0.05,” ! Rot loss, Stat loss’

write(2,22) 0.08,0.04,” ! Rot hub t/c, tip t/c’

write(2,22) 0.08,0.04, ! Stat hub t/c, tip t/c’

write(2,21) 32,49,’ ! num rotor blades,num stator blades’

write(2,11) plottype,’ ! Plottype’

close(2)

write(6,*) dfname,’ is made.’

end 160

real function w(pl,p2,p3)
real pl,p2,p3

if (p2.1t.p1) then
w = 0.0 170
else if (p2.gt.p3) then
w=1.0
else
w = (p2-pl)/(p3~pl)
end if

return
end

91

Appendix B

Velocity Triangles

Figures B-1 through B-10 show the velocity triangles for the streamlines computed

by SC. the streamline curvature throughflow code.

92

600.

p———1]
— wib
...... b
pE—
——— wIC
I
a00.
nJs
200.
\~ \
S \ |
~ il ' .
N ' L’
7] ~. Vi -
N, ' L
~N s
N
\ L ’I
0. T T \!-’ T v
-300. -100. 100. 300.
m's
Figure B-1: Rotor hub velocity triangle
600.
—_— W
wrb
4 el v
—_——— Ve
— WIC
———— Ve
400. -
mis
200. 4
N. ., >
. L
N, 1! .
! N
. |
N 4
‘\ 'I ’7’
N oL
0. r y \'[" .
-300 -100. 100 300
nvs

Figure B-2: Rotor 1/4 span velocity triangle

93

600.
—_—a- Vb
wib
...... vt
1 —_———. Ve
wIC
—_———Vc
400. A
mis
200. A
‘i l 1’ "‘
N, | ’ -
N, | / el
e \~ I :' Lo’
N / e
« |
N, s
\\ III "‘
0. Y T \y’ T M
-300. -100. 100. 300.
mis
Figure B-3: Rotor 1/2 span velocity triangle
600.
—_—Vb
wib
...... Vo'
) —_—— Ve
wrc
—_——— Ve
400. W
m/s
200. -
\\ l / ""
‘\ I ,’ ‘v’
AN i J
- ‘\ ’ ',"
N — e
\\‘ ' ’ ""
N
0. T T \V'v L} A
-284, -84. 116. 316,

m's

Figure B-4: Rotor 3/4 span velocity triangle

94

600.
———— Vb
wib
______ vb'
7 ——— . VC
wIC
—_———Vc
400. -
mis
200. A
< f > e
\\ l '/ "’o
N, ' /
T AN | L P
N, | S
. b
AN
0. : S r r r
-200. 0. 200. 400.
s
Figure B-5: Rotor tip velocity triangle
300.
—_-—- Ve
+——aVd
200. -
m/s ~ ~
\\
\\
| ~.
\s
\\
\‘
\\
~N
100. <
N
\\
\\
\\
p N,
\\
\\
\\
\\
0. T L] L L) v
-300. -200. -100. 0.

ms

Figure B-6: Stator hub velocity triangle

95

240.

160.

80.

" .240.

240,

160.

80.

-240.

—_-—.Vc

——p Vad

T T T T
-160.
nvs

Figure B-7: Stator 1/4 span velocity triangle

—_— Ve

+—p\Vd

T T T T
-160.
m's

Figure B-8: Stator 1/2 span velocity triangle

96

240. - —_—
—_——-—-Vc
+——apVd

\\
\ _ T

160. - N\,

\\
/s N
\\
N
- \\\
\\
\\
\\
80. - , .
AN
N
\\
AN
- ‘\\
AN
.
\\
0. T T T T T
-240. -160. -80. 0
ms
Figure B-9: Stator 3/4 span velocity triangle
240.
——-—- Ve
e]
\\
\ 4
160. < \\\ {‘
N
m/s ‘\‘
\\
- \\
\\
\\
\§
80. - AR
\\
\\
\\
\\
] N
\\
\\
\\
o' L L} L Al
-200. -120. -40. 40.
s

Figure B-10: Stator tip velocity triangle

Appendix C

Blade Sections

For all following plots, each contour line is .1 Mach. The boundary layer thicknesses
are nondimensionalized by the nondimensional radius at that station. which is the
actual radius divided by the blade chord.

Figures C-1 through C-4 show the best solution found for the rotor hub. The

solution was not converged.

ROTOR STRERH OI REDESICK

voe. xacHi - 0.739
BLIAL « 52.4) BLIAZ « -i%.48
1.4 P2/P) * 1.830) @§A/VL - -G, 18T

oyt ¢ -0.0203 w o+ -0.020)

Figure C-1: Surface Mach distribution - Rotor hub

98

Figure C-2: Computation grid - Rotor hub

Contour Mach plot - Rotor hub

Figure C-3

99

NOT COMPUTED

Figure C-4: Suction side boundary layer thickness - Rotor hub

100

Figures C-5 through C-8 show the solution found for the rotor 1/4 span.

ROYOR STRERN 0S REDESIGN
0.9

MACHI » 0.089
1.4

L1
BCTAL » 98,00

e 2.100010%

8e1A2 - 818
P2/PL < 1.5183 QA/YE - -0.820)

Weayg » 0.012% « 0.0199

Figure C-3: Surface Mach distribution - Rotor 1/4 span

Figure C-6: Computation grid - Rotor 1/4 span

101

Figure C-7: Contour Mach plot - Rotor 1/4 span

2.00 100. a2 SUCTIOM SIOE OSIRR
100. 1 THETA
1.50
1.00
_
0.50
0.00

g.0 0.2 0.4 0.6 0.8 I.OX/CI.Z .y

Figure C-8: Suction side boundary layer thickness - Rotor 1/4 span

102

Figures C-9 through C-12 show the solution found for the rotor 1/2 span.

1.6 gmses ROTOR STREAH 09 REDESIGN
v 0.0 MACH! = 1.004 RE . 2.050+10%

BEIAL - S8.86 BETAZ = 24,44

1.y P2/PL < 16277 @A/VI o -0.8478
Wayg © 0.025¢ W - 0.0349

1.2

M

1.0}

0.8

0.6

0.4

0.2

0'0 1, A i

Figure C-9: Surface Mach distribution - Rotor 1/2 span

Figure C-10: Computation grid - Rotor 1/2 span

103

Figure C-11: Contour Mach plot - Rotor 1/2 span

5.00 100. « SUCTION SIDE OSTRR
100, & THETR

4y.00

3.00

2.00

1.00 /(_

0.00

0.0 0.2 0.4 0.6 0.8 I.OX/CI.E‘ 1.y

Figure C-12: Suction side boundary layer thickness - Rotor 1/2 span

104

Figures C-13 through C-16 show the solution found for the rotor 3/4 span.

ROTOR STREAM 13 REDESIGN
MACHI « 1.09S RE « 1.890-10%
BETAI « 80.52 BETA2 « 33.59
P2/P1 « 1,7005 @A/¥) e -0.86088
« 0.0388 v = 0.047%

Figure C-13: Surface Mach distribution - Rotor 3/4 span

Figure C-14: Computation grid - Rotor 3/4 span

105

/7

Figure C-15: Contour Mach plot - Rotor 3/4 span

5.00 100. sz SUCYTION SIDE OSTAR
100. = THETR

4.00

3.00

2.00

1.00 ,/\/—I

0_00L4J\

0.0 0.2 0. 0.6 0.8 1.0y,ct.2 1.4
Figure C-16: Suction side boundary layer thickness - Rotor 3/4 span

106

Figures C-17 through C-20 show the solution found for the rotor tip.

ROTOR STAEAHM 17 REDESIGN
MACHY = 1.173 AE = 1.860+10%
BETR! « 64.05 CETAZ » 41,95
P2/PY = 1.7499 @A/VI - -0.8856
Wyaye » 0,056 w - 0.0658

Figure C-17: Surface Mach distribution - Rotor tip

Figure C-18: Computation grid - Rotor tip

107

Figure C-19: Contour Mach plot - Rotor tip

S.00 :(l))g.. : SUCTION SIOE (:::G::

4.00

3.00 \
2.00

1.00

0.00

1.4
0.0 0.2 0.4 0.6 0.8 \.Ox/c|.2

Figure C-20: Suction side boundary layer thickness - Rotor tip

108

Figures C-21 through C-24 show the solution found for the stator hub.

STATOR STREAH 0! AEDESIGN

1.6 [mses
voo HACHI « 0.919 AE « 5.970s10°
BETAL = 55,11 BETAZ = -0.84
1.y P2/PY = 1.4470 @§A/Y¥1 - 0.0000

Wyaye - 0.0063 W « 0.0356

Figure C-21: Surface Mach distribution - Stator hub

Figure C-22: Computation grid - Stator hub

109

N) n

Figure C-23: Contour Mach plot - Stator hub

2.00 100. x SUCTIOM SIDE DSIRA
100. = THESA
1.50 \
\

1.00 \——

0.50

0.00
0.0 0.2 0.4 0.6 0.8

l.Dx/cl.2 t.y

Figure C-24: Suction side boundary layer thickness - Stator hub

110

Figures C-25 through C-28 show the so!ution f-und for the stator (/4 span.

1.6 (nises SVATOR STREAM 0S REDESICN
voo MACHI o 0,88 AL * $.31¢C 1ct

- BEraL - §1,9) (3R & .27

. P2/PY . 1308 qA/v) - 09,0000
Peavt o 0.0762 - . 0.0234

1.2

M

t.0 L

0.g2

0.6 \

0.4

0.2

0.0 F A i

Figure C-25: Surface Mac.: distribution - Stator 1/4 span

Figure C-26: Computation grid - Stator 1/4 span

111

/\

Figure C-27: Contour Mach plot - Stator 1/4 span

2.00 t'(;:: : SUCTION S1DE t::;::

1.50

1.00 \
\—-—————-

0.50

0.00

2 M
0.0 0.2 0.4 0.6 0.8 "OX/C" |

Figure C-28: Suction side boundary layer thickness - Stator 1/4 span

112

Figures C-29 through C-32 show the solution found for the stator 1/2 span.

1.6 mists STRTOA STREAH 09 REDESIGN
vo.o MACHI < 0.800 L13 . 4.760.10%
BLIA| « 48.7) 8LIA2 + ¥.¥)
t.u P2/P1 + 1,203 @A’/YI - 0.0000

Cgayg * 0.000 v « 0.0280

Figure C-29: Surface Mach distribution - Stator 1/2 span

Figure C-30: Computation grid - Stator 1/2 span

Figure C-31: Contour Mach plot - Stator 1/2 span

5.00 100. » SUCTION SIDE DSIAR
100. s THEIR

3.00
2.00

1.00

0.00 =
0.0 0.2 0.4 0.6 0.8 l.Ox/Cl.z 1.4

Figure C-32: Suction side boundary layer thickness - Stator 1/2 span

114

Figures C-33 through C-36 show the solution found for the stator 3/4 span

STATOR STRERM 13 REDESIGM
'8 ° MACHI « 0. 784 AL - 5.390410%
' BETAL « 46,45 BLIAZ « -2.%0
P2/P1 = 1.2421 @A/Y1 = 0.0000
Wyayg * 0.01%3 L] - 0,03189

0.0

Figure C-33: Surface Mach distribution - Stator 3/4 span

Figure C-34: Computation grid - Stator 3/4 span

115

Figure C-35: Contour Mach plot - Stator 3/4 span

2.00 100. : SUCTION SIDE OSIAA
100. THETR
1.50
1.00
\———
0.50
0.00

0.0 0.2 0.4 0.6 0.8 I.Ox/cl.z 1.4

Figure C-36: Suction side boundary layer thickness - Stator 3/4 span

116

Figures C-37 through C-40 show the solution found for the stator tip.

1.6 :,:t: STRTOR STRERAM |7 REDESIGN
. HACH! « 0,735 14 * 4.950-(0%
Ly BETAL « 43,76 BETRZ « 0.45
F2/P1 « 1.2101 @Asvi - 0.0000
Wiayg = 0.0105 w = 0,0277

0.2

0!0 L A N

Figure €-37: Surface Mach distribution - Stator tip

Figure C-38: Computation grid - Stator tip

117

Figure C-39: Contour Mach plot - Stator tip

2.00 100. s SUCTION SIDE OSIAR
100. 1 THETR
1.50
1.00
N—
0.50
0.00

0.0 0.2 0.4 0.6 0.8 I.OX/CI.Z 1.4

Figure C-40: Suction side boundary layer thickness - Stator tip

118

Bibliography

[1] W. Roland Davis and D. A. J. Millar. Through flow calculations based on matrix
inversion: Loss prediction. In Through-flow Calculations in Azial Turbomachin-
ery, number AGARD-CP-195 in AGARD Conference Proceedings, chapter 3.
France, October 1976.

[2] Jed Dennis. A Study of Tip Suction in Compressors. Master’s thesis, MIT,

Department of Aeronautics and Astronautics, September 1993.

[3] Mark Drela. Two-Dimensional Transonic Aerodynamic Design and Analysis Us-
ing the Euler Equations. PhD dissertation, MIT, Department of Aeronautics and

Astronautics, December 1985.
[4] Mark Drela. Personal communication, August 1994.

[5] R. M. Hearsey. A revised computer program for axial compressor design.
Aerospace Research Laboratories Report ARL-TR-75-0001, Wright Patterson
AFB, Dayton, Ohio, January 1975.

[6] Charles Hirsch. Computational methods for turbomachinery flows. Technical
Report NPS 67-84-022, Naval Postgraduate School, Monterey, California, De-
cember 1984.

(7] Jack Kerrebrock. Aircraft Engines and Gas Turbines. The MIT Press, Cam-

bridge, Massachusetts, second editicn, 1992.

(8] R. J. Lougherty, R. A. Horn, Jr., and P. C. Tramm. Single-stage experimental

evaluation of boundary layer blowing and bleed techniques for high lift stator

119

blades. Contractor Report CR-54573, Detroit Diesel Aliison, Indianapolis, Indi-
ana, March 1971.

[9] R. A. Novak. Flowfield and performance map computation for axial flow com-
pressors and turbines. In Modern Prediction Methods for Turbomachine Per-
formance, number AGARD-LS-83-1976 in AGARD Lecture Series, chapter 5.
France, June 1976.

[10] A. J. Wennerstrom. Experimental study of a high throughflow transonic axial
compressor stage. ASME Journal of Enginer " g for Gas Turbines and Power,

106:552-560, 1984.

[11] H. H. Youngren. Analysis and design of transonic cascades with splitter vanes.
GTL Report 203, MIT Gas Turbine Lab, Cambridge, Massachusetts, March
1991.

120

