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We study the anisotropic, elliptic expansion of a thermal atomic Bose gas released from an anisotropic trapping
potential, for a wide range of interaction strengths across a Feshbach resonance. We show that this hydrodynamic
phenomenon is for all interaction strengths fully described by a microscopic kinetic model with no free parameters.
The success of this description crucially relies on taking into account the reduced thermalizing power of elastic
collisions in a strongly interacting gas, for which we derive an analytical theory. We also perform time-resolved
measurements that directly reveal the dynamics of the energy transfer between the different expansion axes.
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Elliptic flow, the collisional redistribution of energy be-
tween axes during expansion of a fluid, is a canonical example
of hydrodynamic behavior. Commonly discussed in the context
of heavy-ion collisions [1], it has become a crucial probe of
the strongly interacting quark-gluon plasma produced in these
experiments. Due to the complicated microscopic physics,
such systems are often described in terms of macroscopic
(coarse-grained) quasiequilibrium local quantities such as
density and flow velocity. In this approach, the microscopic
physics is encapsulated in phenomenological parameters such
as viscosity.

Ultracold atomic gases offer an excellent testbed for study-
ing the collective behavior in interacting fluids, in large part
because the two-body interactions, characterized by the s-
wave scattering-length a, can be tuned via magnetic Fesh-
bach resonances [2]. Most famously, atomic gases can show
anisotropic expansion due to superfluid hydrodynamics [3,4].
However, for sufficiently strong interactions they can also
display pronounced elliptic flow in their normal state, above
the critical temperature for superfluidity. This effect has been
extensively studied in normal degenerate Fermi gases [5–13].
In normal Bose systems, elliptic flow has been observed for
relatively weak interactions [14,15] and in dipolar [16] gases,
but a systematic study as a function of the interaction strength
has been lacking. Of particular interest is the hydrodynamic
behavior of the unitary Bose gas [17–21], in which a → ∞
and the interactions are as strong as theoretically allowed.

In this Rapid Communication, we study the elliptic flow
of a normal atomic Bose gas, released from an anisotropic
harmonic trap (see Fig. 1), for a wide range of interaction
strengths across a Feshbach resonance, and a wide range of
trap anisotropies. We show that despite being a quintessentially
hydrodynamic phenomenon, elliptic flow in our system can in
all interaction regimes be described by a microscopic kinetic
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model with no phenomenological parameters. To explain our
observations for a → ∞, it is crucial to take into account not
only the unitarity-imposed limitations on the scattering rate,
but also on the effectiveness of collisions in transferring energy
between the expansion axes, for which we derive an analytical
theory. Exploiting the possibility to turn the interactions on
and off at any point during the gas expansion, we also perform
time-resolved experiments that directly reveal the dynamics of
the energy transfer between the expansion axes.

Our experimental setup is described in [22]. We work
with 39K atoms trapped in a cylindrically symmetric optical

FIG. 1. Elliptic flow in a normal atomic Bose gas. Hydrodynamic
behavior is seen in the inversion of a cloud’s spatial aspect ratio during
time-of-flight (TOF) expansion, after release from an anisotropic
harmonic trap. The sketch on top illustrates an anisotropic density
profile of a trapped gas, whose parameters are given in the left panel
of Fig. 2. The bottom panels show absorption images of the cloud
after 10 ms of expansion, for two different interaction strengths.
A quasi-ideal gas (left) expands essentially isotropically, while a
strongly interacting one (right) shows a pronounced aspect-ratio
inversion. Note that the trapped-gas cartoon is not to scale; for these
experiments the aspect ratio of the trapped cloud was η = 24.
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FIG. 2. Spatial aspect ratio of the cloud after expansion, wz/wr , for various interaction strengths across a Feshbach resonance, and different
trap geometries. For each data set (panel) the inset cartoons (not to scale) indicate the trap geometry characterized by η = ωz/ωr , the ratio of
axial and radial trapping frequencies in our cylindrically symmetric harmonic trap. The legends also show the trapped-cloud atom number N ,
temperature T , and peak phase-space density D. In each panel we show three different theoretical curves, corresponding to progressively more
refined models. In red we show the theory for a weakly interacting gas, in blue a theory that accounts for the unitarity-imposed limitations on
the elastic scattering rate, and finally in green our theory that also takes into account the reduced ability of collisions to transfer momentum in
a strongly interacting Bose gas (see the text for details). The shading of the theoretical curves reflects the variations and uncertainties in N and
T , and also the atom-number uncertainty due to small (<8%) three-body losses during the expansion.

harmonic potential, with a tunable trap anisotropy η = ωz/ωr ,
where ωz,r are the axial and radial trapping frequencies. We
use two internal (spin) states, |↑〉 = |F = 1,mF = 1〉 and
|↓〉 = |F = 1,mF = 0〉, labeled in the low-field basis, and
tune the ↑↑ scattering length a using the magnetic Feshbach
resonance centered at 402.70(3) G [23]. The ↓↓ scattering
length is negligible (<10a0, where a0 is the Bohr radius) for
all relevant magnetic field strengths. The peak phase-space
density in our trapped clouds, D = n0λ

3, is �0.1 (see Fig. 2
legends), so they are well described by Gaussian real- and
momentum-space distributions; here n0 is the number density
in the center of the cloud and λ = h/

√
2πmkBT is the thermal

wavelength, with T the temperature and m the particle mass
[24].

We prepare a quasi-ideal equilibrium gas in |↓〉 [23], then
release the cloud from the trap and simultaneously transfer it
to |↑〉 with a radio-frequency (rf) π pulse [25]. This 34-μs
pulse is very short compared to our characteristic millisecond
expansion timescale, set by ωmax = max[ωr,ωz] (see Fig. 2
legends). Hence, our rf spin flip acts as an essentially instan-
taneous interaction switch, and from the start of the expansion
the (local) rate of elastic collisions is γel = n〈σ h̄k/m〉, where n

is the density, σ = 8πa2/(1 + k2a2) is the (unitarity-limited)
scattering cross section, h̄k is the relative momentum of the
particles, and 〈· · · 〉 denotes a thermal average. Finally, after
10 ms of time of flight (TOF) we image the cloud radially (see
Fig. 1), and extract its axial and radial Gaussian widths, wz,r

[26]. We normalize the measured aspect ratio to that obtained
by repeating the experiment with the quasi-ideal |↓〉 gas (i.e.,
omitting the rf spin-flip pulse), which removes small (few
percent) systematic anisotropies due to imaging artifacts and
the noninfinite TOF.

In Fig. 2 we show the aspect ratio wz/wr measured for
various scattering lengths across the Feshbach resonance, and
(in different panels) for widely different trap geometries, from
strongly oblate (η = 24) to strongly prolate (η = 0.08). For
all our values of η, we observe the expected quasi-isotropic
expansion for weak interactions, and the cloud expands most
anisotropically at unitarity, where the elastic scattering rate is
maximal.

Hydrodynamic behavior should be pronounced if the initial
scattering rate in the cloud center, γ 0

el = n0〈σ h̄k/m〉, is much
larger than the expansion rate ωmax [27]. In our unitary clouds,
γ 0

el/ωmax varies between 5 (for the η = 24 data) and as much
as 24 (for the η = 1.6 data), consistent with the observed
pronounced elliptic flow. At the same time, since D 	 1,
even at unitarity the mean free path � ∼ (n0λ

2)−1 ∼ λ/D is
much larger than the de Broglie wavelength of the particles
(λ) and the typical interparticle distance n

−1/3
0 ∼ �D2/3. This

means that particles still have a well-defined momentum and
we can primarily consider their pairwise interactions. We thus
model our experiments using the Boltzmann equation for the
semiclassical phase-space distribution f (r,v,t), which gives
the occupation of the phase-space element corresponding to
spatial position r and velocity v:

∂f

∂t
+ v · ∂f

∂ r
= −γr(f − fle). (1)

The left-hand side of Eq. (1) is the convective derivative
of f , while the right-hand side is the Boltzmann collision
integral in the relaxation-time approximation, which assumes
that f relaxes to its local equilibrium value fle at a rate γr;
the (instantaneous) fle corresponds to an isotropic, thermal
momentum distribution in the zero-momentum frame for all the
particles at a given r, with the same local kinetic energy density
as for f [28]. For a cloud released from an anisotropic trap,
this local thermalization results in a transfer of energy from
the low-ω direction(s) to the high-ω one(s) [28]. By adopting
a Gaussian ansatz for f , one can obtain and solve equations
of motion for its real- and momentum-space widths, which
fully define the phase-space distribution; in this approach γr

becomes a global variable that can be related to the elastic
collision rate averaged across the cloud, γel [28,29].

We compare our data to three different theoretical curves,
indicated by different colors in Fig. 2, which correspond
to progressively better models for γr. The red curve shows
the weakly interacting theory [28], where one approximates
σ = 8πa2, so γel = (8πa2h̄/m)〈nk〉 and for this case it was
shown that γr = (4/5)γel [29]. This approach works well for
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relatively weak interactions, but as expected fails at and near
unitarity, since it unphysically assumes σ → ∞ for a → ∞.
The blue-curve calculation properly takes into account the
unitary saturation of the scattering cross section, so γel =
(8πh̄a2/m)〈nk/(1 + k2a2)〉, but we still assume γr = (4/5)γel

and still overestimate the cloud anisotropy at and near unitarity.
The reason for this is that the ratio γr/γel is also affected by

the k dependence of the cross section σ . For weak interactions
(λ/|a| � 1) the cross section is k independent, whereas at
unitarity σ ∝ k−2 and is therefore larger for scattering of
particles with a small relative velocity. Hence, a greater fraction
of collisions contributing to the total γel occurs between
particles with small relative momenta. Such collisions are not
effective in thermalizing the gas, and consequently the ratio
γr/γel is reduced. This effect was previously discussed in the
context of in-trap cross-dimensional thermalization, and it was
numerically found that the thermalization rate at fixed γel is
suppressed by a factor of up to 4 [30–32].

Here, we generalize the calculation of [29] to include
the k dependence of σ and derive an analytic expression
for γr/γel valid at all interaction strengths. Writing γr/γel =
(4/5)g−1(α), where α = 2πa2/λ2, we get

g(α) = 6
∫ ∞

0

x3e−x2

1 + αx2
dx

[∫ ∞

0

x7e−x2

1 + αx2
dx

]−1

. (2)

For α = 0 we recover γr/γel = 4/5, while for α → ∞ we
get g = 3 and γr/γel = 4/15, meaning that relaxation requires
three times as many collisions. The resulting prediction for the
aspect ratio of the expanding cloud is shown in green in Fig. 2.
Without any free parameters, we capture the experimental data
excellently for all interaction strengths and for values of η

differing by more than two orders of magnitude. We note that
the crossover from the collisionless to hydrodynamic regime
was also seen in the behavior of the collective modes in a
trapped weakly interacting gas (see Ref. [35], and references
therein). In those studies the gas density was tuned (at a fixed
a) and the crucial difference from our work is that the cross
section was always in the k-independent weakly interacting
limit.

Finally, in the last part of the Rapid Communication, we use
our spin-flip interaction switch to experimentally time-resolve
the transfer of energy between the different expansion axes and
more directly reveal the underlying mechanism for the elliptic
flow (see Fig. 3). Here we focus on a unitary Bose gas and
a strongly oblate trap with η = 24. As before, at time t = 0
we release the cloud from the trap and turn on the interactions
by spin-flipping it from |↓〉 to |↑〉. However, now, after some
variable short interaction time, tint < tTOF = 10 ms, we turn off
the interactions by spin-flipping the cloud back to |↓〉, and thus
suddenly interrupt the energy transfer. For the remainder of
TOF the expansion proceeds ballistically and the final shape of
the cloud reflects the momentum distribution frozen at t = tint.

The tint-dependent expansion energy along each direction is
characterized by an effective temperature, T eff

i , where i = r,z;
this global T eff

i corresponds to projecting the phase-space
distribution onto the i momentum axis. In Fig. 3, we show
T eff

i (tint) that we approximately extract from the measured

FIG. 3. Dynamics of the interaxis energy transfer in the early
stages of the expansion. The top panel illustrates our experimental
protocol for obtaining time-resolved measurements of the momentum
distribution. In the bottom panel we show the effective temperature
T eff associated with motion along the axial (blue) and radial (red)
directions during expansion of a resonantly interacting gas (λ/a =
0) released from a strongly oblate trap (η = 24); all the trapped-
cloud parameters are essentially the same as in the left panel of
Fig. 2. In purple we show the average temperature, (2T eff

r + T eff
z )/3,

which remains essentially constant. The green bands show numerical
simulations for our experimental parameters, with the band thickness
reflecting the atom-number and temperature uncertainties. The dashed
lines show the predictions for an ideal experiment with infinite TOF.

cloud widths after TOF using

T eff
i ≈ m

kB

w2
i − w2

0,i

t2
TOF

, (3)

where w0,i =
√

kBT/(mω2
i ) are the spatial sizes of the trapped

cloud; note that the relationship in Eq. (3) would be an exact
equality for tTOF → ∞. At the time of release T eff

r = T eff
z , but

as the expansion proceeds in the presence of interactions, T eff
r

(red) decreases and T eff
z (blue) increases. The mean temper-

ature, (2T eff
r + T eff

z )/3 (purple), remains constant, confirming
an elastic redistribution of energy between the different axes.

We note that the energy redistribution process extends over
a characteristic timescale of ≈1 ms, which is notably longer
than the ideal-gas expansion timescale 1/ωz = 0.14 ms. One
reason for this is that during expansion at unitarity the drop in
the collision rate due to the drop in the density is countered
by an increase due to the reduction in the local spread of
momenta, which increases the unitarity-limited σ (for a related
discussion, see also [7]).

Here we again compare the experimental data with our
numerical simulations (with γr/γel = 4/15) and find good
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agreement without any free parameters. The green bands in
Fig. 3 show simulations for our experimental protocol and
parameters; that is, we directly simulate the right-hand side of
Eq. (3) rather than the exact T eff

i . For comparison, with dashed
lines we also show simulations of the exact T eff

i , which would
be observed in an ideal experiment with tTOF → ∞, and find
that our measurements are close to these predictions.

In conclusion, we have studied elliptic flow in a normal
Bose gas with tunable interactions, and have quantitatively
explained this quintessentially hydrodynamic behavior using a
microscopic kinetic model with no free parameters. Our mea-
surements show that the behavior of a strongly interacting gas is
crucially affected by the reduction of the effectiveness of elastic
collisions in driving the system toward local equilibrium, for
which we have derived an analytical theory. Finally, by study-
ing the time dependence of the expanding cloud’s momentum
distribution, we have directly revealed the dynamics of the
energy transfer between the expansion axes. In the future it
would be interesting to study the effects of degeneracy on the
hydrodynamic behavior of a Bose gas at unitary.
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APPENDIX: DERIVATION OF g(α)

Here we outline the derivation of the scaling factor g(α)
between the rates of elastic scattering and phase-space relax-

ation. Essentially, we incorporate the momentum dependence
of the scattering cross section, σ = 8πa2/(1 + k2a2), into
the derivation presented in [29], where the authors assumed
σ = 8πa2. For ease of following we explicitly refer to the
notation used in Ref. [29].

The phase-space relaxation rate, denoted γr in our main
text, is defined in Eq. (15) of [29] as τ−1 = −〈χ6Icoll〉/〈χ6〉.
Assuming σ = 8πa2, the authors calculated both τ and the
elastic scattering rate γcoll, denoted γel in our main text, and
found 1/τ = (4/5)γcoll.

The momentum dependence of σ affects both the elastic
scattering rate and the phase-space relaxation rate. The gener-
alized scattering rate, valid for all interaction strengths, is

γcoll =
〈
n

8πa2

1 + a2k2

h̄k

m/2

〉

= γ 0
coll

∫ ∞

0
dx

x3e−x2

1 + αx2

[∫ ∞

0
dx x3e−x2

]−1

= γ 0
coll × 2

∫ ∞

0
dx

x3e−x2

1 + αx2
, (A1)

where α = 2πa2/λ2 and γ 0
coll corresponds to the approxima-

tion α → 0, equivalent to σ = 8πa2.
Similarly, the generalized τ is found by keeping the (k-

dependent) cross section inside the integral over relative ve-
locity in Eq. (A4) of [29]. With this generalization, proceeding
as in [29] gives

1

τ
= 1

τ 0

∫ ∞

0
dx

x7e−x2

1 + αx2

[∫ ∞

0
dx x7e−x2

]−1

= 1

τ 0
× 1

3

∫ ∞

0
dx

x7e−x2

1 + αx2
. (A2)

We therefore obtain
γr

γel
≡ 1

τγcoll
= 4

5
g−1(α), (A3)

where g(α) is as given in Eq. (2) in the main text.
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