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Abstract

The properties of plasma turbulence in a poloidally limited scrape-off layer (SOL) are addressed,

with focus on ISTTOK, a large aspect ratio tokamak with a circular cross section. Theoretical

investigations based on the drift-reduced Braginskii equations are carried out through linear

calculations and non-linear simulations, in two- and three-dimensional geometries. The linear

instabilities driving turbulence and the mechanisms that set the amplitude of turbulence as well as

the SOL width are identified. A clear asymmetry is shown to exist between the low-field and the

high-field sides of the machine. While the comparison between experimental measurements and

simulation results shows good agreement in the far SOL, large intermittent events in the near SOL,

detected in the experiments, are not captured by the simulations.
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I. INTRODUCTION

In recent years, significant progress was made in the study of the plasma turbulence

properties in the scrape-off layer (SOL) of tokamaks [1], the region that exhausts the tokamak

power, controls the plasma fueling and the impurity dynamics, and plays a major role in

determining the overall plasma confinement [2–5]. These theoretical investigations [6] focused

mainly on the toroidally limited SOL [7–9], a configuration that is relevant to the ITER

start-up and ramp-down phases during which the inner or the outer vessel wall will be used as

the limiting surface [10, 11]. In this scenario, using low-frequency fluid models, the turbulent

regimes were identified. It was found that drift waves (DW) and ballooning modes (BM)

drive the plasma turbulent dynamics, with the resistive BM being the main drive in typical

existing tokamak conditions [12], a result in agreement with previous experimental results

[13, 14]. Simulations and analytical estimates revealed that the fluctuations saturate due

to a local flattening of the plasma gradients and associated removal of the linear instability

drive [9]. By using a balance between turbulent transport and parallel losses at the vessel, a

scaling of the pressure scale length was derived. A thorough comparison with experimental

measurements was carried out with significant success [15]. The question of how these findings

can be applied to other configurations remains open and is one of the main motivations of

this work.

The goal of the present paper is the study of turbulence properties in a poloidally limited

geometry, such as the one of ISTTOK [16, 17], a large aspect ratio tokamak (R/a ∼ 5.4,

where R and a are the major and minor radius respectively) with a circular cross section.

By intercepting the magnetic field lines on a poloidal plane, a poloidal limiter avoids the

connection between the low- and the high-field sides of the machine. This allows the turbulent

properties, and therefore the pressure scale length and the SOL width, to retain a strong

poloidal dependence. The shorter connection length, with respect to the toroidally limited

case, leads to enhanced parallel losses, steepening the gradients and, as we show, changing

the relative role of DW and BM in driving turbulence.

We carry out our investigation by using linear and non-linear simulations, in two- and

three-dimensional geometries, that are based on the drift-reduced Braginskii equations [18].

These are solved with GBS [19, 20], a numerical simulation code developed with the goal

of simulating plasma SOL turbulence by evolving the full profiles of the various plasma
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quantities with no separation between perturbations and equilibrium, and was validated

against experiments such as the TORPEX device [21] and several other machines [15], verified

with the method of manufactured solutions [22], and benchmarked against other major SOL

simulation codes, including BOUT++ [23], HESEL [24], and TOKAM3X [8]. The parameters

of our study rely on the ones from ISTTOK, where a clear asymmetry between the low and

the high field sides was found [25]. We uncover the instabilities driving turbulence and the

turbulent regimes in ISTTOK, and we quantitatively compare our simulation and theoretical

results with some of the measurements taken in this device.

This paper is organized as follows. Section II describes the model equations and the

ISTTOK simulation results. In Sec. III we investigate the nature of the instabilities driving

turbulence in a poloidally limited SOL. Sec. IV discusses the development of the linear

instabilities into non-linear turbulence and provides an estimate of the time-averaged pressure

gradient scale length. Finally, in Sec. V, a comparison between ISTTOK experimental

measurements and simulations is reported. The conclusions are presented in Sec. VI.

II. MODEL EQUATIONS AND ISTTOK SIMULATION RESULTS

In the ISTTOK SOL, the turbulent time scales (such as the one measured by Langmuir

probes <∼ 10−5 s) are slower than the collisional time (τe ∼ 10−6 s), and the scale lengths

along the (poloidally limited) magnetic field (L‖ = 2πR ∼ 3 m) are longer than the mean

free path (λmfp ∼ 1 m). This implies that the plasma distribution function is close to a local

Maxwellian [26], and justifies the use of a fluid description. Furthermore, the turbulent time

scales are slower than the ion cyclotron time (ω−1ci ∼ 10−7 s), and the perpendicular scale

lengths (Lp ∼ 1 cm) are longer than the ion gyroradius (ρi ∼ 0.1 cm). It follows that a

description of the ISTTOK SOL based on the three-dimensional, two-fluid, drift-reduced

Braginskii equations can be used [18]. According to Ref. [13], electromagnetic effects lead to

a non-negligible enhancement on heat and particle transport in the SOL. At the value of the

MHD ballooning parameter αMHD = βeR/Lp ∼ 1.2× 10−3 in ISTTOK, we do not expect the

ideal ballooning mode to play a major role. We refer the reader to Ref. [27] for a detailed

treatment of electromagnetic effects in the SOL within the drift-reduced fluid description

and here we consider the electrostatic limit. The model equations are
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∂n

∂t
=− c

B
[φ, n] +

2c

eB

[
C(nTe)− enC(φ)

]
−∇‖

(
nV‖e

)
+Dn(n) + Sn, (1)

∂Ω

∂t
=− c

B
[φ,Ω]− V‖i∇‖Ω +

ωci
3en

C(Gi) +Dω(ω)

+
miω

2
ci

en

[
∇‖
(
n(V‖i − V‖e)

)
+

2

miωci
C(n(Ti + Te))

]
, (2)

me

∂V‖e
∂t

=−me
c

B
[φ, V‖e]−meV‖e∇‖V‖e − 1.71∇‖Te

− 2

3n
∇‖Ge − 0.51meνe(V‖e − V‖i) + e∇‖φ− Te∇‖ lnn+DV‖e(V‖e)/n, (3)

mi

∂V‖i
∂t

=−mi
c

B
[φ, V‖i]−miV‖i∇‖V‖i −

2

3n
∇‖Gi −∇‖ [n(Te + Ti)]/n+DV‖i(V‖i)/n, (4)

∂Te
∂t

=− c

B
[φ, Te] +

4cTe
3eB

[
7

2
C(Te) +

Te
n
C(n)− eC(φ)

]
+ 0.71

2Te
3

[
(V‖i − V‖e)∇‖ lnn

+∇‖
(
V‖i − 2.4V‖e

)]
− V‖e∇‖Te +DTe(Te) + STe , (5)

∂Ti
∂t

=− c

B
[φ, Ti] +

4c

3eB

Ti
n

[C(nTe)− enC(φ)] +
2

3
Ti
(
V‖i − V‖e

)
∇‖ lnn

− 2

3
Ti∇‖V‖e − V‖i∇‖Ti −

10cTi
3eB

C(Ti) +DTi(Ti) + STi . (6)

where Ω = ω + ∇2
⊥Ti/e, with ω = ∇2

⊥φ the vorticity and φ the electrostatic potential.

In the density (n) and electron and ion temperature (Te, Ti) equations, source terms

Sn,T = S0n,T exp [−(x− xs)2/σ2
s ] are added to mimic the plasma outflow from the core into

the SOL. The diffusion operators for a generic field A, defined as DA(A) = χA∇2
⊥A, are

present for numerical reasons, i.e., to damp fluctuations at the grid scale. The gyroviscous

terms Gi,e are defined as

Gi,e = −η0i,e
{

2∇‖V‖i,e +
c

enB
[enC(φ)± C(nTi,e)]

}
, (7)

with η0i,e the Braginskii’s viscosity coefficients [26]. In Eqs. (1 - 6), we have also introduced

the magnetic field unit vector b = B/B, the curvature operator C(f) = (B/2)∇×(b/B) ·∇f ,

and the Poisson brackets operator [φ, f ] = b · (∇φ×∇f). We use the Spitzer’s estimate of

the electron-ion collision frequency, that is νe = 2.91× 10−6λnT
−3/2
e , with λ the Coulomb

logarithm, Te in eV, and n in cm−3.

For simplicity, we consider a large aspect ratio geometry, and no magnetic shear. An

orthogonal coordinate system [y, x, z] is used, where x is the flux coordinate corresponding

to the radial direction, z is a coordinate along the magnetic field B, and y is the coordinate
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perpendicular to both x and z. Because of the considered large aspect ratio limit, the

plane (x, y) coincides with the poloidal plane, which implies y = aθ, where θ is the poloidal

angle (−π < θ < π), with θ = 0 corresponding to the low-field side (LFS) equatorial

midplane and θ = ±π to the high-field side (HFS). In the rest of the paper, we use θ and

ϕ as the poloidal and toroidal coordinates respectively, with z = Rϕ/ cos ε, where ε is the

magnetic field pitch angle ε = arctan(a/qR) and q the safety factor. The parallel gradient

is ∇‖ = ∂z ' R−1(∂φ + q−1∂θ), and the perpendicular Laplacian is ∇2
⊥ = ∂2x + a−2∂2θ . The

poloidal limiter is located at ϕ = 0, 2π, where we impose the Bohm sheath conditions for the

ion and electron parallel velocities as V‖i = ±cs and V‖e = ±cs exp(Λ− eφ/Te) respectively,

with cs =
√

(Te + Ti)/mi and Λ = 0.5 ln [mi/(2πme)] ' 3 [28].

To solve Eqs. (1 - 6) we use GBS, a code that was developed in the past few years to

simulate the turbulent dynamics in the tokamak SOL [19, 20]. We perform a simulation

(denoted as the standard ISTTOK simulation in the following) whose parameters follow

the ones of the ISTTOK tokamak, which has a major radius R = 0.46 m, minor radius

a = 0.085 m, and a toroidal magnetic field BT = 0.5 T. We express the input parameters

and the simulation results in terms of the ISTTOK’s last closed flux surface parameters,

i.e., a reference electron temperature Te0 = 20 eV, density n0 = 1018 m−3, magnetic field

B = 0.5 T, and ion sound Larmor radius ρs0 ≡ cs0/ωci ' 0.9 mm [where cs0 =
√
Te0/mi

and ωci = eB/(mic)]. This results in R ' 504 ρs0, a ' 93 ρs0, dimensionless resistivity

ν = e2n0R/(miσ‖0cs0) ' 1× 10−3 [where σ‖ = 1.96 ne2/(meνe) is the parallel conductivity],

mass ratio mi/me ' 5×10−4, and safety factor q ' 8. As there are no detailed measures of the

ion temperature, we perform our non-linear simulations in the cold ion limit (τ = Ti/Te = 0),

and analyze the effect of finite Ti on the linear growth rate of the unstable modes and the

time-averaged pressure gradient length in Section IV.

The simulation has a radial extension 0 < x < 50 ρs0. The plasma and heat sources,

located at xs = 10 ρs0, have a characteristic width of σs = 2.5 ρs0. Our analysis considers

only the physically meaningful region x > xs. We remark that ISTTOK’s radial distance

between the last closed flux surface and the outer wall is approximately 16 ρs0, in practice

comparable to the experimental SOL width. Since a set of boundary conditions that properly

describes the interaction of the plasma with the outer wall is not known, we consider a radial

domain extension larger than in the experiment, so that the plasma pressure decays to a

negligible value at the outer wall, and the boundary conditions we impose at this location
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have a negligible impact on the turbulent properties. Specifically, at x = 0 and x = 50 ρs0,

Neumann boundary conditions are used for density, temperature, electric potential, while

Dirichlet boundary conditions are used for the vorticity. By computing the power spectrum

of the fluctuations, we observe that χA ≥ 6cs0/(ρ
2
s0R) properly damps fluctuations at the

grid scale. Moreover, the simulation results are not sensitive to the values of the diffusion

coefficients for the range of values 6 < χAρ
2
s0R/cs0 < 20, so the value of χA = 12cs0/(ρ

2
s0R) is

used for all fields. A spatial grid of 512× 64× 32 and a time step of 10−4R/cs0 is employed.

A typical turbulent snapshot for the standard ISTTOK simulation is shown in Figs. 1

and 2. Figure 1 shows the development of the plasma turbulence on the poloidal plane

ϕ = π midway between the two sides of the limiter plate. We observe that n, Te and φ

fluctuations are stronger on the LFS, θ = 0, compared to the HFS, θ = ±π, where the SOL

width is narrower. Figure 2, taken at a toroidal plane x = xs + 5 ρs0, confirms that turbulent

fluctuations tend to be aligned to the magnetic field lines. The ion parallel velocities V‖i are

−cs and +cs at the limiter plates ϕ = 0 and 2π respectively, and the V‖e fluctuations are

much larger due to the small electron inertia.

III. IDENTIFICATION OF DRIVING LINEAR INSTABILITIES

Previous studies on the drift-reduced Braginskii equations show that ballooning modes

(BM) and drift waves (DW) are the instabilities that drive most of the transport in a toroidally

limited SOL [12, 29]. BM are driven unstable by magnetic field line curvature and plasma

pressure gradients. They are characterized by a large (∼ π/2) phase shift between n and φ

[30], and their growth rate is maximum at the longest parallel wavelength allowed in the

system. On the contrary, DW arise at finite k‖ due to the E ×B convection of the pressure

profile, and are driven unstable by finite resistivity and electron inertia, showing an adiabatic

electron response, and a small phase shift between n and φ [31]. Besides BM and DW, the

Kelvin-Helmholtz (KH) instability, driven by shear flows, and the sheath mode, driven by a

temperature gradient when magnetic field lines terminate on a solid wall and sheath physics

plays a role, may also influence the SOL dynamics [32].

The role of DW in the system is assessed by two different studies. First, we compare

the standard ISTTOK simulation with a two-dimensional simulation carried out with a

model that, having excluded k‖ 6= 0 modes (and in particular DW), evolves the field-line
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FIG. 1. Snapshots of plasma turbulence in the standard ISTTOK simulation on a poloidal cross

section halfway between the limiter plate (ϕ = π). We show: (a) plasma density n/n0, (b) electron

temperature Te/Te0, (c) electrostatic potential φ/eTe0, (d) vorticity ω = ρ2s0∇2
⊥φ/eTe0, (e) electron

V‖e/cs0, and (f) ion V‖i/cs0 parallel velocities.
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FIG. 2. Snapshots of plasma turbulence for the standard ISTTOK simulation on a toroidal cross

section at x = xs + 5 ρs0. We show: (a) plasma density n/n0, (b) electron temperature Te/Te0,

(c) electrostatic potential φ/eTe0, (d) vorticity ω = ρ2s0∇2
⊥φ/eTe0, (e) electron V‖e/cs0, and (f) ion

V‖i/cs0 parallel velocities.

averaged density, n(r, θ), potential, φ(r, θ), and temperature, T (r, θ) (see Ref. [33]). Second,

we perform a three-dimensional simulation where we exclude DW dynamics by neglecting

the diamagnetic terms, Te∇‖ lnn and 1.71∇‖Te, in Ohm’s law, Eq. (3). The results of these
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FIG. 3. The equilibrium pressure scale length, Lp, is plotted as a function of the poloidal angle,

θ, from an exponential fit in the radial direction of the type p/p0 = e−x/Lp(θ) of the two- (red)

and three-dimensional simulations, with (blue) and without (purple) DW, and the prediction from

Eq. (18) (green).

experiments cast in terms of the averaged pressure gradient scale length Lp ' |p/∇p| (where

p = nTe), are compared in Fig. 3 with the result from the full 3D GBS simulations. This

includes the standard ISTTOK simulation (blue line), and the two- and three-dimensional

simulations that exclude the DW dynamics (red and purple lines, respectively). Motivated

by the difference between the LFS and the HFS following the removal of DW in Fig. 3, we

analyse separately the different poloidal positions. We note that this is justified by the fact

that the plasma rotates poloidally on a time scale 2πa/VE×B ∼ 2πaLpωci/(Λc
2
s0) ∼ 10−3 s,

which is much slower than the turbulent time scales (∼ 10−5 s).

We start our analysis at the LFS. Here, curvature is unfavourable, BM are expected to be

unstable and, comparing the standard GBS simulation with the one excluding DW in Fig. 3,

it is observed that removing DW from the system leads to increasing values of Lp, suggesting

that these may have a significant role. By linearizing the drift-reduced Braginskii system of
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FIG. 4. Linear growth rate as a function of the poloidal angle, θ, and of the parallel wavenumber

normalized to the major radius k‖R. From left to right: the solution of the full dispersion relation

that couples inertial DW and BM, Eq. (8); the solution of Eq. (10) for the pure BM; and the

solution of Eq. (11) for the pure DW.

equations (1 - 6) in the cold-ion limit, assuming background density and temperature profiles

with radial scale lengths given by Ln and LTe respectively, and a perturbation of the form

eγt+ikyy+ik‖z, we obtain the following dispersion relation that captures DW and BM

g
γ2

ω2
ci

k2y
k2‖

me

mi

= i
kyρ

2
s0

Ln

ωci
γ

(1 + 1.71ηe)− 2.95gk2yρ
2
s0 − 1, (8)

with

g =
1− 2 cos θ(1 + ηe)(ρ

2
s0/RLn)(ω2

ci/γ
2)

1 + 4.28i cos θ(kyρ2s0/R)(ωci/γ)
, (9)

and ηe = Ln/LTe . We remark that, to deduce Eq. (8), we also take into account the fact that

θ is almost constant along a field line due to a high q at the edge, we neglect both sound

wave coupling and compressibility terms in the continuity (1) and temperature (5) equations,

since γ � k‖cs and L‖/R� 1 (as confirmed by the linear analysis below), and we focus on

the inertial limit by neglecting the resistivity term νe in Ohm’s law (3). The inertial nature

of the instabilities present in the system is confirmed in Sec. IV.

The largest growth rate solution of Eq. (8) is plotted as a function of k‖ and θ in the left

panel of Fig. 4, having chosen Ln, ηe, and kyρs0 according to the results of the ISTTOK

standard simulation. This growth rate is compared with the maximum one resulting from

the dispersion relation of the pure BM,
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γ2

ω2
ci

− 2 cos θ(1 + ηe)
ρ2s0
RLn

= −
k2‖
k2y

mi

me

, (10)

and pure DW,

γ2

ω2
ci

k2y
k2‖

me

mi

= i
kyρ

2
s0

Ln

ωci
γ

(1 + 1.71ηe)− 2.95k2yρ
2
s0 − 1. (11)

One observes from Fig. 4 that pure BM are unstable for k‖R < 0.15 and for k‖ = 0 they

exhibit a strong growth rate at the LFS. However, as they are strongly stabilised by finite

k‖, at the typical values of k‖ ∼ 0.1 - 0.2 found in the standard ISTTOK simulations, DW

are the fastest growing instability. We note that the enhancement of transport observed in

Fig. 3 when DW are removed is due to the increased size of the turbulent eddies.

To conclude the analysis of the turbulence driving mechanisms at the LFS, we assess the

role of KH, by considering a two-dimensional simulation where we remove the KH instability

drive, i.e., we replace φ in the [φ, ω] term of the vorticity equation (2) by its poloidally

averaged counterpart. This simulation (not shown) exhibits an increase of Lp from 18 ρs0 to

30 ρs0, revealing therefore that the KH instability does not drive turbulence, but it plays a

role in regulating its saturation level, since it decreases the characteristic gradient lengths in

the SOL.

We can therefore conclude that, at the LFS, finite k‖ effects decrease the importance of

BM and lead to DW driven turbulence whose amplitude is partially regulated by the KH

mode at the LFS. As a comparison, we remark that k‖ is set by the ballooning character of

the modes in a toroidally limited SOL. This leads to smaller values of k‖ and, ultimately,

enhances the importance of BM with respect to DW.

We now focus on the HFS, where the DW removal in the nonlinear simulation of Fig. 3

significantly decreases Lp. This pinpoints the important role of DW as a turbulence drive at

this location and rules out BM and KH modes as the main drive of HFS turbulence. The

residual turbulence in the DW-suppressed system is driven by the KH mode stabilized by

the favourable curvature. This is tested by removing the KH instability drive, and observing

that Lp decreases even further to negligible values from approximately 5 ρs0 to 2 ρs0.

In addition, two-dimensional simulations (not shown) reveal that Lp increases substantially

at the HFS from Lp ' 5 ρs0 to Lp ' 11 ρs0 if the curvature term in the vorticity equation

is removed, a value in agreement with the estimate in Ref. [34]. This shows that favorable
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curvature has a stabilizing effect on KH. A study on the coupling between the KH instability

and BM has been carried out in Ref. [35], where the same effect was noticed.

In order to further justify our conclusions on the turbulent driving mechanisms, we analyse

the simulation results by evaluating the cross-coherence and phase-shift between ñ and φ̃.

Here, ñ denotes the density fluctuations, defined by ñ = n− n̄, with n̄ the time averaged

density. An analogous definition is used for the other quantities. Figure 5 (top panels)

displays the cross-coherence between ñ and φ̃ for a standard ISTTOK simulation at the

radial location x = xs + 5 ρs0 and midway toroidally between the two limiter faces at ϕ = π.

The fluctuations are normalized to their standard deviation. Since DW are characterized by

an almost adiabatic electron response, a higher correlation between φ̃ and ñ is expected in

DW-driven turbulence with respect to BM-driven turbulence. Indeed, as shown in Fig. 5,

the correlation is strong at the LFS, and even stronger at the HFS, which clearly points to a

DW character of turbulence at this location, where the BM interchange drive is not present.

We also perform a cross-coherence analysis for the three-dimensional simulations where

DW, and more specifically the diamagnetic terms Te∇‖ lnn and 1.71∇‖Te in Ohm’s law (3),

are removed from the system, and for three-dimensional simulations where the BM drive, the

curvature term in the vorticity equation (2), is neglected, yielding the middle and bottom

panels of Fig. 5 respectively. One observes that BM removal does not affect the correlation at

the HFS, and increases it at the LFS (as compared with a standard simulation), as expected

from the DW nature of turbulence at the HFS and the mixed BM and DW nature at the LFS.

On the other hand, removing DW has the effect of increasing the correlation at the HFS.

As a matter of fact, the KH instability that drives transport at the HFS in DW-suppressed

turbulent simulations leads to a high correlation between ñ and φ̃.

We now turn our attention to the phase-shift −π < δ < π between ñ and φ̃, which

is expected to be large and close to π/2 in BM turbulence where, according to Eq. (2),

neglecting k‖ = 0, temperature fluctuations, and KH effects, we have

γ∇2
⊥φ̃ ∼ 2ωci

Te + Ti
en

C(ñ), (12)

and small in DW driven turbulence, where neglecting electron inertia, temperature fluctua-

tions, and viscous Ge terms we have instead in Eq. (3)

∇‖φ̃ ∼
Te
en
∇‖ñ. (13)
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FIG. 5. Probability of correlation between density and electric potential fluctuations normalized

to their respective standard deviation, resulting from GBS simulations with standard ISTTOK

parameters (top), and when DW (middle) or BM (bottom) are removed from the system. The HFS

(left) and LFS (right) are shown.

In Fig. 6 we show δ at x = xs + 5 ρs0 and ϕ = π (as in Fig. 5), by performing the Fourier

transform of φ̃ and ñ along θ, on a domain with extension ∆θ = π/2 centered at θ = 0

for the LFS, and θ = ±π for the HFS, and computing the phase shift between these two

quantities as a function of ky. The phase shifts evaluated with a frequency of 103cs0/R,

during a time span of R/cs0, are then binned as a function of ky with the proper weight

given by the power spectral density of φ̃ and ñ fluctuations. The results of this test, shown

in Fig. 6, are not particularly clear. In fact, the phase-shift between φ̃ and ñ is small both at

LFS and HFS. Similarly small values are observed if BM and DW drive are removed from

the simulation. In fact, Eq. (12) is too simplistic to study the phase shift between φ̃ and

ñ. The short connection length of our configuration introduces finite k‖ effects, that tend
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FIG. 6. Phase-shift probability between density and electric potential fluctuations, resulting from

GBS simulations with standard ISTTOK parameters (top), and when DW (middle) or BM (bottom)

are removed from the system. The HFS (left) and LFS (right) are shown.

to reduce the phase shift. We have highlighted these effects by performing two-dimensional

simulations (not shown) with an increasing connection length, and observing that δ tends to

the expected value of π/2 only when the connection length approaches infinity.

IV. TURBULENCE SATURATION MECHANISMS

Having identified the nature of the linear turbulent drive at different locations, we now

turn to the investigation of the mechanisms that saturate the growth of the linearly unstable

modes. While a number of saturation mechanisms have been proposed (for a recent review

see Ref. [36]), it has been shown that the growth of a secondary KH instability and the

gradient removal mechanism, i.e., the saturation of the linear mode due to the non-linear local

flattening of the driving plasma gradients, are the main saturation mechanisms in the case of

DW and BM driven turbulence. Moreover, analytical estimates and numerical simulations

suggest that the gradient removal saturation mechanism is present when
√
kyLp <∼ 3 [9]. In
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our nonlinear simulations,
√
kyLp ' 1 at the HFS, and

√
kyLp ' 2.2 at the LFS, points to

the gradient removal mechanism as the one at play at the HFS, and partially contributing to

the saturation of the unstable modes at the LFS where KH also plays a role in the saturation

of the DW, as confirmed in the test described in Section III.

When turbulence is saturated by the gradient removal mechanism, the characteristic

pressure gradient length Lp in the SOL can be derived by stating that the growth of the

linearly unstable modes saturates when the radial gradient of the perturbed pressure becomes

comparable to the radial gradient of the background pressure dp/dx ∼ dp̃/dx, which can also

be written as

kxp̃ ∼
p

Lp
. (14)

Following non-local linear theory as outlined in Refs [37, 38], for DW and BM respectively,

we estimate the radial wavenumber as

kx ∼

√
ky
Lp
. (15)

To estimate the balance between the pressure flux and the parallel losses at the limiter

plates, we combine Eqs. (1) and (5), and ignore the curvature and diffusion terms, to derive

the leading order pressure equation

∂p

∂t
= − c

B
[φ, p]−∇‖(pV‖e). (16)

Writing [φ, p] = ∇ · Γ, we time average Eq. (16), integrate it along a magnetic field line,

and neglect the pressure flux in the poloidal direction Γy with respect to the turbulent radial

flux Γx = cp̃∂yφ̃/B ∼ ckyφ̃p̃/B. In addition, estimating the parallel losses at the limiter as

pV‖e
∣∣
limiter

' p cs, we obtain

∂Γx
∂x
∼ − p cs

2πR
. (17)

Finally, estimating the electrostatic potential φ̃ by neglecting the k‖ term in the pressure

equation (16) as φ̃ ∼ Bγp̃Lp/(Rpkyc), and with ∂xΓx ∼ Γx/Lp, we have

Lp =
R

cs

(
γ

ky

)
max

, (18)
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where γ/ky is maximised over all possible instabilities present in the system. In practice,

having fixed θ, the solution of Eq. (18) requires the evaluation of the linear growth rate γ as

a function of ky and Lp from the linear dispersion relation associated with the drift-reduced

Braginskii system. We then seek the value of ky that yields the largest ratio γ/ky for each

Lp, and we obtain the value of Lp that satisfies Eq. (18) using Muller’s secant method [39].

A linear code was used to obtain γ and ky for the different unstable modes [12]. Here, a

Robin boundary condition [40] is implemented that mimics the dynamics of the different

fields at the sheath entrance in the non-linear simulations.

The Lp solution of Eq. (18) for ISTTOK parameters is shown in Fig. 3 as a function of θ

(green dashed line). The agreement with the simulation results is particularly good at the

HFS, while at the LFS it overestimates Lp by 25% (as expected from KH having a role in

saturating turbulence).

Using the result of Eq. (18), we also estimate Lp as a function of the resistivity ν, ion

to electron temperature ratio τ , and safety factor q in order to assess the dependence of

the SOL radial pressure profile on these parameters. The results of this estimate are shown

in Fig. 7, and reveal that Lp depends weakly on the safety factor q, while it increases for

increasing values of ν and τ .

Equation (18) allows us to further confirm the ISTTOK turbulent regimes identified in

Section III, and extend this analysis to a wide parameter space. In fact, having estimated Lp

as a function of τ, ν, and q, one can evaluate the growth rate of the Resistive BM, Inertial

BM, Resistive DW, and Inertial DW instabilities. We note that the resistive branch of BM

and DW is due to the presence of resistivity (ν) in Ohm’s law, Eq. (3), while an inertial

branch of BM and DW is made unstable by electron inertia (me) effects. Therefore, the

growth rate of the resistive BM and DW can be found by neglecting me in Eq. (3), while the

inertial instability is evaluated by neglecting νe in Eq. (3). In order to identify the turbulent

regimes we evaluate the growth rate of the four instabilities above at the ky and Lp that

solve Eq. (18). Turbulence is expected to be driven by the instability that has the largest

linear growth rate.

The turbulence regimes are shown in Fig. 8, where Inertial DW drives turbulence at all

poloidal angles for typical ISTTOK parameters. An increase of the resistivity ν from the

typical ISTTOK standard simulation value, ν ∼ 1× 10−3, to 1× 10−2 leads to the Resistive

BM at the LFS, while for τ > 1 a transition to the Inertial BM is also seen near θ = 0. For
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FIG. 7. Equilibrium pressure scale-length, Lp, as a function of the poloidal angle θ and normalised

resistivity, ν (left panel), ion to electron temperature ratio, τ (middle panel), and safety factor, q

(right panel). The black lines represent the standard ISTTOK case.

FIG. 8. Turbulent regimes as a function of the poloidal angle θ and normalised resistivity, ν (upper

left panel), ion to electron temperature ratio τ (middle panel), and safety factor q (right panel).

The Resistive BM driven turbulence is in dark blue, Inertial BM in light blue, Resistive DW in

yellow, and Inertial DW in red. The black lines represent the standard ISTTOK case.

the case of 1 < τ < 2, Resistive DW drive turbulence at the HFS, and the turbulent regime

is not affected by the safety factor in a wide range of values (4 < q < 12).

V. COMPARISON WITH EXPERIMENTAL RESULTS

To compare our numerical results with experimental measurements we consider an ISTTOK

discharge with density n = 4 × 1018 m−3 and q = 10 at the LCFS. The experimental

measurements were obtained with a multi-pin Langmuir probe measuring simultaneously the

floating potential Vf and ion saturation current Isat. The probe was moved from shot-to-shot

along the radial direction and measurements were taken at r − a = 0, 5 and 10 mm [41].

We note that experimental measurements show the presence of a shear layer inside the
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FIG. 9. Statistical moments of Isat from the experiment (red) and simulation (blue). From left to

right: mean, standard deviation, skewness, and kurtosis.

last-closed flux surface, −10 < r − a < 0 mm in ISTTOK. While the statistical properties

of the fluctuations are locally affected by the shear layer [42], our measurements are not

influenced by its presence since they are taken at r − a ≥ 0. The experimental uncertainty

was estimated by performing three different discharges with the same parameters. From the

simulation results we evaluate Isat = encsA (A being the probe area) and Vf = φ− ΛTe.

First, we focus on the Isat statistical moments in Fig. 9. The temporal mean of Isat

is monotonically decreasing for increasing radial locations, both in the simulations and in

the experiments. However, the large uncertainty does not allow us to compare reliably

the Isat gradient scale length. The standard deviation shows that fluctuations are large,

approximately 50%, throughout the SOL both in the experiment and simulation, as it is

typically observed in the SOL of fusion devices. The simulation results show a monotonically

increasing skewness, as expected from previous SOL studies [42–45]. On the other hand, in

ISTTOK, we find a rather large value (' 1) of the skewness at the LCFS. The skewness (as

well as the kurtosis) shows a better agreement between simulations and experiment in the

far SOL.

These observations are confirmed by the comparison of the Isat probability distribution

function (PDF) shown in Fig. 10. In all cases the Isat PDFs deviate strongly from a Gaussian

distribution and we observe that the Isat PDF is considerably more skewed in the experiment

than in the simulation at the LCFS. The level of agreement increases while moving towards

the far SOL. The discrepancy between simulation and experimental results in the proximity

of the LCFS might be due to intermittent events occurring in ISTTOK inside the LCFS.

These events are not captured by the simulation that cannot properly describe the coupling

with core physics.

As opposed to Isat, the Vf PDFs show agreement with the simulation results within the
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FIG. 10. Isat PDF from the experiment (red) and simulation (blue), at r−a = 0 mm (left), r−a = 5

mm (center), and r − a = 10 mm (right).

FIG. 11. Vf PDF from the experiment (red) and simulation (blue), at r−a = 0 mm (left), r−a = 5

mm (center), and r − a = 10 mm (right).

error bars for the different radial locations (see Fig. 11). We remark that the Vf PDFs are

rather symmetric, possibly due to the bipolar nature of Vf associated with the intermittent

events, and display Gaussian properties [46].

We then consider the Isat and Vf power spectral density, evaluated as the square of the

absolute value of the temporal Fourier transform. These are shown in Figs. 12 and 13 for Isat

and Vf respectively. In all cases, the power spectra are approximately flat for frequencies

<∼ 20 kHz, a typical behavior observed in tokamak SOL turbulence [47]. At higher frequencies,

we compare the spectrum decay index between ISTTOK and GBS profiles. Focusing on the

region 50 < f < 300 kHz, we assume a power-law of the form Afµ with A a constant, f

the frequency, and µ the decay index. We find that the Isat power spectra show a sharper

decrease in the simulation, as compared to the experiment, while for Vf , we find a sharper

decrease in the experimental values. Quantitatively, at r − a = 5 mm, the experiment and

simulation Isat spectral index are µexp = −1.69± 0.32 and µsim = −2.20± 0.03 respectively,

while for Vf we find µexp = −2.07± 0.34 and µsim = −1.64± 0.03.
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FIG. 12. Isat power spectra from the experiment (red) and simulations (blue), at r − a = 0 mm

(left), r − a = 5 mm (center), and r − a = 10 mm (right).

FIG. 13. Vf power spectra from the experiment (red) and simulations (blue), at r − a = 0 mm

(left), r − a = 5 mm (center), and r − a = 10 mm (right).

Finally, in order to compare the experimental pressure gradient lengths Lp with the ones

discussed in Section IV, experimental measurements of n and Te were taken using sweeping

Langmuir probes with 3 mm radial resolution. Experimental measurements suggest that

Lp is independent of q for a wide range of values (Lp = 4.8, 4.5, 4.3 ρs0 for q = 7, 10, 13

respectively), a behavior in agreement with simulation results (see Fig. 7). However, the

experimental value of Lp ' 4.5 ρs0 at the LFS differs from the one predicted in simulation

results by a factor larger than three. In fact, in the ISTTOK standard simulation we have

Lp ' 15 ρs0 at the LFS (see Fig. 3). This might be due to the presence of the outer wall

in the experiment that acts effectively as a plasma sink and reduces Lp. Its presence is not

accounted for in the GBS simulations, which considers a large radial domain extension.

We remark that the longer pressure scale length observed in the experiment strengthens

our theoretical observation that KH is not the driving mechanism of turbulence in ISTTOK

SOL. A straightforward comparison of the linear growth rate of the KH instability, γKH ∼
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0.025(c/B)φ/L2
p, of the DW, γDW ∼ 0.25cs/Lp, and of the BM, γBM ∼ cs/

√
RLp, (see Ref.

[34]), shows that γKH/γDW ∼ γKH/γBM ∼ 10−2.

VI. CONCLUSIONS

The present paper addresses the study of plasma turbulence in a poloidally limited SOL,

using linear calculations and non-linear simulations based on the drift-reduced Braginskii

equations. We focus our investigations on the parameters of the ISTTOK tokamak and

compare our theoretical results with experiments carried out there.

Significant differences are found with respect to a toroidally limited SOL. Because of the

presence of the poloidal limiter that avoids the connection between the LFS and HFS, a clear

poloidal asymmetry is observed, with the time-averaged pressure scale length considerably

shorter at the LFS compared with the HFS. Due to the short connection length and related

steep pressure gradients, the role of DW is enhanced with respect to the toroidally limited

case. In fact, for the typical ISTTOK parameters, we identify DW as the main linear

instability drive both at the LFS and HFS, where we also find KH to play a non-negligible

role in saturating turbulence.

The pressure scale length obtained from the non-linear simulations shows a remarkable

agreement with estimates based on the saturation of the unstable linear modes due to

the non-linear local flattening of the driving plasma gradients at the HFS. The agreement

decreases at the LFS due to the aforementioned role of the KH instability in setting the

turbulence amplitude.

The comparison of the statistical properties of turbulence shows a good agreement between

experimental and numerical results particularly in the far SOL. Intermittent events observed

in ISTTOK in the near SOL are not captured by the simulation. On the other hand, possibly

because of the interaction of the plasma with the wall, the characteristic pressure scale

gradient length found in the simulation is considerably larger than that measured in the

experiment.
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