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Abstract 25 

The endoribonuclease YbeY is one of the most well conserved proteins across the kingdoms of 26 

life. In the present study, we demonstrate that YbeY in Brucella abortus is linked to a variety of 27 

important activities, including proper cellular morphology, mRNA transcript levels, and 28 

virulence. Deletion of ybeY in B. abortus led to a small colony phenotype when the bacteria were 29 

grown on agar medium, as well as significant aberrations in the morphology of the bacterial cell 30 

as evidenced by electron microscopy. Additionally, compared to the parental strain, the ΔybeY 31 

strain was significantly attenuated in both macrophage and mouse models of infection. The 32 

ΔybeY strain also showed increased sensitivities to several in vitro applied stressors, including 33 

bile acid, hydrogen peroxide, SDS, and paraquat. Transcriptomic analysis revealed that a 34 

multitude of mRNA transcripts are dysregulated in the ΔybeY strain, and many of the identified 35 

mRNAs encode proteins involved in metabolism, nutrient transport, transcriptional regulation, 36 

and flagellum synthesis. We subsequently constructed gene deletion strains of the most highly 37 

dysregulated systems, and several of the YbeY-linked gene deletion strains exhibited defects in 38 

the ability of the bacteria to survive and replicate in primary murine macrophages. Altogether, 39 

these data establish a clear role for YbeY in the biology and virulence of Brucella, and moreover, 40 

this work further illuminates the highly varied roles of this widely conserved endoribonuclease in 41 

bacteria. 42 

43 
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Importance 44 

Brucella spp. are highly efficient bacterial pathogens of animals and humans, causing significant 45 

morbidity and economic loss worldwide, and relapse of disease often occurs following antibiotic 46 

treatment of human brucellosis. As such, novel therapeutic strategies to combat Brucella 47 

infections are needed. Ribonucleases in the brucellae are understudied, and these enzymes 48 

represent elements that may be potential targets for future treatment approaches. The present 49 

work demonstrates the importance of the endoribonuclease YbeY for cellular morphology, 50 

efficient control of mRNA levels, and virulence in B. abortus. Overall, this study advances our 51 

understanding of the critical roles of YbeY in the pathogenesis of the intracellular brucellae and 52 

expands our understanding of this highly conserved ribonuclease. 53 

54 
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Introduction 55 

Ribonucleases (RNases) are enzymes that catalyze the cleavage of myriad RNAs, be it mRNA, 56 

tRNA, rRNA, or sRNA, and these enzymes are divided into two major classes called 57 

exoribonucleases and endoribonucleases depending on their ability to cleave RNA strands at 58 

terminal or non-terminal nucleotides, respectively (1, 2). The “day-to-day operations” of RNases 59 

include degrading RNAs during housekeeping turnover processes, but RNases also process 60 

longer RNA transcripts into shorter, functional RNAs. A classic example of RNA processing is 61 

the generation of the three major rRNAs (i.e., 23S, 16S, and 5S) and tRNAs from precursor 62 

RNAs, a process catalyzed by several different RNases in bacteria (3, 4). As such, bacteria 63 

encode an extensive array of RNases to perform a wide variety of degradation and processing 64 

functions.  65 

One of the more recently described bacterial RNases is the endoribonuclease YbeY (5).  66 

Interestingly, the structure of YbeY was studied prior to any insights into its biological functions. 67 

The crystal structure of the Aquifex aeolicus YbeY ortholog revealed resemblances to metal-68 

dependent proteinases such as collagenases (6), while crystallization of the E. coli YbeY protein 69 

as part of an NIH-funded Protein Structure Initiative program led to the suggestion that it is a 70 

metal-dependent hydrolase (7). Subsequently, the Sinorhizobium meliloti YbeY ortholog was 71 

found to be required for symbiosis, while E. coli YbeY drew attention because of its regulation 72 

as a heat-shock protein (8). YbeY was then shown to participate in the maturation of ribosomal 73 

RNAs and the biosynthesis of ribosomes, and more recently, evidence has been reported that 74 

YbeY functions as an endoribonuclease in rRNA maturation activities and 70S ribosome quality 75 

control (5, 9-11). Additionally, YbeY plays a significant role in the regulation and stability of 76 

bacterial sRNAs (12, 13). Not only has YbeY been linked to the capacity of S. meliloti to form 77 
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an effective symbiotic relationship with its plant host alfalfa, but ybeY is required for the full 78 

virulence of Vibrio cholerae and Yersinia enterocolitica (14-16). While RNases, including 79 

YbeY, are known to be important virulence determinants for several bacterial pathogens, very 80 

little is known about the role of RNases in the Brucella spp. (17). 81 

The brucellae are small Gram-negative bacteria that cause significant disease in both 82 

humans and animals globally (18), and these bacteria are intracellular pathogens of macrophages 83 

and dendritic cells where they reside in a vacuole-bound niche in close proximity to the 84 

endoplasmic reticulum (19, 20). Interestingly, the brucellae do not produce classical virulence 85 

factors, such as toxins or endotoxic LPS, but rather, these bacteria are stealthy pathogens whose 86 

ability to cause disease is directly related to their capacity to survive and replicate inside the cells 87 

of the host (21, 22). As noted above, little is known about RNases in Brucella spp., and in fact, 88 

only two published reports describe RNases in Brucella, and neither of the described RNases is 89 

required for the infectivity of the brucellae (23, 24). We have recently investigated the 90 

contribution of the RNase YbeY to Brucella biology, and among several interesting 91 

observations, we have determined that YbeY is required for normal cellular morphology and 92 

wild-type virulence in B. abortus 2308. Overall, the current study defines and characterizes the 93 

importance of YbeY in Brucella, and moreover, these data shed light on the significance of this 94 

endoribonuclease for intracellular bacterial pathogens. 95 

96 
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Results 97 

YbeY is required for normal growth and cellular morphology of Brucella abortus 98 

bab1_2156 (also known as bab_rs26200) is located on chromosome I of Brucella melitensis 99 

biovar Abortus 2308 between bab1_2155 (phoH) and bab1_2157 (tlyC) (Fig. 1A). The YbeY 100 

protein exhibits 56% identity and 68% similarity to the endoribonuclease YbeY from 101 

Sinorhizobium meliloti 1021. For this reason, and due to the results outlined in this study, we will 102 

hereafter refer to bab1_2156 as ybeY.  103 

An isogenic deletion of ybeY in B. abortus 2308 resulted in impaired growth in vitro and 104 

abnormal cellular morphology compared to the parental strain (Fig. 1). B. abortus::ΔybeY 105 

exhibited a small colony phenotype when grown on agar medium, and this defect was genetically 106 

complemented when ybeY was provided in trans on the plasmid pBBR-1MCS4 (Fig. 1B). When 107 

cultured in brucella broth (i.e., rich medium), the ybeY deletion strain was able to grow to similar 108 

maximum numbers of bacteria as the parental strain, but the ybeY deletion strain had a decreased 109 

rate of growth during the exponential growth phase (Fig. 1C). During exponential growth phase, 110 

B. abortus 2308 had a generation time of 2.2 hours while the ybeY deletion strain had a 111 

generation time of 2.8 hours. Importantly, the growth rate of B. abortus::ΔybeY was restored to a 112 

1.9 hour generation time by in trans complementation of ybeY.  113 

Using scanning electron microscopy, the ybeY deletion strain was observed to have 114 

cellular morphology deformities when the bacteria were collected from exponential and 115 

stationary phases of growth in brucella broth (Fig. 1D). As expected, B. abortus 2308 cells were 116 

coccobacilli in shape during exponential phase of growth and cocci during stationary phase of 117 

growth with clear septa between dividing cells. The ybeY deletion strain, however, exhibited 118 

noticeable morphological irregularities, including occurrences of clusters of cells appearing to be 119 
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unable to properly divide during both exponential and stationary phases of growth. Altogether, 120 

these data demonstrate that YbeY is required for the efficient growth and cellular morphology of 121 

B. abortus. 122 

YbeY contributes to B. abortus virulence in macrophages and experimentally infected mice 123 

To characterize the importance of YbeY for B. abortus virulence, the ybeY deletion strain was 124 

assessed for the ability to infect peritoneal macrophages in vitro and BALB/c mice in vivo (Fig. 125 

2). Peritoneal derived macrophages isolated from BALB/c mice were infected with either B. 126 

abortus 2308, B. abortus 2308::ΔybeY, or B. abortus 2308::ΔybeY-comp at an MOI of 100. The 127 

ybeY deletion strain was strikingly less able to survive and replicate within the macrophage 128 

compared to the parental strain at 24 and 48 hours post-infection, and this decrease in survival 129 

and replication was restored to wild-type levels in the ybeY complemented strain (Fig. 2A). 130 

Similarly, the ybeY deletion strain exhibited a substantially reduced ability to infect BALB/c 131 

mice compared to the parental strain 2308, as significantly fewer bacteria were recovered from 132 

the spleens of mice infected with the ybeY deletion strain after both 4 and 8 weeks of infection 133 

(Fig. 2B). These experiments indicate that YbeY is necessary for the ability of B. abortus to 134 

sustain infection in macrophages and mice. 135 

Deletion of ybeY in B. abortus leads to increased sensitivities to general stress and wide 136 

ranging metabolic aberrations 137 

Due to the decreased growth rate, defect in cell morphology, and reduced ability to infect the in 138 

vitro and in vivo models of the ybeY deletion strain, we sought to gain insight into the link 139 

between YbeY and general stress in B. abortus. To achieve this, we employed disk diffusion 140 

assays in which B. abortus strains were exposed to a variety of stressors, including deoxycholate 141 

(10%), H2O2 (30%), SDS (20%), polymyxin B (10 mg/mL), and paraquat (0.25 M) (Fig. 3). In 142 



 8 

these experiments, the ybeY deletion strain was more sensitive than the parental strain 2308 to 143 

deoxycholate, H2O2, SDS, and paraquat, and genetic complementation of ybeY in the deletion 144 

strain restored the zones of inhibition to the levels observed for 2308. Interestingly, deletion of 145 

ybeY had no effect on the ability of B. abortus to withstand killing by polymyxin B. These data 146 

demonstrate that YbeY is important for the ability of B. abortus to cope with general stress 147 

conditions. 148 

The Biolog Phenotype MicroArray system provides an inexpensive and rapid means of 149 

testing microorganisms for the ability to grow under hundreds of varying conditions. Here, we 150 

employed Biolog Phenotype MicroArrays to analyze the growth of B. abortus 2308 and B. 151 

abortus 2308::ΔybeY in a wide variety of different nutrient sources, environmental conditions, 152 

and stressors. Each Biolog Phenotype MicroArray plate was inoculated with 108 CFU/well of the 153 

appropriate Brucella strains and incubated for 84 hours at 37oC. After 84 hours of incubation, 154 

each individual well was measured at an O.D. of 590 nm and visually monitored for growth, 155 

indicated by metabolic activity (clear to purple) (Dataset S1). Overall, we observed 27 156 

differences in growth between B. abortus 2308 and the ybeY deletion strain (Table S1). The 157 

conditions in which 2308::ΔybeY grew more efficiently than 2308 are highlighted in green, and 158 

the conditions in which 2308 grew more efficiently than ybeY are highlighted in red. With 159 

regards to carbon sources, the ybeY deletion strain was better able than the parental strain 2308 to 160 

utilize malic acid and laminarin (a storage glucan). However, deletion of ybeY led to the inability 161 

of B. abortus to utilize butyric acid or caproic acid as a carbon source for growth. Compared to 162 

B. abortus 2308, growth of the ybeY deletion strain was more sensitive to dodecyltrimethyl 163 

ammonium bromide, promethazine, alexidine, dichlofluanid, chloroxylenol, sodium m-periodate, 164 

lidocaine, josamycin, thioridazine, patulin, and tetrazolium violet. Conversely, growth of B. 165 
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abortus 2308::ΔybeY was more resistant to the presence of fusaric acid, 1-chloro-2,4-166 

dinitrobenzene, 2-phenylphenol, antimony (III) chloride, pentachloro-phenol, azathioprine, 167 

phenethicillin, and lawsone. Altogether, the Biolog Phenotype MicroArrays underscore the 168 

diverse metabolic abnormalities that result from the deletion of ybeY in B. abortus. 169 

YbeY impacts the levels of mRNA associated with a variety of cellular systems 170 

The pleiotropic effects of ybeY loss on cellular RNAs has been well documented in other bacteria 171 

(5, 9, 10, 12, 15, 25, 26), and as such, we hypothesized that deletion of ybeY would lead to 172 

changes in mRNA levels in B. abortus. Therefore, we employed microarray technology to 173 

identify mRNAs that are influenced by YbeY. This experiment was performed using RNA from 174 

cultures of B. abortus 2308 and B. abortus 2308::ΔybeY grown in brucella broth to late 175 

exponential phase (Dataset S2). Altogether, mRNAs from 84 genes exhibited differential levels 176 

(>3 fold difference) in ΔybeY, and of these, 34 mRNAs were elevated in the ybeY deletion strain, 177 

while 51 mRNAs were decreased in the ybeY deletion strain compared to the parental strain 178 

(Table 1). The mRNAs that displayed differential quantities in the ybeY deletion strain included 179 

those encoding membrane proteins and transport systems; proteins involved in DNA replication, 180 

transcriptional or translational regulation; proteins related to flagellar processes; proteins linked 181 

to metabolism, signaling, and enzymatic processes; and hypothetical proteins. 182 

Interestingly, several of the mRNAs identified in the ybeY microarray encode proteins 183 

that have been previously characterized as being required for efficient Brucella infection or as 184 

being differentially expressed in the bacterium during intracellular trafficking of Brucella. Seven 185 

genes, bab2_1099 (FtcR, flagellar transcriptional regulator), bab2_1106 (flagellin), bab1_0303 186 

(UreG1, urease accessory protein), bab2_0583 (ABC transporter permease), bab2_0584 (ABC 187 

transporter permease), bab2_0585 (UgpB, a ABC transporter periplasmic binding protein), and 188 
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bab1_1302 (hypothetical protein) have been implicated in Brucella virulence (27-32). Seven 189 

other genes, bab1_1679 (ABC transporter ATPase), bab1_1792 (ABC transporter periplasmic 190 

binding protein), bab2_0282 (ABC transporter permease), bab2_0700 (ABC transporter 191 

periplasmic binding protein), bab1_1681 (cell envelope biogenesis protein TonB), bab2_0547 192 

(ABC transporter periplasmic binding protein), and bab2_0548 (ABC transporter permease) 193 

were shown previously to be differentially expressed in Brucella during intracellular infection 194 

(33, 34).  195 

Contribution of YbeY-associated genes to Brucella abortus virulence 196 

Given the large number of systems dysregulated in the B. abortus ybeY deletion strain, it is 197 

difficult to draw specific conclusions about the linkages between YbeY, individual mRNAs or 198 

systems, and the observed phenotypes resulting from the deletion of ybeY. Therefore, to begin to 199 

define YbeY-associated mRNAs that are required for virulence, we constructed strains harboring 200 

deletions in nine genes that exhibited the greatest levels of mRNA difference in our microarray 201 

experiments (Table 1). Subsequently, peritoneal derived macrophages from BALB/c mice were 202 

infected with the parental strain B. abortus 2308, as well as the B. abortus strains with isogenic 203 

deletions of bab2_0277 (choline dehydrogenase and related flavoprotein), bab2_0282 (ABC 204 

transporter permease), bab2_0822 (ABC transporter periplasmic binding protein), bab2_0548 205 

(ABC transporter permease), bab2_0830 (ABC transporter periplasmic binding protein), 206 

bab2_1109 (ABC transporter periplasmic binding protein), bab2_0700 (ABC transporter 207 

periplasmic binding protein), bab1_0265 (hypothetical protein), and bab1_1070 (NAD[P]H 208 

dehydrogenase) (Fig. 4). Of the deletion strains tested, Δbab2_0822, Δbab2_1109, and 209 

Δbab2_0700 were less able to survive and replicate in the macrophages compared to the parental 210 

strain 2308 at 48 hours post-infection, while the other deletion strains displayed wild-type levels 211 
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of infection. Interestingly, bab2_0822, bab2_1109, and bab2_0700 all encode components of 212 

putative ABC transport systems, and these genes will be discussed in more detail in the next 213 

section. Overall, these experiments demonstrate that several YbeY-associated systems are 214 

independently required for the full virulence of B. abortus. 215 

216 
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Discussion 217 

In this study, we have characterized the highly conserved protein YbeY in Brucella abortus. Our 218 

findings show that YbeY is necessary for proper cellular morphology, efficient in vitro growth, 219 

and full virulence of B. abortus. Moreover, we have defined the repertoire of mRNAs whose 220 

levels are connected to YbeY, and subsequently determined that several YbeY-controlled genes 221 

are independently required for B. abortus virulence. 222 

Generally, there are several similarities between the B. abortus ybeY deletion strain and 223 

other well-characterized ybeY deletion strains of other bacterial species. For example, the B. 224 

abortus ybeY deletion strain displays a significant growth defect when grown in nutrient rich 225 

media (Fig 1B), and similarly, V. cholerae, E. coli, Y. enterocolitica, and S. meliloti exhibit 226 

varying degrees of growth inhibition when ybeY is mutated (9, 14-16). Interestingly though, the 227 

B. abortus ΔybeY strain also has pronounced cellular morphology defects (Fig. 1D) that have not 228 

been reported previously in other bacterial ybeY mutants. Finally, the B. abortus ybeY deletion 229 

strain is severely compromised in its ability to cope with biologically relevant stresses, such as 230 

bile acid, membrane perturbation, and oxidative stress (Fig. 3), and this too is a phenotype 231 

reported for ybeY mutants of V. cholerae and S. meliloti (13, 15). Given the wide array of genes 232 

dysregulated in the B. abortus ybeY deletion strain, we cannot conclusively assign a specific 233 

YbeY-controlled gene or set of genes to the growth defect, morphological abnormalities, and/or 234 

increased sensitivities to external stresses observed in the ybeY deletion strain, but future 235 

experiments will be aimed at analyzing specific YbeY-associated genes for links to these 236 

phenotypic properties. 237 

Regarding the transcriptomic analysis, we determined that a wide range of mRNAs 238 

exhibit significantly altered levels in the B. abortus ybeY deletion strain (Table 1). Due to the 239 
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large number of mRNAs affected by the deletion of ybeY, it is difficult to ascertain which 240 

mRNAs are directly processed by YbeY and which mRNAs YbeY indirectly regulates. 241 

Interestingly, our analyses revealed five dysregulated genes in the ybeY deletion strain that 242 

encode putative transcriptional regulators, and it is possible that YbeY may control gene 243 

expression indirectly through these transcriptional regulatory proteins. Of particular interest, is 244 

bab2_1099, which encodes the FtcR transcriptional regulator of flagellar genes, as ftcR mRNA 245 

was >3-fold elevated in ybeY deletion strain. FtcR is the master transcriptional activator of the 246 

flagellar biosynthesis system in B. melitensis, and importantly, inactivation of FtcR decreases 247 

virulence in a mouse model of infection (28). Additionally, fliC (bab2_1106) encoding the major 248 

flagellin protein in Brucella is also significantly elevated in the ybeY deletion strain, and because 249 

FtcR is required for FliC production, the observed increase in fliC mRNA in the ΔybeY strain 250 

may be due to increased levels of FtcR (27, 28). This is just one example of a possible indirect 251 

regulatory link between YbeY and dysregulated mRNAs in B. abortus, and more work is needed 252 

to completely characterize the regulatory circuitries associated with YbeY in Brucella strains.  253 

Another prominent element of riboregulation often associated with bacterial YbeY 254 

proteins is that of small regulatory RNAs (sRNAs), as demonstrated in S. meliloti, Y. 255 

enterocolitica, and V. cholerae (13-15, 35). In these organisms, large variations in sRNA levels 256 

have been observed in the corresponding ybeY mutant strains. To date, comparatively few 257 

sRNAs have been identified and characterized in Brucella strains (36-40). Given the role of 258 

YbeY in bacterial sRNA stability, we assessed the levels of many of the presently known 259 

Brucella sRNAs, including AbcR1 and AbcR2, and we did not observe significant differences in 260 

sRNA levels between the parental B. abortus strain 2308 and the ybeY deletion strain (data not 261 

shown). While this was surprising given the well-documented role of YbeY in bacterial sRNA 262 
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stability and maturation, it is likely that other sRNAs are yet to be identified in Brucella strains, 263 

and these sRNAs may well show differences based on the presence of YbeY; however, while 264 

unlikely, it is also possible that YbeY in Brucella does not play a major role in sRNA stability 265 

and/or maturation. This is an active area of investigation in our laboratory, and future work is 266 

aimed at identifying novel Brucella sRNAs, as well as characterizing the effect of YbeY on 267 

sRNAs in Brucella. 268 

Overall, it is not surprising that a deletion of ybeY decreases the ability of B. abortus to 269 

survive and replicate in macrophages and colonize the spleens of mice (Fig. 2), as the ΔybeY 270 

strain has pronounced growth and morphological defects (Fig. 1). Therefore, we sought to 271 

determine if individual YbeY-controlled genes could account for the reduction in virulence 272 

independently of the growth aberrations resulting from deletion of ybeY. These experiments 273 

identified three genes, bab2_0822, bab2_1109, and bab2_0700, which are required for B. 274 

abortus to survive and replicate in murine macrophages (Fig. 4). Importantly, deletion of 275 

bab2_0822, bab2_1109, or bab2_0700 did not result in growth inhibition in vitro of B. abortus 276 

(Fig. S1). Thus, these genes are linked to YbeY-associated virulence mechanisms in B. abortus, 277 

but disconnected from the abnormal growth characteristics of the ΔybeY strain. To date, no 278 

empirical information is available describing the function of BAB2_0822, BAB2_1109, and 279 

BAB2_0700, but each protein is predicted to act as a periplasmic-binding protein likely 280 

connected to an ABC-type transport system. Questions remain about the biochemical activity of 281 

these proteins and the transport systems they function in concert with, but our data clearly 282 

demonstrate that BAB2_0822, BAB2_1109, and BAB2_0700 are required for the full virulence 283 

of B. abortus in macrophages. In the future, it will be interesting to characterize both the 284 
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regulatory link between YbeY and the mRNAs of bab2_0822, bab2_1109, and bab2_0700, as 285 

well as the role of BAB2_0822, BAB2_1109, and BAB2_0700 in the biology of B. abortus. 286 

Altogether, YbeY is a highly conserved bacterial endoribonuclease, and deletion of ybeY 287 

in B. abortus results in a pleotropic phenotype characterized by growth abnormalities, increased 288 

sensitivities to multiple stresses, and attenuation in cellular and animal models of infection. 289 

Additionally, the B. abortus YbeY protein is linked to cellular mRNA levels of genes encoding 290 

proteins involved in a variety of processes, including metabolism, flagellar biosynthesis, nutrient 291 

transport, and transcriptional regulation. Future work is needed to fully elucidate individual 292 

genetic pathways associated with YbeY in the brucellae, as well as to biochemically characterize 293 

the endoribonuclease activity of the B. abortus YbeY protein. Moreover, the relationship 294 

between YbeY and sRNAs, if one exists, needs to be clearly defined in Brucella. In the end, this 295 

work provides important foundational information about YbeY in the brucellae, and furthermore, 296 

contributes to better understanding the diversity of activities controlled by YbeY proteins in 297 

bacteria.  298 

299 
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Materials and Methods 300 

Bacterial strains and growth conditions 301 

Brucella abortus 2308 and derivative strains were routinely grown on Schaedler blood agar 302 

(SBA), which is composed of Schaedler agar (BD, Franklin Lakes, NJ USA) containing 5% 303 

defibrinated bovine blood (Quad Five, Ryegate, MT, USA), or in brucella broth (BD). For 304 

cloning, Escherichia coli strains (DH5α) were grown on tryptic soy agar (BD) or in Luria-305 

Bertani (LB) broth. When appropriate, growth media were supplemented with kanamycin (45 306 

µg/ml) or carbenicillin (100 µg/ml). 307 

Construction of Brucella abortus deletion strains and genetic complementation  308 

The ybeY gene (bab1_2156; bab_rs26200) in Brucella abortus 2308 was mutated using a non-309 

polar, unmarked gene excision strategy as described previously (41). Briefly, an approximately 310 

1-kb fragment of the upstream region of each gene to the second codon of the coding region was 311 

amplified by PCR using primers bab1_2156-Up-For and bab1_2156-Up-Rev and genomic DNA 312 

from Brucella abortus 2308 as a template. Similarly, a fragment containing the last two codons 313 

of the coding region to approximately 1 kb downstream of the ybeY ORF was amplified with 314 

primers bab1_2156-Down-For and bab1_2156-Down-Rev. The sequences of all oligonucleotide 315 

primers used in this study can be found in Table 2. The upstream fragment was digested with 316 

BamHI, while the downstream fragment was digested with PstI, and both fragments were treated 317 

with polynucleotide kinase in the presence of ATP. Both of the DNA fragments were included in 318 

a single ligation mix with BamHI/PstI-digested pNTPS138 (M.R.K. Alley, unpublished) and T4 319 

DNA ligase (Monserate Biotechnology Group, San Diego, CA, USA). The resulting plasmid 320 

(pybeY) was introduced into B. abortus 2308, and merodiploid transformants were obtained by 321 

selection on SBA+kanamycin. A single kanamycin-resistant clone was grown for ~6 hours in 322 
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brucella broth, and then plated onto SBA containing 10% sucrose. Genomic DNA from sucrose-323 

resistant, kanamycin-sensitive colonies was isolated and screened by PCR for loss of the ybeY 324 

gene. The method described above was used to construct isogenic mutations of bab2_0277, 325 

bab2_0282, bab2_0822, bab2_0548, bab2_0830, bab2_1109, bab2_0700, bab1_1070, and 326 

bab1_0265 using the primers specified in Table 2. 327 

 Genetic complementation of the ybeY deletion was achieved by expressing the wild-type 328 

ybeY allele from its native promoter in pBBR1MCS-4 (42). The ybeY gene, along with the native 329 

ybeY promoter, was amplified by PCR using primers ybeY-RC-For and ybeY-RC-Rev (Table 2) 330 

and Pfx polymerase (Invitrogen). The resulting DNA fragment was treated with polynucleotide 331 

kinase, and then ligated into SmaI-digested pBBR1MCS-4. This construct, pybeY-comp, was 332 

introduced into the B. abortus ybeY deletion strain by electroporation and colonies were selected 333 

on SBA+carbenicillin. 334 

All Brucella strains generated during this study were tested by the crystal violet exclusion 335 

assay in order to assess whether a given strain produced a smooth or rough form of 336 

lipopolysaccharide (LPS) (43). Briefly, Brucella strains were grown on tryptic soy agar for 72-96 337 

hours, and the plates were flooded with a dilute (1:1000) solution of crystal violet for ~25 sec. 338 

The parental strains B. abortus 2308 was included as smooth LPS-producing controls, while B. 339 

abortus RB51 served as a rough LPS-producing control.  340 

Electron microscopy 341 

Brucella strains were grown to the appropriate phase of growth in brucella broth with constant 342 

shaking (200 RPM) at 37°C. When cells reached exponential and/or stationary phase, cultures 343 

were spun down at 16,000 x g for 10 minutes. Supernatants were discarded and pellets were 344 

washed once with cold H2O followed by vigorous vortexing. Cells were spun down for a second 345 
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time and supernatants were discarded. The pellets were then fixed in 2.5-5% glutaraldehyde, and 346 

kill cultures were carried out for 10 days to ensure no viable bacteria were removed from BSL3 347 

containment. Fixed brucellae samples were submitted to the Electron Microscopy Services at 348 

VMCVM for scanning electron microscopy. Samples were then fixed in 0.1 M sodium 349 

cacodylate buffer and then dehydrated with 15%, 30%, 50%, 70%, 95%, and 100% ethanol. The 350 

samples were then mounted on stubs and sputter coated with gold. Cells were then viewed using 351 

a Carl Zeiss EVO 40 microscope. 352 

Growth in Biolog Phenotype Microarray plates 353 

Biolog Phenotype Microarray plates (Biolog, Inc., Hayward, CA.) were utilized to determine 354 

phenotypic differences between different B. abortus strains. Strains were grown on SBA plates 355 

to produce a lawn of bacteria. Bacteria was collected and suspended in IF-0a GN/GP Base 356 

(Biolog). The protocol “PM Procedures for GN Fastidious Bacteria” provided by Biolog were 357 

followed and Biolog Phenotype Microarray plates 1-20 were inoculated at a final concentration 358 

of 108 CFU/well. Plates were grown statically at 37oC for and measured after 84 hours of 359 

incubation at O.D. 590 nm. 360 

Sensitivity of B. abortus ΔybeY strain to stressors using disk diffusion assays 361 

Brucella strains were grown on SBA at 37oC under 5% CO2 for 48-72 h, and the bacterial cells 362 

were harvested into PBS and suspended a concentration of ~108 CFU/ml in brucella broth 363 

containing 0.6% agar (maintained at 55ºC). Four ml of this suspension was overlaid onto 364 

brucella agar plates, and after solidification of the overlay, a sterile 7 mm Whatman disk was 365 

placed in the center of each plate. Seven µl of a deoxycholate (10%), H2O2 (30%), SDS (20%), 366 

polymixin B (10 mg/ml), or paraquot (0.25 M) was applied to each filter disk and the plates were 367 
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incubated at 37ºC with 5% CO2 for 72 hours. Zones of inhibition around each disk were then 368 

measured in millimeters. 369 

Microarray analysis 370 

RNA was isolated from Brucella cultures grown to late exponential phase in brucella broth 371 

(Caswell et al., 2012), and contaminating genomic DNA was removed by treatment with RNase-372 

free DNase I (36). Ten micrograms of each RNA sample, B. abortus 2308 and B. abortus ΔybeY, 373 

were reverse transcribed, fragmented and 3’ biotinylated as previously described (44). The 374 

labeled cDNA (1.5 µg) was hybridized to custom-made B. abortus GeneChips 375 

(PMD2308a520698F) according to the manufacturer’s recommendations for antisense 376 

prokaryotic arrays (Affymetrix, Santa Clara, CA USA). Signal intensities were normalized to the 377 

median signal intensity value for each GeneChip, averaging and analyzed with GeneSpring 378 

Software X. RNA species exhibiting >3-fold change in expression, as determined by Affymetrix 379 

algorithms to be statistically differentially expressed (t-test; P<0.05), between B. abortus 2308 380 

and the ΔyebY strain were stated. The microarrays used in this study were developed based on B. 381 

melitensis biovar abortus 2308 and all B. abortus GenBank entries that were available at the time 382 

of design. In total, predicted open reading frames and intergenic regions were represented on 383 

PMD2308a520698F. The microarray data is currently being submitted to GenBank. 384 

Northern blot analysis 385 

RNA was isolated from Brucella cultures as described previously (36). Ten micrograms of RNA 386 

was separated on a denaturing 10% polyacrylamide gel containing 7 M urea and 1× TBE 387 

(89 mM Tris-base, 89 mM boric acid and 2 mM EDTA). A low-molecular-weight DNA ladder 388 

(New England BioLabs, Ipswich, MA, USA) was labelled with [γ-32P]-ATP and polynucleotide 389 

kinase, and this radiolabelled ladder was also separated on the polyacrylamide gel. Following 390 
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electrophoresis in 1× TBE buffer, the ladder and RNA samples were transferred to an Amersham 391 

HybondTM-N+ membrane (GE Healthcare, Piscataway, NJ, USA) in 1× TBE buffer. The samples 392 

were UV-cross-linked to the membrane, and the membrane was pre-hybridized in ULTRAhyb®-393 

Oligo Buffer (Ambion, Austin, TX, USA) for 45 minutes at ∼ 42°C in a rotating hybridization 394 

oven. The oligonucleotide probes were end-labeled with [γ-32P]-ATP and polynucleotide kinase. 395 

The radiolabelled probes were incubated with the pre-hybridized membranes at ∼ 42°C in a 396 

rotating hybridization oven overnight (∼ 12 h). The membranes were then washed three times 397 

for 10 min each with 2× SSC (300 mM sodium chloride and 30 mM sodium citrate), 1× SSC and 398 

0.5× SSC, respectively, at ∼ 42°C in a rotating hybridization oven. All SSC wash buffers 399 

contained 0.1% sodium dodecyl sulfate (SDS). The membranes were then exposed to X-ray film 400 

and visualized by autoradiography. 401 

Virulence of Brucella strains in cultured murine macrophages and experimentally infected 402 

mice 403 

Experiments to test the virulence of Brucella strains in primary, murine peritoneal macrophages 404 

were carried out as described previously (45). Briefly, resident peritoneal macrophages were 405 

isolated from BALB/c mice and seeded in 96-well plates in Dulbecco’s modified Eagle’s 406 

medium with 5% fetal bovive serum, and the following day, the macrophages were infected with 407 

opsonized brucellae at an MOI of 100:1. After 2 hours of infection, extracellular bacteria were 408 

killed by treatment with gentamicin (50 µg/ml). For the 2-hour time point, the macrophages were 409 

then lysed with 0.1% deoxycholate in PBS, and serial dilutions were plated on Schaedler blood 410 

agar (SBA). For the 24- and 48-hour time points, the cells were washed with PBS following 411 

gentamicin treatment, and fresh cell culture medium containing gentamicin (20 µg/ml) was 412 

added to the monolayer. At the indicated time point, the macrophages were lysed, and serial 413 
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dilutions were plated on SBA. Triplicate wells were used for each Brucella strain tested. 414 

The infection and colonization of mice by Brucella strains was as described previously 415 

by Gee et al., 2005 (45). BALB/c mice (5 per Brucella strain) were infected intraperitoneally 416 

with ~5x104 CFU of each Brucella strain in sterile PBS. The mice were sacrificed at 4 and 8 417 

weeks post-infection, and serial dilutions of spleen homogenates were plated on SBA to 418 

determine CFU brucellae/spleen. 419 

 420 

421 
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Table 1: Differential gene expression in B. abortus 2308::ΔybeY. 558 

Gene 
Designation Description Fold Change ([ΔybeY] vs. 

2308)  

	 	 	
	 Membrane Proteins and Transport Systems 	
BAB1_0114  glycosyl transferase  3.3 
BAB1_0372  TRAP dicarboxylate transporter, DctM subunit -3.2 
BAB1_0373  TRAP-type mannitol/chloroaromatic compound transport system -3.9 
BAB1_1589  major facilitator transporter 3.2 
BAB1_1679  MotA/TolQ/ExbB proton channel  3.5 
BAB1_1680  biopolymer transport protein ExbD/TolR 3.5 
BAB1_1681  Cell envelope biogenesis protein TonB  3.8 
BAB1_1792  Leu/Ile/Val-binding family protein  -4.5 
BAB2_0242  putative sulfite oxidase subunit YedZ 3.9 
BAB2_0277  Choline dehydrogenase and related flavoproteins -16.1 
BAB2_0278  ABC transporter, permease -9.5 
BAB2_0279  inner-membrane translocator  -10.3 
BAB2_0280  shikimate kinase  -8.2 
BAB2_0281  ABC transporter ATPase -9.9 
BAB2_0282  Leu/Ile/Val-binding family protein -7.5 
BAB2_0300  inner-membrane translocator -3.2 
BAB2_0519  periplasmic spermidine/putrescine-binding protein -3.3 
BAB2_0547  solute-binding family 1 protein -3.7 
BAB2_0548  vacuolar H+-transporting two-sector ATPase subunit C -5.7 
BAB2_0583  aromatic amino acid permease -3.2 

BAB2_0584  binding-protein dependent transport system inner membrane 
protein  -4.0 

BAB2_0585  solute-binding family 1 protein -3.2 
BAB2_0593  Leu/Ile/Val-binding family protein -3 
BAB2_0700  solute-binding family 5 protein -4.1 
BAB2_0822  Leu/Ile/Val-binding family protein  -6.9 
BAB2_0827  ABC transporter ATPase -4.1 
BAB2_0828  glutelin  -4.1 
BAB2_0829  inner-membrane translocator  -5.6 
BAB2_0830  Leu/Ile/Val-binding family protein -5.4 
BAB2_1109 D-xylose ABC transporter -4.8 

	 	 	
	 DNA Replication, Transcription, and Translation 	
BAB1_0636  response regulator receiver:transcriptional regulatory protein, C 

terminal  3.1 

BAB1_1100  Phage integrase 3.0 
BAB1_1362  periplasmic binding protein/LacI transcriptional regulator -3.3 
BAB1_1588  MarR family regulatory protein  4.6 
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BAB2_0222  response regulator receiver:transcriptional regulatory protein, C 
terminal  3.3 

BAB2_1099  response regulator receiver:transcriptional regulatory protein, C 
terminal  3.2 

   
	 Flagellar Related Proteins 	
BAB2_0299  flagellar hook-length control protein  -3.1 
BAB2_1106  flagellin, C-terminal:flagellin, N-terminal 3 

	 	 	
	 Metabolism, signaling, and enzymatic processes 	
BAB1_0204  zinc-containing alcohol dehydrogenase  -4 
BAB1_0303 Urease accessory protein UreG 3.2 
BAB1_0459  transglycosylase-associated protein  -3.0 
BAB1_0577  choline dehydrogenase  -3.5 
BAB1_0637  ATPase-like ATP-binding protein 3.3 
BAB1_0646  endonuclease/exonuclease/phosphatase family protein 3.2 
BAB1_0867  glyoxalase/bleomycin resistance protein/dioxygenase  3.4 
BAB1_1070 NAD[P]H dehydrogenase -4.0 
BAB1_1299  sugar fermentation stimulation protein A 3.1 
BAB1_1461  SLT domain-containing protein 3.8 
BAB1_1578  glutathione S-transferase 3.3 
BAB1_1855  GCN5-related N-acetyltransferase  3.6 
BAB1_2001  aquaporin Z  -3.1 
BAB1_2052  luciferase  3.5 
BAB2_0243  putative sulfite oxidase subunit YedY  3 
BAB2_0821  zinc-containing alcohol dehydrogenase -4.7 
BAB2_0823  aldehyde dehydrogenase -4.9 
BAB2_0824  glucose-methanol-choline oxidoreductase:GMC oxidoreductase  -3.6 
BAB2_0825  shikimate/quinate 5-dehydrogenase  -4.6 
BAB2_0826  3-ketoacyl-(acyl-carrier-protein) reductase  -4.1 
BAB2_0831  zinc-containing alcohol dehydrogenase superfamily protein  -4.2 
BAB2_0890  ribonucleotide reductase stimulatory protein  -3.0 

BAB2_0905  cytochrome c heme-binding site:4Fe-4S ferredoxin, iron-sulfur 
binding domain -3.2 

BAB2_0906  nitrate reductase, delta subunit  -3.2 
BAB2_0907  nitrate reductase, gamma subunit  -3.3 
BAB2_1073  immunoglobulin/major histocompatibility complex  3.7 

	
	

	
	 Hypothetical 	
BAB1_0147 hyp 3.5 
BAB1_0265 hyp -7.0 
BAB1_0266 hyp -3.6 
BAB1_0418 hyp 6.2 
BAB1_0419 hyp 3.4 
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BAB1_0420 hyp 4.6 
BAB1_1296 hyp -3.8 
BAB1_1302 hyp 4.3 
BAB1_1341 hyp 4 
BAB1_1347 hyp 3.3 
BAB1_1509 hyp 3.3 
BAB1_1793 hyp -3.2 
BAB1_1893 hyp -6.8 
BAB1_2156 
(ybeY) hyp -12.1 

BAB2_0223 hyp 5.2 
BAB2_0224 hyp 4 
BAB2_0276 hyp -5.0 
BAB2_0732 hyp -3.2 
BAB2_0740 hyp 4.3 
BAB2_0759 hyp -3.2 
BAB2_0847 hyp -3.0 

 559 
Microarray analysis was performed using total cellular RNA from Brucella strains grown in rich media to late 560 
exponential phase, and those genes whose expression was shown to be more than 3-fold altered in the ybeY deletion 561 
strain compared to strain 2308 are shown in the list. Cells highlighted in grey represent genes previously observed to 562 
be required for efficient Brucella infection or as being differentially expressed during intracellular trafficking of 563 
Brucella. 564 

565 
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Table 2. Oligonucleotide primers used in this study. 566 

Primer name  Sequence (5’à3’) 567 

Primer Name Sequence (5'->3') 
bab1_2156-Up-For GCGGATCCTTATGAAACATTGCAAAAGG 
bab1_2156-Up-Rev GATCATGATATCAATATGGATCG 
bab1_2156-Down-For GATTGACCATGGCTGAACA 
bab1_2156-Down-Rev CGCTGCAGTCCAATACGTGGAATTCATAACC 
ybeY-RC-For ATGTGGACGGCGCACTGCGCAT 
ybeY-RC-Rev GGAATGGCCTGAACCACTTCACC 
bab2_0548-Up-For TAGGATCCTTGCAGGAATTTGCCAAATATGA 
bab2_0548-Up-Rev CGGCATGCAATTCCGTCGTAAG 
bab2_0548-Dn-For CCATGAGCGTCCAATCGCAAGAT 
bab2_0548-Dn-Rev TACTGCAGACCAGAAACCCGCCTTCATCAA 
bab2_0282-Up-For TAGGATCCATATTTGCTGGCGATGAAATAAG 
bab2_0282-Up-Rev TTTCATGAAGTGTTTCCTCCCAG 
bab2_0282-Dn-For CAGTAAGAGGCTGGTTTGATGAA 
bab2_0282-Dn-Rev TACTGCAGTTTGCGGATAATGCCCATGATG 
bab2_0277-Up-For TAGGATCCAAATGCGGCTTACAGCAAGGC 
bab2_0277-Up-Rev GGTCATGATTCTATATCCAGTAA 
bab2_0277-Dn-For CGGTGAACGGGTTTTCCATCG 
bab2_0277-Dn-Rev TACTGCAGAACCAGTGCCTTCACCCAAGG 
bab1_1070-Up-For TAGGATCCTAGGACATGACCGATCTCCTTCC 
bab1_1070-Up-Rev CATCTGACATCTCCGTTAATCG 
bab1_1070-Dn-For ATTACCGCGAAACTGCATGGCT 
bab1_1070-Dn-Rev TACTGCAGATATGCGAAAGCTTGACCCG 
bab2_1109-Up-For TAGGATCCTTTGAGCGCGGCAGCGATGCA 
bab2_1109-Up-Rev TTTCATGCACGTTTCCTCCAA 
bab2_1109-Dn-For AAATAAACCTTCTGTTCTGC 
bab2_1109-Dn-Rev TACTGCAGAAACATCGTCGACCACCTTGCG 
bab2_0830-Up-For2 TAGGATCCGGTCCTGAAGTTCTTGAGCTCGTT 
bab2_0830-Up-Rev TCTCATTCTTTTCTCCCTCAA 
bab2_0830-Dn-For AAATGATCCTGTGTGGGCG 
bab2_0830-Dn-Rev TACTGCAGTTATTCATGCCGGCGCGGTCTAT 
bab2_0822-Up-For TAGGATCCTTGGTGCAGGCTGTTCCGTG 
bab2_0822-Up-Rev TTCCAATTTTCCCTCCTCTT 
bab2_0822-Dn-For CAGTAACAGTCGTCACCGAGGTG 
bab2_0822-Dn-Rev TACTGCAGCGAATGGATTTTTCTTCCGCCAC 
bab1_0265-Up-For TAGGATCCAAACCAAAAGCCCACAATGAACC 
bab1_0265-Up-Rev ACTCAGGTACATAGATTTGTTCC 
bab1_0265-Dn-For GAATGAAACCCGACCGTCTTTC 
bab1_0265-Dn-Rev TACTGCAGAATTTTCTTCACGACATATGA 
bab2_0700-Up-For TAGGATCCTAAGGTCAACTGGATACCTTTCG 
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bab2_0700-Up-Rev AACCATCGAAAACTCCCATA 
bab2_0700-Dn-For AACTAACAAAACGAAACCCCTT 
bab2_0700-Dn-Rev TACTGCAGAATGCCGGGAATGCCGAAAAT 

  *Underlined sequences depict a restriction endonuclease recognition site. 
 568 

569 
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Table 3. Plasmids used in this study. 570 

Plasmid name    Description     Reference 571 

pBBR1MCS-4 Broad-host range cloning vector; AmpR     (42) 572 
pNPTS138 Cloning vector; contains sacB gene; KanR   (M.R.K. Alley, unpublished) 573 
pybeY  In-frame deletion of ybeY plus 1 kb of each flanking region in pNPTS138 This study 574 
pybeY-comp ybeY locus including the entire promoter region in pBBR1MCS-4  This study 575 
pbab2_0277 In-frame deletion of bab2_0277 plus 1 kb of each flanking region in pNPTS138 This study 576 
pbab2_0282 In-frame deletion of bab2_0282 plus 1 kb of each flanking region in pNPTS138 This study 577 
pbab2_0822 In-frame deletion of bab2_0822 plus 1 kb of each flanking region in pNPTS138 This study 578 
pbab2_0548 In-frame deletion of bab2_0548 plus 1 kb of each flanking region in pNPTS138 This study 579 
pbab2_0830 In-frame deletion of bab2_0830 plus 1 kb of each flanking region in pNPTS138 This study 580 
pbab2_1109 In-frame deletion of bab2_1109 plus 1 kb of each flanking region in pNPTS138 This study 581 
pbab2_0700 In-frame deletion of bab2_0700 plus 1 kb of each flanking region in pNPTS138 This study 582 
pbab1_0265 In-frame deletion of bab1_0265 plus 1 kb of each flanking region in pNPTS138 This study 583 
pbab1_1070  In-frame deletion of bab1_0265 plus 1 kb of each flanking region in pNPTS138 This study 584 

585 
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Figure Legends 586 

Figure 1. In vitro growth characteristics and cellular morphology of B. abortus 587 

2308::ΔybeY. 588 

A. Genomic context of ybeY. The ybeY gene (bab1_2156; bab_rs26200) is located on 589 

chromosome I in B. abortus 2308. ybeY is flanked by phoH (bab1_2155; bab_rs26195) and a 590 

gene encoding a putative hypothetical protein (bab1_2157; bab_rs26205). 591 

B. Photograph of B. abortus colonies on SBA after 72 hours of growth. 592 

C. Growth curve of Brucella abortus strains in rich medium. B. abortus 2308, B. abortus 593 

2308::ΔybeY, and B. abortus 2308::ΔybeY-comp were grown in brucella broth and colony 594 

forming units/ml was monitored by serial dilution. The asterisk (*) denotes a statistically 595 

significant difference (P<0.05; Student’s t-test) between the ybeY deletion strain and the parental 596 

strain 2308. 597 

D. Electron microscopy of Brucella abortus cells. Exponential and stationary phase cells of 598 

Brucella strains were fixed and viewed under scanning electron microscopy, magnified 30,000x. 599 

Bar = 1 µm.  600 

Figure 2. Virulence of B. abortus 2308 and ΔybeY in peritoneal derived macrophages and 601 

BALB/c mice.  602 

A. Macrophage survival and replication experiments. Cultured peritoneal macrophages from 603 

BALB/c mice were infected with B. abortus 2308, the isogenic ybeY deletion strain (ybeY), and 604 

the ybeY complemented strain (ybeY-comp). At the indicated times post-infection, macrophages 605 

were lysed, and the number of intracellular brucellae present in these phagocytes was determined 606 

by serial dilution and plating on agar medium. The asterisk (*) denotes a statistically significant 607 

difference (P<0.05; Student’s t-test) between the ybeY deletion strain and the parental strain 608 
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2308, and the ybeY deletion strain and the complemented strain at 24 and 48 hours post-609 

infection. 610 

B. Mouse infection experiments. BALB/c mice (5 per strain) were infected intraperitoneally with 611 

B. abortus 2308, and the isogenic ybeY deletion strain (ybeY).  Mice were sacrificed at weeks 4, 612 

and 8 post-infection, and brucellae/spleen was determined. The data is presented as the average 613 

brucellae +/- the standard deviation from the 5 mice colonized with a specific Brucella strain at 614 

each time point. The asterisk (*) denotes a statistically significant difference (P<0.05; Student’s 615 

t-test) between the ybeY deletion strain and the parental strain 2308 at 4 and 8 weeks post-616 

infection. 617 

Figure 3. YbeY is required for optimal resistance to biologically relevant stresses. 618 

A. Sensitivity assays. Brucella abortus 2308, the ybeY deletion strain, and ybeY-comp 619 

complemented strain were assessed in a disk diffusion assay for their comparative susceptibilities 620 

to various stress conditions, including deoxycholate (10%), H2O2 (30%), SDS (20%), polymyxin 621 

B (10 mg/ml), and paraquat (0.25 M). The results are plotted as the average diameter (+/- 622 

standard deviation) of the zone of inhibition around a disk, and the results are from a single 623 

experiment that was repeated in triplicate. Asterisks (*) denote a statistically significant 624 

difference (P<0.05; Student’s t-test) between the ybeY deletion strain and the parental strain 2308 625 

for a given condition. 626 

Figure 4: Virulence phenotypes associated with genes differentially expressed in the B. 627 

abortus ybeY deletion strain.  628 

Cultured peritoneal macrophages from BALB/c mice were infected with B. abortus 2308, the 629 

isogenic deletion strains Δbab2_0822, Δbab2_1109, or Δbab2_0700. At 2, 24, and 48 hours post-630 

infection, the macrophages were lysed, and the number of intracellular brucellae present in these 631 
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phagocytes was determined by serial dilution and plating on agar medium. The asterisk (*) 632 

denotes a statistically significant difference (P<0.05; Student’s t-test) between the isogenic 633 

deletion strains and the parental strain 2308 at 48 hours post-infection. 634 
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