
Establishing a Relative Positioning System to
Achieve Mobile Localization

By Brian W. Copeland

[Previous/Other Information: ie S.B., C.S. M.I.T., 2017]

Submitted to the
Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements of the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

June 2017

 Author:
Department of Electrical Engineering and Computer Science
May 26, 2017

Certified by:
Chris Schmandt
Principal Research Scientist at MIT Media Lab
May 26, 2017

Accepted by:

Christopher J. Terman

2

Establishing a Relative Positioning System to
Achieve Mobile Localization

By Brian Copeland

Submitted to the

Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements of the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

There are an increasing number of situations in which the location of some digital
device is known, but the methods to communicate with it are unknown. These
situations can frustrate users and lead to the non-adoption to new, beneficial
technologies. To combat this, I propose a relative positioning system between digital
devices in order for each device to learn the relative locations of nearby devices.

I explore three separate methods of establishing this positioning system. The
first uses ultrasonic range-finding to localize nearby devices. The second uses WiFi
range finding between mobile devices and stationary WiFi access points. The final
method uses machine vision to jointly localize two devices observing the same scene
from different angle. Ultimately none of these methods were fully implemented, but an
analysis is given for the advantages and disadvantages of using these methods.

Thesis Supervisor: Chris Schmandt
Title: Principal Research Scientist at MIT Media Lab

3

Acknowledgements

There are a number of people without whose help I would’ve been unable to

finish this journey. First and foremost among these is Chris Schmandt. Not only did

you agree to be my advisor in the first place, but when I lost faith in my ability to

complete this you continued to encourage and believe in me.

I would also like to thank Chris Terman, the man who helped me through the first

leg of this research. Without your guidance as I entered the world of academic research

I surely would have faltered.

Great credit is also deserved by my close friends Berj, Guillermo, and Zara. I

would not have even pursued this research had we not had countless discussions about

it. Even more important though was the constancy and encouragement you offered

whenever times were tough.

Lastly, none of this would have been possible without my family. Despite us

being 3,000 miles apart for most of the last five years, your support has been

unwavering and crucial to all my successes.

4

Table of Contents

1 Introduction 9

 1.1 Virtual Physical Correspondence Problem 10

 1.2 Augmented Reality . 12

 1.3 Description of Project . 13

 1.3.1 Exploring GPS . 14

1.3.2 Relative Positioning Systems 16

1.3.3 Acoustic RPS . . 18

1.3.4 Visual RPS . . 19

1.3.5 WiFi Ranging RPS 20

1.3.6 Modelling RPS Calculations 21

 1.4 Potential Applications 21

1.4.1 Smartphone-Smartphone Interaction 22

1.4.2 Smartphone-IoT Interaction 23

1.4.3 IoT Smartphone Interaction 23

2 Related Work 25

 2.1 Ultrasonic Localization 25

 2.2 Relative Positioning Systems 27

5

 2.3 WiFi Localization . . 28

 2.4 Vision-Based Localization 29

3 Implementation 31

 3.1 Solving VPCP Using Ultrasonic Ranging 32

3.1.1 Algorithm for Ultrasonic Ranging 32

3.1.2 Resolving Ultrasonic Pings 34

 3.2 Solving VPCP Using WiFi 37

3.2.1 Algorithm for WiFi Ranging 37

3.2.2 Issues with WiFi Ranging 39

 3.3 Solving VPCP Using Vision 41

 3.4 Modelling Relative Positioning Systems 43

3.4.1 Modelling Ultrasonic RPS 45

3.4.2 Modelling WiFi RPS 47

4 Analysis 50

 4.1 Analysis of Ultrasonic Ranging 50

4.1.1 Analysis of Ultrasonic Resolution Issue 50

4.1.2 Feasibility of Ultrasonic Ranging in Establishing an RPS 53

 4.2 Analysis of WiFi Ranging 54

4.2.1 Notable Characteristics of WiFi Networks in Experiments 54

4.2.2 Effectiveness of Algorithms 56

 4.3 Analysis of Machine-Vision for Solving VPCP 59

5 Future Work 61

6

 5.1 Expansions to Previously Discussed Methods 61

 5.2 New Methods . 62

6 Conclusion 65

References 67

7

List of Figures

 1-1 Mock-up of VPCP in Augmented Reality 13

 3-1 Comparison of High and Low Frequencies 36

 3-2 Screenshot of WiFi Application’s UI 39

 3-3 Two Images of a Scene with SIFT Features Overlaid 43

 3-4 UI for Idealized Model of RPS 44

 3-5 Examples of Success and Failure in Idealized Model 46

 3-6 Idealized Model with Particle Filter 49

 4-1 Recorded and High-Pass Filtered Sound Recording 51

 4-2 Particle Filter Model at Startup and After Localization 57

 4-3 Output of Scene Comparison App 59

8

Chapter 1

Introduction

The computer industry, since the widespread adoption of the internet, has split into two

distinct spheres. The first sphere is that of the virtual world. We exchange messages

and tweets, look things up, and consume media all with no physical interaction, save

that between our fingers and our keyboards. All the interactions we have with our

devices which have no effect on the physical world around us I will define as being in a

virtual world.

The second sphere which is a focus of the computer industry is the physical world. By

this I do not mean the construction or appearance of our computers and cellphones, but

rather the means in which we can change the physical world by interacting with our

electronic devices. You can order a product from a retail store and have it appear in

front of you a few days (or even hours) afterwards. You can order a car to drive you

from place to place, and have it pick you up mere minutes later. These types of

interactions where you cause a physical change in your environment by performing an

action on an electronic device I will define as existing in the physical sphere of computer

interaction.

These two spheres are for the most part distinct. Let us say that, after talking to

someone, you decided to connect with them on social media. You would have to look

9

them up on a social media site the same way you would any person that you hadn’t

met, or that wasn’t right in front of you.

As another example, suppose you were tasked with remotely controlling a television

with a computer or a phone. This technology has been well developed via technologies

like bluetooth; however, difficulties may arise if there are multiple televisions in proximity

to you and you need to decide which one is the right one. Let us suppose, to make your

task easier, that each television even has a distinct name when you are trying to

connect to one. You would still be put in the position in which you know the physical

location of the television you desire, but you don’t know its virtual name.

1.1 Virtual Physical Correspondence Problem

The above two example exemplify what I define as the Virtual Physical Correspondence

Problem (VPCP). To put it more explicitly, I define Virtual Physical Correspondence

Problem as any situation where a user wants to interact with an object whose location is

known, but whose name is unknown. I further go on to define name in this situation not

as what we call an object in casual conversation, but rather what we call an object when

we wish to interact with it in the virtual world.

To tie this back to the television example, in casual conversation I would call the

television I wish to connect to simply a television. However, its name will generally be

10

something more identifying, such as Samsung Electronics UN55MU6300 or Brian’s

Living Room TV.

As another example of how I use the term name, let us suppose you are in the social

media scenario from the previous section in which you want to connect to someone you

just met via social media. In this case you, or more accurately your mobile device,

would have to communicate with the other person’s mobile device to complete the

connection. The physical location then is just the location of the other person’s mobile

device, and the name is the device ID of the other person’s mobile device that your

phone would use to communicate with it.

This problem may seem relatively isolated and unusual at the moment, but I believe

there are two factors which will make the VPCP more prevalent. The first factor is the

burgeoning influence of the Internet of Things (IoT). The Internet of Things will cause

more and more objects in our world have electronic components which connect to the

internet, and consequently more objects with known locations, but unknown names.

The second factor which will increase the prevalence of situations where the VPCP is

present is the continued refinement of augmented reality technologies. Augmented

Reality (AR) provides a natural way to interact with an object's physical location and

virtual properties concurrently. The full potential of AR in relation to the VPCP will be

discussed in the following section.

11

1.2 Augmented Reality

Augmented and virtual reality are often used interchangeably, so I will attempt to define

AR in the context it will be used for the rest of this work here. The Merriam Webster

Dictionary defines Augmented Reality as “an enhanced version of reality created by the

use of technology to overlay digital information on an image of something being viewed

through a device (such as a smartphone camera).” Of particular note here is that an

image of the real world must be presented to the user. This is in contrast to virtual

reality, where the user by design has no concept of what is happening in the real world.

AR can be extremely effective in solving the physical virtual correspondence problem.

On the simplest level consider the case where a user wants to know the name of an

object they are looking at in their field of view. This is generally infeasible, but if the

user is using AR the name of the object can be projected onto their AR interface. An

example of this phenomena is shown in Figure 1-1.

This is a simple, yet rather clunky means of solving the VPCP. In this method a user

would have to exit the current AR experience just to interact virtually with a real world

object, such as the phone in Figure 1-1. In a sophisticated AR experience, interaction

with real-world objects could be done by touching a screen location corresponding to

the real-world object, or even just looking at the object.

12

One last thing to note about AR is

that the only hardware components

strictly necessary to create an

augmented reality experience are a

camera and a screen. Thus, AR

can be created by hardware as

varied as Google Glass, Microsoft’s

HoloLens, and regular

smartphones. This fact influenced a

design imperative for my project,

namely that whatever I create

should be able to run on most, if not

all, hardware capable of supporting

AR.

1.3 Description of Project

The ultimate goal of my project was to create an AR experience similar to that shown in

Figure 1-1. Effectively I wanted to design and create a system where two smartphones

could interact and find both the virtual name of their counterpart, and the physical

13

location. This is equivalent to solving the VPCP in the simple situation with only two

devices.

1.3.1 Exploring GPS

One way this could be solved is through GPS. Using this method, both phones would

start off by determining their GPS coordinates, and communicating these to the other

phone. Then, each phone would determine the relative direction and distance to the

other phone. Next, each phone would figure out which way it was facing using its

internal compass and/or gyroscope. Finally, each phone would figure out if the other

phone was in its field of view, and if so project it to the corresponding location on its

screen.

This method, though relatively simple to implement, has a number of systemic issues.

Most of these issues relate to the fact that GPS is used as the primary means of

determining location. Some of these issues include:

● Poor Accuracy: Accuracy of the system is limited by the precision of GPS data,

and specifically the accuracy of GPS in phones. As shown in Chapter 2 this can

be as low as 10 meters on smartphones.

● Inability to Function Indoors: GPS has many additional error sources when

working indoors, making it far too inaccurate for my uses.

14

The environment in which solving the VPCP would be most useful has two notable

characteristics. The first is that there should be multiple devices nearby which have

virtual or online means of interaction. If there were just one other device in the vicinity

that had these means, it would be simple to connect to it because it would be the only

one. Currently there is a much higher prevalence of IoT and mobile devices indoors

than outdoors.

The second characteristic of an environment which solving the VPCP would be useful is

that a person interacting with the system should be able to see the object they wish to

interact with. This means the objects which the VPCP must be solve on are often within

a few meters of each other.

These two characteristics combined mean that GPS in its current state on smartphones

is a poor method to use in order to solve VPCP. To make matters worse, many IoT

devices do not have any GPS hardware on them. This would mean that in order for an

mobile device to interact with these devices in an AR setting, each IoT device would

need to know its precise location. Calibrating the global position of each IoT device

would be infeasible as the number of these devices grows.

15

1.3.2 Relative Positioning Systems

If you recall from from the beginning of Section 1.3 my ultimate goal was to create a

system where two smartphones could determine both the virtual name and physical

location of the other smartphone. The disadvantages of using GPS detailed in Section

1.3.1 forced me to find an alternative to GPS as a method for one mobile device to find

the location to of another mobile device. However, one key insight I obtained by

considering GPS was that it was not necessary to know the global position of the two

smartphones, but only their position relative to each other.

Specifically, in the GPS scenario after I used GPS to determine the coordinates of each

smartphone, I would only use those coordinates to determine the distance and direction

between the two phones. Each smartphone needed to have knowledge only of the

distance and direction to the other smartphone. This led me to the conclusion that a

Relative Positioning System (RPS) would be sufficient.

In a relative positioning system, each node (in this case a smartphone) in the system

records its position only in reference to the other nodes in the system. This has a

couple potential advantages over a global position system, where each each node has

a well defined and distinct position.

16

The first advantage is that a relative positioning system is not reliant on outside sources

to determine the position. The nodes within the system are both capable and required

to determine their relative position by themselves. Not only does this give a relative

positioning system flexibility to work anywhere, but it also means that it will persevere

even if outside infrastructure (such as GPS satellites) fail.

Another potential advantage of relative positioning systems is that someone outside and

not connected to the system does not necessarily know the global location of the nodes

in the system. This is particularly good for maintaining privacy of location, an increasing

concern in the modern era. An observer outside of the network may be able to

determine your proximity to other people, but have no clue about your absolute location.

This anonymity of location breaks down however if someone in the network discloses

both their global and relative position.

The majority of my time on this project was spent exploring and evaluating methods and

algorithms to establish a RPS for the two smartphone scenario I detailed at the

beginning of Section 1.3. In total I explored three different methods of establishing a

RPS: acoustic, visual, and WiFi triangulation.

17

1.3.3 Acoustic RPS

In the acoustic method of establishing an RPS, I had two cell phones in a relatively

enclosed environment communicate via two separate media. The first medium was

sound: One phone would send out a short ultrasonic ping. Simultaneously that phone

would send out a message over Bluetooth. The other phone would record the time at

which it received both signals, and determine the distance apart using the delay.

If the distance between the two phones was successfully determined, the next step

would have been determining how far and in which direction each phone moved. This

would be done via dead reckoning, a process which combines the data from a number

of sensors on the phone to make an approximation for how far and in which direction

movement occurred.

Finally, the distance data and the dead reckoning data for each phone at a number of

time steps was to be combined which would allow triangulation to be used to determine

the direction between the two phones. Unfortunately I was never able to implement this

fully. I had an inextricable issue in resolving the ultrasonic ping, which I describe more

fully in Chapter 3.1 and 4.1.

18

1.3.4 Visual RPS

The visual method to establish a relative positioning system is based loosely on how

you might describe the location of an object to a friend. For example, say I wanted to

tell my friend where my television was. I might say “It is above the TV stand, across

from the couch.” This method establishes a position by finding salient points in the

room which both you and your friend can easily recognize.

This is approximately what SIFT, the primary algorithm I used to visually establish a

RPS, attempts to do. Given an image it finds points which can consistently be identified

in an image, even if the image is taken from a different depth or angle. Then if two

different phones are concurrently taking a picture of the same area in the room, they will

be able to communicate to each other this fact. Furthermore, they will be able to use

the differences in the locations of the salient points identified to find the relative angle

and distance between the two phones.

This method can in theory give all the information needed to establish a RPS between

the two phones. However, in practice I found the SIFT algorithm to be too

computationally expensive to be feasibly implemented in a real-time setting on the

phone I was using.

19

1.3.5 WiFi Ranging RPS

The final method I explored in order to establish a relative positioning system between

two phones was WiFi triangulation. This method is similar to the acoustic method in

1.3.3 in that a key step is determining the distance between two devices. However, in

this case I calculated the distance between a mobile device and a WiFi access point

instead of between the two mobile devices themselves. This distance can be

approximated using the signal strength from a WiFi router measured on the phone.

After calculating this distance, my plan was to use the triangulation method used in the

acoustic RPS method to determine the distance and direction between each phone and

each WiFi router. Then, knowing the distance and direction between each phone and a

WiFi router, I would combine these measurements to calculate the distance between

the two phones themselves. My hope was to average this calculation over a large

number of routers to get a more accurate distance calculation.

However, I did not implement the steps detailed in the paragraph above on a

smartphone, or any other mobile device. In order to create and refine an algorithm to

get the distance and direction to a WiFi router, I created a model representing the

interactions between different devices in the real world. This model is described in the

next section.

20

1.3.6 Modelling RPS Calculations

After a great deal of trial and error, I realized that implementing and testing triangulation

and localization algorithms on the mobile devices was far too complicated until I

understood them fully. In order to both increase my comprehension of these algorithms

and to refine them in a quick and easy way I created a simple python of two

smartphones interacting with the world and each other to solve the VPCP.

This model had a number of advantages over implementing and testing these

algorithms in the real world. One such advantage was that I could change the amount

of noise in my measurements and see how the accuracy of my algorithms changed.

Another advantage of the python model was that it was much quicker to create new and

test new algorithms. Overall, this model was integral both for determining the accuracy

constraints of my system, and for helping me to develop more efficient algorithms.

1.4 Potential Applications

The main goal of my research was to solve the virtual physical correspondence

problem; that is, to allow a user to determine the virtual identity or name of nearby

device with only knowledge of its location. There are many potential applications of

solving this VPCP, but in the next sections I will characterize a few of these applications

by which devices are solving the VPCP.

21

1.4.1 Smartphone-Smartphone Interaction

The first category of applications of solving VPCP is where a smartphone successfully

determines the location and name of a nearby smartphone. Furthermore, in this

situation I will consider that both smartphones are being held and used by distinct users.

Solving the VPCP in this situation allows either user to establish a virtual connection to

the other user.

An example of this virtual connection is the social media application discussed in 1.1. In

this example, a user would be able to connect to another nearby user on some form of

social media just by knowing their location.

Another application here requires both users to be using their smartphones in an AR

mode: ie in a situation where they are looking at the world through the screen on their

phone. Say in this situation one user augments the image on his phone by overlaying

an image of a poster or presentation onto the screen. Since they are in an AR mode,

the position of this poster or presentation on the user's screen corresponds to a real

location. Since this user’s phone is knows the location of the other smartphone in this

scenario, his phone can communicate to the other phone exactly where the poster or

presentation is in physical space. In such a way, both users in this scenario could see

22

the same poster or presentation in the same spot, despite the fact it only exists on their

smartphones.

1.4.2 Smartphone-IoT Interaction

Another class of potential applications of creating a system that can solve VPCP

involves situations where a user with a smartphone is trying to interact with an IoT

device such as a smart TV or smart thermostat. The user will generally know the

location of the IoT device, but it may not be easy or intuitive to interact with this device

through conventional means.

However, if the user's smartphone has a correspondence between the location and

name of the nearby IoT device, then the user can interact with this device easily with

just knowledge of the location. As the scope of the IoT grows in the coming years, this

method of interaction could become much more useful.

1.4.3 IoT-Smartphone Interaction

A final class of applications of my research that I describe here involves interactions

between an IoT device such as a sensor and a user holding a smartphone. However,

as opposed to the situation in 1.4.2, in this example the sensor is attempting to find the

physical location and identity of the user with a smartphone.

23

An example of where this would be useful would be in a retail setting. If a user was

interested in hearing information about sales a store was offering and was physically in

the store, the store could give targeted advertising based on the location of the user in

the store. This could benefit the user in getting them cheaper products, and the store in

increasing customer loyalty and improving customer experience.

24

Chapter 2

Related Work

One of the inspirations for this work was a project created by the media lab at MIT

called “Reality Editor” [1]. This project aimed to ease the interaction between humans

and smart devices. They did this by solving what I call the virtual physical

correspondence problem, but in a different way than I attempted. The researchers

working on this project put unique visual identifiers on different smart devices that a

computer could recognize. This allowed them to then observe these devices through a

smartphone camera and determine what device they were looking at. The researchers

could then easily manipulate certain aspect of the smart device (such as increase the

volume of a speaker, or turn lights off).

2.1 Ultrasonic Localization

There are many existing systems that succeed in localizing objects using

high-frequency sound waves [2] [3] [4] [6] [7] [9]. The majority of these systems require

ultrasonic beacons to be placed in key locations in a room. These beacons are then

used to triangulate the position of a mobile device moving in the room or area.

25

One of the variations in these systems’ architecture is precisely how the distance

between mobile device and beacon is measured. One common way this is done is by

measuring the difference in time of flight (ToF) between the ultrasonic signals from

different beacons [2] [3]. Another common method is to record the angle of arrival

(AoA) of the incoming signal from the beacons [2]. A final method is to concurrently

send out a radio wave concurrently with the ultrasonic sound blip and measure the time

difference of arrival [6] [7].

Another difference between different implementations of ultrasonic localization systems

is which actor in the system is emitting the noise. Generally the stationary agents will

emit ultrasonic sound, and the mobile agent will simply record it and calculate its

position. However, in some systems [2] the mobile agent acts as the ultrasonic beacon

and the stationary agents record the sound.

Overall ultrasonic localization systems with stationary beacon can achieve high degrees

of accuracy. In ideal environments these systems can achieve errors as small as 1-2 cm

[3] [4], but 10 cm is more accepted in non-ideal real-world circumstances with multipath

reflections.

One disadvantage of these systems is that they require significant time and resource

overhead to set up. Not only do ultrasonic emitters/receivers need to be purchased and

26

set up, but the system often has to be calibrated for the environment it is meant to

operate in [4] [6].

2.2 Relative Positioning Systems

Obtaining the relative location of different entities without nodes of known location has

been accomplished in a number of systems [9] [10] [11] [12]. The methods used to

establish this RPS vary wildly from one implementation to another. Some use GPS

[10], others use ultrasonic ranging [9] [11] [12], others use radio signals like WiFi and

bluetooth [9] [13], and many of these systems use a multitude of these methods.

Another common approach to establishing a RPS between different devices rely on

dead reckoning, or calculating a devices new position by integrating data from an

internal acceleration sensor, an internal compass, and its previous position [8] [9].

Although this is probably the oldest method for establishing, it is not alone sufficient to

track a smartphone as it is carried by a person. This is because of a phenomena called

drift, in which small inaccuracies in accelerometer readings lead to large inaccuracies in

the estimated location over time.

Many of the acoustic systems to establish an RPS have relatively high accuracy [9] [11]

which is on the order of centimeters. However, these systems primarily operate at close

27

ranges, generally < 3 meters. Although this is an ideal distance for file sharing [11], it is

too close a range for many of the applications I describe in Chapter 1.

2.3 WiFi Localization

One common way to establish the location of one or multiple mobile devices indoors is

through WiFi Localization [14] [15] [16] [17] [24]. WiFi networks and access points are

prevalent in most indoor environments these days. Additionally, WiFi access points

have the dual advantage of being stationary and sending out signals which can be used

to estimate how far away they are.

The most widespread method for WiFi localization is called WiFi fingerprinting [16] [17].

The basic idea behind this method is that each location will have a certain set of WiFi

access points nearby, along with thresholds for the signal strength (RSSI) for these

access points. The advantages of this method are that it is relatively simple and very

accurate. However, the main disadvantage is that it is time-consuming to get the

fingerprint for a lot of locations. To get this data, someone needs to walk to every

location in the database. This is increasingly being accomplished using various forms

of crowdsourcing [16] [17].

28

A less common method for WiFi localization is proposed by [14]. They propose a

method to colocate a user and WiFi access points in an environment using RSSI values

combined with the dead-reckoning measurements made by a user's smartphone.

Although the accuracy here is considerably worse than WiFi fingerprinting (~4m as

opposed to ~1m), it offers the advantage that no start up work is needed to create the

system.

2.4 Vision Based Localization

Another possible way for mobile devices such as smartphones to establish their location

when GPS is unavailable or inaccurate is using machine vision [18] [20] [21]. The most

common way to do this is to have someone walk around an area taking pictures of their

surroundings. These pictures are then stored in a database along with the precise

location they were taken at. When a user want to figure out where they are in the

building, they simply take a picture of their surroundings and query the database for

images similar to the picture they took.

This method is actually fairly similar to the WiFi fingerprint localization method

discussed in Chapter 2.3. In both methods, the system is set up by walking around a

space and recording some characteristic of the environment. In the WiFi fingerprinting

method this characteristic is the name and strength of nearby WiFi routers, while in the

machine vision method the characteristic being recorded is the visible appearance.

29

This means that the machine vision method will also suffer from some of the same

disadvantages of the WiFi fingerprinting method. These disadvantages include the fact

that it is time-consuming to initialize the system, and that the precision is limited by the

size of the database being used.

Unfortunately for the machine-vision method, finding similar images to a given image

can not be done with a simple image correlation function. This is because the images in

the database may have been taken at a different zoom or a different angle.

Furthermore, doing a simple correlation function to tell if two images are similar would

grow too time-consuming as the database of images grew in size. This is often

overcome by using SIFT or SURF [18] [20].

SIFT (Scale Invariant Feature Transform) [19] and SURF (Speeded Up Robust

Features) are two similar algorithms for finding and characterizing key points in an

image. One of the key benefits of using these algorithms instead of a simple image

correlation is that the same keypoints will often be found on images taken at different

levels of zoom, and even at different angles. Another benefit is that instead of storing a

whole image or set of images for each location in a building, you only need to store the

key points found by SIFT or SURF.

Another way to avoid naive image correlation between an image taken by a mobile

device and an image in the database is to compare the color histograms [21]. This

30

method is even cheaper and faster than the SIFT/SURF method, however it suffers

from the disadvantage that the precision is generally worse. On top of that, it is more

prone to errors in area with uniform color appearance.

Chapter 3

Implementation

If you recall from chapter 1.3, the main goal of my research was to create a system

where two smartphones could determine each other's relative position, effectively

solving the virtual physical correspondence problem in a simple case. In 1.3 I briefly

described the methods I experimented with to accomplish this goal. In this Chapter, I

will elaborate on these methods.

While exploring methods to solve the VPCP, I primarily experimented with a HTC Desire

626s and a BLU Advance 5.0. These were both smartphones on the lower end of the

quality spectrum. I believe this fact may have impacted the results of my experiments.

As an example, I think my inability to resolve the ultrasonic signals (as described in 3.1)

was a result of the poor audio detection on the BLU Advance. Despite this, I considered

it important that I used lower quality hardware. One of my design goals was to enable a

process to solve VPCP on any device; so working with devices on the lower end of the

31

spectrum means the methods I used would have a higher chance of working on the rest

of devices I might try.

3.1 Solving VPCP Using Ultrasonic Ranging

The first method I tried to solve the VPCP was to have two cell phones determine their

relative signals using a combination of ultrasonic pings and a bluetooth connection. To

do this, I created an android application that both smartphones would simultaneously

run.

3.1.1 Algorithm for Ultrasonic Ranging

The basic outline of the algorithm for my android application is described below:

1. The two smartphones begin the process by pairing over bluetooth. Bluetooth

connections using the standard android API generally have a ‘master’ and a

‘slave’ device. The master device can be connected to a couple different slave

devices, however each slave device can only be connected to one master

device. During my research, I arbitrarily set one device to be the master and the

other to be the slave.

32

2. Next, the master smartphone emits an ultrasonic ping. This ping is a tone which

lasts for 100 ms. and is replayed every second. The frequency of this tone is

20,000 Hz. I choose this frequency because it was just above the human

hearing threshold.

3. Simultaneously the master smartphone sends out a message via bluetooth to the

slave smartphone. The purpose of this message is to inform the slave

smartphone when the ultrasonic signal was sent.

4. After the slave receives both the bluetooth and the ultrasonic signal from the

master, it takes the difference in time of arrivals (ToA) to compute the distance

between the two devices. It uses the following formula :

 istance d = c−s
ΔToA s c* *

Where is the time difference between the ultrasonic and bluetooth signal,ToA Δ

 is the speed of sound, and is the speed of light. s c

5. The slave then responds to the master with the value it calculated for the

distance between the two devices.

6. The slave and the master both use their internal accelerometers, gyroscopes,

and compass’s to determine their approximate change in position over the next

second. When they next send information via bluetooth (steps 3 and 5) they

include this change in position.

7. Finally, each device combines a few specific pieces of data to find the location of

its partner. These pieces of datum are:

○ The current distance between the two smartphones

33

○ The distance between the two smartphones at some previous time step

○ The net direction and distance each smartphone has moved since that

previous time step

Unfortunately, I was unable to get step 4 of this process working correctly. Specifically,

I was unable to resolve ultrasonic pings on my slave device. There are a number of

possible reasons that this could have happened, and they will be discussed further in

Chapter 4.1. However, for now it should be noted that I only implemented steps 1-5 on

this particular android application. Step 6 was never fully implemented, and step 7 was

only implemented in a simulated environment on my computer. More about this

simulation will be described in Chapter 3.4

3.1.2 Resolving Ultrasonic Pings

After I was initially unable to have one phone pick up the ultrasonic pings sent out by

the other phone, there were a number of methods I tried to correct the issue. These

methods are all different ways to answer the question of whether or not the phone is

recording a high frequency sound. These methods are the Fast Fourier Transform, zero

crossings, and a high pass filter.

The first method I implemented to determine if an ultrasonic ping was being sent was

the Fast Fourier Transform (FFT). The purpose of this algorithm is to describe a signal

34

in terms of the frequencies that make up the signal. In my application, I was checking

the audio signal recorded by the phone to check if the 20,000 Hz frequency was a main

component in the audio signal. If it was, then my application would conclude that the

other phone had just sent an ultrasonic ping.

Unfortunately, I was never reliably able determine if the 20 KHz frequency was present

in the audio signal. Depending on the thresholds I set, the application would either

determine that ultrasonic pings were being sent at random times, or that no ultrasonic

pings were being sent at all.

Another potential disadvantage of using the FFT to determine when ultrasonic pings

were sent is that the FFT requires a certain minimum length of the audio segment in

order to determine if certain frequencies are present. This is an issue in my application

because my application relied on knowing precisely when an 20KHz frequency started.

The FFT could only give a rough approximation for this time.

These factors caused me to pivot to my next method of resolving ultrasonic pings:

zero-crossings. The intuition behind zero crossings is that when a high frequency signal

is being recorded the air pressure and thus the voltage recorded by the audio receiver

will switch very rapidly between positive and negative values (where 0 is the base).

35

To implement zero-crossings, I had my application look at a small window of the audio

data and keep track of how many times the signal went from either a positive to a

negative value, or from a negative to a positive value. If this was above a certain

threshold I would consider that an ultrasonic signal was being sent. I started with the

threshold at 20 crossings per 100 data samples, with data being sampled at 44100 Hz.

However, similar to the FFT method neither this nor any other threshold proved

sufficiently accurate to resolve the ultrasonic ping.

36

The final method I tried was to use a high-pass filter to resolve the ultrasonic pings. The

high pass filter was implemented in software on the android application and was

designed to filter signals whose frequencies were under 18 KHz. This method gave

even worse results than the previous methods, as the signal to noise ratio was virtually

non-existent. After discovering this, I decided to abandon the ultrasonic method of

finding the distance between the two smartphones and move onto other methods.

3.2 Solving VPCP Using WiFi

Another method I implemented to enable two smartphones to find the relative position of

each other was WiFi ranging. In this method, each smartphone would first try to

determine the location of nearby WiFi access points. After this was done, the phones

would notify each other about the distance and direction to nearby WiFi access points.

After comparing results, both phones would be able to find an approximate location for

the other phone.

3.2.1 Algorithm for WiFi Ranging

Similarly to the algorithm I describe in 3.1.1, I implemented this as a standalone android

application, which both phones were to run. Additionally, as happened with the

ultrasonic ranging application, I never completed this application fully. The algorithm I

give below is what I would have implemented had I not run into difficulties:

37

1. Determine the distance to nearby WiFi access points using the Received Signal

Strength Indicator (RSSI). It was necessary to use only nearby WiFi access

points because various form of error, namely multi-path propagation errors,

greatly reduce the accuracy of distance calculations over long distances. In my

experiments I limited the RSSI signal to 80, which in ideal circumstances is close

to 25 m. An example of this interface is shown in Figure 3-2.

2. Each smartphone then waits for one second, during which it uses dead reckoning

to calculate how far it has moved. Note that the 1 second here is an arbitrary

amount of time chosen by me for convenience purposes. It has not been

optimized or changed at all.

3. After 1 second, each smartphone repeats step 1 to get a new distance estimate

between it and the nearby WiFi access points.

4. Each smartphone then uses these three pieces of information--its current

distance to a beacon, the amount it travelled in the past second, and the distance

to the beacon a second ago-- to calculate the direction to that beacon.

5. Each smartphone sends the list of nearby access points, along with its position

relative to them, to its partner smartphone.

6. Upon receiving its partners message, each smartphone find all WiFi access

points that both smartphones are close to. For each of these access points, the

smartphone combines the displacement between it and the access point to the

displacement between the other phone and the access point using vector

addition. For each access point, this quantity is an estimate of the relative

38

location of the other smartphone. These quantities are then averaged together to

get a refined estimate of the relative location.

3.2.2 Issues with WiFi Ranging

After implementing step 1 of the algorithm

described in 3.2.1, I decided to stop and test

how accurate the calculated distance between

WiFi access point and smartphone was. I

started with a qualitative sanity test. Although a

quantitative would have been a more rigorous

test of my system, at the time I was only

interested in whether my system was working

or not.

I started this qualitative test by measuring the

consistency of the results. When I tested in a

space with many different access points in

close proximity (MIT’s campus) I observed that

the RSSI and consequently the calculated

distance varied greatly from one measurement

39

to the next. Specifically, I noticed a few jumps which the RSSI changed by over 30. At

the distances I was measuring, this would have been an equivalent distance jump of

about 15 meters.

Upon further investigation I realized that one cause of this issue was that the device

device id for the network sometimes changed. For example, the id of the access point

for the MIT network changed from ‘58:f3:9c:e8:35:53’ to ‘58:f3:9c:e8:35:56’. Note here

that the two id’s are identical except for the last number. From this, I concluded that the

access point I was receiving a signal from changed from the first time I accessed the

system to the second time. Normally this isn’t an issue when you are connected to a

WiFi network as the network will do its best to make sure you are connected with the

same access point until the signal degrades too much. This issue only came up in my

application because my application was exploring the connection data from different

networks instead of just connecting to one.

This led me to the conclusion that I would have to rethink how I got the RSSI from

nearby access points. In the meantime, I then worked on creating an efficient and

accurate algorithm to complete steps 4-6 of the algorithm described in Chapter 3.2.1.

These steps roughly correspond to how I would integrate the data from the WiFi ranging

of the two phones with the dead-reckoning information of the two phones. This ended

up being more complicated than I at first anticipated, and I never returned to resolve the

issue with the changing access points.

40

3.3 Solving VPCP Using Vision

The final method I attempted to use to solve VPCP was machine vision. Specifically,

my goal was to enable two different smartphones to look at the same scene from

different angles and infer their relative positions based on the position of objects in the

scene. Although there have been a few localization schemes based upon machine

vision, I believe my design was markedly different from most of these.

Most of the current vision localization techniques (described in Chapter 2.4) rely on

creating a database of images over a large area. A user can then compare an image

they take to this database and figure out where they are. However, for my uses only the

relative position two users is important. This led me to design an application where no

central database is necessary and users can communicate directly from phone to

phone.

I implemented this algorithm again as an android application. This time however I relied

heavily on the opencv library [22] for android as it had a number of convenient

functions. Despite the fact that it was difficult to set up my android application with

opencv, I found that opencv was critical in order to get my system to work.

41

I started off by creating a system that would evaluate whether two images belonged to

the same scene, that is whether the same objects were present in both images. To do

this I used the SIFT algorithm, which is described in Chapter 2.4. SIFT identified salient

points in the images, that is points that could consistently be recognized from different

angles and levels of zoom.

After identifying the salient points in both images, the next step was to find a

correspondence between the two sets. There are two common algorithms to find this

correspondence: RANSAC (random sample consensus) and FLANN (fast library for

approximate nearest neighbors). I decided to use FLANN for this task because it was

generally considered to be faster and because it was already implemented in opencv.

After successfully creating this application I decided to test its accuracy on both pictures

of the same room, and pictures of different rooms. An example of two pictures of the

same room from different angles is given in Figure 3-3. Chapter 4.3 features these

results and the analysis stemming from them, but here I encountered a different

problem. The process to run both SIFT and FLANN took about 5 seconds per iteration.

Not only would this eat up a large amount of computational power for any application

based off of this, but it would mean the output would be at least 5 seconds off. I found

this to be an unacceptable amount of lag, and so decided to abandon this method of

solving VPCP.

42

3.4 Modelling Relative Positioning Systems

In Chapters 3.1 and 3.2 I discussed my efforts to create a relative positioning system

between two mobile devices using some range-finding metric. In 3.1 I attempted to find

the distance between the two smartphones themselves, while in 3.2 I attempted to find

the distance between each smartphone and nearby WiFi access points. These

methods were similar in that even had I succeeded in the distance finding metrics of

these two methods to work, I would still have to create an algorithm or formula to find

the actual displacement between the two smartphones.

43

In both cases I decided that I would try to

model an idealized version of the world

where the range-finding methods in all the

implementations were working correctly.

The inherent similarity between the

implementations described in 3.1 and 3.2

allowed me to use basically the same model

for both scenarios. A sample picture from

the model is shown in Figure 3-4.

This model was created in python because I

have found that python is the easiest

language to rapidly prototype in and it is the

one I have the most familiarity with. I

additionally used the ‘pygtk’ [23] library to

help build the simple UI shown in Figure 3-4. Overall the ability to rapidly prototype

helped me not only to build the model quickly, but also to change it and to add new

algorithms quickly.

44

3.4.1 Modelling Ultrasonic RPS

In the first situation in which my model is representing the algorithm from 3.1, my model

starts out by creating two phones (modelled as filled circles) in two different places on

the screen. After this, my model waits for the user to press the ‘Step’ button to advance

to the next time step. The step button effectively moves the simulation 1 second further

in time by moving each device, telling each device how far it moved in the past second,

and telling each device the distance to its partner device. After this, both devices

attempt to calculate the relative position of the other smartphone.

Eventually I was able to do this very consistently in my idealized model. However, I ran

into two issues on the way. The first issue was figuring out how to do step 7 described

in 3.1.1-- that is how to combine all the given data and find out the location of the other

device. To solve this I had to refer back to high school geometry, specifically the law of

cosines:

 a b os(∠ab)c2 = 2 + 2 − 2 * a * b * c

where c, a, and b are all sides of triangle and is the angle between the side andab ∠ a

.b

The second issue I ran into was that this method gave two possible results for the

location of the other smartphone in the simulation. This is evident in Figure 3-3 where

45

there are two pink circles, only one of which is actually on top of the other smartphone.

Figure 3-5(a)
In this situation the blue device attempts to
predict the location of the red device. This is
different from Figure 5 in that a small amount
of noise is added to the distance calculation
between the two devices. However, in this
case noise does not change the accuracy of

the prediction by too much.

Figure 3-5(b)
As opposed to Figure 6a, about ¼ of the

time when a small amount of noise is
added, my algorithm’s prediction is very

far from reality. This most commonly
occurs when the devices are moving

directly toward or away from each other.

To solve this problem, I was forced to keep track of the previous two time steps (instead

of just one) and use this extra information to ‘break the symmetry’ of the system, making

sure it only returned the one correct result.

After solving both of these issues my model worked great--as long as there was no

noise added. I decided next to see how my model would react when noise was added

to the system. To do this, I changed the distance being fed into both smartphones in

my model by a small random amount. Normally this lead to the phones in my model

46

mis-guessing the location of the other phone by a small amount, as I predicted it would.

However, sometimes my model would then be off by a very large amount as pictured in

Figure 3-5(b). I decided that I needed to use a different algorithm, and decided to

explore possibilities as I modified my simulation to support the WiFi Ranging RPS.

3.4.2 Modelling WiFi RPS

Modelling the WiFi relative positioning system described in 3.2 was much the same as

3.1, with the added twist that separate stationary WiFi access points had to be

modelled. By itself this didn’t change the code too much, but it would end up leaving a

large amount of bloat on the GUI as I tried to render each phone's guess for each new

WiFi access point. Eventually I decided to limit the number of WiFi access points to just

a few in simulations because of this fact.

One thing that changed a good deal between modelling the ultrasonic RPS and the WiFi

RPS was how each phone in my model calculated where the other phone was. Recall

that in the WiFi RPS case the first step was for each phone to determine the location of

the nearby WiFi access points. I had earlier discovered that the algorithm that I had

planned to use here, namely using the law of cosines to integrate the data from two time

steps, had an unacceptable high error rate when noise was introduced. Instead, I

decided to make the noise a part of my algorithm and use a technique called particle

filters.

47

The basic idea behind this technique was that instead of trying to figure out exactly

where a WiFi access point was, each smartphone would keep track of a probability

distribution of where it might be. Each smartphone kept track of a large number of

points, which were initially randomly distributed around the smartphone. After each time

step, each smartphone would update its set of points. If a point was too close or too far

to the smartphone after the new time step, ie if the distance between it and the

smartphone was different than the measured distance between the smartphone and the

access point, then it was removed. If the point was good, ie if it was about as far away

from the phone as the access point was, then it was kept and there was a chance of

adding a new point close to that point.

Although this algorithm takes a bit longer than the algorithm developed in 3.4.1, it could

be much more accurate over the long run. This algorithm suffers from its own suite of

difficulties though. One of the issues was that it takes a good deal longer than the

algorithm implemented in 3.4.1. This is a result of the program having to do calculations

on thousands, and often tens of thousands of particles. The calculation time can be

reduced by reducing the number of particles, but only at the price of accuracy. As the

total computation time is still less than one second per step, I decided to leave the

default number of particles as 1,000 per WiFi access point in my model.

48

The other issue that this algorithm suffers from is setting parameters. There were a

couple of key points in this algorithms which parameters were needed for, such as:

● How close to the measured distance

a particle had to be to be considered an

accurate particle

● How much error to add to a ‘good’

particle in order to make new particles which

would also be good

These parameters were problematic to set

because there was a constant tradeoff

between the ability for the particles to

quickly ‘migrate’ to the right answer, and the

ability to stay at the right answer when

arbitrary errors were introduced.

49

Chapter 4

Analysis

In the previous chapter I described the applications and models I created over the

course of my research. In this chapter I will go on to provide analysis of how well or

poorly these applications worked, and to discuss whether the given performance is

good enough for my needs. I will do this by examining individually each of the

components described in Chapter 3.

4.1 Analysis of Ultrasonic Ranging

In Chapter 3.1 I described both the algorithm that I planned to implement for ultrasonic

ranging, and the difficulties I had while implementing this algorithm. Recall that one

aspect I had particular difficulty with eas resolving when one phone was transmitting a

high-pitch sound. In 4.1.1 I will described my analysis of this problem, while in 4.1.2 I

will discuss the feasibility in general of using ultrasonic methods to establish an RPS.

4.1.1 Analysis of Ultrasonic Resolution Issue

50

As described in Chapter 3.1.2, I implemented three separate methods on my android

application to resolve when an ultrasonic signal was sent. These methods were a FFT,

zero-crossings, and a high-pass filter.

After none of these methods were able

to effectively recognize ultrasonic pings

from another device, I decided to do a

closer analysis of what was going on.

Specifically, I was worried about

whether my code for these algorithms

had been implemented correctly, so I

decided to send my data to my

computer where I would use Matlab to

analyze it.

Unfortunately recording the sound data on the android application was a non-trivial task,

so I decided to have my computer record the ultrasonic signal instead. After recording, I

imported the sound file into Matlab and ran a high pass filter on it. The result of this is

shown in Figure 4-1.

From Figure 4-1 we can clearly see that my computer’s microphone was able to resolve

when an ultrasonic signal was being sent. These correspond to whenever a red bar

appears in Figure 4-1, and happens at the same frequency (once per second) as these

51

ultrasonic signals were being sent. From this, I concluded that at the very least the

high-pass filter implementation was feasible on some devices.

One thing that should be noted is that the strength of the filtered signal varied greatly

from one ultrasonic burst to the next. As an example, the the magnitude of the filtered

signal at t=6 seconds is about three times the magnitude at t=5 seconds. I had a

number of hypotheses as to what the issue could be here, detailed below:

● The smartphone emitting the ultrasonic pings may have a faulty speaker, or a

speaker that was not designed to work at those frequencies.

● There was a great deal more noise in the room than I originally thought,

compromising the ultrasonic signal.

● The geometry of the room of the room led to multi-path propagation errors which

compromised the signal strength.

● My computer itself had a microphone not designed to consistently work at these

high frequencies.

Given the fact that both my phone and my android application had issues resolving

these ultrasonic pings, albeit the android device to a greater extent, I concluded that the

issue was probably a combination of poor ultrasonic transmitting and receiving

hardware on the android phones in my experiment. This makes a lot of sense when the

lower quality of these phones is taken into account.

52

4.1.2 Feasibility of Ultrasonic Ranging in Establishing an RPS

Ultrasonic localization has been successfully used in a number of different systems to

localize a mobile device or agent. However, in just one situation that I was able to find

[7] was it used in a relative positioning system as opposed to an absolute positioning

system with stationary ultrasonic beacons of known location. There are a couple

reasons which I believe ultrasonic ranging is not ideal for a relative positioning system,

and especially for the applications I was hoping to create. These reasons are detailed

below:

1. Noise: A relative positioning system will have a higher utility the more agents, or

devices which are being localized, are in it. As the number of devices in this

ultrasonic system grows, there will be more and more noise in the high-frequency

spectrum. This noise is unavoidable as all devices need to establish their

location by transmitting ultrasonic signals.

2. Hardware Standardization: One of the main issues I had in implementing this

application was the hardware on the smartphones I was using was inconsistent.

Most applications don’t rely as heavily on some of the nitty gritty specifications of

smartphone hardware. This would add a whole new plane of compatibility

complexity to mobile application design.

53

3. Audibility Issues: Although I designed my application to use a frequency above

the normal threshold for humans, it is still possible there exist some individuals

who could hear these noises. More relevantly, many pets can hear noises at this

frequency. The noises being constantly sent by this kind of system would be

sure to annoy anyone or anything that could hear it.

Although ultrasonic positioning systems can be powerful, my research into their

applications in relative positioning systems has led me to the conclusion that these two

technologies should not be used in conjunction.

4.2 Analysis of WiFi Ranging

In this section I will provide a more in-depth analysis of my efforts to create a relative

positioning system using WiFi signal strength as recorded on smartphones in the same

area. In 4.2.1 I will focus on some of the interesting characteristics of the WiFi networks

I had access to in my experiments, while in 4.2.2 I will discuss the effectiveness of some

of the algorithms I implemented in the model of this system explained in Chapter 3.4.

4.2.1 Notable Characteristics of WiFi Networks in Experiments

There were two interesting characteristics of the WiFi networks which were used for

localization by my application. The first of these has to do with how my application

54

selected which WiFi points to access. Recall from Chapter 3.2 that the first task of the

app I created was to find the distance towards nearby WiFi access points. As it was

doing this, I noticed an interesting behaviour in which the distance to a given WiFi

network would abruptly change.

My hypothesis for why this is the case is that when my application remeasured the

distance between a nearby access point and itself, it chose a different access point.

This was most likely the case because my application determined classified access

points based on their network name. As an example, there were many access points

nearby which were broadcasting the “MIT” WiFi network, but my application was

treating them as the same. In order to overcome this problem, the networks and access

points need to be accessed in a different way.

Another interesting characteristic of the WiFi access points being used in my

experiments was that one access point was often broadcasting multiple networks. This

was first observed when a sparsity of nearby access points led to multiple different

networks having about the same RSSI, or measured distance. Upon closer inspection,

the id of the access points for these networks was similar in all but the last digit, or 4

bits. From this, I concluded that the same physical access point was creating all of the

virtual access points to the networks that the application observed.

55

This fact can be leveraged to great use by applications using WiFi ranging. The

distances that such a WiFi ranging application calculates are inherently noisy to begin

with. However, this noise can be reduced by repeating the experiment or taking

multiple measurements from the same access point. When one physical access point

transmits multiple WiFi networks, nearby WiFi ranging applications can combine the

measurements from these different networks and get a more accurate assessment of

the distance the access point is away.

I believe this insight has application beyond the WiFi ranging application I proposed in

Chapter 3.2. An example of where this could be used effectively is in WiFi fingerprinting

localization systems. If these systems were able to effectively discern when a group of

virtual access points were all coming from the same physical access point, these

systems could eliminate some of the noise in their database by averaging the RSSI of

all of access points which were in the same physical location.

4.2.2 Effectiveness of Algorithms

As discussed in Chapter 3.4, a python model representing how different devices such

as smartphones and WiFi access points would interact with each to establish an RPS

was created. The most effective algorithm for determining the location of stationary

WiFi access points by the mobile phones in this model was particle filters. However,

one of the key issues this algorithm suffered from was finding a tradeoff between

56

localizing the access point quickly and continuing to keep track of it even when there is

noise.

The system starts off in an unlocalized state, that is where each phone does not know

where any of the access points are. An example of what this looks like is shown in

Figure 4-2a. Each phone in the model must then quickly determine where the access

points are, allowing them to determine the other phone’s location. Let us call this the

57

localization phase. An example of successfully doing this is shown in 9b. Once the

phone has located where an access point is, the particles representing the position of

the access point should move a lot less. If they continued to move at the same rate,

then noise could cause each phone to readjust its assessment of the location of the

access point.

One way to solve this issue is to change the behaviour of the particles based on how far

into the simulation you are. During the first few iterations they would be updated in a

way so that more focus was put on aligning with the accuracy of the measured distance

between smartphone and access point. After localization had been achieved, these

particles would then pay more attention to where they were previously, or effectively

making smaller jumps if their distance from the smartphone did not align with the

measured distance to the access point.

There is, however, a tradeoff to using this method. This tradeoff is that after localizing

the smartphones interpretation of where the access point is wrong, then it will continue

to be wrong. This problem is not dissimilar from the problem in information theory of

choosing a threshold to minimize false negatives and false positives. However, it is

made more complex by the fact there are many ways that our system could be wrong

while thinking it is right, ie a disproportionate amount and variety of false positives.

58

Overall, I believe that a particle filter is a good fit for this application. Although it has a

few disadvantages, namely that it requires a good deal of computation and the right

parameters to update the particles, it was the best algorithm for dealing with noise. In

general I think finding an algorithm that accomplishes the task of mobile localization via

WiFi

ranging is tough, as the information that is trying to be inferred is more complicated than

the information being given to the algorithm.

4.3 Analysis of Machine-Vision for Solving VPCP

My analysis of the machine-vision based application I created was focused on

determining if my algorithm could distinguish two different rooms, or scenes. I took a

picture of one room, then another of either the same room from a different angle, or a

59

different place altogether. In the best case scenario, I would get results similar to those

in Figure 4-3, where my algorithm reported a marked increase in the similarity for the

pictures which were of the same room.

However, this turned out to be the exception rather than the rule. In most cases the

metric I used to determine if two images were of the same scene--the ‘Ratio’ parameter

in the image-- was close to 0.4 for both images. Given how inaccurate just the scene

recognition was, I decided not to implement a more complicated method of matching up

SIFT features between two images.

I believe the main reason that accuracy was consistently low was that the SIFT features

were not as salient as I believed them to be. I originally thought that SIFT would pick

out the same locations as keypoints in a scene, even if seen from two different angles.

However, upon looking more closely at the actual keypoints found by SIFT I found that

these locations were often displaced by a small amount between the two images. This

displacement could then cause SIFT’s characterization of the keypoints to be markedly

different.

60

Chapter 5

Future Work

There are many promising avenues of research in relation to solving the virtual physical

correspondence problem. Some of these avenues were explored in the previous two

chapters, but there are many which I did not have the time not resources to explore. In

the following chapter I will discuss some of these methods. Chapter 5.1 will discuss

methods which build off of or are related to the methods I implemented in Chapter 3,

while 5.2 will explore different technologies.

5.1 Expansions to Previously Discussed Methods

One avenue for future research is a comparative study of different smartphones in order

to evaluate the differences between their speakers and microphones. Specifically, this

study would be most relevant if it studied the ultrasonic capabilities of these devices. I

hypothesized in Chapter 4.1 that faulty or ineffectual hardware on the smartphones I

61

was using. A more thorough study on this matter could prove or disprove that

hypothesis.

Another promising direction for future work is to refine the algorithm and parameters I

use for WiFi ranging in 4.2. The current method uses particle filtering with a set of

parameters optimized for the simulated model I created. The effectiveness of particle

filters in a real test environment for this problem has yet to be explored.

There are also some potential improvements to the particle filter algorithm in the WiFi

ranging model I created. This algorithm in its current form can be thought of as being

two distinct steps. The first step is for each phone to determine the relative

displacement between itself and the nearby WiFi access points. The second step is to

combine this information and determine the location of the other smartphone.

However, once the location of the other smartphone is known, each smartphone can

potentially get a better guess on where the nearby access points are. For example, say

that phone A was able to accurately localize a WiFi access point, but the phone B

incorrectly determined the location of that access point. After discovering the location of

phone A and phone A’s location relative to the access point in question, phone B could

update its model of the location of this access point.

5.2 New Methods

62

The essence of solving the virtual physical correspondence problem is enabling two

mobile devices to localize each other. Although I focused on doing this with relative

positioning systems as opposed to absolute or global positioning systems, the latter two

can still be used to solve this problem. For example, one potential way to solve this

problem is to have the two devices use gps to determine their position, and then

communicate it to each other. Although some of the disadvantages of using GPS were

put forth in Chapter 1, there are other absolute positioning systems that are more suited

to this task.

In particular, WiFi fingerprinting can yield accurate positions for users inside buildings--

or other places GPS is less effective. Over the past few years it has been used to

augment GPS, but it has often not had the same accuracy. However, there are now

multiple research projects and some commercial ventures underway whose aim is to

improve the accuracy of this technology through crowdsourcing.

One potential disadvantage of WiFi fingerprinting is that the location is measured in

discrete units defined by the database of WiFi fingerprints. That is, if I walked across a

room, a WiFi fingerprinting localization method would put me in a number of distinct

locations, one after another. Since my phone would get details about its location

through this service, from its point of view its movement would appear as a sequence of

jumps, as it jumps from one location in the fingerprint database to the next. More

63

importantly, any phone communicating with my phone would see my movement in the

same way--as a sequence of jumps.

One way this issue could be solved is by using the inertial measurement units like

accelerometer and compass embedded in the smartphone. If the smartphone could

convey its approximate location obtained through WiFi fingerprinting along with its

movement, an outside observer could get a more accurate fix on its location. More

importantly, it wouldn’t appear to jump from one place to another, but rather to move

smoothly. Kalman filters, similar to the particle filters I used in my implementation,

would be an ideal candidate to combine the fingerprint data with the inertial data to

create a smooth and accurate interpretation of the situation.

Overall I think this idea, combining WiFi fingerprint localization with inertial information

from a smartphone, is the best candidate for solving the VPCP. Not only does it require

little if any additional infrastructure, but it also has the potential to be very accurate if

precise WiFi fingerprint databases are kept.

64

Chapter 6

Conclusion

In this thesis I described my research into relative positioning systems with focus on

their applications to mobile localization. I primarily focused on three unique ways of

establishing relative positioning systems. The first method used ultrasonic time of flight

to determine the distance between two devices, then dead reckoning to establish their

relative position. In the second method, mobile devices used WiFi RSSI from nearby

routers to establish their relative position. The final method featured machine vision,

and relied on two mobile devices observing the same location, and then inferring their

relative position from differences in their observation.

None of these methods were able to achieve the results I desired. However, my

exploration of these methods provides future researchers with more insight into what

methods might or might not work to solve mobile localization problems. My insights into

this field also helped provide guidance into what the best next steps are to solve these

problems.

65

The overall goal of this research was to solve what I termed the virtual physical

correspondence problem. This problem boils down to a mobile device learning about

the location of some other mobile device that it interacts with. If this can be done by

both mobile devices, then these devices can provide their users with a more informative

and more interactive view of the electronic world around them.

66

References

[1] Valentin Heun, James Hobin, Pattie Maes. "Reality Editor: Programming Smarter
Objects" UBICOMP 2013.

[2] S. Flores, J. Geiß, M. Vossiek, "An ultrasonic sensor network for high-quality
range-bearing-based indoor positioning", 2016 IEEE/ION Position Location and
Navigation Symposium (PLANS), pp. 572-576, 2016.

[3] Sewan Kirn; Younggie Kim; “Robot Localization Using Ultrasonic Sensors”,
Proceedings of IEEElRSl, September, 2004

[4] Do-Eun Kim; Kyung-Hun Hwang; Dong-Hun Lee; Tae-Young Kuc, “A Simple
Ultrasonic GPS System for Indoor Mobile Robot System using Kalman Filtering“,
SICE-ICASE 2006 International Joint Conference, October, 2006

[5] Jim Pugh; Alcherio Martinoli, “Relative Localization and Communication Module
for Small-Scale Multi-Robot Systems”, IEEE International Conference on
Robotics and Automation, May 2006

[6] L. Marton, C. Nagy, Z. Biro-Ambrus, and K. Gyorgy, “Calibration and
measurement processing for ultrasonic indoor mobile robot localization systems,”
in Proc. of IEEE International Conference on Industrial Technology, 2015, pp.
131–136.

[7] S. Pang, and R. Trujillo, “Indoor localization using ultrasonic time difference of
arrival[C],” Proc. IEEE Southeastcon. pp. 1-6, 2013.

[8] Bong-Su Cho; Woo-sung Moon; Woo-Jin Seo; Kwang-Ryul Baek, “A Dead
Reckoning Localization System for Using Inertial Sensors and Wheel Revolution
Encoding”, Journal of Mechanical Science and Technology, November, 2011

[9] Haojian Jin; Christian Holtz; Kasper Hornbaek, “Tracko: Ad-hoc Mobile 3D
Tracking Using Bluetooth Low Energy and Inaudible Signals for Cross-Device
Interaction”, Proceedings of the 28th annual ACM symposium on User interface
software and technology, November, 2015

[10] Lim, Hun-Jung; Chung, Tai-Myoung. “Performace evaluation of relative

67

positioning based on low-cost GPS and VANET”, Proc. ICITST, December 2011.
[11] J.-W. Qiu, C. C. Lo, C.-K. Lin, and Y.-C. Tseng, “A d2d relative positioning

system on smart devices,” in IEEE Wireless Communications and Networking
Conf.(WCNC), 2014.

[12] J. O. Oh, M. S. Lee and S. K. Lee, “An Acoustic-Based Relative Positioning
System for Multiple Mobile Devices,” Proc. of the 4th International Conference on
Computer Sciences and Convergence Information Technology, 2009, pp.
1565-1570.

[13] Rafael G. Aranha and Rui M. Rocha, “Real-Time Relative Positioning with WSN”,
SENSORCOMM̉08, pp.276-281, Sep 2008.

[14] Shafiee, Mahsa; Klukas, Richard, “Joint Access Point and User Localization
Using Unlabeled WiFi RSS Data”,Position, Location and Navigation Symposium
(PLANS), 2016 IEEE/ION, April 2016.

[15] Hernandez, N., Ocana, M., Alonso, J., and Kim, E., "WiFi-based Indoor
Localization and Tracking of a Moving Device", Ubiquitous Positioning Indoor
Navigation and Localization Based Service (UPINLBS), pp. 281-289, 2014.

[16] J. Niu, B. Wang, L. Cheng, and J. J. Rodrigues, “Wicloc: an indoor localization
system based on wifi fingerprints and crowdsourcing,” in 2015 IEEE International
Conference on Communications (ICC). IEEE, 2015, pp. 3008–3013.

[17] V. Radu and M. K. Marina, “Himloc: Indoor smartphone localization via activity
aware pedestrian dead reckoning with selective crowdsourced wifi fingerprinting,”
in 2013 International Conference on Indoor Positioning and Indoor Navigation
(IPIN),. 2013

[18] Guan, Kai; Ma, Lin; Tan, Xuezhi et. al., “Vision-Based Indoor Localization
Approach Based on SURF and Landmark”,Wireless Communications and Mobile
Computing Conference (IWCMC), 2016 International.

[19] Lowe, David G., “Distinctive Image Features from Scale-Invariant Keypoints”,
International Journal of Computer Vision, 2004.

[20] J. Z. Liang, N. Corso, E. Turner, and A. Zakhor, “Image based localization in
indoor environments,” in Computing for Geospatial Research and Application
(COM. Geo), 2013 Fourth International Conference on. IEEE, 2013, pp. 70–75.

[21] Nishkam Ravi, Pravin Shankar, Andrew Frankel, Ahmed Elgammal, and Liviu
Iftode, “Indoor Localization using Camera Phones,” in Mobile Computing
Systems and Applications, 2006.

[22] Bradski, G. “opencv_library”, Dr. Dobb's Journal of Software Tools, 2000.
[23] Henstridge, James; Dahlin, Johan, “Pygtk”, ‘https://github.com/GNOME/pygtk’.
[24] P. Bahl, V. N. Padmanabhan, “RADAR: An In-Building RF-based User Location

68

https://github.com/GNOME/pygtk

and Tracking System” 19th Joint Conference of the IEEE Computer and
Communications Societies, volume 2, pages 775-784, 2000

69

