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Automated fluorescence intensity 
and gradient analysis enables 
detection of rare fluorescent 
mutant cells deep within the  
tissue of RaDR mice
Dushan N. Wadduwage1,2,3, Jennifer Kay  1, Vijay Raj Singh  2,4, Orsolya Kiraly1,2, 
Michelle R. Sukup-Jackson1, Jagath Rajapakse2,5, Bevin P. Engelward1,2 & Peter T. C. So1,2,4

Homologous recombination (HR) events are key drivers of cancer-promoting mutations, and the 
ability to visualize these events in situ provides important information regarding mutant cell type, 
location, and clonal expansion. We have previously created the Rosa26 Direct Repeat (RaDR) mouse 
model wherein HR at an integrated substrate gives rise to a fluorescent cell. To fully leverage this 
in situ approach, we need better ways to quantify rare fluorescent cells deep within tissues. Here, we 
present a robust, automated event quantification algorithm that uses image intensity and gradient 
features to detect fluorescent cells in deep tissue specimens. To analyze the performance of our 
algorithm, we simulate fluorescence behavior in tissue using Monte Carlo methods. Importantly, this 
approach reduces the potential for bias in manual counting and enables quantification of samples 
with highly dense HR events. Using this approach, we measured the relative frequency of HR within a 
chromosome and between chromosomes and found that HR within a chromosome is more frequent, 
which is consistent with the close proximity of sister chromatids. Our approach is both objective and 
highly rapid, providing a powerful tool, not only to researchers interested in HR, but also to many other 
researchers who are similarly using fluorescence as a marker for understanding mammalian biology in 
tissues.

Fluorescence imaging is now ubiquitous in the life sciences. While there are excellent approaches for studying 
sub-cellular processes using fluorescence, methods to study fluorescence in the context of thick tissue are lacking. 
For deep tissue analysis (more than μm50 ), the main challenge is the scattering of emission light that distorts 
image features. Although there are more sophisticated imaging techniques, such as multi-photon microscopy, 
these methods can be data intensive and prohibitively slow. Consequently, wide-field single photon microscope is 
the most commonly used imaging modality. Here, for wide-field microscopy, we have developed an algorithm 
that uses image intensity and gradient features to identify scattered foci deep within tissue. We have applied this 
approach to study rare fluorescent mutant cells in a mouse model designed to detect homologous recombination 
(HR) events.

Homologous recombination events are a key class of mutations1. While the HR pathway is generally accurate, 
HR-driven sequence rearrangements can cause deletions, insertions, translocations, and loss of heterozygosity 
(wherein information from one chromosome replaces that of its homolog). Virtually all tumors have undergone 
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HR events that enable progression and metastasis. Understanding the molecular basis for DNA damage-induced 
sequence changes, is thus critical for understanding the underlying causes of cancer. Although much progress has 
been made using traditional tools of molecular biology and genetics in cell culture, few technologies have been 
developed for studying these important processes in-situ. To this end, we previously developed the Rosa26 Direct 
Repeat (RaDR) mouse model that makes it possible to detect recombinant cells by a fluorescent signal2,3.

On the genetic level, to detect HR, RaDR mice harbor a transgenic fluorescence reporter. Specifically, these 
animals have a direct repeat of two truncated copies of the enhanced green fluorescent protein (EGFP) expression 
cassette. When sequence information is transferred from one cassette to the other, a full-length sequence can 
result, giving rise to a fluorescent signal. HR events are very rare (on the order of 1 in 105 or 106). To detect such 
rare fluorescent cells, flow cytometry has proven effective4. However, the frequency of fluorescent cells is not just a 
reflection of an HR event, but rather is the result of the combination of HR events and clonal expansion. To study 
HR, it is preferable to focus on HR events, and thus eliminate the effect of clonal expansion4. This can be achieved 
by imaging fluorescent cells within the context of a tissue, since HR events are rare (and thus spatially distinct) 
and cell division will result in the accumulation of fluorescent cells in the vicinity of the cell that had undergone 
HR, giving rise to a fluorescent focus. By quantifying the number of foci, instead of total cell number, the fre-
quency of HR events and the impact of genes and exposures on HR can be more readily detected4. This approach 
has proved to be valuable for revealing how genes and environment affect the risk of sequence changes3,5,6.

While quantification of fluorescent foci within intact tissues has been shown to be an effective approach for 
studying HR2,3,7,8, this approach uses manual foci identification. It is slow and there can be significant variability 
among experimentalists. Moreover, manual counting of foci does not enable analysis of factors such as foci size, 
which is a valuable indicator of clonal expansion (providing insights into tissue physiology9). An automated 
foci-counting algorithm not only overcomes the variability of manual counting among researchers, but also 
greatly improves the efficiency of experiments. It may also provide means of estimating new quantitative meas-
urements of the brightness and morphometry of each individual focus. Thus, automated algorithms potentially 
enhance our understanding of the factors that impinge on HR and on the extent of clonal expansion. From an 
image processing standpoint, foci counting is not a new problem and a number of image processing methods have 
been proposed over the last two decades. These image-processing algorithms can broadly be classified into foci 
quantification in organ/tissues or foci quantification in in-vitro cells. While automated foci counting in in-vitro 
cells is a well-established approach10–12, there are only a few studies on foci counting in tissue13–15.

At the tissue level, effective programs for automated quantification of rare fluorescent foci within thick tissue 
were unavailable. This type of analysis poses its own unique challenges, like complex backgrounds, illumination 
variations15, and tissue scattering. Image processing is particularly challenging when basic wide-field microscopy 
at low magnifications is used. A representative image is shown in Fig. 1A. The imaged tissue contained fluorescent 
foci at different depths. Foci closest to the surface are saturated in the image (Fig. 1B). Ones at medium depths are 
not saturated, but appear as distinct bright spots with significantly higher intensities from their local backgrounds 
(Fig. 1C). Ones at larger depths appear blurred and dim compared to the first two types (Fig. 1D). As seen in the 
left column of Fig. 1D, they are almost invisible to the non-trained eye (a trained biologist, however, can identify 
them). The right column of Fig. 1D shows their respective intensity cross-sections. It can be observed that these 
foci are almost at the background intensity level and appear to be masked by the image detector’s noise.

It is worth noting that these challenges are unique to wide-field microscopy. Point scanning imaging tech-
niques such as two-photon point-scanning microscopy or single photon confocal microscopy do not suffer from 
the above limitations. Point-scanning techniques do not illuminate the background; so as long as all the fluo-
rescent photons are detected, they can be allocated to the corresponding imaging point. In our review of the 
literature, we did find programs for tissue-based foci counting using point scanning techniques, such as those 
that accompany confocal microscopy13,14. However, these imaging approaches are not feasible when one needs to 
analyze whole organs from multiple mice. The surface area per experiment is approximately 25 square centime-
ters, which is unwieldy using approaches that are effective for surface areas 100 times less. The problem is both the 
amount of time required to collect the image and the excessive amount of data that would need to be processed. 
In comparison, despite inferior image quality, wide-field microscopy is neither slow nor data intensive. Wide-field 
fluorescence microscopy has been used for segmentation of fluorescent objects in thin tissue sections (~10 μm). 
For instance, Grigoryan et al. proposed an automated quantification method to count fluorescent spots resulting 
from fluorescence in-situ hybridization (FISH) labeling in tissue samples15. However, tissue specimens were only 
~10 μm thick. While wide-field fluorescent imaging has the advantage of unparalleled speed and simplicity, to the 
best of our knowledge, there is virtually no image processing algorithm developed for foci counting in wide-field 
2D fluorescent images for thick (~500 μm) tissue specimen.

In this work, we present a method for deep-tissue foci detection in wide-field fluorescence images. Our 
approach is suitable for analyzing fluorescent objects within intact freshly excised tissue. Importantly, tissues are 
not fixed, embedded and sectioned, but rather directly analyzed by imaging with a standard wide-field fluores-
cent microscope. Being inherently thick (~500um), these in-situ specimens contain foci at both shallow and deep 
tissue locations. Therefore, our approach utilizes both intensity and gradient information in the images; to help 
identify foci near the surface, we use intensity information through existing algorithms; to help identify foci in 
deep tissue, we introduce a new image gradient quantifier called Focus-flow. The two approaches, when config-
ured to identify foci with weak responses, give rise to false positives. To separate false positives from real foci, we 
use a support vector machine. Experimentally, first, we validate our method in silico; results suggest that using 
gradient information increases detection accuracy for deep foci. Second, we test our method on real images from 
thick pancreatic tissue from multiple mice; results suggest that our method outperforms existing foci detection 
algorithms and is comparable to trained human raters. Last, we demonstrate our method in a study of HR events 
from heterozygous vs. homozygous mice; results confirm that HR is more frequent between sister chromatids 
compared to that between homologous chromosomes.
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Methodology
The image analysis algorithm is summarized in the Fig. 2A. The algorithm is divided into three image processing 
pipelines; the image intensity pipeline, the image gradient pipeline, and the support vector machine (SVM) pipe-
line. Respectively, the image intensity and the image gradient pipelines are used to detect shallow foci and deep 
foci. But, this detection also misidentifies noise as foci. Therefore, in the SVM pipeline, real foci are separated 
from noise by employing a pre-trained SVM. The image intensity pipeline and the SVM pipeline mostly consist of 
existing image processing routines. Image gradient pipeline, however, contains a novel gradient quantifier termed 
Focus-flow.

In the next subsections, we first describe the Focus-flow. Then we discuss, in detail, the construction of the 
algorithm using the three pipelines. In the final subsection, we explain the SVM training procedure.

Focus flow helps detect deep scattered foci. The major challenge of thick tissue imaging is tissue scat-
tering. Tissue scattering distorts the emission light from fluorescent foci (see Fig. 1). The amount of distortion 
depends on the height of the scattering layer above the fluorescent focus. Therefore, compared to the foci in 
shallow tissue, foci in deeper tissue experience more scattering, and hence more distortion. The effect of this 

Figure 1. (A) A representative HR image from RaDR mouse pancreas. Bright foci are the cell clusters that have 
undergone HR. (B) Foci near the surface saturate the image sensor (left: Focus, right: cross-section at the mid-
pixel row). (C) Foci at some intermediate depths aren’t saturated, but bright. (D) Foci in deep tissue are barely 
visible and are almost in the noise margin.



www.nature.com/scientificreports/

4Scientific RepoRtS |  (2018) 8:12108  | DOI:10.1038/s41598-018-30557-9

distortion is twofold; dispersion of the emission photons around the focus, and decay of the peak intensity of 
the focus. These effects respectively make deep foci appear blurred and dim. Blurring can be as high as hundreds 
of microns (over a few hundred-micron thick tissue layer); intensity decay can be as high as few orders of mag-
nitudes (compared to that of a surface focus)16. Therefore, light from a fluorescent focus deep inside the tissue 
creates a very weak response on the camera. See Fig. 1B–D, that respectively show the intensity profiles of foci at 
the tissue surface, at some medium depth, and at a maximally detectable depth. At the surface, due to their high 
peak intensity, most of the foci saturate the image sensor (Fig. 1B). At an intermediate depth, although foci do 
not saturate the sensor, a clear intensity peak can be seen (Fig. 1C). At deep, due to decay, the foci are almost at 
the background level (Fig. 1D). Therefore, it is difficult to detect deep foci simply by looking at their intensity 
response. The information, however, is not completely lost. In fact, a trained biologist is capable of manually 
detecting these deep foci by carefully gauging their blurring effect. Similarly, here, we capture the information 
from deep foci by gauging their blurring effect through image gradient, which has proven to be useful to identify 
blob like objects in images17,18.

A deep focus, irrespective of how scattered, originates light from a specific locality. Therefore, in a given neigh-
borhood, there should always be a gradient flow towards this locality. In other words, a pixel with a deep focus is 
expected to have the gradients of the pixels around it turned towards it. To capture this gradient flow, we designed 
a new quantifier called Focus-flow. Consider a pixel =P x y( , ) and it’s neighborhood ℵ x y

R
( , ) with a radius R (see 

Fig. 2B1). Let ∇ ′ ′I x y( , ) be the gradient of an arbitrary pixel ′ = ′ ′P x y( , ) in ℵ x y
R
( , ). Then the sum of the gradient 

towards P is given by,

∑ α= ∇ ′ ′ × .′ ′ ∈ℵ ′ ′g x y I x y( , ) ( , ) cos( ) (1)x y x y( , ) ( , )x y
R
( , )

Here, α ′ ′x y( , ) is the angle between, the line PP′ and the direction of gradient vector ∇ ′ ′I x y( , ) (see Fig. 2B1). 
Then we define the Focus-flow as the ratio between g x y( , ) and the total gradient in the neighborhood,

 

=
∑ ∇ ′ ′

.
′ ′ ∈ℵ
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Figure 2. (A) The flow chart of the foci counting algorithm, consisting of the image intensity branch, the image 
gradient branch, and the SVM branch. (B1) A graphical representation of the filter used in the focus-flow in a 
neighborhood ℵ x y

R
( , ). ∇ ′I P( ) is the gradient vector at ′ = ′ ′P x y( , ). (B2) Three foci at different depths on a tissue 

image. (B3) The three foci shown in ‘B2’ (top-row), their conventional gradients (middle row), and their Focus-
flows. (C) A sample from the foci in the training dataset of 10 images. Each row contains a subset of training 
instances (positives and negatives) from each image. (D) The t-SNE plot of the training dataset applied to the 
SVM after training. (Incorrectly classified negatives are shown in blue circles and incorrectly classified positives 
are shown in orange squares).
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The only parameter of Focus-flow is the radius of the neighborhood, R. For our images we selected R as 30 
pixels or equivalently 128 μm (at our magnification and camera pixel size). It is large enough to capture most of 
the blurred foci up to a few hundred micrometer depth (see supporting Fig. S8B); it is mostly small enough not 
to mix neighboring foci.

In order to see the impact of Focus Flow, consider the three representative foci shown in Fig. 2B2. They are 
shown separately in the first row of the Fig. 2B3. The pixel values in the figure are normalized to the maximum 
intensity of the corresponding image. The second row of the Fig. 2B3 shows the simple gradient of the three foci. 
While for focus 1 and focus 2 some distinct response above their background level can be seen, for focus 3 the 
response is almost at the background level. Please note that the scales, on the right of each plot, are different. It 
is also worth noting that the simple gradient follows the intensity response (foci1 > foci2 > foci3). In contrast, 
the Focus-flow does not follow intensity response (bottom row of Fig. 2B3). The highest Focus-flow response is 
seen for focus 2 and then respectively for focus 1 and focus 3. More importantly, the response of Focus-flow is 
significantly above the background for all three foci. However, since there is no gradient on the saturated area, 
the Focus-flow is not a suitable quantifier for saturated foci (see supporting Fig. S1). These foci should be detected 
using their intensity.

Final foci detection algorithm combines intensity, gradient and morphological informa-
tion. The final algorithm consists of three image processing pipelines; the image intensity pipeline, the image 
gradient pipeline, and the SVM pipeline. In the image intensity pipeline, we first segment the foreground tissue 
region (supporting Fig. S2A) using an active contour or “snakes” based algorithm19–21 (the algorithm was bor-
rowed from22). If necessary, the user can also make corrections (supporting Fig. S2B) at a later stage using our 
graphical user interface (supporting Fig. S3). Then the image is preprocessed by applying an averaging filter 
followed by a median filter.

Foci near the surface are expected have considerably higher image intensity than their background. Since 
near-surface foci mostly comprise of ballistic photons, they also have clear foci boundaries and hence can be 
segmented. Here we use a local maxima extraction algorithm named extended maxima transform (EXMAX)23 to 
identify and segment near-surface foci. EXMAX is a single-parameter algorithm. The parameter, h-value, often 
dictates the resulting segmentation (see supporting Fig. S4A). The best h-value that gives rise to the highest 
counting accuracy (compared to the manual raters) seemed to vary between the images (see supporting Fig. S5). 
Therefore, we use a heuristic algorithm to adaptively set the h-value that results in a realistic foci segmentation 
for each image. More details about the heuristic algorithm can be found in the section S1 in the supporting text.

It is practically inefficient to tune the heuristic algorithm to cater to all the various images (see supporting 
Fig. S5). We use a different approach where we overestimate the number of foci (we call the overestimated results, 
foci candidates) and later separate the positives (real foci) from negatives (noise) using a classifier. The foci can-
didates are selected by applying the EXMAX transform with a low h-value. The h-value is selected as the lowest 
value that allows less than “n” times the number of foci as the heuristic count. The over-counting ratio, “n”, is an 
input parameter. We set n to 2 (higher values of n increased the number of candidates but did not improve the 
final counting accuracy).

In the image gradient pipeline, the Focus-flow is first calculated. Then the same candidate detection process 
explained above is applied on the Focus-flow. Again, the over-counting ratio was set to 2 for the same reasons 
above.

Image intensity and gradient pipelines, each results in a binary image with foci candidates. In the SVM pipe-
line, first the two images are fused together. Here the gradient candidates, that intersect with intensity candidates, 
are removed to avoid any merging. Then the two binary images are fused together by performing pixel-wise OR 
operation. Second, the intensity image, focus flow, and the fused candidate image are used to extract eighteen 
features for each candidate focus. The features are listed in the supporting Table S1. Each candidate focus is now 
represented as an eighteen-dimensional vector. These feature vectors are then fed to a pre-trained support vector 
machine (SVM) via principal component analysis (PCA). Data before and after PCA are shown in supporting 
Fig. S6. The SVM separates the foci candidates into positives (real foci) and negatives (the noise picked up by 
EXMAX during candidate detection). The SVM was trained using images annotated by a trained biologist. The 
training process is explained in the next section.

SVM training. During the initial training process, twenty images, that together contained roughly 8000 foci 
candidates (~4000 real foci, i.e. positives and ~4000 negatives) were used. The images were divided into two sets 
as, ten training images, and ten testing images. Fig. 2C shows a random subset of the positives and negatives. 
Foci candidates shown in each row were randomly selected from each training image. We selected an SVM with 
a radial basis function (RBF) kernel. The two hyper-parameters, C and γ (see supporting section S2 and ref.23 for 
more details), were trained in a leave-one-out fashion on the ten training images. Briefly, a grid of C and γ values 
with exponential increments were created. Then for each combination of C and γ the following tainting process 
was performed. One image was separated from the training set and the SVM with the current C and γ was trained 
on the other nine training images. The training accuracy (Eq. 3) was recorded. The same process was repeated ten 
times leaving a different image out each time. Then the average accuracy was calculated over the ten iterations. 
This process was repeated for all the combinations of C and γ in the grid. The C and γ combination that resulted in 
the highest average accuracy was then selected. Last the SVM with the selected hyper-parameters (C and γ) was 
trained on all ten training images. Fig. 2D shows the t-sne24 plot of all the foci candidates in the training image set.

Ethical approval. All animals were housed and handled in Association for Assessment and Accreditation 
of Laboratory Animal Care (AAALAC)-accredited facilities with diets, experimental methods, and housing as 
specifically approved by the Institutional Animal Care and Use Committee. The MIT CAC (IACUC) specifically 
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approved the studies as well as the housing and handling of these animals. All methods were performed in accord-
ance with the relevant guidelines and regulations.

Results and Analysis
The algorithm was tested on both synthetic images and pancreas images from multiple mice. Then, the algorithm 
was demonstrated in an analysis of HR events in pancreas, liver, and colon from two types of mice.

Results on synthetic images suggests improved accuracy in deep foci detection. We first tested 
the algorithm on a simulated data set to quantitatively gauge its aptness to detect deep tissue foci. A set of twenty 
fluorescent-foci images were simulated using the following method. For each image, a set of 200 fluorescent 
cell clusters were randomly distributed in a tissue object of 10 × 10 × 0.5 mm3 volume (Fig. 3A). Each cluster 
contained a random number of cells and each cell contained a random fluorophore concentration. Then, a 
non-uniform autofluorescent background was simulated over the volume of the object (Fig. 3B). In the absence of 
any scattering, the imaging process can be modeled by convolving the tissue object with the point spread function 
(PSF) of the imaging microscope. Therefore, we modeled a wide-field microscope’s PSF (see supporting section 
S3) and convolved it with the tissue object. A representative image synthesized is shown in the Fig. 3C. This image 
doesn’t contain any tissue scattering.

To model the light scattering process in tissue, a scattering point spread function (sPSF) was simulated at 
each depth using Monte Carlo methods (see supporting section S4). At each depth plane, the tissue volume was 
convolved with the respective sPSF to generate the fluorescent intensity profile at the tissue surface. Finally, the 

Figure 3. (A) Simulated thick tissue section with a random distribution of foci with a random number of cells 
in each focus. (B) Simulated heterogeneous auto-fluorescence background. (C) Simulated image of the tissue 
section in ‘A’ in the absence of scattering (green channel). Foci are shown in the red channel. Most of the foci are 
visible despite background. (D) Simulated image of the tissue section in ‘A’ in the presence of tissue scattering 
(green channel). Foci are shown in the red channel. Some foci are buried in the background (see the strong 
red). Scale bars are 1 mm. (E) Results of foci counting with (blue circles) and without (red crosses) gradient 
information. Shown in green diamonds are the ground truth foci locations. (F) Three subpopulations of foci. 
The top row shows foci detected with gradient information as well as without gradient information. The middle 
row shows foci detected with gradient information but weren’t detected without gradient information. Shown 
in the bottom row are foci that weren’t detected. (G) Accuracy, precision, and recall in foci detection with and 
without gradient information. (H) Percentage of foci detected with and without gradient information plotted 
against their depth. Including gradient information improved the foci detection at deeper locations.
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intensity profile at the tissue surface was convolved with the PSF of the simulated wide-field microscope. Fig. 3D 
shows the resulting simulated image in the presence of scattering (compare with the non-scattering case, i.e. 
Fig. 3C).

The twenty simulated images were then used on the algorithm. Ten images were used for training and ten were 
used for testing (similar to explained in the Methodology section). The only differences were, the images being 
synthetic, and the ground truth having derived from the simulation process. In order to test the contribution from 
the gradient pipeline, the same process was repeated without the gradient pipeline. Fig. 3E shows a representa-
tive image after processing with and without the gradient. Fig. 3F shows some representative foci from the same 
image. The foci in the first row were detected by both versions of the algorithm, i.e. with and without gradient. 
The foci in the second row were not detected by the version without the gradient pipeline. The foci in the last row 
were not detected by either version. We compare the average accuracy (Eq. 3), precision (Eq. 4), and recall (Eq. 5) 
of the two versions in the Fig. 3G.

=
+ +

Accuracy TPs
TPs FNs FPs (3)

=
+

Precision TPs
TPs FPs (4)

=
+

Recall TPs
TPs FNs (5)

Here TPs, FNs, and FPs denote the number of true positives (real foci and were detected by the algorithm), false 
negatives (real foci but weren’t detected by the algorithm), and false positives (not real foci but were detected by 
the algorithm). The precision of both versions were high and similar in value suggesting that there are fewer false 
positives in both versions. The accuracy and the recall of the version with the gradient pipeline were more than 
15% higher compared to that without the gradient pipeline. This observation suggests that the inclusion of the 
gradient pipeline reduced FNs and intern, improved foci detectability. Finally, in Fig. 3H, we plot the percentage 
of detected foci at each depth over all the images. As expected the version of the algorithm with the gradient pipe-
line gradually improved the detection percentage with increasing depth.

Results on tissue images demonstrates the algorithm’s agreement with human raters. We 
tested the proposed algorithm on real data from mouse pancreatic tissue images and compared the results with 
existing methods. First, we briefly explain the sample preparation process. Animals were euthanized with CO2 
according to AVMA guidelines. Tissues were excised and held on ice in tubes containing PBS with 0.01% trypsin 
inhibitor (T9008. Sigma-Aldrich) until use. The entire pancreas was collected. Tissues were then compressed 
to 0.5 mm between coverslips and imaged for EGFP under the 1x objective with the FITC filter of a Nikon 80i 
fluorescent microscope.

Twenty pancreas images were acquired from tissue from twenty animals. The images were then analyzed by 
two trained biologists. One biologist (the training rater) was asked to detect foci and annotate the images. The 
other biologist (the independent rater) was asked to count the number of foci in the images according to the 
usual protocol and report the counts. The annotations of ten images by the training rater was used to train the 
algorithm according to the process explained in the Methodology section. The other ten images were used for 
testing. We also processed the ten testing images with an existing algorithm named, “Find foci”25 for benchmark-
ing. Find-foci is a fully automated foci detection algorithm developed for microscopy images of biological speci-
mens; its parameters can be trained with a set of manually annotated images, similar to our proposed algorithm25.

On a representative image, Fig. 4A shows the foci detected by the three methods: manual foci counting (by the 
training rater), the proposed algorithm, and Find-foci. Qualitatively speaking, the training rater and the proposed 
algorithm showed reasonable agreement, while Find-foci seemed to miss real foci and detect a number of false 
positives. The final number of foci counted by the proposed algorithm, the training rater, the independent rater, 
and Find foci are shown in the Fig. 4B. Again, while the former three demonstrated similar agreements, Find-foci 
showed a significant deviation from them. In order to quantitatively compare the performance of the proposed 
algorithm and Find-foci, we treated the annotations from the training rater as the ground truth and calculated 
the detection accuracy of the two algorithms for each image (Fig. 4C). The average accuracy of the proposed 
algorithm was 77%. In comparison, Find-foci’s average accuracy was only 45%.

Moreover, the proposed algorithm demonstrated closer to 80% accuracy for all images except for one image 
(B5 in the Fig. 4C). According to the training rater, the image contained only three real foci; the proposed algo-
rithm detected five; the benchmarking algorithm Find-foci counted 27; the independent rater counted 14. Thus 
it’s evident that there’s no universal ground truth and the four raters, including the two human raters, do not agree 
most of the time (see Fig. 4B for other instances). In order to quantitatively analyze the agreement between the 
raters, in Fig. 4D we show the Bland-Altman plot of the difference vs. mean26 for the agreements: between the 
proposed algorithm and the training rater; between the independent rater and the training rater; and between 
Find-foci and the training rater. The respective 95% limits of agreements were 53 foci, 64 foci, and 288 foci. Thus 
it’s evident that the agreement between the proposed algorithm and the training rater was similar to the agree-
ment between the two human raters. The agreement between Find-foci and the training rater, however, was about 
five fold worse than that of the proposed algorithm and the human raters.
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Differences in HR in tissue from heterozygous and homozygous mice. In this section, as a demon-
stration of the algorithm, we present the results of a study of homologues recombination (HR) event frequencies 
of heterozygous vs homozygous mice. The mice that were used in the previous study were heterozygous for the 
HR substrate. We predicted that mice containing copies of the HR substrate on both chromosomes would have 
approximately double the frequency of fluorescently detected recombination events observed in mice containing 
only one copy of the HR substrate. Specifically, the HR substrate contains two copies of the EGFP gene sequence, 
where each copy has been truncated at either the 5′ or 3′ end so that the protein products do not fluoresce. 
During DNA replication, the sister chromatids will be in proximity, each containing the HR substrate. If a DNA 
double-strand break occurs in one copy of the HR substrate, it may be repaired by HR using the sister chroma-
tid as a template for repair. If HR occurs between the cassette harboring the 5′ truncation and the cassette on 
the sister chromatid that has the 3′ truncation, full-length protein sequence can be restored. Expression of the 
full-length sequence enables the production of a fluorescent product [Figs 1 and 3 of the ref.27], which is visible by 
fluorescence imaging, as described above.

Somatic chromosomes come in pairs, one homologous chromosome from each parent. In the case of the 
RaDR mice that are heterozygous (R/+), there is a copy of the HR substrate on one copy of Chromosome 6, while 
the other copy of Chromosome 6 remains wild type. For homozygous (R/R) mice, there are two copies of the HR 
substrate, one on each copy of Chromosome 6. Therefore, it is expected that the frequency of fluorescent foci 
would be at least twice as high in the R/R, as compared to heterozygous mice. To explore this possibility, tissue 
specimens from pancreas, liver, and colon were prepared and imaged. Tissue samples were prepared in the same 
way as explained in the previous section. The entire pancreas was collected, as well as the left lobe of the liver. The 
entire colon was excised (cecum to anus), cut open on one side, and the lumen was rinsed of fecal matter before 
placing in PBS + trypsin inhibitor. The algorithm was first trained and used for liver and pancreatic images, 
enumerating all fluorescent foci. For the colon, it is biologically important to distinguish between types of foci: 
the colon contains somatic stem cells that divide to give rise to the epithelium, and those cells are sloughed off 
over time (called “transit cells”). Transit cells in this mouse model produce small, irregularly shaped foci, whereas 
mutations in stem cells produce larger, brighter, and roughly circular foci. Therefore, the algorithm was trained to 
differentiate between large clusters of fluorescent cells that arise from a stem cell mutation (where nearly all cells 
are fluorescent due to clonal expansion), versus recombinant transit cells. For details, please see Sukup-Jackson 
et al.27. For all tissue types, the foci counts were recorded and the foci densities (foci per cm2) were calculated. 

Figure 4. (A) Foci counting results for a representative pancreatic tissue image using: manual foci detection, 
with the proposed algorithm of this paper, and a published algorithm called Find Foci. (B) The foci counts for 
ten test pancreatic images counted by: the proposed algorithm, two manual raters (the training rater and an 
independent rater), and Find-foci. The agreement between the two manual raters and the proposed algorithm is 
considerably higher compared to that of with Find-foci. (C) The accuracy of the proposed algorithm and Find-
foci for the same ten images as in ‘B’. Here the training rater’s foci locations were treated as the ground truth. 
The proposed algorithm’s average accuracy was ~77% while Find Foci’s was ~45%. (D) Bland-Altman plot of the 
difference vs. mean for counts: between the proposed algorithm vs. the training rater; between the independent 
rater vs. the training rater; and between Find-foci vs. the training rater. Shown by dotted lines are the respective 
95% Limits of Agreements (LOA).
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Fig. 5A shows resulting foci detected in pancreas, liver, and colon for both R/+ and R/R animals. Mann-Whitney 
U-test was conducted between groups using GraphPad Prism 5 (the distribution of EGFP-positive cells in RaDR 
mice is non-normal across tissues and among individual animals; therefore, a nonparametric rank comparison 
test is appropriate). By eye, it is clear that the R/R mice have more foci in all three tissue types. Fig. 5B shows the 
foci densities of R/+ and R/R animals for each tissue type. As anticipated, the foci density for R/R animals was 
consistently higher than that for R/+ animals.

Published studies show that recombination between sister chromatids is more than 10 fold more frequent than 
recombination between homologous chromosomes28. This is in part because sister chromatids are positioned next 
to each other following DNA replication. If it is the case that relatively few recombination events occur between 
homologous chromosomes, then when we multiply the data for the heterozygous mice by 2-fold, we would expect 
that the frequency for R/R and 2(R/+) to be similar. As can be seen in Fig. 5C, for pancreas and colon, the median 
frequency values were very similar. From these, we can conclude that recombination between homologous chro-
mosomes is indeed a minor contributor to recombination at the HR substrate. Interestingly, there is a statistically 
significant increase in the frequency of HR in the R/R as compared to 2(R/+) for the liver, which could indicate 
a different preference for HR between chromosomes compared to the other two tissues. However, the number 
of samples for the two cohorts is quite low; so this could just be a result of variability in the data. Nevertheless, it 
would be very interesting if the ratio of HR between sisters versus between homologous chromosomes is tissue 
or cell-type dependent.

Discussion
When propagates through more than μ~ m50  in tissue, light encounters scattering which distorts images in fluo-
rescence microscopy. Optically, this issue is overcome through the use of two-photon point scanning imaging16. 
Two-photon microscopy, however, requires complicated instrumentation and is extremely slow compared to 
single-photon wide-field microscopy. Therefore, despite scattering, single-photon wide-field microscopy is the 
most practical imaging modality for large tissue volumes, with imaging regions in the order of tens of square 
centimeters. One such example is organ-wide HR event detection in animal models2,3. Each HR event gives rise 
to a fluorescent cell cluster that is seen as a focus in microscopy images. Foci closer to the tissue surface can be 
easily detected but foci at deep tissue locations generate weak blurred signals that could only be detected by 
trained biologists. Existing automated image analysis algorithms, having designed for non-scattering imaging 
conditions, do not perform well for these images (see the results on synthetic images in the Results and 
Analysis section). In this paper, we present an automated foci detection method specifically designed for 
wide-field fluorescent images of thick ( μ~ m500 ) tissue sections.

Using an automated algorithm presents a number of advantages over manual foci counting. Manual foci 
counting is subjective. Different experts may gauge the image features differently (see our results in Fig. 4B and D);  
an automated algorithm overcomes this limitation. Second, the manual foci counting process is laborious and 
time-consuming. An expert biologist may take days to weeks to carefully analyze these images. An automated 
algorithm not only helps reduce human workload but also speeds-up the analysis process; the algorithm currently 
takes only minutes to hours, based on the size of the dataset. We also stress that we haven’t done any computa-
tional optimization. One may parallelize most of the image processing routines, for an example using graphical 
processing units (GPUs), and scale down the processing time to minutes or even to seconds. Another advantage 

Figure 5. (A) Resulting foci annotation from the algorithm for representative samples of the pancreas, the 
colon, and the liver from homozygous (R/R) and heterozygous (R/+) mice. (B) Foci densities for each tissue 
type from R/+ and R/R mice. R/R shows a higher number of HR events for all tissue types (* < .p 0 05). (C) Foci 
densities of R/R and 2-fold R/+ (denotes as 2(R/+)) for each tissue type. While for pancreas and colon R/R and 
2(R/+) show similar foci densities, for liver R/R is higher.
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of computer-based analysis is its ability to enable analysis of subtler image features such as foci size, shape, and 
brightness. These image features may be linked to tissue features through mathematical modeling. However, we 
note that deep foci cannot be segmented in a conventional sense; tissue scattering loses high-frequency informa-
tion in images and hence prohibits recognizing exact foci boundaries. But one may still make estimates through 
a scattering model.

To detect foci, our algorithm uses both image intensity and image gradient information. The image gradi-
ent is quantified using a new technique called Focus-flow. In silico, we demonstrated that Focus-flow improves 
the overall foci detection accuracy by more than 15% (see results on synthetic images in Results and Analysis). 
Furthermore, our results suggest that inclusion of Focus-flow improved detectability by 100–300% for deep 
foci (Fig. 3H). For in-situ pancreatic tissue images, we demonstrated that our method is comparable to trained 
human raters (see results on tissue images in Results and Analysis). Compared to a trained biologist our algo-
rithm demonstrated closer to 77% average accuracy (Fig. 4C). In comparison, Find-foci, a benchmarking algo-
rithm designed for automated foci detection, was only 45% accurate (Fig. 4C). Manual foci counting is subjective. 
Different human raters may generate different results. Therefore, we compared the results from another inde-
pendent rater with the results from the first human rater. The two demonstrated a considerable variation; the limit 
of agreement (LOA) in Bland-Altman analysis was 53 foci. The algorithm and the first rater demonstrated similar 
agreement while the LOA between Find-foci and the first rater was almost fivefold worse (Fig. 4D).

Our algorithm uses a support vector machine to separate real foci from false positives. Therefore, it requires 
training instances from human raters. On one hand, the results will only be as good as the training data. An algo-
rithm trained with a set of images at a limited number of conditions may work only for images taken at similar 
conditions. Therefore, the training process must be rigorously administered. On the other hand, this approach has 
a number of practical advantages. First, it helps to reduce the number of free parameters in the overall image pro-
cessing pipeline. Our pipeline contains only two free parameters; with both fixed, the algorithm worked robustly 
over a large set of experiments. The intended users, therefore, require little to no image processing expertise; all 
users have to do is to annotate foci in a set of training images and feed them to the algorithm in the training mode. 
Second, the algorithm can combine training data from multiple experts, so that there is a balanced agreement 
for all raters and hence remove any subjectivity in the results. Last, the algorithm can be trained for different user 
requirements. For, an instance for colon it is biologically important to count only the mutations in stem cells and 
disregard transit cells (see last subsection in Results and Analysis). Though there are obvious differences between 
the two types, the ultimate decision necessarily is a fuzzy one. For a conventional parametric algorithm, one 
would need to carefully define the separation of the two cell types with respect to each parameter. This obviously 
hinders the computational plasticity of the algorithm for new conditions. But, in our approach, the experts had an 
easy comprehending approach to transfer their domain knowledge.

Conclusion
In this paper we present an automated algorithm to quantify rare fluorescent foci in wide-field images of in-situ 
thick tissue. We tested our algorithm in silico as well as in real experiments. In silico experiments suggested that 
the new method improved deep foci detectability by a factor of two to three. We also validated our method via 
comparisons with multiple experts in HR image quantification. The results suggest that the proposed algorithm 
performs similarly to an expert human rater. The use of our new analysis program has significant advantages over 
manual counting, due not only to providing improved consistency and far greater speed, but also because it pro-
vides a foundation for analysis of subtler parameters that cannot be estimated by eye, such as foci size, shape, and 
intensity. We have used our refined foci counting techniques to explore the frequency of recombinant fluorescent 
cells among tissues and also to compare the difference in frequency between heterozygous animals that have one 
copy of the reporter (R/+), and homozygous mice that have two copies of the reporter (R/R). For tissues, we 
observed a high frequency of HR in the pancreas, and much lower levels in the liver and colon, which is consist-
ent with previous studies. Furthermore, consistent with the literature showing that most recombination occurs 
between sister chromatids rather than homologous sequences, we observed an approximately 2X increase in HR 
in the homozygous animal for pancreatic and colon tissues. Additionally, we have used this approach to differen-
tiate between large and small foci in the colon, which has provided valuable insights into the rate of HR in transit 
cells versus somatic stem cells27. Taken together, advances described here are immediately useful to researchers 
studying HR, and it is anticipated that this work will form a foundation upon which it will be possible to analyze 
additional genetic or molecular changes that can be detected by fluorescence within intact tissue.
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