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Forecasting Short Term Trucking Rates 

 By  

Xiwen Bai  
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Degree of Master of Engineering in Supply Chain Management 

Abstract 
Transportation costs constitute an important part of total logistics costs and have a dramatic 
impact on all kinds of decisions across the supply chain. Accurate estimation of transportation 
costs can help shippers make better decisions when planning transportation budgets and can help 
carriers estimate future cash flows. This study develops a forecasting model that predicts both 
contract and spot rates for truckload transportation on individual lanes for the next seven days. 
This study considers several input variables, including lagged values of spot and contract rates, 
rates on adjacent routes and volumes. The architectural approach to short-term forecasting is a 
neural network based on Nonlinear Autoregressive Models with eXogenous input (NARX) 
models. NARX models are powerful when modelling complex, nonlinear and dynamic systems, 
especially time series. Traditional time series models, including autoregressive integrated 
moving average (ARIMA), are also used and results from different models are compared. 
Results show that the NAR model provides better short-term forecasting performance for spot 
rates than the ARIMA model, while the ARIMA model performs slightly better for contract rates. 
However, for a longer-term forecast, the NARX model provides better results for contract rates. 
The results from this study can be applied to industrial players for their own transportation rate 
forecasting. These results provide guidelines for both shippers and carriers regarding what model 
to use, when to update the model with new information, and what forecasting error can be 
normally expected from the model. 
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1 Introduction  

Transportation is a service within a supply chain that moves raw materials, product parts, 

and finished products from point to point. It links many supply chain activities from the 

extraction of natural resources, the fabrication of industrial, commercial, and consumer products 

to the distribution of final products to wholesalers, retailers and consumers. The US Department 

of Commerce recorded that in 2015, $1.5 trillion was spent on logistics and transportation, which 

constitutes 8% of annual gross domestic product (GDP) (CFRA, 2017). Nowadays, because 

manufacturers, wholesalers and retailers put more emphasis on lean production and inventory 

minimization, the roles played by transportation providers have become more significant than 

before. 

From a shipper’s perspective, up to 50% of total logistics costs can be attributed to 

transportation costs. For that reason, transportation cost has a dramatic impact on all kinds of 

decisions across the supply chain. Accurate estimation of transportation costs could aid not only 

shippers’ decision-making process towards better transportation budget planning, but also 

decisions across the entire supply chain regarding facility location, vehicle routing, economic 

order quantity (EOQ) and inventory replenishment policies (Swenseth & Godfrey, 1996). As a 

result, transportation cost is often incorporated in lot sizing or inventory replenishment decisions 

(Burwell, Dave, Fitzpatrick, & Roy, 1997; Carter & Ferrin, 1996; Mendoza & Ventura, 2009; 

Swenseth & Godfrey, 2002).  

The objective of this project is to develop a forecasting model that predicts both contract and 

spot rates for truckload transportation on individual lanes for the next seven days. More accurate 

rate forecasting could aid the decision-making process for carriers with respect to determining 

future cash flows. It also provides useful guidance for third-party providers and shippers 
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regarding potential price fluctuations and resulting risks. Furthermore, such price information 

could be used for budget planning by large companies. 

In this study, the architectural approach for short-term forecasting is a neural network based 

on Nonlinear Autoregressive Models with eXogenous input (NARX) models, also known as 

NARX recurrent neural networks (Lin, Horne, Tino, & Giles, 1996). NARX models are powerful 

when modelling complex, nonlinear and dynamic systems, especially time series. Compared to 

other networks, learning is more effective, the convergence rate is much faster and generation is 

better for NARX models (Gao & Er, 2005; Lin et al., 1996). Traditional time series models 

including autoregressive integrated moving average (ARIMA) are also used and results from 

different models are compared. 

This study has made several contributions to both academics and practice. Firstly, this 

research has for the first time introduced the hybrid model (NAR and NARX) into the 

transportation forecasting field. Such a model combines the advantages of both neural networks 

(model complex and non-linear relationships) and time series models (model series 

dependencies). It is proven to have good forecasting abilities in many fields. Secondly, this study 

introduces the framework of when and how to update the model with new information. TL rates 

are dynamically changing and when new rate information comes in, a decision must be made as 

to whether to update the model with such information. To help address this issue, this paper 

introduces the criterion of error reduction rates. Then, the best time to update the model will be 

determined by the threshold set for the error reduction rate. Last but not least, the model can be 

applied to industrial players for their own forecasting. It is found that NARX models provide 

satisfactory predicting abilities for contract rates, and decent but not highly stable forecasts for 

spot rates. 
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In this study, the scope for rate forecasting has been limited to long-haul dry van full 

truckload (TL) shipments. Long-haul is defined as any shipments over 250 miles. TL constitutes 

the majority (97% according to Costello (2013)) of the trucking industry in the US. Thus, 

forecasting TL rates has more practical significance than Less than Truckload (LTL) rates. In the 

forecasting part, one high-volume lane is used as a sample lane for forecasts. However, the same 

methodology can be applied to all different lanes. 

This thesis is organized as follows. Section 2 reviews past literature on transportation rate 

forecasting and identifies major literature gaps. The methodology and dataset used are presented 

in Section 3. Section 4 describes results of different models and the best fitted models for both 

spot and contract rates will be selected. The implications are also discussed. Last but not least, 

Section 5 provides a conclusion and Section 6 points out future research directions. 

 
 
  



 
12 

2 Literature Review  

This section provides an overview of the US trucking industry and reviews rate forecasting 

in the trucking industry. Trucking rate forecasting has shifted gradually from approximated rate 

function using distance and weight as inputs to actual rate forecasting. However, actual truck rate 

forecasting studies have been limited due to the high number of lanes available, which means 

increased model complexity. Furthermore, no study has considered the interactions between spot 

and contract rates, between rates for a particular lane and its adjacent routes, and between rates 

and volumes, to forecast TL rates. Methodologies used for ocean transportation forecasting have 

also been compared. As one mode of transportation, ocean freight forecast has been widely 

researched in the literature. In a tramp shipping market, a ship has no fixed routing or schedule. 

A ship can load any cargo from any port to any port. The truckload (TL) and tramp shipping 

markets share similar characteristics, for example, they both have steady contract markets and 

volatile spot markets. By studying the methods used in ocean transportation rate forecasting, 

potential references can be drawn to TL rates. 

2.1 The US trucking industry 

The trucking industry is regarded as the lifeblood of the US economy (Costello, 2013). In 

2015, trucks moved roughly 70% of the United States’ freight by weight, which amounts to 

10.49 billion tons (ATA, 2017). In terms of revenue, trucking earned $726.4 billion in 2015, 

constituting 81.5% of the nation’s freight transportation revenue (ATA, 2017). A truck can haul 

almost everything from raw materials to finished goods, linking manufacturers, distributors, 

retailers and households.  
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The trucking industry can be divided into two primary categories: for-hire and private 

carriers. For-hire carriers predominantly lift freight for other companies, while private carriers 

are operated by those companies that have a fleet of trucks to support their own business. In 2012, 

according to the estimation made by the American Trucking Association (ATA), for-hire and 

private carriers hauled respectively 54.5% and 45.5% of total truck tonnage in the United States 

(CFRA, 2017).  

The for-hire industry is a competitive and fragmented market with around 586,000 

companies at the end of 2015, even with some consolidation over the years. Within the truckload 

industry, participants vary in size from one truck to more than 10,000 trucks, with most being 

small businesses (Costello, 2013). In 2015, the top 20 for-hire carriers accounted for only 11% of 

the total TL industry (American Trucking Trends, 2016). Compared to the high operating 

margins for the rail industry (over 20%), intense competition leads to lower margins (less than 

5%) for the trucking industry (American Trucking Trends, 2016). 

2.1.1 Trends in the US trucking industry 

Before 1945, the rail industry hauled more freight tonnage than the trucking industry. 

However, since then, a few developments have pushed the trucking sector to today’s leading 

position. First, the construction of the Interstate Highway System between the late 1950s and the 

mid-1970s enabled trucks to move more efficiently across most parts of the country. Second, the 

deregulation of the motor carrier sector in 1980 opened up competition in the industry (Özkaya, 

Keskinocak, Roshan Joseph, & Weight, 2010). Since deregulation, freight rates have been 

pushed down due to competition and excess capacity (Baker, 1991). Before 1980, the increase in 

freight rates tracked the changes in inflation closely. However, since the deregulation, TL rates 

have no longer been tied to specific commodities. From 1980 to 2000, real revenue per mile 
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dropped by 47.2%. Although real revenue per mile recovered by around 30% from 2000 to 2012, 

it is still significantly lower than the level in 1980, as shown in Figure 2.1. 

Figure 2.1 Real average revenue per mile (1980–2012) 

 
Source: Costello (2013). 

The third trend is the Just in Time (JIT) practice in the supply chain field, which enables 

supply chain participants to hold less inventory. The flexibility of trucks enables the JIT practice, 

and as JIT practices became more popular, the industry quickly expanded its market share in the 

1980s. In certain industries such as auto manufacturing, trucks could act as warehouses with 

limited inventories.  

2.1.2 Truckload (TL) and Less than Truckload (LTL) market 

The for-hire market can be further classified into the Truckload (TL) and Less than 

Truckload (LTL) market. The threshold between TL and LTL is 10,000 pounds. Any shipments 

weighing 10,000 pounds or less are considered as LTL. TL carriers typically move from one 

point to another point directly hauling a full truckload for one customer. On the other hand, LTL 

carriers will go through a series of intermediate terminals before heading to the final destination, 

operating more like a hub and spoke system (Costello, 2013). In 2012, TL hauls 97% of total for-

hire tonnage and LTL transported 3% (Costello, 2013). TL and LTL have different pricing 

systems. In this thesis, we primarily focus on the TL market due to its dominant market size. 
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2.1.3 Trailer type 

Different trailer types carry different products. The main types include box trailer, flatbed, 

refrigerated/temperature-controlled trailer and tank. The box trailer (also referred to as a dry van) 

is the most common type of trailer. According to Costello (2013), around 45% of the tractors pull 

dry vans. The flatbed trailer is the next most common type (15% of tractors pulling), which is 

used to carry construction materials or large machinery, as the trailer does not have a side wall or 

ceiling.  Food and medicines are normally hauled by temperature-controlled (TC) trailers. 10% 

of tractors pull this type of trailer. The last type is tanks, which are used to haul refined oil 

products or chemicals in the liquid form. 

2.1.4 Contract and spot markets 

Shippers can cover their freight transportation requirements by two types of services: 

through long-term contracts or on the spot market (Garrido, 2007).  Shippers in most cases use 

contract carriers to haul their truckload products. The contract is typically a one-year 

commitment, which consists of origin/destination, service requirement, volume and any other 

factors that affect the price. A contract rate is a lane-rate with a non-binding price expectation of 

volume commitment, which means the shipper does not provide a minimum volume guarantee 

for the carrier. The contract typically lasts for a year but can vary between shippers. For each 

lane (unique origin and destination pair), the shipper uses a route guide or a list of carriers with 

different characteristics, such as price, on-time delivery, familiarity with existing operations and 

how easy it is to do business with (Sheffi, 2004). Often, price is the primary consideration for the 

shippers.  The carriers agree to haul the products on a specified route for a specified price.  

The shipper will rank carriers based on preferences. When the shipper requires 

transportation for a load, it will issue a tender to the first carrier according to the route guide. The 
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carrier will then either accept or reject the tender. Although both parties have agreed in advance 

on the contract rate, the carrier may not have the truck available for load at the place where the 

shipper requests. If the carrier rejects the tender, the shipper will source from the other carriers 

based on the list, until the tender is accepted.  

On occasions when the contract rate fails, when a tender is not accepted or the lane/rate does 

not exist in the route guide, the shipper needs to go to the spot market to obtain a rate.  If 

shippers experience a surge in freight volume that could not be covered sufficiently under the 

long-term contracts, they are also forced to procure additional capacities on the spot market. The 

rate is decided based on the market condition at the time of the transaction (Sheffi, 2004). 

The contract market, while providing stability for the shipper, has less flexibility compared 

to the spot market, thus being less responsive to changes in fuel prices, new technologies or 

changing market conditions. Such drawbacks of the contract market could reduce the overall 

trucking industry efficiency. On the other hand, the spot market could decrease such 

inefficiencies to a certain extent by being overly responsive to market changes and is not 

consistent for budgeting. However, it also results in higher levels of volatility and fluctuations 

compared to contract rates (Garrido, 2007).  

The choice between contract and spot market could be influenced by the number of carriers 

available for a particular lane, as discussed by Hubbard (2001). He concluded that with higher 

numbers of carriers available, spot rates could be pushed down by increasing competition 

between the carriers. Thus, the likelihood of procuring on the spot market is higher than the 

situation where there exists a limited number of carriers and spot rates are typically higher due to 

less competition and less capacity, which is referred to as market liquidity. 
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2.2 Transportation rate forecasting 

Transportation rate forecasting is typically made for either spot freight rates or contract rates 

depending on the type of decisions to be made.  For example, for a carrier looking for an 

immediate load in the spot market, spot rates are more of its concern. Contract rates have been 

more frequently studied than spot rates due to their use for long-term decisions. Earlier research 

since the 1990s has mostly focused on approximating contract freight rates and finding 

appropriate rate function forms in terms of distance for TL, or distance and weight for LTL. 

Different forms have been proposed, for example, linear function or power function (Ballou, 

1991; Swenseth & Godfrey, 1996; Tyworth & Ruiz‐Torres, 2000). More recently, there has been 

an increasing trend in the forecasting of freight rates using more route- and market-specific 

variables (Budak, Ustundag, & Guloglu, 2017; Kay & Warsing, 2009; Özkaya et al., 2010).  

Several approximated freight rate functions have been investigated by researchers to emulate 

the actual freight rates (Swenseth & Godfrey, 1996). Freight rates are often defined as a function 

of distance and weight. By using such function, a simple market rate for a lane can be calculated 

for a given origin and destination. The functional form varies across literature. Broadly speaking, 

freight rate function can be classified into two categories: discrete and continuous functions.  TL 

rates are typically based on per-mile, while LTL rates are reported in cost per hundredweight 

(CWT). Swenseth & Godfrey (1996) evaluated five different forms of rate functions, including a 

constant rate per CWT (linear), a constant price per shipment (inverse), a proportional function, 

an exponential function and an adjusted inverse function. The accuracy of each function is 

evaluated by comparing the rate from the functional form and the actual rate. Mendoza and 

Ventura (2009) used the proportional function proposed by Swenseth & Godfrey (1996) and the 
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power function by Tyworth & Ruiz‐Torres (2000), when computing the freight rates in 

evaluating inventory replenishment and supplier selection decisions. 

However, such approximated freight rate functions, which only incorporate distance for TL 

or distance and weight for LTL, have major limitations. They lose the accuracy of the actual 

rates, and do not contain any information on the current market conditions, such as capacity 

availability, carrier’s availability and differences, and general economic situations.  Many times, 

they do not represent the inherent nature of TL transportation. Furthermore, such functions do 

not take into account route-specific rates. Such a formula generally assumes a uniform rate for all 

routes with the same length. However, in reality, due to geographical difference and market 

dynamics changes, rates differ a lot across different routes. Neglecting route specific information 

would result in inaccurate rate forecasting.   

Recently, increasing research attention has been given to the prediction of actual freight rates 

both in the TL and LTL markets. Instead of pure distance and weight factors, scholars have 

incorporated more lane- and market-specific variables in order to depict the actual freight market 

conditions more accurately. Smith, et al. (2007)  collected US LTL carrier data and examined the 

revenues generated from different customers on different lanes by regressions. They then 

compared the difference between estimated and actual shipment rates and pointed out that when 

the two rates are systematically different, there may exist opportunities for re-negotiation. 

However, the limitation of this study exists, as the authors only used a single carrier dataset. In 

fact, for each lane, it is comprised of different shippers using various carriers and the rate is a 

determined by all different carriers and shippers. Caldwell & Fisher (2008) used ordinary least 

square (OLS) regression to determine the relationship between TL rates and various factors, 

including distance, origin and destination of the load, tender rejections, economics of scale, 
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carrier size among others. They identified a signifcant positive relationship between 

transportation costs and tender rejections. Kay & Warsing (2009) adopted non-linear regression 

to estimate LTL rates utilizing a set of explanatory variables including load density, shipment 

weight, and distance between O-D pair. Özkaya, et al. (2010) used multiple regressions to model 

the US Less-than-Truckload (LTL) market rates. In this study, the authors considered both 

tangible and intangible market (not captured in the dataset) factors. Tangible factors included 

weight, distance, freight class, carrier type and origin/destination. Intangible factors were 

captured by an expert survey and included freight desirability, negotiation power of the shipper, 

economic value estimates and perceived freight class. 

The traditional regression methods are less effective in modelling complex short-term 

fluctuations which are often found in spot market rates. Budak, et al. (2017) compared artificial 

neural network (ANN) and quantile regression methods in predicting TL spot market price in 

Turkey. They considered both route-specific forecasting and a more general method where data 

in all routes were used in one framework. Fourteen independent variables were defined, 

including place of departure/arrival, return load, distance, vehicle and freight type, tonnage, fuel 

price, way stop and location difficulty level, to name just a few. They concluded that the route-

specific approach achieved higher forecasting accuracy compared to the aggregated approach. 

For route-specific models, the ANN model performed better than the quantile regression model.  

As one mode of transportation, ocean freight forecast has been widely researched in the 

literature. TL market and tramp shipping markets share similar characteristics, for example, they 

both have steady contract markets and volatile spot markets. In a shipping market, a ship can be 

hired for a certain period of time, known as time-charter, or it can be found in the spot market. In 

shipping literature, to facilitate more accurate forecasting, more research has shifted from 
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building large-scale econometric or simulation models to more direct specifications of freight 

rate process itself or reduced forms (Glen, 2006). By doing so, the statistical properties could be 

obtained. Appropriate forecasting techniques could enable players in the shipping business to 

make better informed decisions. By studying the methods used in ocean transportation rate 

forecasting, we can draw potential references (such as different methodologies) to TL rates. 

Recent years have seen the increasing popularity of machine learning techniques, such as 

artificial neural networks (ANNs) for financial time series analysis. ANNs have shifted from 

simple pattern recognition to varied application fields. They have been adopted in the ocean 

transportation rate forecasting (Fan, Ji, Gordon, & Rickard, 2013; Li & Parsons, 1997; Lyridis, 

Zacharioudakis, Mitrou, & Mylonas, 2004). Such methods have good fit for complex nonlinear 

function (Han, Yan, Ning, & Yu, 2014). Li & Parsons (1997) were the first to use a neural 

network model to forecast freight rates of crude oil tankers in the Mediterranean using data from 

1980 to 1995. Three variables, including spot freights, the Drewry’s tanker demand index and 

the total capacity of active tankers were considered by the authors. They developed two ANN 

models for freight rate forecasting, the first one utilizing only information from the self-

correlation of freight rates, while the second one made use of all information from the three 

variables. To compare the results, they also established two parallel auto-regressive moving 

average (ARMA) models, and the results show that ANN performs better than the ARMA 

models in all cases. Lyridis, et al. (2004) implemented ANN in the VLCC market to forecast Ras 

Tanura-Rotterdam spot freight. Eleven variables are identified as input, including demand for oil 

transportation, active fleet, newbuilding and secondhand prices, etc. Fan, et al. (2013) adopted 

Wavelet Neural Networks to forecast Baltic Dirty Tanker Index. The main characteristic of this 
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method is that it chains the properties of time frequency localization and neural networks’ 

adaptive learning nature. 

However, artificial intelligence is often regarded as a black-box method as the causal 

relations cannot be detected and no formal testing can be done. 

2.3 Literature gaps 

So far, most studies on TL rate forecasting have relied on linear regression methods for truck 

rate forecasting. Moreover, most literature focuses on contract rate forecasting. Spot market rates 

have been less studied in the literature, partially due to the complex and volatile nature of the 

spot market, which makes it hard to achieve a good forecasting accuracy. Furthermore, a uniform 

rate is often derived based on distance and weight. Such a method would be helpful for an initial 

understanding of the rate structure. However, it is not accurate enough since it disregards market 

information, such as time of year, volume, and the relationship between contract and spot rates.  

No study has been found that models and forecasts contract and spot rates for TL shipment on 

individual lanes, considering interactions between spot and contract rates, between rates for a 

particular lane and its adjacent routes, or between rates and volumes. This thesis aims to fill this 

gap by using neural network models to provide an estimate for the TL contract and spot rates.  
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3 Methodology and Data 

3.1 Methodology 

In this study, different models are proposed to forecast both contract and spot rates, 

specifically neural networks and traditional time series models. Initially, univariate 

Autoregressive integrated moving average (ARIMA) and Nonlinear autoregressive (NAR) neural 

network models are used to forecast both TL contract and spot market rates. Then, new variables 

are added (including volume and rates on adjacent trading routes), and multivariate ARIMA 

(ARIMAX) and Nonlinear autoregressive with exogenous inputs (NARX) neural network 

models are used. The forecasting performance of each model will be compared and the best 

predictive model will be selected. Last but not least, the performance over time will be evaluated 

for the selected model. The methodology process flow chart is shown in Figure 3.1. 
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Figure 3.1 Methodology flowchart 

 

Source: Author. 

 

3.1.1 Artificial Neural Network (ANN) 

Artificial Neural Networks (ANN) are powerful non-parametric tools used in many 

applications, including pattern recognition, interpolation and time series forecasting. One of the 

main advantage of ANN over other econometric models is its ability to find complex and 

nonlinear associations between the parameters of the model without a priori assumption of the 

nature of the relationship (Zou, Xia, Yang, & Wang, 2007). Specifically, it is not necessary to 

assume a functional relationship between the variables. However, appropriate input variables 

need to be selected to make a sound estimate. Traditional time series models, such as ARIMA, 

are based on linear assumptions, which may not be suitable to model complex nonlinear 

Performance	
evaluation

Performance	
evaluation
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relationships. Furthermore, strict hypotheses need to be made regarding the error terms for 

statistical models, however, ANN parameters are extremely adaptable. Almost no specification is 

needed for error distributions even for complex ANN models. Moreover, the problem of 

multicollinearity (the high correlation between independent variables) often found in statistical 

models is less a concern for ANN models. ANN models do not need the assumption of no 

correlation between independent variables (Karlaftis & Vlahogianni, 2011). Another advantage 

of an ANN model is that it has higher tolerance for errors in the data compared to other models. 

ANN model is quite robust to noise in the training data. 

Each neural network consists of several layers. The first layer is the input layer, which is a 

group of input variables, 𝑥) , 𝑖 = 1,… , 𝑘. The last layer is the output layer, with a group of 

output variables, 𝑦) , 𝑖 = 1,… , 𝑘. The layers in between are called hidden layers. The number of 

hidden layers in a network can be zero, one, or more. In a network, neurons are connected 

between the layers, where the connection is activated when reaching a threshold. Such threshold 

is decided by the transfer function based on input parameters. Weights and bias are assigned for 

all the connections. Each neuron has three components: inputs, an activation function and 

outputs. In a neuron, the following calculation takes place: 

𝑦 = 𝑓(𝑏4 + 𝜔)𝑥)
)

) 

where 𝑦 is the output, 𝑥 is the input, 𝜔 is the weight vector, 𝑏4 is the bias and 𝑓(𝑏4, 𝜔, 𝑥) is the 

activation function, which performs a transformation on the results calculated. 

Each layer can have different numbers of neurons. The number of neurons for the input and 

output layers equal to the number of independent and dependent variables respectively. The input 

and output variables can be continuous, discrete, or a combination of the two (Kristjanpoller & 

Minutolo, 2015). A typical network diagram is shown in Figure 3.2. 
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A neural network modelling consists of two steps. The first step is the training of the 

network. The second step involves testing the forecasting performance of the network by 

minimizing the sum of squared difference between the output result and the dependent variable, 

also called the target. There are several learning algorithms available for testing the network. 

Among them, back-propagation has been the most popular and most widely implemented 

algorithm. This is an algorithm for supervised learning and utilizes gradient descent to minimize 

the quadratic error. Specifically, the algorithm begins with the output layer and propagates 

backwards using gradient rules to update the deviations and weights through multiple iterations, 

see Rumelhart, Hinton, & Williams (1986) for more details. 

One important task for the neural network is to define the input variables, choose an 

appropriate number of hidden layers and number of neurons in each layer. Increasing the number 

of layers strengthen the model’s ability to remember, but increases the computational time and 

the danger of overfitting, which may result in poor out-of-sample forecasting performance. On 

the other hand, reducing the number of layers decreases the time to learn, but may weaken the 

network’s ability to generalize (Zou et al., 2007). In practice, one or two hidden layers are widely 

used and have proven to perform well. With small dataset in this thesis, the number of hidden 

layers is set to one. 

There are no consistent formulas to select the optimal number of hidden neurons. Often, the 

number of hidden neurons are selected based on experiments. However, several rules of thumb 

have been developed to aid the selection process and they vary across different researchers. 

Bailey & Thompson (1990) suggests that the number of neurons in the hidden layer for a three-

layer neural network should be around 70% of the number of input neurons. Ersoy & Hong 

(1990) recommended to double the number of hidden neurons until the network’s performance 
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deteriorates for the testing data. In this study, with same dataset, the number of hidden nodes is 

selected based on experiments. 

Figure 3.2 An ANN network diagram 

 
Source: Author. 

3.1.1.1 Nonlinear autoregressive (NAR) and Nonlinear autoregressive with exogenous 

inputs (NARX) models 

In this thesis, we adopt the Nonlinear autoregressive (NAR) and nonlinear autoregressive 

with exogenous inputs (NARX) models as our neural network designs. NAR and NARX models 

are capable of modelling complex, dynamic and nonlinear real-word time series data, thus 

providing a powerful tool for time series analysis and predictions (Gao & Er, 2005).  

In the neural network setup, NAR and NARX models have recurrent neural architectures 

(Chen, Billings, & Grant, 1990). However, unlike other recurrent neural models, feedback 

structures for NARX models are limited only from the output neuron, instead of from hidden 

states. The NAR model is constructed to predict the value of an observation 𝑦) based on the past 

observations of 𝑦, the function can be expressed as: 

𝑦 𝑡 + 1 = 𝑓 𝑦 𝑡 , … 𝑦 𝑡 − 𝑑: + 1  
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where 𝑦(𝑡) represents output of network at discrete time 𝑡 . 𝑑: ≥ 1 is the memory delay. 𝑑: 

defines how far back past values will be included in the model. 

The NARX model builds upon NAR model and further incorporates past values of 

exogenous variable 𝑢. According to Lin et al. (1996), the function is defined as  

𝑦 𝑡 + 1 = 𝑓 𝑦 𝑡 , … 𝑦 𝑡 − 𝑑: + 1 ; 𝑢 𝑡 , 𝑢 𝑡 − 1 ,…𝑢 𝑡 − 𝑑> + 1 , 

where 𝑢(𝑡) and 𝑦(𝑡) represent input and output of network at discrete time 𝑡. 𝑑> ≥ 1, 𝑑: ≥ 1 

and 𝑑> ≤ 𝑑: are memory delays. 

The formula can be further written in vector form as 

𝑦 𝑡 + 1 = 𝑓 𝒚 𝑡 ; 𝒖 𝑡  

where 𝒚 𝑡  and 𝒖 𝑡  are vectors representing the output and input regressors. The nonlinear 

mapping 𝑓(∙) can be approximated by a standard multilayer perceptron (MLP) network with 

back-propagation algorithm. A multilayer perceptron (MLP) is a class of artificial neural 

network described in Section 3.1.1. Then, the resulting connected architecture is called NARX 

network. It is a powerful class of dynamic models. The model is computationally as strong as 

fully connected recurrent networks, and also Turing machines (Siegelmann, Horne, & Giles, 

1997). A typical structure of a two-hidden-layer NARX network is shown in Figure 3.3. The 

weights and bias values in the training network are updated following Levenberg-Marquardt 

optimization. During training, the real values of 𝑦 𝑡  are used as the input for the feed forward 

network, instead of the estimated ones. 

In this study, we specify the number of hidden layers to be one. It is noted one hidden layer 

is usually sufficient for small sample sizes. The number of neurons 𝑁ℎ in the hidden layer are 

chosen based on the lowest mean squared error (MSE) for the validation set. 
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Figure 3.3 NARX network with 𝐷> delayed inputs and 𝐷: delayed outputs 

 
Source: Andalib & Atry (2009). 
 

3.1.1.2 Process to build an ANN 

A proper process has to be followed to build an ANN model. This study follows the 

procedures as listed out in Figure 3.4, which include data collection, variable selection, data pre-

processing, data partitioning, neural network design, training and testing ANN, and performance 

evaluation. The detailed descriptions on each step are provided below. 

Figure 3.4 ANN model process flow 

 
Source: Author. 
 

1) Data collection 

Our data consists of the daily contract and spot cost per lane (CPL) and volume for each 

individual lane from origin city to destination city across the US. Since there are 

enormous transportation lanes based on city pairs, we introduce the regional corridor 
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concept. The regional corridor is defined by the two-digit zip code, plus the cardinal 

direction (East, West, South, North and Central). The entire US geography is divided into 

92 regions. The forecast is thus performed on a region to region basis. The original CPL 

data is then transformed to cost per mile (CPM) by using CPL divided by distance from 

the origin city to the destination city. The average daily CPM from one origin region to 

destination region is calculated by taking the average of all CPM values from cities in the 

origin region to cities in the destination region. Therefore, the final dataset used for 

forecasting models are daily contract and spot CPM, as well as total volumes for each 

individual lane from the origin region to the destination region from 1 Apr 2016 to 31 

Mar 2017 (a total of 365 spot and contract observations each). 

The detailed description on the dataset is provided in section 3.2. 

2) Variable selection 

The primary rule for variable selection is that input variables shall be as predictive as 

possible. To select the appropriate variables and the number of delays (lags), the 

autocorrelation coefficient of output variables and the cross-correlation coefficient of 

input and output variables are calculated. 

Suppose 𝑌 is a stochastic process and 𝑌F  is the value produced by a given run of the 

process at time 𝑡. The process has mean 𝑢F and variance 𝜎FH at time 𝑡, for each 𝑡. The 

definition of autocorrelation between times 𝑠 and 𝑡 is defined as: 

𝜌 𝑠, 𝑡 =
𝐸 𝑌F − 𝑢F 𝑌L − 𝑢L

𝜎F𝜎L
 

where 𝐸[] indicates the expected value. 
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The term cross-correlation is used to define the correlation between two random variables 

𝑋 and 𝑌 at different time periods. Let 𝑋 and 𝑌 be two wide-sense stationary process, the 

cross-correlation is given by: 

𝜌PQ 𝜏 =
𝐸 𝑋F − 𝑢P 𝑌FST − 𝑢Q

𝜎P𝜎Q
 

where 𝑢P and 𝑢Q are the means for 𝑋 and 𝑌, while 𝜎P and 𝜎Q are the standard deviations. 

𝜏 is the time difference. 

In this study, the number of delays for the neural network and time series models are 

selected based on autocorrelation and cross-correlation values.  

3) Data pre-processing 

Analysis has shown that pre-processing data can influence the performance of prediction 

models (Zhang, 2003). The input and target values are normalized to keep them within 

the interval [-1,1]. This help to simplify the problem of potential outliers for the network. 

The following equation is used to normalize the data: 

𝑥)UV	XY	V =
𝑥) − (𝑥Z[\ + 𝑥Z)])/2
(𝑥Z[\ − 𝑥Z)])/2

 

4) Data Partitioning 

The data is split into training, validation and testing data. The training set is used to train 

the model and the validation set is used to select the optimal number of hidden neurons 

and epoch times to avoid over-fitting. The test set is used to evaluate the forecasting 

performance on unseen data. The split ratio between training, validation and testing data 

is 70:15:15 based on time sequence. 

5) Neural Network design 

The neural network uses NAR and NARX architecture as described in section 3.1.1.1. 
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6) Training and testing ANN 

In the training stage, we use the series-parallel (SP) configuration (Menezes & Barreto, 

2008), where the output regressor is formed by the actual values of the network’s output.  

𝑦 𝑡 + 1 = 𝑓 𝒚𝒔𝒑 𝑡 ; 𝒖 𝑡 , 

= 𝑓 𝑦 𝑡 , …𝑦 𝑡 − 𝑑: + 1 ; 𝑢 𝑡 , 𝑢 𝑡 − 1 ,…𝑢 𝑡 − 𝑑> + 1 , 

In this model, no estimated values are fed back to the input layer. The forecast (𝑦 𝑡 + 1 ) 

is made using past values of actual outputs (𝑦 𝑡 , … 𝑦 𝑡 − 𝑑: + 1 ) and exogenous 

variables (𝑢 𝑡 , 𝑢 𝑡 − 1 ,…𝑢 𝑡 − 𝑑> + 1 ). 𝑑:  and 𝑑>  are feedback and input delays, 

which specify how many periods back of observations shall be included in the model. 

There are some advantages to use true outputs instead of feeding back the estimated ones. 

Firstly, it provides more accurate training models. Secondly, it will result in a purely 

feedforward network structure. This leads to less computational effort, as static 

backpropagation can be then adopted for training. 

In the testing stage, as the series-parallel network can only predict one-step-ahead, the 

system is changed to parallel (P) mode to allow for multi-step ahead forecasts. The 

predicted outputs in this network are fed back to the input of the feedforward neural 

network: 

𝑦 𝑡 + 1 = 𝑓 𝒚𝒑 𝑡 ; 𝒖 𝑡 , 

= 𝑓 𝑦 𝑡 , …𝑦 𝑡 − 𝑑: + 1 ; 𝑢 𝑡 , 𝑢 𝑡 − 1 ,…𝑢 𝑡 − 𝑑> + 1  

Where 𝑦() is the estimated values. The forecast (𝑦 𝑡 + 1 ) is calculated by using past 

values of predicted outputs ( 𝑦 𝑡 , … 𝑦 𝑡 − 𝑑: + 1 ) and exogenous variables 

(𝑢 𝑡 , 𝑢 𝑡 − 1 ,…𝑢 𝑡 − 𝑑> + 1 ). The network could continue to predict using internal 
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feedbacks, even when external feedbacks are missing. It can make as many predictions as 

the time steps of the input series. 

With different initial weights and bias, the model could yield different results even with 

same inputs and neural network structures. This is because gradient decent always finds 

local optimal, thus, with different initial starting points, the local optimal point will be 

different. To stabilize the results, each model is run 10 times and the average of the 

estimated outputs are taken. 

7) Performance evaluation 

The model is evaluated in multi-step-ahead prediction tasks. The metric used to evaluate 

performance is the mean squared error (MSE). After the best model is selected with 

lowest MSE, rolling-window forecasts are performed to test the network performance 

over time. Specifically, we perform daily and weekly updates of the training set when 

new information comes in and re-evaluate the model performance on the testing set. The 

hypothesis is that with new information, the forecasting accuracy will increase. In other 

words, closer forecasts should perform better than distant forecasts. 

Daily update: 338-344 observations (7 days) are held out for testing. Models are trained 

with different training and validation sets in each round, namely: 1 to 331 observations 

for the first round, 2 to 332 observations for the second round, until 7:337 observations 

for the seventh round. The spilt ratio between training and validation sets is 70:15. The 

process is shown in Figure 3.5.  
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Figure 3.5 Daily rolling window model updates 

 

Weekly update: Instead of daily rolling window update, the model is updated every 

week with weekly new information coming in. Specifically, 338-365 observations (4 

weeks) are held out for testing. The training sets included in each round are 1:295 

observations for the first round, 8:302 observations for the second round, until 42:337 

observations for the seventh round. It is noted that the number of observations used for 

each training model is the same. 

3.1.2 ARIMA and ARIMAX models 

Autoregressive integrated moving average (ARIMA) model, proposed by Box & Jenkins 

(1970), is a common and popular tool to model time series. The model has the capability to 

capture the series dependence, and is relatively simple in applications. The model uses past 

values of a univariate time series to analyse the trend and forecast future cycles. An ARIMA 

model in most cases can be described by an Autoregressive Moving Average (ARMA) model 

with the integrated term set to zero. An ARMA(𝑝, 𝑞) process for a stationary series 𝑌F can be 

defined as: 

𝑌F = 𝜙4 + 𝜙e𝑌Ffe + ⋯+ 𝜙h𝑌Ffh + 𝑎F + 𝜃e𝑎Ffe + ⋯+ 𝜃k𝑎Ffk 
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where 𝑎F is a white noise. It can also be written as 

𝜙 𝐵 ∙ 𝑌F = 𝜃(𝐵) ∙ 𝑎F 

where 𝐵 is a lag operator and 𝑌Ffe = 𝐵𝑌F . The lag operator performs on one point of a time 

series to produce the previous point. The lag operator can be raised to powers. The polynomials 

can also be formed. The autoregressive polynomial and moving average polynomial can be 

represented by 𝜙(𝐵) and 𝜃(𝐵) respectively. 

𝜙 𝐵 = 𝜙4 + 𝜙e𝐵 + 𝜙H𝐵H + ⋯+ 𝜙h𝐵h 

𝜃 𝐵 = 𝜃e𝐵 + 𝜃H𝐵H + ⋯+ 𝜃k𝐵k 

The above equations are only valid under the condition of a stationary process. A stationary 

process is a stochastic process whose unconditional joint probability distribution remains the 

same in different times. If a series is not stationary, operator (1 − 𝐵) can be applied 𝑑 times to 

make the series stationary. An general ARIMA (𝑝, 𝑑, 𝑞) model is derived as follows: 

(1 − 𝐵)m𝜙 𝐵 ∙ 𝑌F = 𝜃 𝐵 ∙ 𝑎F 

where 𝑑 is the difference times. 

In many cases, including leading indicators could improve the model performance. This 

leads to the introduction of ARIMAX model. The ARIMAX model is an extension of ARIMA 

model, and is often known as a dynamic regression model. The explanatory variables can be 

inserted into the univariate model to derive the multivariate ARIMAX model. 

In the general case of more than one independent variable, an ARIMAX model can be 

written as: 

(1 − 𝐵)m𝜙 𝐵 ∙ 𝑌F = 𝜃 𝐵 ∙ 𝑎F + 𝛽Ff)
e 𝑋Ff)

e
oV

)pe

+ 𝛽Ff)
H 𝑋Ff)

H
oq
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+ ⋯ 
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where (1 − 𝐵)m𝜙 𝐵 ∙ 𝑌F and 𝜃 𝐵 ∙ 𝑎F terms are the same as the original ARIMA model. The 

rest terms are explanatory variables. 𝑋Ff)
r  is the 𝑗 th independent variable at time 𝑡 − 𝑖 and 𝛽Ff)

r  is 

the corresponding parameter. 𝐾r is the order for 𝑋(r). 

3.1.3 Model updates with new information 

Once the model has been selected and trained, one of the important decisions to make is 

when to modify the model when new information comes. In practice, too frequent updates may 

not be necessary when the original model still has sound forecasting performance. However, too 

infrequent updates mean that the model is not learning from the new data, and the new data does 

not make contributions to future forecasting, leading to a waste of information. Therefore, it is 

critical to decide the best time to update the original model. Furthermore, when updating the 

model, it is also important to decide how much information is needed to train the new model. In 

this thesis, different scenarios are tested, which include different update times and different 

information sizes for model updating. All tests are performed on the test set, which includes 

unseen information. Figure 3.6 indicates different scenarios for model updating. 

In the first scenario, no model update is performed. When the new information comes, it is 

fed directly into the model to provide next 7 days’ forecast. For example, data for days 313:319 

is fed into the model as input, and forecast is given for days 320 to 326. In the next period (one 

week), again data for days 320 to 326 is fed into the model as input, and forecasts for days 327 to 

333 are provided. In the second scenario, model is updated every week using a rolling window 

for data. For example, with new information of days 313 to 319, the model is trained using 

periods 8 to 319 as training and validation sets (ratio: 70:15). Periods 1 to 7 are considered as 

oldest information and can be discarded when updating a new model. In the last scenario, unlike 

scenario 2, all the previous information and new information (periods 1 to 319) are used to train 
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the new model. Different models are tested for the next 7 periods (one week considered as one 

period) and MSEs for different models at each period are compared. The models for each period 

ahead are run 10 times to stabilize the results. 

Figure 3.6 Scenarios for model updating 

 
Source: Author. 

To measure the performance of models with updating and without updating, the MSE 

reduction rate is used. The MSE reduction rate is defined as (MSE original model- MSE updated 

model)/MSE original model*100%. The error for the updated model is calculated by taking the 

difference between the averaged outputs from 10 runs and the targets. 

3.2 Data 

The initial dataset consists of the US nationwide weekly long-haul Truckload data, including 

origin region, destination region, year, week, model type (LHDV for long-haul dry van and 

LHTC for long-haul temperature controlled), rate type (contract or spot), volume, average cost 
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per load (CPL) and average distance during the period of week 40, 2012 to week 9, 2017. The 

volume is the sum of volume hauled over the week, and average CPL is the averaged CPL for all 

shipments on a specific lane over a week. This dataset is used to analyse trends in volumes and 

rates over the years, as well as geographical allocations of volumes over the States. 

After performing aggregate data analysis on the initial dataset, we further extract the daily 

contract and spot cost per mile (CPM), and volume information for each origin region to 

destination region over a one-year period (1 Apr 2016 to 31 Mar 2017) as stated in Section 

3.1.1.2. Such dataset is used to build the forecasting model. Specifically, contract and spot dry 

van rates on one region to region corridor (Georgia Central (GA_C) to Florida Central (FL_C)) 

are used as an empirical example for forecasting. 

3.2.1 LHDV and LHTC aggregate weekly data analysis 

In this section, volume and rate developments for LHDV and LHTC are analysed on a 

national basis. This helps to provide an overview of the entire US trucking industry and its trends 

over the years. 

3.2.1.1 LHDV and LHTC volume analysis 

Dry vans on average haul more freight compared to temperature controlled trucks. 

Furthermore, more than 90% of the volume are hauled on contract basis for both dry van and 

reefer. Table 3.1 below summaries the contract volume and spot volume for LHDV and LHTC, 

as well as the year-on-year growth rate. As can be seen from the table, the average yearly volume 

for LHDV is around 4 times of LHTC. Within each sector, most volumes are hauled on contract 

basis, and only a small percentage is sourced on the spot market. The percentage of spot volume 

over total volume ranges from 2.7% to 5.83% for LHDV, and 1.24% to 4.26% for LHTC over 
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2013-2016. The surge in spot volume for both LHDV and LHTC in 2014 can be attributed to 

several factors, ranging from disruptive winter weather, to improved US economic conditions, 

coupled with seasonal freight influxes. Consequently, shippers tended to rely more on third party 

logistics providers (3PL) and brokers to meet their growing freight demand during that period. 

Table 3.1 Contract and spot volume for LHDV/LHTC over 2013 to 2016 
 LHDV LHTC  

Year 
Contract 
Volume 

yoy Spot 
volume 

yoy % 
Spot 

Contract 
Volume 

yoy Spot 
volume 

yoy % 
Spot 

2013 4,469,154  123,878  2.70% 1,418,138  17,849  1.24% 
2014 5,091,637 14% 315,353 155% 5.83% 1,480,049 4% 65,873 269% 4.26% 
2015 6,811,733 34% 333,287 6% 4.66% 1,588,537 7% 53,626 -19% 3.27% 
2016 7,606,387 12% 321,866 -3% 4.06% 1,873,386 18% 67,293 25% 3.47% 

Yearly 
Avg 

5,994,728  273,596   1,590,028  51,160   

Note: spot data is self-reported by each company. 

3.2.1.2 Volume analysis for origin and destination regions 

Geographically speaking, Northeast, Southeast and west coasts have high inflows and 

outflows, which is in line with state population distribution. Figure 3.7 and Figure 3.8 show the 

volume distribution by origin region and destination region. The size of the pie indicates the total 

volume in that region. 

Figure 3.7 Total TL volume by origin region (week 40, 2012 to week 9, 2017) 

 
Source: Author. 
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Figure 3.8 Total TL volume by destination region (week 40, 2012 to week 9, 2017) 

 
Source: Author. 

The origin regions and destination regions with top ten average weekly volume for LHDV 

and LHTC over the entire data period are reported in Table 3.2. The volumes in each region are 

not evenly distributed as shown in Table 3.3. For LHDV, the average weekly volume in or out 

from a region ranges from 30 to 5,187, with a mean of 1299, while for LHTC, the weekly 

volume spans from around zero to 1825, with mean being 345. For LHDV, Georgia (GA), Texas 

(TX), Illinois (IL), Indiana (IN) and North Carolina (NC) are high volume nodes. Florida (FL), 

Georgia (GA), Pennsylvania (PA), Indiana (IN) and Texas (TX) are nodes with high volumes for 

LHTC. 

Table 3.2 Origin and destination with top ten average weekly volume for LHDV and LHTC 
LHDV LHTC 

Origin 
Region 

Avg. 
Weekly 
Volume 

Destination 
Region 

Avg. 
Weekly 
Volume 

Origin Region Avg. 
Weekly 
Volume 

Dest Region Avg. 
Weekly 
Volume 

USA_GA_C 5,187 USA_IN_C 4,893 USA_FL_C 1807 USA_FL_C 1416 
USA_TX_C 4,920 USA_GA_C 4,606 USA_IL_CHI 1450 USA_GA_C 1257 
USA_IL_CHI 4,560 USA_TX_C 4,451 USA_IN_C 1288 USA_TX_C 1207 
USA_IN_C 4,521 USA_IL_CHI 4,370 USA_PA_S 1140 USA_CA_LA 1120 
USA_NC_C 4,442 USA_NC_C 4,285 USA_GA_C 1123 USA_PA_S 1104 
USA_PA_S 3,961 USA_NJ_C 4,103 USA_TX_C 1099 USA_IL_CHI 1051 
USA_OH_C 3,818 USA_FL_C 3,946 USA_WI_S 1045 USA_IN_C 1046 
USA_SC_C 3,535 USA_PA_S 3,754 USA_PA_SW 897 USA_NC_C 1018 
USA_NJ_C 3,254 USA_OH_C 3,565 USA_NE_E 828 USA_NJ_C 987 
USA_CA_LA 3,118 USA_AZ_C 2,661 USA_NC_C 818 USA_WI_S 890 
Note: Regions are shown as US state abbreviation. Detailed geographical locations of regions are 

provided in Appendix A. 
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Table 3.3 Descriptive statistics for origin and destination weekly volume for LHDV and LHTC 
for different origin and destination regions 

 LHDV LHTC 
Descriptive 
statistics 

Origin 
Volume 

Destination 
Volume 

Origin 
Volume 

Destination 
Volume 

Mean 1,299.22 1,299.22 345.52 345.52 
Median 735.48 939.94 203.52 212.51 
Standard Deviation 1,278.66 1,192.22 369.59 344.48 
Kurtosis 1.06 1.43 2.73 0.92 
Skewness 1.33 1.43 1.60 1.31 
Range 5,156.86 4,805.17 1,825.85 1,423.15 
Minimum 30.09 87.94 0.05 3.40 
Maximum 5,186.94 4,893.10 1,825.89 1,426.55 

 

3.2.1.3 Lane specific volume analysis 

The US trucking system is a complex network, with freight flowing over thousands of lanes 

across the country. A total of 8023 and 6366 lanes are active during the data period for dry van 

and reefer respectively. The contract and spot high volume lanes for both LHDV and LHTC are 

plotted in the maps below (Figure 3.9). The color of the line between regions represents the total 

volume hauled on a specific lane over the entire data period. The darker the blue line, the higher 

the volume is. The map coloring indicates the state population. As can be seen from the graphs, 

volume flows follow state population levels. Higher volume flows between regions with larger 

populations. Another observation is that for high volume lanes, the average distance for LHDV is 

shorter than that for LHTC. This implies that dry van tends to move high volume freight between 

adjacent regions.  
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Figure 3.9 Maps for high volume lanes 

a) LHDV contract high volume links and 2016 US population (Total volume > 15,000) 

 
 

b) LHDV spot high volume links (volume > 600)

 
c) LHTC contract high volume links (volume > 4,000) 

 

2018	Population

587,000	to	1,340,000

1,340,000	to	3,130,000

3,130,000	to	5,670,000

5,670,000	to	8,970,000

8,970,000	to	39,700,000

10,217 54,443

Total	Volume

2016	Population

587,000	to	1,340,000

1,340,000	to	3,130,000

3,130,000	to	5,670,000

5,670,000	to	8,970,000

8,970,000	to	39,700,000

602 2,333

Total	Volume

2016	Population

587,000	to	1,340,000

1,340,000	to	3,130,000

3,130,000	to	5,670,000

5,670,000	to	8,970,000

8,970,000	to	39,700,000

3,023 14,502

Total	Volume
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d) LHTC spot high volume links (volume > 150) 

 

Note: map coloring shows 2016 population by state. The color of the line shows the volume on the link. 

The darker the blue line means more volume. 
Source: Author. 

 

Table 3.4 and Table 3.5 show top ten volume links for LHDV and LHDC respectively. The 

highest links for LHDV are from Vermont North (VT_N) to New Jersey Central (NJ_C), 

Georgia Central (GA_C) to Florida Central (FL_C) and California Los Angeles (CA_LA) to 

Arizona Central (AZ_C). For LHTC, the highest volume links are GA_C to FL_C, Pennsylvania 

South (PA_S) to Missouri Central (MO_C).  

The regional corridor - GA_C to FL_C appears in the top 2 lists both for LHDV and LHTC, 

indicating the important role this link plays in the US trucking network. Thus, in the following 

sections, rates on this link are used as the forecasting data. 
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Table 3.4 Top average weekly volume links for LHDV 
 
 

 

 

 

 

 

Table 3.5 Top average weekly volume links for LHTC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.2.1.4 LHDV and LHTC rate analysis 

As mentioned in Section 2, a contract rate is a rate quote issued to a shipper that is supposed 

to hold static for a period of time, normally a year. In reality, contract rates could also be 

adjusted or renegotiated. However, contract rates are far less volatile compared to spot rates.  

OD Pair 
Average weekly 
volume 

Average weekly 
contract volume 

Average weekly 
spot volume 

USA_VT_N|USA_NJ_C 1071 1043 28 
USA_GA_C|USA_FL_C 1042 1012 30 
USA_CA_LA|USA_AZ_C 734 709 25 
USA_CA_S3|USA_AZ_C 629 620 9 
USA_TX_C|USA_TX_SE 588 572 17 
USA_FL_C|USA_GA_C 570 556 14 
USA_CA_LA|USA_CA_N1 546 530 16 
USA_GA_C|USA_NC_C 531 516 15 
USA_FL_C|USA_FL_S 469 458 10 
USA_OH_C|USA_IL_CHI 457 427 30 

OD Pair 
Average weekly 
volume 

Average weekly 
contract volume 

Average weekly 
spot volume 

USA_GA_C|USA_FL_C 279 273 5 
USA_PA_S|USA_MO_C 207 206 1 
USA_GA_C|USA_NC_C 187 184 4 
USA_CA_LA|USA_CA_N1 175 172 3 
USA_CA_LA|USA_AZ_C 130 125 5 
USA_IN_C|USA_GA_C 129 125 4 
USA_FL_C|USA_GA_C 129 127 2 
USA_PA_SW|USA_NJ_C 126 119 6 
USA_UT_N|USA_CA_LA 111 109 2 
USA_TX_C|USA_TX_SE 103 100 3 
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The TL spot market is an extremely dynamic place where rates respond quickly to both the 

demand for transportation services and the truckload capacity availability to move the freight. 

Spot market rates vary in different seasons, and carriers normally obtain high rates during 

periods of peak demand. Spot rates normally fluctuate around contract rates. A shipper can adopt 

a mix of contract or spot rates when designing their freight transportation, based on the market 

conditions. For example, if the economic condition deteriorates, and truck capacity seems to be 

abundant, rates are expected to be falling. In this case, shippers can make use of spot quotes to 

save transportation costs. On the other hand, if all factors indicate a rising rate, shippers would 

rather lock in contract rates as a hedge against rate increase. This will also help shippers capture 

the increasingly scarce capacity with raising rates. From the carriers’ perspective, they can also 

take advantages of spot market rate movements by positioning trucks into regions where rates are 

expected to increase.  

The weekly freight movement information is collected for high volume lanes and plotted in 

Figure 3.10. The high volatility in spot rates is further evidenced by the graphs. It is also noted 

that 2014 was a strong year for the spot market, where spot rates stay above contract rates for all 

lanes shown in the figure. For the rest times, spot rates fluctuate around contract rates. The 

descriptive statistics for CPL development for the selective lanes are shown in Table 3.6. As can 

be seen from the data, the standard deviation ratio for spot over contract rates ranges from 2.9x 

to 5.4x for dry van, and 5.5x to 7.0x for reefer, indicating much higher variance in the spot 

market. Another observation is that the mean value for spot rates are higher than that for contract 

rates for all three lanes for both dry van and reefer, indicating generally higher transportation 

costs in the spot market. 
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Figure 3.10 Weekly CPL development for selected dry van lanes 

a) Dry van VT_N to NJ_C 

 
b) Dry van GA_C to FL_C 

 
c) Dry van CA_LA to AZ_C 
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d) TC GA_C to FL_C 

 
e) TC GA_C to NC_C 

 
f) TC CA_LA to AZ_C 

 
Note: C stands for contract rate and S stands for spot rates for the rate type label.  
Source: Author. 
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Table 3.6 Descriptive statistics for CPL rates on selective lanes 

   Mean SD Kurtosis Skewness Minimum Maximum Count 

LHDV 

VT_N|NJ_C 
C 885.48 56.66 -0.91 -0.07 775.41 1031.47 234 
S 1178.60 304.13 -0.55 -0.47 496.98 1845.73 192 

GA_C|FL_C 
C 1095.52 45.03 -1.39 -0.32 1003.98 1171.49 235 
S 1216.27 159.45 3.37 1.30 939.13 2059.91 234 

CA_LA|AZ_C 
C 973.64 52.87 -1.42 -0.38 876.56 1075.04 235 
S 1056.12 152.14 0.73 0.65 751.58 1605.01 235 

LHTC 

GA_C|FL_C 
C 1222.81 63.21 -0.40 -0.06 1074.93 1388.10 235 
S 1378.77 348.20 1.11 0.31 378.02 2572.90 212 

GA_C|NC_C 
C 930.85 51.77 0.23 -0.57 715.96 1078.54 235 
S 1182.51 360.58 0.94 0.89 523.56 2571.84 160 

CA_LA|AZ_C 
C 1023.44 51.71 -1.16 -0.40 913.40 1132.46 235 
S 1140.43 340.42 1.18 0.11 273.45 2450.25 186 

Note: C stands for contract and S stands for spot. 

3.2.2 Daily disaggregated dry van rate analysis 

In this study, forecasting is performed for the daily GA_C to FL_C dry van contract and spot 

rates. This section examines closely the daily rate development for GA_C to FL_C, as well as 

relevant variables that would affect daily rates, such as volumes and rates on adjacent routes. 

The dataset contains daily contract and spot rates per route, rate type (contract/spot), the 

origin/destination cities in GA_C and origin/destination cities in FL_C during 1 Apr 2016 to 31 

Mar 2017. In other words, the data includes every link in and out from GA_C and FL_C. 

Specifically for GA_C to FL_C, 717 links are active with origin city in the region GA_C and 

destination city in the region FL_C, where 85 cities act as origins and 132 cities act as 

destination. Figure 3.11 indicates the different origin cities in GA_C and destination cities in 

FL_C. The numerous number of links makes forecasting each city to city link almost impossible. 

Therefore, we convert the cost per lane (CPL) to cost per mile (CPM) for all the links to make 

the cost comparable, controlling the distance effect. Then, city to city daily rates are aggregated 

to region to region level. Forecasting is performed on regional corridor basis. 
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Figure 3.11 Origin cities in GA_C and destination cities in FL_C 

 
Source: Author. 

3.2.2.1 Target and input variables for forecasting model 

3.2.2.1.1 GA_C to FL_C daily spot and contract rates 

As stated above, GA_C to FL_C daily spot and contract rates are the targets to forecast in 

this study. Figure 3.12 plots the spot and contract rates for this route. Contract rates are very 

stable, while spot rates are more volatile and fluctuates around contract rates. 

Figure 3.12 GA_C|FL_C daily spot vs contract CPM 

 
Source: Author. 

3.2.2.1.2 Input decision variables 

Using the past knowledge of the trucking industry, a few variables are identified as the 

potential candidates to be included in the forecasting model, which includes 
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1) The past values of contract/spot rates to account for autocorrelation of the time series; 

2) The past values of spot rates for contract rates forecasting and vice versa, to account for 

interactions between spot and contract rates; 

3) The past values of contract/spot rates on adjacent routes to account for the interaction of 

rates between adjacent routes, and regional supply/demand dynamics.  

Specifically, in this case, all routes with origin GA_C are selected and then the routes 

adjacent to GA_C to FL_C are chosen as candidates. Here, routes from GA_C to FL_N 

(Florida north), FL_S (Florida south) and SC_C (South Carolina south) are selected as 

potential candidates. 

3.2.2.1.3 Descriptive data analysis 

Before model building, the descriptive statistics analysis for the dataset has been performed. 

On many days, there is no spot volume moved on a lane, so there is missing data for spot rates. 

The number of missing data for the different routes are calculated. If the number of missing data 

is less than 10% of the entire series, the imputation method is used to impute the missing values. 

The imputation method is based on ordinary least square regression. In this case, spot rates are 

regressed on contract rates. The missing values in spot rates will be then replaced by predictive 

values obtained from the regression. If there is too much missing data, the data series is omitted 

from the input variables. The numbers of missing values for spot rates from GA_C to FL_C, 

FL_N, FL_S and SC_C are 26, 320, 127 and 126 respectively. Therefore, the missing values for 

GA_C|FL_C spot rates are imputed, while variables GA_C|FL_N-, GA_C|FL_S- and SC_C-spot 

rates are omitted due to higher number of missing values. Table 3.7 summarizes the descriptive 

statistics for the rest of the series. As can be seen, the range for spot rates on GA_C to FL_C are 

from 0.34 to 5.26, while that for contract rates are from 2.38 to 2.70. Furthermore, the coefficient 
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of variation for spot rates is around 15 times of contract rates. This indicates higher variability in 

spot rates. The mean contract CPM for GA_C|FL_C, GA_C|FL_N, GA_C|FL_S are very similar, 

indicating that same contract rates are often set for these three lanes. On the other hand, mean 

contract CPM on GA_C|SC_C lane is significantly lower than the other lanes. 

One of the prerequisite for ARIMA and ARIMA-X model is that the series need to be 

stationary. The Augmented Dickey-Fuller (ADF) test (with constant and no trend) is performed 

to test the stationarity of the time series. The null hypothesis is that the series has a unit root. 

Thus, a significant p value leads to the rejection of the null hypothesis. The ADF tests for all 

series are significant, indicating that all series are stationary. Thus, the series can be directly used 

for ARIMA and ARIMA-X model building. 

Table 3.7 Descriptive statistics of the decision variables (CPM rates and volume) 

 
Contract 

GA_C|FL_C 
Spot 

GA_C|FL_C 
Contract 

GA_C|FL_N 
Contract 

GA_C|FL_S 
Contract 

GA_C|SC_C Volume 

Mean 2.50 2.70 2.48 2.48 2.05 193.50 
SD 0.04 0.66 0.16 0.06 0.12 61.03 

Coefficient 
of variation 0.017 0.241 0.066 0.025 0.058 0.315 

Min. 2.38 0.34 1.70 2.32 1.56 15.00 
Max. 2.70 5.26 3.05 2.70 2.66 297.00 

Skewness 1.05 1.30 -0.06 0.45 1.64 -0.54 
Kurtosis 2.97 3.94 2.59 0.37 6.71 -0.89 
ADF test 
statistics -5.22** -4.19** -7.01** -4.68** -6.59** -10.3** 

Note: ADF is the unit root test for stationarity. * and ** indicates significance at 5% and 1% 

levels respectively. 

3.2.2.1.4 Variables’ autocorrelation and cross-correlation analysis 

As stated in section 3.1.1.2, one of the important procedures for building ANN is variable 

selection. In order for the future forecast to be robust and valid, it is important to cross-correlate 

the time series for forecasting with the historical independent input time series. Hence, the 
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autocorrelation of contract and spot rates for GA_C to FL_C, and the cross-correlations with the 

other series, are calculated. Figure 3.13 and Figure 3.14 plot the autocorrelation (ACF) and 

partial autocorrelation (PACF) of a time series by lags for contract and spot rates. As can be seen 

from the figures, contract rates seem to have weekly seasonality patterns, where the correlation 

between current values and values of the seventh lag is significantly higher than the other lags. 

However, such effect is less observable for spot rates. Table 3.8 and Table 3.9 show the cross-

correlations between GA_C to FL_C contract rates and other variables, and between GA_C to 

FL_C spot rates and other variables. As can be seen from the table, contract rates are moderately 

correlated with lagged values of volumes, while there seems to be no obvious correlation 

between spot rates and lagged values of volumes. It is also notable that the correlation between 

contract rates and past values of volume (when the lag equals to 6 or 7) is negative. This means 

that if the volume on a day in the previous week is high, the contract rate is likely to be lower on 

the same day this week. Furthermore, among all adjacent routes, GA_C to FL_C contract rates 

seem to be more correlated to the lagged values of contract rates for GA_C to FL_S, especially 

for the seventh lag (correlation = 0.40). The cross-correlation between spot and contract rates are 

modest at best, indicating that there is no obvious lead-lag relationship or information 

transmission between spot and contract rates in a short period (1-14 days). 

Therefore, based on the autocorrelation and cross-correlation analysis, the potential input 

variables are further refined. For contract rate forecasting, the potential variables include the 

lagged values of contract rates, spot rates, contract rates for GA_C to FL_S and volumes. On the 

other hand, the potential variables for spot rates include lagged values of spot rates and contract 

rates. The number of lags/delays included (𝑑: for feedback delays and 𝑑> for input delays) are 

decided both based on the correlation analysis and forecasting performance. 
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Figure 3.13 ACF and PACF plots for GA_C to FL_C contract rates 

         
Source: Author. 

 

Figure 3.14 ACF and PACF plots for GA_C to FL_C spot rates 

         
Source: Author. 
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Table 3.8 Cross-correlations between GA_C to FL_C contract rates (CCPM) and other variables 

Number 
of lags 

[CCPM, 
CCPM] 

[CCPM, 
SCPM] 

[CCPM, 
Contract 
GA_C|FL_N] 

[CCPM, 
Contract 
GA_C|FL_S] 

[CCPM, 
Contract 
GA_C|SC_C] 

[CCPM, 
Volume] 

0 1.00 0.25 0.05 0.50 0.08 -0.41 
1 0.38 0.11 -0.11 0.23 0.12 -0.03 
2 0.22 0.10 -0.05 0.16 0.13 0.23 
3 0.04 0.13 -0.07 0.13 0.03 0.33 
4 0.01 0.17 0.03 0.10 0.16 0.15 
5 0.12 0.19 0.12 0.22 0.08 -0.05 
6 0.21 0.16 0.02 0.26 0.07 -0.32 
7 0.42 0.14 0.05 0.40 0.06 -0.34 
8 0.19 0.10 -0.14 0.16 0.02 0.01 
9 0.16 0.02 -0.04 0.05 0.03 0.20 

10 0.02 0.06 -0.03 0.04 0.02 0.26 
11 0.00 0.03 0.07 0.04 0.09 0.11 
12 0.05 0.06 0.07 0.13 -0.02 -0.08 
13 0.07 0.01 0.03 0.22 0.03 -0.33 
14 0.24 0.02 0.01 0.30 -0.01 -0.32 

 
 
Table 3.9 Cross-correlations between GA_C to FL_C spot rates (SCPM) and other variables 

Number of lags [SCPM, SCPM] [SCPM,CCPM] [SCPM, Volume] 
0 1.00 0.25 -0.18 
1 0.30 0.21 -0.09 
2 0.28 0.23 -0.01 
3 0.30 0.11 0.04 
4 0.23 0.13 0.02 
5 0.27 0.06 0.05 
6 0.26 0.12 -0.08 
7 0.23 0.14 -0.16 
8 0.20 0.11 -0.10 
9 0.19 0.08 -0.03 
10 0.11 -0.01 0.04 
11 0.08 -0.01 0.06 
12 0.11 -0.07 0.04 
13 0.13 0.00 -0.07 
14 0.16 0.02 -0.18 
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3.3 Summary 

This section describes the methodologies for TL rate forecasting and elaborates on the 

dataset used for forecasting. As a short summary, it is found that a majority of TL volumes are 

hauled on contract basis, with less than 10% in the spot market, both for dry van and reefer TLs. 

Furthermore, there are over 8000 active dry-van TL lanes across the states on a regional corridor 

to corridor basis, with volumes unevenly distributed. Rates on a high-volume lane (GA_C to 

FL_C) are used as our forecasting data in this study. Spot CPM rates on this route are much more 

volatile than contract CPM rates. Nevertheless, the autocorrelation of contract and spot rates for 

GA_C to FL_C, and the cross-correlation analysis with other series have been conducted. The 

potential input variables are further refined based on this analysis. In the next section, both 

NAR/NARX and ARIMA/ARIMAX models described above will be applied to GA_C|FL_C 

dataset and the forecasting performance will be evaluated and compared. 
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4 Results and discussions 

In this section, the results of different neural networks and ARIMA models are presented 

and compared. Results show that the NAR model provides better short-term forecasting 

performance for spot rates than the ARIMA model, while the ARIMA model performs slightly 

better for contract rates. However, for a longer-term forecast, the NARX model provides better 

results for contract rates. 

4.1 Artificial Neural Network (ANN) model results 

The following sections present the results for ANN models. Specially, different NAR and 

NARX models are built for spot and contract rate forecasting. For spot rates, the NAR model that 

incorporates 7 feedback delays performs the best, while for contract rates, the NARX model that 

includes contract rates with feedback delay of 7 and spot rates with input delays of 7 is selected 

with the best forecasting performance. Then, the decision regarding when and how to update the 

model with new information has been discussed. Different scenarios including no update, rolling 

window update and cumulative update have been compared. The decision criterion is based on 

MSE reduction rate. For spot rates, training the model with new information does not necessarily 

improve the model’s performance. For contract rates, updating the model every three to four 

weeks is recommended, as from that time, MSE reduces significantly compared to no model 

update scenario. 

Last but not least, the model’s performance over time has been evaluated. Same data set is 

used for forecasting, while different periods of data are used for training. The hypothesis is that if 

training data is closer to the forecasting data, the MSE should be smaller. For example, forecasts 
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made 1 period ahead should be more accurate that forecasts made 7 periods ahead. Such 

hypothesis is sustained for contract rates, however, not that obvious for spot rates. 

4.1.1 ANN model results for spot rates 

As stated in Section 3.2.2.1.4, potential input variables for spot rate forecasting are historical 

values of spot rates and contract rates. Thus, ANN models are built that incorporate past values 

of spot rates (NAR model), as well as past values of spot and contract rates (NARX model). The 

results show that, with feedback delay equals to 7 and number of hidden nodes equals to 4, the 

model has the best predicting performance among all tested models. 

4.1.1.1 NAR model for spot rates 

Based on the autocorrelation analysis, the potential feedback delays (𝑑:) are set in the range 

of 7 to 14. The best model for each 𝑑: is selected based on lowest MSE for the validation dataset. 

The best number of hidden nodes (𝑁u) is selected based on the same criteria. A loop is included 

in the model to test the performance of the model with 𝑁u ranging from 1 to 20. Last but not 

least, 𝑑:  is chosen based on the lowest MSE for validation data, because the validation data 

assesses the model’s performance on unseen data and avoids overfitting issues. 

The results of the model with 𝑑: equals to 7 are presented first. Table 4.1 shows MSEs for 

the validation set for different 𝑁u, using NAR model with 𝑑:(=7), conducted 10 times in order to 

get a stable result. As can be seen, the MSE is smallest when 𝑁u equals to 4. Furthermore, the 

MSE decreases first when the number of nodes increases, but then increases with more nodes 

added that cause more complexities for the model, as shown in Figure 4.1. Therefore, for this 

specific model, 𝑁u  is set to 4. Then, the next important decision to make is when to stop 

iterations. Here, iterations stop when the error for the validation set stops decreasing. Such 
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method can help prevent potential overfitting issues, because the training error will always 

decrease with more iterations.  

Figure 4.2 illustrates the MSEs for training, validation and testing sets. The MSE for the 

validation set is lowest at epoch times = 4. This shall be the point where training stops. Figure 

4.3 plots the one-day ahead forecasts for all data points. 

 

Table 4.1 MSE for the validation set with different numbers of hidden nodes (𝑁ℎ) (𝑑:=7) 

 MSE for the validation set for different numbers of runs 
No of runs  
𝑁u 1 2 3 4 5 6 7 8 9 10 Average 

1 0.595 0.579 0.655 0.580 0.568 0.639 0.640 0.600 0.632 0.507 0.599 
2 0.679 0.442 0.679 0.522 0.647 0.526 0.419 0.496 0.395 0.605 0.541 
3 0.537 0.541 0.514 0.513 0.602 0.520 0.483 0.541 0.589 0.681 0.552 
4 0.524 0.599 0.607 0.591 0.488 0.470 0.502 0.458 0.488 0.528 0.525 
5 0.460 0.552 0.546 0.661 0.537 0.509 0.637 0.463 0.567 0.485 0.542 
6 0.518 0.566 0.574 0.436 0.560 0.882 0.408 0.398 0.763 0.478 0.558 
7 0.583 0.621 0.691 0.552 0.499 0.707 0.645 0.522 0.433 0.527 0.578 
8 0.614 0.536 1.111 0.700 0.480 0.581 0.555 0.533 0.720 0.497 0.633 
9 0.644 0.609 0.536 0.695 0.688 1.087 0.542 0.442 0.508 0.570 0.632 

10 0.840 0.497 0.521 1.331 0.548 0.792 0.489 0.840 0.530 0.733 0.712 
11 0.562 0.672 0.862 0.762 1.105 0.436 0.517 0.441 0.565 0.894 0.682 
12 0.898 0.608 0.529 0.482 0.604 0.564 0.520 0.758 0.910 0.482 0.635 
13 0.468 0.504 0.700 0.946 0.605 0.363 0.795 1.169 0.521 0.622 0.669 
14 0.675 0.575 0.663 0.601 0.907 0.636 0.537 0.517 0.974 0.563 0.665 
15 0.397 0.476 0.972 0.646 0.456 0.594 0.828 0.672 0.453 0.889 0.638 
16 0.496 0.497 0.618 1.299 0.599 0.521 0.552 0.556 0.881 1.115 0.713 
17 0.734 0.796 0.742 0.752 0.522 0.756 0.586 0.451 0.723 0.926 0.699 
18 0.557 0.652 0.535 1.521 0.801 0.455 0.631 0.808 0.566 0.519 0.705 
19 0.892 1.266 0.854 0.848 0.541 0.542 0.498 0.549 0.721 1.229 0.794 
20 0.634 0.836 0.766 1.295 0.624 0.688 0.774 0.893 0.715 1.616 0.884 
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Figure 4.1 MSE for the validation set with different numbers of hidden nodes (𝑁u) (𝑑:=7) 

 
Source: Author. 

 

Figure 4.2 MSE for training, validation and testing sets (𝑑:=7; 𝑁u=4) 

 
Source: Author. 
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Figure 4.3 One day ahead forecasts for spot rates (𝑑:=7; 𝑁u=4) 

 
Source: Author. 

Similar procedures are performed for models with 𝑑: ranging from 7 to 14. The best number 

of hidden nodes for each 𝑑:, the corresponding MSE for the validation set (based on 10 runs) are 

shown in Table 4.2. The MSEs for the validation set is lowest when 𝑑: equals to 7.  The result is 

understandable, as it models the weekly effect. Therefore, the final NAR model for spot rates is 

𝑑:=7 and 𝑁ℎ=4.  

Table 4.2 NAR model results for spot rates with different feedback delays (𝑑:) 

Feedback delays (𝑑:) Hidden nodes (𝑁u) MSE for validation set 
7 4 0.494 
8 2 0.507 
9 5 0.543 
10 2 0.527 
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13 2 0.558 
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4.1.1.2 NARX model for spot rates 

In this section, the historical values of contract rates are included in the model. The feedback 

delay 𝑑: is set to 7, based on the results from NAR model, while the input delay 𝑑> is initially 

set in the range of 1 to 7 based on cross-correlation results between spot rates and past values of 

contract rates. The best number of hidden nodes for each 𝑑> is selected by the lowest MSE for 

the validation set. Then, the best 𝑑> is chosen based on the best forecasting accuracy, represented 

by the lowest MSE for the validation set. As can be seen from Table 4.3, the lowest MSE for the 

validation set is 0.501, when 𝑑> equals to 5 and 𝑁u equals to 3. However, comparing this result 

with NAR model, adding historical values of contract rates as input variables does not improve 

forecasting accuracies.  

In a short summary, the best model selected for forecasting spot rates is NAR model with 

𝑑:=7 and 𝑁u=4. 

Table 4.3 NARX model results for spot rates with different input delays of contract rates (𝑑>) 

Input delays (𝑑>) Hidden nodes (𝑁u) MSE for validation set 
1 6 0.544 
2 5 0.513 
3 4 0.511 
4 2 0.552 
5 3 0.501 
6 2 0.530 
7 2 0.559 

Note: 𝑑:=7. The same model for each 𝑑> and 𝑁u is run 10 times to get stable results. MSEs are 

the average values of 10 runs. 

4.1.1.3 Model updates with new information 

As previously mentioned in Section 3.1.3, once the model has been selected and trained, one 

of the important decisions to make is when and how to update the model when new information 

comes. Figure 4.4 shows MSE reductions by different models for spot rate forecasting. All the 
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models here are using the best model selected for spot rates in the previous section, namely the 

NAR model with 𝑑:=7 and 𝑁u=4. The x-axis of the figure is the time step for update. For 

example, period ahead = 1 means using days 313 to 319 to forecast days 320 to 326 (one week), 

while period ahead =2 represents using days 320 to 326 to forecast days 327 to 333, and so forth. 

As can be seen, updated models do not perform better than the original model in most cases. One 

of the main reasons for the underperformance of updated models could be that the parameters 

trained in the original model may not be stable due to the high level of volatility and noise in the 

original data. Thus, when updating the model with original numbers of hidden nodes and 

feedback delays, the new model may not be the best fitted model. 

Figure 4.4 MSE reductions by updating models with new information for spot rates 

 
Note: 10 runs for each period ahead, 𝑑:=7 and 𝑁u=4. 
Source: Author. 
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daily updates, the MSEs are calculated for days 338 to 344. For weekly updates, the MSEs are 

calculated for days 338 to 365. The x-axis is the data period used for training and validation. 

Different periods of data are used to forecast the same data period. Figure 4.5 and Figure 4.6 plot 

the MSEs with rolling window daily and weekly updates respectively. As can be seen, for daily 

update there is no clear pattern indicating that as the date comes closer to the forecasting period, 

the MSE decreases. On the other hand, such pattern is observed for the weekly update. One 

explanation for such differences is that daily information contains high level of noise, and adding 

new information of a single day or several days does not help improve the model performance. 

On the other hand, weekly new data contains more valuable information. In this case, the MSE 

drops by 11% from 28-day forecasts made 7 weeks before and forecasts made 1 week before. 

Figure 4.5 MSEs with rolling window daily updates for spot rates 

 
Note: 10 runs for each period, 𝑑:=7 and 𝑁u=4. 
Source: Author. 
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Figure 4.6 MSEs with rolling window weekly updates for spot rates 

 
Note: 10 runs for each period, 𝑑:=7 and 𝑁u=4. 
Source: Author. 
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models for contract rate forecasting. Different combinations of input variables are included. As 

can be seen, the model with contract rate delays and volume delays performs best on the 

generalized data (validation set). Adding additional input variables does improve the forecasting 

performance for contract rates. In fact, the model with both contract rate delays and volume 

delays outperforms the model with only contract delays by 20% for the validation set. This can 

be partially due to the fact of tiered rates based on the lane volume. On the other hand, adding 

spot rate delays does not contribute to higher forecasting accuracies. This suggests relatively 

weak information transformations between spot and contract rates in a short period of time 

(weekly). Adding contract rate delays on adjacent routes also helps improve the model 

performance. However, the improvement is not as high as the model with the input variable- 

volumes. The reason why the model with both volume- and GA_C|FL_S contract rate-delays 

does not outperform the model with only volume delays, could be that volumes and GA_C|FL_S 

contract rates together contain redundant information.  

Therefore, the final model for contract rates is the model with volumes and contract rates as 

input variables, 𝑑>=7, 𝑑:=7 and 𝑁ℎ=2. Figure 4.7 shows the one day ahead forecasts for contract 

rates using the final model. 
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Table 4.4 NARX model results for contract rates 

Input variables Input delay (𝑑>) Hidden nodes (𝑁u) MSE for validation set 
CR 7 3 0.00239 
CR, SR 7 3 0.00235 
CR, GA_C|FL_S  7 1 0.00205 
CR, Volume 7 2 0.00192 
CR, SR, GA_C|FL_S 7 2 0.00226 
CR, SR, Volume 7 1 0.00210 
CR, GA_C|FL_S, Volume 7 4 0.00211 
CR, SR, GA_C|FL_S, Volume 7 1 0.00200 
Note: Feedback delay (𝑑:) is set to 7 for all cases. CR stands for spot rates, SR for spot rates, 

GA_C|FL_S for contract rates on GA_C|FL_S. The same model for each 𝑑> and 𝑁ℎ is run 10 

times to get stable results. MSEs are the averaged values of 10 runs. 

 

Figure 4.7 One day ahead forecasts for contract rates (𝑑>=7; 𝑑:=7; 𝑁u=2) 

 
Source: Author. 
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rates are more stable, and adding more information does not help explain the model better. With 

regard to the question of when to update, it depends on the MSE reduction rate that the decision 

maker aims to achieve. In this case, the MSE reductions in 3-, 4-, 5-, 6-period ahead for rolling 

window models are 7%, 20%, 9% and 14% respectively. As a general rule, for contract rates, the 

model is recommended to update every three weeks or one month based on the results. 

Figure 4.8 MSE reductions by updating models with new information for contract rates 

 
Note: 10 runs for each period ahead, 𝑑>=7, 𝑑:=7 and 𝑁u=2. 
Source: Author. 
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Figure 4.9 MSEs with rolling window daily updates for contract rates 

 
Note: 10 runs for each period, 𝑑>=7, 𝑑:=7 and 𝑁u=2. 
Source: Author. 
 
 

Figure 4.10 MSEs with rolling window weekly updates for contract rates 

 
Note: 10 runs for each period, 𝑑>=7, 𝑑:=7 and 𝑁u=2. 
Source: Author. 
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4.2 ARIMA and ARIMAX model results 

4.2.1 ARIMA model results for spot rates 

The number of observations for training data used of ARIMA models are set equal to the 

number of observations for training and validation data used for ANN models, while the testing 

data has the same number of observations for two types of models. Therefore, the training and 

testing split ratio is 85:15 for ARIMA model. As discussed in Section 3.2.2.1.3, both spot and 

contract rates are stationary in level forms, thus, the integrated term (𝑑) for ARIMA (𝑝, 𝑑, 𝑞) 

model is zero. Ljung-Box (LB) Q-statistic is conducted first for the autocorrelation test and the 

test result suggests that the null hypothesis of non-correlation is rejected at 1% level and the 

series demonstrates significant autocorrelation. As such, an autoregressive process would be 

appropriate. 

The optimal 𝑝  and 𝑞  lags for ARIMA ( 𝑝, 𝑑, 𝑞)  model are selected based on Akaike 

information criterion (AIC). A mean value is also included in the model. The results show that 

ARIMA (6,0,2) has the lowest AIC value. The coefficients of the model are presented in Table 

4.5. 𝜙4 is the mean value, 𝜙h, 𝑝 = 1,…6 is the AR term, and 𝜃k, 𝑝 = 1,2 is the MA term. Most 

of the coefficients are significant at 5% level. The MSE for the test set is 0.3189. Figure 4.11 

plots the ACF and PACF for the residuals from the ARIMA model. As can be seen, there are no 

further remaining autocorrelation and partial autocorrelation effects, indicating good model fit. 

This is further confirmed by insignificant Ljung-Box (LB) Q-statistic performed on residuals 

from the ARIMA model. 
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Table 4.5 ARIMA (6,0,2) results for spot rates 

 
Coefficients Std. Error 

𝜙4 2.7449** 0.0982 
𝜙e 1.632** 0.1033 
𝜙H -0.9761** 0.1424 
𝜙w 0.1712 0.1224 
𝜙x -0.1681 0.1292 
𝜙y 0.2732* 0.1202 
𝜙z -0.0567 0.0683 
𝜃e -1.4731** 0.0885 
𝜃H 0.8525** 0.0891 
   

AIC 564.42  
Loglikelihood -272.21  

Q (5) 2.327  
Note: ** and * represent significance at 1% and 5% levels respectively. Ljung-Box (LB) Q-

statistic is the test for residual autocorrelation, conducted using 5 lags. 

 

 
Figure 4.11 ACF and PACF plots for ARIMA (6,0,2) residuals 

       
Source: Author. 
 

4.2.2 ARIMAX model results for spot rates 

Since it is shown in ANN models that including contract rates as an explanatory variable for 

spot rate forecasting does not improve the predicting performance, the ARIMAX model that 

includes contract rates as an exogenous regressor will not be discussed. 
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4.2.3 ARIMA model results for contract rates 

Ljung-Box (LB) Q-statistic is conducted first for the autocorrelation test and the test 

statistics is 114.5 (significance < 1%), conducted using 5 lags. A significant Q-statistic suggests 

the existence of autocorrelation effects for contract rates, thus an autoregressive process could be 

used. 

The best ARIMA model for contract rates is ARIMA (7,0,1) based on AIC. The result is 

provided in Table 4.6. AR (2), AR (7), and MA (1) coefficients are significant at 1% level. The 

MSE for the testing set is 0.00149. The residual ACF and PACF plots (Figure 4.12), and 

insignificant Ljung-Box (LB) Q-statistic on residuals all indicate no remaining autocorrelation 

and partial correlation effects.  

Table 4.6 ARIMA (7,0,1) results for contract rates 

 
Coefficients Std. Error 

𝜙4 2.5077** 0.0051 
𝜙e -0.0801 0.1267 
𝜙H 0.2142** 0.068 
𝜙w -0.0394 0.0563 
𝜙x -0.0868 0.0569 
𝜙y 0.0276 0.0557 
𝜙z 0.0601 0.0565 
𝜙{ 0.3457** 0.054 
𝜃e 0.4287** 0.1309 
   

AIC -1174.04  
Loglikelihood 597.02  

Q (5) 1.3081  
Note: ** and * represent significance at 1% and 5% levels respectively. Ljung-Box (LB) Q-

statistic is the test for residual autocorrelation, conducted using 5 lags. 
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Figure 4.12 ACF and PACF plots for ARIMA (7,0,1) residuals 

           
Source: Author. 

4.2.4 ARIMAX model results for contract rates 

Based on results from the NARX model for contract rates in Section 4.1.2.2, the potential 

lagged predictors include volumes and contract rates on GA_C|FL_S. The predictors are 

considered for up to 7 lags, that is, the model may include values of predictors one day before, 

and up to 7 days before that. The best model is the one with the smallest AIC value. Suppose that 

one predictor (either volume or contract rate on GA_C|FL_S) is added to the ARIMA model 

each time. Recall the equation in Section 3.1.2 for a model that allows for lagged effects: 

𝑦F = 𝜙4 + 𝛽e𝑥Ffe + 𝛽H𝑥FfH + ⋯𝛽|𝑥Ff| + 𝑛F, 

where 𝑛F is an ARIMA process, the value of k can be determined using AIC. The value of 𝑝 and 

𝑞 for ARIMA error is set to 7 and 1 based on ARIMA model in Section 4.2.3. Table 4.7 presents 

the AIC value for ARIMAX models with different predictors and lag lengths. As can be seen, the 

ARIMAX model with volume as the predictor and 𝑘 set to 6 has the lowest AIC value. However, 

comparing this with AIC value from ARIMA (7,0,1) model, the simpler ARIMA (7,0,1) model 

has smaller AIC. Thus, the final ARIMA/ARIMAX model for contract rates is ARIMA (7,0,1). 
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Table 4.7 AIC values for ARIMAX models with different predictors and lag lengths 

 AIC Value 
Lag length (k) Predictor: Volume Predictor: GA_C|FL_S Contract rates 

1 -1150.35 -1144.70 
2 -1148.56 -1142.74 
3 -1147.64 -1143.98 
4 -1153.72 -1145.28 
5 -1157.32 -1143.38 
6 -1158.25 -1145.95 
7 -1157.35 -1144.65 

 

4.3 Comparison between NAR and ARIMA models 

In this section, the overall comparison is made between NAR models and ARIMA models. 

The models are compared based on Root Mean Squared Error (RMSE) due to easier 

interpretability. Table 4.8 shows the RMSE results for the best NAR and ARIMA models for 

both spot and contract rates. RMSEs for the testing set (which includes 53 day forecasts) and for 

7-days rolling forecasting have been calculated. The 7-days rolling forecast is done by first using 

days 306 to 312 as inputs and days 313 to 319 as forecasting periods, then days 313 to 319 as 

inputs and days 320 to 326 as forecasting periods, …, until days 348 to 354 as inputs and days 

355 to 361 as forecasting periods. Then the mean RMSE is calculated. The % difference between 

NAR and ARIMA models is also provided to show performance differences between different 

models. 

For spot rates, the ARIMA model performs slightly better than the NAR model for the entire 

testing set. However, the NAR model has a lower RMSE than the ARIMA model for short-term 

forecasts. For 7-day rolling forecasts, the spot error is around $0.565 per mile over a $2.7 per 

mile average using the NAR model, with a coefficient of variation (COV) of 0.209. On the other 

hand, for contract rates, the NARX model performs much better over longer period forecasts, but 
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not as good as the ARIMA model for short-term forecasts (although the difference is small). This 

is because contract rates are much stable and structured, so a simple ARIMA model could model 

well the short-term rate movements. For 7-day rolling forecasts, the contract error is around 

$0.031 per mile over a $2.5 per mile average using the ARIMA model and $0.033 per mile using 

the NARX model. The COVs are 0.012 and 0.013 using ARIMA and NARX models 

respectively, indicating almost equally sound performance of the two models. Furthermore, the 

COV for contract rate forecasting is much smaller than spot rate forecasting, implying much less 

forecasting variability and much higher accuracy for contract rates. On the other hand, as it is 

shown in section 4.1.2.3, for contract rates, the model is recommended to update every three 

weeks. However, it is noted that the comparison between NARX and ARIMA model is done 

without model updates. Thus, the NARX model for contract rates could have a better 

performance if updated with new data. Furthermore, for longer term forecasts, a NARX model 

provides better results. 

 

Table 4.8 RMSE comparisons between NAR and ARIMA models 

Rate 
type Model type Best model RMSE for testing 

set (53 days)  
RMSE for 7 days 
(rolling forecast) 

Spot 
NAR/NARX NAR with 𝑑:=7  0.58864 0.56511 

ARIMA/ARIMAX ARIMA (6,0,2) 0.56472 0.60167 
% Difference  4% -6% 

Contract 
NAR/NARX NARX with 𝑑:=7, 𝑑>=7 0.03302 0.03286 

ARIMA/ARIMAX ARIMA (7,0,1) 0.03860 0.03082 
% Difference  -14% 7% 

Note: % Difference is calculated as (RMSE���/���� −	RMSE�����/������)/
RMSE�����/������ as a way to measure relative performance of two types of models. 
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4.4 Summary 

This section compares different NAR/NARX and ARIMA/ARIMAX models. Results show 

that overall speaking, contract rates have much higher forecasting accuracy and less forecasting 

variability compared to spot rates.   Furthermore, for spot rates, the NAR model has better short-

term forecasting results compared to the ARIMA model, while for contract rates, NARX and 

ARIMA models provide almost equally good forecasting results. For a longer-term forecast, the 

NARX model is more accurate than the ARIMA model for contract rates. 
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5 Conclusions 

This study has developed a forecasting model that predicts both contract and spot rates for 

truckload transportation on individual lanes for the next seven days. The model used is a neural 

network model based on Nonlinear Autoregressive Models with eXogenous input (NARX). It is 

a hybrid model that incorporates both non-linear features of neural network models and 

autoregressive features of time series models. This study considers several input variables, 

including lagged values of spot and contract rates, rates on adjacent routes and volumes. The best 

NAR/NARX models for spot and contract rates are selected based on highest forecasting 

accuracy on the validation set. The NAR/NARX model is also compared with traditional time 

series models (ARIMA and ARIMAX). This section summaries the major findings and 

contributions, and identifies research limitations. 

There are five key findings of this thesis. First, generally speaking, the NAR model provides 

better short-term forecasting performance for spot rates than the ARIMA model, while the 

ARIMA model performs slightly better for contract rates. However, for a longer-term forecast, 

the NARX model provides better results for contract rates.  

Second, the best NAR/NARX model for spot rates is NAR model with seven days feedback 

delay. The best ARIMA/ARIMAX model is ARIMA (6,0,2). Adding additional information, 

such as past values of contract rates and volumes, does not improve the model’s performance. 

Furthermore, updating the model with new information does not help improve the forecasting 

accuracy. In addition, the forecasting accuracy increases only slightly as the dates come closer to 

the forecasting periods. All these results indicate that spot rates contain high levels of noise, and 

the resulting neural network is unstable.   
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Third, the best NAR/NARX model for contract rates is NARX model with seven days 

feedback delay and seven days input delay of volumes. The best ARIMA/ARIMAX model is the 

ARIMA (7,0,1) model. For contract rates, retraining of the model increases the model’s 

performance, and using newer and closer information sets for the same model also improve the 

model’s performance. Therefore, the general guideline for contract rate forecasts is to update new 

information using the original model every week and retrain the original model every month.  

Furthermore, the model’s prediction of contract rates is much more accurate and has much 

less forecasting variability than spot rates. A high forecasting accuracy can be achieved for 

contract rates either using NARX or ARIMA models.  However, spot rates are difficult to 

forecast due to high variability.  

Last but not least, results show that there exists no short-term information transmission 

between spot and contract rates. This can be due to the fact that contract rates are often 

negotiated for a one-year period, which reflects future market expectation at the time of contract 

negotiations. On the other hand, spot rates often reflect current market supply/demand dynamics.  

This study has made several contributions. First, this research has made methodological 

advancements by introducing the hybrid neural network and time series model (NAR and NARX) 

into the transportation forecasting field. The model is shown to have better short-term forecasting 

abilities for spot rates, as well as accurate forecasts for contract rates in both shorter (seven days) 

and longer terms (two months). Second, the results from this study can be applied to industrial 

players for their own forecasting. These results provide guidelines for both shippers and carriers 

regarding how to select input variables, what model to use, when to update the model with new 

information, and what forecasting error is normally expected from the model. 
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Limitations of this study exist. The classifications between spot rates and contract rates in 

the dataset are reported by various companies. However, some rates can be misclassified, thus 

resulting in higher modelling errors. In addition, this study only considers one year of data, 

which makes it hard to model in monthly seasonality effects.  

6 Future research 

This thesis has considered various forecasting techniques and different input variables for 

TL rate forecasting. However, due to research scope and data limitations, there are potential 

areas that were not fully explored, but would be worth investigating in the future: 

• It is interesting to see whether a classification technique could be used to 

automatically classify a new rate (either spot or contract), based on rate behaviour 

rather than self-reported.  

• It is also worthwhile to investigate seasonal effects (for example, the month of the 

year effect) on spot rate forecasting using data that lasts for a longer period.  

• This study only considers rate forecasting for one specific high-volume lane. Future 

research could potentially extend the current model to different lanes and test the 

model’s performance across lanes.  

• The impact of neighbouring or adjacent lanes/regions could be further explored. This 

study only considers three adjacent lanes for GA_C to FL_C data. In the future work, 

an algorithm to automatically filter out highly correlated lanes among all possible 

neighbouring lanes could be developed. 
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• The information transmission between spot and contract rates over a longer period of 

time is also of interest. For example, how the spot rate movements in the past year 

affect this year’s contract negotiation rates could be examined.  

Through applying the models established in this thesis and investigating the future research 

areas noted above, both shippers and carriers will be able to better estimate transportation costs. 

This can help shippers make better decisions when planning transportation budgets and help 

carriers estimate future cash flows.  
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8 Appendix 
 
Appendix A: US region breakdown 
 

 
Source: MIT CTL Freight Lab, 2018. 


