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Abstract

I study a continuous-time principal-agent model with hidden action in which the prin-
cipal and the agent have ambiguous beliefs about the volatility of the project cash
flows. I describe a novel formulation that captures uncertainty about the underlying
volatility process show how it affects the optimal contract. Ambiguity aversion gen-
erates endogenous belief heterogeneity between the principal and the agent. Under
the optimal contract, the agent always trusts the benchmark probability model, while
the principal forms expectations as if volatility is strictly higher and state-dependent.
Additionally, I show ambiguity aversion generates asset pricing implications for the
implied financial securities.
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Chapter 1

Introduction

Models of long-term financial contracting have attracted considerable attention over

the past decade. These models typically study financial frictions by examining infinite

horizon incentive problems between outside investors and a firm insider who's actions

are only partially observable. A common thread in this literature is that the models

assume that all economic actors fully understand the model environment and that

such understanding is common knowledge. This is similar to (but stronger than) an

assumption of rational expectations, and has been criticized as overly restrictive in

models with strategic interaction by Harsanyi (1967), Wilson (1987), Bergemann and

Morris (2005), Woodford (2010), Hansen and Sargent (2012) and others.

This paper attempts to relax the assumption that economic fully understand their

model environment and study the corresponding effect on financial contracting. In

particular, I study a long-term contracting problem where economic actors have am-

biguous beliefs about the possibly time-varying volatility of future cash flows. Moti-

vated by the variational formulation of Maccheroni et al. (2006a), I describe a novel

formulation that captures uncertainty about the underlying volatility process show

how it affects the optimal contract. Ambiguity aversion leads the principal to design

a contract that is robustly optimal given uncertainty about the volatility process. I

adopt a continuous-time framework based on the models of DeMarzo and Sannikov

(2006) and Biais et al. (2007) where a firm insider with limited liability takes a hidden

action that affect project cash flows. Under the optimal contract, belief heterogeneity
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emerges between the principal and the agent. The agent trusts the benchmark volatil-

ity model, whereas the principal forms expectations as if volatility is strictly higher

and state-dependent. As in DeMarzo and Sannikov (2006), the optimal contract can

be interpreted as featuring a line of credit between the principal and the agent. I show

how ambiguity aversion increases the optimal credit limit, while reducing the reliance

on long-term debt. This is important since credit lines are a commonly used corpo-

rate security. Additionally, I derive asset pricing implications of volatility ambiguity

under the optimal contract.

1.1 Related literature

My paper builds on the large literature of papers studying models of long-term fi-

nancial contracting. DeMarzo and Fishman (2007), DeMarzo and Sannikov (2006),

and Biais et al. (2007) show that in stationary environments with risk-neutral eco-

nomic agents, the optimal long-term financial contract can be implemented by an

interpretable capital structure. I build on these papers by introducing uncertainty

about the volatility of the cash flow process and study how this affects the optimal

contract. DeMarzo et al. (2012) and Bolton et al. (2013) examine the impact of incen-

tive problems on investment under uncertainty. Panageas and Westerfield (2009) and

Drechsler (2014) study high-water-mark contracts for delegated asset management

and find, surprisingly, that despite the convexity of the compensation these contracts

incentivize the asset manager to choose the optimal portfolio under CRRA utility.

More recently, DeMarzo and He (2016) study incentive problems between equity in-

vestors and debtholders when the firm cannot commit to a leverage policy, and find

that this produces the leverage ratchet effect documented by Admati et al. (2017).

As many of these papers, I rely on the martingale approach to dynamic contracting

problems developed by Sannikov (2008) and Williams (2008).

Particularly relevant are papers that take robust approaches to incentive problems,

such as Bergemann and Morris (2005), Carroll (2015), and Zhu (2016). The closest

paper to this one is Miao and Rivera (2016) who characterize the optimal contract in

12



continuous time when the principal faces ambiguity about expected cash flows. As I

will demonstrate, my model produces a substantially different optimal security design

yet has qualitatively similar asset pricing implications. Szydlowski (2012) and Prat

and Jovanovic (2014) study related problems where the principal is uncertain about

the details of the agency problem. Adrian and Westerfield (2009) studies optimal

contracting when the principal and the agent disagree about the underlying dynamics

of the cash flow process and both learn through time. By focusing on uncertainty

about second moments, my paper is similar in spirit to Wolitzky (2016).

Another literature which relates to my paper studies dynamic models of ambiguity

and robustness. These models can be broadly thought of as belonging to one of three

categories, namely the "recursive multiple priors" model proposed by Epstein and

Schneider (2003), the "recursive smooth ambiguity" model proposed by Klibanoff et al.

(2009), and the "dynamic variational preferences" model proposed by Maccheroni

et al. (2006c) as a generalization of the "multiplier preferences" introduced by Hansen

and Sargent (2001)1. My paper adds to this literature by proposing a new form of

preferences that capture ambiguity or uncertainty about volatility in continuous time.

To my knowledge, the only other model of volatility ambiguity is the "G-expectations"

model of Peng (2007), which can be interpreted of as a recursive multiple priors model.

By contrast, my approach is much closer to the variational model. In fact, I show

that my preference specification can be thought of as a particular continuous-time

limit of the discrete-time preferences of Maccheroni et al. (2006c).

1Note that these three categories are not mutually exclusive.
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Chapter 2

The Model

2.1 Setup

I first describe a benchmark model without ambiguity, based on DeMarzo and San-

nikov (2006) and Biais et al. (2007). At each instant t, agent chooses an effort level

at E [0, 1]. Given an effort choice, the cash-flow process {Y} obeys the law of motion

dY = patdt + o-dBt (2.1)

where pu, o- > 0, and Bt a standard Brownian motion.

The agent can derive private benefits Ap((1-at) from the action at where A E (0, 1).

Due to linearity, it is without loss of generality to take at E {0, 1}. At any time t > 0

the project can be liquidated, producing a liquidation value of L. The principal and

the agent are both assumed to be risk neutral. The principal discounts cash flows at

a rate r > 0 while the agent discounts cash flows at a rate y> rt .

Our benchmark model is

Problem 2.1.1 (benchmark model).

max Epa e-rs(dY - dCs) + e* L (2.2)
(C,T,a) [ 0

'This assumption means that the agent is impatient relative to the principal, and avoids degen-
eracy.
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subject to

Epa [f e~S(ds + A(1 - as)ds) > E [ J e-Ys(dCs + Ap(1 - aS)ds)1 (2.3)

E"pa [J e-Ys(dCs + Apt(1 - as)ds)j = WO (2.4)

2.2 Volatility ambiguity

I introduce ambiguity aversion towards volatility in a form analogous to the varia-

tional preferences indroduced by Maccheroni et al. (2006b). Under this formulation,

expectations are evaluated as if the probability laws are chosen by an adversarial

nature. In particular, given an effort process at the decision makers evaluate expec-

tations as if cash-flow process follows

dY = patdt + -untdBt (2.5)

where vt is a progressively measurable process. Nature choses vt to minimize the

decision maker's expected utility but pays an instantaneous cost V/(ut) where 7P(.) is

a non-negative convex function with 'b(1) = 0. Additionally, to avoid issues ot time

inconsistency, the instantaneous cost is discounted at the same rate that the decision

maker uses to discount their future cash flows. Let Q" denote the probability measure

where

the decision maker ranks progressively measurable consumption plans Ut according

to

8(U) = inf E [J' e--j{Ut + V)(t)} dt
{vtlt> 0.

subject to (2.5) where p is the discount of the decision maker.

I focus on two important special cases of the instantaneous cost function b(-)

16



(i) "interval uncertainty"

0 if [u/-,/]

bo otherwise

(ii) "relative entropy"
0 { - 1 -log(V2)}
2

The cost function case (i) is a convex indicator function of the set [j//-, //o. It

restricts the worst-case cash-flow volatility to the interval [_, -]. By restricting the set

of unknown model parameters to a fixed compact set, this specification is analogous to

the K-ignorance specification of Chen and Epstein (2002) which can be thought of as

a straightforward dynamic counterpart to the max-min expected utility of Gilboa and

Schmeidler (1989). The focus on volatility ambiguity is as in Peng (2007) who dubbed

the corresponding conditional expectation operator a G-expectation. Epstein Epstein

and Ji (2013) explore the implications of this type of ambiguity in a frictionless asset

pricing setting.

Case (ii) corresponds to a continuous-time limit of a relative entropy penalty.

This is analogous to the robust control or "multiplier" preferences of Hansen and

Sargent (2001). The parameter 0 controls the level of ambiguity aversion of the

decision maker. In particular, 0 can be interpreted as the degree of confidence in

the benchmark probability model since as 6 -+ oc we recover the standard expected

utility preferences with no ambiguity aversion. It is therefore natural to interpret 1/0

as the degree of ambiguity aversion.

To see where the functional form in case (ii) comes from, consider two probability

distributions P and P over a scalar random variable Y where Y ~ Normal(0, o 2)

under P and Y Normal(0, .2 v2) under P. It is useful to work with the likelihood

ratio

m(y, -, v) - exp { 2 2 - 1) Y

so that writing M = dP/dP we have M = m(Y, -, v). Now, computing the relative

17



entropy directly, we have

Ep[M log M] = I {v2 - 1 - log V2 }

Thus the penalty in case (ii) corresponds to 6 times the instantaneous relative entropy

associated with the change of volatility v. The parameter 9 > 0 characterizes the

decision-maker's concerns for robustness. In particular, it is natural to interpret j
as the level of ambiguity aversion. As 9 -+ oo we recover standard expected utility

model.

I focus primarily on case (ii). Throughout I will assume that the cost function b

is twice continuously differentiable, unless explicitly stated.

2.3 Interpretation as a change of probability mea-

sure

Before, vt was simply treated as a controlled process chosen by an adversarial nature,

while the underlying Brownian motion stayed fixed. We can instead interpret this

model as nature choosing the probability law of the Brownian motion. Let P be the

benchmark probability measure under which Bt is a Brownian motion. Consider a

new probability measure Q" under which the process B" defined by

1
dBl = -dBt (2.6)

t Vt

is a Brownian motion. We see that under Qv, Bt is an It6 process with zero drift and

volatility vt. The parameter vt can be interpreted as the local change-of-volatility

between Q' and P. Note that except in the special case vt is identically 1, P and Q"

are mutually singular probability measures so Girsanov's theorem does not apply2 .

This formulation as a change of probability measure is non-standard. Because the

set of possible probability measures are mutually singular, we cannot apply Girsanov's

2To see this, simply compute the quadratic variation of Bt on any interval [t, t + A] for which vt
differs from 1 on a set of positive measure.
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theorem to obtain a Radon-Nikodym derivative. Thus my approach is different from

Miao and Rivera (2016) which studies optimal contracting when the principal only

considers probability models which are absolutely continuous with respect to the

benchmark model and therefore only considers ambiguity about the drift of the cu-

mulative cash flow process.
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Chapter 3

Optimal Contract

Assume for simplicity that only the principal is ambiguity-averse. The optimal con-

tracting problem is given by:

Problem 3.0.1.

sup inf 1EV e-rt (dY - dCt) + e-rTL + EV e6prt(vt)dt (3.1)
(C,r,a) v . 0  .L o .

subject to (2.3), (2.4), and (2.6).

Problem 3.0.1 can be thought of as a two-player, zero-sum stochastic differential

game1 between the principal and an adversarial nature. Nature chooses the time-

varying change of volatility process vt to minimize the welfare of the agent, but

choosing vt different from 1 has cost proportional to the instantaneous relative entropy.

Next, I heuristically derive the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation for

optimality.

Let #t be the sensitivity to vtcodB" i.e. the cash-flow shock under the probability

measure Q". By the martingale representation theorem, Wt satisfies

dW = -yWdt - dCt - 4yt(1 - at)dt + $t-uvtdBe'

'See Fleming and Souganidis (1989) for further discussion
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3.1 First-Best Contract

The first-best contract is the same as the first-best contract with no ambiguity aver-

sion in DeMarzo and Sannikov (2006). This is intuitively obvious since the first-best

value function is linear, hence there are no volatility effects.

12
rF(W) = sup inf y - c + 0(v) + (-yW - c) F'(W) + -#$22. 2F"(W). (3.2)

C>0,$ v 2

It is easy to verify that at the optimum, we have # = 0 and therefore the principal's

value function under the (stationary) first-best contract is

F(W ) = W
r r

which can be implemented by the principal paying the agent a constant wage of

c = yW. Of course, this can be improved if we allow time-0 lump sum transfers in

which case the principal can simply give a one-time transfer of W to the agent which

gives

F(W) -W 
r

Thus with no moral hazard, volatility ambiguity produces no reduction in welfare.

3.2 Optimal Contract with moral hazard

It is a simple extension of lemma 3 of DeMarzo and Sannikov (2006) to show that for

any change-of-volatility process vt, the agent's incentive compatibility constraint can

be written as

q5t > A

22
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The HJBI equation for the optimal contract with agency is given by

rF(W)= sup inf p - c
c>O,4>A ,V

+0 {2 - 1- log(v 2 )}+(-yW -+2
1

c) F'(W)- 2V202 F"(W).
2

(3.3)
A simple calculation shows that worst-case change of volatility v is given by

v2 = .0

0 + 02 .2&F"(W)
(3.4)

Plugging in the our expression for v 2 the HJBI reduces to the following nonlinear

HJB equation

rF(W) = sup p - c - - log(O) + (yW - c) F'
cO,42x 2

0
(W) + - log(0 + 02 2F"(W)) (3.5)2

Consider the region [0, W) for which F'(W) > -1 so that c = 0 is optimal.

Rearranging (3.5) gives

0 1
sup - log 1
0>\ 2

+ F"(W)
0

= rF(W) - - -yWF'(W)
2

Now I apply rF(W) - p ; -yW which comes from the second-best value function

being less than or equal to the first-best value function without lump-sum transfers,

and F'(W) > -1 to obtain

0
sup - log I
0 >X 2

+ F"(W) < 00

which is a contradiction unless F"(W) < 0. This "proves"2 that F is strictly concave

on [0, W].

Thus we have shown the following. On the interval [0, W], the principal's value

function satisfies the ODE

rF(W)= ip + yWF'(W) +-log 12 + F"(W)i.0
2Not really a proof since I assumed that the solution F existed in a classical sense and was twice

differentiable, but at least it's suggestive...
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F is strictly concave so the worst-case change of volatility given by

v*(W)2 = 0(3.6)
0 + A 2 c.2F"(W)

is strictly greater than 1. Additionally, the incentive constraint always binds i.e.

$* (W) = A.

While this is the same as DeMarzo and Sannikov (2006), it stands in contrast to Miao

and Rivera (2016).

The next proposition characterizes the optimal contract under the assumption

that high effort is always optimal. The optimal contract with partial shirking can be

described using methods similar to Zhu (2013), but such a characterization is beyond

the scope of this paper.

Proposition 3.2.1. Assume that L < Lt and that implementing high effort is optimal.r

Assume further that there exists a unique twice differentiable solution F to the ODE

rF(W) = p + -WF'(W) + 0 log I+ A F"(W) (3.7)
2 0

with boundary conditions

F(0) = L, , F'() =-1

and F"(W) < 0 for all W E [0, W) where W is defined by F(W) = I - 2W. Then:

(i) When W E [0,W], F(W) is the principal's value function for problem 3.0.1,

the optimal cash flow sensitivity is $*(W) = A and the worst case change of

volatility v*(W) is given by (3.6). The contract delivers value W to the agent

whose continuation value Wt evolves according to

dWt = -yWtdt - dCt* + 0*(Wt)uov*(W) dB'I*

where dCt* is 0 in [0, W) and causes Wt to reflect at W. The contract terminates
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at time T = inf{t > 0 : Wt = 0} when the project is liquidated.

(ii) When W > W, the principal's value function is F(W) = F(W) - (W - W).

The principal immediately pays W - W to the agent and contracting continues

with the agent's new initial value W.

Observe that as the degree of model confidence 0 -+ 00, the non-linear term

0 log (1 + A2o F"(W)) converges to IA 2 U2F"(W) for any value of F"(W). Hence

(3.7) converges to the ordinary differential equation of DeMarzo and Sannikov (2006),

i.e. the benchmark model with no ambiguity aversion.

Proposition 3.2.2. Let F(.), W be defined as in proposition 3.2.1. Then high effort

is optimal if and only if

min rF(W) - F'(W)(-yW - A) > 0.
We [0,W]

The argument is simple, and is consistent with proposition 8 of DeMarzo and

Sannikov (2006). Next, I show how the optimal contract changes with the level of

ambiguity aversion.

Proposition 3.2.3. For any promised wealth level to the agent, the principal's value

function F(W) strictly increases in 0.

Thus higher levels of ambiguity aversion leads to a higher payoff boundary for the

agent.

This confirms the obvious intuition that the principal's value function is increasing

in 0 i.e. decreasing in the level of ambiguity aversion. This is illustrated in figure 1.

The following proposition shows how the payoff boundary W changes with 0.

Proposition 3.2.4. The payoff boundary W is strictly decreasing in 0.

This result is illustrated in figure 2.
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Figure 3-2: Worst case change-of-variance v2(W) for 9 = 5 shown in red.
change-of-variance when 0 = oc shown in blue. Parameter values are p
0.1, y = 0.15, A = 0.2, o = 5, L = 90.

V2= 1 i.e.
= 10, r =

3.3 What happens if the agent is ambiguity-averse?

Up until this point, I have assumed that only the principal was ambiguity averse. It is

natural to ask what happens if the agent is ambiguity averse as well. As it turns out,

26
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Figure 3-3: Upper payoff boundary W as a function of 1/9. Parameter values are
p = 10,r = 0.1,7 = 0.15, A = 0.2,u = 5, L = 90.

so long as the agent has the same form of variational ambiguity with a strictly penalty

function, that the agent's ambiguity aversion will not affect the optimal contract.

Proposition 3.3.1. Assume that the agent is ambiguity averse. Then the contract

described in proposition 3.2.1 remains optimal. Moreover, the agent's implied worst-

case belief is v(W) = 1.

Thus even when the agent is ambiguity averse, the optimal contract is unaffected

and they form expectations as if they fully trust that volatility is constant at level o-.

3.4 Bellman-Isaacs condition

The optimal contract characterized by proposition 3.2.1 is the solution of a particular

max-min problem between the principal and nature. A natural question to ask is

whether one can exchange the order of extremization and still retain the same solu-

tion. Formally, this corresponds to what is known as a Bellman-Isaacs condition. As

discussed in Hansen et al. (2006), this condition is important for the interpretation

of the solution to a robust control problem. In particular, it allows for an ex-post

Bayesian interpretation the robust control problem.
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For the robust contracting problem described in this paper, the value function is

in fact globally concave, and the optimal control of nature has no binding inequality

constraints, one can verify (see Fan (1953), Hansen et al. (2006)) that the Bellman-

Isaacs condition is satisfied. Therefore the optimal contract described in proposition

3.2.1 is optimal in an ex-post Bayesian sense where the principal believes that volatil-

ity evolves according to (3.6), in a restricted space of contracts where changes in the

agent's continuation payoff are locally linear in project cash flows. As such, it is

reasonable to interpret my model as a model of endogenous belief formation about

the volatility process.

This presents an important contrast to Miao and Rivera (2016). Under their opti-

mal robust contract the Bellman-Isaacs condition is not satisfied. Thus their contract

does not admit an ex-post Bayesian interpretation, and thus cannot be interpreted as

an endogenous belief formation model. Hence the interpretation of their solution relies

on the axiomatic approaches to variational ambiguity as in Maccheroni et al. (2006b)

and Maccheroni et al. (2006c), whereas my solution can be interpreted directly as a

model of endogenous belief formation.

28
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Chapter 4

Implementation and Asset Pricing

4.1 Capital Structure

Following DeMarzo and Sannikov (2006), I show how to implement the optimal con-

tract with equity, debt, and a credit line1 . The implementation is as follows:

" Equity: The agent holds inside equity for a fraction A of the firm. Dividend

payments are at the discretion of the agent

" Long-term debt: Long term debt is a consol bond that pays coupons at a rate

x = [ - 2W. If the firm ever defaults on a coupon payment, debt holders force

liquidation.

" Credit line: The firm has a revolving credit line with credit limit CL =

Balances on the credit line are subject to an interest rate 'y. The firm borrows

and repays funds on the credit line at the discretion of the agent. If the balance

ever exceeds CL the project is terminated.

The following characterizes how this implementation changes with the level of

ambiguity aversion.

Proposition 4.1.1. As the level of ambiguity aversion 1/0 increases

'Alternatively, the optimal contract can be implemented using cash reserves, debt, and equity as
in Biais et al. (2007)
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* The optimal credit limit strictly increases.

e The face value of the optimal long-term debt strictly decreases.

Note that the fraction of equity held by the agent is determined by the incentive

compatibility constraints, and does not change with 6.

4.2 Asset Pricing Implications

I consider asset prices in a representative agent setting where the principal is the rep-

resentative investor who trades debt and equity, whereas the agent is an insider who

is restricted from trading in either security. We take r as the risk-free rate. Then we

price securities under the worst-case belief measure of the principal. This approach

is analogous to those taken in Anderson et al. (2003), Biais et al. (2007), and Miao

and Rivera (2016).

The value of equity is given by

St = E [f e-r(s-t) dC*

It is straightforward to obtain that the stock price is given by St = S(Wt) where the

function S(.) satisfies the ODE

1
rS(W) = 'YWS'(W) + A 2 o 2v*(W) 2 S"(W)2

with boundary conditions S(0) = 0 and S'(W) = 1. A simple argument now shows

that the equity premia is given by

dSt 1 "22 ( 11(Wt)
E S r = --- 2 IV*(W) 2 _ 1 (

ISt _ 2 S(Wt )

which I believe is strictly positive2 . Note also that in the no-ambiguity benchmark,

the equity premia is identically zero.
2This would be the case if S" < 0 for all W c [0, W] which I believe is possible to show analytically
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Define the credit yield spread At by

/Ot00 e-(rAt)(8t)ds = EQ'*

Which when solved yields At = rTI where T1 Tt ere
one unit of consumption at the time of default.

r-

e r(s-t)ds]

= EQ" [e-r(T-t)] is the the price of

T = T(Wt) satisfies the ODE

rT(W) = -yWT'(W) + 2 *(W)2T"(W)

with boundary conditions T(O) = 1 and T'(W) = 0.

E

0

.5
a,

in

0

I',
0

0

0 1 2 3 4 5

W

I I I
0 1 2 3 4 5

W

Figure 4-1: Credit yield spread and equity premium as a function of W. Asset prices
without ambiguity (9 = c) shown in blue. Asset prices with ambiguity (9 = 5)
shown in red.

4.3 The role of commitment

The optimal contract described is proposition 3.2.1 is not generically renegotiation-

proof. For small values of W, the principal's value function F under the optimal

contract is increasing in W, so the principal and the agent can both be made better off

by a one-off increase in the continuation value of the agent. Thus to be renegotiation-

proof, the principal's value function F(W) must not have positive slope. However, it

is possible to modify the contract described in proposition 3.2.1 to obtain the optimal
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renegotiation-proof contract, which I describe in this section. Additionally, I show

that the implied worst-case volatility under the optimal renegotiation-proof contract

is strictly decreasing in the agent's continuation value.

Renegotiation effectively raises the minimum payoff of the agent to a point R such

that F'(R) = 0. The agent's promised value evolves on the interval [R, W] according

to

dWt = yWdt - dCt - 4ydt + AuvtdBt + dP

where the processes C and P reflect Wt at endpoints W and R respectively. The

project is terminated stochastically whenever Wt is reflected at R. The probability

that the project continues at time t is

Pr(T > t) = exp
R

The optimal contract can still be implemented with equity, long-term debt and a

credit line, though the level of long-term debt and the length of the credit line will

be different.

Proposition 4.3.1. Under the optimal renegotiation-proof contract, the worst-case

volatility v*(W) 2 is strictly increasing in W.

The renegotiation-proof implementation contract is in a sense a more robust imple-

mentation that the implementation described in proposition 3.2.1 in that it eliminates

the incentive for the principal to renegotiate the contract with the agent. However, it

still requires the principal to commit to a stochastic (unverifiable) liquidation policy.

Without such commitment, there will generally be welfare loss to the principal. In

particular, if the principal can only commit to deterministic liquidation policies, then

the Pareto frontier is generally characterized by a solution to the same differential

equation as before, but now with boundary conditions F(0) = L and F'(O) = 0.

Under this implementation, it is possible to show similar comparative statics as for

the optimal contract with full commitment.
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Chapter 5

Comparison of alternative models

5.1 Comparison with interval uncertainty

Consider the "interval uncertainty" formulation of ambiguity aversion. Assume that

the adjustment cost function V1(v) faced by nature is given by

0 if v E [1/ ,

0o otherwise.

This is equivalent to assuming that nature is free to choose any level of volatility

-t E [!-, 5] with no adjustment cost. This formulation of volatility ambiguity is pre-

cisely the G-expectation formulation of Peng (2007), and is similar to the K-ignorance

specification of Chen and Epstein (2002).

Proposition 5.1.1. Consider the optimal contracting problem in which both the prin-

cipal and the agent have interval uncertainty of the form (5.1). Assume that L < I

and implementing high effort is optimal. Then the optimal contract is the same as

that of the optimal contract without ambiguity aversion where both the principal and

the agent believe the volatility level is 5.

Proposition 5.1.2. The payoff boundary W of the optimal contracting problem with

interval uncertainty is strictly increasing in U.
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5.2 Comparison with drift ambiguity

This paper is closely related to Miao and Rivera (2016) who study a similar dynamic

contracting problem where the principal is uncertain about the expected cash flows

and is ambiguity-averse. They obtain similar asset pricing implications as I do; time-

varying risk-premia that are generally higher for financially distressed firms. However

there are some key differences. Firstly, the optimal contracts are quite different. In

my model, the incentive compatibility constraint always binds because the principal

fears inefficient liquidation and therefore does not want the agent to bear any more

risk than necessary. This preserves the optimality of the simple contractual form of

DeMarzo and Sannikov (2006) and Biais et al. (2007). In their model however, the

principal does not like drift ambiguity, and thus in the optimal contract will sometimes

force the agent to bear more cash-flow sensitivity than necessary. As a result, their

incentive compatibility constraint does not bind and their optimal contract is much

more challenging to interpret. Second, value function in my model is globally concave

so the Bellman-Isaacs condition holds. This means that it is valid to interpret my

model as a model of endogenous belief formation. This is not the case in Miao and

Rivera (2016). Thirdly, my model can accommodate ambiguity aversion on the part

of the agent, without any reduction in the impact of ambiguity aversion. Miao and

Rivera (2016) do not model ambiguity aversion on the part of the agent, and in their

framework it would produce an offsetting effect which reduces the impact of ambiguity

aversion on the optimal contract.
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Chapter 6

Empirical implications

Credit lines, also known as revolving credit facilities, are an extremely important

form of firm financing. Empirically, credit lines account for more than a quarter of

outstanding corporate debt of publically traded firms and an even larger fraction for

smaller, non-publically traded firms.' To the extent that smaller firms have more

ambiguous riskiness of their cash flows, this is consistent with the predictions of my

model.

Under ambiguity aversion, the optimal contract generates belief heterogeneity

between the principal and the agent. The agent always fully trusts their benchmark

probability model while the principal endogenously believes that volatility is time-

varying and strictly higher than the benchmark volatility. This is potentially related

to the empirical evidence on managerial overconfidence as in Landier and Thesmar

(2009) and Ben-David et al. (2013).

In terms of asset prices, my model predicts that the equity premium and credit

yield spread are state-dependent and generally higher for firms closer to default. This

is consistent with the literature on characteristic-based asset pricing (Daniel and

Titman (1997)) as well as Friewald et al. (2014) who find that firm's equity premium

and credit spread are positively correlated.

'See Berger and Udell (1995), Sufi (2007) and DeMarzo and Sannikov (2006).
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Chapter 7

Conclusion

In this paper I studied a long-term contracting problem where economic actors have

ambiguous beliefs about the possibly time-varying volatility of future cash flows.

In the spirit of the variational formulation of ambiguity given by Maccheroni et al.

(2006a), I introduced a novel formulation of ambiguity aversion that captures uncer-

tainty about the underlying volatility process and showed how it affects the optimal

contract. Under the optimal contract, belief heterogeneity emerged endogenously be-

tween the principal and the agent. The agent trusts the benchmark volatility model,

whereas the principal forms expectations as if volatility is strictly higher and state-

dependent. Additionally I showed how ambiguity aversion increased reliance on a

credit line under the optimal contract, and derived corresponding asset pricing impli-

cations.

I believe that the ideas developed in this paper can be applied to a variety of

other settings. One possibility is to examine their effect in a q-theory model with

moral hazard, similar to DeMarzo et al. (2012) or Bolton et al. (2013), and derive

simultaneous implications for corporate investment and asset pricing. Another possi-

bility would be to apply them to the problem of stress testing, where a bank regulator

attempts to control the risk-taking of a bank without full confidence in a particular

risk model. I hope to be able to develop these ideas in future work.
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Appendix A

Proofs

A.1 Proof of proposition 3.2.1

This section is not fully complete.

Write the principal's objective function as

J(q, C, a, v; w) = E' EIf T-rt(dYt - dCt) + -"rLj

=E [j ert(taatdt - dCe) + e-"Lj + E J
Then the principal's optimal contracting problem can be written as

F(w) = sup inf J(0, C, a, v; w), w > 0
(0,C,a)ErF(w) E'R

Define a differential operator

12
E(0,a,)F (W ) = pa + F'(W) (W - A(1 - a)) + -#2a 2 v2 F"(W) + 00(v)

2

Then the optimality conditions can be described as variational inequalities

0 = min rF(W) - sup inf D(,'a,'")F(W), F'(W) + I
(a,#)EA vER
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for all W > 0 and boundary conditions given in the proposition, where

F = {(0 #) : q< A}n {(1,5) : O q A}

It is easy to show that the optimal policies (#*, a*, v*) defined in the proposition

satisfy

rF(W) = sup inf D4a')F(W) =D(O*,a*,*)F(W)
(a,O)EF vER

for all W E [0, W] and F'(W) = -1 for W > W...

A.2 Proof of proposition 3.2.3

Proof. Applying Dynkin's formula to write the value function as an integral of the

differential generator and then differentiating under the integral sign and applying

the envelope theorem gives

-F(W) E [ e-t (v*(W) 2 - 1 - log(v*(W) 2 )) dt Wo = WI > 0

A.3 Proof of proposition 3.2.4

Proof. Differentiate the boundary condition rF(W) + -yW = p and use the smooth

pasting condition F'(W) = -1 to obtain

r [aF(W)

which gives
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A.4 Proof of proposition 3.3.1

Proof. Let h(W) denote the agent's value function under the contract described in

proposition 3.2.1. The HJBI equation for the agent is given by

'yh(W) = Ap(1 - a) + h'(W)(7W +Ap(a -1)) + 1 A2U2v2h"(W) + 0{2 _ I - logV 2}

on [0, W] with boundary conditions h(0) = 0 and h'(W) = 1. Now, guess and verify

that h(W) = W is a solution with optimal controls v(W) =

easy to show that this solution must be unique.

A.5 Proof of proposition 4.1.1

Proof. This follows immediately from proposition 3.2.4

A.6 Proof of proposition 4.3.1

Proof. Differentiating (3.7) w.r.t. W we obtain

0 = (-y - r)F'(W) + yW F"(W) +
6 A2.2 F"'(W)

2 0 + A 2 U2F"(W)

Note that the first term is negative since -y > r and F'(W) < 0 on the interval (R, W].

The second term is negative since F"(W) < 0 for W < W. Thus the third term must

be strictly positive. This can only happen if F"'(W) is strictly positive. The result

now follows from (3.6). El

A.7 Proof of proposition 5.1.2

Proof. This follows immediately from proposition 5.1.1 and appendix B of DeMarzo

Dland Sannikov (2006)
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